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Abstract 

Effect size is a concept that was developed to bridge the gap between practical and 

statistical significance.  In the context of completely randomized one way designs, the setting 

considered here, inference for effect size has only been developed under normality.  This report 

is a simulation study investigating the robustness of nominal 0.95 confidence intervals for effect 

size with respect to departures from normality in terms of their coverage rates and lengths.  In 

addition to the normal distribution, data are generated from four non-normal distributions: 

logistic, double exponential, extreme value, and uniform. 

 The report discovers that the coverage rates of the logistic, double exponential, and 

extreme value distributions drop as effect size increases, while, as expected, the coverage rate of 

the normal distribution remains very steady at 0.95.  In an interesting turn of events, the uniform 

distribution produced higher than 0.95 coverage rates, which increased with effect size.  Overall, 

in the scope of the settings considered, normal theory confidence intervals for effect size are 

robust for small effect size and not robust for large effect size.  Since the magnitude of effect size 

is typically not known, researchers are advised to investigate the assumption of normality before 

constructing normal theory confidence intervals for effect size. 
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Chapter 1 

Introduction to Effect Size 

Effect size is a concept that was developed to bridge the gap between practical and 

statistical significance. Consider, for example, the problem of comparing t treatments based on a 

completely randomized, one-way design. It is often assumed that the observations from the ith 

treatment are normally distributed with mean μi (for i = 1, 2,…, t), and that all of the distributions 

have a common unknown variance, denoted σ2.  The treatments are compared by testing the 

following hypotheses: 

 

H0 : μ1 = μ2 = … = μt  vs. H1 : at least two means differ             (1.1)  

 

A problem with this approach is that it is almost always known a priori that H0 is false, and 

rejecting it does not directly address the following question:  

 

Are differences among the responses to the treatments large enough to be of practical 

value? (1.2) 

                                                                                                                  

For example, a new treatment, in the context described above, that extends mean human life by 

one hour, so that H0 is false, would generally not be considered an improvement.  Confidence 

intervals for contrasts among the means do aid in answering the question raised in (1.2).  

However, the sizes of these intervals depend on the scale of measurement, e.g. feet, miles, 

kilometers, and when t is more than three, do not, in general, provide a simple, concise answer to 

(1.2).  Cohen (1988), Murphy and Myors (2004), and Steiger (2004), among others, when sample 

sizes are equal and denoted by n, proposed constructing a confidence interval for what is 

commonly called effect size, defined in the setting described above by 

 

 
. (1.3) 
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2 
 

Note that nES is the location-scale invariant, non-centrality parameter of the distribution 

of , the statistic used to test (1.1) based on independent random samples of common 

sample size n from normal distributions having the same unknown variance. Cohen (1988), using 

a combination of empirical studies and subjective judgment, proposed benchmark values for ES, 

denoting small, middle, and large effect sizes. Although power and effect size are related under 

normality, they are inherently different concepts.  A test based on very large samples may have 

high power for detecting a small difference among the means in a setting where the effect size is 

very small.  Some psychologists have advocated estimating effect size instead of testing for 

equality of means.  The standard procedure for constructing a confidence interval for ES, 

described in chapter 2, is valid under the assumption of normality. The purpose of this report is 

to assess the performance of these intervals when normality does not in fact hold.  

The following is a concrete example showing that a test based on a large sample size can 

have high power for detecting negligible differences among the means when the effect size is 

small. 

Example 1 

Suppose  for .  Let , , .  Note that in 

this situation, ES 
0.02

 2 .  Letting  1 so that ES  0.02, the overlapping densities in Figure 

1.1 show that responses sampled from three different normal distributions can be very similar 

when the means differ but the effect size is small. To illustrate the misleading inferences that 

could be drawn in this admittedly extreme and artificial case, I used R to generate independent 

random samples from these distributions, each of size n = 428, a value arrived at by trial and 

error to cause rejection of the hypothesis of equal means at the 0.05 type I error rate.  The data 

are summarized in the almost coincident side by side boxes of the box plot in Figure 1.2 and 

given in their entirety in Appendix E.  The normal theory test for equality of means yields F = 

3.029, corresponding to a p-value of 0.0487.  Using the method described in chapter 2, a 95% 

confidence interval for effect size is (0.000, 0.039), indicating a small effect according to 

conventional standards. 
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Chapter 3 

Report Topic 

I carried out a simulation study of the robustness of the intervals in (2.1) with respect to 

departures from normality.  Specifically, I investigated the performance of the intervals in terms 

of mean length, median length, and coverage rate when the data are sampled from the normal 

and non-normal, location-scale families of densities  having finite variances, where in each 

case the scale parameter is functionally independent of the location parameter, denoted by .  

In this general setting, I define effect size by 

  . (3.1) 

The normal family was included to provide a basis of comparison. 

 

Coverage Rate: Let I be a confidence interval for a parameter θ such that under 

assumptions A, PA(θ  I) = 1 – α. Suppose that conditions B, under which the data are sampled, 

differ from A. Then, under B, 1 – α is the nominal coverage rate of I and PB(θ  I) is the actual 

coverage rate.  Similarly, mean length is defined by EB(U-L). 

 

Models: Let Xij denote the random variable representing the jth observation in treatment i, for       

i = 1, 2,…, t; j = 1, 2,…, n and its continuous density function. Assume that {Xij} are jointly 

independent with 

 
,  (3.2)    

where  is a known density function, σ is an unknown positive scale parameter, and {μi} are 

unknown location parameters. When  is a standard normal density, assumption A, the 

interval in (2.1) is exact. I will use simulation to study the behavior of the intervals in (2.1) when 

assumptions B hold:  

 

B:  is logistic, double exponential, extreme value and uniform. 
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Densities Used for Simulation Study 

 Normal:    , 

 Logistic:    , 

 Double Exponential:  , 

 Extreme Value:  , 

 Uniform:   . 

In order to facilitate comparisons among these distributions, the scale parameters of the 

logistic, double exponential, extreme value and the uniform distributions will be selected so that 

they have the same inter-quartile range as the corresponding normal distribution.  The scale 

parameters of each distribution are described in terms of σ, the standard deviation of the normal 

distribution, in the following table.  In addition, the variances are given, which is the 

denominator of ES for each distribution. 

Table 3.1 

Distribution Inter-Quartile Range Scale Parameter Variance 

Normal 1.349σ σ σ2 

Logistic 2.197θ θ = (1.349 / 2.197)σ (1.349σ/2.197)2*(π2/3) 

Double Exponential 2ln(2)β β = [1.349 / 2ln(2)]σ 2*(1.349σ/2ln(2))2 

Extreme Value ω[ln(ln(4))-ln(ln(4/3))] ω = (1.349 / 1.5725)σ (1.349σ/1.5725)2*(π2/6)

Uniform 0.5γ γ = (2*1.349)σ (2*1.349)2*σ2 / 12 

Description of the Simulation Study 

First, I selected parameter settings for my simulation experiment using a factorial design.  

I decided to look specifically at six different effect sizes, ES = 0.3, ES = 0.5, ES = 1.0, ES = 5.0, 

ES = 10.0, and ES = 20.0.  In order to understand how the number of treatments (t) effects 

coverage rate, I looked at three different numbers of treatments, t = 2, t = 3, and t = 5.  Without 

loss of generality, I took the scale parameter to be one (σ = 1) so that the common interquartile 

f (x;,) 
1

2 2
exp 

(x )2

2 2
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range of 1.35 provides a rough benchmark for assessing confidence interval length.  Due to time 

constraints, I was only able to look at α = 0.05.  In a future study, one may want to include α = 

0.10 and α = 0.01 to see if it effects coverage rates.  In addition, I took the population means to 

be equally spaced starting with μ1 = 0 such that the effect size is equal to the six numbers listed 

above.  Finally, I looked at five different sample sizes (n) per treatment combination, n = 5,        

n = 10, n = 20, n = 50, and n = 100. 

Next, I generated observations from the five distributions above using R, and computed 

the F-statistic for a one-way analysis of variance. 

Having set these parameters, I conducted a simulation experiment in the form of a fully 

crossed three factor, factorial design with 1000 replicates for each of the ninety parameter 

settings.  The use of a random number generator justifies the design as being completely 

randomized.  Specifically, I generated N = 1000 independent data sets for each parameter setting, 

and constructed the interval in (2.1) for each data set.  I then recorded the length of the interval, 

and whether or not it contained the true value of ES.   

In the following chapter, I will summarize the results of the study in terms of estimated 

actual coverage rates, and estimated mean and median lengths of the confidence intervals for 

each distribution. 
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smallest coverage rates occur when n = 50 and ES = 20 (coverage rate equal to 0.896).  When the 

coverage rate dipped, was it because the intervals were too narrow or because they were located 

in the wrong place?  The lower bound of the interval was not small enough to include ES 48 

times, while the upper bound of the interval was not large enough to include ES 56 times. The 

mean of the confidence interval lengths of the 48 times when the lower bound was not small 

enough was 18.0085, while the mean of the confidence interval lengths of the 56 times when the 

upper bound was not large enough was 8.7714.  Similarly, the overall mean interval length is 

12.59614.  Therefore, I conclude that when the lower bound was not small enough, the interval 

appeared to be plenty large, but simply located in the wrong place.  Whereas, when the upper 

bound was not large enough to include ES, the interval was too small to include ES = 20 on a 

consistent basis. 

Results for the Double Exponential Distribution 

The double exponential distribution showed the lowest estimated coverage rates of any of 

the five distributions studied.  The minimum estimated coverage rate seen was 0.796, which 

occurred when ES = 20, t = 3 and n = 100 (see Table B.12 in Appendix B).  Similar to the 

logistic distribution, coverage rates for the double exponential appear to drop as effect size 

increases, as seen in Figure 4.3.  The sharpest decline occurs when ES moves from 0.3 to 1.0, but 

it still drops quickly when ES moves from 1.0 to 5.0.  With the exception of n = 5, the coverage 

rates continue to decrease as ES reaches 10.0, but they level off for all five sample sizes when ES 

shifts from 10.0 to 20.0. 

When t = 2, the lowest coverage rate that occurred for the double exponential distribution 

was 0.820 when ES = 20 and n = 20.  That is to say that the interval missed 180 times out of 

1000.  Specifically, the lower bound was not small enough to include ES 100 times, while the 

upper bound was not large enough to include ES 80 times.  Of those 100 cases when the lower 

bound was not small enough to encompass ES, the average confidence interval length was 

39.65146.  These intervals were plenty large; they were simply located in the wrong place.  Of 

the 80 cases when the upper bound was not large enough to include ES, the average confidence 

interval length was 17.25802.  This suggests that the interval may not be large enough to include 

ES = 20 on a consistent basis. 
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Chapter 5 – Recommendations 

There are several noteworthy conclusions that come from this simulation study.  

Specifically, the intervals in (2.1) are relatively robust for small effect sizes (ES = 0.30).  

However, as ES increases we see coverage rates drop for the logistic, double exponential, and 

extreme value distributions.  This suggests that the intervals are not robust with respect to 

departures from normality as ES grows.  The results found from the uniform distribution were 

very surprising.  It appears that coverage rates get better than 0.95 as effect size increases. 

Ling and Nelson (2012) develop and explore tests and confidence intervals under 

normality for effect size without requiring equal sample sizes or equal variances. Future studies 

should be carried out to investigate the robustness of their methods with respect to departures 

from normality.   
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Appendix A – R Program 

########################################### 
#                    Normal Distribution with t = 2 
#  Obtaining (k=1000) CIs with n = 5, 10, 20, 50, 100 
########################################### 
 
set.seed(544) 
j=1 
P=f=L1=L=U=Length=rep(0,1000) 
Prop=AvgLength=Median=rep(0,5) 
Lower=Upper=Lengths=matrix(0,nrow=1000,ncol=5) 
alpha=.05 
mu1=0 
mu2=1 
mu=c(mu1,mu2) 
mubar=mean(mu) 
sig=1.0 
total=1000 
ES = sum( (mu-mubar)^2 ) / (sig^2) 
for( n in c(5,10,20,50,100)) 
{ 
for( k in seq(total) ) 
{   
 Y=cbind(c(rnorm(n,mu1,sig),rnorm(n,mu2,sig))) 
 X=cbind(rep(1,2*n),c(rep(0,n),rep(1,n))) 
 f[k]=anova(lm(Y~X))$F[1] 
 NumDF=anova(lm(Y~X))$Df[1] 
 DenDF=anova(lm(Y~X))$Df[2] 
 e=try((L2=uniroot(function(x) 1-pf ( f[k] , NumDF , DenDF , x) - alpha/2 , c(0,100000),  
  tol=10^-10)), silent=TRUE) 
 if (class(e) == "try-error") {L1=0} 
 else {L1=L2$root} 
 g=try((U2=uniroot(function(y) 1-pf ( f[k] , NumDF , DenDF , y) - (1-alpha/2) ,   
  c(0,100000) , tol=10^-10)), silent=TRUE) 
 if (class(g) == "try-error") {U1=0} 
 else {U1=U2$root} 
 L[k] = L1 / n 
 U[k] = U1 / n 
 Length[k]=U[k]-L[k] 
 if (L[k] <= ES && ES <= U[k]) {P[k]=1}  
 else {P[k]=0} 
 Lengths[k,j]=Length[k] 
 Lower[k,j] = L1 
 Upper[k,j] = U1 
} 
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Prop[j]=sum(P)/total 
AvgLength[j]=mean( c(Length) ) / ES 
Median[j]=median( c(Length) ) / ES 
j=j+1 
 
} 
 
results=rbind(Prop,AvgLength,Median) 
dimnames(results)=list(c("Coverage Rate" , "Average CI Length / ES" , "Median CI Length / 
 ES"),c(5,10,20,50,100)) 
results 
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Appendix E – Data from Example 1 

X1 ~ N(μ1 = 100.1, σ = 1.0) 
99.65 100.29 100.51 99.27 99.47 99.92 100.68 98.63 100.68 99.72 
98.89 100.06 99.98 98.77 100.1 100.9 101.01 99.91 100.03 99.1 

100.14 99.88 100.03 100.32 100.46 99.96 99.74 99.79 101.12 100.77 
100.74 101.56 97.78 99.42 99.33 98.04 100.7 100.17 100.96 101 
99.31 100.33 99.05 99.59 99.92 99.38 99.48 99.78 99.58 101.53 
99.71 100.21 102.16 100.89 99.28 98.47 100.33 99.62 99.37 100.14 
99.62 98.72 102.07 101.14 98.8 100.06 98.29 100.73 101.09 98.88 

100.82 99.13 98.18 100.28 98.9 99.6 101.16 99.05 99.93 101.83 
100.08 100.35 100.56 100.09 102 99.69 99.45 100.15 100.99 99.4 
98.73 99.01 99.94 99.59 101.32 99.63 98.76 99.98 100.72 99.49 
99.12 100.5 100 101.22 100.33 98.58 99.74 101.13 100.5 99.95 
99.55 99.1 100.57 98.62 99.91 99.3 102.18 99.55 100.79 101.33 

100.22 100.2 100.54 98.71 101.78 98.45 101.98 98.34 99.24 101.77 
99.98 101.05 100.93 100.2 101.13 100.78 100.23 99.01 99.69 98.39 
98.76 98.31 99.71 100.36 101.6 101.46 100.26 99.23 99.69 100.18 

100.27 100.41 102.12 100.59 101.21 100.11 100.84 99.14 98.66 98.83 
100.26 102.65 98.73 99.29 100.6 98.59 101.78 100.11 99.09 100.89 
100.12 99.24 100.26 101 100.15 100.61 100.39 101.39 100.8 99.74 
98.05 100.64 99.99 98.92 99.58 100.94 98.71 97.44 99.64 99.88 

100.31 99.71 100.96 99.75 100.92 99.57 100.82 100.25 100.2 100.06 
102.77 101.34 100.23 101.32 101.2 99.24 100.96 100.12 101.67 99.88 
98.87 101.3 100.29 101.8 99.71 99.27 99.64 99.82 99.36 101.35 

100.93 99.6 100.49 100.13 99.74 102.1 99.88 99.5 99.36 99.44 
100.63 99.81 97.87 100.81 98.94 98.16 99.4 99.99 100.63 99.92 
99.45 99.53 101.13 99.15 99.39 99.49 99.87 98.91 99.73 100.05 
100.7 101.72 101.3 100.9 100.45 100.44 99.67 101.43 99.82 100.17 
98.32 99.14 100.85 100.2 100.53 100.49 99.52 99.65 99.42 100.63 

100.43 100.14 99.81 101.44 101.76 99.18 101.05 100.79 100 100.53 
100.66 98.6 99.87 100.07 100.68 102.2 100.55 101.49 98.92 100.06 
101.32 100.76 99.97 98.28 100.24 99.17 101.16 98.65 99.23 99.73 
99.89 100.39 101.91 99.1 100.44 99.3 99.27 100.71 99.39 100.36 
100.8 101.49 99.61 100.41 99.17 100.82 99.91 101 100.79 100.04 
99.39 99.94 100.39 100.23 101.02 100.06 101.21 100.69 99.43 100.13 
99.63 99.64 98.6 99.02 100.83 100.81 101.88 100.21 100.85 100.31 
98.33 100.27 101.72 100.29 98.42 100.05 101.78 101.71 98.79 98.7 

100.29 101.5 100.34 101.02 99.87 100.21 98.88 99.64 101.5 99.98 
99.73 100.83 100.67 102.1 99.44 100.59 102.14 98.28 98.25 99.26 

101.16 100.44 99.78 99.8 100.02 100.57 99.81 102.22 101.58 99.8 
99.36 101.27 100.56 99.67 100.26 100.21 99.05 100.56 102.14 100.63 
98.75 100.35 101.17 99.79 100.01 99.03 99.6 99.4 101.09 99.61 
99.58 99.74 100.42 100.51 101.06 100.69 99.6 100.96 100.84 99.28 

101.51 101.48 99.43 100.56 99.47 99.99 98.32 99.58 101.53 99.75 
99.53 100.66 100.29 99.88 99.07 100.34 98.91 97.67     
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X2 ~ N(μ2 = 100.2, σ = 1.0) 
98.87 100.5 100.02 100.12 100.05 100.6 99.71 100.26 100.07 100.14 
99.47 100.17 99.79 100.89 100.09 99.18 99.21 98.92 98.72 100.31 
99.27 100.24 101.2 99.38 100.96 100.25 101.28 100.27 100.69 99.67 
101.11 100.47 101.44 100.46 98.96 101.96 99.8 98.78 101.11 100.49 
100.79 100.1 98.66 99.88 99.61 100.65 98.92 100.51 101.16 100.29 
100.27 98.85 99.76 100.57 98.16 100.84 99.48 99.16 99.37 97.99 
100.27 100.05 99.78 99.07 99.64 100.81 101.88 98.5 99.09 100.76 
100.72 100.47 100.38 99.98 101.46 101.31 101.64 100.91 99.92 98.98 
100.55 99.8 100.62 99.85 99.55 99.29 98.9 99.26 100.5 100.77 
101.33 100.56 100.85 102.12 101.1 100.31 100.83 100.33 98.43 99.55 
100.86 99.32 98.2 100.65 99.05 100.12 101.98 100.65 101.49 98.06 
99.83 98.76 99.27 100.9 100.36 100.57 101.07 98.69 99.83 101.68 
99.67 101.31 100.55 100.63 101.08 100.75 98.39 100.39 100.51 101.74 
100.47 100.53 100.89 101.05 100.99 101.17 99.7 99.37 99.46 99.78 
99.1 100.71 99.25 100.63 99.46 101.78 101.44 101.4 100.62 100.49 

100.87 100.4 101.73 100.98 99.15 100.12 98.92 100.85 100.68 99.78 
99.45 101.91 100.59 100.92 99.92 99.57 100.3 101.02 99.4 102.07 
99.65 101.91 100.57 100.81 99.82 102.39 100.05 100.44 98.12 101.88 
101.69 100.68 100.62 99.05 100.58 99.88 99.22 100.59 100.33 100.98 
100.36 100.1 100.97 98.63 100.1 99.26 99.54 101.19 101.69 101.16 
101.8 99.66 99.01 100.41 100.78 101.47 100.35 98.54 99.52 99.42 
99.42 99.89 102.09 99.97 100.18 100.11 99.48 99.42 100.79 99.31 
101.81 100.43 99.84 101.01 99.56 98.46 101.29 100 100.56 101.15 
100.74 100.09 100.31 101.21 99.06 100.8 99.85 100.03 100.5 101.03 
100.54 98.26 99.83 102.18 100.83 101.36 100.01 100.75 100.93 100.7 
100.53 100.31 99.46 101.29 100.5 99.02 98.31 100.68 100.91 98.41 
100.13 100.88 100.19 98.76 100.74 100.09 98.72 99.69 97.3 100.82 
100.62 99.81 101.64 99.64 101.2 100.39 100.81 98.23 99.76 101.21 
102.14 99.45 101.49 102.03 100.53 99.31 100.09 100.45 101.59 101.84 
99.73 100.89 100.7 100.24 102.39 99.26 100.57 99.36 99.08 98.79 
100.62 100.59 98.65 100.5 100.12 99.68 102.31 101.23 99.83 100.55 
98.82 100.11 98.06 101.55 101.12 100.79 100.77 102 100.13 99.04 
100.29 98.25 100.22 99.97 100.16 99.79 99.65 102.18 100.81 100.07 
101.42 99.53 98.81 100.88 98.36 100.88 100.63 100.87 100.08 102.24 
100.85 100.21 100.76 100.34 100.14 101.97 100.93 101.04 100.34 98.42 
99.73 100.62 99.94 98.47 100.14 98.74 101 99.25 99.45 99.57 
99.76 99.48 100.23 99.74 99.55 100.95 99.06 99.04 100.86 101.31 
100.69 100.63 99.76 100.32 97.79 99.7 99.76 99.78 98.82 101.1 
98.47 100.18 100.51 96.84 99.98 99.68 101.23 101.12 99.54 98.33 
101.61 99.7 98.62 99.1 98.77 100.03 100.05 101.62 98.7 98.73 
98.74 98.61 99.67 101.51 101.13 99.43 101.66 99.65 99.45 100.25 
100.2 101.8 99.01 100.3 98.63 99.43 102.17 101.44 99.54 101.17 
100.06 100.72 98.77 98.63 101.51 99.57 98.22 100.08   
 
 
 



 

42 
 

 
 
 

X3 ~ N(μ3 = 100.3, σ = 1.0) 
99.09 98.63 100.13 101.28 99.12 100.76 100.34 100.39 100.44 101.02 

100.32 100.06 100.66 100.15 99.47 102.26 99.43 100.76 100.05 99.01 
101.06 99.02 101.35 100.08 99.58 100.26 100.05 99.9 100.85 100.43 
100.18 100.81 100.55 101.55 99.85 99.5 100.47 100.41 100.86 101.14 
99.18 101.8 100.8 98.96 102 100.51 101.07 99.74 100.17 98.55 

100.83 99.37 99.91 101.37 99.55 100.54 100.6 101.47 99.61 100.73 
100.15 100.32 101.19 101.75 99.16 98.83 99.75 101.29 100.44 101.46 
100.37 99.52 101.22 100.45 100.87 99.61 99.32 100.95 100.19 99.47 
98.69 101.6 101.09 98.74 100.67 101.09 99.67 99.04 100.43 102.28 

99 100.53 97.16 100.21 99.09 100.73 99.65 100.45 100.75 101.75 
101.78 100.81 97.68 99.28 100.01 100.33 101.4 99.49 98.03 102.13 
98.71 100.9 102.92 100.6 98.73 100.25 101.07 99.91 102.44 101.66 

98 99.27 99.2 99.76 101.39 101.89 99.08 99.53 98.9 101.92 
100.44 99.15 100.69 101.44 101.43 98.63 99.7 101.15 100.94 99.67 

98.6 99.58 100.77 100.49 99.08 101.6 102.27 99.07 100.68 100.26 
100.54 100.06 99.57 102.38 100.28 100.85 101.07 101.53 100.66 100.15 
100.76 100.44 97.7 99.08 100.12 100.24 99.93 100.24 99.56 98.74 
99.17 100.28 99.48 101.16 100.55 101.35 99.19 98.86 98.86 100.31 
100.4 100.04 99.91 100.94 100.29 99.74 102.14 100.07 100.88 99.34 

101.14 99.35 100.83 99.01 99.79 102.02 99.88 99.74 100.34 100.45 
99.56 100.7 101.12 100.25 98.97 98.86 99.89 99.95 99.59 99.66 

101.25 100.64 101.04 100.69 101.64 98.86 100.81 100.92 100.06 99.28 
102.77 100.26 100.63 101.01 98.9 100.39 98.6 99.48 99.91 101.26 

101 100.12 100.87 100.14 101.19 98.49 99.83 100.15 98.76 100.33 
100.4 100.77 99.53 100.32 99.92 100.39 101.54 99.18 99.54 99.69 

100.28 100.06 98.74 102.69 101.35 97.57 100.05 99.48 98.97 100.06 
98.98 99.56 98.06 100.13 102.35 98.03 100.26 101.24 99.64 101.23 
100.5 97.62 99.7 99.63 100.56 99.6 100.87 101.46 100.05 99.48 

100.01 99.7 99.86 98.53 100.71 102.21 99.95 99 101.18 99.4 
100.92 100.48 100.86 99.85 101.71 97.97 100.22 100.71 101.07 100.65 
101.55 100.14 101.86 100.62 100.65 101.15 101.08 101.02 101.12 99.6 
99.73 101.44 101.43 101.92 100.09 99.74 99.88 99.66 102.55 99.64 

100.57 102.2 99.73 99.53 99.9 98.92 101.06 101.8 101.46 99.77 
99.92 99.92 99.7 100.34 98.85 100.21 98.95 102.36 100.5 100.34 
99.76 101.32 100.78 100.88 101.68 99.92 100.73 100.91 99.81 101.05 
99.54 100.69 100.45 100.93 99.15 99.69 100.62 98.32 100.18 100.17 
101.2 100.77 102.36 100.36 100.5 99.94 99.52 100.03 100.97 101.43 
98.89 100.34 101.56 101.52 100.16 100 101.86 100.5 99.29 99.72 

102.05 99.88 101.34 100.24 98.99 100.27 101.23 101.04 100.86 100.54 
102.02 101.39 99.31 100.39 100.39 99.6 99.41 99.21 100.73 101.66 
100.76 98.83 99.58 99.58 99.26 98.93 101.17 101.29 99.11 100.49 
100.12 101.15 100.74 100.08 100.88 100.46 99.14 100.7 98.91 99.77 
100.28 100.58 101.68 99.69 99.38 99.63 100.02 100.33     
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X1 ~ N(μ1 = 100.1, σ = 0.1) 
100.06 100.10 100.09 100.03 100.08 99.94 99.92 99.99 100.19 100.03 
99.98 100.08 99.87 100.05 100.02 100.10 100.21 100.10 100.16 100.04 

100.10 100.25 100.00 100.18 99.97 100.05 100.04 100.09 100.14 100.09 
100.16 100.12 100.31 100.20 99.98 100.06 99.97 100.20 100.17 100.22 
100.02 100.11 100.30 100.12 100.29 100.05 100.06 100.04 100.01 100.27 
100.06 99.96 99.91 100.10 100.22 99.95 100.31 99.92 100.06 99.93 
100.05 100.00 100.15 100.05 100.12 100.02 100.29 99.99 100.06 100.11 
100.17 100.13 100.08 100.21 100.08 99.93 100.11 100.01 99.96 99.97 
100.10 99.99 100.09 99.95 100.27 100.17 100.12 100.00 100.00 100.18 
99.96 100.14 100.15 99.96 100.20 100.24 100.17 100.10 100.17 100.06 

100.00 100.00 100.14 100.11 100.25 100.10 100.27 100.23 100.05 100.08 
100.04 100.11 100.18 100.13 100.21 99.95 100.13 99.83 100.11 100.10 
100.11 100.20 100.06 100.15 100.15 100.15 99.96 100.11 100.26 100.08 
100.09 99.92 100.30 100.02 100.10 100.18 100.17 100.10 100.03 100.23 
99.97 100.13 99.96 100.19 100.05 100.05 100.19 100.07 100.03 100.03 

100.12 100.36 100.12 99.98 100.18 100.01 100.05 100.04 100.15 100.08 
100.12 100.01 100.09 100.06 100.21 100.02 100.08 100.09 100.06 100.09 
100.10 100.15 100.19 100.22 100.06 100.30 100.03 99.98 100.07 100.11 
99.90 100.06 100.11 100.27 100.06 99.91 100.08 100.23 100.03 100.15 

100.12 100.22 100.12 100.10 99.98 100.04 100.06 100.05 100.09 100.14 
100.37 100.22 100.14 100.17 100.03 100.13 100.04 100.17 99.98 100.10 
99.98 100.05 99.88 100.00 100.13 100.14 100.20 100.24 100.01 100.06 

100.18 100.07 100.20 100.18 100.14 100.01 100.15 99.95 100.03 100.13 
100.15 100.04 100.22 100.11 100.27 100.31 100.21 100.16 100.17 100.09 
100.04 100.26 100.18 100.23 100.16 100.01 100.02 100.19 100.03 100.10 
100.16 100.00 100.07 100.10 100.11 100.02 100.08 100.16 100.18 100.12 
99.92 100.10 100.08 99.92 100.13 100.17 100.21 100.11 99.97 99.96 

100.13 99.95 100.09 100.00 100.01 100.10 100.28 100.26 100.24 100.09 
100.16 100.17 100.28 100.13 100.19 100.17 100.27 100.05 99.92 100.02 
100.22 100.13 100.05 100.11 100.17 100.10 99.98 99.92 100.25 100.07 
100.08 100.24 100.13 99.99 99.93 100.11 100.30 100.31 100.30 100.15 
100.17 100.08 99.95 100.12 100.08 100.15 100.07 100.15 100.20 100.05 
100.03 100.05 100.26 100.19 100.03 100.15 99.99 100.03 100.17 100.02 
100.05 100.12 100.12 100.30 100.09 100.11 100.05 100.19 100.24 100.06 
99.92 100.24 100.16 100.07 100.12 99.99 100.05 100.05 100.06 99.86 

100.12 100.17 100.07 100.06 100.09 100.16 99.92 100.16 100.00 99.98 
100.06 100.13 100.15 100.07 100.20 100.09 99.95 100.09 100.17 100.12 
100.21 100.22 100.21 100.14 100.04 100.16 100.08 100.20 100.19 100.00 
100.03 100.12 100.13 100.15 100.08 100.19 100.07 100.19 100.24 100.08 
99.97 100.06 100.03 100.04 100.18 100.06 100.11 100.05 100.10 100.12 

100.05 100.24 100.02 100.10 100.09 100.16 100.07 100.03 99.98 100.16 
100.24 100.14 99.97 100.14 99.89 100.04 100.05 100.20 100.27 100.04 
100.12 100.09 100.12 100.02 100.03 100.12 100.16 100.08     
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X2 ~ N(μ2 = 100.2, σ = 0.1) 
100.07 100.23 100.18 100.19 100.18 100.24 100.15 100.21 100.19 100.19 
100.13 100.20 100.16 100.27 100.19 100.10 100.10 100.07 100.05 100.21 
100.11 100.20 100.30 100.12 100.28 100.20 100.31 100.21 100.25 100.15 
100.29 100.23 100.32 100.23 100.08 100.38 100.16 100.06 100.29 100.23 
100.26 100.19 100.05 100.17 100.14 100.24 100.07 100.23 100.30 100.21 
100.21 100.07 100.16 100.24 100.00 100.26 100.13 100.10 100.12 99.98 
100.21 100.19 100.16 100.09 100.14 100.26 100.37 100.03 100.09 100.26 
100.25 100.23 100.22 100.18 100.33 100.31 100.34 100.27 100.17 100.08 
100.24 100.16 100.24 100.17 100.13 100.11 100.07 100.11 100.23 100.26 
100.31 100.24 100.26 100.39 100.29 100.21 100.26 100.21 100.02 100.13 
100.27 100.11 100.00 100.25 100.08 100.19 100.38 100.24 100.33 99.99 
100.16 100.06 100.11 100.27 100.22 100.24 100.29 100.05 100.16 100.35 
100.15 100.31 100.23 100.24 100.29 100.25 100.02 100.22 100.23 100.35 
100.23 100.23 100.27 100.28 100.28 100.30 100.15 100.12 100.13 100.16 
100.09 100.25 100.11 100.24 100.13 100.36 100.32 100.32 100.24 100.23 
100.27 100.22 100.35 100.28 100.09 100.19 100.07 100.27 100.25 100.16 
100.12 100.37 100.24 100.27 100.17 100.14 100.21 100.28 100.12 100.39 
100.14 100.37 100.24 100.26 100.16 100.42 100.19 100.22 99.99 100.37 
100.35 100.25 100.24 100.08 100.24 100.17 100.10 100.24 100.21 100.28 
100.22 100.19 100.28 100.04 100.19 100.11 100.13 100.30 100.35 100.30 
100.36 100.15 100.08 100.22 100.26 100.33 100.22 100.03 100.13 100.12 
100.12 100.17 100.39 100.18 100.20 100.19 100.13 100.12 100.26 100.11 
100.36 100.22 100.16 100.28 100.14 100.03 100.31 100.18 100.24 100.30 
100.25 100.19 100.21 100.30 100.09 100.26 100.16 100.18 100.23 100.28 
100.23 100.01 100.16 100.40 100.26 100.32 100.18 100.26 100.27 100.25 
100.23 100.21 100.13 100.31 100.23 100.08 100.01 100.25 100.27 100.02 
100.19 100.27 100.20 100.06 100.25 100.19 100.05 100.15 99.91 100.26 
100.24 100.16 100.34 100.14 100.30 100.22 100.26 100.00 100.16 100.30 
100.39 100.12 100.33 100.38 100.23 100.11 100.19 100.23 100.34 100.36 
100.15 100.27 100.25 100.20 100.42 100.11 100.24 100.12 100.09 100.06 
100.24 100.24 100.04 100.23 100.19 100.15 100.41 100.30 100.16 100.24 
100.06 100.19 99.99 100.33 100.29 100.26 100.26 100.38 100.19 100.08 
100.21 100.01 100.20 100.18 100.20 100.16 100.14 100.40 100.26 100.19 
100.32 100.13 100.06 100.27 100.02 100.27 100.24 100.27 100.19 100.40 
100.27 100.20 100.26 100.21 100.19 100.38 100.27 100.28 100.21 100.02 
100.15 100.24 100.17 100.03 100.19 100.05 100.28 100.10 100.12 100.14 
100.16 100.13 100.20 100.15 100.14 100.27 100.09 100.08 100.27 100.31 
100.25 100.24 100.16 100.21 99.96 100.15 100.16 100.16 100.06 100.29 
100.03 100.20 100.23 99.86 100.18 100.15 100.30 100.29 100.13 100.01 
100.34 100.15 100.04 100.09 100.06 100.18 100.18 100.34 100.05 100.05 
100.05 100.04 100.15 100.33 100.29 100.12 100.35 100.14 100.12 100.21 
100.20 100.36 100.08 100.21 100.04 100.12 100.40 100.32 100.13 100.30 
100.19 100.25 100.06 100.04 100.33 100.14 100.00 100.19     
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X3 ~ N(μ3 = 100.3, σ = 0.1) 
100.18 100.13 100.28 100.40 100.18 100.35 100.30 100.31 100.31 100.37 
100.30 100.28 100.34 100.29 100.22 100.50 100.21 100.35 100.28 100.17 
100.38 100.17 100.41 100.28 100.23 100.30 100.27 100.26 100.36 100.31 
100.29 100.35 100.32 100.43 100.25 100.22 100.32 100.31 100.36 100.38 
100.19 100.45 100.35 100.17 100.47 100.32 100.38 100.24 100.29 100.13 
100.35 100.21 100.26 100.41 100.22 100.32 100.33 100.42 100.23 100.34 
100.29 100.30 100.39 100.44 100.19 100.15 100.24 100.40 100.31 100.42 
100.31 100.22 100.39 100.32 100.36 100.23 100.20 100.36 100.29 100.22 
100.14 100.43 100.38 100.14 100.34 100.38 100.24 100.17 100.31 100.50 
100.17 100.32 99.99 100.29 100.18 100.34 100.23 100.32 100.35 100.45 
100.45 100.35 100.04 100.20 100.27 100.30 100.41 100.22 100.07 100.48 
100.14 100.36 100.56 100.33 100.14 100.29 100.38 100.26 100.51 100.44 
100.07 100.20 100.19 100.25 100.41 100.46 100.18 100.22 100.16 100.46 
100.31 100.18 100.34 100.41 100.41 100.13 100.24 100.38 100.36 100.24 
100.13 100.23 100.35 100.32 100.18 100.43 100.50 100.18 100.34 100.30 
100.32 100.28 100.23 100.51 100.30 100.36 100.38 100.42 100.34 100.28 
100.35 100.31 100.04 100.18 100.28 100.29 100.26 100.29 100.23 100.14 
100.19 100.30 100.22 100.39 100.32 100.40 100.19 100.16 100.16 100.30 
100.31 100.27 100.26 100.36 100.30 100.24 100.48 100.28 100.36 100.20 
100.38 100.21 100.35 100.17 100.25 100.47 100.26 100.24 100.30 100.32 
100.23 100.34 100.38 100.30 100.17 100.16 100.26 100.26 100.23 100.24 
100.39 100.33 100.37 100.34 100.43 100.16 100.35 100.36 100.28 100.20 
100.55 100.30 100.33 100.37 100.16 100.31 100.13 100.22 100.26 100.40 
100.37 100.28 100.36 100.28 100.39 100.12 100.25 100.29 100.15 100.30 
100.31 100.35 100.22 100.30 100.26 100.31 100.42 100.19 100.22 100.24 
100.30 100.28 100.14 100.54 100.41 100.03 100.27 100.22 100.17 100.28 
100.17 100.23 100.08 100.28 100.50 100.07 100.30 100.39 100.23 100.39 
100.32 100.03 100.24 100.23 100.33 100.23 100.36 100.42 100.27 100.22 
100.27 100.24 100.26 100.12 100.34 100.49 100.27 100.17 100.39 100.21 
100.36 100.32 100.36 100.26 100.44 100.07 100.29 100.34 100.38 100.33 
100.43 100.28 100.46 100.33 100.34 100.39 100.38 100.37 100.38 100.23 
100.24 100.41 100.41 100.46 100.28 100.24 100.26 100.24 100.52 100.23 
100.33 100.49 100.24 100.22 100.26 100.16 100.38 100.45 100.42 100.25 
100.26 100.26 100.24 100.30 100.16 100.29 100.17 100.51 100.32 100.30 
100.25 100.40 100.35 100.36 100.44 100.26 100.34 100.36 100.25 100.37 
100.22 100.34 100.32 100.36 100.19 100.24 100.33 100.10 100.29 100.29 
100.39 100.35 100.51 100.31 100.32 100.26 100.22 100.27 100.37 100.41 
100.16 100.30 100.43 100.42 100.29 100.27 100.46 100.32 100.20 100.24 
100.47 100.26 100.40 100.29 100.17 100.30 100.39 100.37 100.36 100.32 
100.47 100.41 100.20 100.31 100.31 100.23 100.21 100.19 100.34 100.44 
100.35 100.15 100.23 100.23 100.20 100.16 100.39 100.40 100.18 100.32 
100.28 100.38 100.34 100.28 100.36 100.32 100.18 100.34 100.16 100.25 
100.30 100.33 100.44 100.24 100.21 100.23 100.27 100.30     
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