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Abstract 

This thesis provides a description of Visual EMU, a graphical user interface for the 

peridynamic EMU code.  The peridynamic model is a fundamental method for computational 

mechanical analysis that makes no assumption of continuous or small deformation behavior and 

has no requirement for the concepts of stress and strain. The model does not require spatial 

derivatives and instead uses integral equations. A force density function, called the pairwise 

force function, is postulated to act between each pair of infinitesimally small particles if the 

particles are closer together than some finite distance. A spatial integration process is employed 

to determine the total force acting upon each particle and a time integration process is employed 

to track the positions of the particles due to the applied body forces and applied displacements. 

EMU is a computer code developed by Sandia National Laboratories that implements the 

peridynamic model. Visual EMU is a pre-processor for the EMU code that allows any user to 

enter all parameters and visualize the resulting material regions, peridynamic grid, and a preview 

of resulting nodes. Visual EMU can be used before starting a lengthy solution with potential 

errors.  The language, visual layout, and code design of Visual EMU are described along with 

two examples and their results.
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CHAPTER 1 - Introduction 

This thesis provides a description of Visual EMU, a graphical user interface for the 

peridynamic EMU code.  The interface is a pre-processor motivated by the desire to ease and 

spread the use of EMU. The following sections give an introduction to each chapter of this thesis 

in the order they will appear. 

Peridynamics 

The peridynamic model is a fundamental method for computational mechanical analysis 

that makes no assumption of continuous or small deformation behavior and has no requirement 

for the concepts of stress and strain. The model does not require spatial derivatives to be 

evaluated within the body and instead uses integral equations. Beginning with Newton’s second 

law, a force density function, called the pairwise force function, is postulated to act between each 

pair of infinitesimally small particles if the particles are closer together than some finite distance, 

called the material horizon. The pairwise force function may be assumed to be a function of the 

relative position and the relative displacement between the two particles. A spatial integration 

process is employed to determine the total force acting upon each particle, and a time integration 

process is employed to track the positions of the particles due to the applied body forces and 

applied displacements.  

EMU 

EMU is a computer code developed by Sandia National Laboratories that implements the 

bond based theory of peridynamics by applying the peridynamic equations to a set of nodes.  The 

nodes and solution parameters are entered through a keyword text file called an infile.  After 

initializing the grid, the EMU code evaluates the peridynamic equations along with prescribed 

displacements and velocities between time steps to find the resulting displacement and velocity 

of each node.  There is no feedback on EMU infile creation without attempting an EMU solution 

which may crash, quit during initialization, or complete the solution with unexpected results. 



 2 

Visual EMU 

Visual EMU is a pre-processor for the EMU code that allows a user to enter all keyword 

parameters and visualize the resulting material regions, peridynamic grid, and a preview of 

resulting nodes.  No pre-processor currently exists. Additional features include: materials that are 

defined once and applied to any number of material regions, 3D visualization allowing the user 

to rotate, translate, and zoom, infiles can be read into Visual EMU to continue working or 

visualize the current setup before running an EMU solution, and the ability to run EMU from 

within Visual EMU. 

Examples 

Two examples are provided which show Visual EMU accurately reads and writes EMU 

infiles.  The first example is a sphere impacting a cylindrical plate of glass at an angle.  The 

second example is an externally generated material region in the shape of a small pipe impacting 

a rectangular glass plate normal to the surface. The user can also visualize the material regions 

and their placement relative to the peridynamic grid before performing the EMU solution.  The 

example results from EMUGR show the accuracy of Visual EMU and the complex fracture 

possible with the use of the peridynamic EMU.
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CHAPTER 2 - Peridynamics 

Numerical prediction of crack growth is a longstanding problem in computational 

mechanics with difficulty arising from the basic incompatibility of cracks with the partial 

differential equations used in the classical theory of solid mechanics (Silling and Askari, 2004). 

A fundamental method for computational mechanical analysis has recently been introduced, 

called the peridynamic model (Silling, 1998; Silling, 2002; Macek and Silling, 2006; Silling et 

al., 2006). The model does not require spatial derivatives to be evaluated within the body and 

instead uses integral equations. 

The following description of peridynamics comes from a research proposal for the Army. 

The peridynamic model makes no assumption of continuous or small deformation behavior. It 

has no requirement for the concepts of stress and strain. The peridynamic model starts with the 

assumption that Newton’s second law holds true on every infinitesimally small freebody (or 

particle) within the domain of analysis. A force density function, called the pairwise force 

function, is postulated to act between each pair of infinitesimally small particles if the particles 

are closer together than some finite distance, called the material horizon. The pairwise force 

function may be assumed to be a function of the relative position and the relative displacement 

between the two particles. A spatial integration process is employed to determine the total force 

acting upon each particle, and a time integration process is employed to track the positions of the 

particles due to the applied body forces and applied displacements. One of the advantages of the 

peridynamic approach is that no finite element meshes are required. It is truly a meshless 

method. 

As described by Silling (1998) and Macek and Silling (2006), the acceleration of any 

particle at x  in the reference configuration at time t  is found from 

 ),()),,(),((),( tdVttt x

H x

xbxxxuxufxu +−′−′= ′∫&&ρ , (1) 

where xH  is a neighborhood of x , u  is the displacement vector field, b  is a prescribed body 

force density field, ρ  is mass density, and f  is a pairwise force function whose value is the 

force vector (per unit volume squared) that the particle x′  exerts on particle x .  In the following 
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discussion, we denote the relative position of these two particles in the reference configuration 

by ξ : 

 xxξ −′=  (2) 

and their relative displacement by η : 

 ),(),( tt xuxuη −′=  (3) 

Note that ηξ +  represents the current relative position vector connecting the particles, Figure 

2.1. 

The direct physical interaction (which occurs through unspecified means) between the 

particles at x  and x′  is called a bond, or in the special case of an elastic interaction to be 

defined, a spring. The concept of a bond that extends over a finite distance is a fundamental 

difference between the peridynamic theory and the classical molecular and discrete element 

theories (Potyondy and Cundall, 2004), which are based on the idea of contact forces that arise 

from interactions between particles that are in direct contact with each other.  

  

Figure 2.1 Position definitions  

It is convenient to assume that for a given material that there is a horizon, δ , beyond 

which particles do not interact, or 

 ( ) ηξηfξ ∀=⇒> 0,δ  (4) 

In this discussion, xH  will denote the spherical neighborhood of x  in R  with radius δ . 

The pairwise force function f  is required to have the following properties: 

 ( ) ( ) ξηξηfξηf ,,, ∀=−−  (5) 

which ensures conservation of linear momentum, and 

 ( ) ( ) ξηξηfξη ,0, ∀=×+  (6) 
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which ensures conservation of angular momentum. The latter equation means that the force 

vector between any two particles is parallel to the particles’ current relative position vector. 

A material is said to be microelastic if the pairwise force function is derivable from a 

scalar micropotential w : 

 ( ) ( ) ξηξη
η

ξηf ,,, ∀
∂
∂= w

 (7) 

The micropotential is the energy in a single bond and has dimensions of energy per unit volume 

squared. The energy per unit volume in the body at a given point (i.e., the local strain energy 

density) is therefore found from 

 ( ) ξξη

X

dVwW
H

,
2

1
∫=  (8) 

The factor of 1/2 appears because each endpoint of a bond “owns” only half the energy in the 

bond. 

If a body is composed of a microelastic material, work done on it by external forces is 

stored in recoverable form in much the same way as in the classical theory of elasticity. 

Furthermore, it can be shown that the micropotential depends on the relative displacement vector 

η  only through the scalar distance between the deformed points.  Thus, there is a scalar-valued 

function ŵ  such that 

 ( ) ( ) ξηξηξηξ +=∀= ywyw ,,,,ˆ  (9) 

Therefore, the interaction between any two points in a microelastic material may be 

thought of as an elastic (and possibly nonlinear) spring. The spring properties may depend on the 

separation vector ξ  in the reference configuration. 

Combining Eqs. (7) and (9) and differentiating the latter with respect to the components 

of η  leads to 

 ( ) ( ) ξηξξη
ξη

ξη
ξηf ,,, ∀+

+
+= f  (10) 

where f  is the scalar-valued function defined by 

 ( ) ( ) ηξξ ,,
ˆ

, yy
y

w
yf ∀

∂
∂= . (11) 

This satisfies the requirements of Eqs. (5) and (6), provided 
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 ( ) ( ) ξξξ ,,ˆ,ˆ yywyw ∀=− . (12) 

The relation shown in Eq. (11), together with the equation of motion, Eq. (1), contain the 

totality of the peridynamic model for a nonlinear microelastic material. In particular, note that 

the issue of how to treat rigid rotation does not arise in this formulation because y is invariant 

under rotation of the body. Similarly, objectivity of a constitutive model is not an issue in this 

approach. 

The simplest material model is the proportional microelastic material, in which the bond 

force f  varies linearly with bond stretch s , 

 


 <

=
otherwise0

if
),(

δξ
ξ

cs
sf  (13) 

where c  is called the spring constant and 1−+= ηηξs .   

To determine c  from a given bulk modulus k , consider a large homogeneous body under 

isotropic extension, i.e., s  is constant for all ξ , and ξη s= . Defining ξ=ξ  and η=η , we 

have sξη = . Using the definition of the micropotential shown in Eq. (7), since ξη /ccsf == , 

it follows that 2/2/ 22 ξξη cscw == . Then, applying Eq. (8) leads to 

 ∫∫ =







==

δ

ξ
δπξπξξ

0

42
2

2

4
4

22

1

2

1 cs
d

cs
wdVW

H

. (14) 

This is required to equal the strain energy density in the classical theory of elasticity for the same 

material and the same deformation, 29 2ksW = . Combining this requirement with Eq. (14) 

leads to the spring constant in the proportional microelastic material model, 

 
4

18

πδ
k

c =  (15) 

More complex behavior can be obtained using the microplastic or damage models shown 

in Figure 2.2.  The microplastic model uses a 1D elastic-plastic behavior for each link.  In the 

damage model, the links break after a specified amount of stretch.  The appropriate failure 

stretch can be obtained by considering the fracture energy of a given material. 
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a. Microplastic model b. Damage model 

 

Figure 2.2 Alternate force models (Silling, 2002)
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CHAPTER 3 - EMU 

EMU, developed by Sandia National Laboratories, is a computer code based on 

peridynamics (Silling et al., 2006). EMU implements the bond based theory of peridynamics by 

applying the peridynamic equations to a set of nodes.  The solution time is dependent on the 

number of nodes in the solution and the number of time steps.  Multiprocessing can be used to 

reduce the solution time.   

To begin a solution, the EMU code reads a keyword file, called an infile, and formulates 

the nodes defined through material regions and the number dropped, or deleted, through void 

regions.  At each time step, the code takes each node in turn and finds the pairwise force 

functions described previously and also applies any prescribed displacements or velocities and 

short range forces necessary.  After the resulting force for each node is found, new displacement 

and velocity values are calculated for the time step.  The process continues until a stop condition 

is met. 

EMU solutions are based on the nodes defined by material regions, which can be created 

in EMU or generated externally and read as part of the problem input.  Internal generation is 

restricted to the volume defined by the peridynamic grid.  Once the peridynamic grid is 

established, these are the only nodes available for any internally defined material region. Any 

material region defined outside of this grid has no nodes within its bounds and therefore no effect 

on the solution.  A material region created across the boundary of the grid uses only the nodes 

within the grid as part of the solution.  This can be confusing for the EMU user, as the grid is not 

defined by dimensions, but by keywords that specify the center point, the number of nodes in 

each direction, and the distance between nodes.  The user must calculate the dimensions of the 

resulting grid to determine the boundary of possible nodes. Though not a complex calculation, a 

slight change to any of the three keywords that define the grid can accidentally place a material 

region outside the boundary.   Externally generated nodes are independent of the peridynamic 

grid defined by EMU.  These nodes are entered through a separate file called a grid file that 

defines the location and material of each node.  The nodes are placed at the exact location 

specified in the grid file without regard to the peridynamic grid. 
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Nodes that are created too close to each other through external and internal generation are 

dropped before the solution begins.  The distance that determines if a node should be dropped 

can be specified by the user.  Nodes that get close to each other during a solution are not dropped 

but invoke short range forces that prevent them from occupying the same space.  Short range 

forces apply to all nodes that come within the minimum distance and act to repel each other until 

the distance is greater than the minimum. Coefficients that help determine the force and 

minimum distance can be specified by the user.  

For impact problems, EMU allows the user to create a special object called a penetrator.  

The penetrator is limited to one per solution and is not defined by nodes.  The penetrator is a true 

solid object that interacts through contact with the surface. There are no peridynamic bonds 

related to the penetrator but forces still apply to the penetrator and the nodes that it comes into 

contact with. The penetrator is used primarily to impact material regions and the user can specify 

mass, angle of impact, angle of attack, impact velocity, tip location, friction and choose from five 

different shapes. 

Some keywords in EMU can define a volume internally or externally.  The two types 

specify whether the desired volume is inside or outside the boundary described by the keyword. 

Internal keywords specify the desired volume within the boundary. Figure 3.1 (a) shows a 

material region in the shape of a rectangle created internally. External keywords specify the 

desired volume outside the boundary yet inside the peridynamic grid. Figure 3.1 (b) shows the 

same material region boundary as (a) but created externally.  The black lines in both figures 

represent the boundary of the peridynamic grid. 

 
(a) (b) 

 

Figure 3.1 Rectangle material region created internally (a) and externally (b) 



 10 

Execution of EMU requires the infile to contain keywords about the peridynamic grid, 

material regions, boundary conditions, and all other parameters that control the solution.  Each 

keyword has a specific format and most are followed by a set of numbers.  If the keyword 

signifies a single numerical value such as the maximum number of time steps, there is only one 

number that follows the keyword.  If the keyword represents something more complex, such as a 

material region, the keyword itself contains an identifying number and is followed by a set of 

numbers that tell which geometry is being specified and providing the data needed to define that 

geometry.   

To ensure that EMU runs properly, each keyword must follow the correct format. Some 

formatting errors, such as omitting a numerical value after a keyword, end EMU during 

initialization while others, such as switching the order of variables after a keyword, alter the 

desired results without warning.  Errors that alter the results without ending EMU are hard to 

notice until the solution finishes, which can cost many hours of computing time. A pre-processor 

is clearly needed for the entry of these keywords and to allow visualization of material regions 

and the resulting nodes before running a lengthy EMU solution. 
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CHAPTER 4 - Visual EMU 

Visual EMU is a graphical user interface for the peridynamic EMU, developed by Sandia 

National Laboratories, which is a computer code based on peridynamics (Silling et al., 2006).  

Visual EMU allows the user to input data, see the 3D model, and execute EMU from one 

interface. The following sections describe the language, visual layout, and code design of Visual 

EMU.  

Language 

Visual EMU is written entirely in Java using Eclipse as the development environment.  

Java is an object oriented language designed to divide programs into separate modules, called 

objects, which encapsulate the program’s data and operations (Morelli and Walde, 2006). The 

objects are organized in a hierarchy from general to specific and can be broken down into more 

specific groups infinitely. Each class in the hierarchy inherits, or obtains the characteristics, from 

the class above it. A class is a template for an object and encapsulates the attributes and actions 

that characterize a certain type of object (Morelli and Walde, 2006). Java has a built in class 

called Object that all other classes inherit from, making it the most general object.   

The following discussion uses the Visual EMU Shape class as an example.  As you can 

see in Figure 4.1, Shape is a subclass of Object and therefore inherits all the characteristics of 

Object.  Shape can be called an Object because it is a specific type of Object. Cylinder, 

Rectangle, and Sphere are all subclasses of Shape and therefore inherit the qualities of Shape as 

well as Object. Cylinder can be called an Object and it can be called a Shape. Cylinder can not 

be called a Rectangle however, as it does not inherit from Rectangle.  Cylinder and Rectangle are 

both Shapes though, and specific types of Shapes. All classes that inherit from Object have a 

method, or collection of programming instructions that describe how to carry out a particular 

task (Horstmann, 2006), called toString(). Through inheritance, Shape, Cylinder, Rectangle, and 

Sphere all have a toString() method defined for them. 
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Shape 

Rectangle Sphere Cylinder 

Object 

 

Figure 4.1 Java shape hierarchy 

The toString() method can also be modified for each specific type, which is called 

polymorphism.  Polymorphism denotes the principle that behavior can vary depending on the 

actual type of an object (Horstmann, 2006).  Shape, Cylinder, Rectangle, and Sphere are all 

different types of Object. They can all override and change the toString() method so the method 

acts in a unique way for each class. 

The power of object oriented programming is that all classes that inherit from Shape can 

be handled together as Shapes without the need to know which specific type is being used. For 

example, all classes that inherit from Shape have a method called draw(String).  This method 

displays the Shape in Visual EMU.  The Cylinder, Rectangle, and Sphere are placed in a holder 

that only knows each is a Shape and nothing else.  Thanks to inheritance, using the draw(String) 

method from each Shape displays the correct geometry without the need to find the specific type 

of Shape being drawn. 

In Java, the command extends makes the class a subclass of the one specified by the 

command. The class is not only a subclass of the one specified, but a subclass of all super classes 

of the one specified. Using the example above, Object is a super class of Shape, Cylinder, 

Rectangle, and Sphere. A class inherits from all super classes.  Cylinder extends Shape and is a 

subclass of any class above Shape up to the Object class.  This creates a tree structure with the 

Object class as the root.  The branches are all the subclasses of Object and the number of 

subclasses is unlimited.  Each subclass of Object can also have an unlimited number of 

subclasses and this pattern continues indefinitely. Each class can only exist in one spot on the 

tree however, as each class can extend only one other class.   
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Classes can inherit from a class that is not a super class using the implements command.  

A class is not a subclass of what it implements (Morelli and Walde, 2006) and the location in the 

tree does not change.  The interface, or implemented class, has methods that it requires each 

class that implements it to have.  In this way, classes inherit methods from other classes they 

extend and implement.  

Visual layout 

Visual EMU follows the layout of most professional applications.  The main window of 

Visual EMU has five sections, shown in Figure 4.2. Visual EMU is controlled through this 

window and the user can view different options by manipulating the main window.  The options 

and their locations are described in this section. 

 

1 
2 

3 

4 5 

 

Figure 4.2 Visual EMU main window layout 

Main Window 

  Located at the top of Visual EMU in section 1 is a menu bar with options such as File, 

Edit, and Help.  Clicking these opens a submenu with more options. More on the menu bar is 

explained in the Menu Bar section.  Below the menu bar in section 2 is a toolbar.  Each button 

has a picture that represents the function and a short description appears when the mouse is 
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hovered, or held momentarily without clicking, over the button.  Many of these buttons are the 

same options found in the menu bar above and provide quick access to the most popular choices.  

In addition, the toolbar contains buttons to control the 3D view located in section 5. 

Section 3 of Figure 4.2, located below the toolbar, contains a tabbed pane. A tabbed pane 

shows different content depending on which tab is selected.  In this way, the seven options in 

section 3 share the same space though only one is visible at a time. More on the tabbed pane is 

explained in the Tabbed Pane section.  Below the tabbed pane, the rest of the main window is 

split into two parts.  Section 4 on the left is a tree view of all Shapes, Materials, and Boundary 

Conditions.  Through the rest of the discussion on Visual EMU, this section is referred to as the 

tree.  Section 5 to the right of the tree is the 3D view.  Anything the user can benefit from seeing 

in 3D is shown here, such as Shapes, Boundary Conditions, and the peridynamic grid boundary. 

Through the rest of the discussion on Visual EMU, section 5 is referred to as the view panel. 

Menu Bar 

The menu bar contains the controls for Visual EMU.  Most options are held in the File 

submenu shown in Figure 4.3. The New option clears all of the current data in Visual EMU and 

allows the user to start with default settings as if the program has just been opened.  The Open 

option allows the user to continue from a previously saved Visual EMU file. All of the settings 

from the file are applied to the current Visual EMU.  The Save option creates a file with a 

“.vem” extension. The file holds the current Visual EMU information to allow the user to return 

to the current settings later.  The Read Infile option allows the user to import a previously created 

EMU infile.  The infile settings can then be viewed and manipulated as desired.  The Write Infile 

option then allows the user to create an EMU infile from the current Visual EMU settings. The 

infile can be used to run an EMU solution or to save the current settings.  The Run EMU option 

allows the user to begin an EMU solution from within Visual EMU. The solution can use the 

current Visual EMU settings or settings from an EMU input file. The Exit option closes Visual 

EMU.  
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Figure 4.3 File submenu 

The Edit submenu, shown in Figure 4.4, holds only two options: undo and redo.  These 

options are also found on the toolbar represented by the blue arrows. They are explained in more 

detail in the Command section of Code Design. 

  

Figure 4.4 Edit submenu 

The Help submenu, shown in Figure 4.5, holds information about Visual EMU.  Clicking 

on About opens a dialog that displays the version and creator of Visual EMU. 

  

Figure 4.5 Help submenu 

Tabbed Pane 

The use of a tabbed pane in the main window allows the user to see more options without 

using additional windows. By selecting the title of a specific tab in section 3, that panel becomes 

visible and the previous is hidden.  The user can navigate between tabs at any point in time 

without opening an additional window and covering the main window.  The tabs are set in the 

order they are most likely to be used from left to right.   

The panels held in the tabbed pane control almost all of the EMU keywords.  Each panel 

controls a group of similar keywords. The most common keywords in the group are placed 

directly on the panel and the remainder are entered through modal dialog boxes that appear after 

pressing the appropriate button on the panel.  All data from the dialog is saved with the 
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information on the panel it came from.  This keeps all keyword information grouped together and 

allows easy access in one location. Each panel is explained in more detail in the following 

sections. 

Grid 

The grid panel, shown in Figure 4.6, contains all the keywords related to the nodes of the 

peridynamic grid mentioned previously.  All internally generated material regions are dependent 

on this information and Visual EMU uses it to preview the configuration of nodes in EMU.  

Default values for the grid are initially set so the user can skip ahead if desired.  The user can 

return to this panel at any time and change the information to better represent the chosen material 

regions. 

  

Figure 4.6 Tabbed pane showing grid 

The More button on the right of the grid panel opens a modal dialog (Figure 4.7) for the 

user to enter data defining the grid margin.  The grid margin is the area around the peridynamic 

grid that nodes can move into during the solution.  Nodes that move outside the grid margin are 

dropped from calculation. 

  

Figure 4.7 More dialog from the grid panel 

Material 

The material panel (Figure 4.8) contains all of the keywords related to material 

properties.  Each material region requires a material be assigned to it.  Materials are created or 
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edited in the material panel.  There are three buttons on the lower right of the panel that open 

dialogs: Set Defaults, More, and Initial Conditions. 

  

Figure 4.8 Tabbed pane showing material 

The Set Defaults button opens the dialog shown in Figure 4.9. The information entered 

here applies to all materials and is the value used by EMU unless specified otherwise for a 

certain material.  

  

Figure 4.9 Default - Material dialog 

The More button opens a dialog for the entry of additional material information.  The 

dialog contains a tabbed pane just like the main window that allows the information to be viewed 

in two parts, keeping the dialog reasonably sized and organized.  The dialog with each tab 

selected is shown in Figure 4.10. 
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Figure 4.10 More - Material dialog showing both tabs 

The Initial Conditions button opens the dialog shown in Figure 4.11. The data entered 

here specifies the initial displacement and velocity as well as the displacement and velocity 

gradients for the material. The dialog contains a tabbed pane that allows the information to be 

split into two parts, a displacement panel and a velocity panel.  The dialog with each tab selected 

is shown in Figure 4.11.The information entered in the More and Initial Conditions dialog is held 

and saved with the material when created.   

  

Figure 4.11 Initial Conditions – Material dialog showing both tabs 

Geometry 

The geometry panel (Figure 4.12) allows the user to create all of the material regions, 

voids, slits, precracks, and enter grid files.  Each of the different geometries is represented by a 

toggle button with a picture.  Toggle buttons restrict selection to one button at a time. When a 
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button is selected the previous button is deselected keeping the selection to one at a time. 

Hovering the mouse over the toggle button displays information about the button.  Selecting the 

button changes the area below to enter the data necessary to create the chosen shape.  The first 

button, the rectangle button (), displays the panel as shown in Figure 4.12.  There are six 

parameters needed to define the rectangle geometry and three different types of rectangle: 

internal, external, and void.  If the shape is a material region (internal and external types for a 

rectangle) then a material must be chosen from the drop down menu above the Apply button.  If 

the shape is not a material region (void type for a rectangle), there is no need to specify a 

material and the drop down menu is disabled.  After entering the appropriate data, the shape is 

created by clicking the Apply button.  

  

Figure 4.12 Tabbed pane showing geometry 

Penetrator 

The penetrator panel (Figure 4.13) controls the creation of the penetrator shape.  As 

mentioned previously, there can only be one penetrator and there are five different types to 

choose from.  The user can select each option and see a picture of the desired type by pressing 

the radio buttons on the left of Figure 4.13.  The data needed to define the chosen type is 

displayed to the right of the picture.  After entering the necessary information, the penetrator is 

created by clicking the Apply button.  If a penetrator has already been created, pressing the 

Apply button replaces the current penetrator with a new one of the chosen type.  The delete 

button is enabled when a penetrator exists and removes the penetrator.  

  

Figure 4.13 Tabbed pane showing penetrator 
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Penetrator Data 

The penetrator data panel (Figure 4.14) allows the user to enter information about the 

penetrator.  After entering the desired data, the Apply button saves the information with the 

current penetrator.  If there is no penetrator, the Apply button is disabled.  

  

Figure 4.14 Tabbed pane showing penetrator data 

Boundary Condition 

The boundary condition panel (Figure 4.15) allows the user to create three different types 

of boundary conditions.  The types are “no fail”, displacement, and velocity.  As with the 

geometry panel, the rectangle and cylinder geometries are represented by a toggle button with a 

picture.  Clicking the toggle button displays the data fields necessary to define the geometry.  

The user can also choose interior or exterior types of boundary conditions.  Clicking the Apply 

button creates the specified boundary condition.  

  

Figure 4.15 Tabbed pane showing boundary condition 

When choosing between “no fail”, velocity, and displacement, a dialog appears for 

velocity and displacement that allows the user to enter the data relevant to those types.  The two 

dialogs, shown in Figure 4.16 and Figure 4.17, are similar and allow the user to specify 

conditions on any axis.  To specify a condition, the user must select the appropriate check box 

and enter a value in the corresponding field to the right.  Clearing the check box leaves the 

direction unconstrained in the solution.  The velocity dialog has an additional End Time variable 

used to turn off the velocity boundary condition at the specified time.  The “no fail” boundary 
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condition needs no additional information and keeps all peridynamic bonds within the bounds 

from breaking.   

  

Figure 4.16 Velocity boundary condition dialog  

  

Figure 4.17 Displacement boundary condition dialog 

General 

The general panel allows the user to enter all of the remaining data.  The most common 

fields are located on the panel and many additional fields are located in a dialog accessed by 

clicking the More button. After entering the desired information in the panel and the dialog, 

clicking the Apply button saves the information.  

  

Figure 4.18 Tabbed Pane showing general 

Clicking on the More button opens another dialog with a tabbed pane.  The tabbed pane 

has four options: Restart, Output, Interface, and Misc.  EMU allows the user to restart a previous 

EMU solution through files that are saved by EMU during a solution.  The user can specify these 

options in the Restart tab shown in Figure 4.19.  In addition to restarting an EMU solution, the 
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user can tell EMU to create a restart file for later use.  This information is also available on the 

Restart tab. 

  

Figure 4.19 More – General dialog showing the Restart tab 

The Output tab holds information that tells EMU what to display during a solution and 

when and where to place information for post-processing.  The most common output options are 

located on the General panel, but the rest are located in the dialog on the Output tab shown in 

Figure 4.20.  While an EMU solution runs, the user can see a single line output at each time step 

that provides information about the peridynamic grid or penetrator.  The user can select their 

preference in the Output tab.  The user can also specify the location of the plot files that will be 

used by EMUGR, the EMU post-processor. 
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Figure 4.20 More – General dialog showing the Output tab 

The Interface tab allows the user to connect and disconnect material regions.  The 

connection refers to the peridynamic bonds between nodes mentioned previously.  These bonds 

should not exist in some situations and need to be removed.  By default, there are peridynamic 

bonds between all nodes within the material horizon distance mentioned previously. An 

exception is between rebar mesh and any other material region.  By default, two non rebar mesh 

material regions adjoining each other act as one material region with two different material 

properties.  To keep the two material regions separate, the Interface tab allows the user to specify 

which material regions are connected and disconnected.  The user can also specify the interface 

force and strength coefficients between two material regions. To change the default settings 

between two material regions, the user selects two material regions from the list shown in Figure 

4.21 and enters the desired information.  To select more than one material region, hold down the 

control button and click on the second material region.  Once two material regions are selected, 

the options below the list are enabled.  More detail is given with the InterShape class in the 

description of the VE package. 
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Figure 4.21 More – General dialog showing the Interface tab 

The Miscellaneous tab allows the user to enter the remaining information that has no 

other place in Visual EMU.  As shown in Figure 4.22, the options include “no fail” perimeter, 

damage viscosity, number of processors, fatigue loading, fixed time steps, and node history 

locations.   

  

Figure 4.22 More – General dialog showing the Misc tab 
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Code design 

Using object oriented design, all of the source code for Visual EMU is divided into nine 

files and packages.  By definition, a package is a collection of related classes (Horstmann, 2006).  

These files and packages help organize the classes into the similar types mentioned in the 

discussion of object oriented programming and also arrange the code for easy navigation by the 

developer. The following section explains the purpose and functionality of each file and package. 

Action 

Each action class represents a specific task completed at the request of the user.  By 

extending the Java Abstract Action class, each action can implement (gain access through the 

inheritance mentioned in the discussion of Java) a method called actionPerformed() (Java 

Platform Standard Ed. 6, 2006).  Inside the actionPerformed() method of each action class are 

the instructions to complete the task.  Though each method is different for all fifteen actions, 

each class is handled in the same way through the inheritance from the Abstract Action class.  

Each action is assigned to a button, buttons, or menu item and the actionPerformed() method is 

called immediately after selection of the item it was assigned to.  As an example, the 

actionPerformed() method in NewAction is called from the new button ( ) on the toolbar in 

section 2 of Figure 4.2 and an option on the File submenu shown in Figure 4.3.  The same action 

is called from both places.  

The UML diagram for the NewAction class is shown in Figure 4.23.  The class needs 

access to the current information held in ShapeData and VisualEMUWindow.  The variables that 

allow the access are d_data and d_frame respectively.  More explanation on these two classes is 

provided in the ShapeData and VisualEMUWindow sections of the VE package.  The 

actionPerformed() method confirms that all current data will be lost with this action before 

clearing all of the current data and resetting to the default information. 
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NewAction 

d_data : ShapeData 
d_frame : VisualEMUWindow 

NewAction(ShapeData, VisualEMUWindow) 
actionPerformed(ActionEvent) 

 

Figure 4.23 NewAction UML 

The following list gives a brief explanation of each class in the action package: 

• AboutAction: Opens a dialog that displays information about the author and version of 

Visual EMU. 

• AddBCAction: Adds a new boundary condition shape. 

• AddShapeAction: Adds a new shape that is not a boundary condition.  This includes the 

penetrator, material regions, slits, precracks, and voids. 

• ExitAction: Closes the Visual EMU program. 

• NewAction: Clears all Visual EMU data and resets to default information. 

• OrbitStateAction: Sets the 3D view to orbit state. The view can be rotated, translated, and 

zoomed with the use of the mouse. 

• ReadInFileAction: Opens and reads the information from an EMU infile. 

• ReadStateAction: Opens a saved Visual EMU file. 

• RedoAction: Executes the task at the top of the redo list. 

• ResetAction: Resets the 3D view to default orientation.  

• RunEMUAction: Opens a dialog that gives the options for running EMU.  After the 

options are successfully entered, the action completes the necessary setup and executes 

EMU. 

• SaveAction: Saves the current Visual EMU settings to a “*.vem” file. 

• SelectionStateAction: Will enable selection of objects in the view panel in the future. 

• UndoAction: Execute the task at the top of the undo list. 

• WriteInFileAction: Writes an EMU infile from the current Visual EMU settings. 
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Command 

Each command class represents a task that can be undone and redone.  When a new 

command is created, the task is executed and the command is added to the undo list held in the 

CommandManager class. The list allows the user to undo, or reverse, each task in the opposite 

order they were executed.  The commands are kept in order, as shown by the numbers one to 

three in Figure 4.24 (a).  The first command is labeled one and is at the bottom of the list while 

the last command is labeled three and is at the top of the list. The last command added to the list 

is always the first to be removed and its execution undone. When the undo action is selected, the 

task of the last command executed is reversed and the command is moved to the redo list (Figure 

4.24 (b)).  The undo action can be used for each command in the undo list. With a command in 

the redo list, the redo action is available. If selected, the task is executed and the command 

placed back on the undo list. The result is a return to the state of Figure 4.24 (a). 

 

undo list 

1 

2 

3 

redo list undo list 

1 

2 

3 

redo list undo list 

1 

2 

3 

redo list 

3 

(a) (b) (c) 
 

Figure 4.24 The undo and redo lists with three commands (a), undo action (b), and new 

command (c) 

Commands can go back and forth from the undo list to the redo list an infinite number of 

times.  This can continue until a new command is added to the undo list, one not from the redo 

list, as shown in Figure 4.24 (c). When the new command is added to the undo list all commands 

on the redo list (command three in the redo list in Figure 4.24 (c)) are deleted.  The new 

command (the three above the undo list) is placed in order in the undo list. In this way, the order 

of commands remains constant. The new command three is the first undone and the last redone. 

If the commands on the redo list were not removed, it could be possible to have a shape on the 
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redo list with the same name, a unique identifier, as a shape added to the undo list.  Allowing the 

command to be redone would bring back the shape with a duplicate name.  Many potential 

problems exist in the logic of the code if the name field is not unique.  

The CommandManager class is implemented as a singleton, with the UML diagram 

shown in Figure 4.25. A singleton ensures that only one instance of the class is created and 

provides a global point of access (Geary, 2003). The CommandManager() constructor is 

therefore a private method.  This means no class other than the CommandManager can create the 

undo and redo lists.  All classes can call the public static method getCommandManager() though.  

The method checks to see if an instance of CommandManager exists and returns the existing 

CommandManager or makes a new one. In this way only one set of lists are ever created.   

The execute(Command) method adds the new command to the undo list and clears the 

redo list for the reasons previously described.  The undo() method moves the command most 

recently added to the undo list over to the redo list.  The redo() method moves the command 

most recently added to the redo list to the undo list.  The undoValid() method returns a boolean 

value that is true if there are any commands in the undo list and the redoValid() method does the 

same for the redo list.  These methods help determine if the undo and redo actions can be used. 

The clearLists() method removes all commands from the undo and redo list. 

 
 

CommandManager 

d_undoList: Vector<Command> 
d_redoList: Vector<Command> 

CommandManager() 
getCommandManager() 
execute(Command) 
undo() 
redo() 
undoValid() 
redoValid() 
clearLists() 

 

Figure 4.25 CommandManager UML 

The following is a brief description of each class in the command package: 

• AddBoundaryRegionCommand: Holds the boundary condition shape addition task. 
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• AddCylinderCommand: Holds the cylinder shape addition task. 

• AddCylinderExteriorCommand: Holds the cylinder shape of type exterior addition task. 

• AddCylinderVoidCommand: Holds the cylinder shape of type void addition task. 

• AddLayerCommand: Holds the layer shape addition task. 

• AddMaterialCommand: Holds the material data addition task. 

• AddPenetratorCommand: Holds the penetrator shape addition task. 

• AddPrecrackCommand: Holds the precrack shape addition task. 

• AddRebarMeshCommand: Holds the rebar mesh shape addition task. 

• AddRectangleCommand: Holds the rectangle shape addition task. 

• AddRectangleExteriorCommand: Holds the rectangle shape of type exterior addition 

task. 

• AddRectangleVoidCommand: Holds the rectangle shape of type void addition task. 

• AddSlitCommand: Holds the slit shape addition task. 

• AddSphereCommand: Holds the sphere shape addition task. 

• AddStackedCylinderCommand: Holds the stacked cylinder shape addition task. 

• Command: The interface that requires each command to inherit the methods undo(), 

redo(), and execute(Command). 

• CommandManager: Contains the undo and redo lists and controls the movement of 

commands between the two. 

• DeleteMaterialCommand: Holds the task that removes a material data.  

• DeleteShapeCommand: Holds the task that removes a shape.  

Dialog 

Each dialog class represents a unique window used to show or gather information.  The 

dialog is a stand alone window that appears in front of the Visual EMU program.  When a dialog 

appears, it is impossible to interact with the window behind until the dialog is closed. This is 

called a modal dialog (Morelli and Walde, 2006). The control is imposed on Visual EMU only 

though, and the user can switch to a different program.  While some dialogs only display 

information, others act as portals for the passing of data.  This is most common with the More 

button on many of the tabbed panels.  Each More button opens a modal dialog with additional 
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options and allows the user to enter information that could not fit on the main panel. The 

following is a brief description of each class in the dialog package: 

• BoundaryConditionDispDialog: Collects displacement information for the boundary 

condition.  

• BoundaryConditionVelDialog: Collects velocity information for the boundary condition.  

• FinalAdvancedDialog: Collects additional information for the general panel.  

• GridAdvancedDialog: Collects additional information for the grid panel.  

• MaterialAdvancedDialog: Collects additional information for the material panel.  

• MaterialDefaultDialog: Opens a dialog that contains all of the default keywords that 

apply to materials.  This data is used by EMU when not specified for a material.  

• MaterialInitialDialog:  Opens a dialog that collects information on the initial condition of 

the material.  

• MyDialog: The interface for each dialog. It requires each dialog to contain the doModal() 

and validData() methods that help produce the modal nature of the dialogs. 

• RunEMUDialog: Opens a dialog that allows the user to choose locations and options 

before running EMU.  

DisplayHelper 

DisplayHelper is not a group of related classes.  For this reason it is not a package but a 

folder, a holder for the organization of files.  The classes held in the DisplayHelper folder aid the 

classes in the panel and dialog packages.  Each of these classes is used in multiple locations to 

speed up development and create dialogs and panels with consistent content. The following is a 

brief description of each class in the DisplayHelper folder: 

• DialogHelper: This helper class aids the creation of different objects used in the dialogs.  

An example is the text label with a horizontal line extending to the right such as no fail 

perimeter shown in Figure 4.22. 

• DoubleField: This class controls each text field used for numerical entry. 

• DoubleHighBoundException: A special addition to the DoubleField that helps control 

data entry.  A maximum value is set and any number above is refused.  The evaluation of 

the value and the warning message, if required, are held here. 
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• DoubleLowBoundException: A special addition to the DoubleField that helps control 

data entry.  A minimum value is set and any number below is refused.  The evaluation of 

the value and the warning message, if required, are held here. 

• FormatDouble: When a number is turned into a string to display or write to a file, the 

format can be controlled through this class. 

• GridBagHelper: This helper class simplifies the code by allowing an easy way to add 

objects to the dialogs and panels.  This helper class is a product of Thunderhead 

Engineering and has been licensed for use in Visual EMU. 

Images 

All of the images needed for Visual EMU are loaded into a central holding class called 

ImageHolder.  The pictures are then retrieved by any class without the need to find or reload the 

image each time it should be displayed. This is most advantageous for the tree shown in section 4 

of Figure 4.2.  Each object in the tree has a representative picture and the number of possible 

items in the tree is virtually unlimited.  The speed of Visual EMU increases by having each 

picture ready when needed. 

Panel 

The panel package holds all of the classes that control each of the panels in section 3 of 

Figure 4.2 and were explained in detail in the Tabbed Pane section. These classes not only 

display the options to the user but in most cases they save the desired information.  The 

GeometryPanel class, however, is used only to pass information between the ShapeData class 

and the user and no information is stored in the class.  The ShapeData class is explained in more 

detail in the VE package.   

Shapes 

A shape represents any geometry that needs to be drawn in the view panel.  Having these 

geometries extend Shape allows them to be held together with one variable. The variable only 

knows it holds a class of type Shape and any subclass of Shape counts. Each shape can then be 

retrieved from the variable and used in the same way without differentiating the type.  The 

shapes are further broken down into material regions and non material regions. To easily 
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distinguish between the two, all shapes inherit a method named isRealMaterialRegion(). The 

method returns true for material regions and false for everything else. 

Material regions apply material properties to the nodes within their bounds. Any nodes 

without a material region are dropped from EMU before the solution begins. Visual EMU allows 

the user to see the EMU node configuration before running a solution.  As mentioned previously, 

this saves time that may have been wasted on an incorrect solution.  To display the correct nodes, 

each material region has a list that holds Point3d objects (d_gridPoints).  Each Point3d on the list 

represents a node the shape applies material properties to and can be shown to the user.  When a 

material region is created, Visual EMU checks the peridynamic grid and saves the nodes within 

the material region.  For efficiency, the code steps through each axial direction until it reaches 

the bound of the shape and stops checking a direction when the other bound is reached. The 

nodes that are saved can then be drawn and redrawn without recalculating. Each material region 

is drawn quickly which allows the view panel to rotate, translate, and zoom more smoothly.  All 

nodes only need to be recalculated when a change is made to the grid or a void region is added or 

deleted. 

Shapes that are not material regions do not apply a material to the nodes in the 

peridynamic grid. These shapes do not create nodes but may have an effect on the nodes created 

by material regions. The shapes that are not material regions are the penetrator, grid boundary, 

slit, precrack, boundary condition, and void.  These shapes share methods associated with 

material regions and therefore fall into the same type.  The non material regions shapes are 

explained in more detail in the following paragraphs. 

The penetrator, as mentioned previously, is not defined by nodes and always retains the 

same geometry regardless of node size and spacing. It is generally used to impact material 

regions and has five different types as seen in Figure 4.26: sphere (a), flat nose (b), cone nose (c), 

ogive nose (d), and flared ogive (e).  All five penetrator types need a diameter along with a 

variety of parameters to define the nose and tail.  Not shown in the figures is how to define the 

curve of the ogive nose for types d and e. The radius of curvature for the ogive nose is found by 

multiplying the diameter (D on each figure) with a variable named crh that is required from the 

user. 
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Figure 4.26 Penetrator types 

The grid boundary is an aid for the user and shows the region in space that contains the 

internally generated nodes.  The grid boundary quickly shows the user if any material region is 

outside the grid boundary and will have missing nodes in the EMU solution.  Nothing stops the 

user from creating a material region outside of the grid boundary in EMU or Visual EMU, but a 

material region has no effect on the solution without nodes.  The grid boundary, represented by 

the thick black lines in Figure 4.27, can be turned on and off from the grid panel (Figure 4.6). 

  

Figure 4.27 View panel showing the grid boundary (black) 

The slit defines a plane that cuts peridynamic bonds. This is similar to the disconnect 

keyword for two material regions that was mentioned previously.  There is no peridynamic 

interaction across this plane and the nodes on either side act as separate objects sitting beside 

each other.  As shown in Figure 4.28, the slit breaks the rectangle material region into two 

separate blocks.  After the bonds are broken the material region acts like two blocks adjacent to 

each other. 
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Figure 4.28 View panel with a slit plane (green) 

The precrack is similar to the slit but has different options.  While the slit must be parallel 

to the x, y, or z plane, the precrack can have any orientation. The precrack also has a thickness 

and therefore a volume.  Any peridynamic bonds that touch the volume of the precrack are 

broken. As shown in Figure 4.29, the precrack is drawn as two planes separated by the given 

thickness.  Any peridynamic bonds in the volume are broken. 

  

Figure 4.29 View panel with a precrack (green) 

The boundary condition adds a displacement or velocity gradient to the nodes contained 

within its bounds.  The gradients only apply to nodes that are part of a material region but can 

contain any number of material regions.  The red block in the middle of Figure 4.29 is a 

boundary condition.  The boundary conditions are drawn in the same way as material regions in 

the solid frame and wire frame viewing options.  They are then drawn as a wire frame when 

viewing nodes so the user can see which nodes are affected by the boundary condition. 
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The void removes all nodes within its bounds from calculation.  All other information 

applied to the nodes is irrelevant. The void shapes are colored yellow to distinguish them from 

other shapes.  Void shapes are also drawn the same as material regions in the solid frame and 

wire frame viewing options and do not remove anything from other shapes, a useful feature for 

future addition.  When viewing nodes however, the void regions are drawn as expected in EMU.  

All nodes within the bounds of the void are not shown.  This is consistent with EMU and 

represents the node configuration of an EMU solution.  A cylinder void is shown in all three 

view options in Figure 4.30. 

    

Figure 4.30 Cylinder void shown in solid (left), wire (middle), and grid (right) frame views 

The UML for the Shape class is shown in Figure 4.31 and the following sections give a 

brief explanation of some of the important methods. 

 
 

Shape 

 

Shape() 
toFile() 
draw(String) 
getType() 
isIncluded(double, double, double) 
getMaterial() 

 

Figure 4.31 Partial Shape UML 
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toFile() 

Each shape class contains the data entered by the user that needs output to the infile for 

EMU.  The toFile() method returns a string formatted according to the type of shape.  For 

example, the toFile() method of the cylinder class is shown in Figure 4.32.  The three indicates 

what type of material region is being defined and each of the following parameters define the 

geometry and must follow the order required by EMU. 

 
 

public String toFile()  
{ 
    return " 3 "+d_radius+" "+d_xCen+ " "+d_yCen+" "+d_zL+" "+d_zH; 
} 

 

Figure 4.32 toFile() method from the Cylinder class 

draw(String) 

The draw(String) method is called each time the view panel changes.  Each call to the 

draw(String) method is passed a string that signifies what type of draw is taking place. The three 

options are solid, wire, and grid frame.  The solid view is drawn with solid triangles for each 

shape.  The triangles are large for a flat surface and small when used to represent curved surfaces 

such as cylinders and spheres. The wire view only draws the outline of the shape making it is 

possible to see shapes inside other shapes and where shapes overlap.  The grid view shows the 

nodes that will appear in EMU with the given conditions.  Each type of shape responds 

differently depending on the draw option given. This information is held in the draw(String) 

method.  For example, a sphere has a solid, wire, and grid structure while all voids, which 

represent the absence of nodes, draw nothing in grid view. Though boundary conditions have no 

nodes, a wire frame is drawn in grid view to help the user determine which nodes are affected. 

getType() 

Each shape class is unique but can fall into different categories such as: material region, 

void, slit, precrack, or boundary condition.  This information is held by a string variable in each 

class and cannot be changed by the user.  The getType() method returns the string as a way of 

identifying and categorizing the shape.  For example, a rectangle void region has the type 

“Rectangle Void” and a cylinder void region has the type “Cylinder Void.”  The string returned 



 37 

from getType() can then be tested to see if “Void” is included.  Even though these two shapes are 

different, they are both voids and are identified and used appropriately.   

isIncluded(double, double, double) 

Each material region defines a boundary that applies material properties to the nodes 

within.  The nodes are set by the grid and each node is tested to see if it is included in the 

material region or void.  If the node is within a void region, it is ignored to keep it from being 

drawn.  If the node is not within a void region but within a material region, the node is added to 

the list mentioned previously to be drawn.  In this way, each shape is tested uniquely with the 

same inherited method. 

getMaterial() 

To keep material information with the appropriate material region, a string variable holds 

the unique name of the material.  This method is called when displaying the material region 

properties or when writing the information to the infile. Some shapes that are not material 

regions use the getMaterial() method also, such as the precrack.  A precrack can apply to only 

one material region so that only peridynamic bonds within the specified material region are 

broken. 

State 

The state package contains all of the classes that control how the user can interact with 

the view panel.  At the moment, the two options are selection and orbit state.  The orbit state 

allows the user to rotate, zoom in or out, and translate the camera.  The camera is explained in 

more detail in the Camera class of the VE package. By clicking in the view panel and moving the 

mouse while holding down the left mouse button, the shapes appear to rotate in the direction of 

mouse movement.  By clicking in the view panel and moving the mouse while holding down the 

right mouse button, the shapes appear to translate in the direction of mouse movement.  By 

rolling the mouse wheel in the view panel, the shapes appear to move closer or farther away.  

The selection state is designed to hold the camera in one orientation and allow the user to select 

shapes in the view panel with the mouse. The ability to select is not yet included in Visual EMU 

and all shape selection is handled through the tree.  Allowing the user to select and manipulate 

shapes in the view panel is a useful feature for future addition. 
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Each class in the state package that controls user interaction extends the state class.  The 

UML for the state class is shown in Figure 4.33 and uses mostly abstract methods.  An abstract 

method has no body and requires all classes that extend it to implement the method (Morelli and 

Walde, 2006).  This means there is no method definition in the state class and each class that 

extends state must define the method.  For example, the mouseDragged(MouseEvent) method is 

called when the user moves the mouse with a button held down.  In the selection state, this 

method does nothing.  In the orbit state, however, this rotates the camera if the left button is held 

and translates the camera if the right button is held.  The only method in the state class that is not 

abstract is the stateHasChanged() method which is used to update the view panel when changes 

are made.  

 
 

State 

 

getCursor() 
mouseReleased(MouseEvent) 
mouseMoved(MouseEvent) 
mouseDragged(MouseEvent) 
mouseClicked(MouseEvent, double, double, int, int) 
mouseDoubleClicked(MouseEvent, double, double, int, int) 
leftMousePressed(MouseEvent) 
rightMousePressed(MouseEvent) 
mouseWheelMoved(MouseWheelEvent) 
draw(GL11, AffineTransform) 
cancel() 
stateHasChanged() 

 

Figure 4.33 State UML 

VE 

VE is another group of classes that are not also a group of related classes.  Though the 

classes in this folder are not alike, they are the foundation for Visual EMU.  Included in this 

package are the main class where Visual EMU begins, the class that manages all visual 

components, and the class that manages all shapes and materials. This section gives an 

explanation of the most important classes. 
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Camera 

The view panel shows the shapes as if viewed through a camera lens. Though it may look 

like the shapes are rotating, the location of the shapes never changes.  The camera can be moved 

up and down, zoomed in and out, and rotated around a center point.  The change in view is 

created by proper mouse movement.  Each mouse command that changes the view of the camera 

is divided into rotation, translation, or zoom.  These changes are made to the current view 

through the creation of a temporary transformation matrix and then applied to the overall 

transformation matrix. As you can see in Figure 4.34, a temporary transformation matrix, mRX, 

is created with the rotation information that comes from the mouse, thetaX, and multiplied with 

the current transformation matrix, d_mTransform, to perform a rotation about the x axis. The 

d_mTransform matrix is then used to draw the shapes as if viewed from the desired location. 

 
 

 public void rotateX(double thetaX) 
 { 
  Matrix4d mRX; 
  double cosTheta = Math.cos(thetaX/180.*Math.PI); 
  double sinTheta = Math.sin(thetaX/180.*Math.PI); 
 
  mRX = new Matrix4d( 1., 0., 0., 0., 
    0., cosTheta, -sinTheta, 0., 
    0., sinTheta,  cosTheta, 0., 
    0., 0., 0., 1.); 
  d_mTransform.mul(mRX, d_mTransform); 
 } 

 

Figure 4.34 rotateX(double) method from the camera class 

 The methods rotateX(double), rotateY(double), and rotateZ(double) control the rotation 

in each axial direction and are shown along with all other Camera methods in the UML diagram 

in Figure 4.35. Other notable methods are translate(double, double, double,), which controls 

translation and setDistance(double), which controls the zoom.  
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Camera 

d_distance : double 
d_trans : Vector3d 
d_radius : double 
d_mTransform : Matrix4d 
d_center : Point3d 
NEAR_FACTOR : double 
FAR_FACTOR : double 

Camera() 
getDistance() 
setDistance(double) 
getTransformation() 
rotateX(double) 
rotateY(double) 
rotateZ(double) 
translate(double, double, double) 
getRadius() 
setRadius(double) 
getNear() 
getFar() 
getFractScreen() 
setCenter(Point3D) 
reset() 

 

Figure 4.35 Camera UML 

Initialize 

To aid the user, three materials are predefined in Visual EMU.  They represent the 

properties of glass and two types of metal.  As mentioned previously, the creation of material 

regions in Visual EMU requires a material to associate with the region.  The additional materials 

are useful to any user wishing to use Visual EMU for geometry and grid generation or to simply 

visualize the problem. The material assigned to the material region can be edited or replaced at 

any time. An experienced EMU user can use Visual EMU to quickly create and visualize 

geometry and then edit the infile. The Initialize class creates the additional materials.  Any 

materials not used with a material region have no affect on the EMU infile.  The additional 

materials are available for use without being a hindrance. 
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InterShape 

As mentioned previously, there are certain interactions that can be specified between 

material regions.  The control for this behavior is held in the InterShape class, the UML of which 

is shown in Figure 4.36. The connect and disconnect keywords mentioned previously are 

controlled using a simple boolean value, identified as d_isOppositeConnection.  All material 

regions are connected except rebar meshes. This default behavior changes with the addition of 

one keyword, disconnect_all, which disconnects all material regions. Regardless of the default 

setting, when the boolean is set to true the two material regions have the opposite behavior of the 

default at that time.  This allows the same class to control all material regions including rebar 

mesh.  If a rebar mesh and any other shape have d_isOppositeConnection set to true, they are 

connected, which is the opposite of default.  If any two non rebar mesh materials are set to true, 

they are disconnected, which is opposite the default.  If the disconnect_all keyword is used, the 

default is the same for all material regions and a true d_isOppositeConnection for any two shapes 

connects them. 

 
 

InterShape 

d_key1 : String 
d_key2 : String 
d_isOppositeConnection : boolean 
d_hasRebar : boolean 
d_interfaceStrength : Double 
d_interfaceForce : Double 

InterShape(String, String) 
setOppositeConnection(boolean) 
isOppositeConnection() 
setInterfaceStrength(Double) 
getInterfaceStrengh() 
setInterfaceForce(Double) 
getInterfaceForce() 
getKey1() 
getKey2() 
isEquals(String, String) 
isPartRebar() 

 

Figure 4.36 InterShape UML 
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The get and set methods for interface strength and interface force provide additional 

information for the interaction of two material regions.  The material regions that the InterShape 

instance applies to are saved as d_key1 and d_key2.  These string values hold the names of each 

material region.  The isEquals(String, String) method compares two material region names with 

the two saved names, as shown in Figure 4.37. If the strings are the same, there is already an 

InterShape instance for the pair of material regions and there should only be one instance for 

each pair of material regions.  The isPartRebar() method is used to identify if one of the two 

material regions is a rebar mesh.  The instance is then handled differently since rebar mesh has a 

different default. 

 
 

    public boolean isEquals(String key1, String key2) 
    { 
        return((key1.equals(d_key1) && key2.equals(d_key2)) || 
                (key1.equals(d_key2) && key2.equals(d_key1))); 
    } 

 

Figure 4.37 isEquals(String, String) method from the InterShape class 

MaterialData 

The MaterialData class has a public constructor and when a new material is created, a 

new MaterialData instance is created with the values given by the user.  All the material 

properties are held in the instance of MaterialData.  Any values that are not set by the user are 

not written to the infile and left to be the EMU default.  The instance can be linked, by the 

unique name, to any material region.  The MaterialData class has 55 variables and 85 methods.  

The majority of the variables hold material parameters and the methods manage those 

parameters. A partial UML of the MaterialData class is shown in Figure 4.38 to give an example 

of how the class works.  
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MaterialData 

density : double 
dispGradient : double[] 

setDensity(double) 
getDensity() 
setDispGradient(double[]) 
getDispGradient() 

 

Figure 4.38 Partial MaterialData UML 

The material density is stored as a double called density. The value is set by the 

setDensity(double) method and returned by the getDensity() method. The displacement gradient 

variable is a bit more complicated and is stored as a double array called dispGradient. The 12 

parameters associated with the displacement gradient are shown in Figure 4.11. The first three 

are for the reference point and the remainder for the coefficients. All 12 parameters are set with 

the setDispGradient(double[]) method and returned with the getDispGradient() method. 

When outputting the material information for EMU, only the non default values are 

written.  This consolidates the infile and allows the user to quickly see the changes from EMU 

default.  For this reason, entering the EMU default information into Visual EMU has no effect on 

the infile Visual EMU creates.  If the user reads an infile into Visual EMU and then writes an 

infile, making no changes, the files may be different.  Any default information in the original 

infile does not appear in the new infile. 

ReadInFile 

The ReadInFile class controls the input of EMU infiles.  The two methods in the 

ReadInFile class are shown in the UML diagram in Figure 4.39. The constructor method, 

ReadInFile(ShapeData, VisualEMUWindow), saves the ShapeData and VisualEMUWindow 

instances for use in the readData(String) method. The readData(String) method takes the infile 

location as a string and opens the correct file. The method then takes two passes through the 

infile.  The first pass reads in the majority of the keywords and initiates all of the necessary setup 

for keywords to come.  After initiation, all of the remaining keywords are read. For example, 

material properties are read on the second pass and applied to the correct materials identified on 

the first pass. Any lines not recognized are stored and displayed to the user upon completion.  An 
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infile that is out of order can be read and then written by Visual EMU.  Also, it is sometimes 

difficult to find spelling or other small errors in an EMU infile.  By reading the infile in Visual 

EMU, each line with an error is shown to the user along with error messages for some specific 

problems.  

 
 

ReadInFile 

d_data : ShapeData 
d_frame : VisualEMUWindow 

ReadInFile(ShapeData, VisualEMUWindow) 
readData(String) 

 

Figure 4.39 ReadInFile UML 

ShapeData 

The ShapeData class is the control center for Visual EMU. It holds all materials and 

shapes as well as the logic for their addition, removal, and organization. It holds the information 

for saving and opening Visual EMU files and reading and writing EMU infiles. The ShapeData 

class has 14 variables and 61 methods. A partial UML is shown in Figure 4.40 to give some 

examples of the content and function of the ShapeData class. 

 
 

ShapeData 

d_shapeVec : Vector<Shape> 
d_matVec : Vector<MaterialData> 
d_shapeTable : Hashtable<String, Shape> 
d_matTable : Hashtable<String, MaterialData> 

drawShapes() 
getMatRegionShapes() 
setGridPoints(Shape shape) 
deleteShapeWithMat(String s) 

 

Figure 4.40 Partial ShapeData UML 

As shown in the UML, there are four variables to hold the shapes and materials. Each of 

the variables has a different function.  The vectors keep an order of creation while the hash tables 

allow quick access to a specific shape or material.  The shape vector is used in the drawShapes() 
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method, shown in Figure 4.41, along with an inherited process of iteration.  The for  loop takes 

each shape from the d_shapeVec vector and calls the draw(String) method.  The if  test in the 

drawShapes() method is used to determine if the grid boundary should be drawn.  The grid 

boundary is a shape and could be held in the d_shapeVec variable but is held outside the 

d_shapeVec for special treatment. 

 
 

public void drawShapes() 
{ 
      for(Shape shape : d_shapeVec) 
      { 
            shape.draw(d_geomType); 
      }      
   

if(GridDataPanel.getGridDataPanel(null,null).isShowGrid()) 
 { 
  GridBound.getGridBound().draw(SOLID); 
 } 
} 

 

Figure 4.41 drawShapes() method in the ShapeData class 

The getMatRegionShapes() method uses the inherited process of iteration again to collect 

all material region names.  These names are then displayed and used in the interface panel 

(Figure 4.21). The setGridPoints() method is 180 lines long and checks voids and material 

regions to apply nodes. When new material regions are created, the method checks for nodes 

within the bounds by iterating through the grid as mentioned previously.  The 

deleteShapeWithMat(String) method allows the user to delete a material being used by a material 

region.  Material regions are required to have a material associated with them.  If a material is 

deleted that is being used, the user is warned that all associated material regions are also deleted.  

If the user chooses to continue, the deleteShapeWithMat(String) method is called and all 

associated shapes are deleted. 

VisualEMUView 

The VisualEMUView class controls the view panel by coordinating the camera with the 

shapes to provide a 2D view of the 3D objects.  The view panel needs to be updated when a 

change is made in the view panel. The VisualEMUView class also coordinates actions from the 

mouse when in the view panel.  The information is passed to the current state, selection or orbit, 
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and the necessary changes are made.  After making changes, the view panel is updated to show 

the desired results.  

VisualEMUWindow 

The VisualEMUWindow class controls the main window of Visual EMU.  This is the 

first class called after the main class where Visual EMU begins.  From here, most of the main 

classes are initialized and passed to the classes that need them.  The ImageHolder class 

mentioned previously is initialized and all the pictures are found and loaded.  Other classes that 

are initiated here are the ShapeData, CommandManager, StateManager, and VisualEMUView 

classes.  Once the necessary initializations are complete, VisualEMUWindow places all five 

sections of the main window, shown in Figure 4.2, where they belong and then allows the user to 

see Visual EMU.  Visual EMU is then ready to perform for the user.  
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CHAPTER 5 - Examples 

The following sections walk through two examples using Visual EMU to verify accuracy 

and display the ease of use. Original infiles from Sandia National Laboratories are used as the 

template and compared with the results from Visual EMU. EMU results shown with EMUGR, 

the post-processor provided with EMU, are also included.  The two examples are a spherical 

penetrator impacting a cylindrical glass plate and a small pipe impacting a square glass plate. 

Sphere into Glass Plate 

The first example evaluates a spherical penetrator impacting a cylindrical plate of glass at 

an angle of 45 degrees.  The initial setup is shown in Figure 5.1. The first verification is to read 

the original infile into Visual EMU and write an infile from Visual EMU without making 

changes.  The second verification is through user input where all data is entered into Visual 

EMU by the user instead of through an infile.  In both cases, any changes to the infile show the 

affect of Visual EMU. 

  

Figure 5.1 EMUGR plot of damage at time 0 

Read an EMU infile 

EMU requires a text file of keywords in a specific format. Visual EMU can open an 

EMU infile and apply the settings to Visual EMU. To open an EMU infile, on the File menu, 

click Read Infile. In the Open dialog, navigate to the infile named “emu.in.glassplate.” Click 

Open to read the infile. A dialog will appear with a list of lines from the infile that Visual EMU 

could not recognize. Visual EMU does not recognize any keywords for EMUGR, the EMU post-

processor. 
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Write an EMU infile 

Visual EMU can create an EMU infile. To create an infile, on the File menu, click Write 

Infile . In the Open dialog, enter “emu.in.glassplateve” as the file name and use the file chooser 

to navigate to the location you would like to save the infile.  Click OK  to begin writing the infile.  

A dialog will appear asking for the job description.  Enter “Sphere into Glass VE.” This job 

description becomes the first line in the infile and is also displayed by the post-processor. The 

infile can be used at any time to run an EMU solution or read the settings into Visual EMU to 

continue working. 

Results 

The two infiles are shown in Appendix A with the differences highlighted. The first line 

is the title line mentioned previously and is different between the two infiles.  This has no effect 

on the solution and gives a unique description to the infile.  Other lines that have no effect on the 

solution are those that begins with a * character. This character indicates a comment and any 

lines that begin with one are ignored by EMU.  Visual EMU takes advantage of this when 

writing an infile and adds ** followed by the name of the material region when writing material 

regions to the infile.  If the file is read back into Visual EMU, the name is recognized by the ** 

and applied to the material region when created.  

There are three keyword differences between the two files. These differences are 

keywords that appear in the original infile and not in the resulting infile. These three keywords 

(processors, one_line_print, and density_1) are not included in the output from Visual EMU 

because they are EMU default values.  As mentioned previously, values that are not different 

from the EMU default are not written to the infile.  All other keywords and the resulting solution 

from both infiles are the same. The EMU results are shown and explained in greater detail in the 

EMU results section to come. 

Reset Visual EMU 

Before starting the second method of verification, the information entered from the infile 

must be removed.  This ensures that the resulting infile contains only information entered by the 

user.  To reset Visual EMU, on the File menu, click New or click the new button ( ) located on 

the toolbar.  A dialog appears warning the user that all the current information will be lost. Click 
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OK  to continue and restore the default Visual EMU settings.  Closing and restarting Visual EMU 

also resets the settings. 

Define the internal grid 

The first step in the second method of verification is to define the internal grid. The grid 

defines a region of nodes that can be assigned to a material region. To edit the internal grid, 

select the Grid  tab.  Under the Grid Dimensions section, enter X=60, Y=60, and Z=5. Also 

change Grid Spacing=.001 as shown in Figure 5.2. 

  

Figure 5.2 Defining the internal grid 

During an EMU solution, nodes can move within the grid region and also into a region 

around the grid region called the grid margin.  To change the size of the grid margin, click More 

and enter X Max=.02, X Min =.02, Y Max=.02, Y Min =.02, Z Max=.02, Z Min =.05 as shown 

in Figure 5.3. Click OK  to close the More - Grid dialog and then click Apply  on the Grid tab to 

save the changes. 

  

Figure 5.3 Defining the grid margin 

Create a material 

Materials in Visual EMU hold all material properties.  Each material can be applied to 

any number of material regions.  To create a new material, select the Material  tab. In the Name 

field, enter “Material1” or allow Visual EMU to provide a default name when the material is 

created. Select MicroElastic , select Linear-Flat,  and enter sspnom=2600, yld=1000e6, and 

ecrit=.001 as shown in Figure 5.4. 
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Figure 5.4 Creating a new material 

To view additional material property information, click More. Select the Material 

Properties 1 tab in the More - Material dialog and enter Failure Stretch Exp=-1 and Min 

Stretch Coef=.25 as shown in Figure 5.5. 

  

Figure 5.5 Define material properties 1 

Select the Material Properties 2 tab and under Damage Stretch Coefficient enter 

dc1=.35, dc2=1, and dc3=2 as shown in Figure 5.6. 
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Figure 5.6 Define material properties 2 

Click OK  to close the More - Material dialog and click Apply  on the Material tab to 

create the material with the chosen properties.  Notice the addition of a new material under 

Materials on the tree. To edit the material at any time, double click the name of the material or 

right click the material on the tree and select Edit. Click Apply when finished editing to save the 

changes. 

Create a material region 

Material regions apply material properties to the nodes within a boundary. To create a 

material region, select the Geometry tab. Each button across the top of the Geometry tab 

represents a different material region. When selected, the area below the buttons changes to enter 

the information necessary to define the specific material region. Select the cylinder button () to 

define a cylinder geometry.  In the Name field, enter “Cylinder1” or allow Visual EMU to 

provide a default name when the material region is created. Enter X Cen=0, Y Cen=0, Z 

Max=0, Z Min =-.005, and Radius=.03. Also select “Material1” (or the default name given by 

Visual EMU) to be the material applied to the region as shown in Figure 5.7. 

  

Figure 5.7 Creating a material region 
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Click Apply  to create the material region with the information provided.  Notice the 

addition of a new shape under Shapes on the tree. To edit the shape at any time, double click the 

name of the shape or right click the name and select Edit. Click Apply when finished to save the 

changes. 

Manipulate the view 

To manipulate the view of the shape, click the orbit button ( ) located on the toolbar at 

the top of Visual EMU. While in the orbit state, use of the mouse in the view panel changes how 

the shape is viewed. To rotate, click and drag the left mouse button inside the view panel.  The 

shape rotates in the direction of the mouse.  To translate, click and drag the right mouse button 

inside the view panel.  The shape translates in the direction of the mouse.  To zoom in or out, roll 

the mouse wheel back or forward respectively. The view can be reset at any time by clicking the 

reset button ( ) located to the right of the orbit button. 

Create a penetrator 

Penetrator shapes are primarily used to impact material regions.  To create a penetrator, 

select the Penetrator tab.  Select Sphere and enter Diameter=.01 as shown in Figure 5.8. Click 

Apply  to create the penetrator. Notice the addition of a new shape under Shapes on the tree.  The 

penetrator can be edited in the same way described previously. 

  

Figure 5.8 Creating a penetrator 

To edit the penetrator properties, select the Penetrator Data tab.  There can only be one 

penetrator per EMU solution so the penetrator properties are independent of the specific 

penetrator created. Enter Penetrator Mass=4.16e-3, Angle of Impact=45, and Impact 

Velocity=100. Under Penetrator tip enter X=-.01, Y=0, and Z=.001. Under Friction  select 

Linear  and enter fricco=0 as shown in Figure 5.9. Click Apply  to save the changes which are 

applied to the penetrator. 
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Figure 5.9 Changing the penetrator properties 

Set EMU solution parameters 

There are a variety of additional settings for EMU. To change these settings, select the 

General tab. Enter Max time=999, Safety Factor=.8, Filter time constant=1e-9, and Plot 

Dump Frequency=100 as shown in Figure 5.10. Click Apply  to save the changes. 

  

Figure 5.10 Changing additional settings 

Write an EMU infile 

Write an infile from Visual EMU as previously described. In the Open dialog, enter 

“emu.in.glassplateve” as the file name and use the file chooser to navigate to the location you 

would like to save the infile. The resulting infile is shown in Appendix A with the differences 

highlighted. The title and material region comment are different from the original infile as 

expected. The same three keywords highlighted in the original infile are still not present in this 

output for the same reasons explained previously.  

The unique difference of this infile is defining the material region.  The original infile 

uses -999 as the minimum z bound while the Visual EMU infile from user data entry has -.005 as 

the minimum z bound.  As described previously, the parts of a material region outside the 

peridynamic grid have no effect on the solution.  For this reason, the larger bound only ensures 

that the material region reaches the edge of the peridynamic grid. The value of -.005 is enough to 

reach the edge of the peridynamic grid and allows the user to better view the shape in Visual 

EMU.  Using excessive bounds is an EMU trick that allows the user to ensure the boundary of 
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the peridynamic grid is reached without calculation or trial and error.  The bounds entered 

through user input result in the same EMU solution. 

Run an EMU solution 

An EMU solution can be started directly from Visual EMU. To run an EMU solution 

from Visual EMU, on the File menu, click Run EMU.  Visual EMU can use the current settings 

or settings from a previously created infile as shown in Figure 5.11.  Select Current settings and 

change the Save location to the location you would like the EMU solution results to be saved.  

  

Figure 5.11 Running an EMU solution 

The current program used to view EMU results is EMUGR.  EMUGR is similar to EMU 

and requires keywords to operate. The keywords define how the solution should be displayed. 

Select Add code for EMUGR in the Run EMU dialog. This adds some basic keywords to the 

infile, shown in Figure 5.12.  If the code for EMUGR is added, the EMUGR program can be 

used on the same infile after EMU is finished.  To do this, navigate to the chosen save location of 

Figure 5.11 and double click the “plot.bat” file created by Visual EMU.  After EMUGR is 

finished, the results are viewed by double clicking the “viewPlot.bat” file created by Visual 

EMU in the same location.  These two files are separate allowing the user to view the results 

without spending the time to run EMUGR again.  In addition, the user can change the EMUGR 

plot variables and run EMUGR without running EMU again. 
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Figure 5.12 EMUGR code added to infile 

Click OK  to begin the EMU solution. A dialog will appear asking for the job description.  

Enter “Sphere into Glass User Creation from VE.” This job description becomes the first line in 

the infile and is also displayed by EMUGR. The solution runs in the background and allows the 

user to manipulate Visual EMU while the solution is running.  Future work on Visual EMU 

should add the ability to view the progress of a solution and cancel a solution. 

EMU results 

The EMU results are saved in the results folder created by Visual EMU in the location 

specified by the user.  These results are then used by EMUGR along with keywords to display 

the desired results for the user.  The results can be used any number of times by EMUGR 

without being affected. Figure 5.1 shows the damage, or fraction of broken bonds, before 

iterations begin. Figure 5.13 shows the damage at time 5.286e-5.  The colors indicate different 

levels of damage and are ordered similar to the colors of a rainbow (ROYGBIV). The red side of 

the spectrum indicates the max damage, where all bonds are broken, while the violet side 

indicates little to no damage, where no bonds are broken. 

  

Figure 5.13 EMUGR plot of damage at time 5.286e-5 

Figure 5.14 shows the damage at the last time step of the solution.  The green color in the 

middle of the ROYGBIV scale indicates about half the bonds are broken.  This implies a crack or 

fracture in the glass. The red areas where all bonds are broken imply nodes have broken away 
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altogether. A small section surrounded in green, such as the left of Figure 5.14, indicates a large 

piece has broken away from the plate. 

  

Figure 5.14 EMUGR plot of damage at time 2.646e-4 

Small Pipe into Glass Plate 

This example evaluates a small pipe impacting a square glass plate.  The pipe is created 

through external grid generation and impacts the glass plate with a velocity normal to the 

surface. The initial setup is shown in Figure 5.15. To verify Visual EMU, the same two methods 

of verification are used as in the previous example.  Read and write an infile following the same 

procedure as mentioned previously looking for the file named “emu.in.smallpipe” and creating a 

file named “emu.in.smallpipeve.” 

  

Figure 5.15 EMUGR plot of damage at time 0 

Results 

The infiles are shown in Appendix A with the differences highlighted. As with the 

previous example, the title, inclusion of default values (processors and density_1), and material 

region comments are different between the two files. The unique difference of this infile is the 

change in the name of the grid file.  When grid files are read, Visual EMU saves and displays the 

information, allowing the user to change the material assigned to each grid file material region.  
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When writing an infile, Visual EMU also writes a new grid file to the same location as the new 

infile. The grid file contains all the changes and keeps the original grid file unchanged and 

unmoved.  

Define the internal grid 

As before, reset Visual EMU before continuing to the second method of verification. The 

internal grid of this example only needs defined for the glass plate.  The nodes defined externally 

in the grid file are placed where specified regardless of the internally generated nodes. To edit 

the internal grid, select the Grid  tab.  Under Grid Dimensions, enter X=50, Y=50, and Z=20. 

Also enter Grid Spacing=.001 as shown in Figure 5.16. Click Apply  to save the changes. 

  

Figure 5.16 Setting the grid 

Create materials 

To create the first material, select the Material  tab. In the Name field, enter “Mat1” or 

allow Visual EMU to provide a default name when the material is created. Select MicroElastic , 

select Linear-Flat,  and enter sspnom=2600, yld=200e6, and ecrit=.001 as shown in Figure 

5.17. Click Apply  to create the material with the chosen properties. 

  

Figure 5.17 Creating the first material 

To create the second material, in the Name field, enter “Mat2” or allow Visual EMU to 

provide a default name when the material is created. Enter Density=8000, select MicroElastic , 

select Linear-Flat,  and enter sspnom=4000, yld=400e6, and ecrit=.2 as shown in Figure 5.18.  
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Figure 5.18 Creating the second material 

The pipe needs an initial velocity to impact the glass plate. The initial velocity is applied 

through the material assigned to the material region. To apply the velocity to the material, click 

the Initial Conditions  button and select the Velocity tab in the Initial Conditions – Material 

dialog. Enter VZ=-100, as shown in Figure 5.19, and click OK  to save the changes and close the 

dialog. Click Apply  on the Material tab to create the material with the chosen properties. 

  

Figure 5.19 Specifying an initial velocity 

Create a material region 

To create the material region, select the Geometry tab. Select the rectangle button () to 

define a rectangle geometry.  In the Name field, enter “Rectangle1” or allow Visual EMU to 

provide a default name when the material region is created. Enter X Max=.025, X Min =-.025, Y 

Max=.025, Y Min =-.025, Z Max=-1e-6, and Z Min =-.0031. Also select “Mat1” (or the default 

name provided by Visual EMU) to be the material applied to the region as shown in Figure 5.20. 
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Figure 5.20 Creating a material region 

Click Apply  to save the changes and create the material region.  Notice the addition of a 

new shape under Shapes on the tree. To edit the shape at any time, double click the name of the 

shape or right click the name and select Edit . Click Apply when finished to save the changes. 

Manipulate the view 

To manipulate the view of the shape, click the orbit button ( ) located on the toolbar at 

the top of Visual EMU. While in the orbit state, use of the mouse in the view panel changes how 

the shape is viewed. To rotate, click and drag the left mouse button inside the view panel.  The 

shape rotates in the direction of the mouse.  To translate, click and drag the right mouse button 

inside the view panel.  The shape translates in the direction of the mouse.  To zoom in or out, roll 

the mouse wheel back or forward respectively. The view can be reset at any time by clicking the 

reset button ( ) located to the right of the orbit button. 

Add a grid file 

The second material region comes from an externally generated grid file.  To add the grid 

file, select the grid file button ( ) on the Geometry tab.  In the Name field, enter “Grid File1” or 

allow Visual EMU to provide a default name when the grid file is added. Click Browse… to 

navigate to the grid file named “smallpipe.grid” as shown in Figure 5.21.  

  

Figure 5.21 Adding a grid file 

Click Add to open the grid file and begin adding the nodes.  Each node of the grid file is 

assigned a material region.  Visual EMU allows the user to choose what material should be 
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applied to each region.  In the Select Material dialog that appears, select “Mat2” (or the default 

name provided by Visual EMU) to be assigned to material region 2 in the grid file as shown in 

Figure 5.22. 

  

Figure 5.22 Assigning Mat2 to material region 2 

Set EMU solution parameters 

To change additional settings, select the General tab. Enter Max time=999, Safety 

Factor=.8, and Plot Dump Frequency=50 as shown in Figure 5.23.  

  

Figure 5.23 Changing additional settings 

The two material regions start close together and, by default, have peridynamic bonds 

between the nodes within the material horizon distance.  To keep the two material regions 

separate without peridynamic bonds between them, click the More button.  In the More – 

General dialog click the Interface tab.  When both material regions are selected, the options 

below the list are enabled.  To select both of the material regions, use the mouse to left click on 

the first material region on the list.  To select the second while keeping the first selected, hold 

down the control button and left click on the second material region.  When both material 

regions are highlighted, as shown in Figure 5.24, select Disconnect and click Apply  to save the 

change. Click OK  to close the More - General dialog and click Apply  on the General tab to save 

all changes. 
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Figure 5.24 Disconnecting the material regions 

Write an EMU infile 

Write an infile from Visual EMU as previously described. In the Open dialog, enter 

“emu.in.smallpipeve” as the file name and use the file chooser to navigate to the location you 

would like to save the infile.  

Results 

The resulting infile is shown in Appendix A with the differences highlighted.  As with the 

infile created from reading the original infile, the title, inclusion of default values (processors 

and density_1), material region comment, and the grid file name are different from the original 

infile.  

The unique difference of this infile is the material region parameters.  Similar to the 

previous example, the original infile uses 999 and -999 as minimum and maximum values for the 

x and y bounds of the material region.  As described previously, the larger bounds only ensure 

that the material region reaches the edge of the peridynamic grid and the bounds entered through 

user input result in the same EMU solution. 

EMU Results 

After running EMU as described previously or outside of Visual EMU, view the results 

with EMUGR. Figure 5.15 shows the damage at time 0, Figure 5.25 the damage at time 8.154e-
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5, and Figure 5.26 the damage at time 1.816e-4. The pipe, which is four times denser than the 

glass, hits the plate with an edge and quickly breaks through the glass.  The region around where 

the pipe hits the plate shatters, indicated by the red and orange nodes.  The cracks are indicated 

primarily by the green lines from the center to the edge of the plate. As the solution continues, 

the pipe continues into the plate and nodes that have broken free are visible inside the pipe. 

  

Figure 5.25 EMUGR plot of damage at time 8.154e-5 

  

Figure 5.26 EMUGR plot of damage at time 1.816e-4 
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CHAPTER 6 - Conclusions 

Summary 

Visual EMU accurately reads and writes EMU infiles.  The user can visualize the 

material regions and their placement relative to the peridynamic grid before performing an EMU 

solution.  The user can create a material once and apply that same material to any number of 

material regions without the need to repeat entering information.  Multiple view options are 

present allowing the user to see all shapes as solids, wire frames, or a preview of the nodes in 

EMU. Visual EMU allows the user to run EMU from the current settings or from a saved infile.  

The user interface is adequate for the entry of all EMU keywords though areas for improvement 

exist and are mentioned in more detail below.   

Future work 

The view panel would benefit greatly from the ability to select shapes.  Selecting three 

dimensional shapes viewed with a two dimensional screen can be a complicated process. Once 

selection is available though it would be a trivial addition to edit and delete shapes directly from 

the view panel.  

The entry of all keywords in Visual EMU is functional but not ideal in some cases.  Some 

dialogs (Figure 4.10 for example) organize keywords by the number of inputs and should 

organize them by function or usage. Each dialog and panel would also benefit from additional 

guidance.  Some ideas are help buttons that explain keywords and interactive equations that 

show how keywords are used.  

The penetrator is an important feature in EMU and would benefit from more advanced 

visualization in Visual EMU.  Improvements include drawing the penetrator at an angle when the 

angle of impact is changed and adding a direction vector or some indication of the angle of 

attack specified by the user.  Another improvement that is now in progress aims to show the user 

feedback from EMU as the solution progresses and add the option to cancel a solution in 

progress.  
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The concept of a new post-processor for EMU has also already begun.  The solution 

would be displayed from Visual EMU and allow the user to create, run, and view results from 

one program. Ideally, the user will be able to view any parameter at any time step in 3D and even 

automate the display to step through frames at a given speed.  The user will also be able to rotate 

the solution to view any angle. 
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Appendix A - Infile results 

The following infiles help verify the results of Visual EMU. For each of the two 

examples, the original infile is part of the code package from Sandia National Laboratories. The 

other two infiles are products of Visual EMU. The first is made after reading in the original infile 

and the second is made after entering the information through the user interface. 

Sphere into glass plate 

The following three infiles are from the example of a spherical penetrator impacting a 

glass plate. 

Original Infile 

Sphere Into Glass 
processors 
  1 1 1 
grid_dimensions 
  60 60 5 
grid_spacing 
  0.001 
grid_margin 
  0.02 0.02   0.02 0.02   0.05 0.02 
max_time 
  999 
safety_factor 
  0.8 
max_time_steps 
  2000 
plot_dump_frequency 
  100 
one_line_print 
  0 
* start run 
* 
number_of_material_regions 
  1 
material_region_geometry_1 
  3 
  0.03     0 0     -999 0 
* 
density_1 
  2200 
microelastic_1 
  1   2600   1000.0e6   0.001 
min_stretch_coef_1 
  0.25 
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damage_stretch_coef_1 
  0.35 1 2 
failure_stretch_exponent_1 
  -1 
*fnorm_off_all 
* 
angle_of_attack 
  0 
angle_of_impact 
  45 
impact_velocity 
  100 
penetrator_shape 
  4  0.010 
penetrator_mass 
  4.16e-3 
penetrator_friction_coef 
  0 
penetrator_tip_location 
  -0.01 0 0.001 
filter_time_constant 
  1.0e-9 

Read/Write Infile 

Sphere into Glass VE 
grid_dimensions 
 60 60 5 
grid_spacing 
 0.0010 
grid_margin 
 0.02 0.02 0.02 0.02 0.05 0.02 
max_time_steps 
 2000 
max_time 
 999 
plot_dump_frequency 
 100 
safety_factor 
 0.8 
filter_time_constant 
 1.0E-9 
number_of_material_regions 
 1 
**Cylinder 1 
material_region_geometry_1 
 3 0.03 0.0 0.0 -999.0 0.0 
microelastic_1 
 1 2600.0 1.0E9 0.0010 
failure_stretch_exponent_1 
 -1.0 
min_stretch_coef_1 
 0.25 
damage_stretch_coef_1 
 0.35 1.0 2.0 
penetrator_shape 
 4 0.01 
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penetrator_tip_location 
  -0.01 0.0 0.0010 
penetrator_mass 
 0.00416 
penetrator_friction_coef 
 0.0 
angle_of_impact 
 45.0 
angle_of_attack 
 0.0 
impact_velocity 
 100.0 

User Visual EMU infile 

Sphere Into Glass User Creation from VE 
grid_dimensions 
 60 60 5 
grid_spacing 
 0.0010 
grid_margin 
 0.02 0.02 0.02 0.02 0.05 0.02 
max_time_steps 
 2000 
max_time 
 999 
plot_dump_frequency 
 100 
safety_factor 
 0.8 
filter_time_constant 
 1.0E-9 
number_of_material_regions 
 1 
**Cylinder 
material_region_geometry_1 
 3 0.03 0.0 0.0 -0.005 0.0 
microelastic_1 
 1 2600.0 1.0E9 0.0010 
failure_stretch_exponent_1 
 -1.0 
min_stretch_coef_1 
 0.25 
damage_stretch_coef_1 
 0.35 1.0 2.0 
penetrator_shape 
 4 0.01 
penetrator_tip_location 
  -0.01 0.0 0.0010 
penetrator_mass 
 0.00416 
penetrator_friction_coef 
 0.0 
angle_of_impact 
 45.0 
angle_of_attack 
 0.0 
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impact_velocity 
 100.0 
 

Small pipe into glass plate 

The following three infiles are from the example of a small pipe impacting a glass plate. 

Original infile 

Pipe Against a Block 
 
processors 
  1 1 1 
grid_dimensions 
  50 50 20 
max_time 
  999 
max_time_steps 
  2000 
plot_dump_frequency 
  50 
grid_spacing 
  0.001 
one_line_print 
  1 
number_of_material_regions 
  2 
grid_file 
  1 
  smallpipe.grid 
material_region_geometry_1 
  1 
  -999 999 -999 999 -0.0031 -0.000001 
density_1 
  2200 
density_2 
  8000 
microelastic_1 
  1 2600 200.0e6 0.001 
microelastic_2 
  1 4000 400.0e6 0.2 
material_region_ic_2 
  0 0 0    0 0 -100 
disconnect 
  1 
  1 2 
safety_factor 
  0.8 

Read/Write Infile 

Pipe Against a Block VE 
grid_dimensions 
 50 50 20 
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grid_spacing 
 0.0010 
max_time_steps 
 2000 
max_time 
 999 
plot_dump_frequency 
 50 
safety_factor 
 0.8 
one_line_print 
 1 
number_of_material_regions 
 2 
**Rectangle 1 
material_region_geometry_1 
 1 -999.0 999.0 -999.0 999.0 -0.0031 -1.0E-6 
microelastic_1 
 1 2600.0 2.0E8 0.0010 
grid_file 
 1 
 gridfile792.grid 
density_2 
 8000.0 
microelastic_2 
 1 4000.0 4.0E8 0.2 
material_region_ic_2 
 0.0 0.0 0.0 0.0 0.0 -100.0 
disconnect 
 1 
 1 2 

User Visual EMU infile 

Pipe Against a Block User VE 
grid_dimensions 
 50 50 20 
grid_spacing 
 0.0010 
max_time_steps 
 2000 
max_time 
 999 
plot_dump_frequency 
 50 
safety_factor 
 0.8 
one_line_print 
 1 
number_of_material_regions 
 2 
**Rectangle 
material_region_geometry_1 
 1 -0.025 0.025 -0.025 0.025 -0.0031 -1.0E-6 
microelastic_1 
 1 2600.0 2.0E8 0.0010 
grid_file 
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 1 
 gridfile409.grid 
density_2 
 8000.0 
microelastic_2 
 1 4000.0 4.0E8 0.2 
material_region_ic_2 
 0.0 0.0 0.0 0.0 0.0 -100.0 
disconnect 
 1 
 1 2 


