
i

THE APPLICATION AND INTERPRETATION OF THE TWO-PARAMETER ITEM

RESPONSE MODEL IN THE CONTEXT OF REPLICATED PREFERENCE TESTING

by

ZACH BUTTON

B.S., Kansas State University, 2013

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Statistics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2015

Approved by:

Major Professor

Dr. Suzanne Dubnicka

ii

Abstract

 Preference testing is a popular method of determining consumer preferences for a variety

of products in areas such as sensory analysis, animal welfare, and pharmacology. However,

many prominent models for this type of data do not allow different probabilities of preferring

one product over the other for each individual consumer, called overdispersion, which intuitively

exists in real-world situations. We investigate the Two-Parameter variation of the Item Response

Model (IRM) in the context of replicated preference testing. Because the IRM is most

commonly applied to multiple-choice testing, our primary focus is the interpretation of the model

parameters with respect to preference testing and the evaluation of the model’s usefulness in this

context. We fit a Bayesian version of the Two-Parameter Probit IRM (2PP) to two real-world

datasets, Raisin Bran and Cola, as well as five hypothetical datasets constructed with specific

parameter properties in mind. The values of the parameters are sampled via the Gibbs Sampler

and examined using various plots of the posterior distributions. Next, several different models

and prior distribution specifications are compared over the Raisin Bran and Cola datasets using

the Deviance Information Criterion (DIC). The Two-Parameter IRM is a useful tool in the

context of replicated preference testing, due to its ability to accommodate overdispersion, its

intuitive interpretation, and its flexibility in terms of parameterization, link function, and prior

specification. However, we find that this model brings computational difficulties in certain

situations, some of which require creative solutions. Although the IRM can be interpreted for

replicated preference testing scenarios, this data typically contains few replications, while the

model was designed for exams with many items. We conclude that the IRM may provide little

evidence for marketing decisions, and it is better-suited for exploring the nature of consumer

preferences early in product development.

iii

Table of Contents

List of Figures ... v

List of Tables ... vi

Acknowledgements ... vii

Chapter 1 - Background .. 1

Preference Testing .. 1

Bayesian Methods and Gibbs Sampling ... 3

Item Response Theory .. 6

Terminology .. 6

Item Response Curves ... 7

An Example .. 10

Chapter 2 - Methods.. 15

Preference Testing Data .. 15

Hypothetical Datasets ... 16

Model Specification and Gibbs Sampling .. 16

Chapter 3 - Results .. 22

Overview ... 22

Raisin Bran Data ... 23

Cola Data .. 25

Balanced Data ... 27

Extreme Data .. 28

Increasing Discrimination Data .. 30

Increasing Difficulty Data .. 33

Monotone .. 34

Non-Monotone .. 36

Model Comparison ... 39

Chapter 4 - Computation ... 45

Chapter 5 - Discussion .. 51

References ... 53

Appendix A - R Code for Gibbs Sampling ... 55

iv

Appendix B - R and OpenBUGS Code for using ‘BRugs’ ... 61

Appendix C - Additional Code ... 71

v

List of Figures

Figure 1.1 Example Algorithm Convergence Plots .. 5

Figure 1.2 Illustration of the Two-Parameter Item Response Curve .. 8

Figure 1.3 Posterior Distribution Whisker Plots from the Shyness Example 14

Figure 3.1 Posterior Summaries for the Raisin Bran Data.. 24

Figure 3.1 Posterior Summaries for the Cola Data ... 26

Figure 3.1 Posterior Summaries for the Balanced Data .. 28

Figure 3.1 Posterior Summaries for the Extreme Data ... 30

Figure 3.1 Posterior Summaries for the Increasing Discrimination Data 33

Figure 3.1 Posterior Summaries for the Increasing Difficulty (Monotone) Data 36

Figure 3.1 Posterior Summaries for the Increasing Difficulty (Non-Monotone) Data 38

Figure 4.1 Illustration of Observed Gibbs Sampling Algorithm Mixing Problems 48

vi

List of Tables

Table 3.1 Structure of the Balanced Dataset ... 27

Table 3.2 Structure of the Extreme Dataset .. 29

Table 3.3 Structure of the Increasing Discrimination Dataset .. 32

Table 3.4 Structure of the Increasing Difficulty (Monotone) Dataset .. 35

Table 3.5 Structure of the Increasing Difficulty (Non-Monotone) Dataset 37

Table 3.6 Model Comparison Results for the Raisin Bran Data... 43

Table 3.7 Model Comparison Results for the Cola Data .. 44

Table 4.1 Structure of the Original Increasing Difficulty (Monotone) Dataset 47

Table 4.2 Structure of the Original Increasing Difficulty (Non-Monotone) Dataset 47

Table 4.3 Comparison of Computing Time for Two Gibbs Sampling Methods 48

vii

Acknowledgements

I would like to offer my special thanks to Dr. Suzanne Dubnicka for the opportunity to

undertake this research and for all the guidance throughout the process. I would also like to

extend my gratitude to Dr. Perla Reyes and Dr. Christopher Vahl for graciously giving their time

to serve on my committee, as well as Dr. Gary Gadbury, who was always willing to help me

succeed. Finally, I wish to thank my family, friends, and all those involved in the K-State Choral

Program for their unending support through the years. Go State!

1

Chapter 1 - Background

 Preference Testing

 Sensory analysis is the application of statistical techniques to the evaluation of human

senses, such as taste or smell, often to gain knowledge about product attributes and consumer

preferences. The discipline rose from the early days of product trade: potential customers began

to test small samples of the product of interest as representations of the entire product’s quality.

Sensory analysis has advanced alongside the economy, now generating large quantities of data

and utilizing sophisticated statistical methods for analysis.

 A common approach is the preference test, which presents some number of product

samples to a group of consumers and asks for the preferred sample to be selected. In this case,

the product testers may be referred to as ‘panelists’ or ‘consumers’. The preference test is often

in the form of a choice between two products, which results in binary data. Most conventional

preference testing analysis methods are based on inference for 𝑝𝐴, the probability of preferring

product A over product B. This can be accomplished by the two-sided binomial test, where the

null value of the proportion of A preferences is usually 0.50. Using the binomial distribution, we

can then calculate the significance of the observed proportion of preferences for product A, 𝑝̂𝐴.

With a large sample size, a normal approximation confidence interval is easily accessible:

𝑝̂𝐴 ± 𝑧𝛼 2⁄ √
𝑝𝐴(1−𝑝𝐴)

𝑛
 (1.1)

where 𝑛 is the number of consumers and 𝑧𝛼 2⁄ is the standard normal quantile with an upper tail

probability of 𝛼 2⁄ . However, these methods must often assume that the panelists experience the

same probability of preferring product A, which is a difficult assertion to accept.

2

 Bi (2003) attempted to avoid this complication by allowing 𝑝𝐴 to change between

consumers through a Bayesian approach to the Binomial model. This method does allow prior

beliefs about 𝑝𝐴 to be reflected in the final estimates, but it is still a single estimate for all

consumers. To mend this difficulty, we need a model which can accommodate individual

probabilities of preferring product A for all 𝑛 consumers, denoted by 𝑝1, … , 𝑝𝑛. Logistic

regression allows this probability to change between consumers based on individual levels of the

model’s covariates, but covariate information is not typically collected in preference testing.

 This suggests the use of multiple test replications for each consumer, advocated by

several authors. Greenberg and Collins (1966) concluded that a single taste test may not

accurately determine consumer preferences and that a two-trial taste test is much more powerful.

Wilke, Cochrane, and Chambers (2006) argued that multiple tests could diagnose inconsistent

preferences, which were identified in their example data by increasing proportions of preferences

for product A over time. Although multiple replications are useful in determining consumer

preference patterns, we need a model that can account for the changing probability of preferring

product A over time, known as overdispersion. Cochrane, Dubnicka, and Loughin (2005)

compared the power and Type 1 error rates of several methods of analysis which adjust for

overdispersion. They concluded that the generalized linear model with a Pearson adjustment was

the simplest of the models related to the binomial assumption, and the normal method also

performs well, even though it does not explicitly correct for overdispersion. In the process,

Cochrane et al. (2005) also found that single preference tests were often too liberal or

conservative, resulting in misleading conclusions about consumer preferences. In contrast, their

analysis of replicated preference tests produced more stabilized results.

3

 The beta-binomial model is a popular alternative when multiple preference tests are being

considered. Ennis and Bi (1998) discuss its advantages over the binomial model, namely the

ability for inter-trial probabilities to vary, thus allowing for overdispersion. Meyners (2007) also

supports the beta-binomial and provides guidelines for proper interpretation.

 In order to allow consumer preferences to differ among subjects and gather information

about preference trends across replications, we apply the Two-Parameter Item Response Model

under a Bayesian framework. The focus of this work is the interpretation of this model’s

parameters in the context of replicated preference testing. As a secondary objective, we would

also like to investigate how useful the model could be for industry executives making product

decisions based on sensory analysis results.

 Bayesian Methods and Gibbs Sampling

 We will assume that the reader has some familiarity with the basics of Bayesian methods

and Markov chain Monte Carlo (MCMC) simulation, so this report will only provide a brief

overview of their application. Carlin and Louis (2009) provide a high-quality introduction to

these methods. Recall that Bayesian estimation treats model parameters as random variables and

utilizes some prior knowledge about the quantities of interest, in the form of prior distributions.

The prior distributions work with the data likelihood to form the posterior distribution, which

represents our updated beliefs about the parameters given the observed data. This can be viewed

through the relationship

𝑝(𝜽|𝒚) ∝ 𝜋(𝜽) 𝑓(𝒚|𝜽) (1.2)

where 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑝) are the parameters of interest, 𝒚 = (𝑦1, … , 𝑦𝑛) represents the observed

data. Here, 𝑝 represents the joint posterior distribution, where 𝜋 is the joint prior distribution and

4

𝑓 is the data likelihood. Once this posterior distribution is obtained, point and interval estimates

are easily calculated using characteristics of the distribution itself.

 However, this joint posterior distribution may be very complex, especially with more

than one parameter, preventing direct calculation of the density function. MCMC simulation is

especially useful in situations with multiple parameters. In these cases, which occur often in

Bayesian statistics, it is common to apply an MCMC simulation algorithm called the Gibbs

Sampler to obtain the parameters’ posterior densities, a method first introduced by Geman and

Geman (1984). The algorithm works by iteratively sampling from each parameter’s full

conditional distribution 𝑔𝑖(𝜃𝑖|𝜽−𝒊 , 𝒚), where 𝜽−𝒊 = (𝜃1, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑝). These full

conditional densities may be very simple to sample from. In an instance when the full

conditional density is not easily accessible, an MCMC algorithm developed by Metropolis et al.

(1953), called the Metropolis-Hastings algorithm, can be used to sample from that distribution.

To begin the algorithm, first set 𝑡 = 0 and 𝜽(0) = (𝜃1
(0)

, 𝜃2
(0)

, … , 𝜃𝑝
(0)

). These initial values can

be easily set to the desired prior means, but the choice usually remains inconsequential. At

iteration 𝑡, repeat the following steps:

 1) Draw 𝜃1
(𝑡)

 ~ 𝑔1(𝜃1|𝜃2
(𝑡−1)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑝
(𝑡−1)

, 𝒚)

 2) Draw 𝜃2
(𝑡)

 ~ 𝑔2(𝜃2|𝜃1
(𝑡)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑝
(𝑡−1)

, 𝒚)

 3) Draw 𝜃3
(𝑡)

 ~ 𝑔3(𝜃3|𝜃1
(𝑡)

, 𝜃2
(𝑡)

, … , 𝜃𝑝
(𝑡−1)

, 𝒚)

 …

 𝑝) Draw 𝜃𝑝
(𝑡)

 ~ 𝑔𝑝(𝜃𝑝|𝜃1
(𝑡)

, 𝜃2
(𝑡)

, 𝜃3
(𝑡)

, … , 𝜃𝑝−1
(𝑡)

, 𝒚)

5

Note that the distribution in Step 2 is conditional on the most recently sampled value of 𝜃1,

rather than 𝜃1
(𝑡−1)

. This stipulation is used throughout the algorithm, as each step samples its

respective parameter conditional on the most recent values of the other parameters.

 It can be shown that this algorithm converges to the joint posterior distribution needed for

our parameter estimation after some required number of steps 𝑡0. Consequently, the Markov

chain {𝜽(𝑡); 𝑡 > 𝑡0} acts as a dependent sample from 𝑝(𝜽|𝒚). The sufficient number of iterations

𝑡0 can be investigated through plots of the sampled values; convergence is indicated by a random

walk through the sample space displaying a mix of large and small jumps. Figure 1.1(a) shows

the rapid convergence of an example Markov chain, and Figure 1.1(b) shows the sampled values

after the first 1000 iterations were removed. This collection of removed iterations is known as

the burn-in period. Provided that the length of the burn-in period is larger than 𝑡0, all remaining

observations serve as a sample from the parameter’s posterior density. Quantities such as the

sample’s mean and quantiles can be easily calculated to represent posterior beliefs about the

parameter in question. This method was used to sample all relevant model parameters in this

report, and summary graphics of their posterior distributions are provided in the Results chapter.

Figure 1.1 Example plots showing the convergence of the Gibbs Sampling algorithm (a)

and the resulting sample of 5000 parameter values (b).

(a) (b)

6

 Item Response Theory

 Terminology

 Item response models are often applied in the educational setting to describe

characteristics of exams with questions that are scored as either correct or incorrect. Naturally,

multiple choice tests are the primary area of application. In this familiar context, the test

questions are referred to as items, and the individual test-takers as examinees. Suppose a

multiple-choice exam contains 𝑘 items answered by 𝑛 examinees. When examinee i answers

item j, his/her response is recorded as correct (𝑦𝑖𝑗 = 1) or incorrect (𝑦𝑖𝑗 = 0). One purpose of

the item response model is to calculate the probability that a student answers each question

correctly. This probability depends on the individual student’s skill or knowledge in the subject

matter, called latent ability, and characteristics of the question itself, called item parameters.

Our primary model utilizes two item parameters, discrimination and difficulty, in addition to the

students’ latent ability parameters. This is predictably referred to as the Two-Parameter Item

Response Model.

 First, each student is assumed to possess a latent ability, denoted by 𝜃𝑖, to describe his

underlying ability with respect to the exam’s content. For example, a higher latent ability will

typically result in a higher probability of answering a given question correctly. Secondly,

measures of discrimination and difficulty are included for each exam question. Item

discrimination represents the ability of an exam question to distinguish between examinees of

varying abilities. For example, if an item has low discrimination, there will be only slight

differences in probabilities of correct answers between students with low ability and students

with high ability. For an item with high discrimination, students with significantly higher latent

ability will have significantly higher probabilities of answering correctly. Item difficulty is a

7

measure of the relative difficulty of a test question. Suppose a single student answers questions

with a variety of difficulties. The student will have a higher probability of answering correctly

on the easier questions and a lower probability of answering correctly on the more difficult

questions.

 Item Response Curves

 The Two-Parameter Item Response Model (IRM) is used to model probabilities of

students answering questions correctly – that is, quantities restricted to the interval [0,1]. In

these situations, it is common practice to utilize a link function which generates only responses

within such an interval. Therefore, the probability of a correct answer is modeled as some

distribution function 𝐹 of the parameters, written

𝑃(𝑦 = 1|𝜃) = 𝐹(𝛼𝜃 − 𝛽) (1.3)

where 𝛼 is item discrimination and 𝛽 is item difficulty. Notice that discrimination and difficulty

effectively act as the model’s rate and location parameters, respectively. The two most

commonly used link functions in these situations are probit and logit. The probit link uses a

standard normal cumulative density function (CDF):

𝐹(𝑡) = Φ(𝑡) = ∫
1

√2𝜋
𝑒−𝑧2/2 𝑑𝑧

𝑡

−∞
 (1.4)

The logit link uses the CDF of the logistic distribution, also known as the logistic function:

𝐹(𝑡) =
1

1+𝑒−𝑡 (1.5)

Once the link function is assigned and the item parameters determined, we can create an item

response curve for a specific exam question as a function of the students’ latent abilities 𝜃𝑖.

Figure 1.2 provides example item response curves to allow for intuitive interpretations of the

item parameters, much like the IRT discussion by Johnson and Albert (1999).

8

Figure 1.2 Item response curves (IRC), using the probit link function. Curves shown are

the typical IRC (a), curves of varying item difficulty (b), curves of varying item

discrimination (c), and curves with extreme discrimination values (d).

 Figure 1.2(a) shows the typical item response curve with 𝛼 = 1 and 𝛽 = 0. It is common

to assign the prior distributions 𝜃𝑖 ~ 𝑁(0,1), so that, a priori, most values are within the interval

(-3, 3) and the average latent ability is represented by 𝜃 = 0. Note that the probability of

answering correctly is always in the interval [0, 1], and the probability of a student with average

(a) (b)

(c) (d)

9

ability giving a correct response is equal to 0.5. Also, since the item discrimination is effectively

a rate parameter, setting 𝛼 > 0 gives a curve in which the probability of a correct answer

increases as a student’s latent ability increases. Since the positive relationship between ability

and performance is usually expected, many IRMs justifiably restrict 𝛼 to this support.

 In Figure 1.2(b), we can view the effect of changing the difficulty parameter 𝛽. As 𝛽

increases, for fixed 𝛼, the item response curve shifts to the right, indicating that higher latent

abilities are required to achieve the same probabilities of answering correctly. Therefore, the

curve corresponding to 𝛽 = −1 represents an “easy” item, the curve corresponding to 𝛽 = 0

represents an item of “moderate difficulty”, and the curve corresponding to 𝛽 = 1 represents a

“difficult” item.

 Figure 1.2(c) shows the effect of changing the discrimination parameter 𝛼, keeping 𝛽

fixed. Here, only the slope of the curve is affected as 𝛼 changes from 0.5 to 2. With a low

discrimination of 0.5, the probabilities of correct answers change slowly as latent ability is

increased. This means that the students of varying abilities would generally be more similar in

their responses. In contrast, a high discrimination of 2 creates a curve which alters the

probabilities of correct answers very quickly. In this case, we would likely see a separation

between students of high ability and students of low ability, indicating that this item

“discriminates” well. The effect of item discrimination is further illustrated in Figure 1.2(d),

which displays the curves of what could be considered “ideal” and “useless” exam questions.

The “ideal” item would assure that all students of at least some given latent ability answer

correctly, and all students with lower ability answer incorrectly. The curve is achieved by

applying a very high discrimination, 𝛼 = 10,000, and setting difficulty to the required latent

ability to answer correctly, in this case 𝛽 = 0. On the other hand, a “useless” item would

10

provide no distinction between students of different latent abilities, and thus all students have the

same probability of answering correctly.

 An Example

 Johnson and Albert (1999) walk through a typical example of item response modeling,

using data from a sociological experiment. In this study, 𝑛 = 120 students were given

personality ratings by a subset of 𝑘 = 107 of those students in the categories of likeability,

aggressiveness, and shyness. The example materials can be found at http://www-math.bgsu.edu/

~albert/ ord_book/Chapter6/, with the dataset called “ratings.dat”. In the text’s example, the

shyness classifications act as item response data, where the 120 students are treated as

examinees, the 107 ratings of each student as items, and the shyness ratings as responses. Here,

each student was perceived as either “shy” or “not shy”. If “shy” answers are assigned ones and

“not shy” answers zeroes, then this dataset can be expressed as a 120 x 107 matrix of binary data.

The relationship between the parameters and the probability of a student being perceived as shy

is expressed via the Two-Parameter Probit IRM (2PP),

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗); 𝑖 = 1, … ,120; 𝑗 = 1, … ,107 (1.6)

Therefore, using the probit link, we can write the probability of a response 𝑦𝑖𝑗 as

𝑃(𝑦𝑖𝑗|𝜃𝑖 , 𝛼𝑗 , 𝛽𝑗) = Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 − Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗; 𝑦𝑖𝑗 = 0, 1 (1.7)

Once the assumption is made that all responses given by an examinee are independent, called

conditional independence, the probability of a student’s sequence of responses 𝒚𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑘)

is

𝑃(𝑦𝑖|𝜃𝑖 , 𝛼, 𝛽) = ∏ Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 − Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗𝑘
𝑗=1 (1.8)

http://www-math.bgsu.edu/%20~albert/%20ord_book/Chapter6/
http://www-math.bgsu.edu/%20~albert/%20ord_book/Chapter6/

11

where 𝜶 = (𝛼1, … , 𝛼𝑘) and 𝜷 = (𝛽1, … , 𝛽𝑘). Next, we must assume that all examinees’

responses are also independent of each other, which means that the data likelihood is simply the

product of the above probability:

𝐿(𝜽, 𝜶, 𝜷) = ∏ ∏ Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 − Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗𝑘
𝑗=1

𝑛
𝑖=1 (1.9)

Johnson and Albert (1999) assumed a priori that the latent abilities 𝜽 = (𝜃1, … , 𝜃𝑛) and the item

difficulties β are drawn from Standard Normal distributions, and the item discriminations α are

drawn from N(1,1). This implies that the joint posterior distribution is

𝑔(𝜽, 𝜶, 𝜷|𝒚) ∝ 𝐿(𝜽, 𝜶, 𝜷) ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 1,1) 𝜙(𝛽𝑗; 0,1)𝑘
𝑗=1

𝑛
𝑖=1 (1.10)

where 𝜙(𝑥; 𝜇, 𝜎2) denotes a normal density with parameters µ and σ2. Full conditionals based

on (1.10) are not all easy to sample from. Thus, they also implement a latent variable structure

introduced by Albert and Chib (1993) for this example, defining the unobservable quantity 𝑍𝑖𝑗 to

represent the underlying cause for examinee responses. This process simplifies the Gibbs

Sampling algorithm, making it easier to sample from the desired joint posterior distribution. The

latent variables are simulated from truncated normal distributions, and then the posterior

distributions can be calculated using standard results from normal linear models. More details

on this process are included in the Methods chapter. Defining 𝒁 = (𝑍11, … 𝑍𝑛𝑘), the final joint

posterior density of all model parameters is

𝑔(𝒁, 𝜽, 𝜶, 𝜷|𝒚) ∝ ∏ ∏[𝜙(𝑍𝑖𝑗; 𝑚𝑖𝑗, 1)𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗)]

𝑘

𝑗=1

𝑛

𝑖=1

𝑥 ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 1,1) 𝜙(𝛽𝑗; 0,1)𝑘
𝑗=1

𝑛
𝑖=1 (1.11)

where 𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗) equals 1 when {𝑍𝑖𝑗 > 0, 𝑦𝑖𝑗 = 1 } or {𝑍𝑖𝑗 ≤ 0, 𝑦𝑖𝑗 = 0 } and equals 0

otherwise.

12

 Each iteration of the Gibbs sampling algorithm for this example draws {𝑍𝑖𝑗
(𝑡)

} from

truncated normal distributions with means 𝑚𝑖𝑗 and variance 1. The truncation occurs at 0: from

the left when 𝑦𝑖𝑗 = 1, and from the right when 𝑦𝑖𝑗 = 0. Next, the latent abilities {𝜃𝑖
(𝑡)

} are

simulated from normal distributions with means 𝑚𝜃𝑖
 and variances 𝑣𝜃𝑖

. Finally, the item

parameters {𝛼𝑗
(𝑡)

, 𝛽𝑗
(𝑡)

} are drawn from a multivariate normal density with mean vector 𝑚𝑗 and

covariance matrix 𝑣𝑗 . The means and variances for the conditional posterior distributions of the

model parameters are explained further in the Methods chapter of this report. Although the

choice of initial values for these parameters is usually inconsequential, Johnson and Albert

(1999) also provides strategies for determining reasonable starting values, which may lead to

faster convergence.

 We recreated this Gibbs sampling example using the dataset posted online at http://www-

math.bgsu.edu/~albert/ord_book/. For this reproduction, we used 1500 iterations after burn-in,

rather than the text’s choice of 1000, and the Gibbs sampler was programmed in R, (R Core

Team, 2014). It is important to verify that the Gibbs algorithm converged during the burn-in

period, a characteristic which can be visualized in the Simulation Sequence vs. Iteration plot for

any parameter of interest. The text provides such a plot for the specific parameter 𝛼25, where no

trend is apparent across iterations, and only a moderate correlation between successive iterates is

present. Johnson and Albert (1999) found the posterior standard errors to be consistent across

parameters, so they felt justified in using this MCMC sample to summarize their posterior

knowledge about the 120 examinees and 107 items. The posterior distributions of all 𝑛 + 2𝑘 =

334 parameters are summarized via whisker plots in Figures 1.3(a-c).

http://www-math.bgsu.edu/~albert/ord_book/
http://www-math.bgsu.edu/~albert/ord_book/

13

 The Shyness example illustrates all of the concepts employed in our research: the

application of Item Response Theory to a non-standard setting, the subsequent parameter

interpretations, the determination of the likelihood, prior distributions, and resulting joint

posterior density, the implementation of the Gibbs sampling algorithm, the rough verification of

algorithm convergence, and brief summaries of the model parameters’ posterior distributions.

14

Figure 1.3 Side-by-side whisker plots for all discrimination (a), difficulty (b), and latent

shyness (c) parameters. The ends of the ‘whiskers’ represent a 90% credible interval for

each posterior distribution, and the center dots signify posterior means.

(a)

(c)

(b)

15

Chapter 2 - Methods

 Preference Testing Data

 The two primary datasets used to evaluate the IRM were taken from Wilke et al. (2006),

who advocated the use of multiple replications in preference testing. The products chosen were

raisin bran and cola, selected for their “ease of preparation, similar appearance within a product

type and small but noticeable differences during tasting.” Several self-reported consumers of

each product were chosen as panelists: 305 people for raisin bran and 296 for cola. For both

products, samples of two national brands were given to each panelist in random order, in order to

decrease the effect of testing position. The panelists were then instructed to choose which

product they preferred. After a seven-minute waiting period, the next test was conducted; four

preference tests were completed for each consumer.

 Preference testing data can be expressed as a collection of response patterns, the series of

responses across replications for each consumer. With four replications and two possible

choices, product A and product B, there are sixteen possible response patterns. To apply the

Two-Parameter IRM, we formatted the data into an 𝑛 𝑥 𝑘 matrix of binary data, where 𝑛 is the

number of panelists, and 𝑘 is the number of replications. The responses are denoted by

{𝑦𝑖𝑗; 𝑖 = 1, … 𝑛, 𝑗 = 𝑖, … , 𝑘}, where 𝑦𝑖𝑗 = 1 indicates that panelist 𝑖 preferred product A on

replication 𝑗, and 𝑦𝑖𝑗 = 0 indicates a preference for product B for the same consumer and

replication. The product labels are duplicated from the original paper, in which the specific

product names were not disclosed; regardless, the assignment of labels ‘A’ and ‘B’ is arbitrary

for our purposes.

16

 Hypothetical Datasets

 To assist with model parameter interpretation and investigate how the IRM behaves for

certain preference patterns, we generated five datasets with the same number of replications as

the Raisin Bran and Cola data but designed with specific properties in mind. Rather than

conducting a simulation study by setting parameter values and randomly generating data, we

manually created case studies of possible response matrices. To explore the resulting parameter

values when all possible response patterns are equally present, the Balanced dataset was created.

To contrast the Balanced data, we created the Extreme dataset, in which all consumers

consistently chose either one product or the other. Next, to explore the effects of each model

parameter when the other is held constant, we created the Increasing Discrimination and

Increasing Difficulty datasets. To achieve Increasing Discrimination, a collection of response

patterns had to be adjusted carefully to portray low item discrimination in early replications and

high item discrimination in late replications. Likewise, since posterior item difficulty is related to

the observed proportion of consumers choosing product A, an Increasing Difficulty dataset will

contain more preferences for A in early replications and fewer preferences for A in late

replications. Increasing Difficulty was achieved via two patterns: Monotone and Non-Monotone.

More details on the creation of these hypothetical datasets may be found in the Results chapter.

 Model Specification and Gibbs Sampling

 Recall that the general Two-Parameter IRM can be represented by

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = 𝐹(𝛼𝑗𝜃𝑖 − 𝛽𝑗),

where 𝜃𝑖 is the latent ability for consumer 𝑖, and 𝛼𝑗 and 𝛽𝑗 are the discrimination and difficulty

parameters for test 𝑗, respectively. With a probit link function, this model becomes

17

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗),

and a logit link produces

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =
1

1+𝑒
−(𝛼𝑗𝜃𝑖−𝛽𝑗) (2.1)

After specification of the prior distributions, we are free to collect data and calculate the joint

posterior density from which we must sample values. However, the full conditional densities

used by the Gibbs sampler are difficult to sample from. These issues could be overcome by

incorporating a Metropolis-Hastings step, but we will instead discuss a clever alternative.

 The application of the 2PP follows directly from the Shyness data example presented by

Johnson and Albert (1999). Because of the consistent data structure, the specific methods

described here are directly applicable to all seven preference testing datasets. Each dataset is an

𝑛 𝑥 𝑘 matrix of binary data, where 𝑦𝑖𝑗 = 1 indicates a preference for product A over product B

for consumer 𝑖 in replication 𝑗. Albert and Chib (1993) introduced a data augmentation

mechanism which simplifies the Gibbs sampler for situations with such high complexity. For

each observation, there exists 𝑍𝑖𝑗 ~ 𝑁(𝑚𝑖𝑗, 1), where 𝑚𝑖𝑗 = 𝛼𝑗𝜃𝑖 − 𝛽𝑗. We then assume that

𝑦𝑖𝑗 = {
0 , 𝑍𝑖𝑗 ≤ 0

1 , 𝑍𝑖𝑗 > 0.

 Thus,

𝑃(𝑦𝑖𝑗 = 1) = 𝑃(𝑍𝑖𝑗 > 0) = 1 − Φ(−𝑚𝑖𝑗) = Φ(𝑚𝑖𝑗), (2.2)

which produces the familiar form of the 2PP shown above.

 It is standard practice to assume the latent preferences are drawn from a Standard Normal

distribution, so that an “average” ability is zero. More than just expressing our prior beliefs

about 𝜃𝑖, this should also prevent identifiability issues, according to Johnson and Albert (1999).

18

We still encountered minor problems in this regard, which are discussed in the Computation

chapter. We also assume that an “average” difficulty will be zero, for ease of interpretation.

However, the prior distributions for 𝛼 and 𝛽 can reasonably be changed for varying purposes. It

is intuitive to restrict 𝛼 to positive numbers, which implies that an increase in underlying

preference for product A leads to an increase in the probability of selecting A. To allow for the

most freedom, we specified 𝛼𝑗 ~ 𝑁(𝜇𝛼, 𝑠𝛼
2), where 𝜇𝛼 > 0 assumes a priori that the

discrimination is positive without restricting the posterior values to be so. In addition, we

specified 𝛽𝑗 ~ 𝑁(0, 𝑠𝛽
2) to obtain a distribution symmetric about zero but flexible with respect to

prior variance.

 Based on these prior distributions, the joint posterior density of the parameters

conditional on the data is

𝑔(𝒁, 𝜽, 𝜶, 𝜷|𝒚) ∝ ∏ ∏[𝜙(𝑍𝑖𝑗; 𝑚𝑖𝑗, 1)𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗)]

𝑘

𝑗=1

𝑛

𝑖=1

𝑥 ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 𝜇𝛼 , 𝑠𝛼
2) 𝜙(𝛽𝑗; 0, 𝑠𝛽

2)𝑘
𝑗=1

𝑛
𝑖=1 (2.3)

To employ the Gibbs Sampling algorithm, each parameter is then iteratively sampled from its

full conditional posterior density:

 𝑔𝒁(𝒁|𝜽, 𝜶, 𝜷, 𝒚)

 𝑔𝜽(𝜽|𝒁, 𝜶, 𝜷, 𝒚)

 𝑔𝜶,𝜷(𝜶, 𝜷|𝒁, 𝜽, 𝒚)

Therefore, at iteration t, the parameters are drawn as follows:

19

1) {𝑍𝑖𝑗
(𝑡)

} ~ {
𝑇𝑁(𝑚𝑖𝑗, 1; 0, ∞) , 𝑦𝑖𝑗 = 1

𝑇𝑁(𝑚𝑖𝑗, 1; −∞, 0) , 𝑦𝑖𝑗 = 0
 (2.4)

 where 𝑇𝑁(𝜇, 𝜎2; 𝑐, 𝑑) denotes a Normal distribution with mean 𝜇 and variance 𝜎2

 truncated over the interval (𝑐, 𝑑), and 𝑚𝑖𝑗 = 𝛼𝑗
(𝑡−1)

𝜃𝑖
(𝑡−1)

− 𝛽𝑗
(𝑡−1)

.

2) {𝜃𝑖
(𝑡)

} ~ 𝑁(𝑚𝜃𝑖
, 𝑣𝜃𝑖

) (2.5)

 where 𝑚𝜃𝑖
=

∑ 𝛼𝑗
(𝑡−1)𝑘

𝑗=1 (𝑍𝑖𝑗
(𝑡)

+𝛽𝑗
(𝑡−1)

)

∑ 𝛼
𝑗
2(𝑡−1)

 + 1𝑘
𝑗=1

 and 𝑣𝜃𝑖
=

1

∑ 𝛼𝑗
2(𝑡−1)

 + 1𝑘
𝑗=1

3) {𝛼𝑗
(𝑡)

, 𝛽𝑗
(𝑡)

} ~ 𝑁2(𝑚𝑗 , 𝑣𝑗) (2.6)

 where 𝑚𝑗 = [𝑋′𝑋 + Σ0
−1]−1 [𝑋′𝑍𝑗

(𝑡)
+ Σ0

−1 (
𝜇𝛼

0
)] is the 2-dimensional mean vector,

 𝑣𝑗 = [𝑋′𝑋 + Σ0
−1]−1 is the 2 x 2 covariance matrix,

 Σ0 = [
𝑠𝛼

2 0

0 𝑠𝛽
2] and 𝑋 is the design matrix with columns (𝜃𝑖

𝑡, −1).

 This algorithm was first programmed in R, to verify the Shyness data results from

Johnson and Albert (1999). The R code for our 2PP IRM is provided in the Appendix. Similarly

to the Shyness example, the parameters’ starting values were set to their respective prior means.

Where the authors used 1000 iterations and no burn-in period for their MCMC sample, we

iterated the algorithm 2000 times and removed the first 500. Although this was an adequate

method for working through the text’s example, the R code is too computationally costly for

20

repeated use with different specifications. To expedite computation, we utilized OpenBUGS

software to run the algorithm for all remaining portions of this research. OpenBUGS was

introduced by Thomas et al. (2006) as an updated version of WinBUGS, the popular Gibbs

Sampling software developed by Lunn et al. (2000). Our model specification in OpenBUGS

does not use the data augmentation approach given by Albert and Chib (1993), but rather uses

the model first described in this chapter. This required only slight modifications to the BUGS

code given by Curtis (2010) for the Two-Parameter Logistic model (2PL).

 The models were fit by OpenBUGS software through the R interface, using the R

package ‘BRugs’, introduced by Ligges (2013). ‘BRugs’ gives access to convergence plots and

the entire list of sampled parameter values through the functions ‘samplesHistory’ and

‘samplesSample’, respectively, allowing further flexibility for output storage and plot generation.

In particular, the R function ‘BRugsFit’ requires the input of a model file and dataset in

OpenBUGS syntax, and it outputs posterior information for the parameters of interest, including

the mean and the 95% credible interval. This function allows the user to specify initial values,

parameter(s) to follow, the number of desired MCMC chains, the number of iterations, and the

duration of the burn-in period, among other settings. For all seven preference testing datasets,

we specified one MCMC chain of 6000 iterations, with the first 1000 constituting the burn-in

period, and the initial values were randomly generated by OpenBUGS. All computations were

done with random number seeds for future reproducibility. More information regarding the

computation of these values, convergence, and potential difficulties can be found in the

Discussion chapter. The parameters saved were 𝜶, 𝜷, 𝜽, and the probability of preferring

product A for each replication, denoted by 𝒑 = (𝑝1, … , 𝑝4). The probability of preferring

product A on replication 𝑗 is calculated by

21

𝑝𝑗 = Φ (
−𝛽𝑗

√1+𝛼𝑗
2
) (2.7)

𝑝𝑗 may be used to indicate which of two products was preferred across all subjects, hence the

formula’s absence of any latent ability parameters, and it can be thought of as an alternate

measure of item difficulty. This probability can be expected to adhere closely to the observed

proportions of consumers preferring product A at each replication, depending on the choice of

prior distributions.

22

Chapter 3 - Results

 Overview

 We applied the 2PP to the Raisin Bran and Cola datasets described and used by Wilke et

al. (2006). These datasets originally illustrated the importance of replication in sensory analysis

tests due to panelists’ inconsistent preferences, and they now serve as useful real-world

demonstrations of the Two-Parameter IRM. To verify this model’s capabilities in controlled

situations and assist in parameter interpretation, we constructed five replicated preference test

datasets with specific properties. Each of these datasets features four replications, to imitate the

real-world data described above, ranging from 60 to 135 consumers. These hypothetical datasets

will be referred to as Balanced, Extreme, Increasing Discrimination, and Increasing Difficulty

(Monotone and Non-Monotone). The same prior distributions were used for all seven datasets, as

described in the Shyness data example: 𝜃𝑖 ~ 𝑁(0,1), 𝛼𝑗 ~ 𝑁(1,1), and 𝛽𝑗 ~ 𝑁(0,1).

 The plots included in this section are used to summarize the posterior distributions of

several quantities. The latent preference parameter 𝜃𝑖 describes each consumer’s true preference

for one of two products, with positive values representing preferences for product A. Included in

this section are side-by-side whisker plots of the posterior distributions of each latent preference

parameter, where the ends of the whiskers represent a 95% credible interval for 𝜃𝑖. The

discrimination and difficulty parameters are quantities that describe characteristics about each

preference test replication. First, the discrimination parameter, denoted by 𝛼𝑗, determines the

relative distinction between consumers of varying latent preferences for product A at a given

replication. For example, high discrimination indicates that the consumers’ recorded preferences

on a given replication align with a relatively strong latent preference for that product, and low

discrimination indicates virtually no relationship between true latent preferences and the

23

preferences observed in the data. Secondly, the difficulty parameter 𝛽𝑗 explains the relative

probability of selecting product A on a given replication for consumers with no preference for

either product. A “difficult” replication would somehow invoke a lower probability of choosing

A than an “easy” replication, for any given latent preference and discrimination. Naturally, all

of these characteristics will change with different product and consumers. Finally, the

probability of preferring product A, denoted by 𝑝𝑗, was calculated as described in the Methods

section. This probability can be thought of as an alternate measure of item difficulty. Posterior

summaries for the probability of preferring A were included for each dataset, but we observe that

the mean of each of these distributions is approximately equal to the observed proportion of A

selections for every dataset.

 Raisin Bran Data

Wilke et al. (2006) utilized raisin bran preference tests to argue the importance of

replication in sensory analysis studies. According to their research, consumers may not

consistently record the same preferred product when the products in question are not highly

discriminable and/or when the consumers’ preferences are not particularly strong. The Raisin

Bran dataset consists of 305 self-reported consumers of the popular cereal, with each of four

replications forcing a reported preference between two national brands.

 The posterior summary plots show interesting trends in the Raisin Bran test example.

First, in Figure 3.1(a), the posterior distributions of the discrimination parameter for replications

2, 3, and 4 are very similar, but replication 1 shows a unique distribution. This means that

responses were more similar between panelists of high and low preferences in the first test,

whereas the next three tests did a better job of discriminating between panelists of different

24

Figure 3.1 Summary plots from the Raisin Bran data for the posterior distributions of item

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d).

underlying preferences. In addition, we also observe decreasing difficulty parameters over time

in Figure 3.1(b), due to the fact that more panelists chose product A in each successive

preference test. Note that the distributions in Figure 3.1(c) are consistently greater than 0.5,

indicating overall preference for product A at each replication. Latent preferences are associated

(a) (b)

(c) (d)

25

with the number of times a consumer chose product A across the four replications and the order

in which they did so. Therefore, the small number of possible response patterns causes the side-

by-side whisker plots in Figure 3.1(d) to segregate into ten distinct groups. The credible

intervals for all but the last 52 consumers contain zero, indicating that their latent preferences for

product A are not significantly different from zero. On the contrary, it appears that the last 52

respondents preferred product B to a significant degree.

 Cola Data

 The Cola tests included 296 self-reported acceptors of the product, again requiring a

choice between two national brands for each of four replications. Wilke et al. (2006) noted that

nearly 71% of consumers changed their preference at least once throughout the four replications,

evidence that replicated preference tests may be needed when differences between the products

are not discernible, relative to personal preferences. The Cola example is a second test of the

Two-Parameter IRM’s functionality when the data is based on real humans’ recorded

preferences.

 Much like the Raisin Bran dataset, we can visually separate groups of panelists’ total A

selection counts from their latent preference whisker plots in Figure 3.2(d). The posterior

distributions for the difficulty parameters 𝛽𝑗 in Figure 3.2(b) almost entirely consist of negative

values, indicating that there was some degree of preference for product A in all four tests. In this

example, the discrimination posterior distributions in Figure 3.2(a) decrease over the first three

replications but take a positive turn in the final test. Returning to the interpretation of item

discrimination, this means that Replications 1 and 4 more clearly distinguish between consumers

of varying latent preferences, whereas consumers tend to respond contrary to their true

26

preferences more often in the middle replications. As in the Raisin Bran data, the distributions

of the probability of selecting product A at each replication in Figure 3.2(c) show clear

preference for product A.

Figure 3.2 Summary plots from the Cola data for the posterior distributions of item

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d).

(a) (b)

(c) (d)

27

 Balanced Data

With four replications, sixteen possible response patterns exist for any given panelist.

The Balanced dataset consists of five panelists for each of these sixteen patterns, outlined in

Table 3.1. This balanced design ensures that a 50% preference for product A is observed in each

preference test, and those preferences are spread out among the different panelists; this means

that few panelists hold extreme prejudice for one product or the other, whereas the majority of

subjects do not show great preference. This could be due to either a lack of preference for a

product or an inability to distinguish the two products.

The consistent location of the posterior distributions of 𝛼 and 𝛽 in Figure 3.3(a-b) reflects

the intended balance of this dataset. Because the distribution of preferences for A has no

Table 3.1 The collection of possible response patterns in data with four replications.

‘Count’ and ‘Total’ are specific to the responses observed in the Balanced dataset.

 Rep 1 Rep 2 Rep 3 Rep 4 Total A

Selections

Count

 1 1 1 1 4 5

 1 1 1 0 3 5

 1 1 0 1 3 5

 1 1 0 0 2 5

 1 0 1 1 3 5

 1 0 1 0 2 5

 1 0 0 1 2 5

 1 0 0 0 1 5

 0 1 1 1 3 5

 0 1 1 0 2 5

 0 1 0 1 2 5

 0 1 0 0 1 5

 0 0 1 1 2 5

 0 0 1 0 1 5

 0 0 0 1 1 5

 0 0 0 0 0 5

Total 40 40 40 40

28

Figure 3.3 Summary plots from the Balanced data for the posterior distributions of item

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d).

discernible pattern across the range of latent preferences, the four tests do not discriminate well

between those who prefer A and those who prefer B. This results in low posterior means for the

four 𝛼 parameters. In addition, with half of the consumers preferring A on each occasion, the

mean difficulty at each time point is approximately zero. The posterior distributions of the latent

preferences 𝜃𝑖 in Figure 3.3(d) also reflect a secondary intention of this example – to vary latent

(a) (b)

(c) (d)

29

preferences gradually while discrimination and difficulty remain nearly constant. Although ten

consumers in the Balanced dataset responded consistently across replications, the 95% credible

intervals for their respective latent preferences contain zero, indicating a lack of preference.

This results from a relatively small sample size and a wide variety of observed response patterns.

 Extreme Data

 To illustrate the result of very strong preferences, we generated a dataset in which all

panelists exclusively preferred either product A or product B. Like the Balanced example, the

Extreme dataset also uses 80 panelists, with half choosing product A and half choosing product B

in every test. This means that the observed proportion of panelists preferring product A is 0.50

at each replication; however, all respondents display a consistent preference for one product or

the other. These response patterns are shown in Table 3.2.

Table 3.2 The collection of response patterns present in the Extreme dataset.

 Rep 1 Rep 2 Rep 3 Rep 4 Total A

Selections

Count

 1 1 1 1 4 40

 0 0 0 0 0 40

Total 40 40 40 40

 Figure 3.4(a) shows the substantial increase in the posterior means for α compared to the

Balanced data, and the clear distinction between consumers’ preferences is displayed in Figure

3.4(d). However, note that the difficulty distributions in Figure 3.4(b) are very similar to the

previous dataset. The Balanced and Extreme examples demonstrate how wildly 𝛼 and 𝜃 can

vary without affecting 𝛽. That is to say, the posterior distributions of the 𝛽𝑗 for the two datasets

30

Figure 3.4 Summary plots from the Extreme data for the posterior distributions of item

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d).

were nearly identical, while the posterior distributions for 𝛼𝑗 and 𝜃𝑖 differed substantially. In the

Extreme case, every panelist responded consistently over time, and the model responds by

assigning appropriately extreme 𝜃𝑖 values. In addition, because every panelist with high latent

preference for A recorded such preference for every replication and vice versa, every replication

is given a high expected posterior discrimination value. However, despite these glaring

(c) (d)

(a) (b)

31

differences from the Balanced example, the observed proportion of consumers preferring A

remains the same for each replication, producing expected difficulty parameters of approximately

zero.

 Increasing Discrimination Data

 Recall the purpose of the discrimination parameter: 𝛼 is the value that determines a

replication’s ability to distinguish between consumers of different latent preferences for product

A. In order for a model to result in increasing discrimination values across replications, the

dataset would require few response differences between panelists of varying latent abilities in

early replications, i.e., low discrimination, and large differences in later replications, i.e., high

discrimination. This will cause a mix of observed preferences for A and B throughout the range

of latent preferences at early replications, whereas, in the later replications, the recorded A

selections are generally associated with consumers of high latent preference for A and not with

those with high latent preference for B. To generate such a dataset, each consumer’s total

number of preferences for product A was thought of as a crude representation of his latent

preference. After 60 consumer response patterns were somewhat arbitrarily generated, the

individual responses were adjusted to reflect the characteristics described above. For example,

the pattern of 1’s and 0’s in the first replication indicated little association between the

consumer’s crude “latent preference” and his observed product preference, i.e., low

discrimination. In contrast, the observed preferences for A in the last replication were almost

exclusively constrained to consumers with three or four total A selections, i.e., high

discrimination. We attempted to create a gradual transition from low to high discrimination

across the four replications. The full dataset, with a total of 60 response patterns, can be found in

Table 3.3.

32

 As displayed in Figures 3.5(a) and 3.5(b), this example achieved the desired effect: a

gradual increase in item discrimination over the four replications with very little change in item

difficulty. While very little difference exists between consumers of high and low latent

preference in the first replication, the distinction grows across time. By the fourth replication,

the item discrimination the total number of recorded preferences for A. (Remember that these

totals are crude representations of the consumers’ latent preferences.) For this reason, the

posterior means of 𝜃𝑖 vary across the interval (-1, 1), as seen in Figure 3.5(d).

Table 3.3 The collection of possible response patterns and their respective counts for the

Increasing Discrimination dataset.

 Rep 1 Rep 2 Rep 3 Rep 4 Total A

Selections

Count

 1 1 1 1 4 5

 1 1 0 1 3 2

 1 1 0 0 2 7

 1 0 1 1 3 5

 1 0 1 0 2 5

 1 0 0 1 2 3

 1 0 0 0 1 7

 0 1 1 1 3 9

 0 1 1 0 2 1

 0 1 0 1 2 3

 0 1 0 0 1 5

 0 0 1 1 2 1

 0 0 1 0 1 2

 0 0 0 1 1 1

 0 0 0 0 0 4

Total 34 32 28 30

33

Figure 3.5 Summary plots from the Increasing Discrimination data for the posterior

distributions of item discrimination (a), item difficulty (b), probability of preferring A (c),

and latent preference (d).

 Increasing Difficulty Data

 Recall that the difficulty of an item in preference testing context determines the relative

probability of preferring product A for the same consumer and a constant item discrimination. A

“difficult” replication would often require a higher preference for product A in order to select A

in that test, whereas a less “difficult” test would often require less preference for A in order to

(a) (b)

(c) (d)

34

choose A as the preferred product. Two datasets were created to illustrate increasing difficulty

across replications, each with 135 total subjects. Since the difficulty parameter is closely related

to the observed proportion of product A preference, both datasets were generated with a

decreasing observed proportion of consumers choosing product A in successive replications.

Specifically, the observed proportions of consumers choosing A in the four replications were

(𝑝1, 𝑝2, 𝑝3, 𝑝4) = (4/5, 3/5, 2/5, 1/5). This was accomplished by first creating 81 response

patterns where all panelists chose A in the first replication, two-thirds chose A in the second,

one-third chose A in the third, and none chose A in the fourth. Additional panelists with

consistent preferences were then added, 27 preferring A at every replication and 27 preferring B

at every replication. This was to avoid computational issues related to observing proportions of

one and zero in replications 1 and 4, respectively. While these observed proportions were

identical for both Increasing Difficulty datasets, the specific response patterns were not.

 Monotone Method

In missing data analysis, the term monotone refers to a missing data pattern in which all

missing values are contiguous, ie., if value 𝑣𝑗 is missing, then all values {𝑣𝑘; 𝑘 > 𝑗} are also

missing. Here we apply this term to the creation of the Increasing Difficulty dataset. For the

Monotone approach, all recorded preferences for product B at a given replication are contiguous.

That is, if observation 𝑦𝑖𝑗 = 0, then all observations {𝑦𝑙𝑗; 𝑙 > 𝑖} = 0. This resulted in five

distinct response patterns, displayed in Table 3.4.

 Refer to Figure 3.6 for summaries of the Monotone Increasing Difficulty example. This

dataset produces 𝛽𝑗 posterior distributions that predictably increase across the four replications,

because the observed preferences for product A decrease in a similar pattern. It is important to

remember that the number of times a consumer prefers A is directly related to his subsequent

35

Table 3.4 The five possible response patterns using the Monotone approach to create an

Increasing Difficulty dataset.

 Rep

1

Rep

2

Rep

3

Rep

4

Total A

Selections

Count

 1 1 1 1 4 27

 1 1 1 0 3 27

 1 1 0 0 2 27

 1 0 0 0 1 27

 0 0 0 0 0 27

Total 108 81 54 27

latent preference 𝜃𝑖. This helps explain several things. First, there are five possibilities for a

panelist’s total number of recorded preferences for A. Therefore, we see five groupings of latent

preference posterior distributions, with high latent preferences for A corresponding to four

observed A selections and low latent preferences for A corresponding to zero observed A

selections. Also, replications 1 and 4 have lower discrimination values than replications 2 and 3,

yet they are still quite large values. High discrimination in the first replication is most likely

because, given that a panelist chose product B, then he continued to choose product B for every

test. Likewise, if a panelist chose product A in the final replication, then he chose product A for

every replication. This establishes a relationship between observed preference and latent

preference, which roughly translates to high discrimination. However, given that a consumer

preferred A in replication 1, that consumer’s total number of A selections could be 1, 2, 3, or 4.

An observed preference for A in replication 1 could be associated with a relatively low latent

preference or an extremely high latent preference. This fact limits replications 1 and 4 from

having higher discrimination values, which appear in replications 2 and 3.

36

Figure 3.6 Summary plots from the Monotone Increasing Difficulty data for the posterior

distributions of item discrimination (a), item difficulty (b), probability of preferring A (c),

and latent preference (d).

 Non-Monotone Method

 In the Non-Monotone approach, the intent was still to observe a decreasing number of

preferences for product A through the four replications. However, the locations of recorded

preferences for product A in replications 2 and 3 were randomized before adding the 54 panelists

(c) (d)

(a) (b)

37

with consistent preferences. This resulted in a dataset with six distinct response patterns, rather

than five. The added complexity represents the new ability for a panelist to prefer product A at

non-consecutive replications, which could eliminate the monotone property of the previous

dataset. After random placement of these preferences, we arrived at the dataset outlined in Table

3.5.

Table 3.5 The six possible response patterns using the Non-Monotone approach to create an

Increasing Difficulty dataset.

 Rep

1

Rep

2

Rep

3

Rep

4

Total A

Selections

Count

 1 1 1 1 4 27

 1 1 1 0 3 16

 1 1 0 0 2 38

 1 0 1 0 2 11

 1 0 0 0 1 16

 0 0 0 0 0 27

Total 108 81 54 27

 The small difference in the construction of an Increasing Difficulty dataset leads to very

different discrimination parameter values. While the increasing posterior distributions of the

difficulty parameter 𝛽𝑗 remain in Figure 3.7(b), we now observe in Figure 3.7(a) that the

posterior mean discrimination values for replications 2 and 3 are significantly reduced. This is

due to the added response pattern complexity, since a preference for product A in replication 2 or

3 no longer directly translates to a high latent preference. Furthermore, the posterior means of

the latent preference 𝜃𝑖 may still be segregated into five groups, displayed in Figure 3.7(d), but

their arrangement has been changed by the new dataset structure. While there exists an equal

count of each possible number of A selections in the Monotone setup (27 each), we see different

counts in the Non-Monotone setup, (27, 16, 49, 16, and 27). It is especially interesting

38

Figure 3.7 Summary plots from the Non-Monotone Increasing Difficulty data for the

posterior distributions of item discrimination (a), item difficulty (b), probability of

preferring A (c), and latent preference (d).

to note that the expected latent preference for consumers with response pattern (1,1,0,0) is

essentially equal to that of consumers who responded (1,0,1,0). Because difficulty increases

across replications, we might expect to see higher latent preferences assigned to consumers who

preferred product A in replication 3 than to those who did so in replication 2. However, these

values naturally occur because an “easy” replication translates to higher probabilities of choosing

(a) (b)

(c) (d)

39

product A. Consumers who responded (1,1,0,0) chose A in the “easier” replication 2 and chose

B in the more “difficulty” replication 3, which should be expected. Although consumers who

responded (1,0,1,0) indeed chose A in the more “difficult” replication 3, they also chose B in the

“easier” replication 2. These two responses counteract each other, resulting in latent preferences

similar to consumers who gave a (1,1,0,0) response pattern.

 Model Comparison

 While the parameter estimation for our seven preference test datasets assists with

interpretation and evaluates the model’s sensitivity to changing data, it says nothing of the

effects of altering prior distributions, link functions, or parameterization. To investigate such

effects, we selected several model variations to compare over the Raisin Bran and Cola datasets.

In addition to the original two-parameter probit model with prior distributions 𝜃𝑖 ~ 𝑁(0,1),

𝛼𝑗 ~ 𝑁(1,1), and 𝛽𝑗 ~ 𝑁(0,1), we considered sixteen models that changed the parameters of the

normal prior distributions of either 𝛼 or 𝛽. We then explored the possibility of restricting 𝛼 > 0

through our prior beliefs; this included three Gamma distributions of mean 1 and differing

variances, as well as the original Normal prior, truncated from the left at zero.

 Next, models with different parameterizations were added. The model with one item

discrimination parameter, shared between all replications, is expressed as follows:

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = 𝐹(𝛼𝜃𝑖 − 𝛽𝑗) (3.1)

This model allows the “difficulty” of choosing product A to vary over time, but the replications’

ability to distinguish between consumers of different latent preferences is constant. In contrast,

we may allow discrimination to vary over time while keeping difficulty constant. The model

with one item difficulty parameter, shared between all replications, is shown below:

40

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = 𝐹(𝛼𝑗𝜃𝑖 − 𝛽) (3.2)

The final model change results in the One-Parameter IRM, where either 𝛼 or 𝛽 is not used:

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = 𝐹(𝜃𝑖 − 𝛽𝑗) (3.3)

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) = 𝐹(𝛼𝑗𝜃𝑖) (3.4)

In multiple choice testing context, the model shown in Equation 3.3 describes a situation where

only the relative difficulty of the exam questions are relevant, and each question discriminates

between students at an “average” rate. On the other hand, Equation 3.4 allows different

discrimination values between questions but only an average difficulty. The latter situation

seems better fit for replicated preference testing, where the difficulty of each replication may be

constant, but the model comparison results will shed light on these hypotheses. Two prior

specifications were used for the General One-Parameter models in Equations 3.1 and 3.2, and

one prior specification each was used for the One-Parameter models in Equations 3.3 and 3.4.

Finally, all 27 models were applied using both the probit and logit links, resulting in a total of 54

models. An exhaustive display of these models can be found in Tables 3.6 and 3.7. These

changes can be summarized by five alterations to the 2PP IRM:

1) the hyper-parameters were changed for the Normal 𝛼 prior, keeping 𝛽 ~ 𝑁(0,1)

2) the hyper-parameters were changed for the Normal 𝛽 prior, keeping 𝛼 ~ 𝑁(1,1)

3) the prior distribution for 𝛼 was restricted to a positive support

4) the parameterization was altered

5) probit and logit links were used for all models created in 1-4 above

41

 In order to compare 54 models’ goodness of fit and complexity, we employed the

deviance information criterion (DIC). DIC is analogous to the Akaike information criterion

(AIC) and Bayesian information criterion (BIC), and it can be easily calculated using our

MCMC samples. DIC is the standard method of comparison in Bayesian model selection with

MCMC simulation. Deviance is a measure of model fit, and is given by

𝐷(𝝀) = −2log [𝑝(𝒚|𝝀)], (3.5)

where 𝛌 = (𝜆1, … , 𝜆𝑝) are the parameters of interest and 𝑝(𝒚|𝝀) is the data likelihood. The fit of

a model under the Bayesian framework can be expressed by the posterior expectation of the

deviance, 𝐷̅ = 𝐸𝝀|𝑦[𝐷]. The model is then penalized according to the effective number of

parameters it uses, 𝑝𝐷 = 𝐷̅ − 𝐷(𝝀̅), where 𝝀̅ is the posterior mean vector of 𝛌. The DIC is

defined as the sum of these two quantities,

𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷 (3.6)

Since a low 𝐷̅ indicates good model fit and a low 𝑝𝐷 indicates simplicity, a better model will

generally possess the lower DIC. Although the DIC says nothing about a model’s objective

“correctness,” it is a powerful tool for determining which of our 54 models fit the data with the

most accuracy and efficiency.

 Recall from the Methods chapter that the algorithm was implemented using OpenBUGS,

in order to simplify model specification. The fitting of these 54 models required very little

adjustment to the existing OpenBUGS code, usually a one-line adjustment to the model file.

Once the OpenBUGS model files were adapted, the DIC values were easily extracted and

compared from the default output using ‘BRugs’ in R. Table 3.6 displays the full DIC results

from all 54 models for the Raisin Bran dataset, and Table 3.7 displays those for the Cola dataset.

The Two-Parameter Models (often called 2PP and 2PL) implement a discrimination parameter

42

and a difficulty parameter for each preference test replication. The General One-Parameter (𝛽)

models (often called 1PP and 1PL) fix discrimination across replications but allow that value to

be estimated, while difficulty is estimated at each replication. In contrast, the General One-

Parameter (𝛼) models fix difficulty across replications but allow that value to be estimated, while

discrimination is estimated at each replication. The One-Parameter models set discrimination

and difficulty to one and zero, respectively. Note that, with a logit link, Model 24 becomes the

well-known Rasch model. The probit link is overwhelmingly favored in these results, as no DIC

values for logit models are within 15 units of the best DIC for either dataset.

 These DIC results also allow a glimpse into the mechanisms behind the Item Response

Model and the estimation algorithm. We can now compare adjustments to the prior distributions

to adjustments in the parameterization in terms of the resulting DIC. For example, we often see

a large difference in DIC between the full two-parameter models and the models with reduced

parameterization. As mentioned above, there is also a noticeable difference between the probit

and logit link functions, with probit displaying a clear advantage. However, changing the prior

distributions did not seem to affect the models’ DICs quite so dramatically. For the Cola dataset

in particular, no fewer than nine models gave a DIC within 5 units of the lowest value. This

indicates that the prior specification is not as crucial for the Cola data, since many priors produce

results that fit the data equivalently. On the other hand, no alternative models were within 5

units of the lowest Raisin Bran DIC, indicating that this particular data is marginally more

sensitive to the choice of prior distributions.

 Although DIC does not identify an objectively “best” model, the 2PP with prior

distributions 𝛼 ~ 𝑁(2, 0.33) and 𝛽 ~ 𝑁(0,1) resulted in the lowest DIC for both datasets.

Further examination revealed that models with relatively low DIC values produced nearly

43

identical posterior parameter distributions, so this choice of priors is particularly interesting. All

posterior mean 𝛼 values for both datasets are near 1, yet the DIC statistic prefers an informative

prior with a mean of 2; the underlying causes must remain a topic of future investigation.

Table 3.6 DIC values for all 54 models applied to the Raisin Bran dataset. The notation

N(µ,σ2) indicates a Normal prior distribution with mean µ and variance σ2, G(α,β) indicates

a Gamma prior with shape α and rate β, and TN(µ,σ2) is the Truncated Normal

distribution bounded below at zero. The lowest DIC value is given in bold.

ID Parameterization Alpha Prior

Dist.

Beta Prior Dist. DIC (Probit) DIC (Logit)

1 Two-Parameter N(1, 1) N(0, 1) 1186 1216

2 Two-Parameter N(0.5, 0.33) N(0, 1) 1197 1233

3 Two-Parameter N(0.5, 1) N(0, 1) 1192 1214

4 Two-Parameter N(0.5, 3) N(0, 1) 1189 1205

5 Two-Parameter N(1, 0.33) N(0, 1) 1190 1241

6 Two-Parameter N(1, 3) N(0, 1) 1189 1206

7 Two-Parameter N(2, 0.33) N(0, 1) 1178 1200

8 Two-Parameter N(2, 1) N(0, 1) 1186 1221

9 Two-Parameter N(2, 3) N(0, 1) 1186 1208

10 Two-Parameter N(1, 1) N(-1, 0.33) 1186 1216

11 Two-Parameter N(1, 1) N(-1, 1) 1186 1212

12 Two-Parameter N(1, 1) N(-1, 3) 1187 1211

13 Two-Parameter N(1, 1) N(0, 0.33) 1195 1226

14 Two-Parameter N(1, 1) N(0, 3) 1190 1211

15 Two-Parameter N(1, 1) N(1, 0.33) 1202 1234

16 Two-Parameter N(1, 1) N(1, 1) 1193 1220

17 Two-Parameter N(1, 1) N(1, 3) 1186 1214

18 Two-Parameter Gamma(3, 3) N(0, 1) 1195 1212

19 Two-Parameter Gamma(1, 1) N(0, 1) 1192 1206

20 Two-Parameter Gamma(0.33, 0.33) N(0, 1) 1191 1206

21 Two-Parameter TN(1, 1) N(0, 1) 1192 1206

22 Gen. One-Parameter (𝛽) N(1, 1) N(0, 1) 1202 1216

23 Gen. One-Parameter (𝛽) N(1, 3) N(0, 1) 1203 1215

24 One-Parameter (𝛽) --- N(0, 1) 1201 1264

25 Gen. One-Parameter (𝛼) N(1, 1) N(0, 1) 1212 1227

26 Gen. One-Parameter (𝛼) N(1, 1) N(0, 3) 1213 1226

27 One-Parameter (𝛼) N(1, 1) --- 1229 1250

44

Table 3.7 DIC values for all 54 models applied to the Cola dataset. The notation N(µ,σ2)

indicates a Normal prior distribution with mean µ and variance σ2, G(α,β) indicates a

Gamma prior with shape α and rate β, and TN(µ,σ2) is the Truncated Normal distribution

bounded below at zero. The lowest DIC values are given in bold.

ID Parameterization Alpha Prior Dist. Beta Prior Dist. DIC (Probit) DIC (Logit)
1 Two-Parameter N(1, 1) N(0, 1) 1487 1509

2 Two-Parameter N(0.5, 0.33) N(0, 1) 1496 1516

3 Two-Parameter N(0.5, 1) N(0, 1) 1493 1507

4 Two-Parameter N(0.5, 3) N(0, 1) 1490 1502

5 Two-Parameter N(1, 0.33) N(0, 1) 1491 1521

6 Two-Parameter N(1, 3) N(0, 1) 1491 1504

7 Two-Parameter N(2, 0.33) N(0, 1) 1484 1503

8 Two-Parameter N(2, 1) N(0, 1) 1484 1512

9 Two-Parameter N(2, 3) N(0, 1) 1484 1503

10 Two-Parameter N(1, 1) N(-1, 0.33) 1489 1507

11 Two-Parameter N(1, 1) N(-1, 1) 1488 1508

12 Two-Parameter N(1, 1) N(-1, 3) 1488 1508

13 Two-Parameter N(1, 1) N(0, 0.33) 1490 1509

14 Two-Parameter N(1, 1) N(0, 3) 1485 1508

15 Two-Parameter N(1, 1) N(1, 0.33) 1495 1512

16 Two-Parameter N(1, 1) N(1, 1) 1492 1510

17 Two-Parameter N(1, 1) N(1, 3) 1487 1509

18 Two-Parameter Gamma(3, 3) N(0, 1) 1494 1505

19 Two-Parameter Gamma(1, 1) N(0, 1) 1490 1504

20 Two-Parameter Gamma(0.33, 0.33) N(0, 1) 1490 1499

21 Two-Parameter TN(1, 1) N(0, 1) 1490 1503

22 One-Parameter (General) N(1, 1) N(0, 1) 1519 1524

23 One-Parameter (General) N(1, 3) N(0, 1) 1517 1523

24 One-Parameter --- N(0, 1) 1513 1520

25 Gen. One-Parameter (Alpha) N(1, 1) N(0, 1) 1491 1505

26 Gen. One-Parameter (Alpha) N(1, 1) N(0, 3) 1490 1504

27 One-Parameter (Alpha) N(1, 1) --- 1508 1526

45

Chapter 4 - Computation

 The Gibbs sampler for this model requires great care in terms of programming and model

specification. Whereas the primary advantages to the use of the Item Response Model in the

preference testing context are related to interpretation, most of the potential drawbacks are

related to computation. Although the MCMC simulations are easily accessible, certain

conditions may produce unfavorable results. Such issues will be addressed here, along with a

summary of the computational journey which brought us to the published results.

 The first step in applying the Two-Parameter IRM was the Shyness data example, which

outlined the step-by-step process for sampling values from the appropriate posterior

distributions. We first programmed this algorithm into the function ‘gibbs’, whose sampling

functions are contained in the packages presented by Trautmann (2014) and Venables (2002).

The full function can be found in Appendix A. The function inputs the data, prior information

about all three of the model’s parameters, the number of iterations, and the duration of the burn-

in period. Using a loop structure, we then employ the aforementioned latent variable approach

and sample from the full conditional densities of every 𝛼, 𝛽, and 𝜃 parameter, as outlined in

Equations 2.4, 2.5, and 2.6 in the Methods chapter. In this approach, the sampled values of the

latent variable 𝑍𝑖𝑗 are stored, although we do not use them. With the full collection of sampled

values stored in R objects, plot generation is simple and efficient.

 Next, the five hypothetical datasets were created to evaluate the model’s performance

under specific conditions. Initially, the Increasing Difficulty datasets featured 81 consumers,

where the observed proportion of preferences for A in each replication were (𝑝1, 𝑝2, 𝑝3, 𝑝4) =

(1, 2 3⁄ , 1 3⁄ , 0). The original Monotone Increasing Difficulty dataset can be seen in Table 4.1.

Whereas all of these preferences were contiguous in the Monotone dataset, their location was

46

randomized in the Non-Monotone dataset. These locations were only randomized once, and the

resulting dataset was used through the entirety of the estimation process. This original Non-

Monotone Increasing Difficulty dataset can be found in Table 4.2. However, when verifying

algorithm convergence, the Non-Monotone dataset experienced less than ideal mixing,

particularly for the four 𝛼 parameters. The initial structure used observed proportions of A

preferences of 100% and 0% in replications 1 and 4, respectively. Such extreme proportions can

often cause computational issues, so, to obtain a dataset for illustration purposes, more response

patterns were added to make the observed preference proportions more realistic. This was

accomplished by adding 27 consumers who consistently preferred product A and 27 consumers

who consistently preferred product B. The adjusted Monotone and Non-Monotone datasets were

shown in Tables 3.4 and 3.5, respectively. The addition of B preferences to the first replication

and A preferences to the last replication greatly improved the algorithm’s mixing, though it is far

from exemplary. Plots of the sampled 𝛼3 values for the Non-Monotone Increasing Difficulty and

Extreme datasets are shown in Figure 4.1 for comparison.

 In order to expedite the exploration of different model specifications, we used

OpenBUGS software, specifically designed for “Bayesian inference Using Gibbs Sampling”

with adaptive rejection sampling. This method does not require the use of the data augmentation

method presented in the Methods chapter; instead, the model in Formula 1.10 is used. The full

OpenBUGS model file and data file code can be found in Appendix B. As stated earlier, the

appropriate model files were easily obtained by adapting the code written for the two-parameter

logistic item response model (2PL IRM) by Curtis (2010). Once these model and data files are

deemed functional, they are inputted to R via the ‘BRugs’ package, which runs the OpenBUGS

sampling algorithm and returns the sampled values in R. This allowed use of R’s powerful

47

Table 4.1 The three distinct response patterns present in the original Monotone Increasing

Difficulty dataset.

 Rep

1

Rep

2

Rep

3

Rep

4

Total A

Selections

Count

 1 1 1 0 3 27

 1 1 0 0 2 27

 1 0 0 0 1 27

Total 81 54 27 0

Table 4.2 The four distinct response patterns present in the original Non-Monotone

Increasing Difficulty dataset.

 Rep

1

Rep

2

Rep

3

Rep

4

Total A

Selections

Count

 1 1 1 0 3 16

 1 1 0 0 2 38

 1 0 1 0 2 11

 1 0 0 0 1 16

Total 81 54 27 0

graphics capabilities, while still utilizing OpenBUGS’s efficient computational process. Table

4.3 compares the elapsed procedure times of the sampling process for both the Raisin Bran and

Cola datasets between the two methods of computation. While marginally higher in

computational costs, ‘BRugs’ saved time via the simplicity of the OpenBUGS syntax. The

necessary adjustments to the model specifications in our DIC calculations were typically one-line

changes in prior distribution or link function, where an identical adjustment to our original R

function would have required detailed specification of the appropriate conditional distributions.

 In cases where OpenBUGS is not available or the user is unfamiliar with BUGS syntax,

many standalone R packages are available for the purpose of Item Response Modeling. The

‘ltm’ package by Rizopoulos (2006) fits several variations of the latent trait model, where ‘eRm’,

48

Figure 4.1 Plots of the sampled values over time for the third item discrimination

parameter. Shown are values resulting from the Non-Monotone Increasing Difficulty

dataset (a) and the Extreme dataset (b). Although much improved over the initial dataset

structure, the Non-Monotone Increasing Difficulty data still experiences minor mixing

issues, where the Extreme data plot is ideal.

Table 4.3 A comparison of elapsed computing times between two programming methods

for the item response model with Gibbs Sampling, (6000 iterations). The Manual method

uses a custom R function with a single nested loop, requiring the installation of the

‘truncnorm’ and ‘MASS’ packages. The alternative was use of the ‘BRugs’ package in R,

whose primary function ‘BRugsFit’ allows OpenBUGS to sample values through the R

interface. The Manual programming proved quicker in computation, but required much

more effort to specify.

 Programming Method

 Manual ‘BRugs’

Raisin Bran Data 48.61 sec 56.81 sec

Cola Data 49.56 sec 58.20 sec

(b)

(a)

49

presented by Mair (2007), focuses on extensions of the Rasch Model, both in unidimensional

environments. The ‘mirt’ package from Chalmers (2012) was created for estimation of

multidimensional IRT parameters. From a Bayesian perspective ‘ltbayes’ by Johnson (2014) and

‘MCMCpack’ by Martin, Quinn, and Park (2011) are well-known alternatives. Mair (2015)

names and explains these and many more packages which can be used for item response

modeling in R.

 Lastly, the Two-Parameter Item Response Model naturally brings an issue of non-

identifiability, due to the product of discrimination and latent preference. 𝛼 is expected to be

positive, because we expect an increase in a consumer’s underlying preference for product A to

be accompanied by a higher probability of selecting A as the preferred product. Therefore,

positive latent preference values can be interpreted as above-average preferences for product A,

and negative latent preference values indicate below-average preferences for product A.

However, samples from OpenBUGS will occasionally contain negative discrimination values

and, thus, latent preference values with opposite interpretations. This problem can be

circumvented by restricting 𝛼 > 0. If one would rather not sacrifice the flexibility of allowing 𝛼

to be freely estimated, it will often suffice to suggest such a restriction through a prior

distribution with either a positive mean or an entirely positive support. Johnson and Albert

(1999) argues that identifiability fails to be a problem when a proper prior is selected for the

latent preference parameters, and Curtis (2010) states that the variance of the latent preferences

must be constant over time to establish identifiability, but we still encountered difficulties. In

these instances, it is still possible to interpret latent preference and discrimination: consumer 𝑖

possesses an above-average preference for product A in replication 𝑗 when the sign of 𝜃𝑖 matches

the sign of 𝛼𝑗 and a below-average preference for product A when the signs are different.

50

However, this is not a solution to the issue of non-identifiability, and the interpretation is much

more easily understood when positive and negative values of 𝜃𝑖 indicate above-average and

below-average latent preferences, respectively. The search for such a solution will remain a

topic of future research. Because the primary goal of this research is to propose the model and

aid in its interpretation, we only present results which contained mostly positive discrimination

values.

 Although the application of a hierarchical version of the IRM would be a natural

progression, our focus on interpretation led to use of a simpler version of the model. The

hierarchical model could be useful for further research and in practice.

51

Chapter 5 - Discussion

 The primary problem with conventional analysis of preference test data using 𝑝𝐴, the

probability of preferring product A over product B, is the inability to allow these probabilities to

differ among consumers. Cochrane et al. (2005) found that results become more stable with

replicated preference tests, due to potential inconsistent consumer preferences over time. The

Two-Parameter IRM allows this flexibility in probabilities and accounts for multiple preference

tests per customer, making it a powerful tool for preference test data analysis. Although other

Bayesian models could be applied in this setting, our goal was to explore the interpretation of the

Two-Parameter IRM, not perform an exhaustive search for the best model.

 In addition, the Two-Parameter IRM estimates characteristics of the preference tests

themselves, rather than only characteristics of the consumers. Given a consumer’s latent ability

and a replication’s discrimination and difficulty, we may be able to predict a preference response

more accurately than by using the consumer’s history of responses alone. This can be

determined by investigating several models’ posterior predictive distributions. Secondly, the

discrimination and difficulty measures provide insight into consumer preferences over time,

information which transcends any specific product or dataset. Even with two different products

with entirely different consumer demographics, there may exist similarities in patterns of

recorded preferences from one replication to the next. These item parameters represent the

similarities and differences in response patterns between different products and consumer panels.

As such, the IRM may be better-suited for exploring the nature of consumer preferences than for

making conclusions about a specific product. Although it may be difficult to make product

decisions based directly on results from the IRM, this information could greatly benefit the

52

advertising and market research sectors by approaching the psychology of preference testing

through a proven mathematical model.

53

References

Albert, James H., and Siddhartha Chib. “Bayesian Analysis of Binary and Polychotomous

 Response Data.” Journal of the American Statistical Association 88.422 (1993): 669-679.

Bi, Jian. “Difficulties and a Way Out: A Bayesian Approach for Sensory Difference and

Preference Tests.” Journal of Sensory Studies 18.1 (2003): 1-18.

Carlin, Bradley P., and Thomas A. Louis. Bayesian Methods for Data Analysis. 3rd ed (2009).

 Boca Raton: Taylor & Francis Group, LLC.

Chalmers, R. Philip. “{mirt}: A Multidimensional Item Response Theory Package for the {R}

 Environment.” Journal of Statistical Software 48.6 (2012): 1-29.

Cochrane, Chun-Yen Chang, Suzanne Dubnicka, and Thomas Loughin. “Comparison of

Methods for Analyzing Replicated Preference Tests.” Journal of Sensory Studies 20.6

(2005): 484-502.

Curtis, S. McKay. “BUGS Code for Item Response Theory.” Journal of Statistical Software 36

(2010).

Ennis, Daniel M., and Jian Bi. “The Beta-Binomial Model: Accounting for Inter-Trial Variation

in Replicated Difference and Preference Tests.” Journal of Sensory Studies 13.4 (1998):

389-412.

Geman, Stuart, and Donald Geman. “Stochastic Relaxation, Gibbs Distributions, and the

 Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine

 Intelligence 6.6 (1984): 721-741.

Greenberg, Allan, and Sy Collins. “Paired Comparison Taste Tests: Some Food for Thought.”

Journal of Marketing Research 3.1 (1966): 76-80.

Johnson, Timothy R. “ltbayes: Simulation-Based Bayesian Inference for Latent Traits of Item

 Response Models.” R package version 0.3. (2014). 13 July 2015.

 <http://CRAN.R-project.org/package=ltbayes>

Johnson, Valen E., and James H. Albert. Ordinal Data Modeling (1999). New York: Springer-

 Verlag.

Lunn, David J., Andrew Thomas, Nicky Best, and David Spiegelhalter. “WinBUGS – A

 Bayesian modelling framework: Concepts, structure, and extensibility.” Statistics and

 Computing 10.4 (2000): 325-337.

Mair, Patrick. “CRAN Task View: Psychometric Models and Methods.” The Comprehensive R

 Archive Network. n.p., 4 May 2015.

54

Mair, Patrick, and R. Hatzinger. “Extended Rasch modeling: The eRm package for the

 application of IRT models in R.” Journal of Statistical Software 20.9 (2007): 1-20.

Martin, Andrew D., Kevin M. Quinn, and John Hee Park. “{MCMCpack}: Markov Chain Monte

 Carlo in {R}.” Journal of Statistical Software 42.9 (2011): 22.

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and

 Edward Teller. “Equation of State Calculations by Fast Computing Machines.” The

 Journal of Chemical Physics 21.6 (1953): 1087-1092.

Meyners, Michael. “Proper and Improper Use and Interpretation of Beta-Binomial Models in the

Analysis of Replicated Difference and Preference Tests.” Food Quality and Preference

18.5 (2007): 741-750.

R Core Team. “R: A Language and Environment for Statistical Computing.” R Foundation for

 Statistical Computing, Vienna, Austria (2014). 13 July 2015.

 <http://www.R-project.org/>

Rizopoulos, Dimitris. “ltm: An R package for Latent Variable Modelling and Item Response

 Theory Analyses.” Journal of Statistical Software 17.5 (2006): 1-25.

Thomas, Andrew, Bob O'Hara, Uwe Ligges, and Sibylle Sturtz. “Making BUGS Open.” R News

 6.1 (2006): 12-17.

Trautmann, Heike, Detlef Steuer, Olaf Mersmann, and Björn Bornkamp. “truncnorm: Truncated

 normal distribution.” R Package Version 1.0-7 (2014). 13 July 2015.

 <http://CRAN.R-project.org/package=truncnorm>

Venables, William N., and Brian D. Ripley. Modern Applied Statistics with S. 4th ed (2002).

 New York: Springer.

Wilke, Kristine D., Chun-Yen Chang Cochrane, and Edgar Chambers IV. “Multiple Preference

Tests Can Provide More Information on Consumer Preferences.” Journal of Sensory

Studies 21.6 (2006): 612-625.

http://www.r-project.org/

55

Appendix A - R Code for Gibbs Sampling

Install Necessary Packages #

install.packages("truncnorm")

library(truncnorm)

install.packages("MASS")

library(MASS)

gibbs function runs the Gibbs Sampling algorithm and returns arrays of

parameter values

gibbs <- function(y,mu.a=1,mu.b=0,sigma0=diag(2),mu.theta=0,niter=6000,

 nburn=1000){

 # data dimensions

 n <- dim(y)[1]

 k <- dim(y)[2]

 # creation of output storage arrays

 z <- array(0,dim=c(n,k,niter))

 a <- matrix(mu.a,nrow=niter,ncol=k)

 b <- matrix(mu.b,nrow=niter,ncol=k)

 theta <- matrix(mu.theta,nrow=niter,ncol=n)

 # these are used to store parameter values at each iteration

 zt <- z[,,1]

 at <- a[1,]

 bt <- b[1,]

 thetat <- theta[1,]

 # the Gibbs Sampling loop

 for (i in 2:niter){

 # sample latent values zij

 at.mat <- matrix(at,nrow=n,ncol=k,byrow=T)

 bt.mat <- matrix(bt,nrow=n,ncol=k,byrow=T)

 thetat.mat <- matrix(thetat,nrow=n,ncol=k,byrow=F)

 mean.z <- at.mat*thetat.mat-bt.mat

 zt <- ifelse(y==1,rtruncnorm(n*k,a=0,mean=mean.z),

 rtruncnorm(n*k,b=0,mean=mean.z))

56

 # sample latent traits thetai

 d <- sum(at^2)+1

 mean.theta <- apply(at.mat*(zt+bt.mat),1,sum)/d

 se.theta <- sqrt(1/d)

 thetat <- rnorm(n,mean.theta,se.theta)

 # sample item parameters (aj,bj)

 X <- cbind(thetat,-1)

 sig.inv <- solve(sigma0)

 mu0 <- c(mu.a,mu.b)

 for (j in 1:k){

 vj <- solve(t(X)%*%X+sig.inv)

 mj <- vj%*%(t(X)%*%zt[,j]+sig.inv%*%mu0)

 abt <- mvrnorm(1,mj,vj)

 at[j] <- abt[1]

 bt[j] <- abt[2]

 }

 # store sampled values

 z[,,i] <- zt

 a[i,] <- at

 b[i,] <- bt

 theta[i,] <- thetat

 }

 return(list(z=z[,,(nburn+1):niter],a=a[(nburn+1):niter,],

 b=b[(nburn+1):niter], theta=theta[(nburn+1):niter,]))

}

z is 3-D array with dimensions [n,k,iter]

a is 2-D array with dimensions [iter,k]

b is 2-D array with dimensions [iter,k]

theta is 2-D array with dimensions [iter,n]

##########################

Shyness Data Example ##

##########################

Shyness dataset can be found at

http://www-math.bgsu.edu/~albert/ord_book/Chapter6/ratings.dat

set.seed(20)

sim <- gibbs(shyness) # all other arguments are default

pull out results for easy plot generation

a <- sim$a

b <- sim$b

57

z <- sim$z

t <- sim$theta

k <- length(a[1,])

n <- length(t[1,])

Plots for Shyness Data in Figure 1.3 #

Whisker Plots for A

list.a <- lapply(seq_len(ncol(a)), function(i) a[,i])

means.a <- apply(a,2,mean)

stripchart(list.a,col="white",axes=F,frame.plot=T,group.names=rep("",k),xlab=

 "Item",ylab=expression(alpha),ylim=c(-1.8,4.5),vertical=T)

for (i in 1:k) points(i,means.a[i],pch=19,cex=0.5)

for (i in 1:k) lines(c(i,i),quantile(a[,i],c(.05,.95)))

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(a[,i],c(.05)),2))

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(a[,i],c(.95)),2))

axis(1,at=seq(1,k,10))

axis(2,at=seq(-3,5))

Whisker Plots for B

list.b <- lapply(seq_len(ncol(b)), function(i) b[,i])

means.b <- apply(b,2,mean)

stripchart(list.b,col="white",axes=F,frame.plot=T,group.names=rep("",k),xlab=

 "Item",ylab=expression(beta),ylim=c(-3,3),vertical=T)

for (i in 1:k) points(i,means.b[i],pch=19,cex=0.5)

for (i in 1:k) lines(c(i,i),quantile(b[,i],c(.05,.95)))

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(b[,i],c(.05)),2))

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(b[,i],c(.95)),2))

axis(1,at=seq(10,k,10))

axis(2,at=seq(-3,3))

Whisker Plots for Theta

list.t <- lapply(seq_len(ncol(t)), function(i) t[,i])

means.t <- apply(t,2,mean)

stripchart(list.t,col="white",axes=F,frame.plot=T,group.names=rep("",n),xlab=

 "Student",ylab=expression(theta),ylim=c(-2.2,2),vertical=T)

for (i in 1:n) points(i,means.t[i],pch=19,cex=0.5)

for (i in 1:n) lines(c(i,i),quantile(t[,i],c(.05,.95)))

for (i in 1:n) lines(c(i-.5,i+.5),rep(quantile(t[,i],c(.05)),2))

for (i in 1:n) lines(c(i-.5,i+.5),rep(quantile(t[,i],c(.95)),2))

axis(1,at=seq(10,n,10))

axis(2,at=seq(-3,3))

58

#########################

Real-World Datasets ##

#########################

note that 0=’preference for B’, 1=’preference for A’

Raisin Bran

rb<-matrix(c(rep(c(1,1,1,1),139),

 rep(c(1,1,1,0),6),

 rep(c(1,1,0,1),13),

 rep(c(1,0,1,1),16),

 rep(c(0,1,1,1),28),

 rep(c(1,1,0,0),5),

 rep(c(1,0,1,0),10),

 rep(c(0,1,1,0),8),

 rep(c(1,0,0,1),9),

 rep(c(0,1,0,1),6),

 rep(c(0,0,1,1),13),

 rep(c(1,0,0,0),11),

 rep(c(0,1,0,0),8),

 rep(c(0,0,1,0),7),

 rep(c(0,0,0,1),12),

 rep(c(0,0,0,0),14)),ncol=4,byrow=T)

Cola

cola<-matrix(c(rep(c(1,1,1,1),65),

 rep(c(1,1,1,0),17),

 rep(c(1,1,0,1),24),

 rep(c(1,0,1,1),19),

 rep(c(0,1,1,1),19),

 rep(c(1,1,0,0),16),

 rep(c(1,0,1,0),11),

 rep(c(0,1,1,0),14),

 rep(c(1,0,0,1),15),

 rep(c(0,1,0,1),9),

 rep(c(0,0,1,1),17),

 rep(c(1,0,0,0),9),

 rep(c(0,1,0,0),12),

 rep(c(0,0,1,0),20),

 rep(c(0,0,0,1),8),

 rep(c(0,0,0,0),21)),ncol=4,byrow=T)

59

Results and Plots for Real-World Datasets #

set.seed(10)

gibbs.rb <- gibbs(rb)

Summarize results

a <- gibbs.rb$a

b <- gibbs.rb$b

t <- gibbs.rb$theta

z <- gibbs.rb$z

n <- length(t[1,])

k <- length(a[1,])

iter <- length(a[,1])

set.seed(10)

gibbs.cola <- gibbs(cola)

Summarize Results

a <- gibbs.cola$a

b <- gibbs.cola$b

t <- gibbs.cola$theta

z <- gibbs.cola$z

n <- length(t[1,])

k <- length(a[1,])

iter <- length(a[,1])

###########################

Hypothetical Datasets ##

###########################

Balanced

y <- matrix(c(rep(c(1,1,1,1),5),

 rep(c(1,1,1,0),5),

 rep(c(1,1,0,1),5),

 rep(c(1,0,1,1),5),

 rep(c(0,1,1,1),5),

 rep(c(1,1,0,0),5),

 rep(c(1,0,1,0),5),

 rep(c(0,1,1,0),5),

 rep(c(1,0,0,1),5),

 rep(c(0,1,0,1),5),

 rep(c(0,0,1,1),5),

 rep(c(1,0,0,0),5),

60

 rep(c(0,1,0,0),5),

 rep(c(0,0,1,0),5),

 rep(c(0,0,0,1),5),

 rep(c(0,0,0,0),5)),ncol=4,byrow=T)

Extreme

y <- matrix(c(rep(c(1,1,1,1),40),rep(c(0,0,0,0),40)),ncol=4,byrow=T)

Increasing Discrimination

Dataset from Table 3.3 was written to a text file and imported as follows:

y <- as.matrix(read.table("examplefilepath\\Increasing Discrimination

 Data.txt"))

Increasing Difficulty (Monotone)

81 consumers originally, 54 consumers added later (see Results chapter)

y <- matrix(c(rep(1,81),rep(1,54),rep(0,27),rep(1,27),rep(0,54),rep(0,81))

 ,ncol=4)

y <- rbind(matrix(rep(1,108),ncol=4),y,matrix(rep(0,108),ncol=4))

Increasing Difficulty (Non-Monotone)

Uses Incr. Diff. (Monotone) data and randomizes 2nd and 3rd columns

81 consumers originally, 54 consumers added later (see Results chapter)

set.seed(10)

y <- matrix(c(rep(1,81),sample(y[,2],81),sample(y[,3],81),rep(0,81)),ncol=4)

y <- rbind(matrix(rep(1,108),ncol=4),y,matrix(rep(0,108),ncol=4))

Results and Plots for Hypothetical Datasets #

set.seed(7)

sim <- gibbs(y)

a <- sim$a

b <- sim$b

t <- sim$theta

z <- sim$z

n <- length(t[1,])

k <- length(a[1,])

iter <- length(a[,1])

61

Appendix B - R and OpenBUGS Code for using ‘BRugs’

OpenBUGS Model File: Two-Parameter Probit Item Response Model ##

model {

 # Rearrange data into full dataset

 for (i in 1:culm[1]) {

 for (j in 1:p) {

 Y[i, j] <- response[1,j]

 }

 }

 for (i in 2:R) {

 for (j in culm[i-1] + 1 : culm[i]) {

 for (k in 1:p) {

 Y[j, k] <- response[i, k]

 }

 }

 }

 # Calculate probability of preferring A for each replication

 for (j in 1:p) {

 P[j] <- phi(-beta[j] / sqrt(1 + pow(alpha[j],2)))

 }

 # 2-Parameter Probit Model specification

 for (i in 1:n) {

 for (j in 1:p) {

 Y[i, j] ~ dbern(prob[i, j])

 prob[i, j] <- phi(alpha[j] * theta[i] - beta[j])

 }

 theta[i] ~ dnorm(0, 1)

 }

 # Specification of Prior Distributions

 for (j in 1:p) {

 beta[j] ~ dnorm(0,1)

 alpha[j] ~ dnorm(1,1)

 }

}

62

#########################

OpenBUGS Data Files ##

#########################

Raisin Bran Data ##

list(n=305, R=16, p=4, culm=c(139, 145, 158, 174, 202, 207, 217, 225, 234,

240, 253, 264, 272, 279, 291, 305), response=structure(.Data=c(

 1,1,1,1,

 1,1,1,0,

 1,1,0,1,

 1,0,1,1,

 0,1,1,1,

 1,1,0,0,

 1,0,1,0,

 0,1,1,0,

 1,0,0,1,

 0,1,0,1,

 0,0,1,1,

 1,0,0,0,

 0,1,0,0,

 0,0,1,0,

 0,0,0,1,

 0,0,0,0), .Dim=c(16,4)))

Cola Data ##

list(n=295, R=16, p=4, culm=c(65, 82, 106, 125, 144, 160, 171, 185, 200, 209,

226, 235, 247, 267, 275, 296), response=structure(.Data=c(

 1,1,1,1,

 1,1,1,0,

 1,1,0,1,

 1,0,1,1,

 0,1,1,1,

 1,1,0,0,

 1,0,1,0,

 0,1,1,0,

 1,0,0,1,

 0,1,0,1,

 0,0,1,1,

 1,0,0,0,

 0,1,0,0,

 0,0,1,0,

 0,0,0,1,

 0,0,0,0), .Dim=c(16,4)))

63

Balanced Data ##

list(n=80, R=16, p=4, culm=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80),

response=structure(.Data=c(

 1,1,1,1,

 1,1,1,0,

 1,1,0,1,

 1,0,1,1,

 0,1,1,1,

 1,1,0,0,

 1,0,1,0,

 0,1,1,0,

 1,0,0,1,

 0,1,0,1,

 0,0,1,1,

 1,0,0,0,

 0,1,0,0,

 0,0,1,0,

 0,0,0,1,

 0,0,0,0), .Dim=c(16,4)))

Extreme Data ##

list(n=80, R=2, p=4, culm=c(40, 80), response=structure(.Data=c(

 1,1,1,1,

 0,0,0,0), .Dim=c(2,4)))

Increasing Discrimination Data ##

list(n=60, R=15, p=4, culm=c(5,7,12,21,28,33,34,37,40,41,48,53,55,56,60),

response=structure(.Data=c(

 1,1,1,1,

 1,1,0,1,

 1,0,1,1,

 0,1,1,1,

 1,1,0,0,

 1,0,1,0,

 0,1,1,0,

 1,0,0,1,

 0,1,0,1,

 0,0,1,1,

 1,0,0,0,

 0,1,0,0,

 0,0,1,0,

 0,0,0,1,

 0,0,0,0), .Dim=c(15,4)))

64

Monotone Increasing Difficulty Data ##

list(n=135, R=5, p=4, culm=c(27,54,81,108,135), response=structure(.Data=c(

 1,1,1,1,

 1,1,1,0,

 1,1,0,0,

 1,0,0,0,

 0,0,0,0), .Dim=c(5,4)))

Non-Monotone Increasing Difficulty Data ##

list(n=135, R=6, p=4, culm=c(27,43,81,92,108,135),

response=structure(.Data=c(

 1,1,1,1,

 1,1,1,0,

 1,1,0,0,

 1,0,1,0,

 1,0,0,0,

 0,0,0,0), .Dim=c(6,4)))

###########################

R Scripts for ‘BRugs’ ##

###########################

‘BRugsFit’ will run simulations in OpenBUGS and store results in R

install.packages("BRugs")

library(BRugs)

Raisin Bran Data

sim.rb <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Raisin Bran

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000,

 nIter=5000, seed=10)

Cola Data

sim.c <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Cola

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000,

 nIter=5000, seed=10)

Balanced Data

sim.b <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Balanced

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000,

 nIter=5000, seed=10)

65

Extreme Data

sim.e <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Extreme

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000,

 nIter=5000, seed=10)

Increasing Discrimination Data

sim.d <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Discr.

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),

 nBurnin=1000, nIter=5000, seed=10)

Increasing Difficulty (Monotone) Data

sim.dm <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Diff.

 (M) Data.txt", parametersToSave=c("alpha","beta","theta","P"),

 nBurnin=1000, nIter=5000, seed=10)

Increasing Difficulty (Non-Monotone) Data

sim.dnm <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Diff.

 (NM) Data.txt", parametersToSave=c("alpha","beta","theta","P"),

 nBurnin=1000, nIter=5000, seed=10)

Plot Generation for OpenBUGS Results ##

RB: sim.rb #

Cola: sim.c #

Balanced: sim.b #

Extreme: sim.e #

Discr.: sim.d #

Diff. (M): sim.dm #

Diff. (NM): sim.dnm #

Boxplots for alpha, beta, P

boxplot(samplesSample("alpha[1]"),samplesSample("alpha[2]"),samplesSample

 ("alpha[3]"), samplesSample("alpha[4]"),xlab="Replication",

 ylab=expression(alpha))

66

axis(1,at=seq(1,4))

boxplot(samplesSample("beta[1]"),samplesSample("beta[2]"),samplesSample("beta

 [3]"), samplesSample("beta[4]"),xlab="Replication", ylab=

 expression(beta))

axis(1,at=seq(1,4))

boxplot(samplesSample("P[1]"),samplesSample("P[2]"),samplesSample("P[3]"),

 samplesSample("P[4]"),xlab="Replication",ylab="p")

axis(1,at=seq(1,4))

Example Histograms and Sim. Sequences for alpha, beta, theta

hist(samplesSample("alpha[3]"),xlab=expression(alpha[3]),main=" ")

hist(samplesSample("beta[2]"),xlab=expression(beta[2]),main=" ")

hist(samplesSample("theta[30]"),xlab=expression(theta[30]),main=" ")

samplesHistory("alpha[3]",mfrow=c(1,1),ylab=expression(alpha[3]),main=" ")

samplesHistory("beta[2]",mfrow=c(1,1),ylab=expression(beta[2]),main=" ")

samplesHistory("theta[30]",mfrow=c(1,1),ylab=expression(theta[30]),main=" ")

 # Optional Kernel Density Estimates for above nodes

 samplesDensity("alpha[3]",mfrow=c(1,1))

 samplesDensity("beta[2]",mfrow=c(1,1))

 samplesDensity("theta[30]",mfrow=c(1,1))

Whisker Plots for theta

 # sim.b used for example, use appropriate sim results

 n <- dim(sim.b$Stats)[1]-12

 means.t <- tail(sim.b$Stats[,1],n)

 quant.t <- cbind(tail(sim.b$Stats[,4],n),tail(sim.b$Stats[,6],n))

t <- matrix(seq(1,n*10),nrow=10)

list.t <- lapply(seq_len(ncol(t)), function(i) t[,i])

stripchart(list.t,col="white",axes=F,frame.plot=T,group.names=rep("",n),xlab=

 "Panelist", ylab=expression(theta),ylim=c(-3,3),vertical=T)

for (i in 1:n) points(i,means.t[i],pch=19,cex=0.5)

for (i in 1:n) lines(c(i,i),c(quant.t[i,1],quant.t[i,2]))

for (i in 1:n) lines(c(i-.5,i+.5),rep(quant.t[i,1],2))

for (i in 1:n) lines(c(i-.5,i+.5),rep(quant.t[i,2],2))

axis(1,at=seq(10,n,10))

axis(2,at=seq(-3,3))

67

################################

Model Comparison Using DIC ##

################################

LIST OF PRIOR DISTRIBUTIONS AND NOTATION ##

Standard: a ~ N(1,1), b ~ N(0,1) ##

a - (.5,.33): a ~ N(.5,.33), b ~ N(0,1) ##

a - (.5,1): a ~ N(.5,1), b ~ N(0,1) ##

a - (.5,3): a ~ N(.5,3), b ~ N(0,1) ##

a - (1,.33): a ~ N(1,.33), b ~ N(0,1) ##

a - (1,3): a ~ N(1,3), b ~ N(0,1) ##

a - (2,.33): a ~ N(2,.33), b ~ N(0,1) ##

a - (2,1): a ~ N(2,1), b ~ N(0,1) ##

a - (2,3): a ~ N(2,3), b ~ N(0,1) ##

b - (-1,.33): a ~ N(1,1), b ~ N(-1,.33) ##

b - (-1,1): a ~ N(1,1), b ~ N(-1,1) ##

b - (-1,3): a ~ N(1,1), b ~ N(-1,3) ##

b - (0,.33): a ~ N(1,1), b ~ N(0,.33) ##

b - (0,3): a ~ N(1,1), b ~ N(0,3) ##

b - (1,.33): a ~ N(1,1), b ~ N(1,.33) ##

b - (1,1): a ~ N(1,1), b ~ N(1,1) ##

b - (1,3): a ~ N(1,1), b ~ N(1,3) ##

a - gamma(3,3): a ~ gamma(3,3), b ~ N(0,1) ##

a - gamma(1,1): a ~ gamma(1,1), b ~ N(0,1) ##

a - gamma(.33,.33): a ~ gamma(.33,.33), b ~ N(0,1) ##

a - Truncated Normal: a ~ TNorm(1,1), b ~ N(0,1) ##

1P a - (1,1): a ~ N(1,1), b ~ N(0,1) ##

1P a - (1,3): a ~ N(1,3), b ~ N(0,1) ##

1P a - 1: a = 1, b ~ N(0,1) ##

DIC function returns DIC from model specified for Cola and Raisin Bran

datasets, (probit and logit), then they are inserted into a storage

matrix

DIC <- function(model.file.P,model.file.L){

Cola, Probit

 sim.c.P <- BRugsFit(modelFile=model.file.P, numChains=1,

 data="examplefilepath\\Cola Data.txt", parametersToSave=

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10)

68

Cola, Logit

 sim.c.L <- BRugsFit(modelFile=model.file.L, numChains=1,

 data="examplefilepath\\Cola Data.txt", parametersToSave=

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10)

Raisin Bran, Probit

 sim.rb.P <- BRugsFit(modelFile=model.file.P, numChains=1,

 data="examplefilepath\\Raisin Bran Data.txt", parametersToSave=

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10)

Raisin Bran, Logit

 sim.rb.L <- BRugsFit(modelFile=model.file.L, numChains=1,

 data="examplefilepath\\Raisin Bran Data.txt", parametersToSave=

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10)

Results Storage

 res <- vector(length=4)

 res[1] <- sim.c.P$DIC[2,3]

 res[2] <- sim.c.L$DIC[2,3]

 res[3] <- sim.rb.P$DIC[2,3]

 res[4] <- sim.rb.L$DIC[2,3]

 return(res=res)

}

creation of matrix for storage of DIC values

DIC.store <- matrix(nrow=24,ncol=4)

Standard Model

DIC.store[1,] <- DIC(model.file.P="examplefilepath\\Standard Model

 (Probit).txt", model.file.L="examplefilepath\\Standard Model

 (Logit).txt")

a ~ N(.5,.33)

DIC.store[2,] <- DIC(model.file.P="examplefilepath\\a - (.5,.33) (P).txt",

 model.file.L="examplefilepath\\a - (.5,.33) (L).txt")

a ~ N(.5,1)

DIC.store[3,] <- DIC(model.file.P="examplefilepath\\a - (.5,1) (P).txt",

 model.file.L="examplefilepath\\a - (.5,1) (L).txt")

a ~ N(.5,3)

DIC.store[4,] <- DIC(model.file.P="examplefilepath\\a - (.5,3) (P).txt",

 model.file.L="examplefilepath\\a - (.5,3) (L).txt")

a ~ N(1,.33)

DIC.store[5,] <- DIC(model.file.P="examplefilepath\\a - (1,.33) (P).txt",

 model.file.L="examplefilepath\\a - (1,.33) (L).txt")

69

a ~ N(1,3)

DIC.store[6,] <- DIC(model.file.P="examplefilepath\\a - (1,3) (P).txt",

 model.file.L="examplefilepath\\a - (1,3) (L).txt")

a ~ N(2,.33)

DIC.store[7,] <- DIC(model.file.P="examplefilepath\\a - (2,.33) (P).txt",

 model.file.L="examplefilepath\\a - (2,.33) (L).txt")

a ~ N(2,1)

DIC.store[8,] <- DIC(model.file.P="examplefilepath\\a - (2,1) (P).txt",

 model.file.L="examplefilepath\\a - (2,1) (L).txt")

a ~ N(2,3)

DIC.store[9,] <- DIC(model.file.P="examplefilepath\\a - (2,3) (P).txt",

 model.file.L="examplefilepath\\a - (2,3) (L).txt")

b ~ N(-1,.33)

DIC.store[10,] <- DIC(model.file.P="examplefilepath\\b - (-1,.33) (P).txt",

 model.file.L="examplefilepath\\b - (-1,.33) (L).txt")

b ~ N(-1,1)

DIC.store[11,] <- DIC(model.file.P="examplefilepath\\b - (-1,1) (P).txt",

 model.file.L="examplefilepath\\b - (-1,1) (L).txt")

b ~ N(-1,3)

DIC.store[12,] <- DIC(model.file.P="examplefilepath\\b - (-1,3) (P).txt",

 model.file.L="examplefilepath\\b - (-1,3) (L).txt")

b ~ N(0,.33)

DIC.store[13,] <- DIC(model.file.P=”examplefilepath\\b - (0,.33) (P).txt",

 model.file.L="examplefilepath\\b - (0,.33) (L).txt")

b ~ N(0,3)

DIC.store[14,] <- DIC(model.file.P="examplefilepath\\b - (0,3) (P).txt",

 model.file.L="examplefilepath\\b - (0,3) (L).txt")

b ~ N(1,.33)

DIC.store[15,] <- DIC(model.file.P="examplefilepath\\b - (1,.33) (P).txt",

 model.file.L="examplefilepath\\b - (1,.33) (L).txt")

b ~ N(1,1)

DIC.store[16,] <- DIC(model.file.P="examplefilepath\\b - (1,1) (P).txt",

 model.file.L="examplefilepath\\b - (1,1) (L).txt")

70

b ~ N(1,3)

DIC.store[17,] <- DIC(model.file.P="examplefilepath\\b - (1,3) (P).txt",

 model.file.L="examplefilepath\\b - (1,3) (L).txt")

a ~ gamma(3,3) (mean,var) = (1,1/3)

DIC.store[18,] <- DIC(model.file.P="examplefilepath\\a - gamma(3,3)

 (P).txt", model.file.L="examplefilepath\\a - gamma(3,3) (L).txt")

a ~ gamma(1,1) (mean,var) = (1,1)

DIC.store[19,] <- DIC(model.file.P="examplefilepath\\a - gamma(1,1)

 (P).txt", model.file.L="examplefilepath\\a - gamma(1,1) (L).txt")

a ~ gamma(.33,.33) (mean,var) = (1,3)

DIC.store[20,] <- DIC(model.file.P="examplefilepath\\a - gamma(.33,.33)

 (P).txt", model.file.L="examplefilepath\\a - gamma(.33,.33) (L).txt")

a ~ Truncated Normal

DIC.store[21,] <- DIC(model.file.P="examplefilepath\\a - Truncated Normal

 (P).txt", model.file.L="examplefilepath\\a - Truncated Normal

 (L).txt")

1P a - (1,1)

DIC.store[22,] <- DIC(model.file.P="examplefilepath\\1P a - (1,1) (P).txt",

 model.file.L="examplefilepath\\1P a - (1,1) (L).txt")

1P a - (1,3)

DIC.store[23,] <- DIC(model.file.P="examplefilepath\\1P a - (1,3) (P).txt",

 model.file.L="examplefilepath\\1P a - (1,3) (L).txt")

1P a - 1

DIC.store[24,] <- DIC(model.file.P="examplefilepath\\1P a - 1 (P).txt",

 model.file.L="examplefilepath\\1P a - 1 (L).txt")

71

Appendix C - Additional Code

Item Response Curves for Figure 1.2 ##

Typical Item Response Curve: Figure 1.2 (a)

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)")

axis(2,at=seq(0,1,.1))

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02)

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02)

Changing Difficulty, Keeping Discrimination Constant: Figure 1.2 (b)

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)")

curve(pnorm(x-1),from=-3,to=3,add=T,lty=5)

curve(pnorm(x+1),from=-3,to=3,add=T,lty=3)

axis(2,at=seq(0,1,.1))

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02)

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02)

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = 1, ",beta," = -

 1")),expression(paste(alpha," = 1, ",beta," =

 0")),expression(paste(alpha," = 1, ",beta," =

 1"))),lty=c(3,1,5),bty="n")

text(x=c(-1.2,-.3,.7),y=c(.5,.5,.5),labels=c("Easy","Moderate","Difficult"))

Changing Discrimination, Keeping Difficulty Constant: Figure 1.2 (c)

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)")

curve(pnorm(2*x),from=-3,to=3,add=T,lty=5)

curve(pnorm(.5*x),from=-3,to=3,add=T,lty=3)

axis(2,at=seq(0,1,.1))

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02)

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02)

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = .5, ",beta," =

 0")),expression(paste(alpha," = 1, ",beta," =

 0")),expression(paste(alpha," = 2, ",beta," =

 0"))),lty=c(3,1,5),bty="n")

text(x=c(2,1.6,.77),y=c(.8,.89,.88),labels=c("Low","Moderate","High"))

72

Extreme Values of Discrimination: Figure 1.2 (d)

curve(pnorm(0*x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)",lty=5,

 ylim=c(0,1))

curve(pnorm(10000*x),from=-3,to=3,add=T)

axis(2,at=seq(0,1,.1))

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02)

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02)

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = 0, ",beta," =

 0")),expression(paste(alpha," = 10,000 , ",beta," =

 0"))),lty=c(5,1),bty="n")

text(x=c(1.5,1.5),y=c(.45,.95),labels=c("'Useless'","'Ideal'"))

###################################

Calculation of Computing Time ##

###################################

this method returns system, user, and elapsed time for the called functions

Raisin Bran used as example

Gibbs Sampler programmed directly in R

ptm <- proc.time()

set.seed(10)

gibbs.rb <- gibbs(rb)

proc.time() – ptm

Gibbs Sampler using OpenBUGS through ‘BRugs’ package

ptm <- proc.time()

sim.rb <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item

 Response Model.txt", numChains=1, data="examplefilepath\\Raisin Bran

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),

 nBurnin=1000, nIter=5000, seed=10)

proc.time() - ptm

