/THE ROLE OF THE HONDURAN INSTITUTE OF AGRICULTURAL MARKETING (LAMA)/
by
JORGE ANTONIO THIEBAUD
B. S., Universidad Nacional Autonoma de Honduras, 1980

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Economics

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1985

Approved by;

$L D$
2668
1445
1944 TABLE OF CONTENTS
A1」こロコ 985521 page
List of Tables． iv
List of Figures． v
Acknowledgments vi
Chapter
I．INTRODUCTION 1
A．General Overview of Honduras 1
B．Description of the Honduran Institute of Agricultural Marketing 3
II．DEFINITION OF THE RESEARCH PROBLEM AND OBJECTIVES 6
A．Problem 6
B．Objectives 8
C．Methodology 9
III．THE HONDURAN INSTITUTE OF AGRICULTURAL MARKETING 10
A．Organization and facilities 10
B．Financial Condition 11
C．Grain Purchases． 11
D．Grain Sales 14
IV．REVIEW OF LITERATURE． 17
A．Review of Selected Literature on Agricultural Policy．．． 17
B．Review of Research on Grain Marketing in Honduras． 21.
V．IHMA＇s SIMULATION MODEL FOR TESTING ALTERNATIVE INTERVENTION STRATEGIES 24
A．How the Model Works． 28
B．Computational Classification of
Page
Tables in the Model 29
C. Linkages Within the system 31
D. Data Used by the Model. 31

1. Needed Data Input 32
2. Needed Constant Input 32
V1. SIMULATED ECONOMIC IMPACT OF IHMA 36
A. Simulated Economic Impact of IHMA Using Marketing Plan Data 36
B. Simulated Economic Impact of IHMA Using Actual Information. 44
C. Simulated Economic Implications for IHMA 50
VII, SUMMARY AND CONCLUSION 54
BIBLIOGRAPHY 60
LIST OF APPENDIXES
A. AREAS YIELDS AND PRODUCTION
OF GRAINS IN HONDURAS. 62
B. HONDURAN INSTITUTE OF AGRICULTURAL MARKETING 67
C. OPERATIONAL AND FISCAL DATA, IHMA, 1979-1984 73
D. SIMULATED OUTPUT, IHMA MARKETING PLAN FOR 1984-1985 86
E. SELECTED OUTPUT, IHMA OPERATIONS
FOR 1984-1985. 110
F. SELECTED OUTPUT, ALTERNATIVE ONE. 122
G. SELECTED OUTPUT, ALTERNATIVE TWO....................... 129
ABSTRACT 136
Table Page
3. Support Prices for Basic Grains, 1978-1985 12
4. IHMA Operational Results 16
5. IHMA: Economic Implications, Marketing Plan 1984-85 41
6. Simulated Monthly Impact of Government Market Intervention on Producer Incomes from Grain Sales 42
7. Simulated Monthly Impact of Government Market Intervention on Consumer Expenditures for Food 42
8. Simulated Monthly Impact of Government Market Intervention on Processors Expenditures for Grains 43
9. Simulated Total Net Monthly Impact of Government Intervention in Domestic Grain Markets 43
10. IHMA: Economic Implications. IHMA Operations for 1984-85 47
11. Simulated Monthly Impact of Government Market Intervention on Producer Incomes form Grain Sales 48
12. Simulated Monthly Impact of Government Market Intervention on Consumer Expenditures for Food 48
13. Simulated Monthly Impact of Government Market Intervention on Processors Expenditures for Grains 49
14. Simulated Total Net Monthly Impact of Government Intervention in Domestic Grain Markets 49
15. Alternative One: IHMA's Economic Implications 52
16. Alternative Two: IHMA's Economic Implications 53
17. Simulated Benefits and Costs with and without IHMA Intervention 58
18. Simulated Economic Impact Generated by IHMA 58
19. Simulated Economic Implications for IHMA 59

LIST OF FIGURES

Figure Page

1. Schematic Diagram of Simulation Model for Testing Alternative Intervention Strategies 27
2. Classification of Tables for the IHMA Model 30
3. Sumary of Input Needs for Tables in the IHMA Model 34

ACKNOWLEDGEMENTS

I wish to thank Dr. Richard Phillips for his valuable guidance in the preparation of this thesis and for serving as major professor throughout my graduate study. Deep gratitude is also due Drs. Orlan H. Buller and Paul L. Kelley for serving as members of my commitee. Their comments and suggestions were very useful in the completion of this thesis.

I deeply appreciate the financial support of the Honduran Government. I also express my gratitude to the Kansas State University staff in Honduras and also to Dr. Cornelius Hugo for efficiently handling required matters related to my research.

My sincerest gratitude is extended to Dr. Walter Heid Jr. and his wife Barbara for their friendship and for making me feel that I really had my family in Manhat tan.

A very special thanks goes to my wife, Maribel, for her patience and encouraging love. She, too, spent many hours typing. Also to my lovely daugther, Varibelita, to my parents, Luis and Luz for all the encouragement and confidence they have extended to me for completing this graduate study.

Finally, I am grateful to God for allowing me to pursue this area of study and for blessing me with the successful completion of my program.

CHAPTER I

INTRODUCTION

A. General Overview of Honduras

Honduras, a small independent republic, lies in Central America between the Pacific Ocean and Caribbean Sea. Honduras is bounded by Nicaragua on the South, El Salvador on the Southwest, and Guatemala on the Northwest. It occupies an area of 112,000 square kilometers (43,277 square miles), slightly larger than Tennessee.

The population is 4.3 million and growing at 3.5 percent annually. Honduras has one of the highest growth rates in the world. The age distribution is, 0-14: 47.7 \%; 15-29: 26.2 \%; 30-49: 16.8 \% and greater than 49: 9.3 \% (13). The population density is 85.26 per square mile. The migration to cities is rapid, but still more than 68 percent of the population lives in the rural areas.

Literacy (1982) is considered to be 47 percent and is estimated to be higher in the urban areas. The average educational attainment is under two years of formal schooling. Of 1,000 first grade entrants, 100 will complete the 6 th grade, 35 will complete high school, and only one will obtain a university degree (15).

Over one-half of all Hondurans have no access to health services beyond folk medicine. Mortality statistics indicate that the lack of environmental sanitation is the single most serious health problem. Malnutrition is also a serious problem, with protein and vitamin A deficiencies prevalent. Over 80 percent of rural children and 60 percent of urban children under age six are malnourished (15).

According to a World Bank study, Honduras has the highest household income inequality in the world, with the top 20 percent of the households receiving 68 percent of the income, and the bottom 40 percent of households only 7 percent
(8).

The Honduran economy shows signs of difficulty. As result of erosion in confidence associated with the political instability across the region, private investment has declined. Export earnings have contracted due to deterioration in the terms of trade and a weakening in demand for primary product exports. Consequently, the rate of real economic growth has declined markedly from an average of 7.5 percent annually during 1975-1979, to 2.5 percent in 1980 and less than 0.5 percent in 1981. Accounting for the inflow of refugees and population growth, real per capita Gross Domestic Product has declined for the last two years, with evident consequences on employment and the quality of life.

At the same time, the balance of payments has come under pressure because of lower export earnings, high interest rates abroad, and the curtailment of foreign lines of credit. Even though imports were down in 1981, they still exceeded exports by $\$ 300$ million. The result was that net international reserves fell from $\$ 116$ million in 1979 to $\$ 8$ million in 1981 (15).

The agricultural field is the most important sector in the Honduran economy. The economic growth of Honduras can be attributed primarily to increases in production of agricultural export crops such as coffee, bananas, sugar, and cotton. The total land area of Honduras is 11.2 million hectares with only 25 percent of the area potentially appropriate for agriculture use. Frequent rainfall storms cause heavy flood damages to agricultural fields. The government as a result of the lack of funds, has done little to reduce these kind of risks.

Around 50 percent of the land for agricultural use is dedicated to the growth of basic grains, which include corn, beans, rice, and sorghum. Corn is the predominant crop in Honduras and it is grown by a large majority of the peasants in the country. This grain alone constitutes the single most important component of
the diet for a large proportion of the population. Honduras may be considered a self-sufficient food production country. Wheat is the only major imported grain consumed in Honduras, even though this grain is produced in small quantities.

It is important to point out that in the past Honduras exported basic grains to other Central American countries. However, production now is just sufficient to meet consumption needs in most years. In the period 1960-1984, basic grains production showed the following behavior: corn exhibited an average growth rate of 6.79 percent, growth due more to yield increases than to area expansion; rice exhibited an average growth of 2.1 percent, with the growth due to increased yields starting in the first years of the 1970's, beans and sorghum both experienced negative growth rates, because of the reduction of production areas. Historical data for production, area, and yields for corn, beans, rice, and sorghum are presented in Appendix A.

A very important characteristic during this period is the substitution of land among crops. For instance, in the period of 1970 through 1980 a sharp increase in area dedicated to rice can be seen. On the other hand, a reduction in area for the rest of the grains was observed.

It appears that basic grains production has not responded to the efforts of agricultural technicians as expected. Among others, reasons cited for this lack of response include problems in the marketing structure, and the fact that support prices or/and credit are not reaching the farmers effectively.
B. Description of the Honduran Institute of Agricultural Marketing

Starting in 1956, the National Development Bank (BANAFOM) administered the price stabilization program for basic grains; in 1957, this program was re-structured and a division for the Marketing and Conservation of Cereals was
created. However, in light of the fact that the marketing activities for basic grains distracted from the principal function of the National Development Bank, a new form of organization was believed necessary for implementing direct intevention activities for the basic grains.

The government of Honduras, through law-decree No. 592 on May 6, 1978, created the Honduran Institute of Agricultural Marketing, IHMA, as an autonomous institution with its own patrimony and juridical personality. IHMA started its organization on June 1, 1978 and its operation began on October 1, 1978. The Institute has its main office in Tegucigalpa, the capital city; however, it operates in the whole country.

According to IHMA's charter, the institution's purposes are to promote improvement of the basic grains marketing system. Its objectives are (I) to assure the stabilization of prices in the national market through direct intervention in buying and selling of these products, both in Honduras and overseas and (2) to guarantee an orderly and stable market for producers and an adequate supply to consumers.

Given the country needs and the availability of resources, the Institute has the authority to incorporate other agricultural products under its administrative programs. Consequently, IHMA has responsibility for formulating and carrying out marketing policy for basic grains and other commodities.

In order to carry out its primary objectives, the Institute is charged with such functions as stabilizing basic grain prices, establishing support prices, buying and selling basic grains and providing storage and processing services. (See Appendix B).

The Institute's top administrative unit is the Board of Directors. The Board is made up of members of the government cabinet, with representatives from the
private sector and the association of peasants. The presidency of the Board of Directors is carried out by the Secretary of the Secretariat of Natural Resources. The Board of Directors has sovereign authority and works under the norms established by law, which created IHMA. See Appendix B for membership and functions of the Board of Directors.

CHAPTER II

definition of The research problem and objectives

A. Problem

By law the Honduran Institute of Agricultural Marketing (IHMA) is the Institution charged with providing production incentives to grain producers, and at the same time assuring an adequate supply of basic foods at reasonable prices for the consumers.

When IHMA was created, it was expected to earn sufficient margins from the regular market operations to meet its expenses. Due to the social function that IHMA has to achieve in the Honduran society, it has reported substantial capital losses throughout its operational period 1978-1984. These losses had reached the amount of 15.9 million Lempiras by mid-1984 (1 Lempira $=2$ Dollars) see Table 2, Appendix C.

IHMA's capital reduction has arisen not only because of the public role that this institution has to accomplish, but also as result of (1) sharp increases in support prices offered to producers, (2) high operational and administrative costs, and (3) fixed sales prices to consumers. Consequently, IHMA has incurred a margin of profit which has not been high enough to cover operational and administrative expenses. Other problems also persist.

Ever since IHMA started its operations, goals established for its procurement programs have rarely been accomplished. Only in the case of beans have purchases exceeded 20 percent of the net marketable production, a percentage considered adequate to influence positively the market behavior. Factors such as competition, lack of funds, fixed price policy, failure to recognize the early market signals to buy at the right time, have contributed to IHMA's inability to achieve procurement goals.

Since its creation, IHMA has worked without standard sales procedures and guidelines. Because of this, the Institute has not developed an adequate marketing system for grains either in Honduras or in the Central American region. Furthermore, there are no guidelines to help determine the amount of grains that IHMA will sell to the agro-industry, for domestic consumption, for export or as direct sales through BANASUPRO (Governmental Institution in charge of guarantee low retail prices to the people with low household income).

Due to the public role that IHMA has to accomplish and the high prices that it pays to obtain the grain, its fixed sales prices often have been high and not very competitive. Consequently, the sales program has also become difficult for IHMA to administrer. Only in times of production shortfall has IHMA been able to develop a partial sales program without major problems.

Support prices have become one of the main problems for the Institution. The IHMA management takes into consideration economic variables, such as reasonable rentability for producers and marketing costs to IHMA in recommending price support levels. The problem arises because IHMA's Board of Directors has to approve the support prices. The Directors have a tendency to go for high support prices under their criterion that the higher the support prices, the more grain production may be expected. Such decisions usually are made by the Board of Directors without taking seriously into account the economic situation that IHMA has to face.

Salinas, Jaime J. (I2) in his study, Corn Acreage Response to Market and Government Support Prices in Honduras, found no statistically significant difference between the effects of IHMA and those of the former institution on producers' supply response. Even though IHMA has been paying higher support prices than the National Development Bank did in the past, farmer responses were
not statistically different. Using Nerlove supply response analysis, Salinas found that the support price of corn set by IHMA during the last year had no significant effect on corn acreage supply, Instead, producers were found to be responsive to market prices rather than to the government support prices.

Because IHMA has not had a system of cost accounting, the IHMA administration has been working without knowing the Institution's operational expenses. Thus, any decision that the administration could have taken or did take in the past, they did not know in advance the economic consequences this would have for the institution. As IHMA attempts to carry out its goals for each new agricultural year, it faces the same problems. There is general disregard of the economic impact that IHMA imposes on the grain marketing system and uncertainty regarding the effects of its program on the Honduran economy.

As result of these problems and others not listed here, the Institute continues to lose capital every year. IHMA's administration up to now has not been able to demostrate any benefits from its operations to the Honduran economy. Yet, the Board of Directors and the Government of Honduras have not made any decision to change the current IHMA strategies.

It is the purpose of this research to point out as clearly as possible the costs, benefits, and economic impacts that IHMA generates to the grain marketing system and the economy of Honduras. The IHMA Simulation Model used in this study is designed to estimate the direct consequences of any strategy and working plan that the IHMA administration and the Government of Honduras are willing to consider.
B. Objectives

Past studies have indicated that up to now IHMA's administration has
functioned without knowing the economic impacts that it exerts on the grain marketing system and the total Honduran economy. The objectives of this study are the following:

1. To analyze $\mathrm{H}_{\mathrm{M}}{ }^{\text {'s }}$ s capital loses.
2. To make a historical review of the purchasing and selling programs carried out by IHMA.
3. To analyze the characteristics of the support prices since IHMA started operations.
4. To estimate the magnitude of IHMA's revenues, expenses, and cash flow, together with simulated economic impacts generated by $1 H M A$ by sector for 1984-1985, under (a) IHMA's marketing plan and (b) purchases and sales achieved by IHMA.
5. To estimate the size of IHMA's revenues, expenses and cash flow if reasonable changes were made to the current support prices for 1984-1985.

C. Methodology

The model used to estimate the economic impact generated by IHMA on the grain marketing system and the economy of Honduras is the IHMA Simulation Model for Testing Alternative Intervention Strategies.

The period for study is the agricultural year 1984-1985. Monthly data are used in most of the tables in the model. Data were assembled from a few different sources, such as the U.S. Department of Agriculture, the Honduran Institute of Agricultural Marketing, and the KSU technical mission to Honduras.

In brief, the IHMA Simulation Model is used in this study to estimate under alternative assumptions IHMA's impact on Honduran producers, consumers, and processors, as well as on the institution's cash flow for 1984-1985.

THE HONDURAN INSTITUTE OF AGRICULTURAL MARKETING
A. Organization and Facilities

The Honduran Institute of Agricultural Marketing (IHMA) was formed in 1978 as a specialized institution to take control of the public grain marketing activities, which until then had been carried out by the National Development Bank. The Honduran Institute of Agricultural Marketing inherited from BANAFOM control of all installations acquired by purchase or donation from international organizations and the stocks of grain acquired up to that period. All these transfers were done through the normal process of transfer among public agencies by signing the corresponding documents.

On January 31, 1980, the IHMA's Board of Directors decided to form a commission, made up of members of the public sector, to recommended a procedure for the transfer of assets and liabilities from BANAFOM to IHMA (4). It was not until May 1983 that IHMA concluded its negotiations with BANADESA (Institution which is the successor agency to BANAFOM).

When IHMA was created in 1978, the total storage capacity received from BANAFOM was of 66,759 Metric Tons (MT) (see Appendix B). Towards the end of 1982, this storage capacity had been increased to 73,745 MT . This capacity may be increased to 78,745 MT by using emergency outdoor storage located adjacent to the Kennedy terminal. IHMA will expand its storage capacity soon with three projects that are in final stages of development. These projects are: (1) "SILOS RURALES" which will contribute with $18,600 \mathrm{MT}$, (2) "CENTROS RURALES" with 15,454 MT and finally (3) "PRODERO" with $4,000 \mathrm{MT}$, for a grand total of 116,800 MT. IHMA's distribution of storage capacity by region can be seen in Appendix B.

B. Financial Condition

IHMA started operations with initial capital of 20 million Lempiras, an amount which was given to lHMA through the issue of bonds. This money was received by IHMA from 10-16-78 to 1-31-80. The Institute has reported some changes in its working capital since that time, either from donations received from international organizations, or from operational results registered in each fiscal year. Donations have been obtained from the U.S.A. government through the Public Law 480 and from the Agency for the International Development, the European Economic Community, the Republic of Argentina, and the Republic of France. See Table 1, Appendix C.

IHMA's financial situation has been getting worse through the years. Since its creation, this Institution has lost money each year, cumulating to approximately 15.9 million Lempiras by mid-1984. (See Table 2, Appendix C). As result, working capital continues to be eroded and has reached the point that funds are no longer adequate to finance grain purchases. (See Table 3, Appendix C). IHMA's operational results from 1978 to 1984 are shown in Table 2. From the commercial point of view, IHMA has obtained considerable income from grain sales, but the Institute's financial situation continues to become worse, because it has to cover excessively high operational and administrative expenses which are not common to private firms.

C. Grain Purchases

In establishing the support price levels, IHMA takes into consideration variables such as production costs, quality standards, and rentability. Because support prices are expected to have an impact on production, the 1HMA administration together with the Board of Directors announces these prices before
planting time each year to guide producers' decisions.
Since 1978 IHMA has used two different kinds of quality standards to apply the support prices. In its early years of existence, the Institute published a higher price that they would pay if the grain quality requirements were optimum. This price was reduced if the grain came with high humidity and foreign material. Presently, IHMA publishes a minimum price for grain with higher percentages of humidity, impurity, and damage. The price will be increase if the grain quality is high as well as reduced if it is lower than the standard.

Table 1 portrays the support prices that IHMA has paid to producers since the start of operations.

TABLE 1. Support Prices for Basic Grains, 1978-1985 (Lempiras/Quintal)

YEAR	CORN	BEANS	RICE	SORGHUM
$1978-79$	13.50	29.00	20.00	11.50
$1979-80$	14.75	39.00	24.00	13.00
$1980-81$	15.25	40.25	24.25	14.00
$1981-82$	17.25	55.00	26.60	16.00
$1982-83$	17.25	50.00	26.60	16.00
$1983-84$	17.25	50.00	22.00	16.00
$1984-85$	17.00	46.00	23.00	15.75

Source: IHMA-Centro de Investigacion y Estadistica.

From this table, it can be seen that support prices for corn, rice and sorghum have undergone moderate changes over the period 1978-1985. The range for these grains goes from -17.3 percent to 20.0 percent. The opposite situation
occurs with beans. A sharp increase in support price of 36.6 percent is observed from 1980-1981 to 1981-1982, and a reduction of 9.1 percent a year later, but still higher than in 1980-81.

IHMA is an institution charged by law to maintain reasonable stability and order in domestic markets for basic food and feed grains. As rule of thumb, if IHMA buys 20 percent from the net marketable production it might be considered sufficient to influence the market behavior. Among the most important aspects that IHMA takes into consideration in administering the purchasing program are (1) the total national agricultural output, (2) IHMA storage capacity and processing of grain, (3) IHMA financial situation, and (4) grain stocks carry over by IHMA.

The purchasing volumes accomplished by IHMA as percentages of the net marketable production during operation over the 5 -year period, 1978-1983, have been as follows: Corn purchases have ranged of 0.94 to 13.53 percent. Beans present a better situation because the range of purchases goes from 2.74 to 28.74 percent. Rice purchase have ranged from 0.01 to 12.27 percent. Sorghum purchases have ranged from only 0.13 to 6.16 percent of total marketable production. See Tables 4 and 5, Appendix C.

Looking at IHMA's achieved procurement as percentage of planned targets during the period 1978-1983, the following performance is indicated. For corn, the main staple food for the Hondurans, the percentage of goal accomplished ranges from 7.6 to 108.2 percent. For beans the percentage of goal obtained ranges from 20.9 to 344.4 percent. In the case of rice after the initial period, the percentage of goal accomplished ranged from 155 percent to 11.1 percent at the end. Finally, sorghum procurements have ranged from 2.9 to 207.1 percent of target. See Tables 6, 7, 8, and 9, Appendix C.

Due to the shortage in production, IHMA has had to import corn, beans, and
rice from time to time during the period 1978-1983. See Table 10, Appendix C. Most of these grains were imported from the United States of America. These imports were made to fulfill one of the most important functions of IHMA, that is, was to assure an adequate grain supply to the Honduran people.

D. Grain Sales

When IHMA develops its annual sales plan it defines only the total sales target for the whole agricultural period by product and storage location. However, IHMA takes into consideration stocks at the beginning of the period, planned purchases, and stabilization stocks. Stabilization stocks are used to help maintain price stabilization in the internal market, and for protection against unforeseen contingencies.

The main channels of distribution that IHMA has used to sell its grain until now have been: (1) BANASUPRO, (2) governmental institutions, (3) exports, and (4) domestic wholesale and retail firms. The latter have been the major type of outlet.

To observe the behavior of the grain wholesale market prices during IHMA operations, the period 1978-1985 was chosen. Reported average monthly wholesale prices for the basic grains in Honduras for this period are shown in Tables 12 to 15, Appendix C. The prices reflect seasonal harvest patterns and the relatively constant volumes of demand from month to month. For example, wholesale prices of corn normally are lowest during the main harvest period for the first crop (October-December) and next lowest during the peak harvest of the second crop (May-June). Normally, IHMA's support prices (Table 1) are above wholesale market prices during the harvest months, but well below the market prices later in the season. IHMA is active in purchasing from farmers and first handlers during the seasonal harvest peaks and active in selling from its accumulated storage stocks
prior to the harvest periods for the following crop year. (e.g. July-September for corn).

The market prices in Tables 12 to 15, Appendix C are not directly comparable to the IHMA procurement prices in Table I because they are wholesale prices rather than prices paid to producers. Nonetheless, general patterns between government support prices and market prices since IHMA started operations can be seen. Since 1979-80 the average annual wholesale price of corn was 134 percent of the support price; in 1983-84 it was only 91 percent. For beans the average annual wholesale price was 173 percent of the support price in 1979-80, but has been only about 90 percent of the support price for the past three years. For sorghum the wholesale price averaged 141 percent of the support price in 1979-80, but only about 100 percent over the past two crop years.
TABLE 2, IHMA OPERATIONAL RESULTS

	$1978 / 79$	1979/80	-1980/81	. $1981 / 82$	1982/83	1983/84	1984/85 ${ }^{(1)}$
Total Sales	1,646.3	6,105.9	21,469.8	13,433.2	26,406.9	38,992.8	4,896.1
Less: Purchase Costs	1,525.2	4,655.7	17,555.0	9,814.1	23,389,0	36,957.7	5,094.1
Gross Profit or Lost	121.1	1,450.2	3,914.8	3,619.1	3,017.9	2,035.1	-198.0
Less: Operational and							
Admin. Expenses	507.3	2,753,2	4,517.7	5,801.5	6,374.2	5,503.4	2,878.1
Financ. Services	1.7	22.9	13.7	31.3	343.4	947.1	222.1
Net Profit or Loss	-387.9	-1,325.9	-616.7	-2,213.7	-3,699.7	-4,415.4	-3,299.0
Less: Adjustments	0.0	23.5	0.6	17.9	90.2	0.0	0.0
Net Profit or 1ost	-387.9	-1,302,4	-617.3	-2,231.6	$-3,609.5$	-4,415.4	-3,299.0

[^0]
CHAPTER IV

REVIEW OF LITERATURE

Literature reviewed in this study is limited to that dealing with agricultural price policy and research related to the grain marketing system in Honduras.

Selected writings about agriculture policy, agricultural marketing boards in the developing countries, agricultural price supports, and producer-consumer welfare were examined. Studies done by International and Honduran technicians for the Agency for International Development in Honduras and the Honduran Institute of Agricultural Marketing were also considered.

The review of literature may help to understand or clarify the complex and polemic issue about the role that a government should perform in the grain marketing system. However, in ligth of the fact that Honduras is a developing country facing social, political, and economic problems, one cannot expect the government to perform well in the agricultural sector. Furthermore, problems such as the lack of funds, incomplete and inaccurate information, limited knowledge, and political intervention in the grain marketing lead to unsatisfactory results.

A. Review of Selected Literature on Agricultural Theory

Agricultural price policy has been argued to be one of the main tools that a government has to influence the development and the proper allocation of resources in the agricultural sector. Through this policy a government may achieve more equitable distribution of income among producers as well as achieve other objectives. John W. Mellor (6) points out that agricultural price policy is of particular importance with respect to income distribution, because agriculture produces the consumer goods that comprise the bulk of expenditure by low income
people. Even though agriculture is primarily a consumer goods producing industry, agricultural prices affect capital formation by their influence on distribution of income, industrial profits, and government net revenues.

The implementation of governmental price programs, as part of an agricultural price policy, has both critics and defenders. Calvin B. Hoover (3) pointed out that the hostile critics of these programs come close to saying: (i) the price programs have not been effective in limiting agricultural production and raising farm prices, and (2) the price programs have been anti-social in their effects through raising the cost of food and restricting supplies available to consumers. The defenders of governmental agricultural price programs have countered by saying in effect; (1) the price programs were effective in raising prices through limiting production of farm products, and (2) the price programs have not been anti-social in their effects because production of farm products over the whole period increased greatly while the real incomes of consumers likewise increased greatly during the period. Hoover concluded by saying that is simple not feasible to judge the results of the programs which the government had in mind during any one part of the period. Furthermore, confusion arises from attributing the good times or bad times for the farmer during the period primarily to what the government did or did not do in its agricultural price programs. Finally, he says that in any event, governmental programs in support of farm prices cannot be expected to be the major factor in preventing economic depressions. Fiscal and Monetary measures, governmental spending programs, the redistribution of income designed to maintain or increase consumption, incentives for investment and other factors in their totality are likely to outweigh by far the effect of farm price programs by themselves.

A commom practice in the majority of developing countries has been the
active government role in the whole process of grain marketing. This intervention usually has been carried out by marketing boards. John C. Abbott (1) defines a marketing board as a public body set up by government action and delegated legal powers of compulsion over producers and handlers of primary or processed agricultural products. Abbott points out that in the developing countries, where the main initiative has often come from the government, broader considerations, including the overall development of agricultural production, protection of consumers, expansion of exports earnings, and extension of government control over important parts of a national economy, are involved. According to Abbott, six types of boards may be distinguished, with progressively greater acceptance of responsability, administrative capacity, marketing skill, and application of capital, namely: (1) Advisory and promotional boards, (2) Regulatory boards, (3) Boards stabilizing prices without engaging in trade, (4) Boards stabilizing prices by trading alongside other enterprises, (5) Export monopoly marketing boards, and (6) Domestic monopoly marketing boards.

Abbott specifies that the stabilization of prices over the short run depends greatly on the skill of board directorates in forecasting future market situations and handling their reserve stocks and stabilization funds. Furthermore, it has been pointed out that strict concentration on stabilization of prices could have an adverse effect upon producers incomes where their output varies considederably and free market vary inversely with quantities.

One of the main problems that marketing boards face in developing contries is that they are overstaffed and also may personal integrity. In this respect, Abbott says that the general impression is that staff allocations which are adequate in the initial years become inflated later. Also, the directors of some of the government-sponsored boards have been subjected to political
pressure which has resulted not only in thr misuse of funds but also in the adoption of economically unsounded price polices.

The objective of price support program, in the majority of cases, has been to support producers income, income distribution, and to protect producers from market variability which causes prices go below the supply-demand balance price. The method to determine the price support level has not been clearly defined until now. Some economists believe that is correct to set the price support levels according to cost of production. However, others believe that other types of economic statistics are more useful. E.C. Pasour, Jr. (9) argues that attent to set price supports on the basis of production outlays are futile in real world production because the higher the level at which prices are supported above the market level, the higher will be the required production outlay. Consequently, when expected product price is supported above the current market level, increases in product price will be capitalized into prices of production rights, land and other specialized inputs through competitive market forces so that expected product cost outlays tend to rise to meet expected returns.

Thomas A. Miller and Jerry A. Sharples (7) go beyond criticism about the use of cost of production to set the support prices. They say variables such as economic well-being of farmers, federal budget costs, cost of production, and the structure of the farm sector have to be considered in setting the support prices. Their opinion about the use of cost of production is that it is complicated, expensive to measure, and politically vulnerable. Another important aspect that they point out is cost of production is not an infallible guide to setting the level of target prices. Using cost of production to determine target prices would appear to be most legitimate for a homogeneous agricultural sector where all farms have the same costs.

John W. Mellor (6) proposes also another alternative to set the level of support prices. He says that the level of support should be determined by estimates of the equilibrium price under the expected supply and demand conditions of the approaching year. Mellor is against the use of cost of production to determine the support level, partly because the context assumed is one of improving technology and hence declining unit costs. He further states that the basic incentive for expanding production is provided by declining unit costs, not rising prices.

In defining agricultural price policy, the ultimate objective of marketing boards, is stated to be enhancement of producer and consumer welfare. Thomas A. Miller and Jerry A. Sharples (7) say economic well-being of farmers should be the primary factor in setting income supports. Protection of supplies and prices of foodstuffs to low income consumers is a widely recognized goal.

From all of the above, it seems that the controversy about using cost of production or other economic variables to set support prices is influenced by personal belief or the aggregate of political concensus. Once this polemic problem is resolved, much confusion might be prevented.
B. Review of Research on Grain Marketing in Honduras

Papers done by The Ohio State University and Kansas State University, institutions which have support from A.l.D. in Honduras, were taken into consideration in this report. Also a Master's thesis from North Carolina State University and the report of the U.S. Presidential Agriculture Mission to Honduras were examined.

Pollard, Grahan, and Cuevas (11), point out that IHMA's price policy until 1980 had been to announce the maximum price a farmer would receive from IHMA
at the beginning of each crop season. But after 1980 the minimum price paid by IHMA was used as the announced price. They said, this change was undertaken because apparently very few farmers actually received the maximum price under the former scheme. Furthermore, because IHMA can only purchase about 20 percent of the marketable surplus of basic grains, if a farmer realizes there is little chance of consumating his sale to IHMA then the announced price has minimal impact even if yhis price is above the market price.

Jaime J. Salinas (12) arrives at the same conclusion. In his research, he found that during period which IHMA has been setting the support prices, the support price was not significant in the explanation of the corn acreage supply. Such situation was indicated by the level of significance of the estimated coefficient for IHMA, and partly explained by the short period of IHMA's operation (six years).

Pollard, et. al., (11) say that IHMA in its price stabilization policy has caused that retail prices to vary less than wholesale retail prices for all grain. They argue, this is very likely due to the additional supply provided by imports to smooth out retail prices.

Miguel Loria and Carlos E. Cuevas (5) found that the main marketing channels used by farmers in Honduras in selling their grain are (1) wholesalers, (2) IHMA, and (3) others. About 24 percent of the farmers sold their harvest to IHMA, whereas 76 percent sold to private intermediaries during 1983. Furthermore, they determined that on average, farmers receive from intermediaries a net price greater than a net price based on the official price announced by IHMA. That is so because of the high cost per quintal associated with IHMA transactions, almost 6 times as high as the costs involved in selling to other intermediaries. They conclude by saying (1) transaction costs associated
with IHMA procedures should be reduced, and (2) IHMA operations appear to have a positive effect on market prices and market structure.

With respect to the losses that IHMA has reported during operations, Michael S. Hanrahan (2) proposes that these should be viewed as the costs of the social welfare services provided by IHMA, not as outright Iosses. Further, to date, IHMA has cost to the government of Honduras nothing. Its annual losses have been subsidized by international agency donations (compare Table 1 and Table 2, Appendix C).

The results of these studies about IHMA's performance in the grain marketing system leave ample room for additional research. Among the unresolved problem are (1) the size of IHMA's utility margin to cover administrative and operational expenses, (2) what support or sale level-prices should be set to obtain that reasonable utility margin, and (3) the magnitude of the economic impact generated by IHMA to the benefit of the economy of Honduras.

CHAPTER V

IHMA's SIMULATION MODEL FOR TESTING ALTERNATIVE INTERVENTION STRATEGIES

The present IHMA Simulation Model for Testing Alternative Intervention Strategies was developed by Kansas State University under the USAID-supported IHMA/KSU program in Honduras (10). This model was developed as part of the technical assistance furnished to the Honduran Agricultural Institute of Marketing from KSU through the Food and Feed Grain Institute.

The Simulation Model for Testing Alternative Intervention Strategies involves three categories: (1) supply, (2) demand, and (3) marketing and distribution. This model is a computer-based management tool for projecting the benefits and costs to be expected if a specific strategy for grain price stabilization were implemented.

The Simulation Model in its computerized form operates with Lotus 1-2-3 on micro-computer as a structured worksheet of interlinked tables, complete with titles and source footnotes in the Spanish language (The 1-2-3 is a software package for MS-DOS and other microcomputers, marketed under copyright and registered trademark of Lotus Development Corporation). It follows the standard "road-map" logic of electronic spreadsheets, but incorporates much of the power of 1-2-3 for handling relatively complex conditional program statements and functions. Data files are stored within the model, and can be updated or modified with 1-2-3 file commands. Hard copy of the output of each simulation tested and graphic presentations desired for specific outputs are generated with 1-2-3 print and graph commands, respectively.

The model simulates the impacts on average monthly market prices for corn, beans, rice and sorghurn of IHMA's grain procurement and sales operations
by movement along the short-run domestic demand curve for each of these grains. The model takes as given (estimates exogenously) for a specified past or projected crop year monthly data for (1) supply quantities, (2) demand quantities and (3) market prices for corn, beans, rice and sorghum in the domestic market. The monthly supply quantities are taken as infinitely inelastic, and include (1) domestic off-farm sales, (2) imports, and (3) sales by IHMA. Monthly demand quantities are taken to be given at the equilibrium market prices, and include (1) on-farm use for seed, livestock and loss, (2) rural consumption, (3) urban consumption, (4) industrial use, (5) IHMA purchases and (6) exports. Except for the IHMA stocks, monthly inventory levels within the system are assumed to be constant. The average monthly equilibrium market prices at the farm level and at the wholesale level, properly weighted for quality and market location, are determined empirically or exogenously and given for the model.

The nature of the demand curve for each grain is given to the model exogenously, based upon findings of previous demand and price analysis for Honduras. Arc price flexibilities for a 1-percent change in quantity up to a total quantity change of ± 5 percent are -5.0 for corn, -6.25 for beans, -3.5 for rice and -4.0 for sorghum. Arc price flexibility coefficients for each 1 percent change in quantity for changes from equilibrium quantities greater than ± 5 percent continually decline in absolute terms as the deviation from equilibrium widens. For example, for changes in quantity greater than ± 65 percent the price flexibility coefficients are -1.25 for corn, -1.5625 for beans, -0.875 for rice, and -1.0 for sorghum (see Table Z, Appendix C). With these demand price flexibility coefficients and the net market purchase (or sales) volume by 1 HMA , the model calculates simulated monthly market quantities and prices if IHMA had not been in the market. This is done by (1) determining the simulated quantity without IHMA's
net purchases (or sales), (2) determining the corresponding simulated price by moving along the demand curve, assuming full short-run adjustment would come in price rather than partly in quantity, (3) calculating the simulated value of the monthly transactions by multiplication of the adjusted quantity by the corresponding simulated price, (4) comparing the simulated market value with the equilibrium market value to measure the simulated impact of IHMA's stabilizing operations on sellers (producers) and buyers (consumers and processors).

Measured in this manner, IHMA has a favorable impact on grain producers' incomes only in the months when (1) the volume of government purchases exceeds the volume of government sales of the grain, and (2) aggregate sales by farmers exceed aggregate purchases by farmers--in other words when on balance IHMA represents a customer (market outlet) rather than competitor to producers. Likewise, IHMA has a favorable impact on consumers' or processors' expenditures for grain only in months when (1) volume of government sales exceeds the volume of government purchases of the grain, and (2) aggregate purchases by consumers (or processors) exceeds aggregate sales of the grain by them--in other words when on balance IHMA is a customer (market supplier) rather than a competitor. Thus by definition, it is impossible for IHMA to register a favorable impact on both producers and consumers of the same grain during the same month.

An over-all schematic diagram of the tabular projections included in the Simulation Model is presented in Figure 1. Each of the numbered rectangular boxes represents a table of monthly projections over the forth-coming crop year for the five basic grains.

The flow of computations in the model starts from the upper left corner of the chart (Table 1) and proceeds downward and to the right (Table 36 to 40). The upper section of the diagram portrays the supply-category tables, (Production,

FIGURE 1

Marketings, Imports, and Carry-Over), cumulating in the simulated impacts of the alternative on grain producers (Table 37). The center section portrays the demand-category tables (Urban Consumption, Rural Consumption, Industrial Use, Animal Use, Seed Use, Stocks Build-Up, and Exports), leading to the corresponding simulated impacts on consumers (Table 38) and processors (Table 39). Boxes 9-11 and those in the lower section of the diagram portray the marketing and distribution-category tables, (Purchases, Sales, Handling, Prices, Margins, Transport, Conditioning, Storage, Processing, and Packaging), cumulating in the projected costs for the alternative (Table 36, IHMA Cash Flow).

Additional patterns are reflected in schematic diagram. All boxes in the left-most column represent projected physical volumes (quintals, metric tons, quintal-months) for the alternative. Those in the next column represent prices and costs per unit quantity, e.g., Lempiras per quintal. All boxes in the remaining columns represent total values obtained by applying unit prices to the corresponding volumes, and are reported in units of 1000 Lempiras. Computational hierarchies and patterns among the tables in the Simulation Model are portrayed by the schematic diagram also. Solid lines connecting boxes represent computational relationships. Tables portrayed by boxes enclosed by solid lines represent projected actual values under the alternative. Those portrayed by boxes enclosed by dotted lines represent simulated values without intervention, which are used for comparison to project estimated impacts of the alternative.
A. How the Model Works

As illustrated by the schematic diagram, the Simulation Model is designed to proceed through the whole series of calculations needed to project the impacts of a given alternative, once the characteristics of the alternative are fed into the
computer.
The computational routine, the standardized data, and the necessary supporting work tables remain within the model's computerized files, as do the output tables for the base case. The base case simulation shows projected impacts over the forth-coming crop year under the existing intervention program. When the characteristics of an alternative strategy are fed into the computer, they replace those of the base case, and the computer model recalculates the whole simulation automatically. A new set of output tables is generated, cumulating in the simulated impacts for that alternative. This process can be repeated for as many alternatives and sub-alternatives as desired.

B. Computational Classification of Tables in the Mode!

The output tables of the Simulation Model can be classified into four different types with respect to data requirements, as shown in Figure 2. Type A includes tables needing specific input data for each alternative. These are Tables 3, 4, 20, and 21, covering projected volumes and prices of government grain purchases and sales for the alternative under study. Nine tables are Type B. They are computed by the model based on input factors or coefficients specific to the alternative. Another thirteen of them, Type C , are computed by the model from factors and coefficients which are constant from one alternative to another. The final fourteen tables in the model, Type D, are computed internally without additional input data.

As in the schematic diagram, the double spacing in the classification of tables separates the supply section (Tables 1-12), the demand section (Tables 13-27), the distribution section (Tables 28-35), and the impact section (Tables 36-40).
FIGURE 2. CLASSIFICATION OF TABLES FOR THE IHMA MODEL.
(Table No. and Title by Category)
B. Tables Computed with C. Tables Computed with D. Tables computed without
Constant Factors
2. Sales Volume
7. Farm Revenue
8. Simul. Revenue
9. Purch. Cost
14. Simul. Consumpt
18. Simul. Industry
26. Industry Expense 27. Simul. Expense
35. Gov't Revenue
36. Gov't Cash Flow 37. Producer Impact
 Procesor Impact
U
O
E
N
0
0
0
0

C. Linkages Within the System

Although only 13 of the 40 tables in the Simulation Model require an unique input to the alternative under study, most of the 40 tables will contain different values for each alternative. The reason is that when "earlier" tables in the model's computational system are changed, it automatically caused values changes in the "later" tables to change.

For instance, consider the impacts on the hierarchy of tables in the model from changes in the planned volume of government grain purchases, Table 3. This will affect directly the values in Tables $7,9,10$, and 11 , causing "second-generation" effects on the values in Tables 36, 37, and 40, even though nothing else has changed. Furthermore, government sales (Table 20) are related to government purchases (Table 3), so that changes in Table 3 also indirectly affect values in Tables 24, 26, 29, 31, 32, 33, 34, 38, and 39. Thus, changes in input data to represent a new alternative made at one point in the model cause reverberations throughout the system. The projected net impacts on simulated total benefits and costs are determined only after all of these linkages have been worked through the model for that alternative and the new values for Table 36 through 40 are calculated.

The ability of the model to trace all of the reverberations to a final set of projected net impacts makes it a powerful tool for discovering more effective intervention strategies than have been tried before.

D. Data Used by the Model

Data used in the Simulation Model were taken from records of IHMA-CIES and the Secretaria Permanente del Tratado General de Intergracion Economica

Centro-Americana, for the agricultural year 1984-1985. As can be seen by closer review of the listing of input needs in Figure 3, the specific data requirements for testing the alternative intervention strategy are indeed reasonable. The needed data input as well as the needed constant input are described in Figure 3.

1. Needed Data Input

Monthly input data for each grain for the alternative are needed only for Tables 3, 4, 20, and 21. The annual production supply response of the country's farmers for each grain under the alternative is needed for the computation within the model of Tables 5, 16, and 22. Changes in ending inventory (carry-over stocks), and in beginning inventories expected under the alternative are needed for Tables 12 and 19 and for Tables 28 and 29, respectively. Transfer patterns among IHMA's rural and terminal silo facilities under the alternative are needed as input for computation of Table 33. No other specific-alternative input data is needed to apply the Simulation Model for the alternative.

2. Needed Constant Input

Additional input information which is constant across alternatives is needed in the model, as shown in the last column of Figure 3. However, once this information has been provided for the first alternative to be tested, it can be applied to as many additional simulations as desired. This is true of average monthly patterns of prices and quantities and prices for Tables $1,5,16$ and 22. It is true of the short-term coefficients of direct price flexibility of demand (Table 2) needed for computing Tables 6, 23 and 25. It is true of IHMA's direct costs per quintal for procuring, handling, conditioning, storage, milling, selling and transporting each type of grain (Tables $10,11,32,33,34$). It is true of population
and per capita consumption figures for Tables 13A, 13B and 15A, and of annual utilization rates for Tables 15B, 16 and 17. Finally, it is true of retail marketing margies needed for Tables 24 and 25 and of storage volume formulae for Tables 30 and 31.

In addition to the 40 output Tables of IHMA's Strategy Simulation Model shown in Figure 3, other tables in the system include five work tables, the Table Z "computer-look up" table, the summary "Cost-of-Sales" table, and three sets of sub-tables. Because these are supporting tables only, they normally need not be printed for each of the alternatives to be considered.

FIGURE 3. SUMMARY OF INPUT NEEDS FOR TABLES IN THE IHMA MODEL

TABLE

1. Harvest volume
2. Sales volume
3. Gov't purchases
4. Gov't prices
5. Market prices
6. Simul. market
7. Farm revenue
8. Simul. revenue
9. Purchase cost
10. Cond. expense
11. Acquis. expense
12. Import volume

NEEDED DATA INPUT
Farms, area, production
None
Total monthly purchases
Monthly purchase prices
Supply response for alternative (\%)
None
None
None
None
None
None
Ending invent, change

NEEDED CONSTANT INPUT
Aye., monthly harv(\%),
loss factors
None (T1-T15A-T15B-T16)
None (pre-weighted by
None
quality and loc.)
5 year ave. monthly prices
Table 2 , price flexibility
cofficients
None (T3*T4)+(T2-T3)*T5
None (T6*T2)
None (T4*T3)
Direct cost/qq (*T3)
Direct cost/qq (*T3)
None (T13C+T15A+T15B+T16+
T17-T2)

Population, annual percapita consumption. Population, annual per capita consumption
None (\% change*T13C) No farms*family size* per capita rates.
Gross production*feed rates
Areas, seeding rates, planting dates
Historical use; annual
growth 3\%.
None (\% change*T17)
None (T2-T13C-T15A-T15B-T16-T17)
None
None
5-year ave. monthly prices
Table 2, price flexibility cofficients
Retail margin (T13C* (22) 1.0-M))

Retail margin (T13C* (23) 1. $0-\mathrm{M}$))

None $(T 20 B * T 21)+(T 17-T 20 A) * T 22$
None (T17*T23)

28. Gov't inventory (old)	Beginning inventory and plan	None ($\mathrm{I}_{\mathrm{t}-1}-\mathrm{S}_{\mathrm{t}}$)
29. Gov't inventory (new)	Inventory policy and plan	None ($\mathrm{I}_{\mathrm{t}-1}+\mathrm{P}-\mathrm{s}_{\mathrm{t}}$)
30. Storage volume (old)	None	¢9 - month formula (*T28)
31. Storage volume (new)	None	9q-month formula (*T29)
32. Storage expense	None	$\begin{aligned} & \text { Direct expens./qq-mo } \\ & (*(T 30+T 31)) \end{aligned}$
33. Transfer expense	Transfer pattern for alternative	Transfer cost/qq
34. Selling expense	None	Sales exp./qq (*T20)
35. Gov't revenue	None	None (T20*T21)
36. Gov't cash flow	None	$\begin{aligned} & \text { None (T35-T9-T10-T11-T32- } \\ & \text { T33-T34) } \end{aligned}$
37. Producer impact	None	None ($77-\mathrm{T8}$)
38. Consumer impact	None	None (T25-T24)
39. Processor impact	None	None (T27-T26)
40. Total impact	None	None (T37+T38+T39)

CHAPTER VI

SIMULATED ECONOMIC IMPACT OF IHMA

The IHMA's Simulation Model was first run by Phillips, Maxon and Hugo in August I984 as part of the technical assistance given to IHMA from KSU. The IHMA's administration saw this first investigation as something positive for the Institute, because it was the first time that IHMA would be able to estimate and evaluate the economic impact that they could expect on producers, consumers and processors. It was also the first time that the IHMA cash flow and the total impact on the Honduran economy could be simulated before a program was adopted.

The first alternative using the IHMA model was called Marketing Plan for 1984-1985. It was a test run and not really an alternative because no changes in the planned grain marketing intervention were proposed. The plan was run, as the model points out, to foresee the IHMA's economic impact in the marketing system as well as the IHMA cash flow during that agricultural year, and to serve as the base case against which alternatives could be compared.

The IHMA Simulation Model is used in this research to analyze THMA's ability to carry out its objectives using simulated and actual data to show IHMA's performance.

A. Simulated Economic Impact of IHMA Using Marketing Plan Data

Inputs used in the model were projected or estimated based on past figures. For instance, to project monthly volumes of basic grains production, average patterns for the past six years were used as base. The current IHMA procurement plan and planned sales program for 1984-1985 were used. Current IHMA procurement and sales prices for 1984-1985 were used.

The goals established in the procurement plan for each grain for 1984-1985 are 949.6 thousand quintals of corn, 74.1 thousand quintals of beans, 69.7 thousand quintals of rice and 59.7 thousand quintals of sorghum, for a grand total of $1,153.1$ thousand quintals of grains. Monthly data by grain are shown in Table 3 of Appendix D. Procurement prices for IHMA by grain can be seen in Table 4 of the same Appendix.

The goals fixed for the sales program by grain for 1984-1985 are 1,157 thousand quintals of corn, 68 thousand quintals of beans, 113 thousand quintals of paddy rice, 80 thousand quintals of sorghum, and 37 thousand quintals of milled rice, for a grand total of 1,455 thousand quintals of grains. Monthly data by grain is presented in Table 20 of Appendix D. Sale prices for IHMA by grain are shown in Table 21 in the same Appendix.

The IHMA's Simulation Model output shows simulated income to producers from grain sales with both (1) planned IHMA intervention and (2) without IHMA intervention. With IHMA intervention (Table 7, Appendix D) the simulated farm revenue generated by grain is 54.7 million Lempiras for corn, 15.8 million Lempiras for beans, 35.6 million Lempiras for rice and 7.8 million Lempiras for sorghum, for a total revenue of 113.9 million Lempiras. By contrast with no IHMA intervention (Table 8, Appendix D) the farm revenue would be reduced substantially. Corn revenue would decrease by 26 percent, beans revenue by 17 percent, rice revenue by 3.5 percent and sorghum revenue by 20 pecent.

If IHMA did not participate in the farmers markets as a grain buyer, the simulated total revenue would be reduced by 25.8 million Lempiras or 17.3 percent (Table 37, Appendix D).

IHMA's Simulation Model also generates simulated costs of grain products to consumer both (1) with IHMA's planned intervention and (2) without IHMA
intervention. With IHMA intervention (Table 24, Appendix D) simulated consumers' costs by grain are 104.2 million Lempiras for corn, 44.2 million Lempiras for beans, 100 million Lempiras for rice and 11.8 million Lempiras for sorghum. The grand total cost for the four basic grains would be 260.2 million Lempiras. Without IHMA intervention, (Table 25, Appendix D) simulated consumers' costs are increased considerably. For instance, corn would be increased by 25 percent, beans by 8.2 percent, rice by 12 percent and sorghum by 4 percent, for a final cost increase of 16.1 percent. Consumers are better off when IHMA participates in grain marketing to stabilize quantities and prices from month to month because their costs are reduced substantially.

Simulated processor expenses per grain with and without IHMA intervention are also generated by the IHMA Simulation Model. These expenses with IHMA intervention (Table 26, Appendix D) are $\mathbf{2 6 . 2}$ million Lempiras for corn and 2.7 million Lempiras for sorghum. Expenses to processors for rice and beans are not generated by the model because these grains are not used as raw materials. Processors expenses for corn without IHMA intervention, (Table 27, Appendix D) would be increased by 25 percent. On the other hand, processor expenses for sorghum are reduced by 6 percent. This is because according to the Marketing Plan for 1984-1985, IHMA's role as a competitive buyer of sorghum overshadows its role as a supplier to processors from its storage facilities.

In order for IHMA to carry out the Marketing Plan for 1984-1985, the Simulation Model output points that IHMA needs a working capital budget of 20.0 million Lempiras to cover procurement costs, (Table 9, Appendix D), 2.3 million Lempiras for conditioning the grain (Table 10, Appendix D) and 350.7 thousand Lempiras for purchasing expenses (Table 11, Appendix D). The simulated total cost of sales would be 22.6 million Lempiras. Furthermore, IHMA has to incur
other expenses such as storage, transfer and selling. Simulated expense for storage reaches the amount of 1.2 million Lempiras (Table 32, Appendix D), that for transfer expense, 502.5 thousand Lempiras (Table 33, Appendix D), and that for selling expenses, 431.0 thousand Lempiras (Table 34, Appendix D).

IHMA will reduce its beginning grain inventory of 1.011 million quintals to 674.5 thousand quintals (Tables 28 and 29, Appendix D) by September 1, 1985 if it is able to accomplishes the procurement and sale targets as defined in the Marketing Plan for 1984-1985.

IHMA simulated revenues from grain sales for this particular plan are 31.1 million Lempiras. To these revenues, corn will contribute 21.4 million Lempiras (68.7 percent), beans 3.3 million Lempiras (10.7 percent), paddy rice 3.2 million Lempiras (10.2 percent), milled rice 1.8 million Lempiras (5.9 percent) and sorghum 1.4 million Lempiras (4.5 percent). See Table 35, Appendix D.

IHMA cash flow (Table 36, Appendix D) generated by grain for the current plan would be 495.7 thousand Lempiras for rice, 142.3 thousand Lempiras for beans, a negative amount of 3.3 thousand Lempiras for sorghum, and also a negative amount of 207.4 thousand Lempiras for corn, for a grand total of 427.3 thousand Lempiras.

The simulated economic impact that IHMA may generate on producers, consumers and processors as it administers its Marketing Plan 1984-1985 is as follows: On producers (Table 4) the economic impact reaches the quantity of 25.1 million Lempiras. Corn is the grain which generates the most benefit to producers, contributing $\mathbf{2 0 . 3}$ million Lempiras. The simulated benefit to producers of other grains is beans, 3.6 million Lempiras, sorghum, 1.7 million Lempiras, and rice, (613.9) thousand Lempiras. On consumers (Table 5) the economic impact reaches the figure of 41.8 million Lempiras. Again corn is the grain which
contributes most of the benefit to consumers with 25.8 million Lempiras, while rice contributes 11.9 million Lempiras, beans 3.6 million Lempiras and sorghum 462.7 thousand Lempiras. In the case of processors (Table 6) the simulated economic impact comes to a total contribution of 6.3 million Lempiras.

When the three sources of simulated benefits are combined, the Institution accomplishes a total simulated benefit of 73.3 million Lempiras in favor of the country as shown in Table 7. Corn contributes to this benefit 71.2 percent, rice I6.1 percent, beans 10 percent and sorghum 2.7 percent.

As shown in Table 3, the simulated economic implications for IHMA, if the Marketing Plan for 1984-1985 is developed as defined in the model, are (1) IHMA will have to incur a purchase cost of 24.7 million Lempiras; (2) LHWA would receive 31.1 million Lempiras as sales revenue; (3) IHMA would generate a gross margin of 5.1 million Lempiras as result of the purchase and sale transactions; and finally (4) IHMA would report a net loss under this alternative of more than 5 million Lempiras.

Corn and rice are the grains which will generate the most gross margin in favor of the Institute. However, the total direct costs for corn are excessively high. It is important to point out that after seven years of IHMA operations, the Institution continues generating losses even though the data used in the present Marketing Plan for 1984-1985 are projection rather than actual figures.

TABLE 3. IHMA: Economic Implications, Marketing Plan 1984-1985
(1,000 Lempiras)

TREEE 4. Simulated Monthly lupact of Soverrment Market Intervention on Producer Incomes from Grain Sales (1, 000 Lempiras)

CONA BEWS. RIEE SOREHM WERT TUTAL

Sep	(2,976,0)	(515.8)	(1,234.5)	0.0	(4,725.4)
QCT	3,467.0	1,246.2	(1, 89e,5)	0.0	3,622.8
NON	11,254.8	616.3	724.2	47.3	12,642. 6
DEE	8,551.4	(129.5)	1,621.8	170.4	18,214.2
JPN	1,219.7	1,282, 6	36.2	393.8	2,932,3
FEB	673.2	$2,428.5$	(242.9)	855.3	3,796. 8
Nar	(1, 451.8)	(56.4)	(290.4)	389.0	(1,319.6)
A0R	(421.a)	(299.7)	(227.8)	(107.6)	(1,056.2)
WAY	0.1	0.0	0.1	8.0	8.8
πN	8.8	0.0	8.8	0.0	0.2
Jt.	2.8	0.0	0.0	0.0	0.8
AUS	8.8	(931.8)	0.0	0.0	(931.8)

TUTA. 28,317.2 $3,632.4$ (613.9) $1,748.2 \quad 25,283.9$
Source: Calculated by subtracting simulated revenves to producers froe grain sales without government intervention (Table 8) from projected producer revenues from grain sates under this alternative (Table 7). Appendix D.

TABLE 5. Sizulated Nonthly Impact of Covernment Narket Intervention on Consumer Expenditures for Food (1, 208 Lempiras)

	Cown	BEFNS	RICE	SORGHLA	Meat	TUTAL
5 SEP	6,110, 6	1,275.4	2,939.6	118.5		9,544.1
CCT	$(3,540,9)(2)$	$(2,258.4)$	2,289.5	119.3		(3,472.5)
N01	0.8 (1)	$(1,217.4)$	$(2,234.6)$	(253.6)		(3,715.7)
DEC	$(5,188.4)$	588.2	$(3,412,9)$	(231,8)		(8,332.9)
J.**	(2, 697.1) (1)	(1,501.5)	(416.9)	(352.2)		(5, 367,7)
FE8	(916.4) (3,	(3,942.3)	798.8	(525.01)		(3,685, 8)
W明	3,881.2	266.6	849.9	(34.1.6)		3,856.2
APR	3,633,6	677.4	1,388.4	313.1		6,012.5
May	4,987.8	1,353.7	1,394.9	371.3		8, 113.7
JNI	5,615.0	2,650.3	3,927.0	458.6		11,750.9
$\cdots 1$.	6,678,6	3,467.0	3,189.6	685.9		14,013.1
fus	8,879.3	1,851.3	3,101.2	184.2		$13,136.0$
TOTA.	25,835,3	3,522,2	11,933.8	462.7		41,853.9

Source: Calculated by subtracting simulated consumer experditures without government intervention (Table 25) from projected consumer expenditures for basic grains and grain products under this alternative (Table 24). Appendix D.

TARLE 6. Simulated Monthly Lavact of Government Market Intervention on Processors Expenditures for Grains (1,880 Lempiras)

	cons	LEENS	RICE	Soscrin	WEAT	total
SEP	1,534.0			8.8		1,534, 8
CT	(888.9)			8.8		(888,9)
NOV	8.8			(89.0)		(8Q, 0)
DEC	$(1,322.5)$			(70.4)		(1,372.9)
JAN	(677.1)			(93.3)		(770.4)
FEB	(239,1)			(129.4)		(359.5)
Mn	73.5			(90.8)		683.6
APR	912.2			46.8		958.2
WhY	1,2\%2.2			59.8		1,311.2
πN	1,409.6			74.7		1,484.3
31.	1,674.6			121.3		1,796. 8
f4G	2,828, 3			2.8		2, 228, 3
TUTAL	5,485. 9			(162.0)		5, 323.9

Source: Calculated by subtracting siwulated processor expenditures without government intervention (Tab 27) from projected grain expendit. by processors under this alternative (Table 26). Appendix D.

TRELE 7. Sisulated Total Net Monthly lmpact of Government
Intervention in Domestic Grain Markets (1, 889 Lespiras)

SEP	4,668.6	759.6	885.2	118.5	6,351.8
CTT	(962, 8)	$(1,012.2)$	1,119.8	119.3	(736.7)
NON	11, 234.8	(681.1)	$(1,510.5)$	(296.4)	8,846. 8
DEE	2,060.5	378.7	(1,791.8)	(131.9)	500.3
JAN	$(2,154.6)$	(618.9)	(388.7)	(51.6)	(3,205, 8)
FEB	(473.3)	(621.8)	555.0	290.8	(339.2)
War	2,483.8	218.2	649.5	(42.5)	3,228.2
APR	$4,124.8$	377.6	1,160.6	251.6	5,914.5
Hay	5,239.9	1,353.7	1,394.9	435.4	9,424.9
JN	7,224.7	2,650.3	3,227.8	533.3	13,235.2
Ill	8,345.2	3,467.8	3,189, 6	897.3	15,889. 1
Pus	18, 107.6	919.5	3,101.2	104.2	14,232.5

TOTAL $52,638.4 \quad 7,254.511,319.9 \quad 2,849.9 \quad 73,261.7$

Source: Calculated by algebraic sumation of the simulated impacts on grain producers (Table 4), the simulated impacts on final consumers (Table 5) and the simulated ispacts on grain processors (Table 6).

B. Simulated Economic Impact of IHMA Using Actual Information

The main objective of this part is to evaluate the economic impact generated by IHMA during 1984-1985. The Marketing Plan for 1984-1985, run previously is used as framework for the evaluation. Inputs used in this plan, IHMA Operations for 1984-1985, were mostly the same as those inputs used for the first run. Modifications were made only in Tables 3, 4, 12, 19, 20 and 21.

As depicted in Tables 3 and 4, Appendix E, purchases and prices offered by IHMA to producers from September to March were incorporated into the Model. Data used from April to August were estimated by applying the same behavior observed during the first seven month of 1984-1985. IHMA's imports and exports during the period September-May were taken into account (Tables 12 and 19, Appendix E). Finally, sales volumes and sale prices furnished by the lnstitute from September to March were also used for the present evaluation (Table 20 and 21, Appendix E). The same criterion as for purchases and prices offered by 1HMA was applied to the remaining five months of 1984-1985.

Based on operations for seven months into the 1984-1985 program, the IHMA Simulation Model shows the following results with respect to procurements and estimated impacts on producers. Purchases by IHMA for the year are expected to total about 16 million Lempiras (Table 8) compared to 20 million Lempiras targeted in the Marketing Plan. Purchases are running about 93 percent of target for corn compared to 45 percent for beans, 55 percent for rice and 30 percent of the plan target purchases for sorghum (Table 8 and Table 3). With the lower procurements, simulated benefits to Honduran grain producers also are less than indicated in the plan. The simulated monthly market impact on producers over the 1984-85 crop year is about 17.4 million Lempiras compared to that under the plan of 25.8 million Lempiras (Table 4). Compared to target, indicated
producer impacts for 1984-85 1HMA operations are about 95 percent for corn, but are more questionable for the other grains. As seen by comparing Table 9 with Table 4, the impact simulated for IHMA operations has been negative for producers of beans and sorghum, but substantially greater than target for rice.

Impacts on Honduran consumers simulated by the Model for IHMA operations in 1984-85 are summarized by the results shown in Tables 8 and 10. Indicated sales by IHMA for the year are 35 million Lempiras, or about 3.8 million Lempiras greater than under the Plan. Compared to those under the Marketing Plan in Table 3, indicated sales of corn are about the same (98.4 percent), and those of sorghum are down (33.5 percent), but those of beans and rice are up substantially at 128.2 percent and 183.6 percent, respectively. The simulated impact of IHMA's 1984-85 operations on consumers is 33.8 million Lempiras (Table 10) compared to 41.9 million Lempiras under the Marketing Plan (Table 5). The consumer impact under actual operations is greater than under the Plan for beans and sorghum, but substantially less for corn and rice (compare Table 10 with Table 5). The major reason for the reduced benefits for corn and rice is the higher negative impacts in December, January and February when actual sales by IHMA were less than actual purchases. The impact of actual operations on processors is 4.1 million Lempiras, or 2.2 million Lempiras less than under the Plan (Table 11). The net total simulated impact under IHMA's Operations for $1984-85$ is 55.4 million Lempiras (Table 12). This represents a substantial benefit by IHMA to Honduras, even though some 18.1 million Lempiras less than indicated for the 1984-85 Marketing Plan.

IHMA 's Simulation Model output indicates that this institution had used 16.0 million Lempiras to cover procurement costs (Table 9, Appendix E), 2.8 milion Lempiras for conditioning government grain (Table 10, Appendix E) and
674.8 thousand Lempiras for expenses of procuring and receiving government grain (Table 11, Appendix E), for a total cost of sales of government-owned grain of 19.5 million Lempiras (Summary Table IIS, Appendix E). Moreover, IHMA had incurred other expenditures such as storing, transfering and selling government grain. Storage expenses had reached the sum of I. 2 million Lempiras (Table 32, Appendix E), transfer expenses 504.2 thousand Lempiras (Table 33, Appendix E) and selling expenses 438.9 thousand Lempiras(Table 34, Appendix E). Total direct costs sum to 5.654 million Lempiras for IHMA's $1984-85$ operations. With the adjustments for reduction in IHMA's grain inventores of 15.2 million Lempiras (Table 8 and "INV" line of Table 36, Appendix E), actual operations indicate loss over direct costs of about 1.9 million Lempiras, and a total loss administrative and overhead costs of 7.4 million Lempiras (Table 8). This finding is in line with IHMA's historical record of substantial operating losses as presented in Chapter 3. On the other hand, the expediture in terms of operating loss of 7.4 million Lempiras to benefit Honduran farmers, consumers and processing industry by 55.8 million Lempiras seems to be a sound economic strategy.

The relatively high direct operating cost and operating losses under the IHMA Operations compared to the Marketing Plan for 1984-85 arise because of (1) the high government cost of grains inventories used during the year which moved from 5.9 million Lempiras to 15.2 million Lempiras, (2) lower IHMA's sales prices especially for beans, paddy rice and sorghum , and finally (3) the Institute does not earn cash flow from grain exports. It is important to point out that when IHMA carries out an export, the revenue generated from this transaction goes to the general account of the government of Honduras instead of to IHMA. This regulation is the result of the lack of foreign exchange that the Honduran government is facing currently.

TABLE 8. IHMA: Economic Implications, IHMA Operations for 1984-85 (1000 Lempiras)

	CORN	BEANS	RICE	SORGHUM	TOTAL
SALES (35)	21,052.2	4,267.6	9,220.7	469.5	35,010.0
PURCHASES (9)	13,602.8	1,408.7	751.7	263.7	16,026.8
INVENT. (36)	$(4,730.5)$	$(2,488.6)$	(7,773.5)	(214.3)	$(15,206.9)$
GROSS MARGIN	2,718.9	370.3	695.5	(8.5)	3,776.3
CONDIT. (10)	2,412.7	127.3	182.4	103.2	2,825.6
RECEIV. (11)	606.9	22.6	22.2	23.1	674.8
TRANSF. (33)	395.0	31.9	56.3	21.0	504.2
STORAG. (32)	899.4	102.4	141.1	67.6	1,210.5
SALE (34)	351.5	20.6	37.7	29.1	438.9
TOTAL DIRECT COSTS	4,665.5	304.8	439.7	244.0	5,654.0
NET OVER					5,654.0
DIRECT COSTS	($1,946.6$)	65.6	255.8	(252.5)	$(1,877.7)$
ADM. \& OVERHEAD costs *	-	-	-	(252.5)	5,503.4
NET_COSTS	$-$	$=$	-	-	7,381.1

*Same figure as in 1983
Source: Tables 9, 10, 11, 32, 33, 34, 35, and 36 Appendix D and IHMA Financial Division.

TARLE 9. Simulated Monthly lapact of Soverruent Narket Intervention on Producer Incomes from Grain Sales (1,008 Lempiras)
COAN BEAS SICE SEREAR IWEAT TJTAL

Sep	(739.2)	(1,877.9)	(353.7)	0.8	(2, 179.8)
OCT	1,135.0	(960.8)	1,459.2	7.7	1,543.8
NOV	8, 154.1	(172.2)	259.7	34.1	8,275. 6
DEE	7,659.0	(459.1)	12.1	17.7	7,2¢0. 6
JAN	3,823.7	$(1,467.9)$	(117.2)	46.7	1,485.3
Ftic	3,533.7	1,845.7	(287.3)	(269.4)	4,901.7
MAR	$(3,034.7)$	260.8	(280.6)	45.5	(2,949.1)
APR	(417.7)	$(32,8)$	2.8	(19.2)	(468.9)
NAY	0.8	0.8	- 2.8	3.8	0.0
JTN	8.8	0.8	3.8	2.8	0.8
π	0.8	8.8	8.0	0.8	2.8
AUS	0.8	(478.7)	2.8	0.8	(478.7)
TUTKL	19,304. 8	(2,541.3)	832.2	(137.2)	17,458,8

Source: Calculated by subtracting sianlated revenses to producers from grain sales without goverment intervention (Table a) frow projected producer revenues from grain sales under this al ternative (Table 7). Appendix E.

TABLE 10. Simulated Monthly Impact of Government Market Intervention on Consumer Expenditures for Food (1,088 Lempiras)

	CDRN	BEAS	RILE	5096x\%	HEAT	TUTR
5 SP	1,515.9	2,390.6	65.4	118.5		4,689.5
OCT	(1, 552.11	3,288. 8	$(3,314.7)$	76.4		(1,881.5)
NOV	(5, 176.2)	618.6	(1, 121.8)	(123.0)		($5,882.3$)
DEC	$(4,997.4)$	2,151.1	(419.0)	68.5		(3, 196.8)
JRN	$(5,644.7)$	2,740.5	317.6	13.3		(2,573.2)
FEB	$(4,510.1)$ ((2, 378.9)	397.5	484.9		(6, 186,5)
MAR	6,842.2	(243, 1)	1,232.1	91.3		7,922.6
APR	3,684.8	135.3	2,287.9	131.2		6,159.2
NaY	4,948,7	761.8	2,296.6	146.9		8,156. 8
J3	5,755.4	1,748.7	(376.4)	178.5		7,290.2
$\pi 1$	6,620.6	2,564.7	(381.6)	314.8		9,118.5
AUG	8,019.4	1,892.8	(385.4)	529.8		9, 245.8
TuTh	15,826.7	$14,772.3$	1,198.5	$2,822.3$		33, 811.8

Source: Calculated by subtracting simulated consumer expenditures without government intervention (Table $2 \mathbf{2}$) from projected consumer expenditures for basic grains and grain products under this alternative (Table 24). Appendix E.

TRELE 11. Siaulated Nonthly Impact of Governnent Market Intervention an Processors Expenditures for Grains (1,200 Lengiras)

	Cunk	EEMS	RICE	Sorgill	WHEAT	TOTR
SEP	389.6			2.8		380.6
DCT	(264.1)			(8.9)		(273. \%)
NOV	(1,299.5)			(59.8)		$(1,358.3)$
DEC	(1,254.5)			(19.8)		(1, 262, 6)
Jan	(1,417,1)			(17.3)		(1, 434.4)
Ftrib	$(1,157.3)$			88.5		(1, 776.8)
* ${ }^{\text {PR }}$	1,717.7			0.8		1,717.7
APR	925.8			8.2		913.2
Way	1,242, 4			11.1		1,253.5
ภ1	1,444.9			14.8		1,459.7
π	1,662, 1			44.2		1,706. 3
AuG	2,013.2			38.3		2,181.5
TJTAL	3,973.2			162.1		4,135.4

Sourca: Calculated by subtracting siautated arocessor expenditures without governsent intervention (Tab 27 frou arojected grain expendit. by processors under this alternative (Table 26). Appendix E.

TARLE 12. Sizulated Total Net Monthly Impact of Governwent
Intervention in Dowestic Grain Markets
(1,820 Lenpiras)
CDR H RENG RICE SORGHM HEAT TOTAL

SEP	$1,157.3$	1,312.7	381.8	118.5	2,898.3
OCT	(188.2)	2,248.9	(1,855.4)	75.3	288.5
NOU	1,678.4	446.4	(862.1)	(139.8)	1,123.8
DEC	1,338. 0	1,652,0	(406.9)	78.2	2,761.3
JAM	(4, 238.2$)$	1,272.6	280.4	42.7	(2,52e, 3)
F2B	12,234.5)	(533.3)	198.2	296.0	(2,281.8)
MAR	5,525,2	17.7	1,011.6	136.8	6,691.2
APR	4,932.8	123.3	2,287.9	128.2	6,6e3.5
WAY	6,191.0	761.8	2,298.6	158.8	9,409.5
JU*	7,208.3	1,749.7	(376.4)	185.3	8,749.9
Jll	8,282. 7	2,564,7	(391.6)	359.8	12,824.8
ALS	10,232, 6	683.3	(385.4)	617.3	10, 867.8
TUTRL	39,104. 8	231.8	2,022.7	2,347.4	55,465.9

[^1]C. Simulated Economic Implications for IHMA

The objective in this section is to try a new marketing option for HMMA, in order to see what could be the the economic implications for the Institute if some changes in current support prices would have been introduced before the Marketing Plan for 1984-1985 was implemented.

In order to test out this new marketing option, a change in data supplied to the model was made. Support prices paid by IHMA to producers were modified.

The new suggested option is divided in two stages. In the first case, Alternative One, the support price level would be lowered from the current level as follows: corn 10 percent less, beans 15 percent less, rice staying the same and sorghum 15 percent less. And secondly, under Alternative Two, the support price level would be lowered from the current prices even more, i. e. corn 15 percent less, beans 15 percent less, rice remaining the same, and sorghum 20 percent less.

These reductions in price supports are proposed as alternatives to be tested after the wholesale market price behavior during the last seven years was analyzed. Such reduction in rate levels could be chosen according to the objectives or/and policies that the IHMA Board of Directors and the IHMA administration wish to accomplish.

Under Alternative One, the economic implications for carrying out the Marketing Plan for 1984-1985 but with modifications in support prices, (Table 4, Appendix F) are that (1) IHMA would have incured 23.3 million Lempiras to obtain the grain, (2) the Institute would have reported 31.1 million Lempiras as result of total sales; leaving a generated a gross margin of 7.8 million Lempiras, and finally, (4) the Institute would have reported net earning over direct cost of 2.2 million Lempiras and a net loss after all costs of $\mathbf{3 . 2}$ million Lempiras (see

Table 13).
Comparing this new result to the Marketing Plan for 1984-1985, the procurement cost would have been reduced by more than 20 percent, or 5.2 million Lempiras. Total sales remain the same at 31.1 million Lempiras. Gross margin is increased by 50 percent, 2.6 million Lempiras more. And finally, the Institute's projected net loss of 3.2 million Lempiras is less than that under the original Plan by 64 percent.

For Alternative Two, IHMA's economic implications carrying out the Marketing Plan for 1984-1985 but with modifications in support prices as shown in Table 4, Appendix G, are that (1) IHMA would have paid 22.2 million Lempiras to acquire the grains, (2) the Institute would have reported 31.1 million Lempiras for grain sales, leaving generated gross margin of 8.9 million Lempiras, and finally, (3) the Institute would have reported earnings over direct cost of 3.7 million Lempiras and a net loss after all costs of 2.1 million Lempiras, less than the original Plan by 42 percent (see Table 14).

Relating the results of this alternative to the original Plan for 1984-1985, the procurement cost would had been reduced by more than 2.9 million Lempiras, or represent 12 percent. Total sales of 31.1 million Lempiras remains the same. IHMA would had been able to increase gross profit by 2.9 million Lempiras, or 46 percent. And finally the Institute would have generated an increase in profit over direct cost of 2.9 million Lempiras, or 42 percent over the actual Marketing Plan for 1984-1985.

TABLE 13. Alternative One: IHMA's Economic Imolications (1,000 Lempiras)

	CORN	BEANS	RICE	SORGHUM	TOTAL
SALES (35)	21,404.5	3,329.0	5,022.0	1,401.8	31,157.2
PURCHASES (9)	11,834.0	1,109.7	772.6	221.9	13,938.2
INVENT. (36)	($3,746.4$)	(1,318.8)	(3,551.1)	(778.7)	(9,395.0)
GROSS MARGIN	5,824.1	900.5	698.3	401.2	7,824.0
CONDIT. (10)	2,344.6	127.3	182.1	102.3	2,756.3
RECEIV. (11)	606.9	22.6	22.2	23.1	674.8
TRANSF. (33)	395.0	31.9	54.8	21.0	502.7
STORAG. (32)	899.4	102.4	141.1	67.6	1,210.5
SALE (34)	351.5	20.6	34.5	24.3	430.9
$\begin{aligned} & \text { TOTAL DIRECT } \\ & \text { COSTS } \end{aligned}$	4,597.4	304.8	434.7	238.3	5,575.2
NET OVER DIRECT COSTS	1,226.7	595.7	263.6	162.9	2,248.8
ADM. \& OVERHEAD costs *	-	-	-	-	5,503.4
NET LOSS	-	-	-	-	3,254.6

*Same figure as in 1983
Source: Tables 9, 10, 11, 32, 33, 34, 35, and 36 Appendix F and IHMA Financial , Division.

TABLE 14. Alternative Two: IHMA's Economic Iaplications
(1,000 Lempiras)

	CORN	BEANS	RICE	SORGHUM	TOTAL
SALES (35)	21,404.5	3,329.0	5,022.0	1,401.8	31,157.2
PURCHASES (9)	11,172.7	1,044.5	772.6	208.9	13,198.6
INVENT. (36)	(3,538.1)	(1,241.5)	(3,551.1)	(683.6)	$(9,014.3)$
GROSS MARGIN	6,693.7	1,043.0	698.3	509.3	8,944.3
CONDIT. (10)	2,344.6	127.3	182.1	102.3	2,756.3
RECEIV. (11)	606.9	22.6	22.2	23.1	674.8
TRANSF. (33)	395.0	31.9	54.8	21.0	502.7
STORAG. (32)	899.4	102.4	141.1	67.6	1,210.5
SALE (34)	351.5	20.6	34.5	24.3	430.9
$\begin{aligned} & \text { TOTAL DIRECT } \\ & \text { COSTS } \end{aligned}$	4,597.4	304.8	434.7	238.3	5,575.2
NET OVER					
DIRECT COSTS	2,096.3	738.2	263.6	271.0	3,369.1
ADM. \& OVERHEAD COSTS *	-	-	-	-	5,503.4
NET LOSS	-	-	-	-	2,134.3

*Same figure as in 1983
Source: Tables 9, 10, 11, 32, 33, 34, 35, and 36 Appendix G and IHMA Financial Division.

CHAPTER VII

SUMMARY AND CONCLUSION

The Honduran Agricultural Institute of Marketing (IHMA) is the Institution charged with responsabilities for increasing incomes of agricultural producers and assuring adequate supplies of basic foods at reasonable prices for the consumers.

Due to the social function that IHMA has to perform in the Honduran society, it has reported considerable capital losses every year since starting operations.

Neither IHMA's procurement program nor its sales plan ever have been carried completely as planned. Factors such as lack of funds, fixed price policy, failure to recognize the early market signals to buy at the right time, and inability to meet competition have combined to prevent IHMA from achieving its purchase and sales goals. High IHMA support prices in comparison to the market prices received by producers is another problem that the Institute has had to face.

As IHMA carries out its goals for each new agricultural year, it faces the same problems. There is lack of understanding and general disregard of the economic impact that IHMA imposes in the grain marketing system and uncertainty of the effects of its programs on the Honduras economy.

Based on simulated and actual data for 1984-1985, this research was directed to simulating and evaluating the economic impact generated by IHMA for producers, consumers and processors as well as upon the Institution itself. The IHMA Simulation Model for Testing Alternative Intervention Strategies developed by Phillips, Maxon and Hugo at Kansas State University was used.

The study simulated the estimated benefits and costs for producers, consumers and processors with and without IHMA intervention. Both results are
portrayed in Table 15. Producers seem to be benefitted substantially by IHMA's intervention in the grain marketing. According to the model consumers are benefitted even more with this intervention, because their food expenditures are reduced by 41.8 million Lempiras when simulated data is used in the Marketing Plan for 1984-85 and by 33.8 million Lempiras with actual data in the IHMA Operations for 1984-85. Processors appear to be benefit less from IHMA intervention; in the two cases their cost are reduced by 6.4 and 4.3 million Lempiras, respectively.

In Table 16 the simulated net economic impact generated by IHMA for each participant in the grain sector is shown. When the IHMA Operations 1984-85 was run using actual information, the economic impact for producers, consumers and processors was reduced considerably because IHMA was unable to reach the goals of its Marketing Plan for 1984-85. Simulated total impacts were reduced from 73.9 million Lempiras to 55.8 million Lempiras.

The economic implications for IHMA, under the four alternatives, carrying out its working plan 1984-1985, making all the reasonable changes according to the objectives of this study are shown in Table 17. The highest gross margin for IHMA was under Alternative Two (8.9 million Lempiras), and the lowest was under actual operations for 1984-85 (3.8 million Lempiras). The highest net margin over direct costs was reported for simulated data under the Marketing Plan for 1984-85 (4.8 million Lempiras). IHMA's simulated annual operating loss was highest when actual data for $1984-85$ were used in the model (7.4 million Lempiras) and lowest under Alternative Two (2.1 million Lempiras). Losses are reduced because of lower purchasing prices for corn, beans and sorghum, so that the gross margin is more nearly adequate to cover operating costs. Consequently, the producers economic impact generated by IHMA is reduced by 3.6 million Lempiras (Table 16)
in comparison to that in the Marketing Plan for 1984-1985.
In general, the objectives fixed for IHMA by the Honduran government, including (1) subsidizing basic food costs for consumers and (2) providing high support prices to producers, are not compatible with profit generating targets. There is no way to have these policies without reporting losses. The welfare role implies a cost, not profits.

The IHMA Simulation Model appears to work well even assuming the social function that IHMA has to accomplish. The results obtained from this model show that is possible for IHMA to reduce its losses and perhaps to generate small profit over direct costs, an achievement which has been unusual for IHMA since its creation.

The Institute will be able to generate profits or reduce losses only if (1) its Board of Directors decide to make changes in the current IHMA policies, (2) if operational costs are reduced or/and (3) the administrative costs are cut down. IHMA should be able to report better results not only by increasing handling margins but also by reducing the costs involved in purchasing, handling, storing and selling grains.

If IHMA's Board of Directors wishes to affect positively consumers and producers welfare, a solution should be found. For instance, it may be recomended that the Institute top administrative unit should propose to the Honduran government a subsidy for the losses that IHMA generates every year. This subsidy should be viewed as the costs of the social welfare benefits that IHMA provides for the Honduran society.

The IHMA's Simulation Model used in this study is capable of showing that IHMA can reduce losses and/or increase benefits. However, the model is not a solution by itself. Policy makers have the final responsability to address the
current problems that IHMA is confronting.

TABLE 15. Simulated Benefits and Costs with and without IHMA Intervention (1,000 Lempiras)

MARKETING PLAN	IHMA OPERATIONS
FOR 1984-1985	FOR 1984-1985

PRODUCERS BENEFITS
With IHMA Intervention $113.9 \quad 112,5$
Without IHMA Intervention 94.2
CONSUMERS COST
With IHMA Intervention 260,2 260,2
Without IHMA Intervention 302,0 294.0
PROCESSORS COST
With IHMA Intervention $28,8 \quad 28,8$
$\begin{array}{ll}\text { Without IHMA Intervention } & 35.2 \\ 33.1\end{array}$
Source: Tables 7, 8, 24, 25, 26, and 27, Appendix D and E,

TABLE 16. Simulated Economic Impact Generated by IHMA (1,000 Lempiras)
MARKETING PLAN IHMA OPERATIONS ALTERNAT, ALTERNAT. FOR 1984-1985 FOR 1984-1285 ONE TWO

ECONOMIC IMPACT				
On Producers	25,7	17,8	23.0	$22,1-8$
On Consumers	41.8	33,8	41.8	41.8
On Processors	6,3	4.1	6.3	6.3
TOTAL IMPACT	73.9	55,8	71.2	70.3

Source: Tables 37, 38, 39, and 40, Appendix D, E, F and G.

TABLE 17. Simulated Economic Implications for IHMA (1,000 Lempiras)

GROSS	NET MARG. OVER	ADMINIST. \&	NET LOSS
MARGIN	DIRECT COST	OVERHEAD COST	

MARKETING PLAN

FOR 1984-1985	$5,184.7$	$4,757.4$	$5,503.4$	$5,075.7$
LHMA OPERATIONS				
FOR 1984-1985	$3,776.3$	$(1,877.7)$	$5,503.4$	$7,381.1$
ALTERNATIVE ONE	$7,824.0$	$2,248.8$	$5,503.4$	$3,254.6$
ALTERNATIVE TWO	$8,944.3$	$3,369.1$	$5,503.4$	$2,134.3$

Source: TABLES 3, 8, 13 and 14 .

BIBLIOGRAPHY

1. Abbott, John C. "Agricultural Marketing Boards in the Developing Countries". Journal of Farm Economics. Vol. 49, (1967), 705-721.
2. Hanrahan, Michael S. "Some Impacts Associated with Selected Honduran Basic Grain Policies". Prepared for Food and Agricultural Development Office, USAID, Honduras, Sept. 141983.
3. Hoover, Calvin B. "Fundamental issues that must be Faced in agricultural Price Programs". Journal of Farm Economics.Vol. XXXV1, (1954), 760-771.
4. IHMA-KSU, IHMA: Diagnostico Institucional y Nuevas Estrategias Operacionales 1984-1985. Tegucigalpa, Honduras, (1984), 3.
5. Loria, Miguel and C. E. Cuevas. "Basic Grains: Marketing Channels and Financing at the farm and Wholesale Levels". Department of Agricultural Economics and Rural Sociology, The Ohio State University, Columbus, Ohio, (1984), 18-24.
6. Mellor, John W. "Agricultural Price Policy in the Context of Economics Development". American Journal of Agricultural Economics. Vol. 51, (1969), 1413-1424.
7. Miller, Thomas A. and J. A. Sharples. "Issues Concerning the Level of Price and Income Supports". Structure Issues of American Agriculture Economic, Statistics, and Cooperatives Services. USDA, Agricultural Economics Report, No. 438, Washington, D. C. , November 1979.
8. Nafziger, E. Wayne. "The Economics of Developing Countries". (1984), 85.
9. Pasour, E. C. , Jr. "Cost of Production: A Defensible Basis for Agricultural Price Supports". American Journal of Agricultural Economics. Vol. 62, (1980), 244-247.
10. Phillips, Richard, Richard C. Maxon and Cornelius Hugo. Unpublished Paper,

August 18, 1984.
11. Pollard, S. K., D. H. Grahan and C. E. Cuevas. "Report: Coffee and Basic Grains: A review of Sectoral Performances, Pricing and Marketing Margins and Recent Policy Changes". Studies in Rural Finance. Department of Agricultural Economics and Rural Sociology, The Ohio State University, Columbus, Ohio(1984), 66.
12. Salinas, Jaime. J. "Corn Acreage Response to Market and Governmet Support Prices in Honduras". Master Dissertation, North Carolina State University, Raleigh, N. C. 1983.
13. United Nations. Demographic Yearbook 1984. New York, (1984), 683.
14. U. S. Department of Agriculture. Foreign Agricultural Circular. Washington, D. C. (1984).
15. Wheeler, O. Richard, C. A. Boonstra, G. Grant, N. E. Johnson, W. W. Minger, J. B. Penn, R. C. Phelps, A. L. Quinn, and F. L. Mann. Report of the U. S. Presidential Agricultural Mission to Honduras, (1982), 10.

APPENDIX A
Areas, Yields and Production of Grain in Honduras (Tables 1....4)

TABLE 1. HONDURAS: CORN (1,000 METRIC TONS)

TABLE 2. HONDURAS: Sorghum 1960-1984 (1,000 METRIC TONS)

$\begin{aligned} & \text { PERIOD } \\ & \text { NO. YEAR } \end{aligned}$	AREA HARVESTED	YIELD (KLGS)	$\begin{aligned} & \text { PRODUCTION } \\ & (1,000 \mathrm{MT}) \end{aligned}$
11960	65	815	53
21961	64	813	52
31962	69	812	56
41963	73	808	59
51964	79	785	62
61965	60	750	45
71966	59	746	44
81967	38	1395	53
${ }^{9} 1968$	36	1472	53
101969	33	1455	48
111970	33	1424	47
121971	33	1424	47
131972	55	636	35
141973	56	643	36
151974	57	667	38
161975	81	654	53
171976	53	792	42
181977	62	565	35
191978	74	689	51
201979	63	587	37
211980	62	758	47
221981	58	1017	59
231982	50	1020	51
241983	50	960	48
251984	48	1042	50

Source: United States Department of Agriculture, Washington, D.C. Jan. 241985.

TABLE 3. HONDURAS: Rough Rice 1960-1984 (1,000 METRIC TONS)

TABLE 4. HONDURAS: Beans 1960-1984 (1,000 METRIC TONS)

PERIOD NO. YEAR	AREA HARVESTED	$\begin{aligned} & \text { YIELD } \\ & \text { (KLGS) } \end{aligned}$	$\begin{aligned} & \text { PRODUCTION } \\ & \text { (1,000 MT) } \end{aligned}$
11960	81	430	35
21961	89	440	39
31962	71	630	45
41963	77	650	50
51964	87	670	58
61965	63	680	43
71966	72	690	50
81967	79	720	57
91968	85	740	63
101969	73	750	55
111970	73	750	55
121971	75	730	55
131972	60	580	35
141973	60	600	36
151974	90	610	55
161975	80	540	43
171976	86	510	44
181977	77	300	30
191978	78	564	44
201979	84	452	38
211980	68	529	36
221981	76	586	43
231982	72	625	45
241983	70	629	44
251984	70	629	44

Source: Foreign Agriculture Circular, USDA, May 1976, February 1980, April 1982 and Jan. 1985.

APPENDIX B
IHMA: Functions and Grain Storage Facilities

HONDURAN INSTITUTE OF AGRICULTURAL MARKETING
The functions of the Honduran Institute of Agricultural Marketing functions are as follows:

1. To adopt those measures that are needed to stabilize the basic grains prices in the national market. The purpose of this function is to create incentives to producers and an adequate supply to consumers.
2. To promote and fulfill those marketing activities of other agricultural products, according to the resources available. And also, to those dispositions that the Board of Directors may establish.
3. To facilitate orderly marketing of the basic grains in the internal market, and when necessary for other agricultural products.
4. To establish the support prices for purchasing of basic grains from producers.
5. To buy and sell basic grains and to restrict or control exports or imports when necessary, in order to stabilize prices and insure an adequate supply to consumers.
6. To build, obtain, rent and operate storage facilities; to mantain quality, process and distribute basic grains; and to stabilize other agricultural commodities when the Board of Directors establishes this need.
7. To provide storage and processing services to individuals, preferably to producers, establishing limits and conditions in order that the services and operations become effective.
8. To issue deposit certificates and bonds.
9. To negotiate loans inside or outside of the country.
10. To compile, classify, produce and make public directly, or in collaboration with others institutions, information about production, prices and marketing of agricultural products.
11. To contribute directly, or in collaboration with other institutions to the improvement of the marketing system for agricultural products, particularly basic grains.
12. To provide technical assistance and training in the field of agricultural marketing to producers and private and public institutions.
13. To participate in expositions and other events which contribute to improve the marketing of agricultural products.
14. To provide marketing advice to the private sector, in order to improve marketing efficiency.
15. To adopt other measures which may be considered necessary by IHMA.

THE IHMA'S SUPERIOR ADMINISTRATION

The IHMA's superior administration, the Board of Directors, is made up of the following:

1. The Secretary of the Secretariat of Natural Resources.
2. The Secretary of the Secretariat of Economy.
3. The Secretary of the Secretariat of the Treasury.
4. The Secretary of the Secretariat of Planning.
5. The Director of the National Agrarian Institute.
6. A Representative from the Private Sector, and
7. A Representative from the Association of Peasants.

The Board of Directors has the following functions:

1. To determine and manage the policies of the Institute and also to carry out the direction of it.
2. To issue regulations that are needed for the operation of the Institute.
3. To approve contracts and agreements according to their nature and value.
4. To approve the Institute's annual program of work.
5. To understand, evaluate, and approve the annual report of the manager, the Institute's budget, its financial status and the development of the budget by program.
6. To establish the support prices that the Institute will pay to producers of basic grains.
7. And to exercise other functions that are necessary and in agreement with the national law No. 592 and the founding regulations of the organization.

IHMA: GRAIN STORAGE FACILITIES RECIEVED BY IHMA FROM BANAFOM IN 1978. (METRIC TONS)

REGION No. ELEVATOR BY REGION CAPACITY
1 SUR 996
Granero Choluteca* 705
Granero E1 Triunfo*** 291
2 CENTRO-OCCIDENTAL 1.618
Granero Comayagua* 1,618
3. NORTE 29, 532
Terminal San Pedro Sula* 24,455
Granero Las Palmas*** 2,727
Granero Puerto Cortes* 1,173
Granero Cuyamel*** 227
Granero Quimistan*** 291
Granero Tela** 659
4. LITORAL ATLANTICO 3.645
Granero Olanchito* 491
Granero E1 Negrito*** 291
Granero Tocoa** 2,863
5. NOR-ORIENTAL
Granero Juticalpa* $\frac{731}{491}$
Granero Catacamas* 240
6. CENTRO-ORIENTAL 29,946
Terminal Kennedy* 19,910
Bodega Cerro de Hula* 9,091
Granero Danli* 654
Granero E1 Porvenir* 291
7. OCCIDENTAL 291
Granero La Entrada* 291
TOTAL 66,759

* Elevator in operation at 1983-1984** Inactive Elevator at 1983-1984*** Elevator close since 1978
Source: IHMA-CIES

IHMA: CURRENT GRAIN STORAGE CAPACITY, 1984. (METRIC TONS)

REGION No.
ELEVATOR BY REGION

CAPACITY

1. SUR

Granero Choluteca $\frac{714}{714}$
2. CENTRO-OCCIDENTAL Granero Comayagua
$\frac{5,709}{5.709}$
3. NORTE
$\begin{array}{lr}\text { NORTE } & 30,618 \\ \text { Terminal San Pedro Sula } & \frac{37,936}{} \\ \text { Granero Las Palmas } & 1,955\end{array}$
$\begin{array}{lr}\text { Granero Las Palmas } & 1.955 \\ \text { Granero Puerto Cortes } & 682\end{array}$
Granero Tela
4. LITORAL-ATLANTICO

Granero Olanchito
3,373
$\begin{array}{lr}\text { Granero Tocoa } & 473 \\ & 2,900\end{array}$
5. NOR-ORIENTAL $\quad \underline{723}$

Granero Juticalpa $\quad \frac{723}{473}$
Granero Catacamas 250
6. CENTRO-ORIENTAL

Terminal Kennedy
$\begin{array}{lr}\text { Bodega Cerro de Hula } & 9,091\end{array}$
Granero Danli
32,309

Granero EI Porvenir 299
664
7. OCCIDENTAL Granero La Entrada $\quad \underline{299}$

Granero La Entrada $\quad \frac{299}{299}$

TOTAL . 73,745

Source: IHMA-CIES

APPENDIX C

> Operational and Fiscal Data, IHMA, 1978-1984
> (Tables $1 \ldots \ldots 15$ and Z)
TABLE 1. HONDURAN IMSTITUTE OF AGRICULTURAL MARKETING: DONATIONS
(1000 LEMPIRAS)

	1979	1980	1981	1982	1983	$1984 *$	TOTAL
PLL480 WHEAT	$3,843.1$	$3,969.1$	0.0	0.0	0.0	0.0	$7,812.2$
AID S22TO34	0.0	0.0	37.3	0.0	0.0	0.0	37.3
EEC WHEAT	$1,891.0$	0.0	0.0	0.0	973.6	0.0	$2,864.6$
EEC RICE	922.4	0.0	0.0	0.0	0.0	0.0	922.4
FRANCE WHEAT	0.0	0.0	343.4	622.5	0.0	0.0	965.9
ARGENTINA WHEAT	0.0	$3,157.8$	0.0	0.0	0.0	$1,541.7$	$4,699.5$
ARGENTINA MAIZ	0.0	0.0	0.0	$1,255.0$	0.0	0.0	$1,255.0$
TOTAL	$6,656.5$	$7,126.9$	380.7	$1,877.5$	973.6	$1,541.7$	$18,556.9$

[^2]TABLE 2. IHMA: OPERATIONAL LOSSES
(1000 LEMPIRAS)

YEAR	AMOUNT
1978	387.9
1979	$1,302.4$
1980	617.3
1981	$2,231.6$
1982	$3,609.5$
1983	$4,415.4$
$1984 *$	$3,299.0$
TOTAL	$15,863.1$

Source: IHMA Finance Division.
*June 30, 1984.

TABLE 3. IHMA: NET WORKING CAPITAL (1000 LEMPIRAS)

YEAR	AMOUNT
1978	$6,095.8$
1979	$20,259.8$
1980	$27,063.9$
1981	$24,449.9$
1982	$24,469.8$
1983	$20,025.4$
$1984 *$	$15,514.7$

Source IHMA Finance Division
*June 30, 1984.

TABLE 4. HOMDURAS BASIC GRAINS NET MARKETABLE PRODUCTION (1000 MT)

AGR. YEAR	CORU	BEANS	RICE	SORGHUM
$1978-1979$	388.0	33.5	21.0	46.4
$1979-1980$	219.1	25.6	25.5	32.8
$1980-1981$	273.6	45.3	29.5	45.9
$1981-1982$	356.1	32.3	29.6	51.5
$1982-1983$	266.6	27.8	19.3	28.9

Source: IHMA Centro de Informacion y Estadistica (CIES).

TABLE 5. IHMA: VOLUNE OP PURCHASES AS PRRCENTAGE OF NET MARKETABLE PRODUCTION (1000 MT)

AGR. YEAR	CORN	BEANS	RICE	SORGHIM
$1978-1979$	2.80	2.74	0.01	1.80
$1979-1980$	0.94	3.54	12.27	0.13
$1980-1981$	6.75	11.43	8.38	0.66
$1981-1982$	11.08	28.74	3.48	5.59
$1982-1983$	13.53	10.96	1.52	6.16

Source: IHMA Centro de Informacion y Estadistica (CIES).

Source: IHMA - CIES.

TABLE 7. IHMA: PLANNFD AND ACHIEYED BEAN PURCASING PROGRAM : (1000 MT)

AGR. YEAR	PLANNED	ACHIEVED	ACHIEVED PERCENTAGE
$1978-1979$	4.3	0.9	20.9
$1979-1980$	1.2	0.9	75.0
$1980-1981$	2.3	3.1	134.8
$1981-1982$	2.7	9.3	344.4
$1982-1983$	2.7	3.0	111.1

Source: IHMA-CIES.

AGR. YEAR	PLANNED	ACHIEVED	ACHIEVED PERCENTAGE
1978-1979	10.0	0.002	0.0002
1979-1980	2.0	3.1	155.0
1980-1981	2.0	2.4	120.0
1981-1982	2.7	1.0	37.0
1982-1983	2.7	0.3	11.1

Source: IHMA-CIES.

TABLE 9. THMA: PLANNED ARD ACHIEVED SORGHTM PURCHASING PROGRAM (1000 MT)

AGR. YEAR	PLANNED	ACHILVED	ACHIEVED PERCENTAGE
$1978-1979$	2.8	0.8	28.6
$1979-1980$	1.4	0.04	2.9
$1980-1981$	2.3	0.3	13.0
$1981-1982$	1.4	2.9	207.1
$1982-1983$	2.3	1.8	78.3

Source: IHMA-CIES.

TABLE 10. HONDURAS: IMPORTS OF GRAIN MADE BY IHMA (1000 MT)

AGR. YEAR	CORN	BEANS	RICE	SORGHUM
$1978-1979$	0.0	0.0	1.4	0.0
$1979-1980$	15.9	0.0	0.0	0.0
$1980-1981$	4.7	0.5	0.0	0.0
$1981-1982$	0.0	0.0	0.0	0.0
$1982-1983$	14.8	0.0	2.5	0.0

Source: Division of Marketing, IHMA.

TABLE 11. HONDURAS: EXPORTS OF GRAINS MADE BY IHMA (1000 MT)

AGR. YEAR	CORN	BEANS	RICE	SORGHUM
1978	0.0	0.0	0.0	0.0
1979	0.0	0.0	0.0	0.0
1980	0.0	0.0	0.0	0.0
1981	4.5	6.7	0.0	0.0
1982	13.6	2.4	0.0	0.0
1983	0.0	0.3	0.0	0.0

Source: Division of Marketing, IHMA.
TABLE 12. HONDURAS: CORN WHOLESALE MARKET PRICES

AGR. YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	AVERAGE
$1978-1979$	15.75	11.60	11.22	-	-	13.19	13.45	13.99	14.31	15.05	15.76	16.39	14.07
$1979-1980$	17.55	15.96	14.01	14.86	-	-	21.81	22.83	21.85	21.15	22.95	25.28	19.83
$1980-1981$	24.31	17.69	15.99	-	17.47	18.25	18.67	19.23	18.98	18.17	19.23	19.51	18.86
$1981-1982$	20.41	18.74	16.60	16.13	15.55	15.85	18.38	18.51	17.73	17.91	18.84	19.35	17.83
$1982-1983$	18.97	16.06	14.30	15.03	16.55	17.85	19.53	19.80	19.19	20.55	22.74	28.63	19.10
$1983-1984$	23.77	15.89	14.76	14.89	14.61	14.82	14.56	15.35	14.55	14.86	15.73	15.42	15.77
$1984-1985$	14.92	14.03	12.60	11.50	11.93	-	-	-	-	-	-	-	13.00

[^3]table 13, honduras; beans wholesale market prices

| AGR. YEAR | SEPT, | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUN. | JUL. | AUG. | AVERAGE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1978-1979$ | 24.47 | 25.96 | 26.64 | - | - | 29.25 | 29.06 | 30.30 | 31.92 | 32.62 | 33.12 | 32.49 | 29.88 |
| $1979-1980$ | 31.09 | 42.82 | 55.93 | 56.97 | - | - | 65.11 | 75.33 | 83.24 | 91.86 | 102.94 | 68.26 | 67.36 |
| $1980-1981$ | 61.42 | 73.13 | 83.48 | - | 63.56 | 63.13 | 68.21 | 62.28 | 71,03 | 66.48 | 65,45 | 49.52 | 66.15 |
| $1981-1982$ | 50.81 | 54.58 | 51.16 | 43.73 | 47.36 | 48.34 | 40,17 | 39.90 | 41.49 | 45.22 | 45.75 | 38.64 | 45,60 |
| $1982-1983$ | 34.70 | 33.80 | 38.50 | 39.03 | 37.65 | 36,88 | 33.80 | 36.15 | 44.56 | 50.57 | 53.54 | 50,44 | 40.80 |
| $1983-1984$ | 41.14 | 45.84 | 50,30 | 44.48 | 45.14 | 44,59 | 43.67 | 47.11 | 51,75 | 51.71 | 52.77 | 47,60 | 47.18 |
| $1984-1985$ | 40.53 | 39.43 | 40.27 | 44.30 | 46.77 | - | - | - | - | - | - | - | 42,22 |

[^4]Table 14. honduras: RICE WhOLesale market prices
(LEMPIRAS/QUINTAL)

AGR. Year	SEPT.	OCT.	NOV.	DEC.	JAN,	FEB.	MAR,	APR.	MAY	JUN.	JUL.	AUG.	AVERAGE
1978-1979	55.40	55.70	57.51	-	-	55.46	55.36	56.05	55.99	54.59	56.89	57.57	56.05
1979-1980	57.18	58.03	60.46	60.15	-	-	60.11	60.04	60.41	60.85	60.57	59.54	59.73
1980-1981	58.85	59.98	61.44	-	63.48	61.62	62.11	62.43	63.08	65.27	65.68	66.29	62.75
1981-1982	71.03	71.55	72.00	70.98	70.06	70.48	69.60	69.84	68.60	67.18	69.67	70.57	70.13
1982-1983	69.76	65.99	65.36	67.61	66.32	66.65	67.79	67.31	68.17	69.33	70.74	69.47	67.88
1983-1984	67.83	67.94	66.90	65.30	63.19	64.45	66.11	63,40	60,89	60.88	61,92	62,76	64.30
1984-1985	61.06	62.61	62.78	61,98	60,38	-	*	*	*	*	-	*	61.76

Source: IHMA-CIES.
TABLE 15, HONDURAS: SORGHUM WHOLESALE MARKET PRICES (LEMPIRAS/QUINTAL)

AGR. YEAR	SEPT.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG .	AVERAGE
1978-1979	14.44	13.66	11.11	-	-	13.68	12.53	13.14	13.59	13.58	14.11	14.55	13.44
1979-1980	15.42	16.31	17.91	19.31	-	-	17.56	17.85	17.78	18.61	19.63	22.78	18,32
1980-1981	24.00	23.13	23.49	*	16,64	19.19	15.78	15.59	15.72	18.65	16.95	17.23	18,76
1981-1982	18.07	18.08	17.82	19.13	19,60	17,72	14.03	14.34	14.48	15.54	16.07	18.17	16,92
1982-1983	18.46	19.30	21.57	15,34	17,59	18.46	19.33	20.25	21,98	23,21	24.00	21,00	20,04
1983-1984	33.00	-	34.63	-	15,08	14,16	15,82	14,30	13,54	13,68	15,00	10,88	18,01
1984-1985	13.80	13.94	13.79	12.55	11,50	-	-	*	-	*	-	-	13,12

Source: IHMA-CIES,

TABLE 2. Coefficients of Price Flexibility used to Calculate the Governnent Impact on Grain Karketing
\% Change CONM BEANS RICE SORGHUN Quantity

8	-5.8029	6.2508	-3.5009	-4.0028
1	-5.2000	6. 2589	-3.5009	-4.0209
2	-5.0203	-6. 2508	-3.5000	-4.8880
3	-5.2208	6.2508	-3.5000	-4.0800
4	-5.2020	-6.2508	-3.5208	-4.3200
5	-5.608	5.2520	-3.5809	-4.2008
6	-4.8333	-6. 2417	-3.3833	-3.8667
7	-4.6667	-5.8333	-3. 2667	-3.7333
8	-4.5009	-5.6250	-3.1509	-3.6003
9	-4.3333	-5.4167	-3.0333	-3.4667
18	-4.1667	-5.2083	-2.9167	-3.3333
11	-4.2009	-5.0203	-2.9023	-3.2600
12	-3.8333	-4.7917	-2.6833	-3.2667
13	-3.6667	-4.5833	-2.5667	-2.9333
14	-3.5209	-4.3758	-2.4509	-2.8900
15	-3.3482	-4.1853	-2.3437	-2.6786
16	-3.2509	-4.2625	-2.2750	-2.6002
17	-3.1666	-3.9593	-2. 2166	-2.5333
18	-3.8833	-3.8541	-2.1583	-2.4666
19	-3.6208	-3.7508	-2.1000	-2.4809
20	-2. 9166	-3.6458	-2.8416	-2. 3333
21	-2.8333	-3.5416	-1.9833	-2.2666
22	-2. 7588	-3.4375	-1.9250	-2.2000
23	-2.6666	-3.3333	-1.8666	$\underline{2.1333}$
24	-2.5833	-3.2291	-1.8883	-2.2666
25	-2.5280	-3.1258	-1.7508	-2.000
25	-2. 4588	-3.2625	-1.7159	-1.9609
27	-2.4988	-3.8009	-1.6808	-1.9298
28	-2.3506	-2.9375	-1.6450	-1.8890
29	-2.3000	-2.8759	-1.6109	-1.8409
36	-2. 2530	-2.8125	-1.578	-1.3009
31	-2. 2080	-2. 7508	-1.5489	-1.7600
32	-2.1500	-2.6875	-1.5050	-1.7208
33	-2.1208	-2.6250	-1.4700	-1.6809
34	-2.8503	-2.5625	-1.4350	-1.6498
35	-2.0009	-2.5092	-1.4008	-1.680\%
36	-1.9667	-2. 4583	-1.3767	-1.5733
37	-1.9333	-2,4167	-1.3533	-1.5467
38	-1. 3909	-2.3758	-1.3320	-1.5202
39	-1.3667	-2. 3333	-1.3267	-1.4933
40	-1.8333	-2.2917	-1.2833	-1.4667
41	-1.8090	-2. 2509	-1.2682	-1.4480
42	-1.7667	-2. 2083	-1.2367	-1.4133
43	-1.7333	-2.1667	-1.213	-1.3867

		.		
45	-1.6657	-2,2833		
46	-1.6458	-2.8573	-1.152	-1.3167
47	-1.6250	-2. 3313		
48	-1.6042	-2.0852	-1.	
49	-1. 5324	-1.9792	-1.128	-1.2
50	-1.5625	-1.9532	-1.293	
51	-1.5417	-1.5871	-1.07	-1.2
52	-1.5209	-1. 9211	-1.364	-1.21
53	-1.5828	-1.8750	-1.	
54	-1.4792	-1.8498	-1.2354	-1.181
55	-1.4584	-1.8238	-1.2299	-1.1667
56	-1.4375	-1.79	-1.	
57	-1.4167	-1.7769	-8. 9917	-1.
58	-1.3959	-1.7449	-0.9771	-1.
59	-1.3750	-1.7188	-0.962	-1.1208
50	-1.3542	-1.6928	-8.947	1.0
	-1.3333	-1.6666	-0.9333	-1.0656
62	-1.3125	-1.6406	-2.9188	-1.2503
63	-1.2917	-1.6146	-0.3842	-1.
64	-1.2719	-1.5899	-2.8963	-1.0175
65	-1.2615	-1.5769	-0.8831	-1.2092
	-1.25	-1.56		

Source: Based on direct price denand elasticities, -0.2 for corn, -0.16 for beans, -8.29 for rice and -2.25 for sorghua,

APPENDIX D

Simulated Output, IHMA Marketing Plan for 1984-85
(Tables 1... . 40)

TARLE 1. Projected Monthly Volumes of Basic Grains Harvested. (1000 Quintals)

	Copen	ESANS	RICE	50paitur	WHERT	TOTAL
SEP	585.7	58.8	248.9	15.8	214.2	1144.5
OCT	878.6	58.8	562.2	15.8	128.0	1542.4
NON	2050.8	58.8	401.5	15.8	183.8	2789.1
DEE	2342.8	29.4	481.5	104.7	179.0	3856.5
JAN	378.9	98.8	13.3	241.2	92.7	816.8
FEB	757.8	99.8	31.8	241.2	89.4	1216.1
M 月 $^{\text {P }}$	568.3	75.6	22.1	241.2	75.4	982.7
APR	189.4	45.4	2. 1	80.4	183.2	520.6
WAY	0.0	0.8	8.8	0.8	87.2	87.2
JN	0.0	8.8	0.0	0.8	181.9	181.9
π	0.0	0.8	0.0	0.8	107.8	187.8
AUS	0.0	88.2	0.0	0.8	118.5	206.7
TOTAL	7151.4	596.5	1694.8	953.5	1648.1	12636.3

Source: Percentages from Work Table 1 applied to the projected annual harvest for this alternative, after adjustments for harvesting losses and excess moisture and foreign material content. The current adjustent factors for these losses are $2.8835(.954 .93$) for corn, 8.893 (.95*.94) for beans.

TABLE 2. Projected Nonthly Voluwes of Gram Sales Dff Farms (1000 Quintals)

	CORN	BEANS	RICE	SuRGrixa	IHEAT	TOTR
SEP	425.8	53.3	233.9	4.5		717.5
OCT	694.9	48.2	558.7	4.5		13\%.3
NCN	1793.2	48.2	398.8	4.5		2244.6
DEC	2072.0	29.1	398.9	76.8		2566. 9
JAN	237.2	83.9	12.9	182.2		516.2
FEB	591.7	87.7	32.8	182.2		892.3
WAR	414.5	72.5	22.8	182.2		691.2
APR	68.0	42.3	22.0	58.5		182.8
Way	-124.8	-10.4	0.8	-3.6		-138.7
Jow	-128.5	-7.9	-3.4	-3.6		-143.4
J	-143.7	-7.9	-7.8	-3.6		-163.8
PUS	-147.4	88.3	-5.6	-4.9		-77.7
TOTAL	5744.9	510.2	1661.3	678.7	8.8	8595.8

Source: Projected monthly harvest (Table 1) winus the sum of fara fasily use (Table 15A), farn livestock use (Table 15B) and seed use (Table 16).

WARETING PLRN FDR 1984-85

TAELE 3. Projected Monthly Volume of Goverfment Grain Purchases (160) Quintals)

	CORN	BEANS	RICE	SaRGHEM	Wheat	TDTAL
SEP	1.9	4.8	11.8			18.5
OCT	187.8	22.8	16.2	0.8		226.8
NON	425.7	5.2	12.4	4.9		448.2
DEC	258.2	0.8	23.5	4.9		279.4
JAN	49.8	11.7	5.8	18.2		76.7
FEB	35.8	27.8	0.8	25.6		89.2
WAR	8.8	3.6	0.8	14.1		14.7
APR		8.4				0.4
WAY						
JN						
JL						
AUG						
TOTAL	949.6	74.1	69.7	59.7		1153.1

Source: Compated for this alternative based on $1 \mathrm{H}_{\mathrm{M}} \mathrm{Al}^{\prime} \mathrm{s}$ purchasers and sales for 1981/82 through 1983/84 together with the volune and price data for this alternative ITables 2 and 4).

TARAE 4. Projected Monthly Grain Prices of Governsent Purchases (Lempiras per Quinat1)

CORN BEANS RICE SORGHUA

SEP	15.42	42.65	0.28	
OCT	15.41	42.72	23.39	0.00
NOV	15.39	42.75	23.40	15.10
DEC	15.42	42.39	23.78	15.20
JAN	15.34	42.68	24.18	14.96
FEB	15.39	42.83	23.66	14.69
WAR	0.09	43.25	0.00	14.3

90R
MAY
絾
JIL
AUG
$\begin{array}{lllll}\text { AVERAEE } & 15.40 & 42.53 & 23.66 & 14.86\end{array}$
Source: Specified as initial information under the assumotions for this alternative. Modal prices based on existing tolerance tables and anticipated geographic delivery patterns.

TAREE 5. Projected Average Nonthly Market Prices Received by Farsers (Lemairas per Quintal)

	CORN	BEANS	PADDY RICE	Scharlix
SEP	11.24	27, 33	21.59	12.98
[CT	8.31	25.41	21.52	12.99
N0V	7.56	32.65	21.38	11.21
DEC	8.87	28.86	21.70	12.29
Jaw	8.75	28.66	20.31	11.78
FEB	2.97	29.50	20.23	12.36
WAR	12.45	29.91	20.39	12.23
APR	10.83	31.98	20.13	11.00
May	12.31	35.44	20,38	11.58
$\cdots \mathrm{N}$	12.89	35. 85	28.35	12.35
Ω	11.98	36, 82	28.08	12.63
fus	11.83	31.17	28.66	12.68
ERAGE	9.52	31.06	21.41	11.52

Source: Based on average historical prices received by farmers for 1878/79 through 1383/84, with projections based on longterm price trends. Projections adjusted for this altermative based on the price flexibility of denand coefficients shom in Table Z.

TARLE 6. Simulated Average Monthly Market Prices Received by Farners without Government Intervention
(Lenpiras per Quirtal)
CORN BESNG RILE SCREHM

SEP	18.25	38.39	25.78	18.98
OCT	5.23	7.75	23.53	10.99
NON	3.14	18.64	13.63	4.89
DEC	4.83	35.85	17.76	8.36
JAN	4.97	15.33	19.21	9.72
FEB	9.16	6.13	28,11	7.99
MAR	13.95	33.89	29,49	8.41
APR	17.84	38.77	30.47	12.84
WHY	ERR	ERR	ERR	ERR
JN	ERR	ERR	ERR	ERR
JL	ERR	ERR	ERR	ERR
	ERf	42.78	ERR	ERR
ERAGE	10.79	29.67	26.31	12.50

Source: Calculated as follous: Net governwent purchases volume ((Table 3-Table 2a) - Total volume harvested (Table 1) $=(1.8+$ price flexibility coefficient (Table Z) \& Projected nonthly narket prices (Table 5). Note: "ERR" in the table indicates no quantity harvested during the month.

TAELE 7. Projected Northly Fara Income from Êrain Saies
(1,208 Lemoirss)

Source: Calculated by means of multiplication of prices and quantities as follows: Sales to government (Table 3 4 Table 4) + sales to private sector $\{$ (Table 2 - Table 3) \ddagger Table5).

TAELE 8. Simulated Monthly Fara Ireone from Grain Sales without Goverrment intervention (1,000 Lempiras)

	CORN	BGANS	RICE	SORGENX	WHEAT	TOTAL
SEP	7,771.3	2,845.2	6,338,7	49.1		15,896.4
DCT	3,634.3	373.7	$13,146.1$	49.1		17,203.2
NOV	5,630.5	898.9	7,827.8	21.9		14,379.1
DEC	18,207.8	719.4	7,884, 3	635.2		18,446.8
JRN	1,179.1	1,296.5	247.9	1,771.8		4,484, 4
FEP	5,419.7	537.3	856.5	1,455.4		8,276.9
War	5,781.6	2,233.9	649.3	1,531.9		12,196.8
APR	1,872.9	1,638.9	671.8	751.1		4,131.9
MAY	8.8	0.8	8.8	2.8		8.8
JUN	2.0	0.6	Q. 8	2.8		2.8
JLL	0.8	0.8	8.8	8.8		2.8
ALG	2.8	3,433,6	0.8	2.8		3,433,6
TOTAL	40,495. 3	3,167.5	5,523. 6	6, 264,7		96, 451.1

Source: Calculated by means of multiplication of sumlated prices and quantities, en q., Table $6 \times$ Table 2).

YARKETING PLAN FDR 1984-85

TARLE 9. Projection of Monthly Cost of Government Brain Purchases. (1,00e Leapiras)

	CORN	gems	R10E	SOREHLM	WHEAT	TUTAL
SEp	29.3	204,7	Q. 8	0.0		234.8
ICT	2,881.7	974.8	378.9	0.8		4,234.6
NOV	6,551.5	$2{ }_{23} 3$	290.2	74.8		7,138.8
DEC	3,858.1	33.9	558.8	74.5		4,525.3
JAN	751.7	499.4	139.8	152.6		1,543.4
FEB	551.8	1,198.7	0.0	376.1		2,117.7
MAR	0.8	26.0	0.0	202.3		228.3
ApR	0.8	0.0	0.0	0.0		8.8
MAY	0.8	8.8	0.8	0.8		2.8
JN	0.8	8.8	0.0	0.8		0.8
Jil	0.8	8.8	8.8	0.8		0.8
fub	0.0	8.8	0.8	0.8		2.8
TOTAL	14,623.2	3,152. 3	,367.7	879.5		20,021. 3

Source: Calculated by means of multiplication of prices and quantities, e. q., (Table 4 \& Table 3).

TABLE 10. Projection of Monthly Expense for Conditioning Government Grain (1,200 Lewpiras)

CORN BEANS RICE SCRGHLA WEAT TOTAL

55	3.7	8.2	32.6	0.8	42.5
OCT	366.3	39.2	42.8	8.8	447.5
NOV	833.9	8.9	32.1	7.8	882.7
DEC	498.1	1.4	60.9	7.8	568.2
JAN	96.8	20.1	15.8	16.2	147.3
FEB	70.1	47.8	8.8	40.6	158.5
MAR	0.0	1.8	2.8	22.4	23.4
APR	0.3	0.7	2.8	0.8	2.7
May	0.8	0.8	e. 8	0.8	2.8
JNN	8.0	0.0	0.8	0.8	2.0
Ill	8.8	0.8	8.8	0.8	8.8
FU6	0.8	2.a	2.0	0.8	0.8
TOTAL	1,868.1	127.3	180.6	94.8	, 262.8

Source: Calculated by means of multiplication of unit direct costs for cleaning, drying and conditioning lineluding loss of weight) by projected quantities purchased under this alternative (Table 3).

WFRETING PLAN FOR 1984-B5

TAREE 11. Projection of Nonthly Expense of Procuring and Receiving Government Grain (1,200 Lempiras)

CORN REAS RICE SORGTUM WHEAT TOTAL

SEP	0.6	1.5	3.6	0.8	5.7
OCT	56.8	6.9	4.9	0.8	68.6
NOU	129.4	1.6	3.8	1.5	136.3
DEC	76.1	0.2	7.1	1.5	84.9
JAN	14.9	3.6	1.8	3.1	23.4
FaB	10.9	8.5	0.8	7.8	27.2
MAR	0.8	0.2	0.8	4.3	4.5
APR	0.8	0.1	0.0	0.8	0.1
MYY	0.8	0.8	0.8	0.8	0.8
JUN	0.8	0.8	0.8	0.8	0.8
JLL	8.8	8.8	8.8	0.8	8.8
AUS	0.8	0.8	0.8	0.8	0.8
TDTAL	288.7	22.6	21.2	18.2	358.7

Source: Calculated by means of multiplication of unit direct costs for buying and receiving goverwment grain into storage by projected quantities purchased under this alternative (Table 3).

SUNARY TAREE 115. Monthly Cost of Sales of Goverment-Comed Grain (1,208 Lewoiras)

COPA BEANS RICE SORGHM WHEAT TOTRL

Source: Calculated by direct addition of Table $9+$ Tablele + Table II for this alternative.

	CORN	EEFNS	RICE	SOPGILM	WHEAT	TOTAL
SEP	0.0	0.0	$0: 8$	0.8	214.2	214.2
OCT	0.0	8.8	0.8	a. 8	128.8	128.0
NOU	2.8	8.8	2.8	0.4	183.8	183.8
DEC	0.0	37.1	0.8	8.8	178.8	215.1
JAN	e. 8	e. 0	0.8	e. 8	92.7	92.7
FEP	e. 8	0.8	0.0	0.8	89.4	89.4
MAR	8.8	8.8	0.0	0.8	75.4	75.4
APR	0.0	7.6	a. 0	2.8	183.2	190.8
NaY	0.8	74.6	2.8	0.8	87.2	161.8
JN	8.8	72.2	0.0	0.8	181.9	254.1
NL	0.8	72.2	0.8	0.0	187.8	179.9
A16	0.8	8.8	0.8	8.8	118.5	118.5
TOTAL	0. 1	253.5	0.8	0.4	1,648.1	1,903.7

Sourse: Calculated for this alternative as residual of total volume of denand (table $13 \mathrm{C}+$ Table $15 \mathrm{~A}+$ Table $15 \mathrm{~B}+$ Table $15+$ Table $17+$ Increases in ending inventory) sinus total volume of supply from other sources (Table $1+$ Decreases in ending inventory). If the residual is minus, then the absolute value represents exports (Table 19), and the import figure in Table 12 is set equal to zero.

TABEE 13A. Projected Monthly Volume of Grairs for Human Consumation (Urban) (1,000 Quintals)

CORN BEATS RICE SORGHM WERT TOTAL

sep	151.5	26.1	88.8	2.8	54.3	325.4
CCT	151.5	25.1	82.8	2.8	54.3	325.4
NOV	151.5	26.1	88.8	2.8	54.3	325.4
DEC	161.5	26.1	89.8	2.8	54.3	325.4
JAN	161.5	26.1	88.8	2.8	54.3	325.4
FEP	161.5	26.1	88.8	2.8	54.3	325.4
NGR	161.5	26.1	89.8	2.8	54.3	325.4
APR	161.5	26.1	88.8	2.8	54.3	325.4
NAY	151.5	26.1	80.8	2.8	54.3	325.4
JuN	161.5	26.1	89.8	2.8	54.3	325.4
ת12	161.5	26.1	88.8	2.8	54.3	325.4
AUG	161.5	26.1	89.8	2.8	54.3	325.4
TOTAL	1,938. 3	312.7	969.3	33.6	651.6	4.9

Source: Application of the projected national urban pooulation to the appropriate anmual per capita corsuaption rates; distributed unifornily throughout the year. Current annual per capita rates are 115.7 pounds of corn, 18 of sorghum and 37.51 pounds of ineat. Milled rice converted to equivalent weight of rough rice on basis of the coefficient of 1.9325 .

TAELE 13B. Projected Nonthly Volume of Grains for Howan Consusotion

	CORN	REFNS	RILE	SOMEHIM	WEAT	total
SEP	397.8	44.4	50.0	46.5	82.4	621.1
DCT	397.8	44.4	50.0	46.5	82.4	621.1
NOM	397.8	44.4	50.8	46.5	82.4	621.1
DEC	397.8	44.4	52.8	46.5	82.4	621.1
JAN	397.8	44.4	50.8	46.5	82.4	621.1
FEB	397.8	44.4	50.0	46.5	82.4	621.1
MAR	397.8	44.4	59.0	46.5	82.4	621.1
APR	397.8	44.4	50.6	46.5	82.4	621.1
NGY	397.8	44.4	58.8	46.5	82.4	621.1
SN	397.8	44.4	50.0	46.5	82.4	621.1
π	397.8	44.4	50.8	46.5	82.4	621.1
AUG	397.8	44.4	50.8	46.5	82.4	621.1
TOTR	4,773.8	53.4	66.3	557.7	988.5	7,452.7

Source: Application of the orojected national rural population to the aporopiate annual per capita consunption rates; distributed uniformly throughout of the year. Current annual per capita rates are 188.3 pounds of corn, 21 pounds of beans, 11.8 points of ailled rice, 22 sounds of sorghum and 37.51 pounds of whest. Milled rice converted to ecuivalent weight of rough rice on basis of the coefficient of 1.9325 .

TARLE 13C. Projected Monthly Volume of Grains for Muman Consumotion (1,000 Quintals)

CORN REANS RICE SORGNM WEAT TOTAL

Stp	442.1	67.3	138.8	45.9	136.7	822.8
OCT	44.1	67.3	138.8	45.9	136.7	822.8
NOW	44.1	67.3	138.8	45.9	136.7	822.8
DEC	442.1	67.3	130.8	45.9	136.7	82.8
JAN	442.1	67.3	138.8	45.9	136.7	822.8
FEE	442.1	67.3	138.8	45.9	136.7	882.8
*日R	442.1	67.3	138.8	45.9	136.7	822.8
APR	442.1	67.3	138.8	45.9	136.7	822.8
May	442.1	67.3	138.8	45.9	136.7	822.8
JN	442.1	67.3	138.8	45.9	136.7	822.8
JL	44.1	67.3	138.8	45.9	136.7	823.8
AUG	442.1	67.3	130.8	45.9	136.7	822.8
TOTAL	5,385.7	887.9	,569.6	550.7	,640.1	, 874,0

[^5]TRELE 14. Simulated Monthly Volume of Grain for Human Consumption without Governsent Intervention.

> (1,e00 Quintals)

	CORN	BEANS	R1CE	SOREHUX	WHEAT	TUTAL
SEP	385.3	63.4	128.8	45.9		534.7
OCT	511.9	77.9	124.4	45.9		760.2
NOY	841.7	71.8	143.2	50.8		1,106. 8
DEC	659.3	66.2	154.3	50.8		938.7
JAN	481.4	74.5	136.6	56.1		748.7
FEB	454.4	88.9	138.8	71.5		745.7
\% ${ }_{\text {AR }}$	491.3	66.9	133.8	56.6		655.7
AP9	392.8	65.8	138.8	42.5		631.2
May	341.3	64.2	130.8	41.2		577.4
JnN	394.3	59.2	188.2	39.8		511.5
JR	242.5	54.8	186.2	28.2		432.8
AUS	162.8	61.9	188.2	1.1		333.9
TDTAL	5,998,4	814.8	1,526.2	533.4	0.8	7,969,8

Sources: The percentage changes in total aarket quantities represented by the net government sales volures for human consumption under this alternative applied to the projected total sonthly volumes for husan consumption (Table 13C).

TARE 15月. Projected Monthly Volume of Hone-Produced Grain for Human Consunption by the Farn Fanily (1, ,eee Quintals)

	CORN	BEAS	RICE	SOREHU\#	HEEAT	TOTAL
SEP	117.2	3.1	2.8	3.3		123.6
$0 C T$	117.2	3.1	8.8	3.3		123.6
NON	117.2	3.1	8.8	3.3		123.6
DEE	117.2	3.1	8.0	3.3		123.6
JAN	117.2	3.1	8.8	3.3		123.6
FEB	117.2	3.1	8.8	3.3		123.6
MAR	117.2	3.1	8.8	3.3		123.6
APR	117.2	3.1	0.0	3.3		123.6
nay	117.2	3.1	8.8	3.3		123.6
JN	117.2	3.1	0.8	3.3		123.6
Jil	117.2	3.1	a. 8	3.3		123.6
ALB	117.2	3.1	8.8	3.3		123.6
TOTAL	,406.4	37.2	8.8	49.8	8.8	1,483.6

Source: Calculated by applying the projected nuaber of faras producing the grain by the approoriate farm fanily howe consunotion rates. Current projections based on averape fara family of six persons and annual per capita howe consumption rates of 142.2 dounds of corn, 15.75 pounds of beans and 16.8 pounds of sorghum, These rates distributed uniformily from month to month.

TRELE 15B. Projected Monthly Voluwe of Howe-Produced Grain for Livestock Feed (1,000 Duintals)

	COIN	HEANS	RIEE	Sugherm	WWECT	TOTAL
SEP	37.8		1.4	3.5		42.7
OCT	56.7		3.3	3.5		63.4
NCN	132.3		2.3	3.5		138.1
DEC	151.1		2.3	24.2		177.7
JAN	24.4		8.1	55.7		89.2
FEB	48.9		2.2	55.7		104.8
WAR	36.7		0.1	55.7		92.5
APR	12.2		8.1	18.6		38.9
W日Y	8. 8		8.8	2.8		0.8
JuN	0.8		0.8	0.8		6.8
M	2.8		8.8	8.8		2.8
ful	0.8		0.8	8.8		8.8
TOTAL	500.1		3.8	२2¢.2		723.3

Source: Calculated by applying the annual on-farm livestock use rates to the projected gross production for this alternative, and naking the monthly distribution proportional to work percent for corn, 0.5 percent for rice and 21.5 percent for songhum.

TARLE 16. Projected Monthly Volume of Grains for Seed
(1,ea8 Ouintals)
CORN BEANS RICE SORGHEM WEAT TOTAL

Sep	4.9	2.4	5.6	3.7	16.6
OCT	9.8	7.5	8.2	3.7	21.1
NOV	7.3	7.5	8.4	3.7	18.9
DEC	2.4	6.2	0.3	1.2	10.2
JAN	2. 2	3.7	0.3		4.8
FEP	0.8		8.8		2.0
WR	8.8		0.8		8.8
APR	2.8		8.8		0.0
May	7.6	7.3	0.8	8.2	15.1
JuN	11.3	4.8	3.4	2.2	19.8
μ	26.5	4.8	7.8	0.2	39.4
A 46	38.2	4.8	5.6	1.6	42.3
TDTAL	108.1	49.1	23.6	14.6	187.4

Source: Annual voluse of seed denand computed by applying the prevailing seeding rates to the total area devoted to the crop under this alternative. Distribution to a monthly basis proportionate to Work Table 1 with lead time for trowing seasons of 4 wonths for com and rice and 3 months for beans and sorghum, Current average seeding rates per manzana are 25 pounds for corn, 75 pounds for beans, 127.5 pounds for rice and 20.7 pounds for sorghuve.

TABLE 17. Projected Monthly Yoluae of Grain Demand by Industrial Processors $\quad 11,000$ Quiztals)

CORN BEAS RICE SORGEUA WHEAT TOTAL

SEP	132.1	12.6	144.7
OCI	132.1	12.6	144.7
MOU	132.1	12.6	144.7
DEC	132.1	12.6	144.7
JAN	132.1	12.6	144.7
FEB	132.1	12.6	144.7
MAR	132.1	12.6	144.7
APR	132.1	12.6	144.7
MAY	132.1	12.6	144.7
JN	132.1	12.6	144.7
JRL	132.1	12.6	144.7
AUG	132.1	12.6	144.7
TOTAL	$1,585.7$	158.6	$1,736.3$

Source: Estivated industrial demand by region for 1983/84 (1HSh/CIES), increased at the anmual rate of 3 percent. Monthly volume based on uniform utilization over the year.

TARE 18. Sivulated Monthly Voluse of Grain Denand by Industrial Processors without Governsent intervention. (1, 820 Quintals)

	COPN	EEANS	RICE	SORGFOM	WEAT	TOTR
SEP	(4.7)			12.6		7.9
CCT	201.9			12.6		214.5
NOV	531.7			17.5		549.2
DEC	349.3			17.5		365.8
JAN	171.4			22.7		194,2
FEP	144.4			38.2		182.6
HAR	91.3			23.3		114.6
9PR	82.8			9.2		91.2
WAY	31.3			7.8		39.1
JuN	(5.7)			6.5		0.8
Jl	(67.6)			(5.1)		(72.7)
AUS	(147.2)			(32.3)		(179.5)
TOTAL	1,378.4			138.3		1,588.6

Source: The percentage changes in total market quantities rearesented by the ret governwent sales volumes for industrial use under this alternative applied to the projected total monthly volumes for industrial use (Table 17).

TAELE 19. Projected Monthly Volume of Brain for Export (1,200 Quintals)

	COAN	SEANS	RICE	SORGEMA	WHEAT	TOTAL
5	3.8	8.8	8.0	8.0	0.0	8.8
CCT	0.8	8.8	0.8	8.8	0.8	2.0
NON	0.8	0.8	8.8	0.8	8.8	8.0
DEC	0.8	0.8	0.0	8.8	0.8	0.8
JAN	8.8	0.8	8.8	8.0	0.8	0.8
FEB	0.8	8.8	a. 8	a.8	8.8	0.8
HRR	8.8	8.0	0.0	8.8	0.0	2.0
APR	8.8	0.8	8.8	0.8	0.0	0.8
WAY	2. 8	0.8	0.0	8.8	0.8	8.8
JN	8.8	8.8	2.8	0.8	0.8	0.8
\cdots	8.8	8.0	0.0	0.8	2.8	0.8
ALG	259.8	8.8	91.7	17.4	8.8	368,9
TOTAL	259.8	0.8	91.7	17.4	2.0	368.9

Source: Calculated for this alternative as residual of total valuae of supply (Table $1+$ Decrease in ending inventory) nimus total volume of denand by other uses TTable $13 \mathrm{C}+$ Table 15 A + Table 158 + Table $16+$ Table $17+$ increases in ending inventory). If the residual is ainus, then the absolute value represents imports (Table 12) and the export figure in Table 19 is set equal to zero.

TAELE 20. Projected Nonthly Volume of Grain Sales by Government
(1,020 Quintals)

	Cown	BEAS	PGODY	S0RGXIM	MLLED	TOTAL
			RICE		RICE	
5 sep	138.7	8.7	22.6		1.4	171.4
OCT	117.2	12.2	22.6		4.5	156.5
NOM	26.1	1.5	0.8		1.6	29.2
DEC	33.8	1.9			1.4	36.3
JAM	9,7	4.5	8.8		2.9	17.1
FE日	23.5	6.2	2.8	0.0	2.9	32.6
MAR	40.8	1.8	0.0	3.4	3.8	48.2
APR	59.1	1.9		3.4	4.5	59.9
MAY	180.9	3.1		4.7	4.5	113.3
תN	137.9	8.1	22.6	6.1	3.8	177.7
Jl	199.7	13.3	22.6	17.7	4.5	257.8
fuig	279.4	5.4	22.6	44.8	3.0	355.3
Total	1,156.9	68.1	113.1	89.1	37.2	1,455.2

Source: The government sales for this alternative were calculated based on past government purchase and sales patterns (1981/89 through 1983/84) and Tables 3 and 21.

TALLE 21. Projected Monthly Wholesale Prices for Sovernment Brain Sales
(Lemoiras der Quinta1)

	COPN	BEFWS	pqroy	SORGILM	MLLLED
			RICE		RICE
SEp	18.50	49.12	28.80	17.50	50.68
CCT	18.59	49.12	28.20	17.50	50.00
NOV	18.50	49.12	28.08	17.58	50.00
DEE	18.58	49.12	28.80	17.50	50.80
JAN	18.58	49.12	28.88	17.58	50.28
FEB	18.50	49. 12	28.88	17.50	50.80
MAR	18.50	49.12	28.88	17.59	50.00
APR	18.50	49.12	28.88	17.50	50.20
WAY	18.50	49.12	28.80	17.50	50.88
JN	18.58	49.12	28.20	17.50	50.80
Jil	18.58	49.12	28.80	17.58	59.00
W6	18.50	49.12	28.00	17.59	50.00
SUERAGE	18.50	49.12	28.00	17.50	50.2

Source: The average monthly prices of govermaent grain sales are taken as data representing conditions aporopriate to this alternative.

TARLE 22. Projected Monthly Mholesale Market Prices for Grains (Leapiras per Quintal)

	CORN	LEFNS	RICE	Sunctian
SEP	18.28	38.59	54.14	20.61
OCT	14.44	43.60	53.99	20.75
HOV	13.13	47.59	53.66	21.13
DEC	13.48	43.66	54.63	18.58
J*	15.49	43.89	52.91	16.81
FEB	16.25	44.29	52.54	16.98
NAR	17.65	44.34	53.26	15.87
APR	17.59	45.59	52.54	15.94
NAY	17.03	49.75	52.79	16.21
JuN	17.28	51.89	53.17	17.25
μ	17.78	53.69	53.92	17.75
CU6	19.67	45.45	54.45	18.12
AVERRGE	16.58	46.08	53.50	18.80

[^6]TARE 23. Siwulated Nonthly Wholesale Narket Prices for Grains without Sovernment Intervention (Lempiras per Puintal)

	CORN	EEANS	RICE	SORCHLM
SEp	29.88	52.54	70.44	20.61
aCT	7.71	14.87	71.42	22.75
NOV	13.13	31.24	41.18	14.75
DEC	3.62	48.12	34.27	12.98
JAN	10.37	19.44	52, 63	9.38
FEB	14.52	6.10	60.41	6.67
Mar	23.51	45.67	61.52	8.71
APR	24.49	52.11	64.38	19.61
MAY	26.51	64.26	64.68	22.32
JTN	27.87	81,92	76.07	23.20
ת12	328.45	93.48	77.94	27.41
446	35.82	66.11	77.91	18,12
AVERAGE	18.36	43.22	66.35	20.89

Source: Calculated as follows: ret goverrment sales voluse [(Table 28 - Table 3) - Total voluse of connercial deand (Tabie 13 C + Table 177 + $(1.2+$ price flexibility coefficient (Table 2$)]$ + Projected monthly molesale prices (Table 2?).

TARLE 24. Projected Nonthly Consuner Exaenditures for Grain and Grain Procucts $\quad 11,008$ Lenpiras)

	CORN	REAS	RICE	Scxarial	HESAT	TOTAL
95p	3,613.7	3,291.8	8,429,7	1,125.8		22,267, 0
DCT	7,600.0	3,494,2	B,405. 1	1,133.6		20,633, 3
NDV	6,912.4	3,814.2	8,355,9	1,154.6		20,237.8
DEC	7,295.7	3,499.5	8,507.1	1,8.5.4		20,117.7
JEN	8,154.4	3,517.3	8,239.1	918.5		20,829.4
FEB	8,557.2	3,549.3	8,188.4	927.5		21,214,4
Wha	9,293.7	3,523,5	8,293, 8	857.3		21,984. 2
APP	2, 255.2	$3,653.5$	8,153, 9	871.1		21,951.6
YAY	8, 955.7	3,985. 3	8,219.2	885.9		22,257.7
JN	9,283, 9	4,153.4	8,279.7	342.3		22,434.3
$\Omega \mathrm{L}$	2,357.7	4,382.7	8,395.2	969.6		23, 205, 3
AUS	$12,353.8$	3,543.2	3,478.3	989.9		23, 464, 5

TOTR 144,219.7 44,242.699,965.5 11,821.5 260,227.2

 (S, and Leapiras)

	20x	BEAS FYCE	SIRGHEX	WHEAT	TOTAL
5	12,730, 3	4,367.2 10,469.3	1,244.3		31,811.1
∞	4, 2 E3.:	1,235.8 10,615.6	1,252.9		17,163.3
ysy	6,912.4	2,596.8 $6,121.2$	898.9		16,521.3
VE	1,907, 3	3,999.7 5,854.2	783.6		11,784.8
JAY	5,457.3	1,615.8 $7,822.2$	566.3		15,461.7
FEP	7,640.8	$587.88,978.4$	402.5		17,528.6
MAR	12,374.9	3,796.1 $\quad 9,143.7$	525.7		25,840.5
APR	12,889.9	4,330.9 9,569.3	1,184.3		27,974.3
MAY	13,953,5	5,348.6 9,514.1	1,263,3		33,171.4
JN	14,668.9	6,808.7 11,306. 7	1,400.9		34,185. 3
π	15,828.3	7,769.7 11,584.9	1,655.5		37,038, 4
fuls	18,432.3	5,494.5 11,579.6	1,634.8		35,680. 4
TJTAL	138,255.8	47,862.7111899.2	,264. 2		382,281. 2

Source: Calculated from the projected consumption quantities for this alternative and siaulated non-intervention retail prices as follows: (Table 13C * Table/1.0 - retail handling wargin). The retail handling margins used are 0.16 for corn, 0.19 for beans, 0.12 for rice and $\mathbf{8 . 2 4}$ sorg.

TAELE á6. Projected Nonthly Expenditure by Processors for Easic Grains \quad (1,808 Lempiras)

	CORN	BEAN	RICE	SORCHOM	WHEAT	TOTAL
5 se	2,415.6	8.8	0.8	258.6	0.8	2,673.6
OCT	1,908.0	8.8	0.0	268.4	0.8	2,168.3
NOV	1,735.3	8.8	0.0	265.2	8.8	2,000.5
DEC	1,781.4	0.8	0.0	233.2	0.0	2,014.6
JAN	2,847.1	8.8	8.8	211.8	0.8	2,258.1
FEB	2,148.3	0.8	6.8	213.1	0.8	2,361.3
MAR	2,333,1	0.8	0.8	199.2	8.8	2,532,4
APR	2,323.8	0.8	0.8	200.1	0.8	2,523.9
Hay	2,252.8	0.8	0.8	203.5	0.0	2,454,3
JN	2,273.0	0.8	0.0	216.4	0.0	2,489.4
ת1.	2,349.2	8.8	0.8	$2 ¢ 2.7$	0.0	2,571.9
fug	2,599.1	0.1	0.0	227.4	8.8	2,826.5
TUTAL	26,164.1	8.0	8.8	2,710.8		28,874.9

[^7]TREEE 27. Sinulated Nonthly Expenditure by Processors for Basic Grains without Sovernment Intervention
(1,200 lendiras)

	CORN	BEANS	MICE	S08GHM	heat	TOTAL
scp	3,349.1	2.8	2.8	258.6		4,207.7
OCT	1,019.0	0.0	0.0	268.4		1,279.4
NOY	1,735.3	8.8	0.8	185.2		1, 52e. 5
DEC	478.8	0.8	2.8	162.8		641.7
JAN	1,370.0	3.8	3.8	117.7		1,487.7
FEi	1,918.2	2.8	0.0	23.6		2,201.9
NAR	3,126.7	0.8	2.8	109.3		3,215.9
APR	3,236.0	0.0	0.0	246.1		3,482. 1
MAY	3,523.8	8.8	2.8	262.5		3,755.5
JN	3,602, 6	0.8	8.8	291.1		3,973.7
Jll	4,223.9	2.8	0.8	344.1		4,367.9
fus	4,627.4	0.0	2.8	227.4		4,854.7
TOTA	32,649.9	8.8	0.8	2,548.8		35, 198.7

Source: Calculated from the projected procuresent volumes and simulated procurement prices without governnent intervention as follows: Table 17 \& Table 23.
*RRKETING PLAN FOR 19B4-B5

TAREE 37. Siwulated Monthly Impact of Government Market Intervention on Producer Incoeses from Orain Sales (1,008 Lenpiras)

CORN BEANS RICE SORGHM WHEAT TOTAL

5	(2,976.8)	(515.8) (1, 234.5)		8.8	(4,726.4)
CCT	3,467.8	1,245.2	(1,892.5)	0.8	3,622.8
NCN	11,254.8	615.3	724.2	47.3	12,642, 6
DEC	8,551.4	(129.5)	1,621.8	170.4	18,214.2
JRN	1,219.7	1,282. 6	36.2	. 393.8	2,932. 3
Fib	673.2	2,420.5	(242.9)	855.3	3,726.8
MAR	$(1,451.6)$	(56.4)	(222.4)	369.8	(1,319,5)
APR	(421.0)	(299,7)	(227.8)	(187.6)	(1, 256.2)
Hay	2.8	2.8	0.8	2.8	0.8
JN	8.8	8.8	2.8	0.8	0.0
π	0.8	8.8	0.0	2.8	0.8
fl6	0.8	(931.6)	0.8	0.8	(931.8)

$\begin{array}{lllll}\text { TOTRL } & 20,317.2 & 3,632.4 & (613.9) & 1,748.2\end{array} \quad 25,883.9$
Source: Calculated by subtracting simulated revenues to producers from grain sales without government intervention (Table 8) from projected producer revenues from grain sales under this alternative (Table 7).

TRELE 28. Projected Monthly Inventories of Governwent Grain Purchased in Prior Years. $\quad(1$, \&२e Quintals)

	CORN	BEAS	RICE	SORGHEA	WHERT	TOTAL
SEP	550.1	89.6	167.5	49.7		856. 8
OCT	550.1	89.6	152.4	49.7		841.7
NOY	558.1	89.6	152.4	49.7		84.7
DEC	552.1	88.5	152.4	49.7		848.6
JPN	550.1	88.5	152.4	49.7		849.6
FEB	550.1	88.5	146.8	49.7		835.0
*AR	599.3	88.1	141.8	49.7		788.8
APs	459.2	86.6	132.3	46.3		724.3
NaY	358.3	83.5	123.6	41.6		626.9
Jow	220.4	75.4	95.2	35.5		426.4
π	20.7.	62.1	54.6	17.8		164.5
ALG	0.0	56.7	35.6	8.2		92.3
FINEL	8.8	56.7	35.6	0.0		92.3

Source: Carry-in inventory froa preceeding period minus any sales of the "old croo" grain during the manth.

TRRLE 29. Projected Monthly Inventories of Goverment Grain
Purchased during Current Crop Year.
(1,280 Quinta15)
CDAN BERNS RICE SORGHUA WHEAT TOTAL

SEP	8.8	8.8	8.0	2.0	0.0	0.6
OCT	69.8	10.6	0.8	0.8	0.2	80.4
NOV	453.4	14.3	9.3	4.9	8.8	497.9
DEL	686.6	14.3	30.1	9.8	0.8	74.9
JAN	725.9	21.5	38.3	20.8	2.8	797.7
FEB	738.2	43.1	38.3	45.6	0.8	857.2
HAR	738.2	43.1	38.3	56.3	8.8	867.9
APR	738.2	43.1	30.3	56.3	8.8	867.9
W月Y	738.2	43.1	38.3	56.3	8.8	867.9
JLN	738.2	43.1	30.3	56.3	0.0	867.9
Jll	738.2	43.1	32.3	56.3	0.8	867.9
ALG	479.5	43.1	32.3	29.3	0.8	582.2
NGL.	479.5	43.1	39.3	29.3	2.8	58.

Source: Carry-in inventory of "new Crop" grain from arevious month plus any purchases and minus any sales of the "new crop" grain during the wonth, assuaing old croo imentories depleted before any new crop inventories sold.

WARKEIIN ALAN FDR 1984-85
TAEE 30. Projected Ton-Months of Storage Volune for 01d-Croo Government Grain $\quad\{1,208$ Nonth/Duintal)

	CORN	EEFNS	RICE	S0RGPIM	WEET	TOTAL
5 SP	618.5	91.5	174.2	49.7		933.9
OCT	558.1	89.6	159.9	49.7		849.2
NOV	555.1	89.6	152.4	49.7		84.7
DEC	538.1	89.0	152.4	49.7		841.1
JAW	550.1	88.5	152.4	49.7		842.6
FEP	550.1	88.5	149.6	49.7		837.8
War	529.7	88.3	143.9	49.7		811.5
APR	484.3	87.3	136.6	48.8		736.1
Way	488.8	85.0	127.9	43.9		665.6
Jพ	289.4	79.4	189.4	38.5	.	516.5
$J 1$	128.6	68.7	79.6	26.6		295.5
RUS	18.4	59.4	49.8	8.9		128,4
TJTAL	5,212.8	,004. 5	1,588.8	513.5		8,318.0

Source: Calcalated frow the wonthly inventories figures in Table 28 as follows: Ton-months storage of grain i for month $\mathrm{j}=((\mathrm{Iij}-1-I i j)+e .5)+l i j$, where $\mathrm{I}=$ Table 2 B inventories.

TAELE 31. Prajected Ton-Nonths of Storage Volume for New-Croco
Goverrment Grain (1,289 Month/Guintal)

COIN RERN R RICE SORGHM WHEAT TUTAL

SEP	0.8	0.8	8.8	0.8	0.8
OCT	34.9	5.3	0.0	8.0	42.2
NOU	269.6	12.5	4.7	2.5	289.3
DEC	578.8	14.3	19.8	7.4	619.5
JNN	$7 \% .3$	17.9	30.3	14.9	769.4
FEB	732.1	32.3	39.3	32.8	827.5
MAR	738.2	43.1	30.3	51.8	862.6
APR	738.2	43.1	32.3	56.3	867.9
WAY	738.2	43.1	30.3	56.3	867.9
ת\%	738.2	43.1	32.3	56.3	867.9
$J 1$	738.2	43.1	30.4	56.3	368.8
ALG	688.9	43.1	30.4	42.8	725.2
Tfe	,620,8	349.9	267.2	375.6	7,605.5

Source: Calculated from the monthly inventory figures in Table 29 as follows: Ton-months storage of grain i for month $\mathrm{j}=$ $\left(\left(\mathrm{Ii}_{\mathrm{j}}-1+\mathrm{I}_{\mathrm{j}}\right) / 2\right)$, where $\mathrm{I}=$ Table 29 imentories.

HARKEIING PLAN FOR 1984-85
TRRE 32. Projected Honthly Expenditure for Storing Goverment-Ionned Grains (1,000 Lenoiras)

	CORN	beans	RICE	SOFCHM	WEAT	TOTAL
Sep	47.8	7.8	13.2	3.8		71.8
DCT	44.5	7.2	12.2	3.8		67.7
NOV	62.3	7.8	11.9	4.0		86.8
DEE	85.7	7.9	13.1	4.3		111.8
JAN	95.5	8.1	13.9	4.9		122.4
FEB	97.4	9.2	13.7	6.3		126.6
MAR	96.4	10.8	13.3	7.6		127.3
APR	92.9	9.9	12.7	7.9		123.4
WAY	87.2	9.7	12.8	7.6		116.5
JN	78.1	9.3	12.6	7.2		125.2
Jil	65.3	8.5	8.4	6.3		88.5
Aus	47.1	7.8	6.1	3.9		64.9
TOTR	899.4	120.4	141.1	67.6		,218.5

Source: Calculated by applying the relevant costs per ton-month of storage (including shrinkege) to the projected storage volumes for this alternative from Table 30 and Table 31.

TARLE 33. Projected \#onthly Expenditure for Transferring
Sovernamt-Suned Grains (1,080 Lempiras)
COFN BEAR RICE SOMEHRM WHEAT TOTAL

SEP	26.4	3.8	18.3	0.8	39.7
DCT	57.8	7.9	11.6	2.8	76.5
NOV	84.7	1.5	3.7	8.7	90.6
DEE	53.1	0.6	7.1	2.7	61.5
JAN	11.8	3.6	1.7	1.5	17.8
FE8	11.1	7.7	8.8	3.8	22.6
WAR	7.7	8.4	2.8	2.6	10.7
APR	9.4	0.5	8.0	2.5	12.4
WAY	18.9	0.7	0.8	0.7	22.3
Jun	25.9	1.8	6.8	0.9	35.4
31	37.4	3.0	6.8	2.7	49.9
Als	52.4	1.2	6.8	6.7	67.1
RL	395.0	31.9	54.8	28.8	56.5

Source: Calculated by applying the relevant average total per ton transfer cost to the projected wolumes of governsent grains to be transfered under this alternative.
*ARKETIM FLAN FOR 1384-85
TAELE 34. Projected Monthly Exaenditure for Selling and Loading Governaent Grains (1,000 Lempiras)

CORN BEANS RICE SORGHIN HFEAT TOTAL

Sep	42.2	2.6	6.9	0.8	51.7
CCT	35.6	3.7	6.9	0.8	46.2
NCV	7.9	0.5	0.0	8.8	8.4
DEC	18.8	2.6	8.8	8.8	10.6
JAN	2.9	1.4	2.8	0.0	4.3
FEB	7.1	1.9	0.8	0.8	9.1
MAR	12.4	0.3	8.0	1.2	13.7
$A P_{R}$	15.2	8.6	8.8	1.8	16.8
May	30.7	0.9	0.8	1.4	33.8
JN	41.9	2.5	6.9	1.9	53.2
JL	60.7	4.0	6.9	5.4	71.0
AUG	84.9	1.6	6.9	13.6	187.1
AL	351.5	22.6	34.5	24.3	430.9

Source: Calculated by apolying the projected sales volumes froa Tables 28 A and 208 to the relevant average per ton costs for selling, transferring title, and loading out government-omned grains to private-sector buyers.

TARLE JS. Projected Monthly Reverue from Sale of Governwent-Oimed Grains (1,000 Leupiras)

	CORS	HEAS	P9DOY	Sorcher	MILIED	TOTAL
			RICE		R108	
SEP	2,566.0	427.2	63.8	2.0	72.1	3,695.9
CCI	2,168,2	599.8	632.8	0.8	225.8	3,625.8
NOU	482.9	73.7	0.8	8.8	89.8	63.5
DEC	618.5	93.3	0.8	8.8	78.8	773.8
JAN	179.5	221.8	0.8	0.1	145.8	545.4
FEP	434.8	384. 4	0.8	0.8	145.8	884.2
MAR	754.8	49.1	0.8	59.5	150.8	1,213.4
APR	926.9	93.3	8.8	59.5	225.7	1,385.3
NAY	1,866.7	152.2	0.8	82.3	\% 2.7	2,326.8
ภาx	2,551.2	397.7	632.8	186.8	149.2	3,837.6
Jt	3,694.5	653.8	632.8	369.8	22.7	5,512.7
AUG	5,168.9	265.1	632.8	784.8	149.8	7,202. 6

TOTAL $\quad 21,484.5 \quad 3,3 \times 9.8 \quad 3,164.8 \quad 1,401.8 \quad 1,858.8 \quad 31,157.2$
SCuRce: Calculated by apolying the projected volumes of sales froa Table 20 A and Table 208 to the projected government sales prices from Table 21.

HARETING PLRN FOR 1994-B5
TAELE 36. Projected Monthly Cash Flow from Government Brain
Operations (1,209 Leepiras)

	COPN	BEAS	RICE	SORGHIM:	WHEAT	TOTAL
SEP	2,416.8	290.2	638.2	(3,8)		3,251.3
$0 C 7$	(1,273.7)	(439,9)	481.3	(3.8)		(1, 315, 1)
NON	(7,186,9)	(169.3)	(261.7)	(88.8)		(7,725.5)
DEC	$(3,962.6)$	48.7	(577.8)	(88.8)		(4, 579,7)
JRN	(792.5)	(315.2)	(27.2)	(178.3)		(1,313,2)
FEB	(312.8)	(961.4)	131.3	(434.6)		(1,577.4)
W月R	638.3	11.3	135.7	(188.7)		605.5
APR	889.4	81.5	213.8	58.1		1.153.9
MAY	1,729,9	148.9	213.7	72.6		2,157.8
JN	2,485.3	384.1	757.7	96,8		3,643,8
Jl	3,531.1	637.5	833.4	295.4		5,297.3
AUS	4,984.5	254.5	762.8	759.8		6,761.6
INN	(3, 194.0)	269.8	(2,726,3)	(299,9)		-5951.2
TOTAL	(207.4)	142.3	495.7	(3.3)		427.3

Source: Calculated by subtracting from the projected monthly revenues (Table 35) the combined direct expenditure projections for this alternative (Table $115+$ Tables 32. 34). Adjusted for changes in ending inventories (INV)

TAELE 39. Sirulatec Honthly Imbac: of Sovernment \%arket Intervertion on Consuser Excenditures for Food
(1,000 Lempiras)
COIN IEENS RICE SORGLM WIEAT TDTRL

SEP	5,110.5	1,275.4	2,239.6	118.5	9,544.1
OCT	$(3,540.9)$	(2, 258.4)	2,299.5	119.3	(3,478.5)
NOY		$(1,217.4)$	$(2,234,6)$	(263, 5)	(3,715.7)
DEC	$(5,188.4)$	522.2	$(3,412.9)$	(231.8)	(8, 332.9)
SRM	(2,697.1)	$(1,501.5)$	(415.9)	(352.2)	$(5,367.7)$
FEB	(916.4)	$(3,942.3)$	798.8	(52e5. 8)	$(3,585.8)$
Wha	3,281.2	266.6	849.9	(381.6)	3,856.2
APR	3,633.6	577.4	1,388.4	313.1	5,012.5
WRY	4,987.8	1,353.7	1,394.9	377.3	8,113.7
תN	5,615.0	2,550, 3	3,827.8	458.5	11,758.9
π	6,670.6	3,467. 8	3, 189.5	665.9	14, 213.1
WLS	8,079.3	1,851.3	3,121.2	124.2	13,135.8
TOTAL	25,835.3	3,622.2	1,933.8	462.7	41,553.9

Source: Calculated by subtracting simulated consumer expenditures without government intervention (Table 25) from projected consuner excenditures for basic grains and prain products under this alternative (Table 24).

TAELE 33. Sinulated Monthly lmpact of Sovernnent Market Intervention on Processors Expenditures for Srains

$$
\text { (} 1,200 \text { Lempiras) }
$$

	C0\%N	PEANS	RICE	S08Grax	HHEAT	TTTAL
SEP	1,534.0			8.8		1,534.8
OCT	(888, 9)			0.8		(888.9)
NOU	0.8			(80.2)		(88.0)
DEC	(1,382.5)			(70.4)		$(1,372.9)$
JAN	(677.1)			(93.3)		(770.4)
FEB	(230.1)			(129.4)		(359.5)
War	773.5			(99.8)		683.6
APR	912.2			46.8		958.2
WAY	1,252. 2			59.8		1,311.2
Jun	1,429.5			74.7		1,484.3
π	1,674,5			121.3		1,796.0
Aus	2,128. 3			0.8		2,8e8. 3
TOTAL	5,485.9			(162. 8)		6,323.9

Source: Calculated by subtracting simulated processor expenditures without governsent intervention (Tab 27) from projected grain exvendit. by processors under this alternative (Table 2g).

TAECE 40.	Simulated Total Net Monthly Iroact of Sovernuent Intervention in Dosestic Grain tharkets (1, 282 Lempiras)					
	CO\%N	PEPV	RICE	SORGM	WWEAT	TOTAL
SEP	4,660,6	759.6	885.2	118.5		6,351. 8
DCT	(962.8) (1	(1,012.2)	1,119.8	119.3		(736.7)
NOV	11, 254, 8	(501.1)	$(1,512,5)$	(296.4)		8,846.8
DEC	2,860.5	372.7	(1,791. $)$	(131.9)		588.3
JAN	($2,154.6$)	(618.9)	(380.7)	(51.6)		(3,235.8)
FEB	(473.3)	(621.8)	555.8	200.8		(339.2)
MAR	2,403, 8	212.2	649.5	(42.5)		3,220.2
ADR	4, 124.8	377.6	1,160.6	251.6		5,914.5
MAY	6,239.9	1,353.7	1,394.9	436.4		9,424.9
JuN	7,824.7	2,650.3	3,227.8	533.3		13,235.2
Jil	8,345.2	3,457.8	3,199,6	807.3		15,889,1
fuls	12,187.6	919.5	3,121.2	184.2		14,232.5
TOTA	52,638.4 7	7,254.5	11,319.9	2,848.9		73,261.7

Source: Calculated by algebraic summation of the simulated ampacts on grain producers (Table 37), the simulated imoacts on final consuners (Table 38) and the simulated inpacts on grain processors (Table 39).

APPENDIX E

Selected Output, IHMA Operations for 1984-85 (Tables 3, 4, 7-12, 19-21, 24-27, 29, 32-36)

IH*A OPERATIONS FTR 1984~85

TRELE 3. Projected Morthly Voluse of Govervaent Grain Purchases. (1000 Duintals)

CDPN BEANS RILE SOMGHM HFEAT TOTR

SEP	0.2	8.7	1.8		2.7
OCT	92.8	7.9	24.5	0.5	125.7
NON	257.1	2.2	6.9	2.8	269.8
DEC	198.7	0.2	1.5	0.5	200.9
JPN	222.7	3.6	0.1	1.2	287.6
FEB	182.7	13.8		3.1	118.8
WAR	32.3	2.9	0.1	18.3	45.6
APR		1.8			1.8

WHY
Jแฟ
JL
ALS
$\begin{array}{llllll}\text { TOTR } & 886.5 & 31.5 & 34.9 & 18.4 & 971.3\end{array}$
Source: Comouted for this alternative based on 117W's ourchases ard sales for 1981/82 through 1983/84 together with the volume and price data for this alternative (Tables 2 and 4).

TABLE 4. Projected Monthly Grain Prices of Bovernment purchases. (Lenoiras per Quintal)

CORN BEANS RICE SORGHLA
SEP $\begin{array}{llll}13.78 & 40.38 & 21.75\end{array}$
$\begin{array}{lllll}\text { OCT } & 14.32 & 41.68 & 21.46 & 13.35\end{array}$
$\begin{array}{lllll}\text { NON } & 14.82 & 42.79 & 21.58 & 15.11\end{array}$
$\begin{array}{lllll}\text { DEC } & 15.44 & 41.67 & 22.26 & 15.75\end{array}$
$\begin{array}{lllll}\text { JAN } & 15.65 & 42.63 & 28.80 & 15.27\end{array}$
$\begin{array}{lllll}\text { FEE } & 15.98 & 49.58 & 0.80 & 12.16\end{array}$
MAR $\begin{array}{lllll}15.22 & 51.83 & 23.88 & 14.64\end{array}$
APR
MAY
Ju
$\pi \Omega$
AUS
RVERAGE $\quad 15.25 \quad 44.44 \quad 21.34 \quad 14.38$
Source: Specified as initial infornation under the a5sumotions for this alternative. Nodal prices based on existing tolerance tables and anticipated geographic delivery patterns.

TRBLE 7. Projected Monthly Fara Income from Grain Sales
(1,200 Lemairas)

	CORN	BEANS	RIEE	SORGTM	WHEAT	TATR
SEP	4,787.9	1,465.3	5,051.3	49.1		11, 353.6
OCT	6,385.9	1,353.8	$12,223.8$	52.3		19,814.8
NDV	15,418.1	1,477.1	8,528.4	61.8		25,484.6
DEC	18,184.7	581.7	8,658,2	784.3		28, 208.8
JAN	3,474.5	2,455.3	262.1	2,135.8		8,327.7
FEP	$6,516.1$	2,848.7	623.6	2,250,4		12,238.7
TAR	4,516.3	2,233.8	449.3	1,988.3		9,126.9
APR	649.8	1,320.8	443.2	643.5		3,256.5
WAY	(1,285,7)	(377.8)	0.0	(41.3)		$(1,784.7)$
JIN	$(11,388.3)$	(284.8)	(68.2)	(44.8)		$(1,785.3)$
Jus	(1,729.8)	(292.5)	(157.1)	(45. 3)		(2, 203.7)
AUS	(11,743.6)	2,501.8	(115.5)	(62.6)		588.2
TDTAL	53,887.7	15,281.7	35,699.8	7,689.8		112,478.1

Source: Calculated by means of aultiplication of arices and ouantities as follows: Sales to novernment (Table 3 + Table 4) + sales to private sector ((Table 2 - Table 3) + Table5).

TABLE 8. Sindlated Monthly Fara Inconte from Grain Sales without Government Intervantion (1,800 Lempiras)

	CORN	ECANS	RICE	S03GH2	WHEAT	TOTR
SEP	5,527.1	2,543.2	5,405.0	49.1		$13,524.4$
OCT	5, 250.3	2,313.8	10,564.6	42.6		18,171.8
NOU	7, 264.1	1,649.3	8,268. 6	27.8		17,209.8
DEC	18,534.7	1,040.8	8,646.1	765.6		$20,388.3$
JRN	452.7	3,923.2	379.4	2,889.1		6,842.4
FEP	2,983.4	1,203.8	832.9	2,519.8		7,337.8
	7,551.8	1,972.3	669.9	1,852.8		12, 255.8
APR	1,*67.6	1,352,8	443.2	662.7		3,525,4
YAY	9. 8	2.2	8.0	8.8		2.0
JW\%	2.8	8.8	0.0	8.8		8.8
JK	8.8	8.8	8.8	0.8		0.0
AUG	8.8	2,980.5	0.8	2.0		2,982. 5
TOTAL	40,629.4	18,778.1	35,207.6	8,219.7		120, 634.7

Source: Calculated by means of anltiplication of simulated prices and quantities, e.g., (Table 6 : Table 2).

TAELE 9. Projection of Monthly Cost of Severnwent Grain Punchases. (1, 080 Lewairas)

	COPN	BEANS	R1CE	SDMGMM	WHEAT	TOTAL
SEp	2.7	28.6	39.2	0.8		72.5
OCT	1,384.6	329.3	5\%5. 8	6.7		2,246.3
NOV	3,810.2	94.1	148.9	42.3		4,895,6
DEC	3,267.9	8.3	33.4	7.9		3,117,5
JAN	3,172.3	153.5	21	18.3		3,346.1
FEB	1,641.1	644.5	0.8	37.7		2,323.4
* ${ }^{\text {PR }}$	523.9	150.3	2.4	158.8		827.4
APR	0.8	0.8	0.8	2.8		0.2
WAY	0.8	0.8	0.8	0.0		0.0
JN1	0.8	0.8	0.8	0.8		0.7
Ω	0.8	2.1	0.8	0.0		2.0
AUG	0.8	0.0	0.8	0.8		0.0
AL	13,602.8	428.7	751.7	263.7		16,825.8

Source: Calculated by weans of multislication of arices and ouantities, e. p., (Table $4+$ Table 3).

TAELE :0.	Projection of Monthly Expense for Conditioning Government Grain (1,0e0 Leadiras)					
	COPN	BEAS	RICE	SOPGHMM	H/EAT	total
sap	3.7	8.2	30.6	8.8		42.5
aCT	366.3	39.2	42.0	8.4		455.9
NOM	833.9	8.9	32.1	7.8		882.7
DEC	490.1	1.4	62.9	7.8		560.2
JRN	96.8	20.1	15.8	15.2		147.3
FEP	72.1	47.8	8.8	40.6		158.5
MAR	552.6	1.8	1.8	22.4		577.8
APR	8.8	0.7	0.8	0.0		0.7
NaY	0.8	0.8	0.8	0.8		0.8
	8.8	0.8	2.8	0.8		a. 0
ML	0.8	8.8	0.0	0.8		8.8
ALS	0.1	2.8	0.0	8.2		8.8
TOTAL	2,412.7	127.3	180.4	103.2		2,855.6

Source: Calculated by means of nultiditication of unit direct costs for eleaning, orying and conditioning lineluding loss of weight) by projected ouantities purchased under this alternative (Table 3).

TAEE E 11. Projection of Monthly Expense of Procuring and feceiving Government Grain $\quad(1,028$ Lenoiras)

CORN BEAS RICE SORGKKM LHEAT TOTRL

SEP	0.6	1.5	3.6	2.0	5.7
OCT	56.8	6.9	4.9	4.9	73.5
N0\%	129.4	1.6	3.8	1.5	136.3
IEC	76.1	0.2	7.1	1.5	84.9
JRN	14.9	3.6	1.8	3.1	23.4
FEB	12.9	8.5	0.8	7.8	27.2
NAR	318.2	8.2	1.8	4.3	323.6
888	0.8	0.1	8.8	0.0	0.1
HeV	0.8	0.8	2.8	0.8	8.8
JN	0.0	0.8	0.8	8.8	0.8
$\pi \mathrm{Ll}$	0.0	0.8	0.8	0.8	0.0
AU5	0.8	0.8	2.0	8.0	2.8
TAL	526.9	22.6	22.2	23.1	674.8

Source: Calculated by means of multiplication of unit direct costs for buying and receiving government grain into storage by projected puantities purchased urder this alternative (Table 3).

SLamary Tare ils. Monthly Cost of Sales of Govarnment-Owned Grain (1,29e Lemoiras)

CORN BEAS RICE SORGHUN WEAT TOTAL

SEP	7.8	38.3	73.4	0.3	118.7
CCT	1,887.7	375.4	572.7	20.8	2,775. 7
NOV	4,773.5	184.6	184.8	51.6	5,114.6
DEC	3,634.1	9.9	181.4	17.2	3,762.6
JAN	3,283.2	177.2	18.9	37.6	3,516.8
FEB	1,720.1	798.8	0.6	B6. 1	2,589.1
MAR	1,394,7	151.5	5.2	177.5	1,728, 8
APR	8.8	8.8	8.8	2.0	8.8
MAY	0.0	8.8	8.0	0.8	0.8
Jum	0.0	2.8	0.8	0.8	0.8
JLL	0.8	0.8	0.0	8.8	0.8
ALG	0.8	0.6	8.8	0.8	0.8

$\begin{array}{llllll}\text { TOTAL } & 16,622.3 & 1,558.6 & 956.3 & 398.8 & 19,527.1\end{array}$
Source: Calculated by direct addition of Table $9+$ Tablele + Table 11 for this alternative.

TARE 12．Projected Vonthly Volume of Grain lwoorts
（1，800 auintals）

	COPN	BENS	RICE	SORGHM	WHEAT	TOTAL
SEP	0.2	0.8	0.8	0.8	313.4	313.6
OCT	8.8	8.8	2.4	8.0	287.6	286.8
NOV	2.4	0.8	8.8	0.4	249.2	250.0
DEC	0.0	37.1	0.0	2.8	178.8	215.1
JAN	0.8	0.8	0.0	8.8	92.7	92.7
FEB	8.8	8.8	8.8	0.8	89.4	89.4
W⿰木月殳）	0.8	8.8	0.8	0.8	75.4	75.4
APM	8.8	7.6	8.8	0.8	183.2	199.8
W\％	2.8	74.6	8.8	0.8	87.2	161.8
JN	8.8	72.2	0.8	0.8	181.9	254.1
π	8.8	72.2	2.8	0.8	197.8	179.9
$4{ }^{6}$	0.8	2.8	8.8	0.8	118.5	118.5
TETAL	2.6	263.6	0.4	0.4	1，954．3	2，229．3

Source：Calculated for this alternative as residual of total wolune of denand table 13 C ＋Table 15 A ＋Table 158 ＋Table 16 ＋ Table $17+$ lncreases in ending inventory）minus total volume of supply from other sources（Table $1+$ Decreases in ending inventory）．If the residual is ainus，then the absolute value represents exports（Table 19），and the import figure in Table 12 is set equal to zero．

TARLE 19．Projected Monthly Volume of Grain for Export
（1，200 Quintals）

	CORN	BEAKS	RICE	SORCHUA	WHEAT	TOTAL
$5 E p$	0.8	9.4	0.8	0.0	0.0	9.4
DCT	68.0	27.1	8.8	8.8	8.8	95.1
NOV	3.1	2.4	8.8	0.8	8.8	5.5
DEC	2.9	7.1	2.8	0.8	2.8	8.8
JAN	0.8	14.4	0.8	0.0	0.8	14.4
FEP	0.8	8.8	8.8	18.3	0.8	10.3
mar	237.4	2.8	0.8	18.3	8.8	24.7
APM	208.3	0.8	0.8	24.7	8.8	245.8
Way	0.8	2.8	2.8	4.5	0.8	4.5
JUN	0.8	0.8	0.8	8.8	0.0	0.8
Jll	2.8	0.8	2.8	8.8	2.8	0.8
H6\％	259.8	2.8	91.7	17.4	0.8	358.9
TITAL	789.5	68.4	91.7	67.2	8.8	1，028．8

Source：Calculated for this alternative as residual of total wol une of supply（Table $1+$ Decrease in ending inventory）minus total volune of demand by other uses TTable $13 \mathrm{C}+$ Table $15 \mathrm{~A}+$ Table 158 ＋Table $16+$ Table $17+$ Increases in ending inventory）．If the residual is minus，then the absolute value represents imports（Table 12）and the export figure in Table 19 is set equal to zero．

TRELE EA. Projected Honthly Volure of Grain Sales by Sovernuent (1, ed Quintals)

	cosw	ECANS	Paddy	SORGIUM	MHLLED	TOTAL
			RICE		RICE	
SEP	18.3	13.1	4.5		1.1	37.8
CCT	76.3	27.8	1.9		1.5	188, 2
NOV	9.7	3.5	1.3		1.1	14.9
DEC	6.1	7.7			0.7	14.5
JRN	17.8	16.1	0.3		1.6	35.8
$F E B$	5.8	1.4	0.4	10.3	1.7	18.8
KRA	258.8	1.8	4.8	12.3	1.5	277.2
APR	49.7	1.0		0.6	8.6	59.9
Way	102.1	1.6		0.8	B. 6	111.1
JUN	136.9	4.1	77.4	1.8	5.7	225.1
JH	138.2	6.7	77.4	2.9	8.6	293.8
Pus	277.3	2.7	77.4	7.4	5.7	370.5
TOTA	1,154.1	87.5	245.4	33.3	46.5	1,566.8

Source: The goverrment sales for this alternative were calculated based on past government purchase and sales patterns (1981/82 through 1983/84) and Tables 3 and 21.

TAELE 21. Projected Honthly Wholesale Prices for Goverrment Grain Sales
(Levpiras per Puintal)

	COP\%	SERNS	PADSY	50\%G11M	MILED
			RICE		RICE
SEP	19.33	48.53	26.29	18.29	55. 86
OCT	18. 98	48.38	26.00	18.28	55.26
NOV	18.93	40.75	25.75	18.08	55. 55
Nac	19.12	51.69	0.80	18.28	55.24
JAN	22.81	49.59	25.81	18.81	55.58
FEB	19.68	50.09	26.88	12.68	55.52
Mar	16.99	50.50	26.01	12.20	55.59
APR	18.50	49.12	23.20	17.50	50.08
*SY	18.58	49.12	28.08	17.50	52.20
תN	18.58	49.12	28.027	17.50	50.08
π	18.58	49.12	28,00	17.50	52.60
R.S	13.58	49.12	28.28	17.50	52.00
WERAGE	18.78	48.71	26.91	15.82	53.11

Source: The average wonthly prices of government grain sales are taken as data representing conditions appropriate to this alternative.

TAELE 24. Projected Monthly Consumar Exdenditures for Grain and Grain Products 11,220 Lenoiras)

	COFAN	BEANG	R1CE	50\%6HD	WEAT	TUTAL
SEP	2,619.7	3,291.8	6,429.7	1,125.8		22,267.0
DCT	7,600.0	3,494.2	8,406. 1	1,133.6		22,633.9
NON	6,912.4	3,814.2	8,355. 9	1,154.6		20,237.8
DEE	7,835, 7	3,499.5	8,507.1	1, 315.4		22,117.7
JAN	B, 154.4	3,517.3	8,239.1	918.5		22,829.4
FEB	8,551.2	3,549.3	8, 180.4	927.5		21,214.4
MAR	9,293.7	3,529.5	8,293.8	857.3		21,384.2
APs	9, 256.2	3,653.5	3,180. 9	871.1		21,961.8
HAY	8,965.7	3,985.9	8,219.2	885.9		22,257.7
INT	9,853.9	4,158.4	8,279.7	942.3		22, 434, 3
Ill	9,357.7	4,382.7	8,395.2	969.6		23, ies. 3
AUS	$12,353.1$	3,643,2	8,478.3	985.9		23,464.5

TOTA. 184,219.744,248.699,965.5 11,801.5 260,227.2
Source: Calculated from the projected consumation quantities and retail prices under this alternative as follows: Table $13 \mathrm{C}+$ (Table $22 / 1.0$ - retail handling aarging). The retail hardling margings used are e. 16 for corn, 0.19 for beans, 0.12 for rice and 0.24 for sorghus.

TRELE 25. Simulated Monthly Consuser Expenditures for Grain and Grain Products without Bovernsert Intervention (1,280 Lempiras)

> CORN EEAS MICE SOFGiRM WAEAT TOTAL

SEP	11,135.7	5,488.4	9,885.1	1,244,3	26,547.5
OCT	6,547.9	6,723. 0	5,891.5	1,218.3	19,352.4
NOV	1,736.2	4,432.8	7,234.1	1,231.5	14, 334.5
DEE	2,059.3	5, 553,6	8,288. 1	1,083.9	i6, 32. 9
JAN	2,589.7	5, 257.9	8,555, 8	931.8	18, $\mathrm{EzO}_{\mathrm{E}} \mathbf{2}$
FEP	3,947.3	1,178.4	8,577.9	1,412.3	15,188.3
MAR	16,135.9	3,286.4	9,525. 9	\% 3.6	29,925.3
APs	12,851. 8	3,788.9	$12,468.8$:,222. 4	28,221.1
Wey	13, 514,4	4,748.7	12,517.9	1,232.8	32,213.7
TN	14,829.3	5, 899.1	7,903.4	1,112.8	29,724.6
JL.	15, 978.4	6,367.5	8, 213.6	1,284.4	32,143. 8
203	18,372.4	4,725. 2	8,093. 3	1,5:3. 9	32,769,4

Source; Calculated frow the projected consuabtion quantities for this alternative and simulated nor-intervention retail orices as follows: ©Table 13 C * Table/1.2 - retail handling margin). The retail handing nargito used are 2.15 for corn, $2 .: 9$ for beans, 0.12 for rice and 0.24 sorg.

TRRLE éb. Pro:ected Monthly Expenditures sy Processors for
Basic Srains (1,600 Lenoiras)

	-2\%	EERNS	TRE	38%	i \rightarrow ER	- 2.
$5{ }^{52}$	2,415. 8	2.1	3.2	358.6	8.8	2,673.6
OCT	1.588.8	3.3	0.0	268.4	8.8	2,168.3
40\%	:,725.3	2.8	0.2	255.2	0.3	2,100.5
DEC	1,731.4	2.8	3.0	233.2	0.8	2,014,6
3 y	2,247.:	2.8	0.8	211.0	0.8	2,258.1
FPB	2,449,3	0.8	8.0	213.1	0.8	2,351.3
Y \% ${ }^{\text {\% }}$	2,333.:	0.8	0.0	199.2	0.8	2,532.4
298	2,323.8	2.8	2.8	20.1	8.8	2,523.3
4ey	2,252.8	0.8	0.8	203.5	8.8	2,454.3
JW	2,273. 8	0.8	0.8	216.4	0.8	2,469.4
JL	2,349.2	2.0	2.0	2¢e. 7	0.8	2,571.9
96	2,599.1	0.0	8.8	227.4	0.0	2,826.5
TOTRL	26, 164.1	0.0	0. 1	2,710.8		28,874.9

Source: Calculated from the projected procurement volumes and corresponding procurewent prices as follows: Procurements of govervaent grain (Table $288+$ Table 21) plus procurenents in wholesale markets (TTable 17 - Table 2BA) \pm Table 221.

ThBLE 27. Sinulated Monthly Expenditure by Processors for Basic Grains without Govermaent intervention (1,200 lempiras)

	COEN	BEAS	R1CE	SORGHM	WHEat	TOTAL
StP	2,795.6	0.8	0.0	258.6		3,054.2
OCT	1,643.8	0.0	0.8	251.5		1,855, 3
NOV	435.9	0.8	2.0	214.4		658.2
DEC	525.8	0.8	0.8	225.3		T5. 0
JRN	630.1	8.8	0.0	193.7		823.7
Ftir	992.9	0.8	0.0	293.5		1,284.5
WAR	4,858.9	2. 8	0.2	199.2		4,250.1
APM	3,228.7	0.8	0.0	288.3		3,437.0
WAY	3,493.2	0.8	2.8	214.6		3,707.8
JNI	3,717.8	0.0	0.0	231.3		3,949.1
Stit	4, 811.3	8.8	8.0	266.9		4,278.2
AUS	4,612.3	2.8	8.8	315.7		4, 928.8
TOTAL	30,137.3	8.0	2.8	2,872.9		33,210.2

Source: Calcolated froa the projected procurenent volumes and simulated procurement prices without povernuent intervention as follows: Table 17 * Table23.

TAELE 29. Projected Monthly Inventories of Government Grain Purchased during Current Crop Year. (1,209 Quintals)
CORN FERMS RICE SORGHN WWEAT TOTAL

Source: Carry-in inventory of "rew Crop" grain from grevious wonth plus any parchases and winus any sales of the "new crop" grain during the wonth, assaming old crop inventories dedleted before any new crop iwnentories sold.

TRELE 32. Projected Nonthly Expenditure for Storing Goverpment-Owned Grains (1,089 Lemoiras)

COPN BEPAS RLCE SORGHIN WHEAT TOTAL

SEP	47.8	7.0	13.2	3.8	71.8
DCT	44.5	7.2	12.2	3.8	67.7
NOK	62.3	7.8	11.9	4.8	86.8
DEC	65.7	7.9	13.1	4.3	11.8
JAN	95.5	8.1	13.9	4.9	122.4
FBB	97.4	9.2	13.7	6.3	125.6
WAR	96.4	10.8	13.3	7.6	127.3
APR	92.9	9.9	12.7	7.3	123.4
MAY	87.2	9.7	12.8	7.6	116.5
JN	78.1	9.3	10.6	7.2	105.2
JL	65.3	8.5	8.4	6.3	88.5
ALS	47.1	7.8	6.1	3.9	64.9
TOTAL	899.4	102.4	141.1	57.6	1.210 .5

[^8]Th*A DPERRTTON FOR 1394-85
TAELE 33. Projected Nonthly Exoenditure for Transferring
Goverment-Dimed Srains (1,002 Lempiras)

Source: Calculated by apolying the relevant average total per ton transfar cost to the projected volumes of government grains to be transfored under this alternative.

TABLE 34. Projected Monthly Exoenditure for Selling and Loading
Governuent Grains (1,089 Lewpiras)
CORN REENS RICE SOKCHLM KNERT TOTRL

SEP	42.2	2.6	6.9	0.8	51.7
OCT	35.6	3.7	6.9	8.6	46.2
NOY	7.9	0.5	0.6	0.8	9.8
DEC	12.8	0.6	0.8	2.8	18.6
JAN	2.9	1.4	a. 1	0.8	4.4
FEP	7.1	1.9	8.2	4.8	14.8
* $\mathrm{AR}^{\text {R }}$	12.4	0.3	2.3	1.8	16.8
APR	15.2	0.6	8.0	1.0	15.8
NAY	38.7	0.9	2.0	1.4	33.0
JN	41.9	2.5	6.9	1.9	53,2
π	66.7	4.8	6.9	5.4	77.8
AUG	84.9	1.6	6.9	13.6	187.0
AL.	351.5	28.6	37.7	29.1	438.9

Source: Calculated by apolying the projected sales volumes from Tables 29月 and 208 to the relevant averape per ton costs for selling, transferring title, and loading out governient-omed grains to private-sector buyers.

TARLE 35. Projected Nonthly Revenue from Sale of Governaent-Comed Grains (1,000 Lempiras)

	COSAN	BEANS	$\begin{aligned} & \text { PADDY } \\ & \text { RICE } \end{aligned}$	SOREHEX	$\begin{aligned} & \text { MTLED } \\ & \text { RICE } \end{aligned}$	TOTAL
SEP	353.7	636.4	118.3	0.0	68.6	1,169, 8
OCT	1.459 .6	1,345. 8	49.4	0.8	88.1	2,942.0
NOV	170.4	142.6	33.5	0.8	61.1	497.6
DEC	116.6	393.4	8.8	8.8	38.5	548.6
JAN	356.2	798,4	7.8	0.0	89.0	1,251.3
FEB	98.8	70.1	10.4	123.6	34.4	396.5
MAR	4,397.0	92.9	124.8	123.6	83.3	4, 819.6
APR	919.5	49.1	8.0	10.5	432.8	1,409.1
MAY	1,851.9	78.6	0.8	14.8	430.8	2,374.4
JN	2,532.7	201.4	2,167.2	17.5	285.0	5, 203.7
Jll	3,666.7	329.1	2,167.2	52.8	432.0	6,543, 8
AMB	5,130.1	132.6	2,167.2	129.5	285.0	7,844.4
d	21,252.2	4,267.6	6, 845.8	469.5	374.9	,010.8

SCURCE: Calculated by applying the orojected volumes of sales from Table 2RA and Table 200 to the projected government sales prices from Table 21.

TRRLE 36. Projected Nonthly Cash Flow from Government Grain Operations (1,00e Lempiras)
CORN BEANS RICE SORGRTM IWEAT TOTAL

Source: Calculated by subtracting from the projected nonthly reverues (Table 35) the coabined direct expenditure projections for this alternative (Table 11S + Tables 32..34). Adjusted for changes in ending inventories (DNW)

APPENDIX F

Selected Output, Alternative One (Tables 4, 9-11S, 29, 32-36)

RLTEAMTIVE OE

TAFLE 4. Projected Nonthly Brain Prices of Government ourchases. (Lembiras per Quintal)

CORN BEFNS RICE SORGHM

SEP	13.87	36.25	0.80	
OCT	13.87	36.31	23.39	0.80
NOV	13.86	36.33	23.40	12.83
DEC	13.88	36.03	23.78	12.32
JFN	13.81	36.27	24.10	12.71
FEB	13.86	36.49	23.66	12.48
MFR	8.80	36.76	0.80	12.19

ANERMEE	13.85	36.33	23.70	12.62

Source: Scecified as initial information under the assumotions for this alternative. Modal prices based on existing tolerance tables and anticipated geographic delivery patterns.

TRBLE 9. Projection of Nonthly Cost of Governaent Brain Purchages.
(1, 200 Lempiras)
COPN BEANS RICE SCRGHUA WHEAT TOTAL

Sounce: Calculated by aeins of uultiplication of prices and quantities, E.g., (Table 4 : Table 3).

ALTERNGTIVE ONE

TARLE 10. Projection of Monthly Exoense for Conditioning Governnent Grain 11,888 Leapiras)

COFN BEANS RICE SORGNM WHEAT TOTR

SEP	3.7	8.2	30,6	0.8	42.5
OCT	366.3	39.2	42.8	7.5	455.8
NOV	833.9	8.9	32.1	7.8	882.7
DEC	498.1	1.4	60.9	7.8	568.2
JCN	96.0	20.1	15.0	16.2	147.3
Fab	72.1	47.8	0.0	48.6	158.5
WCR	484.5	1.8	1.5	22.4	589.4
APS	0.8	0.7	0.8	0.8	0.7
MAY	0.8	8.0	0.0	0.8	8.8
JLN	0.8	0.0	8.8	0.0	0.8
JH.	0.0	8.0	0.0	0.8	8.8
AU6	8.0	0.8	0.8	0.0	0.8
TRL	2,344. 6	127.3	182.1	180.3	,756.3

Source: Calculated by means of multiplication of unit direct costs for cleaning, drying and conditioning (including loss of weight) by projected quantities purchased under this alternative (Table 3).

TAELE 11. Projection of Monthly Expense of Procuring and Receiving Sovernnent Grain (1,00e Lenoiras)

	CORN	REANS	RICE	SOFGHM	WHEAT	TOTAL
SEp	2.6	1.5	3.6	8.8		5.7
CCT	56.8	6.9	4.9	4.9		73.5
NO	129.4	1.6	3.8	1.5		136.3
DEC	76.1	0.2	7.1	1.5		84.9
JAN	14.9	3.6	1.8	3.1		23.4
FEB	10.9	8.5	a. ${ }^{\text {a }}$	7.8		27.2
WFR	318.2	0.2	1.8	4.3		323.6
APR	0.0	0.1	0.8	8.8		0.1
MAY	0.8	0.0	0.0	0.0		e. 8
JW	0.8	8.8	0.0	0.8		8.8
π.	0.0	0.8	0.8	0.8		2. 8
AUG	0.8	0.8	8.8	0.8		0.8
Tis.	626.9	22.6	22.2	23,1		674.8

[^9]RLTERMTIVE ONE

Source: Calculated by direct addition of Table $9+$ Tablel0 + Table 11 for this alternative.

TAELE 29. Projected Monthly Inventories of Governnent Grain Purchased during Current Crop Year.
(1,200 Ouintals)
COAN BEANS RICE SORGHU WFEAT TOTAL

5 Sc	0.8	8.8	Q. 8	0.8	0.8	8.0
OCT	0.0	0.0	0.0	8.5	2.8	0.5
NOY	231.8	0.7	3.8	3.3	0.8	238.8
DEC	396.7	8.7	3.8	3.8	0.8	485.8
JAN	589.7	0.7	3.8	5.8	0.8	599.2
FEB	658.9	7.5	3.8	3.1	0.8	688.3
N月R	668.9	9.4	3.8	15.8	8.0	697.1
APR	658.9	9.4	3.8	15.8	2.8	697.1
WAY	668.9	9.4	3.8	15.8	2.8	677.1
JN	568.9	9.4	3.8	15.8	0.8	697.1
ת	668.9	9.4	3.8	15.8	0.8	697.1
AUS	416.4	9.4	3.8	(12.8)	2.8	417.6
MaL	416.4	9.4	3.8	(12.8)	0.8	417.6

Soarce: Carry-in irventory of "new Crop" grain froca arevious month plus any purchases and winus any sales of the "new crop" grain during the month, assuring old crop inventories deoleted before any new crod inventories sold.

ALTERNATIUE ORE

	CORN	BENS	RICE	SOKGIUM	WERT	TOTR
SEP	47.8	7.8	13.2	3.8		71.8
OCT	44.5	7.2	12.2	3.8		67.7
NOU	62.3	7.8	11.9	4.8		86.0
DEC	85.7	7.9	13.1	4.3		111.8
JRN	95.5	8.1	13.9	4.9		122.4
FEB	97.4	9.2	13.7	6.3		126.6
HAR	36.4	12.8	13,3	7.6		127.3
APR	92.9	9.9	12.7	7.9		123.4
WAY	87.2	9.7	12.8	7.6		116.5
πN	78.1	9.3	10.6	7.2		185.2
π	65.3	8.5	8.4	6.3		86.5
ALS	47.1	7.8	6.1	3.9		54.9
TUTAL	899.4	100.4	141.1	67.6		1,218.5

Source: Calculated by applying the relevant costs oer ton-month of storage (including shrinkage) to the projected storape volumes for this alternative from Table 30 and Table 31.

TARLE 33. Projected Monthly Exvenditure for Transferring Government-Owned Grains (11,288 Lempiras)

CORN BEANS RICE SLROHM IWEAT TOTAL

Scp	26.4	3.8	10.3	0.8	39.7
OCT	57.0	7.9	11.6	2.2	76.7
NOV	84.7	1.5	3.7	0.7	98.6
DEC	53.1	0.6	7.1	0.7	61.5
JAN	11.8	3.6	1.7	1.5	17.8
FEB	11.1	7.7	0.8	3.8	22.6
MAR	7.7	0.4	. 8	2.6	12.7
$A A^{\prime}$	9.4	8.5	0.8	8.5	18.4
WAY	18.9	0.7	0.8	8.7	20.3
JN	25.9	1.8	6.8	0.9	35.4
μ	37.4	3.0	6.8	2.7	49.9
He6	52.4	1.2	6.8	6.7	67.1
TAL	395.8	31.9	54.8	21.8	50.7

Source: Calculated by applying the relevant average total per ton trarsfor cost to the projected volumes of governaent grains to be transfered under this alternative.

ALTERNGTIVE OME
TAELE 34. Projected Konthly Exoerditure for Selling and Loading Government Grains (1, 280 Lewoiras)

	CORN	BEPAS	RICE	S0RExM	WHECT	TOTAL
SEP	42.2	2.6	6.9	8.8		51.7
OCT	35.6	3.7	6.9	8.8		46.2
Nav	7.9	0.5	8.8	0.8		8.4
DEC	10.8	0.6	8.0	8.8		10.6
JAN	2.9	1.4	8.8	0.8		4.3
FEB	7.1	1.9	2.8	8.8		9.8
MAR	12.4	0.3	0.8	1.8		13.7
APR	15.2	0.6	0.8	1.8		16.8
Way	30.7	8.9	0.8	1.4		33.8
JN	41.9	2.5	6.9	1.9		53.2
JL	68.7	4.8	6.9	5.4		77.8
AUS	84.9	1.6	6.9	13.6		187.8
TOTRL	351.5	20.6	34.5	24.3		438.9

Source: Calculated by applying the projected sales volunes froen Tables 20 A and 228 to the relevant sverage per ton costs for selling, transferring title, and loading out government-cwned grains to priyate-sector buyers.

TAELE 36. Projected Nonthly Cash Flow from Goverraent Grain ODerations (1,200 Lempiras)

	conts	BEAS	RILE	SURGELIM	WHEAT	Total
StP	2,443,3	379.5	638.2	(3,8)		3,457.2
OCT	322.9	247.3	207.1	(16.4)		758.9
NOV	(4, 198.8)	(25.5)	(133.9)	(49.9)		(4,488.2)
TEC	(2, 852.5)	75,4	(53.9)	(22.8)		(2,861.7)
JRN	$(2,840.1)$	53.6	110.2	(41.8)		(2,717,3)
FEB	$(1,185,3)$	(243.9)	131.3	(97.2)		(1, 395.8)
*月R	(154.4)	(69.4)	134.2	(104.8)		(203.5)
APR	889.4	81.5	213,8	50.1		1,153.9
Way	1,729,9	148.9	213.7	72.6		$2,157.8$
JN	2,425. 3	384.1	757.7	96.8		3,643.8
π	3,531.1	637.5	833.4	295.4		5,297.3
ALig	4,984.5	254.5	762.8	759.8		6,761.6
IN	$(3,745,4)$	1,318.8)	(3,551,1)	(778.7)		-9395. 8
TDTAL	1,226.7	595.7	263.5	162.9		2,246.8

Source: Calculated by subtracting from the projected wonthly revenues (Table 35) the conbined direct excerditure projections for this alternative (Table $115+$ Tables $32 ., 34$). Adjusted for changes in ending invertories (IN)

ALTERNATIVE ONE

TABLE 35. Projected Nonthly hevenue froa Sale of Governsent-Oimed Grairs (1,280 Lempiras)

	CORN	BEAS	$\begin{aligned} & \text { PADDY } \\ & \text { R1CE } \end{aligned}$	S0RGHM	$\begin{aligned} & \text { MILLED } \\ & \text { RICE } \end{aligned}$	TOTAL
SEP	2,566.0	427.2	632.8	0.8	78.0	3,695.9
OCT	2,168, 2	599.3	632.8	0.8	225.8	3,625.8
Nov	482.9	73.7	8.8	3.8	80.8	636.5
DEC	618.5	93.3	8.8	8.8	79.8	773.8
JAN	179.5	221.0	2.8	8.8	145.8	545.4
FEP	434.8	304.4	8.8	8.8	145.6	384,2
HRR	754, 8	49.1	2.8	59.5	158.0	1,313.4
APR	926.9	93.3	0.8	59.5	225.7	1,385, 3
NAY	1,866.7	152.2	0.8	82.3	225.7	2,326, 8
J1N	2,551.2	397.7	632.8	126.8	149.2	3,837,6
ILI	3,694,5	653.8	633.8	399.8	228.7	5,512,7
AUB	5,168,9	265.1	632.8	784, 8	149,8	7,002.6

TOTAL $\quad 21,484.5 \quad 3,329.6 \quad 3,164.8 \quad 1,401.8 \quad 1,858.8 \quad 31,157.2$
source: Calculated by applying the projected volumes of sales from Table 2aA and Table 208 to the projected goverment sales prices from Table 21.

APPENDIX G

Selected Output, Alternative Two (Tables 4, 9-11S, 29, 32-36)

R LERNGTIVE TWO
TARE 5 4. Projected Monthly Grain Prices of Goverment purchases. (Leubiras oer ©uintal)

CDSN SEANS RICE SCRGMLIA

SEP	13.11	34.12	2.28	
CCT	13.18	34.17	23.39	0.28
NOV	13.06	34.28	23.40	12.28
DEC	13.11	33.91	23.78	12.16
JAN	13.84	34.14	24.18	11.96
FEB	13.06	34.26	23.66	11.75
MAR	0.08	34.68	8.28	11.48

APR
WAY
JN
תL
ALG

| AVERAGE | 13.68 | 34.28 | 23.78 | 11.28 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Source: Specified as initial information under the assumations for this alternative. Modal prices based on existing tolerance tables and anticipated qeographic delivery patterns.

TABLE 9. Projection of Monthly Cost of Soverment Grain Purchases.
(1, eva Lenoiras)
CDRN BEANS RICE SORGHMA HHEAT TOTAL

SEP	2.6	23.9	8.1	0.0	26.5
DCT	1,215.7	269.9	573.1	0.8	2,058.7
NON	3,362.9	75.2	161.5	33.8	3,633.4
DEC	2,665,	6.8	35.7	6.1	2,653.5
Jav	2,643.2	122.9	2.4	14.4	2,782, 3
FEB	1,343.3	445.4	0.2	36.4	1,825.1
MAR	2.8	100.3	8.8	118.2	218,6
APA	0.0	2.8	8.0	0.8	0.8
* 3 Y	8.8	2.8	0.8	0.8	0.8
JW	3.8	8.8	8.8	0.a	3.8
Jul.	8.8	2.8	2.8	2.8	0.8
ALS	8.8	0.8	8.8	2.a	2.8

Source: Calculated by meams of au1tiplication of prices and quantities, e. q., (Table 4 * Table 3).

ALTERNGTIVE THO
TASLE 10. Projection of Nontnly Expense for Conditioning Goverrment Grain (1,ead Lenoiras)

	CORN	BCANS	RICE	508SMUA	Whent	TOTAL
55p	3.7	8.2	30.6	0.8		42.5
OCT	366.3	39.2	42.8	7.5		455.0
NOV	833.9	8.9	32.1	7.8		882.7
DEC	438.1	1.4	60.9	7.8		568.2
JAN	96.8	28.1	15.8	16.2		147.3
FEB	70.1	47.8	8.8	40.6		158.5
KPR	484.5	1.8	1.5	22.4		509.4
AP2	0.8	0.7	8.8	0.0		0.7
NAY	0.0	0.8	8.8	0.8		8.8
JuN	0.8	0.8	0.0	0.8		0.8
μ	8.8	0.8	0.8	0.8		0.8
AU5	0.8	0.8	0.2	8.8		8.8
TOTAL	2,344,6	127.3	188.1	102.3		2,756, 3

Source: Calsulated by means of maltiplication of unit direct costs for cleaning, drying and conditioning (including loss of meight) by progected quantities purchased under this alternative (Table 3).

TAREE 11. Projection of Morthly Expense of Procuring and Recesving Sovernient Grain (1,8ee Lemoiras)

CORN BEANS RICE SORGHUM WEAT TOTAL

55^{5}	0.6	1.5	3.6	0.0	5.7
OCT	56.8	6.9	4.9	4.9	73.5
NOV	129.4	1.6	3.8	1.5	136.3
DEC	76.1	2.2	7.1	1.5	84.9
JAN	14.9	3.6	1.8	3.1	23.4
FEg	10.9	8.5	0.8	7.8	27.2
* 月R	318.2	0.2	1.0	4.3	323.6
APR	0.6	0.1	0.8	0.8	8.1
HAY	8.8	8.8	8.8	8.8	0.0
JN1	8.8	0.8	8.8	2.8	8.0
JL	0.6	0.8	2.8	0.0	e. 8
AUS	0.8	2.8	0.0	8.0	0.8
TAL	606.9	22.6	22.2	23.1	674.8

Sourse: Calculated by means of miltiplication of unit direct costs for buying and receiving governsent grain into storage by projected quantities purchased under this alternative (Table 3).

RLTERNGTIVE TWO

Source: Calculated by direct addition of Table $9+$ Tablel0 + Table 11 for this alternative.

TRBLE 29. Projected Konthly Inventorias of Bovernment Brain Purchased during Current Croo Year. (1,2ee Quintals)
CDRN PEANS RICE SORGHUN WHEAT TOTAL

รธp	0.8	0.0	0.0	0.0	0.0	0.8
CCT	2.8	0.0	0.8	8.5	8.8	0.5
NOV	231.8	8.7	3.8	3.3	8.0	238.8
DEC	396.7	8.7	3.8	3.8	0.8	425.8
JAN	589.7	8.7	3.8	5.8	0.8	599.2
FEB	668.9	7.5	3.8	8.1	0.8	688.3
MAR	668.9	9.4	3.8	15.8	8.8	697.1
APR	668.9	9.4	3.8	15.8	0.8	697.1
m ${ }_{\text {¢ }}$	668.9	9.4	3.8	15.8	8.8	697.1
JN	668.9	9.4	3.8	15.0	0.8	697.2
J	668.9	9.4	3.8	15.8	0.8	677.1
AUG	416.4	9.4	3.8	(12.8)	2.8	447.6
NAL	415.4	9.4	3.8	(12.0)	2.8	417.6

Source: Carry-in iwnentory of "reew Crop" grain from previous montih plus any purchases and wirus any sales of the "new croos grain ouring the sorth, assuning old crop inventories depleted before ary new crop inventories sold.

ALTENATIVE TWO
TAELE 32. Projected Monthly Expanditure for Storing Governsent-Ownea Grains (1, eve Levoras)

	COMN	BEANS	RICE	Sorgher	WHEAT	TOTR
SEp	47.8	7.8	13.2	3.8		71.8
OCT	44.5	7.2	12.2	3.8		67.7
K0V	62.3	7.8	11.9	4.0		86.8
DEC	85.7	7.9	13.1	4.3		111.0
JaN	95.5	8.1	13.9	4.9		122.4
FEB	97.4	9.2	13.7	6.3		126.6
MAR	96.4	10.8	13.3	7.6		127.3
APR	32.9	9.9	12.7	7.9		123.4
May	87.2	9.7	12.0	7.6		116.5
תN	78.1	9.3	10.6	7.2		125.2
π	65.3	8.5	8.4	6.3		88.5
AUS	47.1	7.8	6.1	3.3		64.9
TOTAL	899.4	182.4	141.1	67.6		1,210.5

Source: Calculated by apolying the relevant costs per ton-month of storage (including shrinkage) to the projected storage voluses for this alternative froa Table 38 and Table 31.

TAELE 33. Projected Nonthly Expenditure for Transferring Sovernsent-Divned Grains 11,282 Leapiras)

	CORN	REAS	RICE	SORGEMY	Hereat	TOTS
sco	26.4	3.8	12.3	0.8		39.7
¢CT	57.2	7.9	11.6	0.2		76.7
NOV	84.7	1.5	3.7	0.7		92.6
DEC	53.1	0.6	7.1	8.7		61.5
JAN	11.8	3.6	1.7	1.5		17.8
$F E B$	11.1	7.7	2.8	3.8		22.6
KR2	7.7	2.4	. 8	2.6		10.7
APR	9.4	8.5	0.1	0.5		12.4
Hay	18.3	0.7	0.8	0.7		22.3
JN	25.9	1.8	6.8	8.9		35.4
5 ll	37.4	3.0	6.8	2.7		49,9
P. 6.	52.4	1.2	6.8	6.7		67.1
TOTAL	395.8	31.9	54.8	21.0		520.7

Source: Calculated by applying the relevant average total per ton transfer cost to the projected wolunes of govermment grains to be transfered under this alternative.

ALTERNATIVE TNO
TAREE 34. Projected Nonthiy Expenditure for Selling and Loading Governsent Grairs $\quad(1,232$ Lempiras)

	CORN	EERNS	RICE	S0xchiot	W Weht	TUTAL
SEP	42.2	2.6	5.9	0.8		51.7
OCT	35.6	3.7	6.9	2.8		46.2
NOV	7.9	8.5	0.8	8.8		8.4
DEC	12.8	0.6	0.8	0.8		18.6
JAN	2.9	1.4	2.8	8.8		4.3
FE8	7.1	1.9	8.8	0.8		9.8
MGR	12.4	0.3	8.8	1.8		13.7
APR	15.2	2.6	0.8	1.8		16.8
NAY	30.7	8.9	8.8	1.4		33.8
JN	41.9	2.5	6.9	1.9		53.2
תhin	62.7	4.8	6.9	5.4		77.8
840	34.9	1.6	6.9	13.6		187.8
TAL	351.5	20.6	34.5	24.3		438.9

Source: Calculated by applying the projected sales voluzes from Tables $2 B A$ and $Z 2 B$ to the relevart average per ton costs for selling, transferring title, and loading out government-owred grains to private-sector buyers.

TRELE 36. Projected Monthly Cash Flow from Government Grain
Operations (1, a08 Lempiras)

	Copea	REANS	RICE	SORGHLM	WHEAT	TOTAL
SEP	2,443.4	361.0	638.2	(3.8)		3,458, 8
CTT	392.3	264.2	287.1	(15.4)		847.2
N0V	(3,998.2)	(21.9)	(133.0)	(47.8)		(4, 290.9)
DEE	(2,789.5)	75.8	(53.9)	(28.4)		(2,787.9)
JAN	(2, 534, 1)	61.2	110.2	(42.1)		(2,552.7)
FEB	(1,185.2)	(216.1)	131.3	(94.9)		(1,284.9)
MAR	(154.4)	(63.1)	134.2	(36.5)		(190.0)
APR	889.4	81.5	213.8	50.1		1,153.9
K月Y	1,729.9	140.9	213.7	72.6		2,157.0
JHN	2,405, 3	384.1	757.7	\%. 8		3,643.8
$\pi \mathrm{L}$	3,531.1	637.5	833.4	295.4		5,297.3
846	4,984.5	254.5	762.8	759, 8		6,761.6
IN	(3,538, 1)	$(1,24.5)$	(3,551.1)	(683.6)		-9814.3
TOTRL	2,096.4	738.2	263.5	278.9		3,369.8

Source: Calculated by subtracting from the projected monthly revenues (Table 35) the conbined direct excerditure projections for this alternative (Table $115+$ Tables $32 ., 34$). Adjusted for changes in ending inventories (1W)
hLTERUATIVE THO
TAELE 35. Projected Monthly Reverue from Sale of Govervment-Dimed Grains (1,233 Lemoiras)

	CORN	teaw	$\begin{aligned} & \text { DCDDY } \\ & \text { RICE } \end{aligned}$	50\%GTD	$\begin{aligned} & \text { WILED } \\ & \text { RICE } \end{aligned}$	TOTAL
SEP	2,565.8	427.2	639.8	0.1	70.8	3,695.9
CCT	2,168.2	599.8	532.8	8.8	225.8	3,625. 3
NOV	482.9	73.7	0.0	0.8	83.0	636.5
DEC	610.5	93.3	0.0	8.8	72.8	73.8
JAV	179.5	221.8	0.0	0.8	145.8	545.4
FEB	434.8	384.4	0.0	0.8	145.8	884.2
M RR $^{\text {P }}$	754.8	49.1	0.8	59.5	158.0	1,013.4
APR	926.9	93.3	0.8	59.5	225.7	1,305.3
W ${ }^{\text {Y }}$	1,866,7	150.2	3.8	82.3	225.7	2,326.8
JN	2,551.2	397.7	632.8	186.8	149.2	3,937,6
N1	3,694.5	653.0	632.8	309.8	222.7	5,512.7
NUS	5,160.9	265.1	632.8	784.8	149.8	7,202, 6

TOTRL $21,434.5 \quad 3,329.0 \quad 3,154.0 \quad 1,401.8 \quad 1,856.0 \quad 31,157.2$
SOURCE: Calculated by anolying the projected volunes of sales from Table $23 A$ and Table $20 B$ to the projected government sales orices from Table 21.

THE ROLE OF THE HONDURAN INSTITUTE OF AGRICULIURAL MARKETING (IHMA)

by
JORGE ANTONIO THIEBAUD

B. S., Universidad Nacional Autonoma de Honduras, 1980

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Economics

KANSAS STATE UIIVERSITY
Manhattan, Kansas

1985

The main objectives of this study were (1) to estimate the magnitude of Honduran Institute of Agricultural Marketing's revenues, expenses and cash flow, together with the economic impacts generated by IHMA by sector for $1984-85$, under (a) IHMA's Marketing Plan snd (b) purchases and sales achieved by IHMA and (2) to estimate the size of IHMA's revenues, expenses and cssh flow if reasonable changes were made to the current support prices for 1984-85.

The analysis is based on research methodology developed by Kansas State University under the USAID-IHMA/KSU program in Honduras. The IHMA Simulation Model for Testing Alternative Intervention Strategies involves three categories: (1) supply, (2) demand and (3) marketing and distribution.

The findings indicate that producers seem to be benefited substantially with IHMA's intervention in the grain marketing, But consumers are even better off with this intervention, because their costs are reduced by 13 percent when simulated data is used in the model. Finally, processors sppesr to be benefit less from IHMA intervention. The simulsted net economic fmpact generated by :- : IHMA for each participant in the grain sector shows that, when the IHMA Operations for $1984-85$ was run using actual information this economic impact was reduced considerably because IHMA was unable to reach the goals of its Marketing Plan for 1984-85. The economic implications for IHMA under the four alternatives show that (1) the highest gross margin for IHMA was under Alternative Two, (2) the highest net margin over direct costs was reported for simulated data under the Marketing Plan for 1984-85 and (32 IHMA "s simulated amual operating loss was the highest when actaal data for 1984×85 were used in the model.

The IHMA Simulation Model appears to work well even assuming the social function that IHMA has to accomplish. The results obtained from this model show that is possible for IHMA to reduce its losses and perhaps to generate small profit over direct costs, an achievement which has been unusual for IHMA since its creation.

[^0]: (1) June 30, 1984

 Source: IHMA Finance Division

[^1]: Source: Calculated by algebraic sumation of the simalated impacts on grain producers TTable 91, the simulated impacts on final consumers (Table 10) and the simulated impacts on grain processors (Table 11).

[^2]: Source: IHMA Finance Division.
 *June 30, 1984.

[^3]: Source: IHMA-CIES.

[^4]: Source: IHMA-CIES,

[^5]: Source: Urban consumption (Table 13A) + Rural consumotion (Table 138).

[^6]: Source: Historical seasonal price patterns prevailing frow 1979 throung 1984 from Work Table 22, applied to projected annual average prices appropriate to this alternative.

[^7]: Source: Calculated fron the projected procurement volunes and corresoonding procurement prices as follows: Procurements of government grain (Table 20 a + Table 21) plus procurenents in molesale narkets [(Table 17 - Table 2aA) + Table 22].

[^8]: Source: Calculated by applying the relevant costs per ton-month of storage (including shrinkage) to the projected storage volumes for this alternative from Table 30 and Table 31.

[^9]: Source: Calculated by means of multiplication of unit direct costs for buying and receiving government grain into storage by projected quantities purchased under this alternative (Table 3).

