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Abstract

This research studies a few methodologies for real-time detection of wave profile
changes. In regular profile monitoring, change detection takes place at the end of time period
when a complete profile is available. In real-time change detection of profiles, a potential profile
change takes place between the beginning and the end of the time period. The decision involves
the identification whether a process is in control or out of control before the entire profile is
generated. In this regard, five proposed methodologies were developed and tested in this thesis.

Earthquake waves, manufacturing processes, and heart beat rate are a few examples of
profiles with different natures that the proposed methodologies can be applied to. Water
temperature profiles generated durning a curing process are considered as an example in this
study. Successful implementation of the proposed work on these profiles would cause saving
great amounts of time and money.

Five methods are studied for monitoring the water control process of a curing process.
The first four proposed methodologies are based on an univariate approach where the statistic
used for process monitoring is the enclosed area between the profiles and their fitted cutting
lines. A multivariate approach is also proposed.

A simulation study is also conducted when the best method is chosen based on it
performance and simplicity of operations. Various types of acceptable and unacceptable profiles
are simulated for the best proposed method identified in the preliminary study. The best method
has a satisfactory performance in detecting the changes in the unacceptable profiles. In addition,
the false alarm rate in identifying acceptable profiles as bad profiles is lower than 10%.
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Chapter 1-Introduction

1.1 Problem Statement

Profile monitoring has drawn much attention in the field of Quality Engineering in recent
years. Profiles are time series over time or space. There are many characteristics that are
captured in form of profiles. Earthquake waves, heart beat waves, temperature changes over time
and many others are all examples of profiles. Comparing to univariate statistical process
monitoring, profile analysis demands different tools and techniques. Profiles may have different
shapes that depending on those, different regression models could be fitted to them. In this
regard, Zhu, et al. (2010) and Zou, et al. (2007) studied the linear profiles while Williams, et al.
(2007) and Ding, et al.(2006) studied nonlinear profiles. Examples of the research conducted
about linear and nonlinear profiles will be brought in chapter two.

In profile analysis, the decision about the quality of a profile is usually made at the end of
the period when a profile is completely generated. Most of the research conducted in the field of
profile monitoring is based on this approach. In this study, a new approach in the profile
monitoring area is proposed to detect profile changes based on real-time data feed. It would be
extremely beneficiary to detect an irregular profile before the entire profile is generated. This
would be of a great importance in many different fields. For example, in field of earthquake
detection, as soon as a wave is detected as abnormal, appropriate warnings would be given and
thus, the intensity of undesired consequences might get reduced. Manufacturing is another field
that can take advantage of this approach. Producing a product may consist of several process
parameters measured in form of profiles. Similar to the earthquake example, it is important to
detect profile changes as soon as possible, which could save product cost through defect
preventions.

It is of great importance to catch an out-of-control situation as fast as possible but there
are some limits as well. It would be perfect if we were able to analyze the profiles continuously,
but this requires extensive amount of data calculations and analyses. An alternative is to divide
the entire profile into finite number of portions and then do the analysis at the end of each

portion. Depending on the shape of profiles, different numbers of portions on a profile may be



required. Having more portions does not always translate into better detection performance. The
optimal number of portions and locations of the points depends on each profile application. If
there are many change patterns or many change locations that distinguish the bad profiles from
the good ones, it may require more portions in general. Otherwise, a small number of portions

may be adequate.

Figure 1.1 Completion of a water temperature profile
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Water Temprature

(k) Complete Profile

The aim of this thesis is to develop a s framework for detecting changes in profiles based
on real-time data feed. Several methodologies will be studied to accomplish this goal. Figure 1.1-
a through Figure 1.1-k display a water temperature profile divided into eleven portions. This
profile is obtained from a curing process that will be illustrated as a case study in the following
section. The complete profile is displayed in Figure 1.1-k. Considering the shape and pattern of
this profile, eleven portions are considered for change detection analyses. The obtained profiles
from this case study will be used throughout this thesis for testing and validating the proposed

methodologies.

1.2 Case Study: The Curing Process

This case study is about one of the processes in producing high-pressure hose. This
process is called curing. A curing process takes place in a sealed heat chamber called an
autoclave or vulcanizer (vulcanization 2010). High-pressure hose products in reels are loaded
into the vulcanizer. Then the vulcanizer is heated according to a curing recipe to reach a set
temperature for a fixed amount of time. The housing that contains a vulcanizer is often called

vessel. Figure 1.2 shows a schematic diagram of a vessel of a typical vulcanizer.



Figure 1.2 A schematic diagram of a vessel of a typical vulcanizer from Chang et al. (Chang, Tsai and
Lin)
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A release valve and a thermocouple are located at the bottom of the vessel. During a
curing cycle, when high-pressure hose products are cured over time, moisture in the products
gradually releases into the bottom of the vessel. This moisture accumulates into condensation
water that pools at the bottom of a vessel. The condensation water temperature readings collected
over time from the thermocouple form a profile that reflects proper on-and-off functions of the
water-release valve. This profile consists of three stages: the warm-up stage, the curing stage,
and the cool-down stage. Figure 1.2 displays these three stages of the condensation water

temperature’s profile.



Figure 1.3 Condensation water temperature profile of a typical curing cycle from Chang, et al. (2011)
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The release valve is triggered when the water temperature drops below a pre-defined
setting. Once the water is released, the water temperature at the valve will rise again and another
cycle begins.

If the water valve operates normally, then it opens and closes routinely to keep the water
level at the bottom of the vessel at an acceptable level. If the water-release valve operates
infrequently, reels of hose products may immerse in accumulated water to cause either cosmetic
or functional damage. If the water-release valve operates too frequently or opens at all times, it
wastes energy due to escaping heat.

Most activities of the condensation water temperature take place during the curing stage.
Therefore, the focus of this research is on this stage. Chang, et al. (2011) studied the
implementation of a SPC to the curing stage of the condensation water temperature profile. Their
aim was to detect profile changes after a complete profile was obtained while in this research the
proposed SPC tool is implemented on a partial profile based on real-time data feed.

If the process is in control, it means that the water release valve is operating normally.
Otherwise, the process is out of control, which means that the valve is either operating
infrequently or too frequently. One of the research goals is to detect possible out-of-control

operations as soon as possible before a complete profile is obtained.
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This case study presents a major challenge. There is no standard form as in-control form
of the water temperature profile. In other words, there is no gold standard profile that we would
be able to compare each profile with for process monitoring purposes. Figure 1.4 shows five
different water temperature profiles that are all in control during the curing stage.

Figure 1.4 Five in-control wave profiles from Chang, et al. (2011)
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As it’s shown in Figure 1.4, the five in-control wave profiles do not have the same
frequency and amplitude. Instead of finding a gold (standard) profile, quality engineers classify a
set of profiles as acceptable or unacceptable. For example, the profiles of Figure 1.5-a and
Figure 1.5-b are classified as acceptable and profiles of Figure 1.5-c and Figure 1.5-d are
classified as unacceptable. One of main causes for the differences is the load of products that

may contain different moisture contents Chang, et al. (2011).



Figure 1.5 Patterns of condensation water temperature profiles. (a) and (b) are acceptable , while (c) and

(d) are unacceptable
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1.3 Thesis Overview

This thesis contains the following chapters. In this chapter the problem statement was
defined. A case study that will be used as a sample to test the proposed methodologies was also
illustrated. In chapter two, a brief history of research related to profile analysis and process
monitoring will be provided. Chapter three will include a few proposed methodologies for real-
time profile change detection. The performance of each methodology in the illustrated case study

will also be studied in the same chapter.



Chapter four will provide discussions and analyses of selecting the best approach
introduced in chapter three. This chapter will also include a simulation study based on the best

method selected. Finally, chapter five will contain conclusions and future research.



Chapter 2-Literature Review

Profile monitoring is the use of control charts for cases in which the quality of a process
or product can be characterized by a functional relationship between a response variable and one
or more explanatory variables [Woodall, 2007]. Profiles occur in many areas. A few examples of
profiles such as earthquake waves were illustrated in the previous chapter. In terms of modeling
approaches for profile monitoring, several categories are obtained. Woodall (2007) specifies
linear regression, multiple and polynomial regression, non-linear regression, mixed models and
the use of wavelets as a few categories in this regard. Extensive amounts of research have been
conducted in all of the mentioned categories. A review of the most conducted current research
will be summarized in the following categories: linear regression, nonlinear regression and

mixed models.

2.1 Linear Regression

Linear regression approach is the one that is applied to the profiles that linear models are
the best fit to them. Those profiles can be called as linear profiles. In the category of linear
regression or in other words monitoring the linear profiles, the following researches have been
conducted.

Mahmoud, et al. (2006) proposed a change point approach based on the segmented
regression technique for testing the constancy of the regression parameters in a linear profile data
set. Zhu, et al. (2010) proposed a Shewhart control chart for monitoring slopes of linear profiles.
Zou, et al. (2007) proposed a multivariate exponentially weighted moving average monitoring
scheme for linear profiles. Gupta, et al. (2006) compared the performance of two Phase Il
monitoring schemes for linear profiles. One of them is called NIST and is based on classical
calibration method monitoring the deviations from the regression line and the other one is called
KMW and is based on individually monitoring the parameters of the linear profile. Their
simulation study revealed that the NIST performs poorly in comparison with the KMW method.
Hosseinifard, et al. (2010) and Hosseinifard, et al. (2011) proposed a feed forward neural

network to detect and classify drift shifts in linear profiles. In the field of quality control most

10



research focuses on developing control charts to monitor the product characteristics or process
monitoring but monitoring the measurement gauges is also important because their performance
affects the obtained results of measurements. In this regard, Chang, et al. (2006) developed a

Shewhart chart to monitor the linearity between two measurement gauges.

2.2 Nonlinear Regression

Nonlinear regression approach is the one that nonlinear models provide the best fits.
Those profiles can also be called as nonlinear profiles. In the category of nonlinear profiles,
Chang, et al. (2010) proposed a framework to monitor nonlinear profiles. Their framework is
able to identify mean shifts or shape changes of profiles. They first apply Discrete Wavelet
Transformation to remove noise from the profiles and then use B-splines to generate critical
points to define the shape of profiles. Their methodology also allows users to define number of
segments that they would like to divide the profile into. When the studied process is determined
to be out of control, the distance difference statistic for each segment provides diagnostic
information. Hotelling T2 chart is also used as the multivariate control chart to be fed by the
proposed statistics (the same one used in this thesis). As a further analysis, in case of detecting
out-of-control profiles, decomposition method could be applied to the T2 statistics.

In another research, Ding, et al. (2006) conducted the Phase | analysis for monitoring
nonlinear profiles in manufacturing processes. They introduced the high dimensionality and data
contamination as the challenging components to the Phase | analysis of nonlinear profiles. They
presented a two-component strategy to overcome those challenges: First, a data-reduction
component that projects the original data into lower subspace while preserving the data-
clustering structure and second, a data-separation technique that can detect single and multiple
shifts as well as outliers in the data. Shiau, et al. (2009) proposed a method for monitoring the
nonlinear profiles with random effects by nonparametric regression. They used the technique of
principal components analysis for analyzing the covariance structure of the profiles. Based on the
principal components scores they proposed a monitoring scheme. Kazemzadeh et al. (2008)
developed three methods for monitoring polynomial profiles in Phase I. These three methods are
called the Change Point Approach, F-Approach and, the T2 Statistics. They also developed a
method based on likelihood ratio test to identify the location of shifts. Williams, et al. (2007)

11



extended the use of T2 control chart to monitor the coefficients resulting from a parametric

nonlinear regression model fit to profile data.

2.3 Mixed Models

A mixed model is a statistical model containing both fixed effects and random effects.
Mixed models are in several types. Linear mixed models and nonlinear mixed models are the
most often studied ones.

Jensen et al. (2008) proposed a method of fitting the profiles for data where the within-
profile measurements are correlated with each other, thus relaxing the assumption of independent
errors. They did so by fitting a linear mixed model (LMM), which allows accounting for the
correlation within profiles. The LMM also allows considering the profiles as a random sample of
profiles from a common population distribution, which may be a more realistic assumption than
assuming that the profiles are completely independent of each other. To relax the restriction of
uncorrelated measurements within a profile, Jensen et al. (2006) proposed the use of nonlinear
mixed models to monitor the nonlinear profiles in order to account for the correlation structure.

There are also approaches consisting of mixed parametric and nonparametric models.
Abdel-Salam et al. (2012) proposed a semi parametric mixed model approach to Phase | profile
monitoring. Recently, in the absence of an obvious parametric (P) model, nonparametric (NP)
methods have been employed in the profile monitoring context. For situations where a P model is
adequate over part of the data but inadequate of other parts, Abdel-Salam et al. (2012) proposed
a semi parametric procedure that combines both P and NP profile fits. They referred to their semi
parametric procedure as mixed model robust profile monitoring (MMRPM). For each approach
(P, NP, and MMRPM) they proposed a version of Hotelling T2 statistic for use in Phase |
analysis to determine unusual profiles based on the estimated random effects and obtain the
corresponding control limits. Their simulation results showed that their MMRPM method
performed well in making decisions regarding outlying profiles when compared to methods
based on a misspecified P model or based on NP regression. They applied all three methods to
the automobile engine data of Amiri et al. (2009) and found that the NP and the MMRPM
methods indicated signals that did not occur in a P approach.

12



2.4 Background of The Current Research

In a research conducted by Chang, et al. (2011), the dataset from the curing process
illustrated in section 1.2 was used. Different types of models such as 2™ order polynomial, 3"
order polynomial, B-spline and, exponential decay were fitted to some wave profiles. The
exponential-decay function was used as the best function to fit the wave profiles. The sum of
areas generated from the enclosure between the exponential-decay cutting line and the wave
profile was used as a measure for further implementations. The wave profile and the fitted

exponential decay function are reflected in Figure 2.1.

Figure 2.1 The enclosed area between the fitted exponential decay function and the profile
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They denoted the sum of areas from m in-control samples of wave profiles as x;. A
polynomial model in equation (2.1) was proposed to account for the number of peaks and valleys
that were different from cycle to cycle.

log(x}) = Bo + B1zj + Bozf +€,j = 1,2,...,m (2.1)
where z; is the number of waves of the jth profile.
A second-order polynomial model was then fit to remove noise due to the number of waves in
each profile. Standardized residuals of this regression model form the quality characteristic for
control charting:
e = log(x)) — (Bo + P12 + Bo2{) (2.2)
The standardized residuals should have been independent and normally distributed. The

normality assumption was met. Moreover, an EWMA filter was applied to remove the
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autocorrelation. The obtained statistic was then used for control charting purposes. 1X control
chart was used as an appropriate tool to monitor the residuals. Finally, their method could
satisfactorily detect the time that the valve malfunction begins.

We have used the same data set in order to conduct a new research on the wave profiles.
Once again, the research goal is to detect a profile change as fast as possible before a curing
process ends. It means that we would like to identify an out-of-control wave pattern during, not

after, a curing cycle.

2.5 Control Charting Tools

In this section, a few control charting tools that are popular in the field of Quality
Engineering and were used in this research are introduced. Those are respectively IX control
charts, EWMA charts and, Hotteling T2. But before that, a brief introduction to the concept of
control charts is brought: According to Montgomery (2008), the control chart is a graphical
display of a quality characteristic that has been measured or computed from a sample versus the
sample number or time. The chart includes three horizontal lines called as center line, upper
control limit and, lower control limit. If the process is in-control, all of the sample points should
fall between the upper and lower control limits. As long as this happens, the process is assumed
to be in control, and no action is necessary. However, a point that plots outside of the control
limits is interpreted as an evidence that the process is out of control, and an investigation and a
corrective action are required to find and eliminate the assignable cause or causes responsible for
this anomaly.

We may give a general model for a control chart. Let w be a sample statistic that
measures some quality characteristic of interest, and suppose that the mean of w is u,, and the
standard deviation of w is a,,. Then the central line and the two control limits become:

ucL = u, + Lo,
Center line = u,, (2.3)
LCL = u, — Lo,

where L is the distance of the control limits from the center line, expressed in standard
deviation units. This general theory of control charts and control charts developed according to
these principals are called Shewhart control charts.
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2.5.1 EWMA Control Charts

The Shewhart control chart is a good tool for identifying the relatively big shifts in the
mean of the process but it performs relatively poorly in detecting the small shifts. One of the
good alternatives to the Shewhart control chart in detecting small shifts is Exponentially
Weighted Moving Average control chart or EWMA chart. This control chart was introduced by
Roberts (1959).

The exponentially weighted moving average is defined as

zi= A+ (1 =Nz, (2.4)
where 0 < A < 1 is a constant and the starting value (required with the first sample at i=1) is the

process target, so that

Zo = Mo (2.5)
Sometimes the average of preliminary data is used as the starting value of the EWMA, so that

ZO = )Z (26)
The control limits of the EWMA are computed according to the equations (2.7) and (2.8):

UCL=, + Lo A [1—(1—2)2]
070 2 -2 (2.7

CL=p,o
A .

LCL=p, - Laojz — [1-(1-2)%] (2.8)

The term [1 - (1 —A)Zi] in equations (2.7) and (2.8) approaches unity as i gets larger. This
means that after the EWMA control chart has been running for several time periods, the control

limits will approach steady state values given by

A
UCLt=ut + LO't m (29)
CL =,
A 210

Figure 2.2 displays an EWMA chart obtained from the data in Example 9.2 of the Montgomery
(2008). This Figure is appropriately showing the control limits’ approach towards the steady-
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state values. It is also noticeable that the control limits at the beginning have smaller values.
Moreover, all of the plotted points have fallen between the control limits. Thus, the process is

assumed to be in-control.

Figure 2.2 EWMA control chart of Example 9.2 in Montgomery 2008
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2.5.2 IX Control Charts

IX is one of the control charts that are used for monitoring the individual observations or
in other words, situations in which the sample size is equal to one. Montgomery (2008)
mentioned five examples for the situations in which 1X chart are usable:

1. Automated inspection and measurement technology is used, and every unit manufactured
is analyzed so there is no basis for rational subgrouping.

2. Data comes available relatively slowly, and it is inconvenient to allow sample sizes of
n > 1 to accumulate before analysis. The long interval between observations will cause
problems with rational subgrouping. This occurs frequently in both manufacturing and

nonmanufacturing situations.
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3. Repeat measurements on the process differ only because of laboratory or analysis error,
as in many chemical processes.

4. Multiple measurements are taken on the same unit of product, such as measuring oxide
thickness at several different locations on a wafer in semiconductor manufacturing.

5. In process plants, such as papermaking, measurements on the same parameter such as
coating thickness across the roll will differ very little and produce a standard deviation

that is much too small if the objective is to control coating thickness along the roll.

The main reason for the IX control charts to be used in this research is the one mentioned
in example one. In this research, every profile or every segment in a profile is important and
should be analyzed and none of the statistics of one profile can be combined with the ones of
other ones. Thus, the samples sizes of greater than one are out of our interest and sample size of
one will be considered for different analyses.

IX control charts consist of two different charts: Individual value chart and Moving range
chart. The first one monitors the process mean while the second, monitors the variability. If a
point plots outside of the control limits of each of these two charts, the process is assumed to be
out-of-control and further investigation is needed. Equations (2.11) and (2.12) are the control
limits of the individual value chart and moving range chart respectively.

_ . MR
UCL=X+3—
da

cL=X 1)
_ MR '
LCL=X—-3—
d;
UCL = D,MR
o (2.12)
LCL = D;MR

Moving range at each point i is defined as MR; = |x; — x;_1| . In many applications, the
moving range two successive observations is used as the basis of estimating the process
variability.

Later on in this research, having n=2, values of d,, D; and D, are set as 1.128, 0 and

3.267 respectively.
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2.5.3 Hotteling T? Control Charts

The Hotteling T2 control chart is used for monitoring the multivariate processes. The
fundamentals of the Hotteling T2 are explained as follows. The Hotteling T? distance also called
as Hotelling T2 is a measure that accounts for the covariance structure of a multivariate normal
distribution. The T? distance is a constant multiplied by a quadratic form. This quadratic form is
obtained by multiplying the following three quantities:

1. The vector of deviations between the observations and the mean u, which is expressed by

X -,

2. The inverse of the covariance matrix, S™1,

3. The vector of the deviations, (X — p).

It should be mentioned that for independent variables, the covariance matrix is a diagonal
matrix and T2 becomes proportional to the sum of squared standardized variables. In general, the
higher the T? value, the more distant is the observation from the mean. The formula for
computing the T2 is:

T?=n(X—u) S (X —-p' (2.13)

The constant n is the sample size from which the covariance matrix was estimated. The
T2 distances lend themselves readily to graphical displays and as a result the T2-chart is the most
popular among the multivariate control charts. If we replace u with X in the equation (2.13), the
obtained statistics from the new equation is used in the Hotelling T2 control chart.

The Phase | control limits for the T2 control chart are given by:

_pm-Dn-1)
mn-m-p+1

LCL=20

UCL

a,pmn—-m-p+1

(2.14)

In Phase I1, when the chart is used for monitoring future processes, the control limits are as

follows:

_p(m+1)(n—-1)
mn-m-p+1

LCL=20

UCL

a,pmn—-m-p+1

(2.15)

In summary, in this chapter, a brief review of the profile analysis and the research in this
area was introduced. Then, a few tools that are to be used in this research and are going to be
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shown in the next chapters are introduced. As the subject of this research is new and there is no
literature in real-time profile prediction, most of the literature here was related to the profile

analysis in general.
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Chapter 3-Proposed Methodologies

In this chapter, five methodologies for detecting the real-time changes of wave profiles
are proposed and the results of applying each method on the water temperature data set are also
obtained. These five methods include: Filtering then Standardizing, Standardizing then Filtering,
Regression Approach, D method and finally, Multivariate analysis. Before that, a brief
explanation of the process of selecting the profiles and the primary approach of obtaining the

areas after fitting models to the profiles is brought.

3.1 Data Selection and Preparation

The proposed methodologies in this research were all tested on the dataset obtained from
the curing process demonstrated in chapter one. Out of the 188 wave profiles of the curing
process obtained from March to April of 2011, 183 were selected because some profiles were
obtained from abandoned curing cycles. The curing process takes a fixed time unit for which we
will assign a number 100% cured or simply 1 without loss of generality. We divided this time
frame into eleven portions represented by the fractions: 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4,

4/5, and 1. For example, % represents that a half of the wave profile or the data from the

beginning to the midway point is obtained so far. As it was discussed in the previous chapter, the
number of portions should be selected according to the pattern and location of the changes in bad
profiles which distinguish them from the good profiles. In this regard, it seemed that eleven
portions were enough for the analyses. However, other number of portions could be tested too to
be able to obtain more general results. For this research, only eleven portions were tried. In the
next step, 100 profiles were selected for Phase | analyses. The exponential-decay function was
fitted to these 100 profiles. The sums of the areas generated from the enclosure between the
exponential-decay cutting lines and the wave profiles were calculated for them. This calculation
was done 11 times due to 11 different portions of the wave profile mentioned earlier. For
example for the portion “%4”, the exponential-decay was fitted to the half of the original wave
profile and then the sums of the areas were calculated.

Figure 3-1-a through Figure 3-1-k show 11 histograms of frequency of wave profiles.

Each histogram displays the number of wave profiles within different ranges of sum of areas for
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its corresponding portion of data.

In addition, Figure 3-1-a through Figure 3-1-k show the

Anderson-Darling test results. The Anderson-Darling tests validate the normality assumptions.
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Figure 3-2 Frequency of wave profiles having different portions of profiles
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According to the normal distributions fitted to the 11 histograms and the Anderson-

Darling test results, we concluded that the sums of areas for all the 11 portions do not follow

normal distributions. This may be inferred because the p-values obtained by the Anderson-
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Darling test are much less than the 0.05 value. Thus, we rejected the null hypothesis, which was
the normality of the data. However, normality of the sums of areas for the 11 portions was not

considered as a necessary assumption through different steps of this research.

3.2 First Method (Filtering then Standardizing)

A scheme of all the steps in the first proposed methodology is displayed in Figure 3-3.
We considered variable X;, as the accumulated area for the profile i from the starting point up to
the point t. The time index t could gain different values but in the special case of curing process
we only defined eleven values of 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, and 1 for it. It is
clear that for any profile i, different values of X;, at different times were dependent and
correlated. In order to remove the correlation from X;, we needed to apply a filter. Figure 3-4
shows a graph of autocorrelation function for X;, for a randomly selected profile i from the Phase
| profiles of the curing process case before applying the filter. Figure 3-5 shows the partial

autocorrelation for X;, for that profile.

Figure 3-3 A scheme of the first proposed methodology

Standardization
EWMA or

Xig—> ARIMA Filter

> X'y | Xu—u —> e, ~i.i.d N(0,1)
Ot

According to Figure 3-4 and Figure 3-5 we could conclude that the best type of filter to
remove the autocorrelation in this case would be an AR(1) filter. This was because of having a
single spike at the beginning of the autocorrelation graph. Figure 3-6 and Figure 3-7 show the
autocorrelation function and partial autocorrelation function for X;, for the randomly selected
profile i after applying the AR(1) filter to the same previous profile. Variable X;, after applying
the filter was named X';;. As it is seen from Figure 3-6 and Figure 3-7 autocorrelation was
totally removed from this specific profile after applying the filter. This shows that the filter did
its job perfectly. The same procedure was applied to all of the profiles and X';; variables were

obtained.
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Figure 3-4 Autocorrelation Function for X;, for a randomly selected Phase | profile i

Figure 3-
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Figure 3-6 Autocorrelation Function for X’;, for one randomly selected profile

(with 5% significance limits for the autocorrelations)
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Figure 3-7 Partial Autocorrelation Function for X’;; for one randomly selected profile

(with 5% significance limits for the partial autocorrelations)
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The next step was standardization. Standardization was conducted according to the
following formula:
X'y — e
O

=€t (3.1)
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where X';; was the area after the filtering for profile i at time t, u;, was the mean of the filtered
areas of 100 phase | profiles at time t, and g, was the standard deviation of the filtered areas of
100 Phase I profiles at time t.

Again, in the example of curing process, t obtained values of 1/8, 1/7, 1/6, 1/5, 1/4, 1/3,
1/2, 213, 3/4, 4/5, and 1. The output of the above formula was called e;; and was supposed to
follow N (0,1). The next step was to apply a control chart on each profile. This means applying a
control chart on values of e; at different t’s.

A good and useful control chart for monitoring this process would be IX control chart. X
is one of the control charts which are used for monitoring the individual observations. Since we
were not interested in grouping the e;;’s of profile i, we would like to study them as individual
observations. As we knew that e;;’s of profile i were independent and not correlated, X control
charts were applicable for monitoring them. Control limits for the 1X control were defined in
equations (2.11) and (2.12).

Having n=2, values of d,,D; and D, are set as 1.128, 0 and 3.267 respectively. An
important aspect in setting the control limits is the consistency between them in all of the
profiles. Regularly, the control limits for each profile are set individually using the information
of that particular profile and according to abovementioned formulas. In order to have consistent
control limits for the Phase | profiles, one way was to calculate the mean and standard deviation
of e;; values for each profile and then consider the mean of the means of all of the Phase |
profiles and also the mean of the standard deviations of all of the Phase I profiles. The obtained
statistics could then be used as the input values for setting the consistent control limits.

In this research, the control limits were set as -3, 0, and 3 for the individual value chart
and also for the moving range chart they were set as 0, 1.128, and 3.686. The reason for this was
to obtain values for the mean of the means and for the mean of the standard deviations that were
approximately equal to 0 and 1.

Figure 3-8 shows one of the detected out of control profiles of Phase | of the curing
process by using the IX control chart. Figure 3-9 shows the related IX control chart. As it is seen
from the Figure 3-9, this profile was identified as out of control from the beginning observation.

In addition, later on it signaled out again a little after middle of the process.
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aim of the Phase | which was to train the system with in-control profiles.
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Further investigation in later parts of this research revealed that a few profiles which this

profile was also among them, should not have been selected as Phase | profiles. This is due to the

Totally, there were three out of control profiles in Phase | profiles with the same shape as
the one in Figure 3-8. 1X control chart could successfully identify two of them. One of them

which is shown in Figure 3-10 could not be identified. Figure 3-11 shows the 1X control chart for
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Figure 3-10 An unidentified out-of-control profile using the first method
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Figure 3-11 1X control chart for one unidentified out of control profile using the first method
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This probably happened because of the unusual shape of that profile. It spiked at the

beginning but descended towards the end. This caused that the enclosed area obtained after

fitting an exponential decay function be a relatively small value and did not differ much from the

ones for good profiles. There were also a few more out-of-control cases with different shapes,

which the IX chart was unable to recognize. In summary, having eight out of control profiles still

in Phase I, 1X control chart could identify two of them correctly and missed the 6 remaining. In

addition, it identified eight in-control profiles as out of control ones incorrectly. As a rework, all

of the undesirable and doubtful profiles were removed from the Phase I, and the analysis was
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conducted again. The removed profiles were used again as inputs for Phase Il. The goal then was
to test if the proposed methodology was able to identify all of these profiles as out-of-control. It
turned out that only two of them could be detected. Therefore, it was revealed that although it
was correct to train the control chart with only in-control profiles, in this particular case of curing
process, there would not be much difference in the obtained results if we would consider those
few profiles in Phase I. Having poor performance in detecting the out-of-control profiles in
companion with the large number of false alarms, led us to try other methods for getting better

results.

3.3 Second Method (Standardizing then Filtering)

Now the second method that is standardizing the data then applying the filter is
illustrated. Figure 3-12 displays a scheme of the second methodology. In this regard, at first,

following the below formula the data at each of the eleven time points were standardized.

Figure 3-12 A scheme of the second proposed methodology
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/ or L.
Xip—> Xie =l —> Yit = ARIMA Filier —>e;~1.1.d N(0,1)
Ot
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L= 3.2

Vit o (3.2)
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For equation (3.2): t = 55 1,i=1,2,..,100, X;; was the original data of area for profile i

at time t and y;; was the standardized variable. u; and o, were the mean and standard deviation
of X;;’s of 100 Phase I profiles. Figure 3-13and Figure 3-14 show the ACF and PACF charts for
a randomly selected Phase | profile. As it is seen from these Figures, there was correlation

between the data in this profile.

29



Figure 3-13 ACF chart for a randomly selected Phase | profile

(with 5% significance limits for the autocorrelations)
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Figure 3-14 Partial autocorrelation function chart for the randomly selected Phase | profile

(with 5% significance limits for the partial autocorrelations)
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The ACF and PACF charts recommended AR1 as an appropriate model to filter the
correlation with. The first spike in the autocorrelation was the main reason of choosing this type
of filter. Thus, the AR1 model was applied to the y;;’s. Figure 3-15 and Figure 3-16 show the
autocorrelation function and partial autocorrelation function after applying the AR1 filter for a
randomly selected profile. As it is seen from these Figures, autocorrelation was removed from

the profiles at different times.

30



Figure 3-15 ACF chart for a randomly selected Phase | profile

(with 5% significance limits for the autocorrelations)
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Figure 3-16 PACF chart

(with 5% significance limits for the partial autocorrelations)
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Now the appropriate data was ready for further analysis and applying the control charts.
Two series of CUSUM charts were tried. The first one was called the CUSUM on mean, which
was applying the CUSUM on the latest residuals and the second one was called the CUSUM on
variance, which was applying of the CUSUM on the output of following formulas:

€it — Ki (3.3)
0i

Zit =
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Izl —0.822
Vit = T0.349
We had to find appropriate fixed control limits to apply on all of the Phase I profiles.

Finding those limits was crucial. As we know, CUSUM control limits depend on the amount of
variation that we would like to detect. For the CUSUM on mean chart, we set the variation as the
average of the standard deviations of all the 100 profiles in Phase I. This equaled to 0.153015.
Figure 3-17 shows the CUSUM on mean for one of the correctly identified out of control
profiles. For the Phase I, using CUSUM on mean method, and having the control limits of
UCL=0.612 and LCL=-0.612, four out of eight real out of control profiles were identified
correctly. In addition, this method identified six profiles incorrectly. In other words, it gave six

false alarms.

Figure 3-17 The CUSUM on mean for profile 86, a real out of control profile
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For the CUSUM on variance chart, we set the variation as the average of the standard
deviations of all the 100 profiles in Phase I. This equaled to 0.9511. Figure 3-18 shows the
CUSUM on variance 