DEVELOPMENT OF VISUAL EMU, A GRAPHICAL USER INTERF&E FOR THE
PERIDYNAMIC EMU CODE

by

JUSTIN BIRKEY

B.S., Kansas State University, 2006

A THESIS

submitted in partial fulfillment of the requiremerfor the degree

MASTER OF SCIENCE

Department of Mechanical and Nuclear Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2007
Approved by:

Major Professor
Dr. Daniel Swenson

Abstract

This thesis provides a description of Visual EMgraphical user interface for the
peridynamic EMU code. The peridynamic model isradamental method for computational
mechanical analysis that makes no assumption dgincarus or small deformation behavior and
has no requirement for the concepts of stress taaithsThe model does not require spatial
derivatives and instead uses integral equatiorier@e density function, called the pairwise
force function, is postulated to act between eaghqd infinitesimally small particles if the
particles are closer together than some finiteadist. A spatial integration process is employed
to determine the total force acting upon each gartind a time integration process is employed
to track the positions of the particles due todpplied body forces and applied displacements.
EMU is a computer code developed by Sandia Natibabbratories that implements the
peridynamic model. Visual EMU is a pre-processortfi@ EMU code that allows any user to
enter all parameters and visualize the resultintena regions, peridynamic grid, and a preview
of resulting nodes. Visual EMU can be used beftadiag a lengthy solution with potential
errors. The language, visual layout, and codegdesii Visual EMU are described along with

two examples and their results.

Table of Contents

IS o T [P Vi
F o LoV F=To (o =T 0 =T o £ IX
(O Vo e I = R [01 o To (1 [£ o TSRS 1
=T 10} F= 1 oS PSR PPPTRTPPRPRTPR 1
1Y SRR 1
VISUBI EIMU ...ttt ettt e e e e e e e bbbttt st e et e e e e e e e aeeeeas 2
D= 11 4] 0] 1= TSR SRURRPPPPPP 2
CHAPTER 2 - PeridYNAmICScciiiiiiiiiiiiiiiaie e e e e e e e e e ettt s s s s e e e e aeaaaaaaeeeeaeaeeeeeeesnnnnes 3
CHAPTER 3 = EMU ...ttt e ettt e e e e e e et tn e e e anssbae e e e e e s annnaneeeaeeens 8
CHAPTER 4 - VISUI EMU.......coiiiiiiiee ettt snnanee e e e e 11
(=T o [0 E=To [TR PP PP PPRT 11
VISUBI TAYOUL ...ttt e s s e e e e e e e e e e e e e eeeeeeesnnnnes 13
Y= 1T YAV e o [0 PP PTPPPPPPPP 13
=T o U = T PP PPPPPIN 14
TADDEA PN ... e 15
L1 o PP 16

1Y F= U] = PSP PPPPPPI 16
LCT<T0] 001 1P PP 18
PENEIIATON ... et e e e e e e e e e e e e e e e s 19
PeNErator DAta.........ccoeeuiiiiiiie et ettt e et e e et e e e e e e e e aa e e eea s 20

[ToT 0T T F=T YA o o [(e o [SR 20

LCT=T =T | PP PPPPPPRPPPPPRPPR 21
(@00 (30 (3] o[o H PSS URRPPPPPP 25
o110 o U UUPPPPPPTUPPURPRRR 25
(@] 141 4= o [T 27
13> [o PP PPPSTRR 29

D] 0] Fo NV 1= 01T PSRRI 30

g E=Te [T TP 31

S 7= 1P 31
100l =T (PSSR 36
ArAW(STIING) oot e et e e et et e e tt bbb a s e e e e e eaaaaaaeeeaeaeaaeeeeeennnnnes 36
(0= 1Y/ 1=) SRR 36
isincluded(double, double, dOUDIE).........ue e e e 37
(o201 E= =T = 1L PRSP PPPPPPUPUPPRRRP 37

) = 1 (=TT PPPPTR 37

VB ettt e e e e e e e ee e e e e e b bttt e e e e aannee e e e e nnbetteeeeaannnnneaaaeaaan 38
(O 0 1T = PP 39
INITALIZE ... e e e e e e e e ettt e e e e e ee e e e e e tbraa e as 40
1T S 4= T oL 41
MAEEIIAIDALA ... eeveeeeiiiiiiii e emmmmm ettt et e 42
REAUINFIIE ...t ettt ettt e e e e e e s e s e e e aabbbbeeeees 43
SNAPEDALA ... et e e e e e e e e e e e e e e e e e e aeeeeeaarrae 44
VISUBIEMUVIBW. ...ttt e e e e e e e e e e e et eeetssennnnesssbnnnsn s 45
VISUBIEMUWINGOW ...ttt sttt e e e e e e e e e e s s mnnnne e e e e e e e e e as 46

(O 1 e I I = 141 0] =S a7
Sphere iNt0 Glass PIAte ... e 47

Read an EMU INFI@ ... e a7

Write an EMU INFIE ...oooiiiiie e 48

RESUILS ...t emme ettt et e e e e e e e e e e e e e e s e s e rannr e et e e e e e e e e e e e e e e e e e e e n e 48

RESEL VISUAI EMU ...ooiiiiiiiiiiiie oottt e e e e e e e e e e ae e e e e e e eeeeeeseennnes 48

Define the INterNal grideeeiieeei ettt as 49

Create @ MALETIAI ...ttt et e e e e e e e e e e e e sesas et e e e e e e e e eaeeaaaeeeaans 49

Create @ Material FEUIONuuuee e e et e s e e e e e e e e e eeeeeeeeeesaeranneaeessnnnnnnaeeeeas 51

ManNIPUIALE ThE VIBWottt e e e e ettt bennnne e e b e e e e as 52

Create 8 PENEITALONeuee ettt e e e e et e e e e e e est e sea e e e e e eeesbn e e eeeeesnnnnns 52

Set EMU SOIULION PAramMELEISuvvveeiicmmmmmmieee e e e eeeeeeeeeeeeeeeattaan s e s sneeeessaaeeaeeaaeees 53

Write an EMU INFIE ...ooooiiii e 53

RUN @N EMU SOIULION ...ttt e e e e e e e e e e e et e e e mmmmnse b e e es 54

EMU FSUIS ..ottt e e 55

Small Pipe INt0 GIaSS PIALE.......cciii i e e e e e e e e e e 56
R B SIS - ettt e e e e e e e e e eaeeeeranrea 56
Define the INterNal grideeieeeeii et as 57
Create MALEIIAIS.ooii ittt e e e e ettt e e e e as s s e e bbb b e b e e e 57
Create @ Material FEQIONuuuue ettt s s e e e e e e e e eeeaeeeeeeesseennneaesssnsnnnn e aeeas 58
MaNIPUIALE ThE VIBWo e e e et e et nnnae s e bbb eeeeas 59
o (o =0 [o i {1 = PSSP 59
Set EMU SOIULION PAramMELEISvuvivieiicemmmmmaeee e e e e eeeeeeeeeeeeesaatass e e s sneea e s s s e e aaaaaaaees 60
Write an EMU INFIE ...ooooiiii e 61
R B SIS - ettt e e e e e e e e e e eeeeeranrea 61
EMU RESUILS ...ttt e+ttt e e e e e e e e e e e e e eeeeeeeeeeeeeeeessbbnnnnn s 61

CHAPTER 6 - CONCIUSIONS ...ttt ettt e e e e e 63
SUIMIMIAIY L.ttt ettt e e e et e e et e e e e et e e e eaa e e e et e e e enaaa e e e e aa e e e eea e e e esnnneeenans 63
FULUNE WOTK ... ettt eeeeetabbnbnn e e as 63

RETEIEINCES ... s et e e e e e et ettt e ettt ettt b s e e e e e e e e e e e e eeeeeeeeeannnrne 65

APPENIX A - INFIIE TESUILSeiiie e e e e e e e e e e eaeas 66

Sphere INt0 glass PIAeeeeeeeiieiiee e ———————————— 66
L@ o 1o =N [o] {11 TSRS 66
REAA/WIILE INFIE....ceeeeeeeeeeee e s 67
User Visual EMU INFIIE ...ttt a e 68

Small pipe INt0 GlasS PIALEueii e 69
L@ o 11 = U 0111 =PRSS 69
REAA/WIILE INFIE....ceeeeeeeeeee e 69
User Visual EMU INFIIE ...t a e 70

List of Figures

Figure 2.1 PoSItioN defiNitiONS.........cc.i sttt e e e e e e e e e e e ee e e e e e e e eeaee s 4
Figure 2.2 Alternate force models (Silling, 2002).........cccooiiiiiiiiiiiiii e 7
Figure 3.1 Rectangle material region created iagrija) and externally (b)..............ccceeeeeee. 9
Figure 4.1 Java shape hierarChy........... coceeeeeeeecee e 12
Figure 4.2 Visual EMU main Window [ayOUL...............ooorriiiiiiiiiiiiiiiee e cveeeeee e 13
Figure 4.3 File SUDMENU ... e 15
Figure 4.4 Edit SUDMENU ..ot e e as 15
Figure 4.5 Help SUDMENUoooiiiiiiitcommmme e e oottt s e e e e e e e eeeeeaeaeeeeeaeeeaeeeeeneannnes 15
Figure 4.6 Tabbed pane SNOWING grid.........cccciiiiiiiieiiiiieis e e e e ee e e e er e e 16
Figure 4.7 More dialog from the grid panel...............uuiiiii e 16
Figure 4.8 Tabbed pane Showing Material.... oo .oooeeeiiiiiiiiiiiie e 17
Figure 4.9 Default - Material dialogcceeeeiiiiiiiiee e 17
Figure 4.10 More - Material dialog showing bothgah.............ccccooiiiiiiiii e 18
Figure 4.11 Initial Conditions — Material dialogosting both tabscccccciiiiiiiiieineeens 18
Figure 4.12 Tabbed pane ShOWING gEOMELIYccceema i iiiiiiiiiiiiieee e eeee e 19
Figure 4.13 Tabbed pane ShOWING PENELIALON ceeeeeeeeieeeeeeeeeeeeeieeeeeeeei e 19
Figure 4.14 Tabbed pane showing penetrator data...............ccouvvvveiiiiiiiiei e, 20
Figure 4.15 Tabbed pane showing boundary conditiQn..............cooovviiiiiiiiiiiiiiineeen 20
Figure 4.16 Velocity boundary condition Qialog . «....eeveeeeemniiiiieeeeeeeeeeeceeeeeeieeeeeeeeeeiiiieee 21
Figure 4.17 Displacement boundary condition dialag..........ccooeviiieeeeiiiiiiiieeiiieeiianes 21
Figure 4.18 Tabbed Pane Showing geNEral cooeiiiiiiiiiiiiiiiiiceee e eeeee e e e e 21
Figure 4.19 More — General dialog showing the Re&l ..., 22
Figure 4.20 More — General dialog showing the OUt@II ... 23
Figure 4.21 More — General dialog showing the Rt tab ..o, 24
Figure 4.22 More — General dialog showing the M&dE.............cccooeeeeiiiiiiiiiiiieee e 24
Figure 4.23 NEWACHON UML......cooiiiiiiiiii ettt e e e e e 26

Vi

Figure 4.24 The undo and redo lists with three camais (a), undo action (b), and new

(o0 .01 4= T N (o) 1SS 27
Figure 4.25 CommandManager UML e eeeeerruumnmniaae e e eeeeeseeeeeeieseeeeeeesssnnene 28
FIQUIE 4.26 PeNetrator TYPES ... i eeeeeee ettt eeee e e e e e e e e e e e e e e eeeeeennennnnes 33
Figure 4.27 View panel showing the grid boundatgk)ooovvviiviiiiiiiiiieieeeeeeee, 33
Figure 4.28 View panel with a slit plane (gre€n) ... 34
Figure 4.29 View panel with a precrack (gre@n) ..o 34
Figure 4.30 Cylinder void shown in solid (left),r&i(middle), and grid (right) frame views..... 35
Figure 4.31 Partial SNape UMLiiiii e rrrree s e e e e e e e e e e e eees 35
Figure 4.320File() method from the Cylinder Classooiicceeeeviiiiiiee e 36
FIQUIE 4.33 STAt UML ..coiiiiiiiiiiiiiii s ettt e e e e e e e e e ettt e e e eeeeeeesessesannn e e e e e s 38
Figure 4.34 otateX(double) method from the camera class..............commeeeeeeiiiiiiiiiiiinnnnen.. 39
FIgure 4.35 Camera UML..........uuuueiiiiii e s s s e e e e e e e e e e e e e e eeeaseennneesessssannnnaneeeeeas 40
Figure 4.36 INterSNape UMLuuiiiiiiiee e e e e e e e e e e e eeeeeneeeeeeeennnnnn s 41
Figure 4.37sEquals(String, Sring) method from the InterShape class ... eeeeeeeeen.. 42
Figure 4.38 Partial MaterialData UML.........cccoaeiiiiiiiieee e 43
Figure 4.39 ReadInNFile UMLcoooiiiiiiiceeemeee et eeeree s e e e e e e e e e e e e e eees 44
Figure 4.40 Partial ShapeData UMLcoummeoiieeieeeeeeeeeeeeeiiiiiss s seeeeess e e e e e e e eaaes 44
Figure 4.41drawShapes() method in the ShapeData ClassS.........cccoovvveeieeiiiiiiiiieeiin 45
Figure 5.1 EMUGR plot of damage at tiMe O... . eeeeeerrimmmmiiiieaee e eeeeeeeeeeeeeeeeeeeeeeeeeieeens 47
Figure 5.2 Defining the internal gridccceeoooii i 49
Figure 5.3 Defining the grid Margineuue e e e e e e e e e eeeees 49
Figure 5.4 Creating @ NEW MALEIIAL....... ..o 50
Figure 5.5 Define material Properties L ... eeeeeuuuriummiiiaieeee e e eeeeeeeeeeieeeeeeeeeeeeenne 50
Figure 5.6 Define material Properties 2o eeeeeerrrummiiiiiaiieeeeeeeaeeereeeesieeeeneeeserrnn 51
Figure 5.7 Creating a material FEQIONcoceeeeeueiiiiieeeeeeereeeeeeeeeareani s srreeesaa e e e e eaeeaaeeeees 51
Figure 5.8 Creating @ PENELIALONooiiiiiiiiiiiiiiiiiiere e e e e e ee e e eene e aeee e as 52
Figure 5.9 Changing the penetrator ProPertieS. cccccooo oo it 53
Figure 5.10 Changing additional SEtiNGScceeeeeiiiiiiie e e 53
Figure 5.11 Running an EMU SOIULION.........ccoeiiiiiiiiiiiiiiiee e 54
Figure 5.12 EMUGR code added tO INfile ... 55

Vii

Figure 5.13 EMUGR plot of damage at time 5.286€:5............cccoevvriviiieiiiicc e, 55

Figure 5.14 EMUGR plot of damage at time 2.646€:4............cccevvvrereeieeiiiccee e 56
Figure 5.15 EMUGR plot of damage at tiMe O.. e iieeeiiiiiiiiiiiieieee e eeeeeeeeeeeee e 56
Figure 5.16 Setting the grid ... s 57
Figure 5.17 Creating the first material..........cccoeeieiiiiiiiee e 57
Figure 5.18 Creating the second material oooeeeeeeeeiiiiieii e e 58
Figure 5.19 Specifying an initial VEIOCItY....cceeiiieiiiiiiiiiii e 58
Figure 5.20 Creating a material FEQIONcccceeeieiiiiiiiiiiiieaa e e e e e ieeeeee s 59
Figure 5.21 Adding @ grid fil€........ooeeeeeieeeee e e e e e e 59
Figure 5.22 Assigning Mat2 to material regionN 2uuueiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 60
Figure 5.23 Changing additional SEttiNgS ..o 60
Figure 5.24 Disconnecting the material regioNS.........ccoooiii i 61
Figure 5.25 EMUGR plot of damage at time 8.154€:5...........cccovviiiiiiiiiie e, 62
Figure 5.26 EMUGR plot of damage at time 1.816€:4...........ccoevviriiviiieeiiiieee e 62

viii

Acknowledgements

| would first like to thank my major professor, Maniel Swenson, for his support,
encouragement, and enthusiasm during my yearsregaseState University. | also thank Dr.
Kevin Lease and Dr. Dunja Peric for serving on ragnmittee. | thank my family for their love
and support over the years. Most of all | thankfragcée Amy for listening, encouraging,

supporting, and praying for me always.

CHAPTER 1 - Introduction

This thesis provides a description of Visual EMUgraphical user interface for the
peridynamic EMU code. The interface is a pre-pssoe motivated by the desire to ease and
spread the use of EMU. The following sections gaantroduction to each chapter of this thesis

in the order they will appear.

Peridynamics

The peridynamic model is a fundamental method dongutational mechanical analysis
that makes no assumption of continuous or smadirdedtion behavior and has no requirement
for the concepts of stress and strain. The modet dot require spatial derivatives to be
evaluated within the body and instead uses integrahtions. Beginning with Newton’s second
law, a force density function, called the pairwigice function, is postulated to act between each
pair of infinitesimally small particles if the paiies are closer together than some finite distance
called the material horizon. The pairwise forcechion may be assumed to be a function of the
relative position and the relative displacemenieen the two particles. A spatial integration
process is employed to determine the total fort@@apon each particle, and a time integration
process is employed to track the positions of tnéiges due to the applied body forces and

applied displacements.

EMU

EMU is a computer code developed by Sandia Natibabbratories that implements the
bond based theory of peridynamics by applying #rédynamic equations to a set of nodes. The
nodes and solution parameters are entered throkginveord text file called an infile. After
initializing the grid, the EMU code evaluates tleigynamic equations along with prescribed
displacements and velocities between time stefjaddhe resulting displacement and velocity
of each node. There is no feedback on EMU infieation without attempting an EMU solution

which may crash, quit during initialization, or cplate the solution with unexpected results.

Visual EMU

Visual EMU is a pre-processor for the EMU code #iliws a user to enter all keyword
parameters and visualize the resulting materiabreg peridynamic grid, and a preview of
resulting nodes. No pre-processor currently existislitional features include: materials that are
defined once and applied to any number of mategibns, 3D visualization allowing the user
to rotate, translate, and zoom, infiles can be netdVisual EMU to continue working or
visualize the current setup before running an EMlUtgon, and the ability to run EMU from
within Visual EMU.

Examples
Two examples are provided which show Visual EMUusiately reads and writes EMU
infiles. The first example is a sphere impactingytndrical plate of glass at an angle. The
second example is an externally generated mategan in the shape of a small pipe impacting
a rectangular glass plate normal to the surface.uBer can also visualize the material regions
and their placement relative to the peridynamid gefore performing the EMU solution. The
example results from EMUGR show the accuracy otigi$£MU and the complex fracture

possible with the use of the peridynamic EMU.

CHAPTER 2 - Peridynamics

Numerical prediction of crack growth is a longstiagdoroblem in computational
mechanics with difficulty arising from the basicompatibility of cracks with the partial
differential equations used in the classical thedrgolid mechanics (Silling and Askari, 2004).
A fundamental method for computational mechanioalysis has recently been introduced,
called the peridynamic model (Silling, 1998; Sifjr2002; Macek and Silling, 2006; Silling et
al., 2006). The model does not require spatiahvdéries to be evaluated within the body and
instead uses integral equations.

The following description of peridynamics comesfra research proposal for the Army.
The peridynamic model makes no assumption of coatia or small deformation behavior. It
has no requirement for the concepts of stress t@akh.sThe peridynamic model starts with the
assumption that Newton’s second law holds truevenyeinfinitesimally small freebody (or
particle) within the domain of analysis. A forcendéy function, called the pairwise force
function, is postulated to act between each painfofitesimally small particles if the particles
are closer together than some finite distanceeddhe material horizon. The pairwise force
function may be assumed to be a function of thetiked position and the relative displacement
between the two particles. A spatial integratioocesss is employed to determine the total force
acting upon each particle, and a time integratimcgss is employed to track the positions of the
particles due to the applied body forces and agplisplacements. One of the advantages of the
peridynamic approach is that no finite element reesdre required. It is truly a meshless
method.

As described by Silling (1998) and Macek and Syll{g006), the acceleration of any
particle atx in the reference configuration at tihas found from

plu(xt)= If(u (x',t) —u (x,t),x =x)dV,, +b(x,t), (1)

X

where H, is a neighborhood aof, u is the displacement vector field, is a prescribed body
force density field,o is mass density, and is a pairwise force function whose value is the

force vector (per unit volume squared) that theigarx’ exerts on particlex. In the following

3

discussion, we denote the relative position oféhas particles in the reference configuration
by &:
§=x"—X (2)
and their relative displacement lpy
n=u(x,t) —u(x,t) 3)
Note that§ + n represents the current relative position vectomeating the particles, Figure
2.1.

The direct physical interaction (which occurs tlgbwnspecified means) between the
particles atx andx’ is called aond, or in the special case of an elastic interactiobe
defined, aspring. The concept of a bond that extends over a faigeance is a fundamental
difference between the peridynamic theory and thesaal molecular and discrete element
theories (Potyondy and Cundall, 2004), which amsedaon the idea of contact forces that arise

from interactions between particles that are ieaicontact with each other.

c+1
u(x’,7)
u(xf))
d av

z

Figure 2.1 Position definitions

It is convenient to assume that for a given malténet there is &orizon, J, beyond

which particles do not interact, or
g>0 = f(ng)=0 On @
In this discussionH, will denote the spherical neighborhoodfin R with radiusd .

The pairwise force functioh is required to have the following properties:

f(-n,-&)=f(n.g) On.s (5)
which ensures conservation of linear momentum, and
(n+&)xf(n.g)=0 Onz (6)

which ensures conservation of angular momentum |dtter equation means that the force
vector between any two particles is parallel togh#icles’ current relative position vector.
A material is said to bmicroelastic if the pairwise force function is derivable from a

scalamicropotential w:

(8)=2"(me) Ons @)
n

The micropotential is the energy in a single bond bBas dimensions of energy per unit volume
squared. The energy per unit volume in the bodygiven point (i.e., the local strain energy
density) is therefore found from

1
W = Eij(q,z;)dvé)

The factor of 1/2 appears because each endpoabohd “owns” only half the energy in the
bond.

If a body is composed of a microelastic materiarkwdone on it by external forces is
stored in recoverable form in much the same waw #se classical theory of elasticity.
Furthermore, it can be shown that the micropotedeaends on the relative displacement vector

1 only through the scalar distance between the defdrpoints. Thus, there is a scalar-valued

function w such that

Wy.g)=wlng) Ong y=n+g ©)
Therefore, the interaction between any two pointa microelastic material may be
thought of as an elastic (and possibly nonlinearing. The spring properties may depend on the
separation vectof in the reference configuration.
Combining Egs. (7) and (9) and differentiating kater with respect to the components

of n leads to

)= fhede) one (10)

where f is the scalar-valued function defined by

A

ow

f(y,g)= a—y(y,ﬁ) Oy,m. (11)

This satisfies the requirements of Egs. (5) andd@&)vided

Wy,—€)=Wy.&) Oy.&. (12)

The relation shown in Eqg. (11), together with t@aion of motion, Eg. (1), contain the
totality of the peridynamic model for a nonlineaicroelastic material. In particular, note that
the issue of how to treat rigid rotation does nigeain this formulation because y is invariant
under rotation of the body. Similarly, objectivity a constitutive model is not an issue in this
approach.

The simplest material model is the proportiomadroelastic material, in which the bond
force f varies linearly wittbond stretch s ,
cs if |§| <9d

. (13)
0 otherwise

f(se) {

wherec is called thespring constant and s = |& +n|/|q - 1.
To determinec from a given bulk moduluk, consider a large homogeneous body under
isotropic extension, i.es is constant for alg, andn = s . Defining & = [¢| and7 = ||, we
havesn = ¢ . Using the definition of the micropotential showrEq. (7), sincef =cs=cn/é,
it follows thatw = cn? /2 = cs*& /2 Then, applying Eq. (8) leads to

“Liway, = 1 [[S°€ arerge = 72570
w_ziwdvf ZJ;(ZJMEdE 7R (14)

This is required to equal the strain energy densithe classical theory of elasticity for the same
material and the same deformatidi,= 9ks?/2. Combining this requirement with Eq. (14)

leads to the spring constant in the proportion@raglastic material model,

_ 18k
=5
More complex behavior can be obtained using theaplastic or damage models shown

c

(15)

in Figure 2.2. The microplastic model uses a ld3t@-plastic behavior for each link. In the
damage model, the links break after a specifiedusrinof stretch. The appropriate failure

stretch can be obtained by considering the fractneggy of a given material.

Bond force f
Loading =1
/‘
Unloading < 10
/
Bond strain 1 | 7]+§| /1 Lf|
a. Microplastic model b. Damage model

Figure 2.2 Alternate force models (Silling, 2002)

CHAPTER 3 - EMU

EMU, developed by Sandia National Laboratories, t@mputer code based on
peridynamics (Silling et al., 2006). EMU implemettie bond based theory of peridynamics by
applying the peridynamic equations to a set of sodéhe solution time is dependent on the
number of nodes in the solution and the numbeinué steps. Multiprocessing can be used to
reduce the solution time.

To begin a solution, the EMU code reads a keywibed ¢alled an infile, and formulates
the nodes defined through material regions andhtimeber dropped, or deleted, through void
regions. At each time step, the code takes eagb imoturn and finds the pairwise force
functions described previously and also appliesmegcribed displacements or velocities and
short range forces necessary. After the resufonge for each node is found, new displacement
and velocity values are calculated for the tim@.st€he process continues until a stop condition
is met.

EMU solutions are based on the nodes defined bgnmaategions, which can be created
in EMU or generated externally and read as patti@fproblem input. Internal generation is
restricted to the volume defined by the peridynagmnid. Once the peridynamic grid is
established, these are the only nodes availablenfpinternally defined material region. Any
material region defined outside of this grid haswdes within its bounds and therefore no effect
on the solution. A material region created actbesboundary of the grid uses only the nodes
within the grid as part of the solution. This denconfusing for the EMU user, as the grid is not
defined by dimensions, but by keywords that spettié/center point, the number of nodes in
each direction, and the distance between nodes.u3ér must calculate the dimensions of the
resulting grid to determine the boundary of possiimdes. Though not a complex calculation, a
slight change to any of the three keywords thainéehe grid can accidentally place a material
region outside the boundary. Externally generatees are independent of the peridynamic
grid defined by EMU. These nodes are entered tiir@auseparate file called a grid file that
defines the location and material of each nodee Addes are placed at the exact location
specified in the grid file without regard to theripgnamic grid.

Nodes that are created too close to each othandhrexternal and internal generation are
dropped before the solution begins. The distahaedetermines if a node should be dropped
can be specified by the user. Nodes that get ¢toeach other during a solution are not dropped
but invoke short range forces that prevent themnfozcupying the same space. Short range
forces apply to all nodes that come within the mimin distance and act to repel each other until
the distance is greater than the minimum. Coeffisi¢hat help determine the force and
minimum distance can be specified by the user.

For impact problems, EMU allows the user to creaspecial object called a penetrator.
The penetrator is limited to one per solution adat defined by nodes. The penetrator is a true
solid object that interacts through contact with flurface. There are no peridynamic bonds
related to the penetrator but forces still applyh® penetrator and the nodes that it comes into
contact with. The penetrator is used primarilymtpact material regions and the user can specify
mass, angle of impact, angle of attack, impactarglptip location, friction and choose from five
different shapes.

Some keywords in EMU can define a volume internaflgxternally. The two types
specify whether the desired volume is inside osidigtthe boundary described by the keyword.
Internal keywords specify the desired volume witthie boundary. Figure 3.1 (a) shows a
material region in the shape of a rectangle creiatednally. External keywords specify the
desired volume outside the boundary yet insideg#ralynamic grid. Figure 3.1 (b) shows the
same material region boundary as (a) but createtreally. The black lines in both figures

represent the boundary of the peridynamic grid.

@) (b)

Figure 3.1 Rectangle material region created interally (a) and externally (b)

9

Execution of EMU requires the infile to contain keyds about the peridynamic grid,
material regions, boundary conditions, and all offeameters that control the solution. Each
keyword has a specific format and most are follolwga@ set of numbers. If the keyword
signifies a single numerical value such as the mara number of time steps, there is only one
number that follows the keyword. If the keyworgnmesents something more complex, such as a
material region, the keyword itself contains amitifging number and is followed by a set of
numbers that tell which geometry is being specifiad providing the data needed to define that
geometry.

To ensure that EMU runs properly, each keyword rfalkiw the correct format. Some
formatting errors, such as omitting a numericateafter a keyword, end EMU during
initialization while others, such as switching treler of variables after a keyword, alter the
desired results without warning. Errors that alter results without ending EMU are hard to
notice until the solution finishes, which can cogtny hours of computing time. A pre-processor
is clearly needed for the entry of these keyword$ta allow visualization of material regions

and the resulting nodes before running a lengthyEdlution.

10

CHAPTER 4 - Visual EMU

Visual EMU is a graphical user interface for theighgnamic EMU, developed by Sandia
National Laboratories, which is a computer codesdam peridynamics (Silling et al., 2006).
Visual EMU allows the user to input data, see tben®del, and execute EMU from one
interface. The following sections describe the laagge, visual layout, and code design of Visual
EMU.

Language

Visual EMU is written entirely in Java using Eclgpas the development environment.
Java is an object oriented language designed tdedprograms into separate modules, called
objects, which encapsulate the program’s data aedations (Morelli and Walde, 2006). The
objects are organized in a hierarchy from generapecific and can be broken down into more
specific groups infinitely. Each class in the hrehgy inherits, or obtains the characteristics, from
the class above it. A class is a template for gacdland encapsulates the attributes and actions
that characterize a certain type of object (Morld Walde, 2006). Java has a built in class
called Object that all other classes inherit fromaking it the most general object.

The following discussion uses the Visual EMU Shelpss as an example. As you can
see in Figure 4.1, Shape is a subclass of Objectrarefore inherits all the characteristics of
Object. Shape can be called an Object becausa ispecific type of Object. Cylinder,
Rectangle, and Sphere are all subclasses of Shapberefore inherit the qualities of Shape as
well as Object. Cylinder can be called an Object iican be called a Shape. Cylinder can not
be called a Rectangle however, as it does notiinin@m Rectangle. Cylinder and Rectangle are
both Shapes though, and specific types of Shagdkslaises that inherit from Object have a
method, or collection of programming instructiohattdescribe how to carry out a particular
task (Horstmann, 2006), calleaSring(). Through inheritance, Shape, Cylinder, Rectaragi€,
Sphere all have String() method defined for them.

11

Object

Shape

Cylinder Rectangle Sphere

Figure 4.1 Java shape hierarchy

ThetoSring() method can also be modified for each specific tyygech is called
polymorphism. Polymorphism denotes the principk behavior can vary depending on the
actual type of an object (Horstmann, 2006). Sh&génder, Rectangle, and Sphere are all
different types of Object. They can all overridel@hange th&String() method so the method
acts in a unique way for each class.

The power of object oriented programming is thhtlalsses that inherit from Shape can
be handled together as Shapes without the neatbiw Which specific type is being used. For
example, all classes that inherit from Shape hawethod callediraw(String). This method
displays the Shape in Visual EMU. The Cylindercfaagle, and Sphere are placed in a holder
that only knows each is a Shape and nothing &ikanks to inheritance, using tbeaw(String)
method from each Shape displays the correct gegmidtiout the need to find the specific type
of Shape being drawn.

In Java, the commarektends makes the class a subclass of the one specifiiteby
command. The class is not only a subclass of tikeespacified, but a subclass of all super classes
of the one specified. Using the example above, @lgea super class of Shape, Cylinder,
Rectangle, and Sphere. A class inherits from g@ésglasses. Cylinder extends Shape and is a
subclass of any class above Shape up to the Qifgsmst. This creates a tree structure with the
Object class as the root. The branches are afithelasses of Object and the number of
subclasses is unlimited. Each subclass of Obgtatso have an unlimited number of
subclasses and this pattern continues indefinigh class can only exist in one spot on the

tree however, as each class can extend only oee d#ss.

12

Classes can inherit from a class that is not arstlpss using thamplements command.
A class is not a subclass of what it implementsr@loand Walde, 2006) and the location in the
tree does not change. The interface, or implendecitess, has methods that it requires each
class that implements it to have. In this wayssés inherit methods from other classes they

extend and implement.

Visual layout
Visual EMU follows the layout of most professiomgiplications. The main window of
Visual EMU has five sections, shown in Figure 4/Bual EMU is controlled through this
window and the user can view different options kanipulating the main window. The options
and their locations are described in this section.

B visual EMU

@>|al=lsl 2|« »[3+ W&]

|-El-5l_1m|-l|_ll-§t;fl-§"f -Ee_n_rﬁ&;_f Penetrator | Penetrator Data |__Bnunda|ytoudhlon General |_

Grid Center ® Cubic Lattice
X {0 | v |o |z |o |) Hexagonal Lattice

Grid D Grid [1 |
C X |40 | v a0 z [40 | []Show Grid Bounds | More |

nppy |

‘ Shapes
- Rectangie

. Penetrator Sphere
@ Materials

0 Glass

Q Metal

@melal?
@_> @ EBoundary Conditions

- Rectangle NF

Figure 4.2 Visual EMU main window layout

Main Window
Located at the top of Visual EMU in section himenu bar with options such as File,
Edit, and Help. Clicking these opens a submenh mibre options. More on the menu bar is
explained in the Menu Bar section. Below the mieauin section 2 is a toolbar. Each button

has a picture that represents the function anas dRscription appears when the mouse is

13

hovered, or held momentarily without clicking, otke button. Many of these buttons are the
same options found in the menu bar above and peayiick access to the most popular choices.
In addition, the toolbar contains buttons to cdrttie 3D view located in section 5.

Section 3 of Figure 4.2, located below the toolbantains a tabbed pane. A tabbed pane
shows different content depending on which takeisded. In this way, the seven options in
section 3 share the same space though only onsiliéevat a time. More on the tabbed pane is
explained in the Tabbed Pane section. Below thieetd pane, the rest of the main window is
split into two parts. Section 4 on the left iseetview of all Shapes, Materials, and Boundary
Conditions. Through the rest of the discussiovmual EMU, this section is referred to as the
tree. Section 5 to the right of the tree is thev88v. Anything the user can benefit from seeing
in 3D is shown here, such as Shapes, Boundary Gomsli and the peridynamic grid boundary.
Through the rest of the discussion on Visual EM&tti®n 5 is referred to as the view panel.

Menu Bar

The menu bar contains the controls for Visual EMWost options are held in the File
submenu shown in Figure 4.3. The New option clalmsf the current data in Visual EMU and
allows the user to start with default settingsfalkse program has just been opened. The Open
option allows the user to continue from a previgssived Visual EMU file. All of the settings
from the file are applied to the current Visual EMThe Save option creates a file with a
“.vem” extension. The file holds the current Vis&U information to allow the user to return
to the current settings later. The Read Infildmpallows the user to import a previously created
EMU infile. The infile settings can then be viewaad manipulated as desired. The Write Infile
option then allows the user to create an EMU irffilen the current Visual EMU settings. The
infile can be used to run an EMU solution or toesthe current settings. The Run EMU option
allows the user to begin an EMU solution from witMisual EMU. The solution can use the
current Visual EMU settings or settings from an EMiput file. The Exit option closes Visual
EMU.

14

Visual EMU

File | Edit Help

New iK *A}_ r
apen ——
Save

al Geomélry | Penet

Read Infile
Write Infile | v [o
Run EMU
Exit

ns

I ¥ lan

Figure 4.3 File submenu

The Edit submenu, shown in Figure 4.4, holds ontly options: undo and redo. These
options are also found on the toolbar represenyetidoblue arrows. They are explained in more

detail in the Command section of Code Design.

Visual EMU

File
&
| Gri

Edit | Help

Undo @ @ | k | ,‘;, -
Reol =t A

wueiial | Geometry | Penel

Figure 4.4 Edit submenu

The Help submenu, shown in Figure 4.5, holds infdrom about Visual EMU. Clicking

on About opens a dialog that displays the versiahaeator of Visual EMU.

Visual EMU

File Edit |_udp
B s o o [R]Q-

lad_i Material | Geomeiry | Penel

Figure 4.5 Help submenu

Tabbed Pane

The use of a tabbed pane in the main window alkbwsiser to see more options without
using additional windows. By selecting the titleao$pecific tab in section 3, that panel becomes
visible and the previous is hidden. The user @angate between tabs at any point in time
without opening an additional window and coverihg tain window. The tabs are set in the
order they are most likely to be used from leftigit.

The panels held in the tabbed pane control alnbst the EMU keywords. Each panel
controls a group of similar keywords. The most canrkeywords in the group are placed
directly on the panel and the remainder are entémedigh modal dialog boxes that appear after

pressing the appropriate button on the panel.dét& from the dialog is saved with the

15

information on the panel it came from. This keafp&eyword information grouped together and
allows easy access in one location. Each panebpigi@ed in more detail in the following

sections.

Grid

The grid panel, shown in Figure 4.6, containshadl keywords related to the nodes of the
peridynamic grid mentioned previously. All intelgagenerated material regions are dependent
on this information and Visual EMU uses it to peavithe configuration of nodes in EMU.
Default values for the grid are initially set se tinser can skip ahead if desired. The user can
return to this panel at any time and change thammdtion to better represent the chosen material

regions.

Grid | Material rGeumetry rPenetrator rPeneiratur Data rBoundaryCund'rtiun rGeneraI

Grid Center @ Cubic Lattice
x |0 | v [o |z o [eY Lattice
Grid Dimensi GridSpacing: [1_ |
X [40 | v [an | z [a0 |] Show Grid Bounds

Figure 4.6 Tabbed pane showing grid

The More button on the right of the grid panel apammodal dialog (Figure 4.7) for the
user to enter data defining the grid margin. The gpargin is the area around the peridynamic
grid that nodes can move into during the solutibledes that move outside the grid margin are
dropped from calculation.

More - Grid

Grid Margin

X Max: [0.02 | ymax: [0.02 | zmax: [0.02
Xmin: |00z | ¥min: 002 | zmin: (002

| 0K || Reset H Cancel |

Figure 4.7 More dialog from the grid panel

Material
The material panel (Figure 4.8) contains all ofkbgwords related to material

properties. Each material region requires a maltba assigned to it. Materials are created or

16

edited in the material panel. There are threeohston the lower right of the panel that open

dialogs: Set Defaults, More, and Initial Conditions

Grid | Material rGeumetry rPenetratur rPenetraior Data rBoundaryCond'rtion rGeneraI

Name:

— —
Density: @ MicroElastic @ Linear-Flat Sspnom:

Mass:) MicroPlastic) Ideal-Gas yid:
S Number:) Self-Initiating ecrit:

Figure 4.8 Tabbed pane showing material

The Set Defaults button opens the dialog showngarg 4.9. The information entered
here applies to all materials and is the value bgelMU unless specified otherwise for a

certain material.

Default - Material gl

Density: 2200.000 Drop Distance:
Node Radius: Interface Force Coef: 1.000000
Node Volume: Interface Strength Coef: [1.000000

[_| Force Normalization Off

Microelastic Linear
2600000 | wid: [1000E11 | eerit: [1o0000 |

Gravitati

X: nooon | v foooon |z [noooo |

Damage Stretch Coef

d1: noooo | a2 [ooooo | a3 [toooooo |
Lopt] e] [caa]

Figure 4.9 Default - Material dialog

The More button opens a dialog for the entry ofitaltal material information. The
dialog contains a tabbed pane just like the maimdawv that allows the information to be viewed
in two parts, keeping the dialog reasonably sizetl@ganized. The dialog with each tab

selected is shown in Figure 4.10.

17

More - Material E| More - Material E|
| Material Propetties 1 | Material Properties 2 | [Material Properties 1_| Material Properties 2
Node Radius: [® 3D Bodies =ty
Node Volume; | ' Rods or Strings X g ¥: g zZ: g
Drop Distance: lil Z Membranes Short Range
: T | : Dist Nom: ’T Dist Init: ’DQf Force Fac: ’T
Failure Stretch Exp: |0.0 | [Fluid
Rate Parameters
Min Stretch Coef: | | [¥] Force Normalization Cosf: ,7 Low: ,7 Wi ,7
Material Rotation: |0.0 | Damage Stretch Coefficient
Energy Release Rate det: [Jaez [| dem 1
Constamt Fatigue Model
Go: [1.0E20 | dt: ,7 s0: ,7 co: ,7
Exponential
R | | a0 | | no: | | nmin: | |
| OK | | Reset | | Cancel | | 0K | | Reset | | Cancel |

Figure 4.10 More - Material dialog showing both tals

The Initial Conditions button opens the dialog shawFigure 4.11. The data entered

here specifies the initial displacement and vejoa# well as the displacement and velocity

gradients for the material. The dialog containaldbéed pane that allows the information to be

split into two parts, a displacement panel andlaciy panel. The dialog with each tab selected

is shown in Figure 4.11.The information enterethm More and Initial Conditions dialog is held

and saved with the material

when created.

Initial Conditions - Material [z| Initial Conditions - Material E|
Displacement | Velocity Displacement | Velocity
Uniform Uniform
ux: oo | uy: |00 uz: |00 | v oo vy: [oo vz: [o.o
Gradient Gradient
Reference Point Reference Point
% |00 | v: |00 | z: |00 | X |00 Yv: [0 | z |oo |
Coefficients Coefficients
duXax: [0.0 | duxdy: 0.0 | duxdz: [0.0 | dvxax: [0.0 dvxdy: [0.0 | dvxaz: |00 |
duvdx: 0.0 | duvay: |00 | duvaz: |00 | dvydx: [0.0 dvvdy: |00 | avvaz: |00 |
duzdx: 0.0 | duzay: |00 | duzaz: |00 | dVZdx: [0.0 dvzdy: |00 | dvzaz: |00 |
| 0K | | Reset | | Cancel | | 0K | | Reset | | Cancel |
Figure 4.11 Initial Conditions — Material dialog stowing both tabs
Geometry

The geometry panel (Figure 4.12) allows the usereate all of the material regions,

voids, slits, precracks, and enter grid files. leatthe different geometries is represented by a

toggle button with a picture. Toggle buttons riesselection to one button at a time. When a

18

button is selected the previous button is desalda@eping the selection to one at a time.
Hovering the mouse over the toggle button displafj@mation about the button. Selecting the
button changes the area below to enter the datssaxy to create the chosen shape. The first
button, the rectangle buttof), displays the panel as shown in Figure 4.12.rd lhee six
parameters needed to define the rectangle geowratirhree different types of rectangle:
internal, external, and void. If the shape is demal region (internal and external types for a
rectangle) then a material must be chosen fronditbe down menu above the Apply button. If
the shape is not a material region (void type fogcangle), there is no need to specify a
material and the drop down menu is disabled. Adtgering the appropriate data, the shape is
created by clicking the Apply button.

- Material Geometry rPenetrator rPenetratorData rBoundaryCond'rtion r(ieneral
CIORANEIDECO S e—

KMax: |.5 | ymax: [5 | zmax: [o | @ Solid Internal
XMin: [-5 | vmin: [5 | zmin: [2 |) Solid External

Figure 4.12 Tabbed pane showing geometry

Penetrator

The penetrator panel (Figure 4.13) controls thatae of the penetrator shape. As
mentioned previously, there can only be one petweteand there are five different types to
choose from. The user can select each optionead picture of the desired type by pressing
the radio buttons on the left of Figure 4.13. @& needed to define the chosen type is
displayed to the right of the picture. After emgrthe necessary information, the penetrator is
created by clicking the Apply button. If a pene&trehas already been created, pressing the
Apply button replaces the current penetrator wittea one of the chosen type. The delete
button is enabled when a penetrator exists andvesite penetrator.

Grid | Material rﬁeometry rPenelralur rPeuetralor Data rBoundaryled'rlion rﬁeneral |

(@ Sphere

! Flat Nose
) Cone Nose Diameter (D): |.1
) Ogive Nose

) Flared Ogive Apply

Figure 4.13 Tabbed pane showing penetrator

19

Penetrator Data

The penetrator data panel (Figure 4.14) allowsues to enter information about the
penetrator. After entering the desired data, thphAbutton saves the information with the
current penetrator. If there is no penetrator Apply button is disabled.

Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General |

Penetrator Mass: 200 Penetrator tip [] Repetitive

Angle of Impact (deg): |0 [| % [o | | Friction meco: 2]

Angle of Attack (deg): [0 [[¥ [o | ® Linear viimpo: [0 | vicuro: o |
Impact Velocity: [-200 [| Z [o |) Constant

wimp1: [400 | vrcurt: [son |

Figure 4.14 Tabbed pane showing penetrator data

Boundary Condition

The boundary condition panel (Figure 4.15) alloles tiser to create three different types
of boundary conditions. The types are “no faifsplacement, and velocity. As with the
geometry panel, the rectangle and cylinder geoetetiie represented by a toggle button with a
picture. Clicking the toggle button displays tteadfields necessary to define the geometry.
The user can also choose interior or exterior tygdmundary conditions. Clicking the Apply
button creates the specified boundary condition.

Grid | Material rGeometry rPenetrator rPenetrator Data rEuundawCund'rliun rﬁeneral

Ii‘ - Name: li

®) Interior XMax: |5 YMax: |6 | zmax: [1 |) No Fail
CExterior i [yMin: -5 | zmin: 1 |) Velocity
) Displacement

Figure 4.15 Tabbed pane showing boundary condition

When choosing between “no fail”, velocity, and dégsgment, a dialog appears for
velocity and displacement that allows the usemterethe data relevant to those types. The two
dialogs, shown in Figure 4.16 and Figure 4.17 sarelar and allow the user to specify
conditions on any axis. To specify a conditior tiser must select the appropriate check box
and enter a value in the corresponding field toritjiet. Clearing the check box leaves the
direction unconstrained in the solution. The viiodialog has an additional End Time variable
used to turn off the velocity boundary conditioriteg specified time. The “no fail” boundary

20

condition needs no additional information and kespperidynamic bonds within the bounds

from breaking.

Velocity - B.C. X
L] wx:
[Iwy:
[vz:

End Time: [10.0 |

| 0K | | Cancel |

Figure 4.16 Velocity boundary condition dialog

Displacement - B.C.

| 0K || Cancel |

Figure 4.17 Displacement boundary condition dialog

General

The general panel allows the user to enter alhefrémaining data. The most common
fields are located on the panel and many additibelals are located in a dialog accessed by
clicking the More button. After entering the dediiaformation in the panel and the dialog,
clicking the Apply button saves the information.

Grid | Material rGenmelly rPenelralnr rPenetralurData rBuundaryCund'rliun rGeneraI |

Horizon: Deformed horizon: Plot Dump Frequency:
Max time: 1 Max time steps: 2000 | Visous d ing coef: |[1.0 |
Safety Factor: |0.9 Filter time constant: |0.0010

Figure 4.18 Tabbed Pane showing general

Clicking on the More button opens another dialothwvai tabbed pane. The tabbed pane
has four options: Restart, Output, Interface, anscMEMU allows the user to restart a previous
EMU solution through files that are saved by EMUidg a solution. The user can specify these

options in the Restart tab shown in Figure 4.19addition to restarting an EMU solution, the

21

user can tell EMU to create a restart file fordatee. This information is also available on the
Restart tab.

More - General E|
Restart Output Interface Misc
Write to file: | frestarliemu.rst |
["] Restart from file
[o8] [poser | [conce |

Figure 4.19 More — General dialog showing the Regtatab

The Output tab holds information that tells EMU wiwdisplay during a solution and
when and where to place information for post-prec®s The most common output options are
located on the General panel, but the rest aréddaa the dialog on the Output tab shown in
Figure 4.20. While an EMU solution runs, the usan see a single line output at each time step
that provides information about the peridynamidgni penetrator. The user can select their

preference in the Output tab. The user can alsoifypthe location of the plot files that will be
used by EMUGR, the EMU post-processor.

22

More - General E|
Output | Interface | Misc

One line print
(® Penetrator data
) Peridynamic grid data

Total force planes
X | | Y: | | Z | |

Plot dump filename

|Ip|otﬂ|esremu.plt. |

| OK || Reset || Cancel |

Figure 4.20 More — General dialog showing the Outputab

The Interface tab allows the user to connect asdotinect material regions. The
connection refers to the peridynamic bonds betweeles mentioned previously. These bonds
should not exist in some situations and need t@bwved. By default, there are peridynamic
bonds between all nodes within the material horidistance mentioned previously. An
exception is between rebar mesh and any other m@lategion. By default, two non rebar mesh
material regions adjoining each other act as ontemaregion with two different material
properties. To keep the two material regions sepathe Interface tab allows the user to specify
which material regions are connected and discoedecthe user can also specify the interface
force and strength coefficients between two madteggions. To change the default settings
between two material regions, the user selectaatrial regions from the list shown in Figure
4.21 and enters the desired information. To setexre than one material region, hold down the
control button and click on the second materialaeg Once two material regions are selected,
the options below the list are enabled. More tlegagiven with the InterShape class in the

description of the VE package.

23

More - General El

| Restart [Outpul Interface I Misc
"] Disconnect All
Rectangle By default, all material
Cylinder regions are connected
Stacked Cylinder except for rebar mesh.
[[] Disconnect
[Apply Interface Force Coefficient:
Interface Strength Coefficient:
| OK | | Reset | | Cancel |

Figure 4.21 More — General dialog showing the Intdéace tab

The Miscellaneous tab allows the user to entergh&ining information that has no
other place in Visual EMU. As shown in Figure 4.8# options include “no fail” perimeter,
damage viscosity, number of processors, fatigudihgg fixed time steps, and node history

locations.
More - General E|
| Restart [Outpul Interface | Misc
No fail perimeter
thickness: |
D viscosity
visco: oo | visak: [n.05 |
Number of processors
X 1 | v [1 | z l
Fatigue |
fatamp: | | rateye: | | ratheg: | | fatent: |
Fixed time steps Mode history locations
dt w s [#
| |
| OK || Reset || Cancel |

Figure 4.22 More — General dialog showing the Mistab

24

Code design
Using object oriented design, all of the sourceecfadl Visual EMU is divided into nine
files and packages. By definition, a packagedslkection of related classes (Horstmann, 2006).
These files and packages help organize the classethe similar types mentioned in the
discussion of object oriented programming and afsange the code for easy navigation by the
developer. The following section explains the psgand functionality of each file and package.

Action

Each action class represents a specific task coetpse the request of the user. By
extending the Java Abstract Action class, eacloacan implement (gain access through the
inheritance mentioned in the discussion of Javagthod calledctionPerformed() (Java
Platform Standard Ed. 6, 2006). Inside abgonPerformed() method of each action class are
the instructions to complete the task. Though eaethod is different for all fifteen actions,
each class is handled in the same way throughtiezitance from the Abstract Action class.
Each action is assigned to a button, buttons, ewunitem and thactionPerformed() method is
called immediately after selection of the item &saassigned to. As an example, the
actionPerformed() method in NewAction is called from the new but{) on the toolbar in
section 2 of Figure 4.2 and an option on the Rilensenu shown in Figure 4.3. The same action
is called from both places.

The UML diagram for the NewAction class is showrFigure 4.23. The class needs
access to the current information held in ShapeBatbVisualEMUWindow. The variables that
allow the access ark data andd_frame respectively. More explanation on these two eass
provided in the ShapeData and VisualEMUWindow sexctiof the VE package. The
actionPerformed() method confirms that all current data will be lagth this action before

clearing all of the current data and resettinghtodefault information.

25

NewAction

d_data : ShapeDs¢
d_frame : VisualEMUWindow

NewAction(ShapeData, VisualEMUWindow
actionPerformed(ActionEvent)

Figure 4.23 NewAction UML

The following list gives a brief explanation of éaglass in the action package:
AboutAction: Opens a dialog that displays inforroatabout the author and version of
Visual EMU.

AddBCAction: Adds a new boundary condition shape.

AddShapeAction: Adds a new shape that is not a deyncondition. This includes the
penetrator, material regions, slits, precracks,\amds.

ExitAction: Closes the Visual EMU program.

NewAction: Clears all Visual EMU data and resetsliéfault information.
OrbitStateAction: Sets the 3D view to orbit stdtke view can be rotated, translated, and
zoomed with the use of the mouse.

ReadInFileAction: Opens and reads the informatromfan EMU infile.
ReadStateAction: Opens a saved Visual EMU file.

RedoAction: Executes the task at the top of the fesd.

ResetAction: Resets the 3D view to default orieoiat

RunEMUAction: Opens a dialog that gives the optitmisunning EMU. After the
options are successfully entered, the action coplhie necessary setup and executes
EMU.

SaveAction: Saves the current Visual EMU settirmga t*.vem” file.
SelectionStateAction: Will enable selection of abgein the view panel in the future.
UndoAction: Execute the task at the top of the ulnsto

WriteIlnFileAction: Writes an EMU infile from the aent Visual EMU settings.

26

Command

Each command class represents a task that cardoeeiand redone. When a new
command is created, the task is executed and thenand is added to the undo list held in the
CommandManager class. The list allows the usenttmuor reverse, each task in the opposite
order they were executed. The commands are keptar, as shown by the numbers one to
three in Figure 4.24 (a). The first command ielald one and is at the bottom of the list while
the last command is labeled three and is at thefttipe list. The last command added to the list
is always the first to be removed and its executiondone. When the undo action is selected, the
task of the last command executed is reversedr@nddammand is moved to the redo list (Figure
4.24 (b)). The undo action can be used for eaatmtand in the undo list. With a command in
the redo list, the redo action is available. Iesétd, the task is executed and the command

placed back on the undo list. The result is a retaorthe state of Figure 4.24 (a).

N 1

3
2 2 2
1 1 3 1 3
undo list redo list undo list redo list undo list redo list
(@ (b) (c)

Figure 4.24 The undo and redo lists with three comands (a), undo action (b), and new

command (c)

Commands can go back and forth from the undodisté redo list an infinite number of
times. This can continue until a new command deddo the undo list, one not from the redo
list, as shown in Figure 4.24 (c). When the new iitamd is added to the undo list all commands
on the redo list (command three in the redo ligtigure 4.24 (c)) are deleted. The new
command (the three above the undo list) is plagexder in the undo list. In this way, the order
of commands remains constant. The new command igtke first undone and the last redone.

If the commands on the redo list were not remoitezhuld be possible to have a shape on the

27

redo list with the same name, a unique identiisra shape added to the undo list. Allowing the
command to be redone would bring back the shageawituplicate name. Many potential
problems exist in the logic of the code if the ndrekl is not unique.

The CommandManager class is implemented as a sngl@ith the UML diagram
shown in Figure 4.25. A singleton ensures that only instance of the class is created and
provides a global point of access (Geary, 2003 GdmmandManager () constructor is
therefore a private method. This means no clds ¢han the CommandManager can create the
undo and redo lists. All classes can call the ipudthtic methogietCommandManager () though.
The method checks to see if an instance of Commandlyer exists and returns the existing
CommandManager or makes a new one. In this wayamdyset of lists are ever created.

The execute(Command) method adds the new command to the undo list Eadscthe
redo list for the reasons previously describede Urto() method moves the command most
recently added to the undo list over to the resto [Theredo() method moves the command
most recently added to the redo list to the unsto [TheundoValid() method returns a boolean
value that is true if there are any commands irutiao list and theedoValid() method does the
same for the redo list. These methods help deterimhthe undo and redo actions can be used.

TheclearLists() method removes all commands from the undo andlistdo

CommandManager

d_undoList: Vector<cCommand>
d_redolList: Vector<Command>

CommandManagel
getCommandManager()
execute(Command)
undo()

redo()

undoValid()

redoValid()

clearLists()

Figure 4.25 CommandManager UML

The following is a brief description of each classhe command package:

* AddBoundaryRegionCommand: Holds the boundary carghape addition task.

28

* AddCylinderCommand: Holds the cylinder shape additask.

» AddCylinderExteriorCommand: Holds the cylinder shapb type exterior addition task.

* AddCylinderVoidCommand: Holds the cylinder shapéype void addition task.

* AddLayerCommand: Holds the layer shape additiok. tas

* AddMaterialCommand: Holds the material data additesk.

* AddPenetratorCommand: Holds the penetrator shagié@dtask.

* AddPrecrackCommand: Holds the precrack shape addask.

* AddRebarMeshCommand: Holds the rebar mesh shapgoaddsk.

* AddRectangleCommand: Holds the rectangle shapeiaaldask.

* AddRectangleExteriorCommand: Holds the rectangigpslof type exterior addition
task.

» AddRectangleVoidCommand: Holds the rectangle slofpgoe void addition task.

* AddSlitCommand: Holds the slit shape addition task.

* AddSphereCommand: Holds the sphere shape addasin t

* AddStackedCylinderCommand: Holds the stacked cglirsthape addition task.

 Command: The interface that requires each comnmirtherit the methodsndo(),
redo(), andexecute(Command).

« CommandManager: Contains the undo and redo listxantrols the movement of
commands between the two.

» DeleteMaterialCommand: Holds the task that remavesterial data.

* DeleteShapeCommand: Holds the task that removieapes

Dialog

Each dialog class represents a unique window wsslddw or gather information. The
dialog is a stand alone window that appears intfodthe Visual EMU program. When a dialog
appears, it is impossible to interact with the vawdbehind until the dialog is closed. This is
called a modal dialog (Morelli and Walde, 2006)eTdontrol is imposed on Visual EMU only
though, and the user can switch to a different nog While some dialogs only display
information, others act as portals for the passindata. This is most common with the More
button on many of the tabbed panels. Each Morbupens a modal dialog with additional

29

options and allows the user to enter informatiat ttould not fit on the main panel. The
following is a brief description of each classlre dialog package:
* BoundaryConditionDispDialog: Collects displacemiefidrmation for the boundary
condition.
* BoundaryConditionVelDialog: Collects velocity infoation for the boundary condition.
» FinalAdvancedDialog: Collects additional informatifor the general panel.
» GridAdvancedDialog: Collects additional informatifor the grid panel.
» MaterialAdvancedDialog: Collects additional infortiaa for the material panel.
* MaterialDefaultDialog: Opens a dialog that contaafif the default keywords that
apply to materials. This data is used by EMU whenspecified for a material.
* MateriallnitialDialog: Opens a dialog that colle@éhformation on the initial condition of
the material.
* MyDialog: The interface for each dialog. It requigach dialog to contain tdeModal ()
andvalidData() methods that help produce the modal nature ofliddegs.
* RunEMUDialog: Opens a dialog that allows the usezttoose locations and options

before running EMU.

DisplayHel per
DisplayHelper is not a group of related classes: this reason it is not a package but a
folder, a holder for the organization of files. eltlasses held in the DisplayHelper folder aid the
classes in the panel and dialog packages. Eatttesé classes is used in multiple locations to
speed up development and create dialogs and parklsonsistent content. The following is a
brief description of each class in the DisplayHeljpéder:

» DialogHelper: This helper class aids the creatibdifberent objects used in the dialogs.
An example is the text label with a horizontal lemending to the right such as no fail
perimeter shown in Figure 4.22.

* DoubleField: This class controls each text fielddifor numerical entry.

» DoubleHighBoundException: A special addition to eubleField that helps control
data entry. A maximum value is set and any nurabewe is refused. The evaluation of

the value and the warning message, if requiredhelchere.

30

* DoubleLowBoundException: A special addition to xeubleField that helps control
data entry. A minimum value is set and any nuniteéow is refused. The evaluation of
the value and the warning message, if requiredhelchere.

* FormatDouble: When a number is turned into a stiangdisplay or write to a file, the
format can be controlled through this class.

» GridBagHelper: This helper class simplifies theebg allowing an easy way to add
objects to the dialogs and panels. This helpessdka product of Thunderhead

Engineering and has been licensed for use in ViSNHD.

I mages
All of the images needed for Visual EMU are load®d a central holding class called
ImageHolder. The pictures are then retrieved lydass without the need to find or reload the
image each time it should be displayed. This istradgantageous for the tree shown in section 4
of Figure 4.2. Each object in the tree has a sspr&tive picture and the number of possible
items in the tree is virtually unlimited. The sde# Visual EMU increases by having each

picture ready when needed.

Panel
The panel package holds all of the classes thdtaaach of the panels in section 3 of
Figure 4.2 and were explained in detalil in the TEbBane section. These classes not only
display the options to the user but in most cdseg $ave the desired information. The
GeometryPanel class, however, is used only to ipémsnation between the ShapeData class
and the user and no information is stored in thesxl The ShapeData class is explained in more

detail in the VE package.

Shapes
A shape represents any geometry that needs tcalaendn the view panel. Having these
geometries extend Shape allows them to be helditegeith one variable. The variable only
knows it holds a class of type Shape and any ssbcfShape counts. Each shape can then be
retrieved from the variable and used in the samewithout differentiating the type. The
shapes are further broken down into material regeomd non material regions. To easily

31

distinguish between the two, all shapes inheritethod namedsReal Material Region(). The
method returns true for material regions and fedseverything else.

Material regions apply material properties to tees within their bounds. Any nodes
without a material region are dropped from EMU befthe solution begins. Visual EMU allows
the user to see the EMU node configuration befon@ing a solution. As mentioned previously,
this saves time that may have been wasted on arr@ut solution. To display the correct nodes,
each material region has a list that holds Poiot3dcts ¢_gridPoints). Each Point3d on the list
represents a node the shape applies material piegpr and can be shown to the user. When a
material region is created, Visual EMU checks teedynamic grid and saves the nodes within
the material region. For efficiency, the code stpough each axial direction until it reaches
the bound of the shape and stops checking a direathen the other bound is reached. The
nodes that are saved can then be drawn and redvalout recalculating. Each material region
is drawn quickly which allows the view panel toat®, translate, and zoom more smoothly. All
nodes only need to be recalculated when a changads to the grid or a void region is added or
deleted.

Shapes that are not material regions do not appigtarial to the nodes in the
peridynamic grid. These shapes do not create rogtamay have an effect on the nodes created
by material regions. The shapes that are not nahtegions are the penetrator, grid boundary,
slit, precrack, boundary condition, and void. Téebapes share methods associated with
material regions and therefore fall into the saypet The non material regions shapes are
explained in more detail in the following paragraph

The penetrator, as mentioned previously, is nahddfby nodes and always retains the
same geometry regardless of node size and spdciagenerally used to impact material
regions and has five different types as seen inrgig.26: sphere (a), flat nose (b), cone nose (c),
ogive nose (d), and flared ogive (e). All five paator types need a diameter along with a
variety of parameters to define the nose and tddt shown in the figures is how to define the
curve of the ogive nose for types d and e. Theusadf curvature for the ogive nose is found by
multiplying the diameter (D on each figure) witlvariable namedrh that is required from the

user.

32

T T T 'T‘
«D-lL KDL L L1
I Ul @l 1z
) (d) (&)

(a) (b) (c

Figure 4.26 Penetrator types

The grid boundary is an aid for the user and shibesegion in space that contains the
internally generated nodes. The grid boundarylduighows the user if any material region is
outside the grid boundary and will have missingasomh the EMU solution. Nothing stops the
user from creating a material region outside ofghd boundary in EMU or Visual EMU, but a
material region has no effect on the solution withmodes. The grid boundary, represented by
the thick black lines in Figure 4.27, can be turnadand off from the grid panel (Figure 4.6).

Figure 4.27 View panel showing the grid boundary (lack)

The slit defines a plane that cuts peridynamic isoiithis is similar to the disconnect
keyword for two material regions that was mentiopegliously. There is no peridynamic
interaction across this plane and the nodes oeresgilde act as separate objects sitting beside
each other. As shown in Figure 4.28, the slit ksege rectangle material region into two
separate blocks. After the bonds are broken thenmbregion acts like two blocks adjacent to

each other.

33

Figure 4.28 View panel with a slit plane (green)

The precrack is similar to the slit but has différeptions. While the slit must be parallel
to the x, y, or z plane, the precrack can haveaai@ntation. The precrack also has a thickness
and therefore a volume. Any peridynamic bonds thxath the volume of the precrack are
broken. As shown in Figure 4.29, the precrack @&nlr as two planes separated by the given

thickness. Any peridynamic bonds in the volumelaoken.

Figure 4.29 View panel with a precrack (green)

The boundary condition adds a displacement or uglgcadient to the nodes contained
within its bounds. The gradients only apply to @@that are part of a material region but can
contain any number of material regions. The reatlbin the middle of Figure 4.29 is a
boundary condition. The boundary conditions aeswrin the same way as material regions in
the solid frame and wire frame viewing options.eylare then drawn as a wire frame when

viewing nodes so the user can see which nodedfateal by the boundary condition.

34

The void removes all nodes within its bounds fraitalation. All other information
applied to the nodes is irrelevant. The void shapexolored yellow to distinguish them from
other shapes. Void shapes are also drawn the aamaterial regions in the solid frame and
wire frame viewing options and do not remove amghrom other shapes, a useful feature for
future addition. When viewing nodes however, tb&vegions are drawn as expected in EMU.
All nodes within the bounds of the void are notwho This is consistent with EMU and
represents the node configuration of an EMU sotutid cylinder void is shown in all three

view options in Figure 4.30.

!
y

by

M
%)

.

=—cor
]

[

|
|

J I‘

e
. e b
S 2o
5 SR,

Ty
"»:

!
»}

Lﬁ.(@w |

Figure 4.30 Cylinder void shown in solid (left), wie (middle), and grid (right) frame views

The UML for the Shape class is shown in Figure 48d the following sections give a

brief explanation of some of the important methods.

Shape

Shape()
toFile()
draw(String)

getType()
isincluded(double, double, double)

getMaterial()

Figure 4.31 Partial Shape UML

35

toFile()

Each shape class contains the data entered bgénehat needs output to the infile for
EMU. ThetoFile() method returns a string formatted according taype of shape. For
example, théoFile() method of the cylinder class is shown in Figu24.The three indicates
what type of material region is being defined aadheof the following parameters define the

geometry and must follow the order required by EMU.

public String toFile()
{

}

return " 3 "+d_radius+" "+d _xCen+ " "+d_yCen+" "+d _zL+" "+d_zH;

Figure 4.32toFile() method from the Cylinder class

draw(String)

Thedraw(Sring) method is called each time the view panel changesh call to the
draw(String) method is passed a string that signifies what ofpraw is taking place. The three
options are solid, wire, and grid frame. The sal&v is drawn with solid triangles for each
shape. The triangles are large for a flat suréamesmall when used to represent curved surfaces
such as cylinders and spheres. The wire view ordwsl the outline of the shape making it is
possible to see shapes inside other shapes and glnegpes overlap. The grid view shows the
nodes that will appear in EMU with the given coradis. Each type of shape responds
differently depending on the draw option given.slimformation is held in théraw(String)
method. For example, a sphere has a solid, wickgad structure while all voids, which
represent the absence of nodes, draw nothingdnvggw. Though boundary conditions have no
nodes, a wire frame is drawn in grid view to hélp tiser determine which nodes are affected.

getType()
Each shape class is unique but can fall into diffecategories such as: material region,

void, slit, precrack, or boundary condition. Tm#rmation is held by a string variable in each
class and cannot be changed by the user.gdtfigpe() method returns the string as a way of
identifying and categorizing the shape. For exan@lrectangle void region has the type

“Rectangle Void” and a cylinder void region has tiyee “Cylinder Void.” The string returned

36

from getType() can then be tested to see if “Void” is includé&tlzen though these two shapes are

different, they are both voids and are identified ased appropriately.

isl ncluded(double, double, double)

Each material region defines a boundary that apphaterial properties to the nodes
within. The nodes are set by the grid and eacle i®tested to see if it is included in the
material region or void. If the node is within aid region, it is ignored to keep it from being
drawn. If the node is not within a void region luithin a material region, the node is added to
the list mentioned previously to be drawn. In thiy, each shape is tested uniquely with the

same inherited method.

getMaterial ()

To keep material information with the appropriatatemial region, a string variable holds
the uniqgue name of the material. This method liedavhen displaying the material region
properties or when writing the information to tiéile. Some shapes that are not material
regions use thgetMaterial() method also, such as the precrack. A precraclapply to only
one material region so that only peridynamic boridkin the specified material region are
broken.

State

The state package contains all of the classetimitol how the user can interact with
the view panel. At the moment, the two optionssalection and orbit state. The orbit state
allows the user to rotate, zoom in or out, anddliate the camera. The camera is explained in
more detail in the Camera class of the VE packBgelicking in the view panel and moving the
mouse while holding down the left mouse button,shapes appear to rotate in the direction of
mouse movement. By clicking in the view panel amal/ing the mouse while holding down the
right mouse button, the shapes appear to transldbe direction of mouse movement. By
rolling the mouse wheel in the view panel, the sisagppear to move closer or farther away.
The selection state is designed to hold the cameayae orientation and allow the user to select
shapes in the view panel with the mouse. The ghdiselect is not yet included in Visual EMU
and all shape selection is handled through the tAdlewing the user to select and manipulate

shapes in the view panel is a useful feature faréiaddition.

37

Each class in the state package that controlsinisgaction extends the state class. The
UML for the state class is shown in Figure 4.33 asés mostly abstract methods. An abstract
method has no body and requires all classes thene@xt to implement the method (Morelli and
Walde, 2006). This means there is no method defimin the state class and each class that
extends state must define the method. For exar@eajpuseDragged(MouseEvent) method is
called when the user moves the mouse with a bbtshdown. In the selection state, this
method does nothing. In the orbit state, howetvés,rotates the camera if the left button is held
and translates the camera if the right button id.h&he only method in the state class that is not
abstract is thetateHasChanged() method which is used to update the view panel vainamges

are made.

State

getCursor()

mouseReleased(MouseEvent)
mouseMoved(MouseEvent)
mouseDragged(MouseEvent)
mouseClicked(MouseEvent, double, double, int, int)
mouseDoubleClicked(MouseEvent, double, double i,
leftMousePressed(MouseEvent)
rightMousePressed(MouseEvent)
mouseWheelMoved(MouseWheelEvent)
draw(GL11, AffineTransform)

cancel()

stateHasChanged()

Figure 4.33 State UML

VE
VE is another group of classes that are not atgmap of related classes. Though the
classes in this folder are not alike, they areftlimdation for Visual EMU. Included in this
package are the main class where Visual EMU betjies;lass that manages all visual
components, and the class that manages all shagesaterials. This section gives an

explanation of the most important classes.

38

Camera

The view panel shows the shapes as if viewed thraugamera lens. Though it may look
like the shapes are rotating, the location of theges never changes. The camera can be moved
up and down, zoomed in and out, and rotated arawehter point. The change in view is
created by proper mouse movement. Each mouse codntiat changes the view of the camera
is divided into rotation, translation, or zoom. €6l changes are made to the current view
through the creation of a temporary transformatiatrix and then applied to the overall
transformation matrix. As you can see in Figuret4a8temporary transformation matmRX,
is created with the rotation information that corfresn the mousethetaX, and multiplied with
the current transformation matrick, mTransform, to perform a rotation about the x axis. The

d_mTransform matrix is then used to draw the shapes as if wiefnem the desired location.

public void rotateX(doubl e thetaX)
{
Mat ri x4d nRX;
doubl e cosThet a
doubl e si nThet a

Mat h. cos(t het aX/ 180. *Mat h. PI) ;
Mat h. si n(thet ax/ 180. *Mat h. Pl);

mRX = new Matrix4d(1., 0., 0., O.,
0., cosTheta, -sinTheta, O.,
0., sinTheta, cosTheta, O.,
0., 0., 0., 1.);
d_mrransform mul (nRX, d_mTransfornj;

}

Figure 4.34rotateX(double) method from the camera class

The methodsotateX(double), rotateY(double), androtateZ(double) control the rotation
in each axial direction and are shown along witlotder Camera methods in the UML diagram
in Figure 4.35. Other notable methods taems ate(double, double, double,), which controls

translation andetDistance(double), which controls the zoom.

39

Camera

d_distance : double
d_trans : Vector3d
d_radius : double
d_mTransform : Matrix4d
d_center : Point3d
NEAR_FACTOR : double
FAR_FACTOR : double

Camera()
getDistance()
setDistance(double)
getTransformation()
rotateX(double)
rotateY(double)
rotateZ(double)
translate(double, double, double)
getRadius()
setRadius(double)
getNear()

getFar()
getFractScreen()
setCenter(Point3D)
reset()

Figure 4.35 Camera UML

Initialize

To aid the user, three materials are predefinafdlsnal EMU. They represent the
properties of glass and two types of metal. Astinard previously, the creation of material
regions in Visual EMU requires a material to asatecvith the region. The additional materials
are useful to any user wishing to use Visual EMtgeometry and grid generation or to simply
visualize the problem. The material assigned tartagerial region can be edited or replaced at
any time. An experienced EMU user can use VisuaUBEMquickly create and visualize
geometry and then edit the infile. The Initializass creates the additional materials. Any
materials not used with a material region haveffextion the EMU infile. The additional

materials are available for use without being atance.

40

| nter Shape

As mentioned previously, there are certain intéoastthat can be specified between
material regions. The control for this behaviohédd in the InterShape class, the UML of which
is shown in Figure 4.36. The connect and disconkepivords mentioned previously are
controlled using a simple boolean value, identifasd_isOppositeConnection. All material
regions are connected except rebar meshes. ThaaltlbEhavior changes with the addition of
one keywordgdisconnect_all, which disconnects all material regions. Regasdtégshe default
setting, when the boolean is set to true the twtena regions have the opposite behavior of the
default at that time. This allows the same classontrol all material regions including rebar
mesh. If a rebar mesh and any other shape thag®ppositeConnection set to true, they are
connected, which is the opposite of default. i &amo non rebar mesh materials are set to true,
they are disconnected, which is opposite the defdiithe disconnect_all keyword is used, the
default is the same for all material regions amdiad_isOppositeConnection for any two shapes

connects them.

InterShape

d_keyl : String

d_key2 : String
d_isOppositeConnection : boolean
d_hasRebar : boolean
d_interfaceStrength : Double
d_interfaceForce : Double

InterShape(String, String)
setOppositeConnection(boolean)
isOppositeConnection()
setinterfaceStrength(Double)
getinterfaceStrengh()
setinterfaceForce(Double)
getinterfaceForce()
getKeyl()

getKey2()

isEquals(String, String)
isPartRebar()

Figure 4.36 InterShape UML

41

The get and set methods for interface strengthrgedace force provide additional
information for the interaction of two material regs. The material regions that the InterShape
instance applies to are saveddakeyl andd_key2. These string values hold the names of each
material region. ThesEquals(String, Sring) method compares two material region names with
the two saved names, as shown in Figure 4.37el§things are the same, there is already an
InterShape instance for the pair of material regiand there should only be one instance for
each pair of material regions. TisPartRebar() method is used to identify if one of the two
material regions is a rebar mesh. The instantteeis handled differently since rebar mesh has a

different default.

public bool ean isEqual s(String keyl, String key?2)
{
return((keyl. equal s(d_keyl) && key2.equal s(d_key2)) ||
(keyl. equal s(d_key2) && key2.equal s(d_keyl)));

Figure 4.37isEquals(String, String) method from the InterShape class

MaterialData

The MaterialData class has a public constructorvainein a new material is created, a
new MaterialData instance is created with the \valyigen by the user. All the material
properties are held in the instance of MaterialDatay values that are not set by the user are
not written to the infile and left to be the EMUfdelt. The instance can be linked, by the
unique name, to any material region. The Matea#dxlass has 55 variables and 85 methods.
The majority of the variables hold material paraenetind the methods manage those
parameters. A partial UML of the MaterialData clesshown in Figure 4.38 to give an example

of how the class works.

42

MaterialData

density: double
dispGradient : double][]

setDensity(double)
getDensity()
setDispGradient(doublel[])
getDispGradient()

Figure 4.38 Partial MaterialData UML

The material density is stored as a double caléedity. The value is set by the
setDensity(double) method and returned by tgetDensity() method. The displacement gradient
variable is a bit more complicated and is stored deuble array calledispGradient. The 12
parameters associated with the displacement griagiiershown in Figure 4.11. The first three
are for the reference point and the remainderfercoefficients. All 12 parameters are set with
the setDispGradient(double[]) method and returned with tigetDispGradient() method.

When outputting the material information for EMUhlpthe non default values are
written. This consolidates the infile and allowus user to quickly see the changes from EMU
default. For this reason, entering the EMU defanitirmation into Visual EMU has no effect on
the infile Visual EMU creates. If the user readdrdile into Visual EMU and then writes an
infile, making no changes, the files may be differeAny default information in the original

infile does not appear in the new infile.

ReadInFile

The ReadInFile class controls the input of EMUIled¥i The two methods in the
ReadInFile class are shown in the UML diagram guFe 4.39. The constructor method,
ReadlnFile(ShapeData, VisualEMUWindow), saves the ShapeData and VisualEMUWindow
instances for use in thheadData(Siring) method. TheeadData(String) method takes the infile
location as a string and opens the correct file ifethod then takes two passes through the
infile. The first pass reads in the majority o tkeywords and initiates all of the necessary setup
for keywords to come. After initiation, all of tmemaining keywords are read. For example,
material properties are read on the second pasappied to the correct materials identified on
the first pass. Any lines not recognized are stasdi displayed to the user upon completion. An

43

infile that is out of order can be read and theittamr by Visual EMU. Also, it is sometimes
difficult to find spelling or other small errors an EMU infile. By reading the infile in Visual

EMU, each line with an error is shown to the udeng@ with error messages for some specific

problems.
ReadInFile

d_data : ShapeDse

d_frame : VisualEMUWindow

ReadInFile(ShapeData, VisualEMUWindow)

readData(String)

Figure 4.39 ReadInFile UML

ShapeData

The ShapeData class is the control center for VM. It holds all materials and
shapes as well as the logic for their addition,aeah, and organization. It holds the information
for saving and opening Visual EMU files and readamgl writing EMU infiles. The ShapeData
class has 14 variables and 61 methods. A partial ighown in Figure 4.40 to give some
examples of the content and function of the Shapeblass.

ShapeData

d_shapeVec : Vector<Shape>

d_matVec : Vector<MaterialData>
d_shapeTable : Hashtable<String, Shape>
d_matTable : Hashtable<String, MaterialData>

drawShapes
getMatRegionShapes()
setGridPoints(Shape shape)
deleteShapeWithMat(String s)

Figure 4.40 Partial ShapeData UML

As shown in the UML, there are four variables téditie shapes and materials. Each of
the variables has a different function. The vextarep an order of creation while the hash tables

allow quick access to a specific shape or matefille shape vector is used in thrawShapes()

44

method, shown in Figure 4.41, along with an inlkeerprocess of iteration. Ther loop takes
each shape from thk shapeVec vector and calls théraw(String) method. Théf test in the
drawShapes() method is used to determine if the grid boundaoutd be drawn. The grid
boundary is a shape and could be held irdtlshapeVec variable but is held outside the

d_shapeVec for special treatment.

public void drawShapes()

{
for (Shape shape : d_shapeVec)

{

}

i f(GidDat aPanel . get Gi dDat aPanel (null, null).isShowGid())
{

}

shape. draw(d_geoniype);

Gri dBound. get Gri dBound() . draw(SOLI D) ;

Figure 4.41drawShapes() method in the ShapeData class

The getMatRegionShapes() method uses the inherited process of iteratiomagecollect
all material region names. These names are tlsptaged and used in the interface panel
(Figure 4.21). TheetGridPoints() method is 180 lines long and checks voids and mahte
regions to apply nodes. When new material regioaseeated, the method checks for nodes
within the bounds by iterating through the gricdh@sntioned previously. The
deleteShapeWithMat(String) method allows the user to delete a material bessgl by a material
region. Material regions are required to have geme associated with them. If a material is
deleted that is being used, the user is warnedathassociated material regions are also deleted.
If the user chooses to continue, taketeShapeWithMat(String) method is called and all

associated shapes are deleted.

VisualEMUView

The VisualEMUView class controls the view paneldmprdinating the camera with the
shapes to provide a 2D view of the 3D objects. Viee panel needs to be updated when a
change is made in the view panel. The VisualEMUVaass also coordinates actions from the

mouse when in the view panel. The informationassed to the current state, selection or orbit,

45

and the necessary changes are made. After makarmges, the view panel is updated to show

the desired results.

VisualEMUWindow

The VisualEMUWindow class controls the main windofwisual EMU. This is the
first class called after the main class where MigiMU begins. From here, most of the main
classes are initialized and passed to the clabaesd¢ed them. The ImageHolder class
mentioned previously is initialized and all thetpies are found and loaded. Other classes that
are initiated here are the ShapeData, CommandMarfageeManager, and VisualEMUView
classes. Once the necessary initializations argbzie, VisualEMUWindow places all five
sections of the main window, shown in Figure 4.Beve they belong and then allows the user to
see Visual EMU. Visual EMU is then ready to pemidor the user.

46

CHAPTER 5 - Examples

The following sections walk through two examplesgs/isual EMU to verify accuracy
and display the ease of use. Original infiles fiandia National Laboratories are used as the
template and compared with the results from Vi&MU. EMU results shown with EMUGR,
the post-processor provided with EMU, are alsoudetl. The two examples are a spherical

penetrator impacting a cylindrical glass plate arsinall pipe impacting a square glass plate.

Sphere into Glass Plate
The first example evaluates a spherical penetnatpacting a cylindrical plate of glass at
an angle of 45 degrees. The initial setup is shiomiigure 5.1. The first verification is to read
the original infile into Visual EMU and write anfile from Visual EMU without making
changes. The second verification is through ugautiwhere all data is entered into Visual
EMU by the user instead of through an infile. btlbcases, any changes to the infile show the
affect of Visual EMU.

Figure 5.1 EMUGR plot of damage at time O

Read an EMU infile
EMU requires a text file of keywords in a specificmat. Visual EMU can open an
EMU infile and apply the settings to Visual EMU. ®pen an EMU infile, on thEile menu,
click Read Infile. In the Open dialog, navigate to the infile narfeau.in.glassplate.” Click
Opento read the infile. A dialog will appear with atliof lines from the infile that Visual EMU
could not recognize. Visual EMU does not recogriag keywords for EMUGR, the EMU post-

processaor.

47

Writean EMU infile
Visual EMU can create an EMU infile. To create afilé, on theFile menu, clickWrite
Infile. In the Open dialog, enter “emu.in.glassplateethe file name and use the file chooser
to navigate to the location you would like to s#éive infile. ClickOK to begin writing the infile.
A dialog will appear asking for the job descriptioBnter “Sphere into Glass VE.” This job
description becomes the first line in the infilelas also displayed by the post-processor. The
infile can be used at any time to run an EMU solutr read the settings into Visual EMU to

continue working.

Results

The two infiles are shown in Appendix A with thdfdrences highlighted. The first line
is the title line mentioned previously and is diéfet between the two infiles. This has no effect
on the solution and gives a unique descriptiofn&oinfile. Other lines that have no effect on the
solution are those that begins with a * charadtbrs character indicates a comment and any
lines that begin with one are ignored by EMU. \AEMU takes advantage of this when
writing an infile and adds ** followed by the narmoéthe material region when writing material
regions to the infile. If the file is read backdrVisual EMU, the name is recognized by the **
and applied to the material region when created.

There are three keyword differences between thditas These differences are
keywords that appear in the original infile and imothe resulting infile. These three keywords
(processors, one_line_print, anddensity 1) are not included in the output from Visual EMU
because they are EMU default values. As mentignedously, values that are not different
from the EMU default are not written to the infil&ll other keywords and the resulting solution
from both infiles are the same. The EMU resultssii@vn and explained in greater detail in the

EMU results section to come.

Reset Visual EMU
Before starting the second method of verificatitve, information entered from the infile
must be removed. This ensures that the resulifilg contains only information entered by the
user. To reset Visual EMU, on tkéde menu, clickNew or click the new button[{) located on

the toolbar. A dialog appears warning the useraldhe current information will be lost. Click

48

OK to continue and restore the default Visual EMUisgs. Closing and restarting Visual EMU

also resets the settings.

Definetheinternal grid
The first step in the second method of verificai®to define the internal grid. The grid
defines a region of nodes that can be assignednaterial region. To edit the internal grid,
select theGrid tab. Under thé&rid Dimensions section, enteX=60, Y =60, andZ=5. Also
changeGrid Spacing=.001 as shown in Figure 5.2.

[Grid [Malerial | Geometry l Penetrator ‘ Penetrator Data | Boundary Condition ! General

Grid Center — " (& Cubic Lattice
% [0 | v [o lz o | O Hexagonal Lattice
Grid Dimensi GridSpacing: [001 | _
X |60 | ¥ |80 | 2 |5 | [[] Show Grid Bounds o More |

Apply

Figure 5.2 Defining the internal grid

During an EMU solution, nodes can move within thiel gegion and also into a region
around the grid region called the grid margin. change the size of the grid margin, cldkre
and enteX Max=.02,X Min =.02,Y Max=.02,Y Min =.02,Z Max=.02,Z Min =.05 as shown
in Figure 5.3. ClickOK to close the More - Grid dialog and then cligply on the Grid tab to

save the changes.

More - Grid

Grid Margin

X Max: [0.02 | ymax: [0.02 | zmax: [0.02
XMin: [0.02 | vmin: 002 | zmin: [00s

| 0K || Reset H Cancel |

Figure 5.3 Defining the grid margin

Create a material
Materials in Visual EMU hold all material propegieEach material can be applied to
any number of material regions. To create a nevenad, select thdlaterial tab. In theName
field, enter “Materiall” or allow Visual EMU to pvide a default name when the material is
created. Seled¥licroElastic, selectLinear-Flat, and entesspnon+2600,yld=1000e6, and

ecrit=.001 as shown in Figure 5.4.

49

[Grid | Material " Geometry | Penetrator | Penetrator Data | Boundary Condition | General |

Mame: |materiali | |
= _ e
Density: [@ MicroFlastic @ Linear-Flat sspnom: |2600
Mass: [| MicroPlastic C Ideal-Gas vid: [1oooes | |L
S Number: | ! SelfInitiating ecrit: |£u1 | | Initial Conditions
| ey

Figure 5.4 Creating a new material

To view additional material property informatiotick More. Select theviaterial
Properties 1tab in the More - Material dialog and enk&ilure Stretch Exp=-1 andMin
Stretch Coef.25 as shown in Figure 5.5.

More - Material E|
T A T T 7 g
[Material Properties 1 | Material Properties 2
Node Radius: | | ® 30 Bodies
Node Volume: | ! Rods or Strings
Drop Distance:] ! Membranes
Failure Stretch Exp: -1 | [Fuid
Min Stretch Coef: |.25 | [¥] Force Normalization
Material Rotation: 0.0 |
Energy R Rate
Constant
6o: [1.0E20
Exponential
R | | a0: | | no: | | hmin: | |
| OK | | Reset | | Cancel |

Figure 5.5 Define material properties 1

Select theMaterial Properties 2 tab and undeDamage Stretch Coefficienenter
dc1=.35,dc2=1, anddc3=2 as shown in Figure 5.6.

50

(X

More - Material

Material Properties 1 | Material Properties 2

Gravity
X:

Short Range
Dist Nom: |1.35 Dist Init: [0.9 Force Fac: |15.0

yl

Rate Parameters

[1] []
be | fiso |
cot [Jew [Jm [
b L |
[] [1

dct: Reki) dc2:

Fatigue Model

dt: ’7 si:

| 0K || Reset || Cancel |

Figure 5.6 Define material properties 2

Click OK to close the More - Material dialog and clisgply on the Material tab to
create the material with the chosen propertiesticddhe addition of a new material under
Materials on the tree. To edit the material at tamg, double click the name of the material or
right click the material on the tree and select Ediick Apply when finished editing to save the

changes.

Create a material region

Material regions apply material properties to tees within a boundary. To create a
material region, select t@eometry tab. Each button across the top of the Geomelry ta
represents a different material region. When setgdhe area below the buttons changes to enter
the information necessary to define the specifitema region. Select the cylinder buttdT] to
define a cylinder geometry. In tiNamefield, enter “Cylinderl” or allow Visual EMU to
provide a default name when the material regiaraeated. EnteX Cen=0, Y Cen=0,Z
Max=0, Z Min =-.005, andRadius=.03. Also select “Materiall” (or the default nagigen by
Visual EMU) to be the material applied to the regas shown in Figure 5.7.

[Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General

ij'| | E] F% ﬂﬂﬂ @@ . . Name: ‘leind_em |

XCen: |0 | zmax: [o | ® Solid Internal i

Y Cen: |0 | zmin: [.005 | Radius: |03 |) Solid External Material1 =
) Void [Apply

Figure 5.7 Creating a material region

51

Click Apply to create the material region with the informatmavided. Notice the
addition of a new shape under Shapes on the toeedit the shape at any time, double click the
name of the shape or right click the name and sE&l@it. Click Apply when finished to save the
changes.

Manipulate the view
To manipulate the view of the shape, click the tdobiton g}) located on the toolbar at
the top of Visual EMU. While in the orbit state gusf the mouse in the view panel changes how
the shape is viewed. To rotate, click and draddfienouse button inside the view panel. The
shape rotates in the direction of the mouse. diostate, click and drag the right mouse button
inside the view panel. The shape translates imitteetion of the mouse. To zoom in or out, roll
the mouse wheel back or forward respectively. Tire/xcan be reset at any time by clicking the

reset button-{-) located to the right of the orbit button.

Create a penetrator
Penetrator shapes are primarily used to impactmahtegions. To create a penetrator,
select thePenetrator tab. SelecSphereand enteDiameter=.01 as shown in Figure 5.8. Click
Apply to create the penetrator. Notice the addition mwéa shape under Shapes on the tree. The

penetrator can be edited in the same way descpitedously.

Grid | Material :"7Ge0nleiry | Penetrator i Penetrator Data E'Boundary(:omlition General

® Sphere

! Flat Nose
) Cone Nose Diameter (D): |01
) Dgive Nose

) Flared Ogive | Amly

Figure 5.8 Creating a penetrator

To edit the penetrator properties, selectRbeetrator Datatab. There can only be one
penetrator per EMU solution so the penetrator pitigggeare independent of the specific
penetrator created. Enteéenetrator Mass=4.16e-3 Angle of Impact=45, andmpact
Velocity=100. UndePenetrator tip enterX=-.01,Y=0, andZ=.001. Undefriction select
Linear and entefricco=0 as shown in Figure 5.9. Cliéipply to save the changes which are

applied to the penetrator.

52

| Grid | Material Geometry ' Penetrator u Penetrator Data | Boundary Condition | General

Penetrator Mass: |4 168-3 | Penetrator tip || Repetitive

Angle of Impact (deg): [45 | | % Fot || Friction fricco: [0

Angle of Attack (deg); |0 [R | @Linear yrmp: n wairte o
Impact Velocity: [to0 ||z [t]| Ocomstent oo 55 | wiears: oo

Apply

Figure 5.9 Changing the penetrator properties

Set EMU solution parameters
There are a variety of additional settings for EMWJ.change these settings, select the
General tab. EnteMax time=999, Safety Factor=.8, Filter time constant=1e-9, andPlot

Dump Frequency=100 as shown in Figure 5.10. Clidlpply to save the changes.

Grid | Material Geometry | Penetrator | Penetrator Data Boundary Condition | General !

Horizon: 3015E-2 Deformed horizon: BO30E-2 Plot Dump Frequency: |100
Max time: 999 Max time steps: 12000 | Visous damping coef: .0
Safety Factor: |8 Filter time constant: |1e-9

More

Apply

Figure 5.10 Changing additional settings

Writean EMU infile

Write an infile from Visual EMU as previously detxd. In the Open dialog, enter
“emu.in.glassplateve” as the file name and usdilhehooser to navigate to the location you
would like to save the infile. The resulting infieshown in Appendix A with the differences
highlighted. The title and material region commar& different from the original infile as
expected. The same three keywords highlightedarotiginal infile are still not present in this
output for the same reasons explained previously.

The unique difference of this infile is definingetmaterial region. The original infile
uses -999 as the minimum z bound while the VishdUEnfile from user data entry has -.005 as
the minimum z bound. As described previously,gads of a material region outside the
peridynamic grid have no effect on the solutiomr this reason, the larger bound only ensures
that the material region reaches the edge of thdyyeamic grid. The value of -.005 is enough to
reach the edge of the peridynamic grid and alldwesusser to better view the shape in Visual
EMU. Using excessive bounds is an EMU trick tHeves the user to ensure the boundary of

53

the peridynamic grid is reached without calculatioririal and error. The bounds entered

through user input result in the same EMU solution.

Run an EMU solution
An EMU solution can be started directly from Vis&WU. To run an EMU solution
from Visual EMU, on thd-ile menu, clickRun EMU. Visual EMU can use the current settings
or settings from a previously created infile asvehan Figure 5.11. Sele@urrent settings and

change th&ave locationto the location you would like the EMU solutiorsudts to be saved.

Run EMU @|

(® Current settings

) From file

Save location: ECIemu i | Browse... |

["] Add code for EMUGR

OK || Cancel |

Figure 5.11 Running an EMU solution

The current program used to view EMU results is EBRJ EMUGR is similar to EMU
and requires keywords to operate. The keywordsddfow the solution should be displayed.
SelectAdd code for EMUGR in the Run EMU dialog. This adds some basic keywadodthe
infile, shown in Figure 5.12. If the code for EMBGs added, the EMUGR program can be
used on the same infile after EMU is finished. dbothis, navigate to the chosen save location of
Figure 5.11 and double click the “plot.bat” fileeated by Visual EMU. After EMUGR is
finished, the results are viewed by double clickiing “viewPlot.bat” file created by Visual
EMU in the same location. These two files are sspaallowing the user to view the results
without spending the time to run EMUGR again. didiion, the user can change the EMUGR
plot variables and run EMUGR without running EMUnag

54

plot_all
plot_all_variables
zoom

150
view_angles

0 8C

Figure 5.12 EMUGR code added to infile

Click OK to begin the EMU solution. A dialog will appeakemgy for the job description.
Enter “Sphere into Glass User Creation from VE.isTjbb description becomes the first line in
the infile and is also displayed by EMUGR. The $ioluruns in the background and allows the
user to manipulate Visual EMU while the solutiomusning. Future work on Visual EMU

should add the ability to view the progress of latbon and cancel a solution.

EMU results

The EMU results are saved in the results foldeatexd by Visual EMU in the location
specified by the user. These results are then lwp&MUGR along with keywords to display
the desired results for the user. The resultsdeamsed any number of times by EMUGR
without being affected. Figure 5.1 shows the damagé&action of broken bonds, before
iterations begin. Figure 5.13 shows the damagenat5.286e-5. The colors indicate different
levels of damage and are ordered similar to thersaif a rainbow (ROYGBIV). The red side of
the spectrum indicates the max damage, where atidare broken, while the violet side

indicates little to no damage, where no bonds esken.

Figure 5.13 EMUGR plot of damage at time 5.286e-5

Figure 5.14 shows the damage at the last timedstée solution. The green color in the
middle of the ROYGBIV scale indicates about ha#d thonds are broken. This implies a crack or

fracture in the glass. The red areas where all §amnel broken imply nodes have broken away

55

altogether. A small section surrounded in greeohss the left of Figure 5.14, indicates a large

piece has broken away from the plate.

Figure 5.14 EMUGR plot of damage at time 2.646e-4

Small Pipe into Glass Plate
This example evaluates a small pipe impacting arsgglass plate. The pipe is created
through external grid generation and impacts thsgplate with a velocity normal to the
surface. The initial setup is shown in Figure 51& verify Visual EMU, the same two methods
of verification are used as in the previous examplead and write an infile following the same
procedure as mentioned previously looking for ileerfamed “emu.in.smallpipe” and creating a

file named “emu.in.smallpipeve.”

Figure 5.15 EMUGR plot of damage at time 0

Results
The infiles are shown in Appendix A with the di#erces highlighted. As with the
previous example, the title, inclusion of defawdtues processors anddensity 1), and material
region comments are different between the two.fildge unique difference of this infile is the
change in the name of the grid file. When griddibre read, Visual EMU saves and displays the

information, allowing the user to change the mateassigned to each grid file material region.

56

When writing an infile, Visual EMU also writes awgrid file to the same location as the new
infile. The grid file contains all the changes &®eps the original grid file unchanged and

unmoved.

Definetheinternal grid
As before, reset Visual EMU before continuing te second method of verification. The
internal grid of this example only needs definedtf® glass plate. The nodes defined externally
in the grid file are placed where specified regesdlof the internally generated nodes. To edit
the internal grid, select th@rid tab. UndeiGrid Dimensions, enterX=50, Y=50, andZ=20.
Also enterGrid Spacing=.001 as shown in Figure 5.16. Cli8ply to save the changes.

Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General |

Grid Center ® Cubic Lattice
X [0 | % [o |5z o |) Hexagonal Lattice
Grid Dimensi GridSpacing: [001 |
X |50 | ¥ |s0 | 2z |20 |] Show Grid Bounds o

Apply

Figure 5.16 Setting the grid

Create materials
To create the first material, select tlaterial tab. In theNamefield, enter “Mat1” or
allow Visual EMU to provide a default name when thaterial is created. SelddicroElastic,
selectLinear-Flat, and entesspnonm=2600,yld=200e6, anecrit=.001 as shown in Figure

5.17. ClickApply to create the material with the chosen properties.

Grid | Material rGeometry rPenetrator rPenetrator Data rBoundaryCondition rGeneraI |

o ,—M]
Set Defaults
Density: @ MicroElastic @ Linear-Flat sspnom: 2600
Mass:) MicroPlastic) ldeal-Gas yid: 2006
S Number:) Self-Initiating ecrit: o1 Initial Conditions
Apply

Figure 5.17 Creating the first material

To create the second material, in Nemefield, enter “Mat2” or allow Visual EMU to
provide a default name when the material is credaterDensity=8000, selecMicroElastic,
selectLinear-Flat, and entesspnon4000,yld=400e6, anecrit=.2 as shown in Figure 5.18.

57

Grid | Material rGeomeiry rPenetratur rPenetrator Data rBoundaryCDndition rGeneraI

Set Defaults
Density: |3000 ® MicroElastic @ Linear-Flat ~ Sspnom: |4000
Mass:) MicroPlastic) Ideal-Gas yid: 40086
S Number:) Self_Initiating ecrit: .2 Initial Conditions
Apply

Figure 5.18 Creating the second material

The pipe needs an initial velocity to impact thasgl plate. The initial velocity is applied
through the material assigned to the material regio apply the velocity to the material, click
thelnitial Conditions button and select théelocity tab in the Initial Conditions — Material
dialog. EnteNZ=-100, as shown in Figure 5.19, and cl@@K to save the changes and close the

dialog. ClickApply on the Material tab to create the material with ¢hosen properties.

Initial Conditions - Material E

Displacement | Welocity

Uniform

v 0.0 | vy: |00 vz: 100
Gradient
Reference Point
X [0.0 | Y: 0o | z |on
Coefficients
dVXdX: (0.0 | avxav: |00 | avxaz: |00
dvydx: [0.0 | dwyay: [o.0 | avyaz: [o.0

dvzZdx: [0.0 | dvzav: |00 | dvzaz: |00

] [] []

Figure 5.19 Specifying an initial velocity

Create a material region
To create the material region, select G®ometry tab. Select the rectangle butt¢¥) to
define a rectangle geometry. In thamefield, enter “Rectanglel” or allow Visual EMU to
provide a default name when the material regiameated. EnteX Max=.025,X Min =-.025,Y
Max=.025,Y Min =-.025,Z Max=-1e-6, andZ Min =-.0031. Also select “Mat1” (or the default
name provided by Visual EMU) to be the materiallegapto the region as shown in Figure 5.20.

58

(“Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General |

'@1 fj E%_ []D[]; CH Q@ i L -: Name: |Rectangled

XMax: [0.025 ' ¥Max: (0025 | ZMax: |-1e-6 | @ Solid Internal
XMin: [0025 | vymin: [0025 | zmine [oooa | © Solid External sty [=
£ Void _ Apply

Figure 5.20 Creating a material region

Click Apply to save the changes and create the material reflotice the addition of a
new shape under Shapes on the tree. To edit tipe sthtany time, double click the name of the

shape or right click the name and seledit. Click Apply when finished to save the changes.

Manipulate the view
To manipulate the view of the shape, click the bbitton &) located on the toolbar at
the top of Visual EMU. While in the orbit state gusf the mouse in the view panel changes how
the shape is viewed. To rotate, click and dradeaftenouse button inside the view panel. The
shape rotates in the direction of the mouse. dioslate, click and drag the right mouse button
inside the view panel. The shape translates imitteetion of the mouse. To zoom in or out, roll
the mouse wheel back or forward respectively. Tiee/\can be reset at any time by clicking the

reset button-{-) located to the right of the orbit button.

Add agridfile
The second material region comes from an extermg@herated grid file. To add the grid
file, select the grid file buttori{’) on the Geometry tab. In tiNamefield, enter “Grid Filel” or
allow Visual EMU to provide a default name when gigl file is added. CliclBrowse...to

navigate to the grid file named “smallpipe.grid”’sdi®wn in Figure 5.21.

[Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General

j1. &l % ﬂ[][] JI ‘:3 | }] . Name: [Grid File1

4]

T T 1 r
|Cemusmallpipelsmallpipe.grid || Browse... |I Add | |Mat2

Apply

Figure 5.21 Adding a grid file

Click Add to open the grid file and begin adding the nodeach node of the grid file is

assigned a material region. Visual EMU allowsuker to choose what material should be

59

applied to each region. In the Select Materialogjahat appears, select “Mat2” (or the default
name provided by Visual EMU) to be assigned to nigteegion 2 in the grid file as shown in
Figure 5.22.

Select Material @I

Please select a material for
material region 2 in the gridfile

e |+

| 0K !| Cancel |

Figure 5.22 Assigning Mat2 to material region 2

Set EMU solution parameters
To change additional settings, select@eneraltab. EnteMax time=999, Safety
Factor=.8, andPlot Dump Frequency=50 as shown in Figure 5.23.

Grid | Material | Geometry | Penetrator | Penetrator Data | Boundary Condition | General |

Herizom: 3015E-2 | Deformed horizon: _. GO30E-2 Plot Dump Frequency: |50
Max time: g_g_g Max time steps: _ZDDE | \isous d ing coef: HE |
Safety Factor: |8 Filter time constant: |0.0010

| More

[by

Figure 5.23 Changing additional settings

The two material regions start close together agdjefault, have peridynamic bonds
between the nodes within the material horizon dista To keep the two material regions
separate without peridynamic bonds between theok ttieMore button. In the More —
General dialog click thinterface tab. When both material regions are selectedoptiens
below the list are enabled. To select both oftizerial regions, use the mouse to left click on
the first material region on the list. To seldw second while keeping the first selected, hold
down the control button and left click on the sestomaterial region. When both material
regions are highlighted, as shown in Figure 5.2fcDisconnectand clickApply to save the
change. ClickOK to close the More - General dialog and cigkply on the General tab to save

all changes.

60

More - General E|

[Restart | Output | Interface | Misc

"] Disconnect All

Rectangle1 By default, all material
Grid File regions are connected

except for rebar mesh.

[¥] Disconnect

Interface Force Coefficient: | |

Interface Strength Coefficient: |

| OK || Reset || Cancel |

Figure 5.24 Disconnecting the material regions

Writean EMU infile
Write an infile from Visual EMU as previously ded@d. In the Open dialog, enter
“emu.in.smallpipeve” as the file name and use ileechooser to navigate to the location you

would like to save the infile.

Results

The resulting infile is shown in Appendix A withetldifferences highlighted. As with the
infile created from reading the original infile gthitle, inclusion of default valueprcessors
anddensity 1), material region comment, and the grid file nane different from the original
infile.

The unique difference of this infile is the materegion parameters. Similar to the
previous example, the original infile uses 999 8D as minimum and maximum values for the
x and y bounds of the material region. As descripeviously, the larger bounds only ensure
that the material region reaches the edge of thdyyeamic grid and the bounds entered through

user input result in the same EMU solution.

EMU Results
After running EMU as described previously or ou¢saf Visual EMU, view the results
with EMUGR. Figure 5.15 shows the damage at timeidyre 5.25 the damage at time 8.154e-

61

5, and Figure 5.26 the damage at time 1.816e-4 pifee which is four times denser than the
glass, hits the plate with an edge and quickly ks¢arough the glass. The region around where
the pipe hits the plate shatters, indicated by¢ldeand orange nodes. The cracks are indicated
primarily by the green lines from the center to ¢lage of the plate. As the solution continues,

the pipe continues into the plate and nodes that beoken free are visible inside the pipe.

Figure 5.25 EMUGR plot of damage at time 8.154e-5

Figure 5.26 EMUGR plot of damage at time 1.816e-4

62

CHAPTER 6 - Conclusions

Summary

Visual EMU accurately reads and writes EMU infiléghe user can visualize the
material regions and their placement relative eogharidynamic grid before performing an EMU
solution. The user can create a material onceappty that same material to any number of
material regions without the need to repeat engariformation. Multiple view options are
present allowing the user to see all shapes agssolire frames, or a preview of the nodes in
EMU. Visual EMU allows the user to run EMU from tberrent settings or from a saved infile.
The user interface is adequate for the entry dE®IU keywords though areas for improvement

exist and are mentioned in more detail below.

Future work

The view panel would benefit greatly from the dito select shapes. Selecting three
dimensional shapes viewed with a two dimensionaestcan be a complicated process. Once
selection is available though it would be a triadldition to edit and delete shapes directly from
the view panel.

The entry of all keywords in Visual EMU is functiarbut not ideal in some cases. Some
dialogs (Figure 4.10 for example) organize keywdrgshe number of inputs and should
organize them by function or usage. Each dialogpareel would also benefit from additional
guidance. Some ideas are help buttons that exkégiwords and interactive equations that
show how keywords are used.

The penetrator is an important feature in EMU amdil benefit from more advanced
visualization in Visual EMU. Improvements includeawing the penetrator at an angle when the
angle of impact is changed and adding a directamior or some indication of the angle of
attack specified by the user. Another improventleat is now in progress aims to show the user
feedback from EMU as the solution progresses addtza option to cancel a solution in

progress.

63

The concept of a new post-processor for EMU has aleady begun. The solution
would be displayed from Visual EMU and allow theus create, run, and view results from
one program. Ideally, the user will be able to vesmwy parameter at any time step in 3D and even

automate the display to step through frames atengspeed. The user will also be able to rotate
the solution to view any angle.

64

References

Geary, D., 2003, “Simply Singleton,” Java Worldptwwww.javaworld.com/javaworld/jw-04-
2003/jw-0425-designpatterns.html.

Horstmann, C., 200@®ig Java, Hoboken, NJ, John Wiley & Sons, Inc.

“Java Platform Standard Ed. 6,” 2006, Sun Microsyst Inc.,
http://java.sun.com/javase/6/docs/api/

Macek, R., and Silling, S. A., 2006, “Peridynanmws Finite Element Analysis,” Report LA-
14300, Los Alamos National Laboratory, Los Alamigs).

Microsoft Manual of Style for Technical Publications, 2004, Redmond, WA, Microsoft Press.

Morelli, R., and Walde, R2006,Java, Java, Java Object Oriented Problem Solving, Upper
Saddle River, NJ, Pearson Prentice Hall.

Potyondy, D. O., and Cundall, P. A., 2004, “A Bodédearticle Model for Rock,Int. J. Rock
Mech. & Min. Sci., 41(8), 1329-1364.

Silling, S. A., 1998, “Reformulation of Elasticifyheory for Discontinuities and Long-Range
Forces,” Sandia National Laboratories, Albuquerdiid,

Silling, S. A., 2002, “Peridynamic Modeling of tRailure of Heterogeneous Solids,” Sandia
National Laboratories, Albuquerque, NM.

Silling, S. A., and Askari, E., 2004, “A meshfreetmod based on the peridynamic model of
solid mechanics,” Sandia National Laboratories,uijilserque, NM.

Silling, S. A., Demmie, P. N., Cole, R. A., and TayP., 2006, “EMU User’'s Manual,” Sandia

National Laboratories, Albuquerque, NM.

65

Appendix A - Infile results

The following infiles help verify the results of &ial EMU. For each of the two
examples, the original infile is part of the codelkage from Sandia National Laboratories. The
other two infiles are products of Visual EMU. Thistis made after reading in the original infile
and the second is made after entering the infoomdtirough the user interface.

Sphere into glass plate
The following three infiles are from the exampleacdpherical penetrator impacting a

glass plate.

Original Infile

Sphere Into d ass
processors
111
gri d_di nensi ons
60 60 5
gri d_spacing
0. 001
grid_margin
0.02 0.02 0.02 0.02 0.05 0.02

max_tinme
999
safety factor
0.8
max_time_steps
2000
pl ot _dunp_frequency
100
one_line_print
0

* start run
*
nunber _of nmaterial regions
1
mat eri al _regi on_geonetry_1
3
0. 03 00 -999 0
*
density_1
2200
mcroelastic_1
1 2600 1000. 0Oe6 0. 001
mn_stretch _coef 1
0.25

66

damage_stretch_coef 1
0.351 2
failure_stretch_exponent 1
-1
*fnorm off_all
*
angl e_of attack
0
angl e_of _i npact
45
i mpact _velocity
100
penetrat or _shape
4 0.010
penet r at or _nass
4.16e-3
penetrator_friction_coef
0
penetrator_tip_|location
-0.01 0 0.001
filter_time_constant
1.0e-9

Read/Write Infile

Sphere into d ass VE

gri d_di nensi ons

60 60 5

gri d_spaci ng

0. 0010

grid _margin

0.02 0.02 0.02 0.02 0.05 0.02
max_time_steps

2000

max_tinme

999

pl ot _dunp_frequency
100

safety_factor

0.8

filter_time_constant
1.0E-9

nunber _of _material _regions
1

**Cylinder 1

mat eri al _regi on_geonetry 1
3 0.030.00.0-999.0 0.0
mcroelastic 1

1 2600.0 1.0E9 0.0010
failure_stretch_exponent 1
-1.0

mn_stretch _coef 1

0.25
damage_stretch_coef 1

0.35 1.0 2.0
penetrat or _shape

4 0.01

67

penetrator _tip_|ocation
-0.01 0.0 0.0010
penetrat or _nass

0. 00416
penetrator_friction_coef
0.0
angl e_of _i npact

45.0
angl e_of _attack

0.0

i mpact _velocity

100.0

User Visual EMU infile

Sphere Into d ass User Creation from VE
gri d_di nensi ons

60 60 5

gri d_spaci ng

0. 0010

grid _margin

0.02 0.02 0.02 0.02 0.05 0.02

max_ti me_steps

2000

max_tinme

999

pl ot _dunp_frequency
100

safety_factor

0.8

filter_time_constant
1.0E-9

nunber _of _material _regions
1

**Cyl i nder

materi al _regi on_geonetry 1
3 0.030.00.0:-0.0050.0
mcroelastic 1
1 2600.0 1.0E9 0.0010
failure_stretch_exponent 1
-1.0
mn_stretch _coef 1
0.25
damage_stretch_coef 1
0.35 1.0 2.0
penetrat or _shape
4 0.01
penetrator_tip_|location
-0.01 0.0 0.0010
penet r at or _nass
0. 00416
penetrator_friction_coef
0.0
angl e_of _i npact
45.0
angl e_of attack
0.0

68

i mpact _velocity
100.0

Small pipe into glass plate

The following three infiles are from the exampleacdmall pipe impacting a glass plate.

Original infile
Pi pe Agai nst a Bl ock

processors
111
gri d_di nensi ons
50 50 20
max_tine
999
max_time_steps
2000
pl ot _dunp_frequency
50
gri d_spacing
0. 001
one_line_print
1
nunber _of _material _regions
2
grid file
1
smal | pi pe.grid
mat eri al _regi on_geonetry_1
1
-999 999 -999 999 -0.0031 -0.000001
density 1
2200
density_ 2
8000
mcroelastic_1
1 2600 200.0e6 0.001
m croelastic 2
1 4000 400.0e6 0.2
material _region_ic 2
000 0 0 -100
di sconnect
1
12
safety factor
0.8

Read/Write Infile
Pi pe Agai nst a Bl ock VE

gri d_di nensi ons
50 50 20

69

gri d_spacing

0. 0010
max_ti me_steps
2000
max_tinme
999
pl ot _dunp_frequency
50
safety_factor
0.8
one_line_print
1
nunber _of _material _regions
2

**Rectangle 1

materi al _regi on_geonetry 1
1-999.0 999.0 -999.0 999.0 -0.0031 -1.0E-6
mcroelastic 1

1 2600.0 2.0E8 0.0010

grid file

1

gridfile792.grid

density_2

8000. 0

m croelastic_2

1 4000.0 4.0E8 0.2
material _region_ic 2

0.0 0.00.00.00.0-100.0
di sconnect

1

12

User Visual EMU infile

Pi pe Agai nst a Bl ock User VE
gri d_di nensi ons

50 50 20
gri d_spaci ng
0. 0010
max_ti me_steps
2000
max_tinme
999
pl ot _dunp_frequency
50
safety factor
0.8
one_line_print
1
nunber _of nmaterial regions
2

**Rect angl e
mat eri al _regi on_geonetry_1
1 -0.025 0.025 -0.025 0.025 -0.0031 -1.0E-6
mcroelastic_1
1 2600.0 2.0E8 0.0010
grid file

70

1

gridfiled409.qgrid
density_2

8000. 0

m croelastic_2

1 4000.0 4.0E8 0.2
material _region_ic 2
0.0 0.00.00.00.0-100.0
di sconnect

1

12

71

