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Abstract

It is well known that the normal mixture with unequal variance has un-

bounded likelihood and thus the corresponding global maximum likelihood

estimator (MLE) is undefined. One of the commonly used solutions is to put

a constraint on the parameter space so that the likelihood is bounded and

then one can run the EM algorithm on this constrained parameter space to

find the constrained global MLE. However, choosing the constraint parame-

ter is a difficult issue and in many cases different choices may give different

constrained global MLE. In this article, we propose a profile log likelihood

method and a graphical way to find the maximum interior mode. Based on

our proposed method, we can also see how the constraint parameter, used

in the constrained EM algorithm, affects the constrained global MLE. Us-

ing two simulation examples and a real data application, we demonstrate

the success of our new method in solving the unboundness of the mixture

likelihood and locating the maximum interior mode.
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likelihood, Unbounded likelihood

1. Introduction

Let x = (x1, . . . , xn) be independent observations from a m-component

normal mixture density

f(x; θ) = π1φ(x; µ1, σ
2
1) + π2φ(x; µ2, σ

2
2) + · · ·+ πmφ(x; µm, σ2

m) ,

where θ = (π1, . . . , πm−1, µ1, . . . , µm, σ1, . . . , σm), φ(· ; µ, σ2) is the normal

density with mean µ and σ2, and πj is the proportion of jth component with
∑m

j=1 πj = 1. The log-likelihood for x is

logL(θ;x) =
n∑

i=1

log{π1φ(xi; µ1, σ
2
1)+π2φ(xi; µ2, σ

2
2)+· · ·+πmφ(xi; µm, σ2

m)}.
(1)

For a general introduction to mixture models, see Lindsay (1995), Bohning

(1999), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

It is well known that logL(θ;x) in (1) is unbounded without any re-

striction on the component variance, and so the global maximum likelihood

estimator (MLE) of θ, by maximizing (1), does not exist. For example, if we

set µ1 = x1 and let σ2
1 → 0, the likelihood value goes to infinity. However,

for mixtures of normal distributions, at least in the univariate case, there

is a sequence of roots corresponding to local maxima in the interior of the

parameter space that are consistent and asymptotically normal and efficient

(Kiefer, 1978 and Peters and Walker, 1978). Note that if there are multiple
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local maxima in the interior of the parameter space, there is also a prob-

lem of identifying the consistent sequence, which is a very difficult problem

itself. In this article, we do not focus on this issue. Instead, when the likeli-

hood is unbounded, we define the MLE as the maximum interior/local mode.

Hathaway (1985) provided some theoretical support of using the maximum

interior/local mode.

One of the commonly used methods to avoid the unboundness of the log

likelihood and to find the maximum interior mode is to run the EM algorithm

(Dempster et al., 1977) over a constrained parameter space

ΩC = {θ ∈ Ω : σh/σj ≥ C > 0, 1 ≤ h 6= j ≤ m}, (2)

where C ∈ (0, 1], Ω denotes the unconstrained parameter space. See Hath-

away (1985, 1986) and Bezdak, Hathaway, and Huggins (1985) for more

detail. However, a big challenge for this method is to choose the appropriate

cut point C. If C is too large, it is possible that the consistent local maxima

does not belong to the constrained parameter space ΩC and thus the found

estimate will be misleading. Even the consistent local maxima is in ΩC , it

is still possible that ΩC misses some interior modes worthy of consideration.

On the other hand, if C is too small, it is possible that some boundary point,

satisfying σh/σj = C for some h and j, maximizes the log likelihood over the

constrained parameter space ΩC . In this situation, the found estimate is on

the boundary of ΩC and thus depends on the choice of C.
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Another commonly used method is to use maximum penalized likelihood

estimator that adds penalty term to the unequal variance. See Chen, Tan,

and Zhang (2008) and Chen and Tan (2009).

In this article, we propose a profile log-likelihood method and a graphical

way to solve the unboundness issue of likelihood and find the maximum

interior mode for the normal mixture with unequal variance. Unlike the

constrained EM algorithm (Hathaway, 1985, 1986), our proposed method

does not need to specify a cut point C. In addition, based on our proposed

method, we can clearly check whether there are some other minor interior

modes and see how the choice of C in (2) affects the constrained global MLE.

Using the simulation study and a real data application, we demonstrate the

effectiveness of our proposed method and show how the selection of cut point

C affects the constrained MLE (Hathaway, 1985, 1986).

The rest of the paper is organized as follows. Section 2 proposes a pro-

file log likelihood method to solve the unboundness issue of the likelihood

function for the normal mixture with unequal variance. In Section 3, we use

two simulation examples and a real data application to demonstrate how our

proposed method works. We summarize our proposed method and give the

discussion in Section 4.

2. New method

In this section, we will first introduce our profile log likelihood method

for two component normal mixtures and provide a simple EM algorithm. We
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will then extend the profile log likelihood method to normal mixtures of more

than two components.

2.1. Mixtures of two components

Given a sample x = (x1, . . . , xn) from the two-component normal mixture,

the log-likelihood for x is

logL(θ;x) =
n∑

i=1

log{π1φ(xi; µ1, σ
2
1) + π2φ(xi; µ2, σ

2
2)}, (3)

where θ = (π1, µ1, µ2, σ1, σ2) and

φ(x; µ, σ2) =
1√
2πσ

exp{− 1

2σ2
(x− µ)2},

Note that without any restriction, the above log-likelihood is unbounded

and the global MLE is undefined. In this section, we propose a profile like-

lihood method to avoid the unboundness issue and to find the maximum

interior mode of logL(θ;x).

Let σ1 = kσ2 ≡ kσ, where k ∈ (0, 1]. Then the log-likelihood of (3), for

each fixed k, is

logL(η;x, k) =
n∑

i=1

log{π1φ(xi; µ1, k
2σ2) + π2φ(xi; µ2, σ

2)}. (4)

where η = (π1, µ1, µ2, σ). Note that for each fixed k, the log-likelihood of

(4) is bounded. Hence the global MLE for (4) is well defined. In order to
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estimate k, we define the profile log-likelihood for k as

p(k) = max
η

logL(η;x, k), (5)

where logL(η;x, k) is defined in (4).

Let

ΩC = {θ ∈ Ω : min(σ1, σ2)/ max(σ1, σ2) ≥ C > 0}, (6)

where Ω is the unconstrained parameter space for θ.

Theorem 2.1. We have the following properties about the profile likelihood
p(k) defined in (5).

(a) The profile likelihood p(k) is unbounded and goes to infinity when k goes
to zero.

(b) The θ̂ = (π̂1, µ̂1, µ̂2, σ̂1, σ̂2) maximizes the log likelihood logL(θ;x) of (3)
constrained in ΩC, where σ̂1 ≤ σ̂2, if and only if k̂ = σ̂1/σ̂2 maximizes
the profile log-likelihood p(k) of (5) in KC, where KC = {k ∈ (0, 1] :
k ≥ C}.

(c) Suppose k̃ is a local mode for the profile log-likelihood p(k) with the
corresponding η̃ = (π̃1, µ̃1, µ̃2, σ̃). Let θ̃ = (π̃1, µ̃1, µ̃2, k̃σ̃, σ̃). Then θ̃ is
a local mode for the log likelihood logL(θ;x) of (3).

The proof of Theorem 2.1 is given in the Appendix. From (a), one can

know that p(k) is also unbounded. Therefore, we cannot estimate k by max-

imizing p(k) directly. Based on (b), one can know that finding the maximum

interior mode of logL(θ;x) of (3) is equivalent to finding the maximum in-

terior mode of p(k). Noting that k is a one-dimensional parameter, hence

our profile likelihood method transfers the problem of locating the maximum
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interior mode for a high-dimensional function logL(θ;x) into locating the

maximum interior model for a one-dimensional function p(k).

For one dimension function p(k), one can easily use the plot of p(k) versus

k to locate the maximum interior mode of p(k) without choosing a cut point

C in advance, which is one of the major advantages of our proposed method

and will be illustrated in more detail in Section 3. Let k̂ be the maximum

interior mode of (5). Then fixing k at k̂, we can find the MLE of (4), denoted

by η̂(k̂), and the corresponding θ̂(k̂). The θ̂(k̂) is our proposed maximum

interior mode of (3).

Based on the plot of p(k) versus k, one can also clearly see how the cut

point C in (6) affects the constrained MLE (Hathaway 1985, 1986). We will

demonstrate this using examples in Section 3.

Note that the profile log-likelihood p(k) does not have an explicit form.

Therefore, we can only numerically evaluate p(k) for a set of grid points of

k. The following is the EM algorithm to find p(k) for any fixed k.

Algorithm 1: Starting with the initial parameter values {π̂(0)
1 , µ̂

(0)
1 , µ̂

(0)
2 , σ̂

(0)
1 =

kσ̂
(0)
2 }, iterate the following two steps until convergence.

E Step: Compute the classification probabilities:

p̂
(t+1)
ij =

π̂
(t)
j φ(xi; µ̂

(t)
j , σ̂

2(t)
j )

2∑
l=1

π̂
(t)
l φ(xi; µ̂

(t)
l , σ̂

2(t)
l )

, i = 1, . . . , n, j = 1, 2

7



M step: Update the component parameters:

µ̂
(t+1)
j =

∑n
i=1 p̂

(t+1)
ij xi∑n

i=1 p̂
(t+1)
ij

, π̂
(t+1)
j =

∑n
i=1 p̂

(t+1)
ij

n
, j = 1, 2.

σ̂
2(t+1)
1 =

n∑
i=1

[
p̂

(t+1)
i1 (xi − µ̂

(t+1)
1 )2 + k2p̂

(t+1)
i2 (xi − µ̂

(t+1)
2 )2

]

n
,

σ̂
(t+1)
2 = σ̂

(t+1)
1 /k.

Similar to the general EM-algorithm, this algorithm is only guaranteed to

converge to a local mode. In order to find the maximal mode (global MLE)

for each fixed k, we may run the algorithm from several initial values and

choose the converged mode which has the largest log-likelihood (note that

the maximal mode is well defined since the log likelihood (4) is bounded for

each fixed k).

2.2. Mixtures of more than two components

When there are more than two components, i.e., m > 2, let k = σ(1)/σ(m),

where σ(1) ≤ σ(2) ≤ . . . ≤ σ(m) are ordered sequence of (σ1, . . . , σm). Let

Θk = {θ = (π1, . . . , πm−1, µ1, . . . , µm, σ1, . . . , σm) | σ(1) = kσ(m)}.

Then one can define the profile log likelihood as

p(k) = max
θ∈Θk

n∑
i=1

log f(xi; θ, k), k ∈ (0, 1]. (7)
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It can be easily seen that the above defined profile log likelihood p(k) also

has the properties given in Theorem 2.1. In addition, similar to the way

proposed in Section 2.1, one can also use p(k) in (7) to find the maximum

interior mode and check how the constraint parameter affects the constrained

MLE for the constrained EM algorithm.

Due to the complicated nature of the constrained optimization, finding

p(k) is not trivial for each fixed k. In (t + 1)th step of EM algorithm, E step

finds the classification probabilities

p̂
(t+1)
ij =

π̂
(t)
j φ(xi; µ̂

(t)
j , σ̂

2(t)
j )

m∑
l=1

π̂
(t)
l φ(xi; µ̂

(t)
l , σ̂

2(t)
l )

, i = 1, . . . , n, j = 1, . . . , m.

In M step, the component means and the mixing proportions are updated by

µ̂
(t+1)
j =

∑n
i=1 p̂

(t+1)
ij xi∑n

i=1 p̂
(t+1)
ij

, π̂
(t+1)
j =

∑n
i=1 p̂

(t+1)
ij

n
, j = 1, . . . , m.

Let nj =
∑n

i=1 p̂
(t+1)
ij and S2

j =
∑n

i=1 p̂
(t+1)
ij (xi − µ

(t+1)
j )2. For simplicity of

notation, we omit the dependence of nj and Sj on t+1. For a fixed k ∈ (0, 1],

based on the EM algorithm theory, σ̂(t+1) = (σ̂
(t+1)
1 , . . . , σ̂

(t+1)
m ) are updated

by minimizing

m∑
j=1

(
nj log σj +

S2
j

2σ2
j

)
, (8)

subject to σ(1) = kσ(m).
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Note that due to the label switching issue of mixture models (Yao and

Lindsay, 2009), the component index does not have real meaning. Without

loss of generality, we will assume that the component index satisfies S2
1/n1 ≤

S2
2/n2 ≤ . . . ≤ S2

m/nm. (If the component index does not satisfy the above

constraint, we can always permute the component index such that the above

constraint holds.)

Note that when k = 1, the component variance are all equal and thus

the computation of p(1) is straightforward. In the following, we will mainly

consider the situation when 0 < k < 1.

Proposition 2.1. Let σ̂(t+1) = (σ̂
(t+1)
1 , . . . , σ̂

(t+1)
m ) be the maximizer of (8),

subject to σ(1) = kσ(m), where k ∈ (0, 1). Let (σ̂
(t+1)
(1) , . . . , σ̂

(t+1)
(m) ) be the corre-

sponding ordered sequence. Then, we have the following results about σ̂(t+1).

(a) If S2
1/n1 ≤ k2S2

m/nm, there exists 1 ≤ i < j ≤ m such that σ̂
(t+1)
1 =

σ̂
(t+1)
2 = . . . = σ̂

(t+1)
i ≤ Si+1/

√
ni+1, σ̂

(t+1)
j = σ̂

(t+1)
j+1 = . . . = σ̂

(t+1)
m ≥

Sj−1/
√

nj−1, and σ̂
(t+1)
l = Sl/

√
nl, l = i + 1, . . . , j − 1.

(b) If S2
1/n1 > k2S2

m/nm, there exists 1 ≤ i < j ≤ m such that σ̂
(t+1)
i =

σ̂
(t+1)
(1) ≤ S1/

√
n1, σ̂

(t+1)
j = σ̂

(t+1)
(m) ≥ Sm/

√
nm, and σ̂

(t+1)
l = Sl/

√
nl, l 6=

i and l 6= j.

The proof of Proposition 2.1 is given in the Appendix. From the Proposition

2.1, we can see that the constrained maximizer of (8) depends on whether

S2
1/n1 < k2S2

m/nm holds. When S2
1/n1 ≤ k2S2

m/nm, σ̂
(t+1)
l = σ̂

(t+1)
(l) , l =

1, . . . , m. (Note that we have assumed S2
1/n1 ≤ S2

2/n2 ≤ . . . ≤ S2
m/nm.)

However, when S2
1/n1 > k2S2

m/nm, σ̂
(t+1)
(1) is not necessary equal to σ̂

(t+1)
1 and

σ̂
(t+1)
(m) is not necessary equal to σ̂

(t+1)
m .
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Proposition 2.2. (a) For any 1 ≤ i < j ≤ m, under the constraint that
σ1 = σ2 = . . . = σi = σ and σj = σj+1 = . . . = σm = σ/k, the objective
function (8), as a function of σ by fixing {σi+1, . . . , σj−1}, is minimized
at

σ̂2
(i,j) =

∑i
l=1 S2

l + k2
∑m

l=j S2
l∑i

l=1 nl +
∑m

l=j nl

. (9)

In addition, (8) is monotone decreasing when σ < σ̂(i,j) and monotone
increasing when σ > σ̂(i,j).

(b) For any 1 ≤ i < j ≤ m, under the constraint that σi = σ = kσj, the
objective function (8), as a function of σ by fixing {σl, l 6= i and l 6= j},
is minimized at

σ̌2
(i,j) =

S2
i + k2S2

j

ni + nj

. (10)

In addition, (8) is monotone decreasing when σ < σ̌(i,j) and monotone
increasing when σ > σ̌(i,j).

The proof of Proposition 2.2 is given in the Appendix. Based on the

Proposition 2.1 and 2.2, we propose to use the following two steps to find

σ̂(t+1) that minimizes (8) subject to σ(1) = kσ(m).

Step 1: If S2
1/n1 ≤ k2S2

m/nm, for all pairs 1 ≤ i < j ≤ m, let σ̃(i,j) be

the minimizer of (8) under the constraint σ̃1 = σ̃2 = . . . = σ̃i, σ̃j =

σ̃j+1 = . . . = σ̃m = σ̃1/k, σ̃2
1 ≤ S2

i+1/ni+1, and σ̃2
m ≥ S2

j−1/nj−1, when

{σ̃2
l = S2

l /nl, l = i + 1, . . . , j − 1} are fixed, where

σ̃2
1 =





σ̂2
(i,j), k2S2

j−1/nj−1 ≤ σ̂2
(i,j) ≤ S2

i+1/ni+1;

S2
i+1/ni+1, σ̂2

(i,j) > S2
i+1/ni+1;

k2S2
j−1/nj−1, σ̂2

(i,j) < k2S2
j−1/nj−1;

where σ̂(i,j) is defined in (9).
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If S2
1/n1 > k2S2

m/nm, for all pairs 1 ≤ i < j ≤ m, let σ̃(i,j) be the

minimizer of (8) under the constraint σ̃i = kσ̃j and σ̃2
i ≤ S2

1/n and σ̃2
j ≥

S2
m/nm, when {σ̃2

l = S2
l /nl, l 6= i and l 6= j} are fixed, where

σ̃2
i =





σ̌2
(i,j), k2S2

m/nm ≤ σ̌2
(i,j) ≤ S2

1/n1;

S2
1/n1, σ̌2

(i,j) > S2
1/n1;

k2S2
m/nm, σ̌2

(i,j) < k2S2
m/nm;

where σ̌(i,j) is defined in (10).

Step 2: Let (̃i, j̃) be the index of (i, j) such that σ̃(̃i,j̃) minimizes (8) among

σ̃(i,j)s, 1 ≤ i < j ≤ m. Then σ̂(t+1) = σ̃(̃i,j̃) minimizes (8) subject to

σ(1) = kσ(m).

By careful analysis of the properties of σ̂(t+1), one might be able to further

shorten the computations of Step 1 by skipping the calculation of σ̃(i,j)s for

some (i, j). See the remarks after the proof of Proposition 2.1 in the Appendix

for more detail.

3. Example

In this section, we will use two simulation examples and a real data appli-

cation to show how our proposed method works. For simplicity of reporting,

we mainly consider the case when m = 2. When m > 2, the results are

similar. The Algorithm 1 is used to find the profile log-likelihood p(k) in (5)

over 200 equally spaced grid points of k from 10−4 to 1. Note that when

12



k is close to zero, the smaller component variance, say σ2
1, is also close to

zero. Therefore, when k is small, the initial value for µ1 should be one of

the observations, otherwise, it is possible that there will be no observations

assigned to the first component. For algorithm 1, we used 30 initial values

for each k. The initial values for mixing proportions π1 and π2 are both 1/2.

The initial values for the larger component variance σ2
2 is half of the sample

variance. The first 15 initial values for the component means are randomly

sampled from the observations (x1, . . . , xn). For each of the sampled com-

ponent means, say (xi, xj) for some i 6= j, we also used its permuted values

(xj, xi) as the initial component means in order to avoid misspecifying the

labels between component means and component variance. When k is not

close to zero, one might try some other methods to choose the initial values.

See McLachlan and Peel (2000, §2.12) and Karlis and Xekalaki (2003).

3.1. Simulation Studies

Example 1: 100 observations are generated from 0.3N(0, 0.52)+0.7N(1, 1).

Figure 1 is the profile log-likelihood plot of p(k) vs. k. From the plot, we

can see that p(k) goes to infinity when k goes to zero. To better look at the

structure of the profile log-likelihood plot for the interior parameter space, in

Figure 1 (b), we also provide the plot excluding the area where k is very close

to zero and the corresponding log-likelihood is relatively very large. From

Figure 1 (b), one can see that there are three interior modes. The information

about these three modes are reported in Table 1 (they can be easily located
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based on the estimated profile log-likelihood p(k)). By comparing the values

of logL, one can know that the maximum interior mode is at k = 0.4378.

Table 1: Local maximizers for Example 1

Local maximizer log L π1 µ1 µ2 σ1 σ2

k = 0.1891 -153.2144 0.0934 -0.1700 0.8280 0.2175 1.1503

k = 0.4378 -152.9230 0.2199 -0.0567 0.9578 0.5092 1.1629

k = 0.8209 -153.0170 0.2796 2.0455 0.2260 0.6791 0.8273

Based on the profile log-likelihood p(k) and Figure 1, one can also see that

when k < 0.07 the profile log likelihood is greater than −152.9230 (the profile

log likelihood value of the maximum interior mode). The value 0.07 can be

found based on the estimated p(k). Therefore, when the constrained EM

algorithm (Hathaway 1985, 1986) is used to find the MLE, if C < 0.07 in ΩC

of (6), the constrained MLE is on the boundary of the parameter space ΩC .

In fact, in this case, the constrained MLE even depends on the cut point C,

which is not reasonable. If 0.07 < C < 0.4378, the constrained EM algorithm

can find the maximum interior mode and give the same result as our profile

likelihood method. However, if C is too large, it is possible for the constrained

EM algorithm to miss some interior modes. For example, if 0.1891 < C <

0.4378, the constrained EM algorithm will miss the first interior mode (k =

0.1891). Although the missed one is not the maximum interior mode, in

many cases the interior mode can also provide useful information, especially

for clustering application (McLachlan and Peel, 2000, §8.3.2).
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Example 2: 100 observations are generated from 0.3N(0, 0.52)+0.7N(1.5, 1).

Figure 2 is the profile log-likelihood plot. From the plot, we can see that there

are about three interior modes. The corresponding information is reported

in Table 2. The main controversy is on the first mode with k = 0.0361,

denoted by θ̂1. Although θ̂1 has the largest log-likelihood among all three

modes, it is hard to say whether it is a real interior mode or a spurious mode

that is very close to the boundary of the parameter space. If one thinks

that the mode θ̂1 with k = 0.0361 is reasonable, then one might use it since

it has the largest likelihood among all three modes. If one thinks that θ̂1

is not of practical interest since one of the component proportions is only

about 0.07 and the corresponding variance is also very small, then one might

choose the mode with k = 0.4879, which has the second largest likelihood in

Table 2. In addition, from Figure 2, one can also see that the area around

the mode with k = 0.4879 is much larger than the area around the mode

θ̂1 with k = 0.0361. Therefore, when using the general EM algorithm, one

might expect that most of the initial values will converge to the mode with

k = 0.4879.

Table 2: Local maximizers for Example 2

Local maximizer log L π1 µ1 µ2 σ1 σ2

k = 0.0361 -142.9583 0.0685 -0.3670 1.0979 0.0376 1.0394

k = 0.1516 -144.5090 0.1045 -0.4303 1.1642 0.1521 1.0036

k = 0.4879 -143.6260 0.3515 0.0387 1.5172 0.4577 0.9380
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Based on Figure 2 and the estimated p(k), one can also get that when C >

0.0361 in ΩC of (6), the constrained EM algorithm (Hathaway 1985, 1986)

will miss the first mode. When C < 0.06, the constrained EM algorithm

can always find the estimate with larger log likelihood than the mode with

k = 0.4879. In this case, the constrained global MLE also depends on the cut

point C. If C < 0.01, the constrained global MLE occurs at the boundary of

ΩC and has larger log-likelihood than the first mode of k = 0.0361.

3.2. Real Data Application

The Crab Data: We consider the famous crab data set analyzed by Pear-

son (1894). The histogram of the data is shown in Figure 3. The data set

consists of the measurements on the ratio of forehead to body length of 1000

crabs sampled from the bay of Naples. Following Pearson (1894), we use a

two-component normal mixture model to analyze this data set.

Figure 4 is our proposed profile log-likelihood plot. For this example,

when k is from 10−4 to 10−2, the corresponding log-likelihood is too large,

which will affect the display of the plot. Therefore, we only provide the profile

log-likelihood plot for k values from 10−2 to 1. From the plot, we can see that

there are only one interior mode (with k = 0.6418). When k = 0.6418, the

corresponding MLE of (π1, µ1, µ2, σ1, σ2) is (0.5360, 0.6563, 0.6355, 0.0126, 0.0196).

If the constrained EM algorithm is used, based on Figure 4 and the esti-

mated p(k), when the cut point C < 0.05 in ΩC of (6) the constrained global

MLE occurs on the boundary of ΩC and thus depends on the value C. When
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C > 0.05, the constrained MLE is the same as the maximum interior mode

found by our proposed profile log-likelihood method.

4. Discussion

In this paper, we proposed a profile log likelihood method to solve the

unboundness issue of the likelihood function for the normal mixture with

unequal variance. Unlike the usual constrained EM algorithm (Hathaway

1985, 1986), our proposed method does not need to specify a cutting point C

in advance. Based on the profile log-likelihood plot and the estimated p(k),

one can easily identify the maximum interior mode. In addition, based on

our proposed method, one can also clearly see how the cutting point C in (6)

affects the constrained global MLE for the constrained EM algorithm (Hath-

away 1985, 1986). The Matlab programs for calculating the profile likelihood

is available to download at “http://www-personal.ksu.edu/ wxyao/”.

For multivariate normal mixture with unequal covariance matrix, Σi (i =

1 . . . , m), the likelihood function is also unbounded. Similar to the univariate

case, one can also put some constraint on the covariance matrix. For example,

let k be the minimum of all the eigenvalues of ΣhΣ
−1
j (1 ≤ h 6= j ≤ m) or let

k be the minimum of |Σh|/|Σj| (1 ≤ h 6= j ≤ m) (Hathaway 1985, Ingrassia,

2004). Then one can define the profile log likelihood for k similar to (7) and

use it to find the maximum interior mode. The main difficulty lies on how to

maximize the mixture likelihood under the above constraints. These require

further research.
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APPENDIX: PROOFS

Proof of Theorem 2.1:

(a) Let µ1 = x1. Then log L(η;x, k) in (4) goes into infinity when k goes to

zero. Then the result follows.

(b) Given any k ∈ KC , let η(k) be the corresponding parameter maximizing

logL(η;x, k) and θ(k) be the parameter value corresponding to η(k). Noting

that θ(k) ∈ ΩC and θ̂ maximizes logL(θ;x) in ΩC , hence

p(k) = logL(η(k);x, k) = logL(θ(k);x) ≤ logL(θ̂;x).

Since k̂ = σ̂1/σ̂2, one can easily know that θ(k̂) = θ̂ and p(k̂) = L(θ̂;x).

Hence p(k̂) ≥ p(k). Therefore, k̂ maximizes p(k) in KC . The reverse argu-

ment can be proved similarly.

(c) Suppose θ̃ is not a local mode for the log likelihood of logL(θ;x) of

(3). Then for any given small ε > 0, then exists a θ̄ satisfying ||θ̄ − θ̃|| ≤
ε and logL(θ̄;x) > logL(θ̃;x), where || · || is the Euclidian norm. Let

θ̄ = (π̄1, µ̄1, µ̄2, σ̄1, σ̄2) and k̄ = σ̄1/σ̄2, where σ̄1 ≤ σ̄2. Then p(k̄) =

logL(η̄;x, k̄) = logL(θ̄;x), where η̄ = (π̄1, µ̄1, µ̄2, σ̄2). Noting that p(k̃) =

logL(θ̃;x) < p(k̄), hence k̃ 6= k̄. Since ||θ̄−θ̃|| ≤ ε, where θ̃ = (π̃1, µ̃1, µ̃2, k̃σ̃, σ̃),
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hence |σ̄1 − k̃σ̃| ≤ ε and |σ̄2 − σ̃| ≤ ε. Therefore

k̃σ̃ − ε

σ̃ + ε
≤ k̄ =

σ̄1

σ̄2

≤ k̃σ̃ + ε

σ̃ − ε
.

Let ε → 0 , then k̄ → k̃. Since p(k̃) < p(k̄) for all k̄, k̃ can not be a local

mode, which contradicts the assumption. Hence θ̃ is a local mode for the log

likelihood of logL(θ;x) of (3). ¤

Before we prove the Proposition 2.1, we first provide a useful Lemma.

Lemma 5.1. Let σ̂(t+1) = (σ̂
(t+1)
1 , . . . , σ̂

(t+1)
m ) be the minimizer of (8), subject

to σ(1) = kσ(m), where k ∈ (0, 1). Let σ̂
(t+1)
(1) ≤ σ̂

(t+1)
(2) . . . ≤ σ̂

(t+1)
(m) be the cor-

responding ordered minimizer. Then σ̂
(t+1)
(1) ≤ S1/

√
n1 and σ̂

(t+1)
(m) ≥ Sm/

√
nm

or σ̂
(t+1)
(1) ≥ S1/

√
n1 and σ̂

(t+1)
(m) ≤ Sm/

√
nm.

Proof: For simplicity of proof, we will assume that S1/n1 < S1/n2 < . . . <

Sm/nm. Let

Q(σ) =
m∑

j=1

(
nj log σj +

S2
j

2σ2
j

)
.

Note that

∂Q(σ)

∂σ2
j

=
nj

2σ4
j

(σ2
j − S2

j /nj).

Hence Q(σ) is minimized when σ2
j = S2

j /nj. In addition, Q(σ) is monotone

increasing when σ2
j > S2

j /nj and monotone decreasing when σ2
j < S2

j /nj.

If σ̂
(t+1)
(1) < S1/

√
n1 and σ̂

(t+1)
(m) < Sm/

√
nm, one can easily see that

σ̂
(t+1)
m = σ̂

(t+1)
(m) = σ

(t+1)
(1) /k, if considering Q(σ) as a function σm by fix-

ing other arguments. Suppose σ̂
(t+1)
(1) = σ̂

(t+1)
i and Sj/

√
nj ≤ σ̂

(t+1)
(m) <

Sj+1/
√

nj+1. It can be seen that σ̂
(t+1)
l = Sl/

√
nl, l 6= i and l ≤ j, and
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σ̂
(t+1)
l = σ̂

(t+1)
m , j 6= i and l > j. However, under the above assumptions,

when σ̂
(t+1)
(1) moves closer to S1/

√
n1 and σ̂

(t+1)
m = σ̂

(t+1)
(1) /k moves closer to

Sm/
√

nm, the Q(σ) will decrease. Therefore, the contradiction occurs.

Similarly, we can prove the contradiction if we assume σ̂
(t+1)
(1) > S1/

√
n1

and σ̂
(t+1)
(m) > Sm/

√
nm. Therefore, the result follows. ¤

Proof of Proposition 2.1: (a) Based on Lemma 5.1, since S2
1/n1 ≤ k2S2

m/nm,

σ̂
(t+1)
(1) ≥ S1/

√
n1 and σ̂

(t+1)
(m) ≤ Sm/

√
nm. Suppose Si/

√
ni ≤ σ̂

(t+1)
(1) <

Si+1/
√

ni+1 and Sj−1/
√

nj−1 < σ̂
(t+1)
(m) ≤ Sj/

√
nj.

Based on the properties of Q(σ) as a function of σj, one can easily see

that σ̂
(t+1)
1 = σ̂

(t+1)
2 = . . . = σ̂

(t+1)
i = σ̂

(t+1)
(1) < Si+1/

√
ni+1, σ̂

(t+1)
j = σ̂

(t+1)
j+1 =

. . . = σ̂
(t+1)
m = σ̂

(t+1)
(m) > Sj−1/

√
nj−1, and σ̂

(t+1)
l = Sl/

√
nl, l = i + 1, . . . , j− 1.

(b) Based on the Lemma 5.1, since S2
1/n1 > k2S2

m/nm, σ̂
(t+1)
(1) ≤ S1/

√
n1

and σ̂
(t+1)
(m) ≥ Sm/

√
nm. Suppose σ̂

(t+1)
(1) = σ̂

(t+1)
i and σ̂

(t+1)
(2) = σ̂

(t+1)
j . It can

be easily seen that σ̂
(t+1)
l = Sl/nl, l 6= i, l 6= j and i < j. In addition, if

σ̂
(t+1)
(1) = S1/

√
n1, then σ̂

(t+1)
(1) = σ̂

(t+1)
1 . Suppose σ̂

(t+1)
(m) = σ̂

(t+1)
j = kσ̂

(t+1)
1 . If

considering Q(σ) as a function of σ1, we can easily prove that the minimizer

is not S1/
√

n1. The contradiction occurs. Hence, σ̂
(t+1)
(1) < S1/

√
n1. Similarly,

we can also prove σ̂
(t+1)
(m) > Sm/

√
nm. ¤

Remarks:

1. From the above proof, we can see that we have proved the stronger

results than Proposition 2.1, i.e. the strict inequality holds for σ̂(t+1).

Hence, in Step 1 of Section 2.2, we only need to consider σ̃(i,j)s when the

strict inequality constraint holds. For example, if S2
1/n1 > k2S2

m/nm,
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we only need to consider σ̃(i,j)s when k2/S2
m/nm < σ̌(i,j) < S2

1/n1,

where σ̌(i,j) is defined in (10).

2. In addition, when S2
1/n1 ≤ k2S2

m/nm, it can be seen that Q(σ̃(i,j)) <

Q(σ̃(i′,j′)) when i′ > i, j′ < j, and the strict inequality constraint holds

for σ̃(i,j) and σ̃(i′,j′), since σ̃(i,j) minimizes Q(σ) over larger parameter

space than σ̃(i′,j′). Let n(i) be the largest j values for fixed i such that

the inequality constraint holds for σ̃(i,j) and ñ(i) = max{n(1), . . . , n(i−
1)}. Then, we only need to consider i when n(i) > ñ(i), i.e. for i, we

only need to consider j = ñ(i) + 1, . . . , m. If ñ(i) = m for some i, then

we can stop and need not calculate σ̃(l,j) for l = i + 1, . . . , m− 1.

Proof of Proposition 2.2: (a) Under the constraint that σ1 = σ2 = . . . =

σi = σ and σj = σj+1 = . . . = σm = σ/k,

Q(σ)

∂σ2
=

∑i
l=1 nl +

∑m
l=j nl

2σ4

(
σ2 −

∑i
l=1 S2

l + k2
∑m

l=j S2
l∑i

l=1 nl +
∑m

l=j nl

)
.

Therefore the result follows.

(b) The proof is similar to the proof of (a). ¤
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Figure 1: Profile log-likelihood plot for Example 1: (a) for all k values from 10−4 to 1; (b)
for k values from 0.15 to 1.
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Figure 2: Profile log-likelihood plot for Example 2: (a) for all k values from 10−4 to 1; (b)
for k values from 0.03 to 1.
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Figure 3: Histogram of crab data. The number of bins used is 30.
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Figure 4: Profile log-likelihood plot for crab data: (a) for all k values from 10−2 to 1; (b)
for k values from 0.15 to 1.
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