

DEVELOPMENT OF VISUAL EMU, A GRAPHICAL USER INTERFACE FOR THE

PERIDYNAMIC EMU CODE

by

JUSTIN BIRKEY

B.S., Kansas State University, 2006

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Mechanical and Nuclear Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2007

Approved by:

Major Professor
Dr. Daniel Swenson

Abstract

This thesis provides a description of Visual EMU, a graphical user interface for the

peridynamic EMU code. The peridynamic model is a fundamental method for computational

mechanical analysis that makes no assumption of continuous or small deformation behavior and

has no requirement for the concepts of stress and strain. The model does not require spatial

derivatives and instead uses integral equations. A force density function, called the pairwise

force function, is postulated to act between each pair of infinitesimally small particles if the

particles are closer together than some finite distance. A spatial integration process is employed

to determine the total force acting upon each particle and a time integration process is employed

to track the positions of the particles due to the applied body forces and applied displacements.

EMU is a computer code developed by Sandia National Laboratories that implements the

peridynamic model. Visual EMU is a pre-processor for the EMU code that allows any user to

enter all parameters and visualize the resulting material regions, peridynamic grid, and a preview

of resulting nodes. Visual EMU can be used before starting a lengthy solution with potential

errors. The language, visual layout, and code design of Visual EMU are described along with

two examples and their results.

 iii

Table of Contents

List of Figures .. vi

Acknowledgements.. ix

CHAPTER 1 - Introduction .. 1

Peridynamics... 1

EMU.. 1

Visual EMU .. 2

Examples... 2

CHAPTER 2 - Peridynamics .. 3

CHAPTER 3 - EMU ... 8

CHAPTER 4 - Visual EMU.. 11

Language... 11

Visual layout ... 13

Main Window ... 13

Menu Bar .. 14

Tabbed Pane.. 15

Grid ... 16

Material ... 16

Geometry... 18

Penetrator .. 19

Penetrator Data.. 20

Boundary Condition.. 20

General.. 21

Code design... 25

Action.. 25

Command.. 27

Dialog.. 29

DisplayHelper ... 30

Images ... 31

 iv

Panel.. 31

Shapes ... 31

toFile()... 36

draw(String) .. 36

getType()... 36

isIncluded(double, double, double)... 37

getMaterial() ... 37

State... 37

VE ... 38

Camera .. 39

Initialize .. 40

InterShape ... 41

MaterialData ... 42

ReadInFile... 43

ShapeData ... 44

VisualEMUView... 45

VisualEMUWindow ... 46

CHAPTER 5 - Examples .. 47

Sphere into Glass Plate ... 47

Read an EMU infile .. 47

Write an EMU infile ... 48

Results... 48

Reset Visual EMU .. 48

Define the internal grid ... 49

Create a material ... 49

Create a material region .. 51

Manipulate the view.. 52

Create a penetrator .. 52

Set EMU solution parameters ... 53

Write an EMU infile ... 53

Run an EMU solution ... 54

 v

EMU results .. 55

Small Pipe into Glass Plate... 56

Results... 56

Define the internal grid ... 57

Create materials... 57

Create a material region .. 58

Manipulate the view.. 59

Add a grid file ... 59

Set EMU solution parameters ... 60

Write an EMU infile ... 61

Results... 61

EMU Results... 61

CHAPTER 6 - Conclusions .. 63

Summary... 63

Future work... 63

References... 65

Appendix A - Infile results ... 66

Sphere into glass plate .. 66

Original Infile.. 66

Read/Write Infile... 67

User Visual EMU infile .. 68

Small pipe into glass plate .. 69

Original infile.. 69

Read/Write Infile... 69

User Visual EMU infile .. 70

 vi

List of Figures

Figure 2.1 Position definitions.. 4

Figure 2.2 Alternate force models (Silling, 2002) .. 7

Figure 3.1 Rectangle material region created internally (a) and externally (b) 9

Figure 4.1 Java shape hierarchy.. 12

Figure 4.2 Visual EMU main window layout ... 13

Figure 4.3 File submenu ... 15

Figure 4.4 Edit submenu... 15

Figure 4.5 Help submenu.. 15

Figure 4.6 Tabbed pane showing grid... 16

Figure 4.7 More dialog from the grid panel.. 16

Figure 4.8 Tabbed pane showing material .. 17

Figure 4.9 Default - Material dialog ... 17

Figure 4.10 More - Material dialog showing both tabs .. 18

Figure 4.11 Initial Conditions – Material dialog showing both tabs .. 18

Figure 4.12 Tabbed pane showing geometry.. 19

Figure 4.13 Tabbed pane showing penetrator... 19

Figure 4.14 Tabbed pane showing penetrator data ... 20

Figure 4.15 Tabbed pane showing boundary condition.. 20

Figure 4.16 Velocity boundary condition dialog .. 21

Figure 4.17 Displacement boundary condition dialog.. 21

Figure 4.18 Tabbed Pane showing general ... 21

Figure 4.19 More – General dialog showing the Restart tab .. 22

Figure 4.20 More – General dialog showing the Output tab .. 23

Figure 4.21 More – General dialog showing the Interface tab ... 24

Figure 4.22 More – General dialog showing the Misc tab ... 24

Figure 4.23 NewAction UML... 26

 vii

Figure 4.24 The undo and redo lists with three commands (a), undo action (b), and new

command (c) ... 27

Figure 4.25 CommandManager UML .. 28

Figure 4.26 Penetrator types ... 33

Figure 4.27 View panel showing the grid boundary (black) .. 33

Figure 4.28 View panel with a slit plane (green).. 34

Figure 4.29 View panel with a precrack (green)... 34

Figure 4.30 Cylinder void shown in solid (left), wire (middle), and grid (right) frame views..... 35

Figure 4.31 Partial Shape UML.. 35

Figure 4.32 toFile() method from the Cylinder class ... 36

Figure 4.33 State UML ... 38

Figure 4.34 rotateX(double) method from the camera class... 39

Figure 4.35 Camera UML... 40

Figure 4.36 InterShape UML.. 41

Figure 4.37 isEquals(String, String) method from the InterShape class 42

Figure 4.38 Partial MaterialData UML... 43

Figure 4.39 ReadInFile UML ... 44

Figure 4.40 Partial ShapeData UML .. 44

Figure 4.41 drawShapes() method in the ShapeData class... 45

Figure 5.1 EMUGR plot of damage at time 0... 47

Figure 5.2 Defining the internal grid .. 49

Figure 5.3 Defining the grid margin ... 49

Figure 5.4 Creating a new material... 50

Figure 5.5 Define material properties 1 .. 50

Figure 5.6 Define material properties 2 .. 51

Figure 5.7 Creating a material region ... 51

Figure 5.8 Creating a penetrator ... 52

Figure 5.9 Changing the penetrator properties ... 53

Figure 5.10 Changing additional settings ... 53

Figure 5.11 Running an EMU solution... 54

Figure 5.12 EMUGR code added to infile .. 55

 viii

Figure 5.13 EMUGR plot of damage at time 5.286e-5... 55

Figure 5.14 EMUGR plot of damage at time 2.646e-4... 56

Figure 5.15 EMUGR plot of damage at time 0... 56

Figure 5.16 Setting the grid .. 57

Figure 5.17 Creating the first material .. 57

Figure 5.18 Creating the second material ... 58

Figure 5.19 Specifying an initial velocity... 58

Figure 5.20 Creating a material region ... 59

Figure 5.21 Adding a grid file... 59

Figure 5.22 Assigning Mat2 to material region 2 ... 60

Figure 5.23 Changing additional settings ... 60

Figure 5.24 Disconnecting the material regions ... 61

Figure 5.25 EMUGR plot of damage at time 8.154e-5... 62

Figure 5.26 EMUGR plot of damage at time 1.816e-4... 62

 ix

Acknowledgements

I would first like to thank my major professor, Dr. Daniel Swenson, for his support,

encouragement, and enthusiasm during my years at Kansas State University. I also thank Dr.

Kevin Lease and Dr. Dunja Peric for serving on my committee. I thank my family for their love

and support over the years. Most of all I thank my fiancée Amy for listening, encouraging,

supporting, and praying for me always.

 1

CHAPTER 1 - Introduction

This thesis provides a description of Visual EMU, a graphical user interface for the

peridynamic EMU code. The interface is a pre-processor motivated by the desire to ease and

spread the use of EMU. The following sections give an introduction to each chapter of this thesis

in the order they will appear.

Peridynamics

The peridynamic model is a fundamental method for computational mechanical analysis

that makes no assumption of continuous or small deformation behavior and has no requirement

for the concepts of stress and strain. The model does not require spatial derivatives to be

evaluated within the body and instead uses integral equations. Beginning with Newton’s second

law, a force density function, called the pairwise force function, is postulated to act between each

pair of infinitesimally small particles if the particles are closer together than some finite distance,

called the material horizon. The pairwise force function may be assumed to be a function of the

relative position and the relative displacement between the two particles. A spatial integration

process is employed to determine the total force acting upon each particle, and a time integration

process is employed to track the positions of the particles due to the applied body forces and

applied displacements.

EMU

EMU is a computer code developed by Sandia National Laboratories that implements the

bond based theory of peridynamics by applying the peridynamic equations to a set of nodes. The

nodes and solution parameters are entered through a keyword text file called an infile. After

initializing the grid, the EMU code evaluates the peridynamic equations along with prescribed

displacements and velocities between time steps to find the resulting displacement and velocity

of each node. There is no feedback on EMU infile creation without attempting an EMU solution

which may crash, quit during initialization, or complete the solution with unexpected results.

 2

Visual EMU

Visual EMU is a pre-processor for the EMU code that allows a user to enter all keyword

parameters and visualize the resulting material regions, peridynamic grid, and a preview of

resulting nodes. No pre-processor currently exists. Additional features include: materials that are

defined once and applied to any number of material regions, 3D visualization allowing the user

to rotate, translate, and zoom, infiles can be read into Visual EMU to continue working or

visualize the current setup before running an EMU solution, and the ability to run EMU from

within Visual EMU.

Examples

Two examples are provided which show Visual EMU accurately reads and writes EMU

infiles. The first example is a sphere impacting a cylindrical plate of glass at an angle. The

second example is an externally generated material region in the shape of a small pipe impacting

a rectangular glass plate normal to the surface. The user can also visualize the material regions

and their placement relative to the peridynamic grid before performing the EMU solution. The

example results from EMUGR show the accuracy of Visual EMU and the complex fracture

possible with the use of the peridynamic EMU.

 3

CHAPTER 2 - Peridynamics

Numerical prediction of crack growth is a longstanding problem in computational

mechanics with difficulty arising from the basic incompatibility of cracks with the partial

differential equations used in the classical theory of solid mechanics (Silling and Askari, 2004).

A fundamental method for computational mechanical analysis has recently been introduced,

called the peridynamic model (Silling, 1998; Silling, 2002; Macek and Silling, 2006; Silling et

al., 2006). The model does not require spatial derivatives to be evaluated within the body and

instead uses integral equations.

The following description of peridynamics comes from a research proposal for the Army.

The peridynamic model makes no assumption of continuous or small deformation behavior. It

has no requirement for the concepts of stress and strain. The peridynamic model starts with the

assumption that Newton’s second law holds true on every infinitesimally small freebody (or

particle) within the domain of analysis. A force density function, called the pairwise force

function, is postulated to act between each pair of infinitesimally small particles if the particles

are closer together than some finite distance, called the material horizon. The pairwise force

function may be assumed to be a function of the relative position and the relative displacement

between the two particles. A spatial integration process is employed to determine the total force

acting upon each particle, and a time integration process is employed to track the positions of the

particles due to the applied body forces and applied displacements. One of the advantages of the

peridynamic approach is that no finite element meshes are required. It is truly a meshless

method.

As described by Silling (1998) and Macek and Silling (2006), the acceleration of any

particle at x in the reference configuration at time t is found from

),()),,(),((),(tdVttt x

H x

xbxxxuxufxu +−′−′= ′∫&&ρ , (1)

where xH is a neighborhood of x , u is the displacement vector field, b is a prescribed body

force density field, ρ is mass density, and f is a pairwise force function whose value is the

force vector (per unit volume squared) that the particle x′ exerts on particle x . In the following

 4

discussion, we denote the relative position of these two particles in the reference configuration

by ξ :

 xxξ −′= (2)

and their relative displacement by η :

),(),(tt xuxuη −′= (3)

Note that ηξ + represents the current relative position vector connecting the particles, Figure

2.1.

The direct physical interaction (which occurs through unspecified means) between the

particles at x and x′ is called a bond, or in the special case of an elastic interaction to be

defined, a spring. The concept of a bond that extends over a finite distance is a fundamental

difference between the peridynamic theory and the classical molecular and discrete element

theories (Potyondy and Cundall, 2004), which are based on the idea of contact forces that arise

from interactions between particles that are in direct contact with each other.

Figure 2.1 Position definitions

It is convenient to assume that for a given material that there is a horizon, δ , beyond

which particles do not interact, or

 () ηξηfξ ∀=⇒> 0,δ (4)

In this discussion, xH will denote the spherical neighborhood of x in R with radius δ .

The pairwise force function f is required to have the following properties:

 () () ξηξηfξηf ,,, ∀=−− (5)

which ensures conservation of linear momentum, and

 () () ξηξηfξη ,0, ∀=×+ (6)

 5

which ensures conservation of angular momentum. The latter equation means that the force

vector between any two particles is parallel to the particles’ current relative position vector.

A material is said to be microelastic if the pairwise force function is derivable from a

scalar micropotential w :

 () () ξηξη
η

ξηf ,,, ∀
∂
∂= w

 (7)

The micropotential is the energy in a single bond and has dimensions of energy per unit volume

squared. The energy per unit volume in the body at a given point (i.e., the local strain energy

density) is therefore found from

 () ξξη

X

dVwW
H

,
2

1
∫= (8)

The factor of 1/2 appears because each endpoint of a bond “owns” only half the energy in the

bond.

If a body is composed of a microelastic material, work done on it by external forces is

stored in recoverable form in much the same way as in the classical theory of elasticity.

Furthermore, it can be shown that the micropotential depends on the relative displacement vector

η only through the scalar distance between the deformed points. Thus, there is a scalar-valued

function ŵ such that

 () () ξηξηξηξ +=∀= ywyw ,,,,ˆ (9)

Therefore, the interaction between any two points in a microelastic material may be

thought of as an elastic (and possibly nonlinear) spring. The spring properties may depend on the

separation vector ξ in the reference configuration.

Combining Eqs. (7) and (9) and differentiating the latter with respect to the components

of η leads to

 () () ξηξξη
ξη

ξη
ξηf ,,, ∀+

+
+= f (10)

where f is the scalar-valued function defined by

 () () ηξξ ,,
ˆ

, yy
y

w
yf ∀

∂
∂= . (11)

This satisfies the requirements of Eqs. (5) and (6), provided

 6

 () () ξξξ ,,ˆ,ˆ yywyw ∀=− . (12)

The relation shown in Eq. (11), together with the equation of motion, Eq. (1), contain the

totality of the peridynamic model for a nonlinear microelastic material. In particular, note that

the issue of how to treat rigid rotation does not arise in this formulation because y is invariant

under rotation of the body. Similarly, objectivity of a constitutive model is not an issue in this

approach.

The simplest material model is the proportional microelastic material, in which the bond

force f varies linearly with bond stretch s ,



 <

=
otherwise0

if
),(

δξ
ξ

cs
sf (13)

where c is called the spring constant and 1−+= ηηξs .

To determine c from a given bulk modulus k , consider a large homogeneous body under

isotropic extension, i.e., s is constant for all ξ , and ξη s= . Defining ξ=ξ and η=η , we

have sξη = . Using the definition of the micropotential shown in Eq. (7), since ξη /ccsf == ,

it follows that 2/2/ 22 ξξη cscw == . Then, applying Eq. (8) leads to

 ∫∫ =







==

δ

ξ
δπξπξξ

0

42
2

2

4
4

22

1

2

1 cs
d

cs
wdVW

H

. (14)

This is required to equal the strain energy density in the classical theory of elasticity for the same

material and the same deformation, 29 2ksW = . Combining this requirement with Eq. (14)

leads to the spring constant in the proportional microelastic material model,

4

18

πδ
k

c = (15)

More complex behavior can be obtained using the microplastic or damage models shown

in Figure 2.2. The microplastic model uses a 1D elastic-plastic behavior for each link. In the

damage model, the links break after a specified amount of stretch. The appropriate failure

stretch can be obtained by considering the fracture energy of a given material.

 7

a. Microplastic model b. Damage model

Figure 2.2 Alternate force models (Silling, 2002)

 8

CHAPTER 3 - EMU

EMU, developed by Sandia National Laboratories, is a computer code based on

peridynamics (Silling et al., 2006). EMU implements the bond based theory of peridynamics by

applying the peridynamic equations to a set of nodes. The solution time is dependent on the

number of nodes in the solution and the number of time steps. Multiprocessing can be used to

reduce the solution time.

To begin a solution, the EMU code reads a keyword file, called an infile, and formulates

the nodes defined through material regions and the number dropped, or deleted, through void

regions. At each time step, the code takes each node in turn and finds the pairwise force

functions described previously and also applies any prescribed displacements or velocities and

short range forces necessary. After the resulting force for each node is found, new displacement

and velocity values are calculated for the time step. The process continues until a stop condition

is met.

EMU solutions are based on the nodes defined by material regions, which can be created

in EMU or generated externally and read as part of the problem input. Internal generation is

restricted to the volume defined by the peridynamic grid. Once the peridynamic grid is

established, these are the only nodes available for any internally defined material region. Any

material region defined outside of this grid has no nodes within its bounds and therefore no effect

on the solution. A material region created across the boundary of the grid uses only the nodes

within the grid as part of the solution. This can be confusing for the EMU user, as the grid is not

defined by dimensions, but by keywords that specify the center point, the number of nodes in

each direction, and the distance between nodes. The user must calculate the dimensions of the

resulting grid to determine the boundary of possible nodes. Though not a complex calculation, a

slight change to any of the three keywords that define the grid can accidentally place a material

region outside the boundary. Externally generated nodes are independent of the peridynamic

grid defined by EMU. These nodes are entered through a separate file called a grid file that

defines the location and material of each node. The nodes are placed at the exact location

specified in the grid file without regard to the peridynamic grid.

 9

Nodes that are created too close to each other through external and internal generation are

dropped before the solution begins. The distance that determines if a node should be dropped

can be specified by the user. Nodes that get close to each other during a solution are not dropped

but invoke short range forces that prevent them from occupying the same space. Short range

forces apply to all nodes that come within the minimum distance and act to repel each other until

the distance is greater than the minimum. Coefficients that help determine the force and

minimum distance can be specified by the user.

For impact problems, EMU allows the user to create a special object called a penetrator.

The penetrator is limited to one per solution and is not defined by nodes. The penetrator is a true

solid object that interacts through contact with the surface. There are no peridynamic bonds

related to the penetrator but forces still apply to the penetrator and the nodes that it comes into

contact with. The penetrator is used primarily to impact material regions and the user can specify

mass, angle of impact, angle of attack, impact velocity, tip location, friction and choose from five

different shapes.

Some keywords in EMU can define a volume internally or externally. The two types

specify whether the desired volume is inside or outside the boundary described by the keyword.

Internal keywords specify the desired volume within the boundary. Figure 3.1 (a) shows a

material region in the shape of a rectangle created internally. External keywords specify the

desired volume outside the boundary yet inside the peridynamic grid. Figure 3.1 (b) shows the

same material region boundary as (a) but created externally. The black lines in both figures

represent the boundary of the peridynamic grid.

(a) (b)

Figure 3.1 Rectangle material region created internally (a) and externally (b)

 10

Execution of EMU requires the infile to contain keywords about the peridynamic grid,

material regions, boundary conditions, and all other parameters that control the solution. Each

keyword has a specific format and most are followed by a set of numbers. If the keyword

signifies a single numerical value such as the maximum number of time steps, there is only one

number that follows the keyword. If the keyword represents something more complex, such as a

material region, the keyword itself contains an identifying number and is followed by a set of

numbers that tell which geometry is being specified and providing the data needed to define that

geometry.

To ensure that EMU runs properly, each keyword must follow the correct format. Some

formatting errors, such as omitting a numerical value after a keyword, end EMU during

initialization while others, such as switching the order of variables after a keyword, alter the

desired results without warning. Errors that alter the results without ending EMU are hard to

notice until the solution finishes, which can cost many hours of computing time. A pre-processor

is clearly needed for the entry of these keywords and to allow visualization of material regions

and the resulting nodes before running a lengthy EMU solution.

 11

CHAPTER 4 - Visual EMU

Visual EMU is a graphical user interface for the peridynamic EMU, developed by Sandia

National Laboratories, which is a computer code based on peridynamics (Silling et al., 2006).

Visual EMU allows the user to input data, see the 3D model, and execute EMU from one

interface. The following sections describe the language, visual layout, and code design of Visual

EMU.

Language

Visual EMU is written entirely in Java using Eclipse as the development environment.

Java is an object oriented language designed to divide programs into separate modules, called

objects, which encapsulate the program’s data and operations (Morelli and Walde, 2006). The

objects are organized in a hierarchy from general to specific and can be broken down into more

specific groups infinitely. Each class in the hierarchy inherits, or obtains the characteristics, from

the class above it. A class is a template for an object and encapsulates the attributes and actions

that characterize a certain type of object (Morelli and Walde, 2006). Java has a built in class

called Object that all other classes inherit from, making it the most general object.

The following discussion uses the Visual EMU Shape class as an example. As you can

see in Figure 4.1, Shape is a subclass of Object and therefore inherits all the characteristics of

Object. Shape can be called an Object because it is a specific type of Object. Cylinder,

Rectangle, and Sphere are all subclasses of Shape and therefore inherit the qualities of Shape as

well as Object. Cylinder can be called an Object and it can be called a Shape. Cylinder can not

be called a Rectangle however, as it does not inherit from Rectangle. Cylinder and Rectangle are

both Shapes though, and specific types of Shapes. All classes that inherit from Object have a

method, or collection of programming instructions that describe how to carry out a particular

task (Horstmann, 2006), called toString(). Through inheritance, Shape, Cylinder, Rectangle, and

Sphere all have a toString() method defined for them.

 12

Shape

Rectangle Sphere Cylinder

Object

Figure 4.1 Java shape hierarchy

The toString() method can also be modified for each specific type, which is called

polymorphism. Polymorphism denotes the principle that behavior can vary depending on the

actual type of an object (Horstmann, 2006). Shape, Cylinder, Rectangle, and Sphere are all

different types of Object. They can all override and change the toString() method so the method

acts in a unique way for each class.

The power of object oriented programming is that all classes that inherit from Shape can

be handled together as Shapes without the need to know which specific type is being used. For

example, all classes that inherit from Shape have a method called draw(String). This method

displays the Shape in Visual EMU. The Cylinder, Rectangle, and Sphere are placed in a holder

that only knows each is a Shape and nothing else. Thanks to inheritance, using the draw(String)

method from each Shape displays the correct geometry without the need to find the specific type

of Shape being drawn.

In Java, the command extends makes the class a subclass of the one specified by the

command. The class is not only a subclass of the one specified, but a subclass of all super classes

of the one specified. Using the example above, Object is a super class of Shape, Cylinder,

Rectangle, and Sphere. A class inherits from all super classes. Cylinder extends Shape and is a

subclass of any class above Shape up to the Object class. This creates a tree structure with the

Object class as the root. The branches are all the subclasses of Object and the number of

subclasses is unlimited. Each subclass of Object can also have an unlimited number of

subclasses and this pattern continues indefinitely. Each class can only exist in one spot on the

tree however, as each class can extend only one other class.

 13

Classes can inherit from a class that is not a super class using the implements command.

A class is not a subclass of what it implements (Morelli and Walde, 2006) and the location in the

tree does not change. The interface, or implemented class, has methods that it requires each

class that implements it to have. In this way, classes inherit methods from other classes they

extend and implement.

Visual layout

Visual EMU follows the layout of most professional applications. The main window of

Visual EMU has five sections, shown in Figure 4.2. Visual EMU is controlled through this

window and the user can view different options by manipulating the main window. The options

and their locations are described in this section.

1
2

3

4 5

Figure 4.2 Visual EMU main window layout

Main Window

 Located at the top of Visual EMU in section 1 is a menu bar with options such as File,

Edit, and Help. Clicking these opens a submenu with more options. More on the menu bar is

explained in the Menu Bar section. Below the menu bar in section 2 is a toolbar. Each button

has a picture that represents the function and a short description appears when the mouse is

 14

hovered, or held momentarily without clicking, over the button. Many of these buttons are the

same options found in the menu bar above and provide quick access to the most popular choices.

In addition, the toolbar contains buttons to control the 3D view located in section 5.

Section 3 of Figure 4.2, located below the toolbar, contains a tabbed pane. A tabbed pane

shows different content depending on which tab is selected. In this way, the seven options in

section 3 share the same space though only one is visible at a time. More on the tabbed pane is

explained in the Tabbed Pane section. Below the tabbed pane, the rest of the main window is

split into two parts. Section 4 on the left is a tree view of all Shapes, Materials, and Boundary

Conditions. Through the rest of the discussion on Visual EMU, this section is referred to as the

tree. Section 5 to the right of the tree is the 3D view. Anything the user can benefit from seeing

in 3D is shown here, such as Shapes, Boundary Conditions, and the peridynamic grid boundary.

Through the rest of the discussion on Visual EMU, section 5 is referred to as the view panel.

Menu Bar

The menu bar contains the controls for Visual EMU. Most options are held in the File

submenu shown in Figure 4.3. The New option clears all of the current data in Visual EMU and

allows the user to start with default settings as if the program has just been opened. The Open

option allows the user to continue from a previously saved Visual EMU file. All of the settings

from the file are applied to the current Visual EMU. The Save option creates a file with a

“.vem” extension. The file holds the current Visual EMU information to allow the user to return

to the current settings later. The Read Infile option allows the user to import a previously created

EMU infile. The infile settings can then be viewed and manipulated as desired. The Write Infile

option then allows the user to create an EMU infile from the current Visual EMU settings. The

infile can be used to run an EMU solution or to save the current settings. The Run EMU option

allows the user to begin an EMU solution from within Visual EMU. The solution can use the

current Visual EMU settings or settings from an EMU input file. The Exit option closes Visual

EMU.

 15

Figure 4.3 File submenu

The Edit submenu, shown in Figure 4.4, holds only two options: undo and redo. These

options are also found on the toolbar represented by the blue arrows. They are explained in more

detail in the Command section of Code Design.

Figure 4.4 Edit submenu

The Help submenu, shown in Figure 4.5, holds information about Visual EMU. Clicking

on About opens a dialog that displays the version and creator of Visual EMU.

Figure 4.5 Help submenu

Tabbed Pane

The use of a tabbed pane in the main window allows the user to see more options without

using additional windows. By selecting the title of a specific tab in section 3, that panel becomes

visible and the previous is hidden. The user can navigate between tabs at any point in time

without opening an additional window and covering the main window. The tabs are set in the

order they are most likely to be used from left to right.

The panels held in the tabbed pane control almost all of the EMU keywords. Each panel

controls a group of similar keywords. The most common keywords in the group are placed

directly on the panel and the remainder are entered through modal dialog boxes that appear after

pressing the appropriate button on the panel. All data from the dialog is saved with the

 16

information on the panel it came from. This keeps all keyword information grouped together and

allows easy access in one location. Each panel is explained in more detail in the following

sections.

Grid

The grid panel, shown in Figure 4.6, contains all the keywords related to the nodes of the

peridynamic grid mentioned previously. All internally generated material regions are dependent

on this information and Visual EMU uses it to preview the configuration of nodes in EMU.

Default values for the grid are initially set so the user can skip ahead if desired. The user can

return to this panel at any time and change the information to better represent the chosen material

regions.

Figure 4.6 Tabbed pane showing grid

The More button on the right of the grid panel opens a modal dialog (Figure 4.7) for the

user to enter data defining the grid margin. The grid margin is the area around the peridynamic

grid that nodes can move into during the solution. Nodes that move outside the grid margin are

dropped from calculation.

Figure 4.7 More dialog from the grid panel

Material

The material panel (Figure 4.8) contains all of the keywords related to material

properties. Each material region requires a material be assigned to it. Materials are created or

 17

edited in the material panel. There are three buttons on the lower right of the panel that open

dialogs: Set Defaults, More, and Initial Conditions.

Figure 4.8 Tabbed pane showing material

The Set Defaults button opens the dialog shown in Figure 4.9. The information entered

here applies to all materials and is the value used by EMU unless specified otherwise for a

certain material.

Figure 4.9 Default - Material dialog

The More button opens a dialog for the entry of additional material information. The

dialog contains a tabbed pane just like the main window that allows the information to be viewed

in two parts, keeping the dialog reasonably sized and organized. The dialog with each tab

selected is shown in Figure 4.10.

 18

Figure 4.10 More - Material dialog showing both tabs

The Initial Conditions button opens the dialog shown in Figure 4.11. The data entered

here specifies the initial displacement and velocity as well as the displacement and velocity

gradients for the material. The dialog contains a tabbed pane that allows the information to be

split into two parts, a displacement panel and a velocity panel. The dialog with each tab selected

is shown in Figure 4.11.The information entered in the More and Initial Conditions dialog is held

and saved with the material when created.

Figure 4.11 Initial Conditions – Material dialog showing both tabs

Geometry

The geometry panel (Figure 4.12) allows the user to create all of the material regions,

voids, slits, precracks, and enter grid files. Each of the different geometries is represented by a

toggle button with a picture. Toggle buttons restrict selection to one button at a time. When a

 19

button is selected the previous button is deselected keeping the selection to one at a time.

Hovering the mouse over the toggle button displays information about the button. Selecting the

button changes the area below to enter the data necessary to create the chosen shape. The first

button, the rectangle button (), displays the panel as shown in Figure 4.12. There are six

parameters needed to define the rectangle geometry and three different types of rectangle:

internal, external, and void. If the shape is a material region (internal and external types for a

rectangle) then a material must be chosen from the drop down menu above the Apply button. If

the shape is not a material region (void type for a rectangle), there is no need to specify a

material and the drop down menu is disabled. After entering the appropriate data, the shape is

created by clicking the Apply button.

Figure 4.12 Tabbed pane showing geometry

Penetrator

The penetrator panel (Figure 4.13) controls the creation of the penetrator shape. As

mentioned previously, there can only be one penetrator and there are five different types to

choose from. The user can select each option and see a picture of the desired type by pressing

the radio buttons on the left of Figure 4.13. The data needed to define the chosen type is

displayed to the right of the picture. After entering the necessary information, the penetrator is

created by clicking the Apply button. If a penetrator has already been created, pressing the

Apply button replaces the current penetrator with a new one of the chosen type. The delete

button is enabled when a penetrator exists and removes the penetrator.

Figure 4.13 Tabbed pane showing penetrator

 20

Penetrator Data

The penetrator data panel (Figure 4.14) allows the user to enter information about the

penetrator. After entering the desired data, the Apply button saves the information with the

current penetrator. If there is no penetrator, the Apply button is disabled.

Figure 4.14 Tabbed pane showing penetrator data

Boundary Condition

The boundary condition panel (Figure 4.15) allows the user to create three different types

of boundary conditions. The types are “no fail”, displacement, and velocity. As with the

geometry panel, the rectangle and cylinder geometries are represented by a toggle button with a

picture. Clicking the toggle button displays the data fields necessary to define the geometry.

The user can also choose interior or exterior types of boundary conditions. Clicking the Apply

button creates the specified boundary condition.

Figure 4.15 Tabbed pane showing boundary condition

When choosing between “no fail”, velocity, and displacement, a dialog appears for

velocity and displacement that allows the user to enter the data relevant to those types. The two

dialogs, shown in Figure 4.16 and Figure 4.17, are similar and allow the user to specify

conditions on any axis. To specify a condition, the user must select the appropriate check box

and enter a value in the corresponding field to the right. Clearing the check box leaves the

direction unconstrained in the solution. The velocity dialog has an additional End Time variable

used to turn off the velocity boundary condition at the specified time. The “no fail” boundary

 21

condition needs no additional information and keeps all peridynamic bonds within the bounds

from breaking.

Figure 4.16 Velocity boundary condition dialog

Figure 4.17 Displacement boundary condition dialog

General

The general panel allows the user to enter all of the remaining data. The most common

fields are located on the panel and many additional fields are located in a dialog accessed by

clicking the More button. After entering the desired information in the panel and the dialog,

clicking the Apply button saves the information.

Figure 4.18 Tabbed Pane showing general

Clicking on the More button opens another dialog with a tabbed pane. The tabbed pane

has four options: Restart, Output, Interface, and Misc. EMU allows the user to restart a previous

EMU solution through files that are saved by EMU during a solution. The user can specify these

options in the Restart tab shown in Figure 4.19. In addition to restarting an EMU solution, the

 22

user can tell EMU to create a restart file for later use. This information is also available on the

Restart tab.

Figure 4.19 More – General dialog showing the Restart tab

The Output tab holds information that tells EMU what to display during a solution and

when and where to place information for post-processing. The most common output options are

located on the General panel, but the rest are located in the dialog on the Output tab shown in

Figure 4.20. While an EMU solution runs, the user can see a single line output at each time step

that provides information about the peridynamic grid or penetrator. The user can select their

preference in the Output tab. The user can also specify the location of the plot files that will be

used by EMUGR, the EMU post-processor.

 23

Figure 4.20 More – General dialog showing the Output tab

The Interface tab allows the user to connect and disconnect material regions. The

connection refers to the peridynamic bonds between nodes mentioned previously. These bonds

should not exist in some situations and need to be removed. By default, there are peridynamic

bonds between all nodes within the material horizon distance mentioned previously. An

exception is between rebar mesh and any other material region. By default, two non rebar mesh

material regions adjoining each other act as one material region with two different material

properties. To keep the two material regions separate, the Interface tab allows the user to specify

which material regions are connected and disconnected. The user can also specify the interface

force and strength coefficients between two material regions. To change the default settings

between two material regions, the user selects two material regions from the list shown in Figure

4.21 and enters the desired information. To select more than one material region, hold down the

control button and click on the second material region. Once two material regions are selected,

the options below the list are enabled. More detail is given with the InterShape class in the

description of the VE package.

 24

Figure 4.21 More – General dialog showing the Interface tab

The Miscellaneous tab allows the user to enter the remaining information that has no

other place in Visual EMU. As shown in Figure 4.22, the options include “no fail” perimeter,

damage viscosity, number of processors, fatigue loading, fixed time steps, and node history

locations.

Figure 4.22 More – General dialog showing the Misc tab

 25

Code design

Using object oriented design, all of the source code for Visual EMU is divided into nine

files and packages. By definition, a package is a collection of related classes (Horstmann, 2006).

These files and packages help organize the classes into the similar types mentioned in the

discussion of object oriented programming and also arrange the code for easy navigation by the

developer. The following section explains the purpose and functionality of each file and package.

Action

Each action class represents a specific task completed at the request of the user. By

extending the Java Abstract Action class, each action can implement (gain access through the

inheritance mentioned in the discussion of Java) a method called actionPerformed() (Java

Platform Standard Ed. 6, 2006). Inside the actionPerformed() method of each action class are

the instructions to complete the task. Though each method is different for all fifteen actions,

each class is handled in the same way through the inheritance from the Abstract Action class.

Each action is assigned to a button, buttons, or menu item and the actionPerformed() method is

called immediately after selection of the item it was assigned to. As an example, the

actionPerformed() method in NewAction is called from the new button () on the toolbar in

section 2 of Figure 4.2 and an option on the File submenu shown in Figure 4.3. The same action

is called from both places.

The UML diagram for the NewAction class is shown in Figure 4.23. The class needs

access to the current information held in ShapeData and VisualEMUWindow. The variables that

allow the access are d_data and d_frame respectively. More explanation on these two classes is

provided in the ShapeData and VisualEMUWindow sections of the VE package. The

actionPerformed() method confirms that all current data will be lost with this action before

clearing all of the current data and resetting to the default information.

 26

NewAction

d_data : ShapeData
d_frame : VisualEMUWindow

NewAction(ShapeData, VisualEMUWindow)
actionPerformed(ActionEvent)

Figure 4.23 NewAction UML

The following list gives a brief explanation of each class in the action package:

• AboutAction: Opens a dialog that displays information about the author and version of

Visual EMU.

• AddBCAction: Adds a new boundary condition shape.

• AddShapeAction: Adds a new shape that is not a boundary condition. This includes the

penetrator, material regions, slits, precracks, and voids.

• ExitAction: Closes the Visual EMU program.

• NewAction: Clears all Visual EMU data and resets to default information.

• OrbitStateAction: Sets the 3D view to orbit state. The view can be rotated, translated, and

zoomed with the use of the mouse.

• ReadInFileAction: Opens and reads the information from an EMU infile.

• ReadStateAction: Opens a saved Visual EMU file.

• RedoAction: Executes the task at the top of the redo list.

• ResetAction: Resets the 3D view to default orientation.

• RunEMUAction: Opens a dialog that gives the options for running EMU. After the

options are successfully entered, the action completes the necessary setup and executes

EMU.

• SaveAction: Saves the current Visual EMU settings to a “*.vem” file.

• SelectionStateAction: Will enable selection of objects in the view panel in the future.

• UndoAction: Execute the task at the top of the undo list.

• WriteInFileAction: Writes an EMU infile from the current Visual EMU settings.

 27

Command

Each command class represents a task that can be undone and redone. When a new

command is created, the task is executed and the command is added to the undo list held in the

CommandManager class. The list allows the user to undo, or reverse, each task in the opposite

order they were executed. The commands are kept in order, as shown by the numbers one to

three in Figure 4.24 (a). The first command is labeled one and is at the bottom of the list while

the last command is labeled three and is at the top of the list. The last command added to the list

is always the first to be removed and its execution undone. When the undo action is selected, the

task of the last command executed is reversed and the command is moved to the redo list (Figure

4.24 (b)). The undo action can be used for each command in the undo list. With a command in

the redo list, the redo action is available. If selected, the task is executed and the command

placed back on the undo list. The result is a return to the state of Figure 4.24 (a).

undo list

1

2

3

redo list undo list

1

2

3

redo list undo list

1

2

3

redo list

3

(a) (b) (c)

Figure 4.24 The undo and redo lists with three commands (a), undo action (b), and new

command (c)

Commands can go back and forth from the undo list to the redo list an infinite number of

times. This can continue until a new command is added to the undo list, one not from the redo

list, as shown in Figure 4.24 (c). When the new command is added to the undo list all commands

on the redo list (command three in the redo list in Figure 4.24 (c)) are deleted. The new

command (the three above the undo list) is placed in order in the undo list. In this way, the order

of commands remains constant. The new command three is the first undone and the last redone.

If the commands on the redo list were not removed, it could be possible to have a shape on the

 28

redo list with the same name, a unique identifier, as a shape added to the undo list. Allowing the

command to be redone would bring back the shape with a duplicate name. Many potential

problems exist in the logic of the code if the name field is not unique.

The CommandManager class is implemented as a singleton, with the UML diagram

shown in Figure 4.25. A singleton ensures that only one instance of the class is created and

provides a global point of access (Geary, 2003). The CommandManager() constructor is

therefore a private method. This means no class other than the CommandManager can create the

undo and redo lists. All classes can call the public static method getCommandManager() though.

The method checks to see if an instance of CommandManager exists and returns the existing

CommandManager or makes a new one. In this way only one set of lists are ever created.

The execute(Command) method adds the new command to the undo list and clears the

redo list for the reasons previously described. The undo() method moves the command most

recently added to the undo list over to the redo list. The redo() method moves the command

most recently added to the redo list to the undo list. The undoValid() method returns a boolean

value that is true if there are any commands in the undo list and the redoValid() method does the

same for the redo list. These methods help determine if the undo and redo actions can be used.

The clearLists() method removes all commands from the undo and redo list.

CommandManager

d_undoList: Vector<Command>
d_redoList: Vector<Command>

CommandManager()
getCommandManager()
execute(Command)
undo()
redo()
undoValid()
redoValid()
clearLists()

Figure 4.25 CommandManager UML

The following is a brief description of each class in the command package:

• AddBoundaryRegionCommand: Holds the boundary condition shape addition task.

 29

• AddCylinderCommand: Holds the cylinder shape addition task.

• AddCylinderExteriorCommand: Holds the cylinder shape of type exterior addition task.

• AddCylinderVoidCommand: Holds the cylinder shape of type void addition task.

• AddLayerCommand: Holds the layer shape addition task.

• AddMaterialCommand: Holds the material data addition task.

• AddPenetratorCommand: Holds the penetrator shape addition task.

• AddPrecrackCommand: Holds the precrack shape addition task.

• AddRebarMeshCommand: Holds the rebar mesh shape addition task.

• AddRectangleCommand: Holds the rectangle shape addition task.

• AddRectangleExteriorCommand: Holds the rectangle shape of type exterior addition

task.

• AddRectangleVoidCommand: Holds the rectangle shape of type void addition task.

• AddSlitCommand: Holds the slit shape addition task.

• AddSphereCommand: Holds the sphere shape addition task.

• AddStackedCylinderCommand: Holds the stacked cylinder shape addition task.

• Command: The interface that requires each command to inherit the methods undo(),

redo(), and execute(Command).

• CommandManager: Contains the undo and redo lists and controls the movement of

commands between the two.

• DeleteMaterialCommand: Holds the task that removes a material data.

• DeleteShapeCommand: Holds the task that removes a shape.

Dialog

Each dialog class represents a unique window used to show or gather information. The

dialog is a stand alone window that appears in front of the Visual EMU program. When a dialog

appears, it is impossible to interact with the window behind until the dialog is closed. This is

called a modal dialog (Morelli and Walde, 2006). The control is imposed on Visual EMU only

though, and the user can switch to a different program. While some dialogs only display

information, others act as portals for the passing of data. This is most common with the More

button on many of the tabbed panels. Each More button opens a modal dialog with additional

 30

options and allows the user to enter information that could not fit on the main panel. The

following is a brief description of each class in the dialog package:

• BoundaryConditionDispDialog: Collects displacement information for the boundary

condition.

• BoundaryConditionVelDialog: Collects velocity information for the boundary condition.

• FinalAdvancedDialog: Collects additional information for the general panel.

• GridAdvancedDialog: Collects additional information for the grid panel.

• MaterialAdvancedDialog: Collects additional information for the material panel.

• MaterialDefaultDialog: Opens a dialog that contains all of the default keywords that

apply to materials. This data is used by EMU when not specified for a material.

• MaterialInitialDialog: Opens a dialog that collects information on the initial condition of

the material.

• MyDialog: The interface for each dialog. It requires each dialog to contain the doModal()

and validData() methods that help produce the modal nature of the dialogs.

• RunEMUDialog: Opens a dialog that allows the user to choose locations and options

before running EMU.

DisplayHelper

DisplayHelper is not a group of related classes. For this reason it is not a package but a

folder, a holder for the organization of files. The classes held in the DisplayHelper folder aid the

classes in the panel and dialog packages. Each of these classes is used in multiple locations to

speed up development and create dialogs and panels with consistent content. The following is a

brief description of each class in the DisplayHelper folder:

• DialogHelper: This helper class aids the creation of different objects used in the dialogs.

An example is the text label with a horizontal line extending to the right such as no fail

perimeter shown in Figure 4.22.

• DoubleField: This class controls each text field used for numerical entry.

• DoubleHighBoundException: A special addition to the DoubleField that helps control

data entry. A maximum value is set and any number above is refused. The evaluation of

the value and the warning message, if required, are held here.

 31

• DoubleLowBoundException: A special addition to the DoubleField that helps control

data entry. A minimum value is set and any number below is refused. The evaluation of

the value and the warning message, if required, are held here.

• FormatDouble: When a number is turned into a string to display or write to a file, the

format can be controlled through this class.

• GridBagHelper: This helper class simplifies the code by allowing an easy way to add

objects to the dialogs and panels. This helper class is a product of Thunderhead

Engineering and has been licensed for use in Visual EMU.

Images

All of the images needed for Visual EMU are loaded into a central holding class called

ImageHolder. The pictures are then retrieved by any class without the need to find or reload the

image each time it should be displayed. This is most advantageous for the tree shown in section 4

of Figure 4.2. Each object in the tree has a representative picture and the number of possible

items in the tree is virtually unlimited. The speed of Visual EMU increases by having each

picture ready when needed.

Panel

The panel package holds all of the classes that control each of the panels in section 3 of

Figure 4.2 and were explained in detail in the Tabbed Pane section. These classes not only

display the options to the user but in most cases they save the desired information. The

GeometryPanel class, however, is used only to pass information between the ShapeData class

and the user and no information is stored in the class. The ShapeData class is explained in more

detail in the VE package.

Shapes

A shape represents any geometry that needs to be drawn in the view panel. Having these

geometries extend Shape allows them to be held together with one variable. The variable only

knows it holds a class of type Shape and any subclass of Shape counts. Each shape can then be

retrieved from the variable and used in the same way without differentiating the type. The

shapes are further broken down into material regions and non material regions. To easily

 32

distinguish between the two, all shapes inherit a method named isRealMaterialRegion(). The

method returns true for material regions and false for everything else.

Material regions apply material properties to the nodes within their bounds. Any nodes

without a material region are dropped from EMU before the solution begins. Visual EMU allows

the user to see the EMU node configuration before running a solution. As mentioned previously,

this saves time that may have been wasted on an incorrect solution. To display the correct nodes,

each material region has a list that holds Point3d objects (d_gridPoints). Each Point3d on the list

represents a node the shape applies material properties to and can be shown to the user. When a

material region is created, Visual EMU checks the peridynamic grid and saves the nodes within

the material region. For efficiency, the code steps through each axial direction until it reaches

the bound of the shape and stops checking a direction when the other bound is reached. The

nodes that are saved can then be drawn and redrawn without recalculating. Each material region

is drawn quickly which allows the view panel to rotate, translate, and zoom more smoothly. All

nodes only need to be recalculated when a change is made to the grid or a void region is added or

deleted.

Shapes that are not material regions do not apply a material to the nodes in the

peridynamic grid. These shapes do not create nodes but may have an effect on the nodes created

by material regions. The shapes that are not material regions are the penetrator, grid boundary,

slit, precrack, boundary condition, and void. These shapes share methods associated with

material regions and therefore fall into the same type. The non material regions shapes are

explained in more detail in the following paragraphs.

The penetrator, as mentioned previously, is not defined by nodes and always retains the

same geometry regardless of node size and spacing. It is generally used to impact material

regions and has five different types as seen in Figure 4.26: sphere (a), flat nose (b), cone nose (c),

ogive nose (d), and flared ogive (e). All five penetrator types need a diameter along with a

variety of parameters to define the nose and tail. Not shown in the figures is how to define the

curve of the ogive nose for types d and e. The radius of curvature for the ogive nose is found by

multiplying the diameter (D on each figure) with a variable named crh that is required from the

user.

 33

Figure 4.26 Penetrator types

The grid boundary is an aid for the user and shows the region in space that contains the

internally generated nodes. The grid boundary quickly shows the user if any material region is

outside the grid boundary and will have missing nodes in the EMU solution. Nothing stops the

user from creating a material region outside of the grid boundary in EMU or Visual EMU, but a

material region has no effect on the solution without nodes. The grid boundary, represented by

the thick black lines in Figure 4.27, can be turned on and off from the grid panel (Figure 4.6).

Figure 4.27 View panel showing the grid boundary (black)

The slit defines a plane that cuts peridynamic bonds. This is similar to the disconnect

keyword for two material regions that was mentioned previously. There is no peridynamic

interaction across this plane and the nodes on either side act as separate objects sitting beside

each other. As shown in Figure 4.28, the slit breaks the rectangle material region into two

separate blocks. After the bonds are broken the material region acts like two blocks adjacent to

each other.

 34

Figure 4.28 View panel with a slit plane (green)

The precrack is similar to the slit but has different options. While the slit must be parallel

to the x, y, or z plane, the precrack can have any orientation. The precrack also has a thickness

and therefore a volume. Any peridynamic bonds that touch the volume of the precrack are

broken. As shown in Figure 4.29, the precrack is drawn as two planes separated by the given

thickness. Any peridynamic bonds in the volume are broken.

Figure 4.29 View panel with a precrack (green)

The boundary condition adds a displacement or velocity gradient to the nodes contained

within its bounds. The gradients only apply to nodes that are part of a material region but can

contain any number of material regions. The red block in the middle of Figure 4.29 is a

boundary condition. The boundary conditions are drawn in the same way as material regions in

the solid frame and wire frame viewing options. They are then drawn as a wire frame when

viewing nodes so the user can see which nodes are affected by the boundary condition.

 35

The void removes all nodes within its bounds from calculation. All other information

applied to the nodes is irrelevant. The void shapes are colored yellow to distinguish them from

other shapes. Void shapes are also drawn the same as material regions in the solid frame and

wire frame viewing options and do not remove anything from other shapes, a useful feature for

future addition. When viewing nodes however, the void regions are drawn as expected in EMU.

All nodes within the bounds of the void are not shown. This is consistent with EMU and

represents the node configuration of an EMU solution. A cylinder void is shown in all three

view options in Figure 4.30.

Figure 4.30 Cylinder void shown in solid (left), wire (middle), and grid (right) frame views

The UML for the Shape class is shown in Figure 4.31 and the following sections give a

brief explanation of some of the important methods.

Shape

Shape()
toFile()
draw(String)
getType()
isIncluded(double, double, double)
getMaterial()

Figure 4.31 Partial Shape UML

 36

toFile()

Each shape class contains the data entered by the user that needs output to the infile for

EMU. The toFile() method returns a string formatted according to the type of shape. For

example, the toFile() method of the cylinder class is shown in Figure 4.32. The three indicates

what type of material region is being defined and each of the following parameters define the

geometry and must follow the order required by EMU.

public String toFile()
{
 return " 3 "+d_radius+" "+d_xCen+ " "+d_yCen+" "+d_zL+" "+d_zH;
}

Figure 4.32 toFile() method from the Cylinder class

draw(String)

The draw(String) method is called each time the view panel changes. Each call to the

draw(String) method is passed a string that signifies what type of draw is taking place. The three

options are solid, wire, and grid frame. The solid view is drawn with solid triangles for each

shape. The triangles are large for a flat surface and small when used to represent curved surfaces

such as cylinders and spheres. The wire view only draws the outline of the shape making it is

possible to see shapes inside other shapes and where shapes overlap. The grid view shows the

nodes that will appear in EMU with the given conditions. Each type of shape responds

differently depending on the draw option given. This information is held in the draw(String)

method. For example, a sphere has a solid, wire, and grid structure while all voids, which

represent the absence of nodes, draw nothing in grid view. Though boundary conditions have no

nodes, a wire frame is drawn in grid view to help the user determine which nodes are affected.

getType()

Each shape class is unique but can fall into different categories such as: material region,

void, slit, precrack, or boundary condition. This information is held by a string variable in each

class and cannot be changed by the user. The getType() method returns the string as a way of

identifying and categorizing the shape. For example, a rectangle void region has the type

“Rectangle Void” and a cylinder void region has the type “Cylinder Void.” The string returned

 37

from getType() can then be tested to see if “Void” is included. Even though these two shapes are

different, they are both voids and are identified and used appropriately.

isIncluded(double, double, double)

Each material region defines a boundary that applies material properties to the nodes

within. The nodes are set by the grid and each node is tested to see if it is included in the

material region or void. If the node is within a void region, it is ignored to keep it from being

drawn. If the node is not within a void region but within a material region, the node is added to

the list mentioned previously to be drawn. In this way, each shape is tested uniquely with the

same inherited method.

getMaterial()

To keep material information with the appropriate material region, a string variable holds

the unique name of the material. This method is called when displaying the material region

properties or when writing the information to the infile. Some shapes that are not material

regions use the getMaterial() method also, such as the precrack. A precrack can apply to only

one material region so that only peridynamic bonds within the specified material region are

broken.

State

The state package contains all of the classes that control how the user can interact with

the view panel. At the moment, the two options are selection and orbit state. The orbit state

allows the user to rotate, zoom in or out, and translate the camera. The camera is explained in

more detail in the Camera class of the VE package. By clicking in the view panel and moving the

mouse while holding down the left mouse button, the shapes appear to rotate in the direction of

mouse movement. By clicking in the view panel and moving the mouse while holding down the

right mouse button, the shapes appear to translate in the direction of mouse movement. By

rolling the mouse wheel in the view panel, the shapes appear to move closer or farther away.

The selection state is designed to hold the camera in one orientation and allow the user to select

shapes in the view panel with the mouse. The ability to select is not yet included in Visual EMU

and all shape selection is handled through the tree. Allowing the user to select and manipulate

shapes in the view panel is a useful feature for future addition.

 38

Each class in the state package that controls user interaction extends the state class. The

UML for the state class is shown in Figure 4.33 and uses mostly abstract methods. An abstract

method has no body and requires all classes that extend it to implement the method (Morelli and

Walde, 2006). This means there is no method definition in the state class and each class that

extends state must define the method. For example, the mouseDragged(MouseEvent) method is

called when the user moves the mouse with a button held down. In the selection state, this

method does nothing. In the orbit state, however, this rotates the camera if the left button is held

and translates the camera if the right button is held. The only method in the state class that is not

abstract is the stateHasChanged() method which is used to update the view panel when changes

are made.

State

getCursor()
mouseReleased(MouseEvent)
mouseMoved(MouseEvent)
mouseDragged(MouseEvent)
mouseClicked(MouseEvent, double, double, int, int)
mouseDoubleClicked(MouseEvent, double, double, int, int)
leftMousePressed(MouseEvent)
rightMousePressed(MouseEvent)
mouseWheelMoved(MouseWheelEvent)
draw(GL11, AffineTransform)
cancel()
stateHasChanged()

Figure 4.33 State UML

VE

VE is another group of classes that are not also a group of related classes. Though the

classes in this folder are not alike, they are the foundation for Visual EMU. Included in this

package are the main class where Visual EMU begins, the class that manages all visual

components, and the class that manages all shapes and materials. This section gives an

explanation of the most important classes.

 39

Camera

The view panel shows the shapes as if viewed through a camera lens. Though it may look

like the shapes are rotating, the location of the shapes never changes. The camera can be moved

up and down, zoomed in and out, and rotated around a center point. The change in view is

created by proper mouse movement. Each mouse command that changes the view of the camera

is divided into rotation, translation, or zoom. These changes are made to the current view

through the creation of a temporary transformation matrix and then applied to the overall

transformation matrix. As you can see in Figure 4.34, a temporary transformation matrix, mRX,

is created with the rotation information that comes from the mouse, thetaX, and multiplied with

the current transformation matrix, d_mTransform, to perform a rotation about the x axis. The

d_mTransform matrix is then used to draw the shapes as if viewed from the desired location.

 public void rotateX(double thetaX)
 {
 Matrix4d mRX;
 double cosTheta = Math.cos(thetaX/180.*Math.PI);
 double sinTheta = Math.sin(thetaX/180.*Math.PI);

 mRX = new Matrix4d(1., 0., 0., 0.,
 0., cosTheta, -sinTheta, 0.,
 0., sinTheta, cosTheta, 0.,
 0., 0., 0., 1.);
 d_mTransform.mul(mRX, d_mTransform);
 }

Figure 4.34 rotateX(double) method from the camera class

 The methods rotateX(double), rotateY(double), and rotateZ(double) control the rotation

in each axial direction and are shown along with all other Camera methods in the UML diagram

in Figure 4.35. Other notable methods are translate(double, double, double,), which controls

translation and setDistance(double), which controls the zoom.

 40

Camera

d_distance : double
d_trans : Vector3d
d_radius : double
d_mTransform : Matrix4d
d_center : Point3d
NEAR_FACTOR : double
FAR_FACTOR : double

Camera()
getDistance()
setDistance(double)
getTransformation()
rotateX(double)
rotateY(double)
rotateZ(double)
translate(double, double, double)
getRadius()
setRadius(double)
getNear()
getFar()
getFractScreen()
setCenter(Point3D)
reset()

Figure 4.35 Camera UML

Initialize

To aid the user, three materials are predefined in Visual EMU. They represent the

properties of glass and two types of metal. As mentioned previously, the creation of material

regions in Visual EMU requires a material to associate with the region. The additional materials

are useful to any user wishing to use Visual EMU for geometry and grid generation or to simply

visualize the problem. The material assigned to the material region can be edited or replaced at

any time. An experienced EMU user can use Visual EMU to quickly create and visualize

geometry and then edit the infile. The Initialize class creates the additional materials. Any

materials not used with a material region have no affect on the EMU infile. The additional

materials are available for use without being a hindrance.

 41

InterShape

As mentioned previously, there are certain interactions that can be specified between

material regions. The control for this behavior is held in the InterShape class, the UML of which

is shown in Figure 4.36. The connect and disconnect keywords mentioned previously are

controlled using a simple boolean value, identified as d_isOppositeConnection. All material

regions are connected except rebar meshes. This default behavior changes with the addition of

one keyword, disconnect_all, which disconnects all material regions. Regardless of the default

setting, when the boolean is set to true the two material regions have the opposite behavior of the

default at that time. This allows the same class to control all material regions including rebar

mesh. If a rebar mesh and any other shape have d_isOppositeConnection set to true, they are

connected, which is the opposite of default. If any two non rebar mesh materials are set to true,

they are disconnected, which is opposite the default. If the disconnect_all keyword is used, the

default is the same for all material regions and a true d_isOppositeConnection for any two shapes

connects them.

InterShape

d_key1 : String
d_key2 : String
d_isOppositeConnection : boolean
d_hasRebar : boolean
d_interfaceStrength : Double
d_interfaceForce : Double

InterShape(String, String)
setOppositeConnection(boolean)
isOppositeConnection()
setInterfaceStrength(Double)
getInterfaceStrengh()
setInterfaceForce(Double)
getInterfaceForce()
getKey1()
getKey2()
isEquals(String, String)
isPartRebar()

Figure 4.36 InterShape UML

 42

The get and set methods for interface strength and interface force provide additional

information for the interaction of two material regions. The material regions that the InterShape

instance applies to are saved as d_key1 and d_key2. These string values hold the names of each

material region. The isEquals(String, String) method compares two material region names with

the two saved names, as shown in Figure 4.37. If the strings are the same, there is already an

InterShape instance for the pair of material regions and there should only be one instance for

each pair of material regions. The isPartRebar() method is used to identify if one of the two

material regions is a rebar mesh. The instance is then handled differently since rebar mesh has a

different default.

 public boolean isEquals(String key1, String key2)
 {
 return((key1.equals(d_key1) && key2.equals(d_key2)) ||
 (key1.equals(d_key2) && key2.equals(d_key1)));
 }

Figure 4.37 isEquals(String, String) method from the InterShape class

MaterialData

The MaterialData class has a public constructor and when a new material is created, a

new MaterialData instance is created with the values given by the user. All the material

properties are held in the instance of MaterialData. Any values that are not set by the user are

not written to the infile and left to be the EMU default. The instance can be linked, by the

unique name, to any material region. The MaterialData class has 55 variables and 85 methods.

The majority of the variables hold material parameters and the methods manage those

parameters. A partial UML of the MaterialData class is shown in Figure 4.38 to give an example

of how the class works.

 43

MaterialData

density : double
dispGradient : double[]

setDensity(double)
getDensity()
setDispGradient(double[])
getDispGradient()

Figure 4.38 Partial MaterialData UML

The material density is stored as a double called density. The value is set by the

setDensity(double) method and returned by the getDensity() method. The displacement gradient

variable is a bit more complicated and is stored as a double array called dispGradient. The 12

parameters associated with the displacement gradient are shown in Figure 4.11. The first three

are for the reference point and the remainder for the coefficients. All 12 parameters are set with

the setDispGradient(double[]) method and returned with the getDispGradient() method.

When outputting the material information for EMU, only the non default values are

written. This consolidates the infile and allows the user to quickly see the changes from EMU

default. For this reason, entering the EMU default information into Visual EMU has no effect on

the infile Visual EMU creates. If the user reads an infile into Visual EMU and then writes an

infile, making no changes, the files may be different. Any default information in the original

infile does not appear in the new infile.

ReadInFile

The ReadInFile class controls the input of EMU infiles. The two methods in the

ReadInFile class are shown in the UML diagram in Figure 4.39. The constructor method,

ReadInFile(ShapeData, VisualEMUWindow), saves the ShapeData and VisualEMUWindow

instances for use in the readData(String) method. The readData(String) method takes the infile

location as a string and opens the correct file. The method then takes two passes through the

infile. The first pass reads in the majority of the keywords and initiates all of the necessary setup

for keywords to come. After initiation, all of the remaining keywords are read. For example,

material properties are read on the second pass and applied to the correct materials identified on

the first pass. Any lines not recognized are stored and displayed to the user upon completion. An

 44

infile that is out of order can be read and then written by Visual EMU. Also, it is sometimes

difficult to find spelling or other small errors in an EMU infile. By reading the infile in Visual

EMU, each line with an error is shown to the user along with error messages for some specific

problems.

ReadInFile

d_data : ShapeData
d_frame : VisualEMUWindow

ReadInFile(ShapeData, VisualEMUWindow)
readData(String)

Figure 4.39 ReadInFile UML

ShapeData

The ShapeData class is the control center for Visual EMU. It holds all materials and

shapes as well as the logic for their addition, removal, and organization. It holds the information

for saving and opening Visual EMU files and reading and writing EMU infiles. The ShapeData

class has 14 variables and 61 methods. A partial UML is shown in Figure 4.40 to give some

examples of the content and function of the ShapeData class.

ShapeData

d_shapeVec : Vector<Shape>
d_matVec : Vector<MaterialData>
d_shapeTable : Hashtable<String, Shape>
d_matTable : Hashtable<String, MaterialData>

drawShapes()
getMatRegionShapes()
setGridPoints(Shape shape)
deleteShapeWithMat(String s)

Figure 4.40 Partial ShapeData UML

As shown in the UML, there are four variables to hold the shapes and materials. Each of

the variables has a different function. The vectors keep an order of creation while the hash tables

allow quick access to a specific shape or material. The shape vector is used in the drawShapes()

 45

method, shown in Figure 4.41, along with an inherited process of iteration. The for loop takes

each shape from the d_shapeVec vector and calls the draw(String) method. The if test in the

drawShapes() method is used to determine if the grid boundary should be drawn. The grid

boundary is a shape and could be held in the d_shapeVec variable but is held outside the

d_shapeVec for special treatment.

public void drawShapes()
{
 for(Shape shape : d_shapeVec)
 {
 shape.draw(d_geomType);
 }

if(GridDataPanel.getGridDataPanel(null,null).isShowGrid())
 {
 GridBound.getGridBound().draw(SOLID);
 }
}

Figure 4.41 drawShapes() method in the ShapeData class

The getMatRegionShapes() method uses the inherited process of iteration again to collect

all material region names. These names are then displayed and used in the interface panel

(Figure 4.21). The setGridPoints() method is 180 lines long and checks voids and material

regions to apply nodes. When new material regions are created, the method checks for nodes

within the bounds by iterating through the grid as mentioned previously. The

deleteShapeWithMat(String) method allows the user to delete a material being used by a material

region. Material regions are required to have a material associated with them. If a material is

deleted that is being used, the user is warned that all associated material regions are also deleted.

If the user chooses to continue, the deleteShapeWithMat(String) method is called and all

associated shapes are deleted.

VisualEMUView

The VisualEMUView class controls the view panel by coordinating the camera with the

shapes to provide a 2D view of the 3D objects. The view panel needs to be updated when a

change is made in the view panel. The VisualEMUView class also coordinates actions from the

mouse when in the view panel. The information is passed to the current state, selection or orbit,

 46

and the necessary changes are made. After making changes, the view panel is updated to show

the desired results.

VisualEMUWindow

The VisualEMUWindow class controls the main window of Visual EMU. This is the

first class called after the main class where Visual EMU begins. From here, most of the main

classes are initialized and passed to the classes that need them. The ImageHolder class

mentioned previously is initialized and all the pictures are found and loaded. Other classes that

are initiated here are the ShapeData, CommandManager, StateManager, and VisualEMUView

classes. Once the necessary initializations are complete, VisualEMUWindow places all five

sections of the main window, shown in Figure 4.2, where they belong and then allows the user to

see Visual EMU. Visual EMU is then ready to perform for the user.

 47

CHAPTER 5 - Examples

The following sections walk through two examples using Visual EMU to verify accuracy

and display the ease of use. Original infiles from Sandia National Laboratories are used as the

template and compared with the results from Visual EMU. EMU results shown with EMUGR,

the post-processor provided with EMU, are also included. The two examples are a spherical

penetrator impacting a cylindrical glass plate and a small pipe impacting a square glass plate.

Sphere into Glass Plate

The first example evaluates a spherical penetrator impacting a cylindrical plate of glass at

an angle of 45 degrees. The initial setup is shown in Figure 5.1. The first verification is to read

the original infile into Visual EMU and write an infile from Visual EMU without making

changes. The second verification is through user input where all data is entered into Visual

EMU by the user instead of through an infile. In both cases, any changes to the infile show the

affect of Visual EMU.

Figure 5.1 EMUGR plot of damage at time 0

Read an EMU infile

EMU requires a text file of keywords in a specific format. Visual EMU can open an

EMU infile and apply the settings to Visual EMU. To open an EMU infile, on the File menu,

click Read Infile. In the Open dialog, navigate to the infile named “emu.in.glassplate.” Click

Open to read the infile. A dialog will appear with a list of lines from the infile that Visual EMU

could not recognize. Visual EMU does not recognize any keywords for EMUGR, the EMU post-

processor.

 48

Write an EMU infile

Visual EMU can create an EMU infile. To create an infile, on the File menu, click Write

Infile . In the Open dialog, enter “emu.in.glassplateve” as the file name and use the file chooser

to navigate to the location you would like to save the infile. Click OK to begin writing the infile.

A dialog will appear asking for the job description. Enter “Sphere into Glass VE.” This job

description becomes the first line in the infile and is also displayed by the post-processor. The

infile can be used at any time to run an EMU solution or read the settings into Visual EMU to

continue working.

Results

The two infiles are shown in Appendix A with the differences highlighted. The first line

is the title line mentioned previously and is different between the two infiles. This has no effect

on the solution and gives a unique description to the infile. Other lines that have no effect on the

solution are those that begins with a * character. This character indicates a comment and any

lines that begin with one are ignored by EMU. Visual EMU takes advantage of this when

writing an infile and adds ** followed by the name of the material region when writing material

regions to the infile. If the file is read back into Visual EMU, the name is recognized by the **

and applied to the material region when created.

There are three keyword differences between the two files. These differences are

keywords that appear in the original infile and not in the resulting infile. These three keywords

(processors, one_line_print, and density_1) are not included in the output from Visual EMU

because they are EMU default values. As mentioned previously, values that are not different

from the EMU default are not written to the infile. All other keywords and the resulting solution

from both infiles are the same. The EMU results are shown and explained in greater detail in the

EMU results section to come.

Reset Visual EMU

Before starting the second method of verification, the information entered from the infile

must be removed. This ensures that the resulting infile contains only information entered by the

user. To reset Visual EMU, on the File menu, click New or click the new button () located on

the toolbar. A dialog appears warning the user that all the current information will be lost. Click

 49

OK to continue and restore the default Visual EMU settings. Closing and restarting Visual EMU

also resets the settings.

Define the internal grid

The first step in the second method of verification is to define the internal grid. The grid

defines a region of nodes that can be assigned to a material region. To edit the internal grid,

select the Grid tab. Under the Grid Dimensions section, enter X=60, Y=60, and Z=5. Also

change Grid Spacing=.001 as shown in Figure 5.2.

Figure 5.2 Defining the internal grid

During an EMU solution, nodes can move within the grid region and also into a region

around the grid region called the grid margin. To change the size of the grid margin, click More

and enter X Max=.02, X Min =.02, Y Max=.02, Y Min =.02, Z Max=.02, Z Min =.05 as shown

in Figure 5.3. Click OK to close the More - Grid dialog and then click Apply on the Grid tab to

save the changes.

Figure 5.3 Defining the grid margin

Create a material

Materials in Visual EMU hold all material properties. Each material can be applied to

any number of material regions. To create a new material, select the Material tab. In the Name

field, enter “Material1” or allow Visual EMU to provide a default name when the material is

created. Select MicroElastic , select Linear-Flat, and enter sspnom=2600, yld=1000e6, and

ecrit=.001 as shown in Figure 5.4.

 50

Figure 5.4 Creating a new material

To view additional material property information, click More. Select the Material

Properties 1 tab in the More - Material dialog and enter Failure Stretch Exp=-1 and Min

Stretch Coef=.25 as shown in Figure 5.5.

Figure 5.5 Define material properties 1

Select the Material Properties 2 tab and under Damage Stretch Coefficient enter

dc1=.35, dc2=1, and dc3=2 as shown in Figure 5.6.

 51

Figure 5.6 Define material properties 2

Click OK to close the More - Material dialog and click Apply on the Material tab to

create the material with the chosen properties. Notice the addition of a new material under

Materials on the tree. To edit the material at any time, double click the name of the material or

right click the material on the tree and select Edit. Click Apply when finished editing to save the

changes.

Create a material region

Material regions apply material properties to the nodes within a boundary. To create a

material region, select the Geometry tab. Each button across the top of the Geometry tab

represents a different material region. When selected, the area below the buttons changes to enter

the information necessary to define the specific material region. Select the cylinder button () to

define a cylinder geometry. In the Name field, enter “Cylinder1” or allow Visual EMU to

provide a default name when the material region is created. Enter X Cen=0, Y Cen=0, Z

Max=0, Z Min =-.005, and Radius=.03. Also select “Material1” (or the default name given by

Visual EMU) to be the material applied to the region as shown in Figure 5.7.

Figure 5.7 Creating a material region

 52

Click Apply to create the material region with the information provided. Notice the

addition of a new shape under Shapes on the tree. To edit the shape at any time, double click the

name of the shape or right click the name and select Edit. Click Apply when finished to save the

changes.

Manipulate the view

To manipulate the view of the shape, click the orbit button () located on the toolbar at

the top of Visual EMU. While in the orbit state, use of the mouse in the view panel changes how

the shape is viewed. To rotate, click and drag the left mouse button inside the view panel. The

shape rotates in the direction of the mouse. To translate, click and drag the right mouse button

inside the view panel. The shape translates in the direction of the mouse. To zoom in or out, roll

the mouse wheel back or forward respectively. The view can be reset at any time by clicking the

reset button () located to the right of the orbit button.

Create a penetrator

Penetrator shapes are primarily used to impact material regions. To create a penetrator,

select the Penetrator tab. Select Sphere and enter Diameter=.01 as shown in Figure 5.8. Click

Apply to create the penetrator. Notice the addition of a new shape under Shapes on the tree. The

penetrator can be edited in the same way described previously.

Figure 5.8 Creating a penetrator

To edit the penetrator properties, select the Penetrator Data tab. There can only be one

penetrator per EMU solution so the penetrator properties are independent of the specific

penetrator created. Enter Penetrator Mass=4.16e-3, Angle of Impact=45, and Impact

Velocity=100. Under Penetrator tip enter X=-.01, Y=0, and Z=.001. Under Friction select

Linear and enter fricco=0 as shown in Figure 5.9. Click Apply to save the changes which are

applied to the penetrator.

 53

Figure 5.9 Changing the penetrator properties

Set EMU solution parameters

There are a variety of additional settings for EMU. To change these settings, select the

General tab. Enter Max time=999, Safety Factor=.8, Filter time constant=1e-9, and Plot

Dump Frequency=100 as shown in Figure 5.10. Click Apply to save the changes.

Figure 5.10 Changing additional settings

Write an EMU infile

Write an infile from Visual EMU as previously described. In the Open dialog, enter

“emu.in.glassplateve” as the file name and use the file chooser to navigate to the location you

would like to save the infile. The resulting infile is shown in Appendix A with the differences

highlighted. The title and material region comment are different from the original infile as

expected. The same three keywords highlighted in the original infile are still not present in this

output for the same reasons explained previously.

The unique difference of this infile is defining the material region. The original infile

uses -999 as the minimum z bound while the Visual EMU infile from user data entry has -.005 as

the minimum z bound. As described previously, the parts of a material region outside the

peridynamic grid have no effect on the solution. For this reason, the larger bound only ensures

that the material region reaches the edge of the peridynamic grid. The value of -.005 is enough to

reach the edge of the peridynamic grid and allows the user to better view the shape in Visual

EMU. Using excessive bounds is an EMU trick that allows the user to ensure the boundary of

 54

the peridynamic grid is reached without calculation or trial and error. The bounds entered

through user input result in the same EMU solution.

Run an EMU solution

An EMU solution can be started directly from Visual EMU. To run an EMU solution

from Visual EMU, on the File menu, click Run EMU. Visual EMU can use the current settings

or settings from a previously created infile as shown in Figure 5.11. Select Current settings and

change the Save location to the location you would like the EMU solution results to be saved.

Figure 5.11 Running an EMU solution

The current program used to view EMU results is EMUGR. EMUGR is similar to EMU

and requires keywords to operate. The keywords define how the solution should be displayed.

Select Add code for EMUGR in the Run EMU dialog. This adds some basic keywords to the

infile, shown in Figure 5.12. If the code for EMUGR is added, the EMUGR program can be

used on the same infile after EMU is finished. To do this, navigate to the chosen save location of

Figure 5.11 and double click the “plot.bat” file created by Visual EMU. After EMUGR is

finished, the results are viewed by double clicking the “viewPlot.bat” file created by Visual

EMU in the same location. These two files are separate allowing the user to view the results

without spending the time to run EMUGR again. In addition, the user can change the EMUGR

plot variables and run EMUGR without running EMU again.

 55

plot_all
plot_all_variables
zoom
 150
view_angles
 0 80

Figure 5.12 EMUGR code added to infile

Click OK to begin the EMU solution. A dialog will appear asking for the job description.

Enter “Sphere into Glass User Creation from VE.” This job description becomes the first line in

the infile and is also displayed by EMUGR. The solution runs in the background and allows the

user to manipulate Visual EMU while the solution is running. Future work on Visual EMU

should add the ability to view the progress of a solution and cancel a solution.

EMU results

The EMU results are saved in the results folder created by Visual EMU in the location

specified by the user. These results are then used by EMUGR along with keywords to display

the desired results for the user. The results can be used any number of times by EMUGR

without being affected. Figure 5.1 shows the damage, or fraction of broken bonds, before

iterations begin. Figure 5.13 shows the damage at time 5.286e-5. The colors indicate different

levels of damage and are ordered similar to the colors of a rainbow (ROYGBIV). The red side of

the spectrum indicates the max damage, where all bonds are broken, while the violet side

indicates little to no damage, where no bonds are broken.

Figure 5.13 EMUGR plot of damage at time 5.286e-5

Figure 5.14 shows the damage at the last time step of the solution. The green color in the

middle of the ROYGBIV scale indicates about half the bonds are broken. This implies a crack or

fracture in the glass. The red areas where all bonds are broken imply nodes have broken away

 56

altogether. A small section surrounded in green, such as the left of Figure 5.14, indicates a large

piece has broken away from the plate.

Figure 5.14 EMUGR plot of damage at time 2.646e-4

Small Pipe into Glass Plate

This example evaluates a small pipe impacting a square glass plate. The pipe is created

through external grid generation and impacts the glass plate with a velocity normal to the

surface. The initial setup is shown in Figure 5.15. To verify Visual EMU, the same two methods

of verification are used as in the previous example. Read and write an infile following the same

procedure as mentioned previously looking for the file named “emu.in.smallpipe” and creating a

file named “emu.in.smallpipeve.”

Figure 5.15 EMUGR plot of damage at time 0

Results

The infiles are shown in Appendix A with the differences highlighted. As with the

previous example, the title, inclusion of default values (processors and density_1), and material

region comments are different between the two files. The unique difference of this infile is the

change in the name of the grid file. When grid files are read, Visual EMU saves and displays the

information, allowing the user to change the material assigned to each grid file material region.

 57

When writing an infile, Visual EMU also writes a new grid file to the same location as the new

infile. The grid file contains all the changes and keeps the original grid file unchanged and

unmoved.

Define the internal grid

As before, reset Visual EMU before continuing to the second method of verification. The

internal grid of this example only needs defined for the glass plate. The nodes defined externally

in the grid file are placed where specified regardless of the internally generated nodes. To edit

the internal grid, select the Grid tab. Under Grid Dimensions, enter X=50, Y=50, and Z=20.

Also enter Grid Spacing=.001 as shown in Figure 5.16. Click Apply to save the changes.

Figure 5.16 Setting the grid

Create materials

To create the first material, select the Material tab. In the Name field, enter “Mat1” or

allow Visual EMU to provide a default name when the material is created. Select MicroElastic ,

select Linear-Flat, and enter sspnom=2600, yld=200e6, and ecrit=.001 as shown in Figure

5.17. Click Apply to create the material with the chosen properties.

Figure 5.17 Creating the first material

To create the second material, in the Name field, enter “Mat2” or allow Visual EMU to

provide a default name when the material is created. Enter Density=8000, select MicroElastic ,

select Linear-Flat, and enter sspnom=4000, yld=400e6, and ecrit=.2 as shown in Figure 5.18.

 58

Figure 5.18 Creating the second material

The pipe needs an initial velocity to impact the glass plate. The initial velocity is applied

through the material assigned to the material region. To apply the velocity to the material, click

the Initial Conditions button and select the Velocity tab in the Initial Conditions – Material

dialog. Enter VZ=-100, as shown in Figure 5.19, and click OK to save the changes and close the

dialog. Click Apply on the Material tab to create the material with the chosen properties.

Figure 5.19 Specifying an initial velocity

Create a material region

To create the material region, select the Geometry tab. Select the rectangle button () to

define a rectangle geometry. In the Name field, enter “Rectangle1” or allow Visual EMU to

provide a default name when the material region is created. Enter X Max=.025, X Min =-.025, Y

Max=.025, Y Min =-.025, Z Max=-1e-6, and Z Min =-.0031. Also select “Mat1” (or the default

name provided by Visual EMU) to be the material applied to the region as shown in Figure 5.20.

 59

Figure 5.20 Creating a material region

Click Apply to save the changes and create the material region. Notice the addition of a

new shape under Shapes on the tree. To edit the shape at any time, double click the name of the

shape or right click the name and select Edit . Click Apply when finished to save the changes.

Manipulate the view

To manipulate the view of the shape, click the orbit button () located on the toolbar at

the top of Visual EMU. While in the orbit state, use of the mouse in the view panel changes how

the shape is viewed. To rotate, click and drag the left mouse button inside the view panel. The

shape rotates in the direction of the mouse. To translate, click and drag the right mouse button

inside the view panel. The shape translates in the direction of the mouse. To zoom in or out, roll

the mouse wheel back or forward respectively. The view can be reset at any time by clicking the

reset button () located to the right of the orbit button.

Add a grid file

The second material region comes from an externally generated grid file. To add the grid

file, select the grid file button () on the Geometry tab. In the Name field, enter “Grid File1” or

allow Visual EMU to provide a default name when the grid file is added. Click Browse… to

navigate to the grid file named “smallpipe.grid” as shown in Figure 5.21.

Figure 5.21 Adding a grid file

Click Add to open the grid file and begin adding the nodes. Each node of the grid file is

assigned a material region. Visual EMU allows the user to choose what material should be

 60

applied to each region. In the Select Material dialog that appears, select “Mat2” (or the default

name provided by Visual EMU) to be assigned to material region 2 in the grid file as shown in

Figure 5.22.

Figure 5.22 Assigning Mat2 to material region 2

Set EMU solution parameters

To change additional settings, select the General tab. Enter Max time=999, Safety

Factor=.8, and Plot Dump Frequency=50 as shown in Figure 5.23.

Figure 5.23 Changing additional settings

The two material regions start close together and, by default, have peridynamic bonds

between the nodes within the material horizon distance. To keep the two material regions

separate without peridynamic bonds between them, click the More button. In the More –

General dialog click the Interface tab. When both material regions are selected, the options

below the list are enabled. To select both of the material regions, use the mouse to left click on

the first material region on the list. To select the second while keeping the first selected, hold

down the control button and left click on the second material region. When both material

regions are highlighted, as shown in Figure 5.24, select Disconnect and click Apply to save the

change. Click OK to close the More - General dialog and click Apply on the General tab to save

all changes.

 61

Figure 5.24 Disconnecting the material regions

Write an EMU infile

Write an infile from Visual EMU as previously described. In the Open dialog, enter

“emu.in.smallpipeve” as the file name and use the file chooser to navigate to the location you

would like to save the infile.

Results

The resulting infile is shown in Appendix A with the differences highlighted. As with the

infile created from reading the original infile, the title, inclusion of default values (processors

and density_1), material region comment, and the grid file name are different from the original

infile.

The unique difference of this infile is the material region parameters. Similar to the

previous example, the original infile uses 999 and -999 as minimum and maximum values for the

x and y bounds of the material region. As described previously, the larger bounds only ensure

that the material region reaches the edge of the peridynamic grid and the bounds entered through

user input result in the same EMU solution.

EMU Results

After running EMU as described previously or outside of Visual EMU, view the results

with EMUGR. Figure 5.15 shows the damage at time 0, Figure 5.25 the damage at time 8.154e-

 62

5, and Figure 5.26 the damage at time 1.816e-4. The pipe, which is four times denser than the

glass, hits the plate with an edge and quickly breaks through the glass. The region around where

the pipe hits the plate shatters, indicated by the red and orange nodes. The cracks are indicated

primarily by the green lines from the center to the edge of the plate. As the solution continues,

the pipe continues into the plate and nodes that have broken free are visible inside the pipe.

Figure 5.25 EMUGR plot of damage at time 8.154e-5

Figure 5.26 EMUGR plot of damage at time 1.816e-4

 63

CHAPTER 6 - Conclusions

Summary

Visual EMU accurately reads and writes EMU infiles. The user can visualize the

material regions and their placement relative to the peridynamic grid before performing an EMU

solution. The user can create a material once and apply that same material to any number of

material regions without the need to repeat entering information. Multiple view options are

present allowing the user to see all shapes as solids, wire frames, or a preview of the nodes in

EMU. Visual EMU allows the user to run EMU from the current settings or from a saved infile.

The user interface is adequate for the entry of all EMU keywords though areas for improvement

exist and are mentioned in more detail below.

Future work

The view panel would benefit greatly from the ability to select shapes. Selecting three

dimensional shapes viewed with a two dimensional screen can be a complicated process. Once

selection is available though it would be a trivial addition to edit and delete shapes directly from

the view panel.

The entry of all keywords in Visual EMU is functional but not ideal in some cases. Some

dialogs (Figure 4.10 for example) organize keywords by the number of inputs and should

organize them by function or usage. Each dialog and panel would also benefit from additional

guidance. Some ideas are help buttons that explain keywords and interactive equations that

show how keywords are used.

The penetrator is an important feature in EMU and would benefit from more advanced

visualization in Visual EMU. Improvements include drawing the penetrator at an angle when the

angle of impact is changed and adding a direction vector or some indication of the angle of

attack specified by the user. Another improvement that is now in progress aims to show the user

feedback from EMU as the solution progresses and add the option to cancel a solution in

progress.

 64

The concept of a new post-processor for EMU has also already begun. The solution

would be displayed from Visual EMU and allow the user to create, run, and view results from

one program. Ideally, the user will be able to view any parameter at any time step in 3D and even

automate the display to step through frames at a given speed. The user will also be able to rotate

the solution to view any angle.

 65

References

Geary, D., 2003, “Simply Singleton,” Java World, http://www.javaworld.com/javaworld/jw-04-

2003/jw-0425-designpatterns.html.

Horstmann, C., 2006, Big Java, Hoboken, NJ, John Wiley & Sons, Inc.

“Java Platform Standard Ed. 6,” 2006, Sun Microsystems Inc.,

http://java.sun.com/javase/6/docs/api/

Macek, R., and Silling, S. A., 2006, “Peridynamics via Finite Element Analysis,” Report LA-

14300, Los Alamos National Laboratory, Los Alamos, NM.

Microsoft Manual of Style for Technical Publications, 2004, Redmond, WA, Microsoft Press.

Morelli, R., and Walde, R., 2006, Java, Java, Java Object Oriented Problem Solving, Upper

Saddle River, NJ, Pearson Prentice Hall.

Potyondy, D. O., and Cundall, P. A., 2004, “A Bonded-Particle Model for Rock,” Int. J. Rock

Mech. & Min. Sci., 41(8), 1329-1364.

Silling, S. A., 1998, “Reformulation of Elasticity Theory for Discontinuities and Long-Range

Forces,” Sandia National Laboratories, Albuquerque, NM.

Silling, S. A., 2002, “Peridynamic Modeling of the Failure of Heterogeneous Solids,” Sandia

National Laboratories, Albuquerque, NM.

Silling, S. A., and Askari, E., 2004, “A meshfree method based on the peridynamic model of

solid mechanics,” Sandia National Laboratories, Albuquerque, NM.

Silling, S. A., Demmie, P. N., Cole, R. A., and Taylor, P., 2006, “EMU User’s Manual,” Sandia

National Laboratories, Albuquerque, NM.

 66

Appendix A - Infile results

The following infiles help verify the results of Visual EMU. For each of the two

examples, the original infile is part of the code package from Sandia National Laboratories. The

other two infiles are products of Visual EMU. The first is made after reading in the original infile

and the second is made after entering the information through the user interface.

Sphere into glass plate

The following three infiles are from the example of a spherical penetrator impacting a

glass plate.

Original Infile

Sphere Into Glass
processors
 1 1 1
grid_dimensions
 60 60 5
grid_spacing
 0.001
grid_margin
 0.02 0.02 0.02 0.02 0.05 0.02
max_time
 999
safety_factor
 0.8
max_time_steps
 2000
plot_dump_frequency
 100
one_line_print
 0
* start run
*
number_of_material_regions
 1
material_region_geometry_1
 3
 0.03 0 0 -999 0
*
density_1
 2200
microelastic_1
 1 2600 1000.0e6 0.001
min_stretch_coef_1
 0.25

 67

damage_stretch_coef_1
 0.35 1 2
failure_stretch_exponent_1
 -1
*fnorm_off_all
*
angle_of_attack
 0
angle_of_impact
 45
impact_velocity
 100
penetrator_shape
 4 0.010
penetrator_mass
 4.16e-3
penetrator_friction_coef
 0
penetrator_tip_location
 -0.01 0 0.001
filter_time_constant
 1.0e-9

Read/Write Infile

Sphere into Glass VE
grid_dimensions
 60 60 5
grid_spacing
 0.0010
grid_margin
 0.02 0.02 0.02 0.02 0.05 0.02
max_time_steps
 2000
max_time
 999
plot_dump_frequency
 100
safety_factor
 0.8
filter_time_constant
 1.0E-9
number_of_material_regions
 1
**Cylinder 1
material_region_geometry_1
 3 0.03 0.0 0.0 -999.0 0.0
microelastic_1
 1 2600.0 1.0E9 0.0010
failure_stretch_exponent_1
 -1.0
min_stretch_coef_1
 0.25
damage_stretch_coef_1
 0.35 1.0 2.0
penetrator_shape
 4 0.01

 68

penetrator_tip_location
 -0.01 0.0 0.0010
penetrator_mass
 0.00416
penetrator_friction_coef
 0.0
angle_of_impact
 45.0
angle_of_attack
 0.0
impact_velocity
 100.0

User Visual EMU infile

Sphere Into Glass User Creation from VE
grid_dimensions
 60 60 5
grid_spacing
 0.0010
grid_margin
 0.02 0.02 0.02 0.02 0.05 0.02
max_time_steps
 2000
max_time
 999
plot_dump_frequency
 100
safety_factor
 0.8
filter_time_constant
 1.0E-9
number_of_material_regions
 1
**Cylinder
material_region_geometry_1
 3 0.03 0.0 0.0 -0.005 0.0
microelastic_1
 1 2600.0 1.0E9 0.0010
failure_stretch_exponent_1
 -1.0
min_stretch_coef_1
 0.25
damage_stretch_coef_1
 0.35 1.0 2.0
penetrator_shape
 4 0.01
penetrator_tip_location
 -0.01 0.0 0.0010
penetrator_mass
 0.00416
penetrator_friction_coef
 0.0
angle_of_impact
 45.0
angle_of_attack
 0.0

 69

impact_velocity
 100.0

Small pipe into glass plate

The following three infiles are from the example of a small pipe impacting a glass plate.

Original infile

Pipe Against a Block

processors
 1 1 1
grid_dimensions
 50 50 20
max_time
 999
max_time_steps
 2000
plot_dump_frequency
 50
grid_spacing
 0.001
one_line_print
 1
number_of_material_regions
 2
grid_file
 1
 smallpipe.grid
material_region_geometry_1
 1
 -999 999 -999 999 -0.0031 -0.000001
density_1
 2200
density_2
 8000
microelastic_1
 1 2600 200.0e6 0.001
microelastic_2
 1 4000 400.0e6 0.2
material_region_ic_2
 0 0 0 0 0 -100
disconnect
 1
 1 2
safety_factor
 0.8

Read/Write Infile

Pipe Against a Block VE
grid_dimensions
 50 50 20

 70

grid_spacing
 0.0010
max_time_steps
 2000
max_time
 999
plot_dump_frequency
 50
safety_factor
 0.8
one_line_print
 1
number_of_material_regions
 2
**Rectangle 1
material_region_geometry_1
 1 -999.0 999.0 -999.0 999.0 -0.0031 -1.0E-6
microelastic_1
 1 2600.0 2.0E8 0.0010
grid_file
 1
 gridfile792.grid
density_2
 8000.0
microelastic_2
 1 4000.0 4.0E8 0.2
material_region_ic_2
 0.0 0.0 0.0 0.0 0.0 -100.0
disconnect
 1
 1 2

User Visual EMU infile

Pipe Against a Block User VE
grid_dimensions
 50 50 20
grid_spacing
 0.0010
max_time_steps
 2000
max_time
 999
plot_dump_frequency
 50
safety_factor
 0.8
one_line_print
 1
number_of_material_regions
 2
**Rectangle
material_region_geometry_1
 1 -0.025 0.025 -0.025 0.025 -0.0031 -1.0E-6
microelastic_1
 1 2600.0 2.0E8 0.0010
grid_file

 71

 1
 gridfile409.grid
density_2
 8000.0
microelastic_2
 1 4000.0 4.0E8 0.2
material_region_ic_2
 0.0 0.0 0.0 0.0 0.0 -100.0
disconnect
 1
 1 2

