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Abstract 

 Preference testing is a popular method of determining consumer preferences for a variety 

of products in areas such as sensory analysis, animal welfare, and pharmacology.  However, 

many prominent models for this type of data do not allow different probabilities of preferring 

one product over the other for each individual consumer, called overdispersion, which intuitively 

exists in real-world situations.  We investigate the Two-Parameter variation of the Item Response 

Model (IRM) in the context of replicated preference testing.  Because the IRM is most 

commonly applied to multiple-choice testing, our primary focus is the interpretation of the model 

parameters with respect to preference testing and the evaluation of the model’s usefulness in this 

context.   We fit a Bayesian version of the Two-Parameter Probit IRM (2PP) to two real-world 

datasets, Raisin Bran and Cola, as well as five hypothetical datasets constructed with specific 

parameter properties in mind.  The values of the parameters are sampled via the Gibbs Sampler 

and examined using various plots of the posterior distributions.  Next, several different models 

and prior distribution specifications are compared over the Raisin Bran and Cola datasets using 

the Deviance Information Criterion (DIC).  The Two-Parameter IRM is a useful tool in the 

context of replicated preference testing, due to its ability to accommodate overdispersion, its 

intuitive interpretation, and its flexibility in terms of parameterization, link function, and prior 

specification.  However, we find that this model brings computational difficulties in certain 

situations, some of which require creative solutions.  Although the IRM can be interpreted for 

replicated preference testing scenarios, this data typically contains few replications, while the 

model was designed for exams with many items.  We conclude that the IRM may provide little 

evidence for marketing decisions, and it is better-suited for exploring the nature of consumer 

preferences early in product development. 
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Chapter 1 - Background 

 Preference Testing 

 Sensory analysis is the application of statistical techniques to the evaluation of human 

senses, such as taste or smell, often to gain knowledge about product attributes and consumer 

preferences.  The discipline rose from the early days of product trade: potential customers began 

to test small samples of the product of interest as representations of the entire product’s quality.  

Sensory analysis has advanced alongside the economy, now generating large quantities of data 

and utilizing sophisticated statistical methods for analysis. 

 A common approach is the preference test, which presents some number of product 

samples to a group of consumers and asks for the preferred sample to be selected.  In this case, 

the product testers may be referred to as ‘panelists’ or ‘consumers’.  The preference test is often 

in the form of a choice between two products, which results in binary data.  Most conventional 

preference testing analysis methods are based on inference for 𝑝𝐴, the probability of preferring 

product A over product B.  This can be accomplished by the two-sided binomial test, where the 

null value of the proportion of A preferences is usually 0.50.  Using the binomial distribution, we 

can then calculate the significance of the observed proportion of preferences for product A, 𝑝̂𝐴.  

With a large sample size, a normal approximation confidence interval is easily accessible: 

𝑝̂𝐴 ± 𝑧𝛼 2⁄ √
𝑝𝐴(1−𝑝𝐴)

𝑛
     ( 1.1 ) 

where 𝑛 is the number of consumers and 𝑧𝛼 2⁄  is the standard normal quantile with an upper tail 

probability of 𝛼 2⁄ .  However, these methods must often assume that the panelists experience the 

same probability of preferring product A, which is a difficult assertion to accept.   
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 Bi (2003) attempted to avoid this complication by allowing 𝑝𝐴 to change between 

consumers through a Bayesian approach to the Binomial model.  This method does allow prior 

beliefs about 𝑝𝐴 to be reflected in the final estimates, but it is still a single estimate for all 

consumers.  To mend this difficulty, we need a model which can accommodate individual 

probabilities of preferring product A for all 𝑛 consumers, denoted by 𝑝1, … , 𝑝𝑛.  Logistic 

regression allows this probability to change between consumers based on individual levels of the 

model’s covariates, but covariate information is not typically collected in preference testing. 

 This suggests the use of multiple test replications for each consumer, advocated by 

several authors.  Greenberg and Collins (1966) concluded that a single taste test may not 

accurately determine consumer preferences and that a two-trial taste test is much more powerful.  

Wilke, Cochrane, and Chambers (2006) argued that multiple tests could diagnose inconsistent 

preferences, which were identified in their example data by increasing proportions of preferences 

for product A over time.  Although multiple replications are useful in determining consumer 

preference patterns, we need a model that can account for the changing probability of preferring 

product A over time, known as overdispersion.  Cochrane, Dubnicka, and Loughin (2005) 

compared the power and Type 1 error rates of several methods of analysis which adjust for 

overdispersion.  They concluded that the generalized linear model with a Pearson adjustment was 

the simplest of the models related to the binomial assumption, and the normal method also 

performs well, even though it does not explicitly correct for overdispersion.  In the process, 

Cochrane et al. (2005) also found that single preference tests were often too liberal or 

conservative, resulting in misleading conclusions about consumer preferences.  In contrast, their 

analysis of replicated preference tests produced more stabilized results. 
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 The beta-binomial model is a popular alternative when multiple preference tests are being 

considered.  Ennis and Bi (1998) discuss its advantages over the binomial model, namely the 

ability for inter-trial probabilities to vary, thus allowing for overdispersion.  Meyners (2007) also 

supports the beta-binomial and provides guidelines for proper interpretation.   

 In order to allow consumer preferences to differ among subjects and gather information 

about preference trends across replications, we apply the Two-Parameter Item Response Model 

under a Bayesian framework.  The focus of this work is the interpretation of this model’s 

parameters in the context of replicated preference testing.  As a secondary objective, we would 

also like to investigate how useful the model could be for industry executives making product 

decisions based on sensory analysis results. 

 Bayesian Methods and Gibbs Sampling 

 We will assume that the reader has some familiarity with the basics of Bayesian methods 

and Markov chain Monte Carlo (MCMC) simulation, so this report will only provide a brief 

overview of their application.  Carlin and Louis (2009) provide a high-quality introduction to 

these methods.  Recall that Bayesian estimation treats model parameters as random variables and 

utilizes some prior knowledge about the quantities of interest, in the form of prior distributions.  

The prior distributions work with the data likelihood to form the posterior distribution, which 

represents our updated beliefs about the parameters given the observed data.  This can be viewed 

through the relationship 

𝑝(𝜽|𝒚) ∝ 𝜋(𝜽) 𝑓(𝒚|𝜽)    ( 1.2 ) 

where 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑝) are the parameters of interest, 𝒚 = (𝑦1, … , 𝑦𝑛) represents the observed 

data.  Here, 𝑝 represents the joint posterior distribution, where 𝜋 is the joint prior distribution and 
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𝑓 is the data likelihood.  Once this posterior distribution is obtained, point and interval estimates 

are easily calculated using characteristics of the distribution itself. 

 However, this joint posterior distribution may be very complex, especially with more 

than one parameter, preventing direct calculation of the density function.  MCMC simulation is 

especially useful in situations with multiple parameters.  In these cases, which occur often in 

Bayesian statistics, it is common to apply an MCMC simulation algorithm called the Gibbs 

Sampler to obtain the parameters’ posterior densities, a method first introduced by Geman and 

Geman (1984).  The algorithm works by iteratively sampling from each parameter’s full 

conditional distribution 𝑔𝑖(𝜃𝑖|𝜽−𝒊 ,  𝒚), where 𝜽−𝒊 = (𝜃1, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑝).  These full 

conditional densities may be very simple to sample from.  In an instance when the full 

conditional density is not easily accessible, an MCMC algorithm developed by Metropolis et al. 

(1953), called the Metropolis-Hastings algorithm, can be used to sample from that distribution.  

To begin the algorithm, first set 𝑡 = 0 and 𝜽(0) = (𝜃1
(0)

, 𝜃2
(0)

, … , 𝜃𝑝
(0)

).  These initial values can 

be easily set to the desired prior means, but the choice usually remains inconsequential.  At 

iteration 𝑡, repeat the following steps: 

  1)  Draw 𝜃1
(𝑡)

 ~ 𝑔1(𝜃1|𝜃2
(𝑡−1)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑝
(𝑡−1)

,  𝒚) 

  2)  Draw 𝜃2
(𝑡)

 ~ 𝑔2(𝜃2|𝜃1
(𝑡)

, 𝜃3
(𝑡−1)

, … , 𝜃𝑝
(𝑡−1)

,  𝒚)  

  3)  Draw 𝜃3
(𝑡)

 ~ 𝑔3(𝜃3|𝜃1
(𝑡)

, 𝜃2
(𝑡)

, … , 𝜃𝑝
(𝑡−1)

,  𝒚) 

  … 

  𝑝)  Draw 𝜃𝑝
(𝑡)

 ~ 𝑔𝑝(𝜃𝑝|𝜃1
(𝑡)

, 𝜃2
(𝑡)

, 𝜃3
(𝑡)

, … , 𝜃𝑝−1
(𝑡)

,  𝒚) 
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Note that the distribution in Step 2 is conditional on the most recently sampled value of 𝜃1, 

rather than 𝜃1
(𝑡−1)

.  This stipulation is used throughout the algorithm, as each step samples its 

respective parameter conditional on the most recent values of the other parameters. 

 It can be shown that this algorithm converges to the joint posterior distribution needed for 

our parameter estimation after some required number of steps 𝑡0.  Consequently, the Markov 

chain {𝜽(𝑡); 𝑡 > 𝑡0} acts as a dependent sample from 𝑝(𝜽|𝒚).  The sufficient number of iterations 

𝑡0 can be investigated through plots of the sampled values; convergence is indicated by a random 

walk through the sample space displaying a mix of large and small jumps.  Figure 1.1(a) shows 

the rapid convergence of an example Markov chain, and Figure 1.1(b) shows the sampled values 

after the first 1000 iterations were removed.  This collection of removed iterations is known as 

the burn-in period.  Provided that the length of the burn-in period is larger than 𝑡0, all remaining 

observations serve as a sample from the parameter’s posterior density.  Quantities such as the 

sample’s mean and quantiles can be easily calculated to represent posterior beliefs about the 

parameter in question.  This method was used to sample all relevant model parameters in this 

report, and summary graphics of their posterior distributions are provided in the Results chapter. 

 

Figure 1.1 Example plots showing the convergence of the Gibbs Sampling algorithm (a) 

and the resulting sample of 5000 parameter values (b). 

(a)             (b) 
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 Item Response Theory 

 Terminology 

 Item response models are often applied in the educational setting to describe 

characteristics of exams with questions that are scored as either correct or incorrect.  Naturally, 

multiple choice tests are the primary area of application.  In this familiar context, the test 

questions are referred to as items, and the individual test-takers as examinees.  Suppose a 

multiple-choice exam contains 𝑘 items answered by 𝑛 examinees.  When examinee i answers 

item j, his/her response is recorded as correct (𝑦𝑖𝑗 = 1) or incorrect (𝑦𝑖𝑗 = 0).  One purpose of 

the item response model is to calculate the probability that a student answers each question 

correctly.  This probability depends on the individual student’s skill or knowledge in the subject 

matter, called latent ability, and characteristics of the question itself, called item parameters.  

Our primary model utilizes two item parameters, discrimination and difficulty, in addition to the 

students’ latent ability parameters.  This is predictably referred to as the Two-Parameter Item 

Response Model. 

 First, each student is assumed to possess a latent ability, denoted by 𝜃𝑖, to describe his 

underlying ability with respect to the exam’s content.  For example, a higher latent ability will 

typically result in a higher probability of answering a given question correctly.  Secondly, 

measures of discrimination and difficulty are included for each exam question.  Item 

discrimination represents the ability of an exam question to distinguish between examinees of 

varying abilities.  For example, if an item has low discrimination, there will be only slight 

differences in probabilities of correct answers between students with low ability and students 

with high ability.  For an item with high discrimination, students with significantly higher latent 

ability will have significantly higher probabilities of answering correctly.  Item difficulty is a 
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measure of the relative difficulty of a test question.  Suppose a single student answers questions 

with a variety of difficulties.  The student will have a higher probability of answering correctly 

on the easier questions and a lower probability of answering correctly on the more difficult 

questions. 

 Item Response Curves 

 The Two-Parameter Item Response Model (IRM) is used to model probabilities of 

students answering questions correctly – that is, quantities restricted to the interval [0,1].  In 

these situations, it is common practice to utilize a link function which generates only responses 

within such an interval.  Therefore, the probability of a correct answer is modeled as some 

distribution function 𝐹 of the parameters, written 

𝑃(𝑦 = 1|𝜃) = 𝐹(𝛼𝜃 − 𝛽)     ( 1.3 ) 

where 𝛼 is item discrimination and 𝛽 is item difficulty.  Notice that discrimination and difficulty 

effectively act as the model’s rate and location parameters, respectively.  The two most 

commonly used link functions in these situations are probit and logit.  The probit link uses a 

standard normal cumulative density function (CDF): 

𝐹(𝑡) =  Φ(𝑡) =  ∫
1

√2𝜋
𝑒−𝑧2/2 𝑑𝑧

𝑡

−∞
    ( 1.4 ) 

The logit link uses the CDF of the logistic distribution, also known as the logistic function: 

𝐹(𝑡) =  
1

1+𝑒−𝑡       ( 1.5 ) 

Once the link function is assigned and the item parameters determined, we can create an item 

response curve for a specific exam question as a function of the students’ latent abilities 𝜃𝑖.  

Figure 1.2 provides example item response curves to allow for intuitive interpretations of the 

item parameters, much like the IRT discussion by Johnson and Albert (1999). 
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Figure 1.2 Item response curves (IRC), using the probit link function.  Curves shown are 

the typical IRC (a), curves of varying item difficulty (b), curves of varying item 

discrimination (c), and curves with extreme discrimination values (d). 

 

 Figure 1.2(a) shows the typical item response curve with 𝛼 = 1 and 𝛽 = 0.  It is common 

to assign the prior distributions 𝜃𝑖  ~ 𝑁(0,1), so that, a priori, most values are within the interval 

(-3, 3) and the average latent ability is represented by 𝜃 = 0.  Note that the probability of 

answering correctly is always in the interval [0, 1], and the probability of a student with average 

(a)             (b) 

(c)             (d) 
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ability giving a correct response is equal to 0.5.  Also, since the item discrimination is effectively 

a rate parameter, setting 𝛼 > 0 gives a curve in which the probability of a correct answer 

increases as a student’s latent ability increases.  Since the positive relationship between ability 

and performance is usually expected, many IRMs justifiably restrict 𝛼 to this support. 

 In Figure 1.2(b), we can view the effect of changing the difficulty parameter 𝛽.  As 𝛽 

increases, for fixed 𝛼, the item response curve shifts to the right, indicating that higher latent 

abilities are required to achieve the same probabilities of answering correctly.  Therefore, the 

curve corresponding to 𝛽 = −1 represents an “easy” item, the curve corresponding to 𝛽 = 0 

represents an item of “moderate difficulty”, and the curve corresponding to 𝛽 = 1 represents a 

“difficult” item.   

 Figure 1.2(c) shows the effect of changing the discrimination parameter 𝛼, keeping 𝛽 

fixed.  Here, only the slope of the curve is affected as 𝛼 changes from 0.5 to 2.  With a low 

discrimination of 0.5, the probabilities of correct answers change slowly as latent ability is 

increased.  This means that the students of varying abilities would generally be more similar in 

their responses.  In contrast, a high discrimination of 2 creates a curve which alters the 

probabilities of correct answers very quickly.  In this case, we would likely see a separation 

between students of high ability and students of low ability, indicating that this item 

“discriminates” well.  The effect of item discrimination is further illustrated in Figure 1.2(d), 

which displays the curves of what could be considered “ideal” and “useless” exam questions.  

The “ideal” item would assure that all students of at least some given latent ability answer 

correctly, and all students with lower ability answer incorrectly.  The curve is achieved by 

applying a very high discrimination, 𝛼 = 10,000, and setting difficulty to the required latent 

ability to answer correctly, in this case 𝛽 = 0.  On the other hand, a “useless” item would 
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provide no distinction between students of different latent abilities, and thus all students have the 

same probability of answering correctly. 

 

 An Example 

 Johnson and Albert (1999) walk through a typical example of item response modeling, 

using data from a sociological experiment.  In this study, 𝑛 = 120 students were given 

personality ratings by a subset of 𝑘 = 107 of those students in the categories of likeability, 

aggressiveness, and shyness.  The example materials can be found at http://www-math.bgsu.edu/ 

~albert/ ord_book/Chapter6/, with the dataset called “ratings.dat”.  In the text’s example, the 

shyness classifications act as item response data, where the 120 students are treated as 

examinees, the 107 ratings of each student as items, and the shyness ratings as responses.  Here, 

each student was perceived as either “shy” or “not shy”.  If “shy” answers are assigned ones and 

“not shy” answers zeroes, then this dataset can be expressed as a 120 x 107 matrix of binary data.  

The relationship between the parameters and the probability of a student being perceived as shy 

is expressed via the Two-Parameter Probit IRM (2PP), 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗);  𝑖 = 1, … ,120;  𝑗 = 1, … ,107  ( 1.6 ) 

Therefore, using the probit link, we can write the probability of a response 𝑦𝑖𝑗 as 

𝑃(𝑦𝑖𝑗|𝜃𝑖 , 𝛼𝑗 , 𝛽𝑗) =  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 −  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗;   𝑦𝑖𝑗 = 0, 1  ( 1.7 ) 

Once the assumption is made that all responses given by an examinee are independent, called 

conditional independence, the probability of a student’s sequence of responses 𝒚𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑘) 

is 

𝑃(𝑦𝑖|𝜃𝑖 , 𝛼, 𝛽) = ∏ Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 −  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗𝑘
𝑗=1   ( 1.8 ) 

http://www-math.bgsu.edu/%20~albert/%20ord_book/Chapter6/
http://www-math.bgsu.edu/%20~albert/%20ord_book/Chapter6/
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where  𝜶 = (𝛼1, … , 𝛼𝑘) and 𝜷 = (𝛽1, … , 𝛽𝑘).  Next, we must assume that all examinees’ 

responses are also independent of each other, which means that the data likelihood is simply the 

product of the above probability: 

𝐿(𝜽, 𝜶, 𝜷) = ∏ ∏ Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)𝑦𝑖𝑗[1 −  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗)]1−𝑦𝑖𝑗𝑘
𝑗=1

𝑛
𝑖=1   ( 1.9 ) 

Johnson and Albert (1999) assumed a priori that the latent abilities 𝜽 = (𝜃1, … , 𝜃𝑛) and the item 

difficulties β are drawn from Standard Normal distributions, and the item discriminations α are 

drawn from N(1,1).  This implies that the joint posterior distribution is 

𝑔(𝜽, 𝜶, 𝜷|𝒚) ∝ 𝐿(𝜽, 𝜶, 𝜷) ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 1,1) 𝜙(𝛽𝑗; 0,1)𝑘
𝑗=1

𝑛
𝑖=1  ( 1.10 ) 

where 𝜙(𝑥; 𝜇, 𝜎2) denotes a normal density with parameters µ and σ2.  Full conditionals based 

on (1.10) are not all easy to sample from.  Thus, they also implement a latent variable structure 

introduced by Albert and Chib (1993) for this example, defining the unobservable quantity 𝑍𝑖𝑗 to 

represent the underlying cause for examinee responses.  This process simplifies the Gibbs 

Sampling algorithm, making it easier to sample from the desired joint posterior distribution.  The 

latent variables are simulated from truncated normal distributions, and then the posterior 

distributions can be calculated using standard results from normal linear models.  More details 

on this process are included in the Methods chapter.  Defining 𝒁 = (𝑍11, … 𝑍𝑛𝑘), the final joint 

posterior density of all model parameters is 

𝑔(𝒁, 𝜽, 𝜶, 𝜷|𝒚) ∝ ∏ ∏[𝜙(𝑍𝑖𝑗; 𝑚𝑖𝑗, 1)𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗)] 

𝑘

𝑗=1

𝑛

𝑖=1

 

𝑥 ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 1,1) 𝜙(𝛽𝑗; 0,1)𝑘
𝑗=1

𝑛
𝑖=1  ( 1.11 ) 

where 𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗) equals 1 when {𝑍𝑖𝑗 > 0, 𝑦𝑖𝑗 = 1 } or {𝑍𝑖𝑗 ≤ 0, 𝑦𝑖𝑗 = 0 } and equals 0 

otherwise. 
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 Each iteration of the Gibbs sampling algorithm for this example draws {𝑍𝑖𝑗
(𝑡)

} from 

truncated normal distributions with means 𝑚𝑖𝑗 and variance 1.  The truncation occurs at 0: from 

the left when 𝑦𝑖𝑗 = 1, and from the right when 𝑦𝑖𝑗 = 0.  Next, the latent abilities {𝜃𝑖
(𝑡)

} are 

simulated from normal distributions with means 𝑚𝜃𝑖
 and variances 𝑣𝜃𝑖

.  Finally, the item 

parameters {𝛼𝑗
(𝑡)

, 𝛽𝑗
(𝑡)

} are drawn from a multivariate normal density with mean vector 𝑚𝑗 and 

covariance matrix 𝑣𝑗 .  The means and variances for the conditional posterior distributions of the 

model parameters are explained further in the Methods chapter of this report.  Although the 

choice of initial values for these parameters is usually inconsequential, Johnson and Albert 

(1999) also provides strategies for determining reasonable starting values, which may lead to 

faster convergence. 

 We recreated this Gibbs sampling example using the dataset posted online at http://www-

math.bgsu.edu/~albert/ord_book/.  For this reproduction, we used 1500 iterations after burn-in, 

rather than the text’s choice of 1000, and the Gibbs sampler was programmed in R, (R Core 

Team, 2014).  It is important to verify that the Gibbs algorithm converged during the burn-in 

period, a characteristic which can be visualized in the Simulation Sequence vs. Iteration plot for 

any parameter of interest.  The text provides such a plot for the specific parameter 𝛼25, where no 

trend is apparent across iterations, and only a moderate correlation between successive iterates is 

present.  Johnson and Albert (1999) found the posterior standard errors to be consistent across 

parameters, so they felt justified in using this MCMC sample to summarize their posterior 

knowledge about the 120 examinees and 107 items.  The posterior distributions of all 𝑛 + 2𝑘 =

334 parameters are summarized via whisker plots in Figures 1.3(a-c). 

http://www-math.bgsu.edu/~albert/ord_book/
http://www-math.bgsu.edu/~albert/ord_book/
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 The Shyness example illustrates all of the concepts employed in our research: the 

application of Item Response Theory to a non-standard setting, the subsequent parameter 

interpretations, the determination of the likelihood, prior distributions, and resulting joint 

posterior density, the implementation of the Gibbs sampling algorithm, the rough verification of 

algorithm convergence, and brief summaries of the model parameters’ posterior distributions. 
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Figure 1.3 Side-by-side whisker plots for all discrimination (a), difficulty (b), and latent 

shyness (c) parameters.  The ends of the ‘whiskers’ represent a 90% credible interval for 

each posterior distribution, and the center dots signify posterior means. 

(a) 

(c) 

(b) 
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Chapter 2 - Methods 

 Preference Testing Data 

 The two primary datasets used to evaluate the IRM were taken from Wilke et al. (2006), 

who advocated the use of multiple replications in preference testing.  The products chosen were 

raisin bran and cola, selected for their “ease of preparation, similar appearance within a product 

type and small but noticeable differences during tasting.”  Several self-reported consumers of 

each product were chosen as panelists: 305 people for raisin bran and 296 for cola.  For both 

products, samples of two national brands were given to each panelist in random order, in order to 

decrease the effect of testing position.  The panelists were then instructed to choose which 

product they preferred.  After a seven-minute waiting period, the next test was conducted; four 

preference tests were completed for each consumer. 

 Preference testing data can be expressed as a collection of response patterns, the series of 

responses across replications for each consumer.  With four replications and two possible 

choices, product A and product B, there are sixteen possible response patterns.  To apply the 

Two-Parameter IRM, we formatted the data into an 𝑛 𝑥 𝑘 matrix of binary data, where 𝑛 is the 

number of panelists, and 𝑘 is the number of replications.  The responses are denoted by  

{𝑦𝑖𝑗;  𝑖 = 1, … 𝑛, 𝑗 = 𝑖, … , 𝑘}, where 𝑦𝑖𝑗 = 1 indicates that panelist 𝑖 preferred product A on 

replication 𝑗, and 𝑦𝑖𝑗 = 0 indicates a preference for product B for the same consumer and 

replication.  The product labels are duplicated from the original paper, in which the specific 

product names were not disclosed; regardless, the assignment of labels ‘A’ and ‘B’ is arbitrary 

for our purposes. 
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 Hypothetical Datasets 

 To assist with model parameter interpretation and investigate how the IRM behaves for 

certain preference patterns, we generated five datasets with the same number of replications as 

the Raisin Bran and Cola data but designed with specific properties in mind.  Rather than 

conducting a simulation study by setting parameter values and randomly generating data, we 

manually created case studies of possible response matrices.  To explore the resulting parameter 

values when all possible response patterns are equally present, the Balanced dataset was created.  

To contrast the Balanced data, we created the Extreme dataset, in which all consumers 

consistently chose either one product or the other.  Next, to explore the effects of each model 

parameter when the other is held constant, we created the Increasing Discrimination and 

Increasing Difficulty datasets.  To achieve Increasing Discrimination, a collection of response 

patterns had to be adjusted carefully to portray low item discrimination in early replications and 

high item discrimination in late replications.  Likewise, since posterior item difficulty is related to 

the observed proportion of consumers choosing product A, an Increasing Difficulty dataset will 

contain more preferences for A in early replications and fewer preferences for A in late 

replications.  Increasing Difficulty was achieved via two patterns: Monotone and Non-Monotone.  

More details on the creation of these hypothetical datasets may be found in the Results chapter. 

 

 Model Specification and Gibbs Sampling 

 Recall that the general Two-Parameter IRM can be represented by 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  𝐹(𝛼𝑗𝜃𝑖 − 𝛽𝑗), 

where 𝜃𝑖 is the latent ability for consumer 𝑖, and 𝛼𝑗 and 𝛽𝑗 are the discrimination and difficulty 

parameters for test 𝑗, respectively.  With a probit link function, this model becomes 
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𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  Φ(𝛼𝑗𝜃𝑖 − 𝛽𝑗), 

and a logit link produces 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  
1

1+𝑒
−(𝛼𝑗𝜃𝑖−𝛽𝑗)    ( 2.1 ) 

After specification of the prior distributions, we are free to collect data and calculate the joint 

posterior density from which we must sample values.  However, the full conditional densities 

used by the Gibbs sampler are difficult to sample from.  These issues could be overcome by 

incorporating a Metropolis-Hastings step, but we will instead discuss a clever alternative. 

 The application of the 2PP follows directly from the Shyness data example presented by 

Johnson and Albert (1999).  Because of the consistent data structure, the specific methods 

described here are directly applicable to all seven preference testing datasets.  Each dataset is an 

𝑛 𝑥 𝑘 matrix of binary data, where 𝑦𝑖𝑗 = 1 indicates a preference for product A over product B 

for consumer 𝑖 in replication 𝑗.  Albert and Chib (1993) introduced a data augmentation 

mechanism which simplifies the Gibbs sampler for situations with such high complexity.  For 

each observation, there exists 𝑍𝑖𝑗  ~ 𝑁(𝑚𝑖𝑗, 1), where 𝑚𝑖𝑗 = 𝛼𝑗𝜃𝑖 − 𝛽𝑗.  We then assume that  

𝑦𝑖𝑗 = {
0 , 𝑍𝑖𝑗 ≤ 0

1 , 𝑍𝑖𝑗 > 0.
 

 Thus, 

𝑃(𝑦𝑖𝑗 = 1) = 𝑃(𝑍𝑖𝑗 > 0) = 1 − Φ(−𝑚𝑖𝑗) = Φ(𝑚𝑖𝑗),  ( 2.2 ) 

 

which produces the familiar form of the 2PP shown above. 

 It is standard practice to assume the latent preferences are drawn from a Standard Normal 

distribution, so that an “average” ability is zero.  More than just expressing our prior beliefs 

about 𝜃𝑖, this should also prevent identifiability issues, according to Johnson and Albert (1999).  
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We still encountered minor problems in this regard, which are discussed in the Computation 

chapter.  We also assume that an “average” difficulty will be zero, for ease of interpretation.  

However, the prior distributions for 𝛼 and 𝛽 can reasonably be changed for varying purposes.  It 

is intuitive to restrict 𝛼 to positive numbers, which implies that an increase in underlying 

preference for product A leads to an increase in the probability of selecting A.  To allow for the 

most freedom, we specified 𝛼𝑗  ~ 𝑁(𝜇𝛼, 𝑠𝛼
2), where 𝜇𝛼 > 0 assumes a priori that the 

discrimination is positive without restricting the posterior values to be so.  In addition, we 

specified 𝛽𝑗  ~ 𝑁(0, 𝑠𝛽
2) to obtain a distribution symmetric about zero but flexible with respect to 

prior variance.   

 Based on these prior distributions, the joint posterior density of the parameters 

conditional on the data is 

𝑔(𝒁, 𝜽, 𝜶, 𝜷|𝒚) ∝ ∏ ∏[𝜙(𝑍𝑖𝑗; 𝑚𝑖𝑗, 1)𝐼𝑛𝑑(𝑍𝑖𝑗 , 𝑦𝑖𝑗)] 

𝑘

𝑗=1

𝑛

𝑖=1

 

𝑥 ∏ 𝜙(𝜃𝑖; 0,1) ∏ 𝜙(𝛼𝑗; 𝜇𝛼 , 𝑠𝛼
2) 𝜙(𝛽𝑗; 0, 𝑠𝛽

2)𝑘
𝑗=1

𝑛
𝑖=1  ( 2.3 ) 

To employ the Gibbs Sampling algorithm, each parameter is then iteratively sampled from its 

full conditional posterior density: 

 𝑔𝒁(𝒁|𝜽, 𝜶, 𝜷, 𝒚) 

 𝑔𝜽(𝜽|𝒁, 𝜶, 𝜷, 𝒚) 

 𝑔𝜶,𝜷(𝜶, 𝜷|𝒁, 𝜽, 𝒚) 

 

Therefore, at iteration t, the parameters are drawn as follows: 
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1)  {𝑍𝑖𝑗
(𝑡)

} ~ {
𝑇𝑁(𝑚𝑖𝑗, 1; 0, ∞) , 𝑦𝑖𝑗 = 1

𝑇𝑁(𝑚𝑖𝑗, 1; −∞, 0) , 𝑦𝑖𝑗 = 0
       ( 2.4 ) 

 where 𝑇𝑁(𝜇, 𝜎2; 𝑐, 𝑑) denotes a Normal distribution with mean 𝜇 and variance 𝜎2 

 truncated over the interval (𝑐, 𝑑), and 𝑚𝑖𝑗 = 𝛼𝑗
(𝑡−1)

𝜃𝑖
(𝑡−1)

− 𝛽𝑗
(𝑡−1)

. 

 

2)  {𝜃𝑖
(𝑡)

} ~ 𝑁(𝑚𝜃𝑖
, 𝑣𝜃𝑖

)         ( 2.5 ) 

 where 𝑚𝜃𝑖
=

∑ 𝛼𝑗
(𝑡−1)𝑘

𝑗=1 (𝑍𝑖𝑗
(𝑡)

+𝛽𝑗
(𝑡−1)

)

∑ 𝛼
𝑗
2(𝑡−1)

 + 1𝑘
𝑗=1

 

 and 𝑣𝜃𝑖
=

1

∑ 𝛼𝑗
2(𝑡−1)

 + 1𝑘
𝑗=1

 

 

3)  {𝛼𝑗
(𝑡)

, 𝛽𝑗
(𝑡)

} ~ 𝑁2(𝑚𝑗 , 𝑣𝑗)         ( 2.6 ) 

 where 𝑚𝑗 = [𝑋′𝑋 +  Σ0
−1]−1 [𝑋′𝑍𝑗

(𝑡)
+  Σ0

−1 (
𝜇𝛼

0
)] is the 2-dimensional mean vector, 

 𝑣𝑗 = [𝑋′𝑋 +  Σ0
−1]−1 is the 2 x 2 covariance matrix, 

 Σ0 = [
𝑠𝛼

2 0

0 𝑠𝛽
2] and 𝑋 is the design matrix with columns (𝜃𝑖

𝑡, −1). 

  

 This algorithm was first programmed in R, to verify the Shyness data results from 

Johnson and Albert (1999).  The R code for our 2PP IRM is provided in the Appendix.  Similarly 

to the Shyness example, the parameters’ starting values were set to their respective prior means.  

Where the authors used 1000 iterations and no burn-in period for their MCMC sample, we 

iterated the algorithm 2000 times and removed the first 500.  Although this was an adequate 

method for working through the text’s example, the R code is too computationally costly for 
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repeated use with different specifications.  To expedite computation, we utilized OpenBUGS 

software to run the algorithm for all remaining portions of this research.  OpenBUGS was 

introduced by Thomas et al. (2006) as an updated version of WinBUGS, the popular Gibbs 

Sampling software developed by Lunn et al. (2000).  Our model specification in OpenBUGS 

does not use the data augmentation approach given by Albert and Chib (1993), but rather uses 

the model first described in this chapter.  This required only slight modifications to the BUGS 

code given by Curtis (2010) for the Two-Parameter Logistic model (2PL).   

 The models were fit by OpenBUGS software through the R interface, using the R 

package ‘BRugs’, introduced by Ligges (2013).  ‘BRugs’ gives access to convergence plots and 

the entire list of sampled parameter values through the functions ‘samplesHistory’ and 

‘samplesSample’, respectively, allowing further flexibility for output storage and plot generation.  

In particular, the R function ‘BRugsFit’ requires the input of a model file and dataset in 

OpenBUGS syntax, and it outputs posterior information for the parameters of interest, including 

the mean and the 95% credible interval.  This function allows the user to specify initial values, 

parameter(s) to follow, the number of desired MCMC chains, the number of iterations, and the 

duration of the burn-in period, among other settings.  For all seven preference testing datasets, 

we specified one MCMC chain of 6000 iterations, with the first 1000 constituting the burn-in 

period, and the initial values were randomly generated by OpenBUGS.  All computations were 

done with random number seeds for future reproducibility.  More information regarding the 

computation of these values, convergence, and potential difficulties can be found in the 

Discussion chapter.  The parameters saved were 𝜶, 𝜷, 𝜽, and the probability of preferring 

product A for each replication, denoted by 𝒑 = (𝑝1, … , 𝑝4).  The probability of preferring 

product A on replication 𝑗 is calculated by 
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𝑝𝑗 = Φ (
−𝛽𝑗

√1+𝛼𝑗
2
)     ( 2.7 ) 

𝑝𝑗 may be used to indicate which of two products was preferred across all subjects, hence the 

formula’s absence of any latent ability parameters, and it can be thought of as an alternate 

measure of item difficulty.  This probability can be expected to adhere closely to the observed 

proportions of consumers preferring product A at each replication, depending on the choice of 

prior distributions. 
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Chapter 3 - Results 

 Overview 

 We applied the 2PP to the Raisin Bran and Cola datasets described and used by Wilke et 

al. (2006).  These datasets originally illustrated the importance of replication in sensory analysis 

tests due to panelists’ inconsistent preferences, and they now serve as useful real-world 

demonstrations of the Two-Parameter IRM.  To verify this model’s capabilities in controlled 

situations and assist in parameter interpretation, we constructed five replicated preference test 

datasets with specific properties.  Each of these datasets features four replications, to imitate the 

real-world data described above, ranging from 60 to 135 consumers.  These hypothetical datasets 

will be referred to as Balanced, Extreme, Increasing Discrimination, and Increasing Difficulty 

(Monotone and Non-Monotone).  The same prior distributions were used for all seven datasets, as 

described in the Shyness data example: 𝜃𝑖  ~ 𝑁(0,1), 𝛼𝑗  ~ 𝑁(1,1), and 𝛽𝑗  ~ 𝑁(0,1). 

 The plots included in this section are used to summarize the posterior distributions of 

several quantities.  The latent preference parameter 𝜃𝑖 describes each consumer’s true preference 

for one of two products, with positive values representing preferences for product A.  Included in 

this section are side-by-side whisker plots of the posterior distributions of each latent preference 

parameter, where the ends of the whiskers represent a 95% credible interval for 𝜃𝑖.  The 

discrimination and difficulty parameters are quantities that describe characteristics about each 

preference test replication.  First, the discrimination parameter, denoted by 𝛼𝑗, determines the 

relative distinction between consumers of varying latent preferences for product A at a given 

replication.  For example, high discrimination indicates that the consumers’ recorded preferences 

on a given replication align with a relatively strong latent preference for that product, and low 

discrimination indicates virtually no relationship between true latent preferences and the 
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preferences observed in the data.  Secondly, the difficulty parameter 𝛽𝑗 explains the relative 

probability of selecting product A on a given replication for consumers with no preference for 

either product.  A “difficult” replication would somehow invoke a lower probability of choosing 

A than an “easy” replication, for any given latent preference and discrimination.  Naturally, all 

of these characteristics will change with different product and consumers.  Finally, the 

probability of preferring product A, denoted by 𝑝𝑗, was calculated as described in the Methods 

section.  This probability can be thought of as an alternate measure of item difficulty.  Posterior 

summaries for the probability of preferring A were included for each dataset, but we observe that 

the mean of each of these distributions is approximately equal to the observed proportion of A 

selections for every dataset. 

 

 Raisin Bran Data 

Wilke et al. (2006) utilized raisin bran preference tests to argue the importance of 

replication in sensory analysis studies.  According to their research, consumers may not 

consistently record the same preferred product when the products in question are not highly 

discriminable and/or when the consumers’ preferences are not particularly strong.  The Raisin 

Bran dataset consists of 305 self-reported consumers of the popular cereal, with each of four 

replications forcing a reported preference between two national brands. 

 The posterior summary plots show interesting trends in the Raisin Bran test example.  

First, in Figure 3.1(a), the posterior distributions of the discrimination parameter for replications 

2, 3, and 4 are very similar, but replication 1 shows a unique distribution.  This means that 

responses were more similar between panelists of high and low preferences in the first test, 

whereas the next three tests did a better job of discriminating between panelists of different  
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Figure 3.1 Summary plots from the Raisin Bran data for the posterior distributions of item 

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d). 

 

 

underlying preferences.  In addition, we also observe decreasing difficulty parameters over time 

in Figure 3.1(b), due to the fact that more panelists chose product A in each successive 

preference test.  Note that the distributions in Figure 3.1(c) are consistently greater than 0.5, 

indicating overall preference for product A at each replication.  Latent preferences are associated 

(a)             (b) 

(c)             (d) 
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with the number of times a consumer chose product A across the four replications and the order 

in which they did so.  Therefore, the small number of possible response patterns causes the side-

by-side whisker plots in Figure 3.1(d) to segregate into ten distinct groups.  The credible 

intervals for all but the last 52 consumers contain zero, indicating that their latent preferences for 

product A are not significantly different from zero.  On the contrary, it appears that the last 52 

respondents preferred product B to a significant degree. 

 

 Cola Data 

 The Cola tests included 296 self-reported acceptors of the product, again requiring a 

choice between two national brands for each of four replications.  Wilke et al. (2006) noted that 

nearly 71% of consumers changed their preference at least once throughout the four replications, 

evidence that replicated preference tests may be needed when differences between the products 

are not discernible, relative to personal preferences.  The Cola example is a second test of the 

Two-Parameter IRM’s functionality when the data is based on real humans’ recorded 

preferences. 

 Much like the Raisin Bran dataset, we can visually separate groups of panelists’ total A 

selection counts from their latent preference whisker plots in Figure 3.2(d).  The posterior 

distributions for the difficulty parameters 𝛽𝑗 in Figure 3.2(b) almost entirely consist of negative 

values, indicating that there was some degree of preference for product A in all four tests.  In this 

example, the discrimination posterior distributions in Figure 3.2(a) decrease over the first three 

replications but take a positive turn in the final test.  Returning to the interpretation of item 

discrimination, this means that Replications 1 and 4 more clearly distinguish between consumers 

of varying latent preferences, whereas consumers tend to respond contrary to their true 
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preferences more often in the middle replications.  As in the Raisin Bran data, the distributions 

of the probability of selecting product A at each replication in Figure 3.2(c) show clear 

preference for product A. 

 

Figure 3.2 Summary plots from the Cola data for the posterior distributions of item 

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d). 

 

 

(a)             (b) 

(c)             (d) 



27 

 Balanced Data 

With four replications, sixteen possible response patterns exist for any given panelist.  

The Balanced dataset consists of five panelists for each of these sixteen patterns, outlined in 

Table 3.1.  This balanced design ensures that a 50% preference for product A is observed in each 

preference test, and those preferences are spread out among the different panelists; this means 

that few panelists hold extreme prejudice for one product or the other, whereas the majority of 

subjects do not show great preference.  This could be due to either a lack of preference for a 

product or an inability to distinguish the two products. 

The consistent location of the posterior distributions of 𝛼 and 𝛽 in Figure 3.3(a-b) reflects 

the intended balance of this dataset.  Because the distribution of preferences for A has no 

 

Table 3.1 The collection of possible response patterns in data with four replications.  

‘Count’ and ‘Total’ are specific to the responses observed in the Balanced dataset. 

 

 Rep 1 Rep 2 Rep 3 Rep 4 Total A 

Selections 

Count 

 1 1 1 1 4 5 

 1 1 1 0 3 5 

 1 1 0 1 3 5 

 1 1 0 0 2 5 

 1 0 1 1 3 5 

 1 0 1 0 2 5 

 1 0 0 1 2 5 

 1 0 0 0 1 5 

 0 1 1 1 3 5 

 0 1 1 0 2 5 

 0 1 0 1 2 5 

 0 1 0 0 1 5 

 0 0 1 1 2 5 

 0 0 1 0 1 5 

 0 0 0 1 1 5 

 0 0 0 0 0 5 

Total 40 40 40 40   
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Figure 3.3 Summary plots from the Balanced data for the posterior distributions of item 

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d). 

  

discernible pattern across the range of latent preferences, the four tests do not discriminate well 

between those who prefer A and those who prefer B.  This results in low posterior means for the 

four 𝛼 parameters.  In addition, with half of the consumers preferring A on each occasion, the 

mean difficulty at each time point is approximately zero.  The posterior distributions of the latent 

preferences 𝜃𝑖 in Figure 3.3(d) also reflect a secondary intention of this example – to vary latent 

(a)             (b) 

(c)             (d) 
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preferences gradually while discrimination and difficulty remain nearly constant.  Although ten 

consumers in the Balanced dataset responded consistently across replications, the 95% credible 

intervals for their respective latent preferences contain zero, indicating a lack of preference.  

This results from a relatively small sample size and a wide variety of observed response patterns. 

 Extreme Data 

 To illustrate the result of very strong preferences, we generated a dataset in which all 

panelists exclusively preferred either product A or product B.  Like the Balanced example, the 

Extreme dataset also uses 80 panelists, with half choosing product A and half choosing product B 

in every test.  This means that the observed proportion of panelists preferring product A is 0.50 

at each replication; however, all respondents display a consistent preference for one product or 

the other.  These response patterns are shown in Table 3.2.   

 

Table 3.2 The collection of response patterns present in the Extreme dataset. 

 

 Rep 1 Rep 2 Rep 3 Rep 4 Total A 

Selections 

Count 

 1 1 1 1 4 40 

 0 0 0 0 0 40 

Total 40 40 40 40   

 

 Figure 3.4(a) shows the substantial increase in the posterior means for α compared to the 

Balanced data, and the clear distinction between consumers’ preferences is displayed in Figure 

3.4(d).  However, note that the difficulty distributions in Figure 3.4(b) are very similar to the 

previous dataset.  The Balanced and Extreme examples demonstrate how wildly 𝛼 and 𝜃 can 

vary without affecting 𝛽.  That is to say, the posterior distributions of the  𝛽𝑗 for the two datasets  
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Figure 3.4 Summary plots from the Extreme data for the posterior distributions of item 

discrimination (a), item difficulty (b), probability of preferring A (c), and latent preference (d). 

  

were nearly identical, while the posterior distributions for 𝛼𝑗 and 𝜃𝑖 differed substantially.  In the 

Extreme case, every panelist responded consistently over time, and the model responds by 

assigning appropriately extreme 𝜃𝑖 values.  In addition, because every panelist with high latent 

preference for A recorded such preference for every replication and vice versa, every replication 

is given a high expected posterior discrimination value.  However, despite these glaring 

(c)             (d) 

(a)             (b) 
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differences from the Balanced example, the observed proportion of consumers preferring A 

remains the same for each replication, producing expected difficulty parameters of approximately 

zero. 

 Increasing Discrimination Data 

 Recall the purpose of the discrimination parameter: 𝛼 is the value that determines a 

replication’s ability to distinguish between consumers of different latent preferences for product 

A.  In order for a model to result in increasing discrimination values across replications, the 

dataset would require few response differences between panelists of varying latent abilities in 

early replications, i.e., low discrimination, and large differences in later replications, i.e., high 

discrimination.  This will cause a mix of observed preferences for A and B throughout the range 

of latent preferences at early replications, whereas, in the later replications, the recorded A 

selections are generally associated with consumers of high latent preference for A and not with 

those with high latent preference for B.  To generate such a dataset, each consumer’s total 

number of preferences for product A was thought of as a crude representation of his latent 

preference.  After 60 consumer response patterns were somewhat arbitrarily generated, the 

individual responses were adjusted to reflect the characteristics described above.  For example, 

the pattern of 1’s and 0’s in the first replication indicated little association between the 

consumer’s crude “latent preference” and his observed product preference, i.e., low 

discrimination.  In contrast, the observed preferences for A in the last replication were almost 

exclusively constrained to consumers with three or four total A selections, i.e., high 

discrimination.  We attempted to create a gradual transition from low to high discrimination 

across the four replications.  The full dataset, with a total of 60 response patterns, can be found in 

Table 3.3. 
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 As displayed in Figures 3.5(a) and 3.5(b), this example achieved the desired effect: a 

gradual increase in item discrimination over the four replications with very little change in item 

difficulty.  While very little difference exists between consumers of high and low latent 

preference in the first replication, the distinction grows across time.  By the fourth replication, 

the item discrimination the total number of recorded preferences for A.  (Remember that these 

totals are crude representations of the consumers’ latent preferences.)  For this reason, the 

posterior means of 𝜃𝑖 vary across the interval (-1, 1), as seen in Figure 3.5(d). 

 

Table 3.3 The collection of possible response patterns and their respective counts for the 

Increasing Discrimination dataset. 

 

 Rep 1 Rep 2 Rep 3 Rep 4 Total A 

Selections 

Count 

 1 1 1 1 4 5 

 1 1 0 1 3 2 

 1 1 0 0 2 7 

 1 0 1 1 3 5 

 1 0 1 0 2 5 

 1 0 0 1 2 3 

 1 0 0 0 1 7 

 0 1 1 1 3 9 

 0 1 1 0 2 1 

 0 1 0 1 2 3 

 0 1 0 0 1 5 

 0 0 1 1 2 1 

 0 0 1 0 1 2 

 0 0 0 1 1 1 

 0 0 0 0 0 4 

Total 34 32 28 30   
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Figure 3.5 Summary plots from the Increasing Discrimination data for the posterior 

distributions of item discrimination (a), item difficulty (b), probability of preferring A (c), 

and latent preference (d). 

 

 Increasing Difficulty Data 

 Recall that the difficulty of an item in preference testing context determines the relative 

probability of preferring product A for the same consumer and a constant item discrimination.  A 

“difficult” replication would often require a higher preference for product A in order to select A 

in that test, whereas a less “difficult” test would often require less preference for A in order to 

(a)             (b) 

(c)             (d) 
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choose A as the preferred product.  Two datasets were created to illustrate increasing difficulty 

across replications, each with 135 total subjects.  Since the difficulty parameter is closely related 

to the observed proportion of product A preference, both datasets were generated with a 

decreasing observed proportion of consumers choosing product A in successive replications.  

Specifically, the observed proportions of consumers choosing A in the four replications were 

(𝑝1, 𝑝2, 𝑝3, 𝑝4) = (4/5, 3/5, 2/5, 1/5).  This was accomplished by first creating 81 response 

patterns where all panelists chose A in the first replication, two-thirds chose A in the second, 

one-third chose A in the third, and none chose A in the fourth.  Additional panelists with 

consistent preferences were then added, 27 preferring A at every replication and 27 preferring B 

at every replication.  This was to avoid computational issues related to observing proportions of 

one and zero in replications 1 and 4, respectively.  While these observed proportions were 

identical for both Increasing Difficulty datasets, the specific response patterns were not. 

 Monotone Method 

In missing data analysis, the term monotone refers to a missing data pattern in which all 

missing values are contiguous, ie., if value 𝑣𝑗  is missing, then all values {𝑣𝑘;  𝑘 > 𝑗} are also 

missing.  Here we apply this term to the creation of the Increasing Difficulty dataset.  For the 

Monotone approach, all recorded preferences for product B at a given replication are contiguous.  

That is, if observation 𝑦𝑖𝑗 = 0, then all observations {𝑦𝑙𝑗; 𝑙 > 𝑖} = 0.  This resulted in five 

distinct response patterns, displayed in Table 3.4. 

 Refer to Figure 3.6 for summaries of the Monotone Increasing Difficulty example.  This 

dataset produces 𝛽𝑗 posterior distributions that predictably increase across the four replications, 

because the observed preferences for product A decrease in a similar pattern.  It is important to 

remember that the number of times a consumer prefers A is directly related to his subsequent  
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Table 3.4 The five possible response patterns using the Monotone approach to create an 

Increasing Difficulty dataset. 

 

 Rep 

1 

Rep 

2 

Rep 

3 

Rep 

4 

Total A 

Selections 

Count 

 1 1 1 1 4 27 

 1 1 1 0 3 27 

 1 1 0 0 2 27 

 1 0 0 0 1 27 

 0 0 0 0 0 27 

Total 108 81 54 27   

 

latent preference 𝜃𝑖.  This helps explain several things.  First, there are five possibilities for a 

panelist’s total number of recorded preferences for A.  Therefore, we see five groupings of latent 

preference posterior distributions, with high latent preferences for A corresponding to four 

observed A selections and low latent preferences for A corresponding to zero observed A 

selections.  Also, replications 1 and 4 have lower discrimination values than replications 2 and 3, 

yet they are still quite large values.  High discrimination in the first replication is most likely 

because, given that a panelist chose product B, then he continued to choose product B for every 

test.  Likewise, if a panelist chose product A in the final replication, then he chose product A for 

every replication.  This establishes a relationship between observed preference and latent 

preference, which roughly translates to high discrimination.  However, given that a consumer 

preferred A in replication 1, that consumer’s total number of A selections could be 1, 2, 3, or 4.  

An observed preference for A in replication 1 could be associated with a relatively low latent 

preference or an extremely high latent preference.  This fact limits replications 1 and 4 from 

having higher discrimination values, which appear in replications 2 and 3. 
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Figure 3.6 Summary plots from the Monotone Increasing Difficulty data for the posterior 

distributions of item discrimination (a), item difficulty (b), probability of preferring A (c), 

and latent preference (d). 

 

 Non-Monotone Method 

 

 In the Non-Monotone approach, the intent was still to observe a decreasing number of 

preferences for product A through the four replications.  However, the locations of recorded 

preferences for product A in replications 2 and 3 were randomized before adding the 54 panelists 

(c)             (d) 

(a)             (b) 
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with consistent preferences.  This resulted in a dataset with six distinct response patterns, rather 

than five.  The added complexity represents the new ability for a panelist to prefer product A at 

non-consecutive replications, which could eliminate the monotone property of the previous 

dataset.  After random placement of these preferences, we arrived at the dataset outlined in Table 

3.5. 

 

Table 3.5 The six possible response patterns using the Non-Monotone approach to create an 

Increasing Difficulty dataset. 

 

 Rep 

1 

Rep 

2 

Rep 

3 

Rep 

4 

Total A 

Selections 

Count 

 1 1 1 1 4 27 

 1 1 1 0 3 16 

 1 1 0 0 2 38 

 1 0 1 0 2 11 

 1 0 0 0 1 16 

 0 0 0 0 0 27 

Total 108 81 54 27   

 

 The small difference in the construction of an Increasing Difficulty dataset leads to very 

different discrimination parameter values.  While the increasing posterior distributions of the 

difficulty parameter 𝛽𝑗  remain in Figure 3.7(b), we now observe in Figure 3.7(a) that the 

posterior mean discrimination values for replications 2 and 3 are significantly reduced.  This is 

due to the added response pattern complexity, since a preference for product A in replication 2 or 

3 no longer directly translates to a high latent preference.  Furthermore, the posterior means of 

the latent preference 𝜃𝑖 may still be segregated into five groups, displayed in Figure 3.7(d), but 

their arrangement has been changed by the new dataset structure.  While there exists an equal 

count of each possible number of A selections in the Monotone setup (27 each), we see different 

counts in the Non-Monotone setup, (27, 16, 49, 16, and 27).  It is especially interesting 
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Figure 3.7 Summary plots from the Non-Monotone Increasing Difficulty data for the 

posterior distributions of item discrimination (a), item difficulty (b), probability of 

preferring A (c), and latent preference (d). 

 

to note that the expected latent preference for consumers with response pattern (1,1,0,0) is 

essentially equal to that of consumers who responded (1,0,1,0).  Because difficulty increases 

across replications, we might expect to see higher latent preferences assigned to consumers who 

preferred product A in replication 3 than to those who did so in replication 2.  However, these 

values naturally occur because an “easy” replication translates to higher probabilities of choosing 

(a)             (b) 

(c)             (d) 
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product A.  Consumers who responded (1,1,0,0) chose A in the “easier” replication 2 and chose 

B in the more “difficulty” replication 3, which should be expected.  Although consumers who 

responded (1,0,1,0) indeed chose A in the more “difficult” replication 3, they also chose B in the 

“easier” replication 2.  These two responses counteract each other, resulting in latent preferences 

similar to consumers who gave a (1,1,0,0) response pattern.  

 

 Model Comparison 

 While the parameter estimation for our seven preference test datasets assists with 

interpretation and evaluates the model’s sensitivity to changing data, it says nothing of the 

effects of altering prior distributions, link functions, or parameterization.  To investigate such 

effects, we selected several model variations to compare over the Raisin Bran and Cola datasets.  

In addition to the original two-parameter probit model with prior distributions 𝜃𝑖  ~ 𝑁(0,1), 

𝛼𝑗  ~ 𝑁(1,1), and 𝛽𝑗  ~ 𝑁(0,1), we considered sixteen models that changed the parameters of the 

normal prior distributions of either 𝛼 or 𝛽.  We then explored the possibility of restricting 𝛼 > 0 

through our prior beliefs; this included three Gamma distributions of mean 1 and differing 

variances, as well as the original Normal prior, truncated from the left at zero.   

 Next, models with different parameterizations were added.  The model with one item 

discrimination parameter, shared between all replications, is expressed as follows: 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  𝐹(𝛼𝜃𝑖 − 𝛽𝑗)    ( 3.1 ) 

This model allows the “difficulty” of choosing product A to vary over time, but the replications’ 

ability to distinguish between consumers of different latent preferences is constant.  In contrast, 

we may allow discrimination to vary over time while keeping difficulty constant.  The model 

with one item difficulty parameter, shared between all replications, is shown below:  
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𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  𝐹(𝛼𝑗𝜃𝑖 − 𝛽)    ( 3.2 ) 

The final model change results in the One-Parameter IRM, where either 𝛼 or 𝛽 is not used: 

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  𝐹(𝜃𝑖 − 𝛽𝑗)     ( 3.3 ) 

𝑃(𝑦𝑖𝑗 = 1|𝜃𝑖) =  𝐹(𝛼𝑗𝜃𝑖)     ( 3.4 ) 

In multiple choice testing context, the model shown in Equation 3.3 describes a situation where 

only the relative difficulty of the exam questions are relevant, and each question discriminates 

between students at an “average” rate.  On the other hand, Equation 3.4 allows different 

discrimination values between questions but only an average difficulty.  The latter situation 

seems better fit for replicated preference testing, where the difficulty of each replication may be 

constant, but the model comparison results will shed light on these hypotheses.  Two prior 

specifications were used for the General One-Parameter models in Equations 3.1 and 3.2, and 

one prior specification each was used for the One-Parameter models in Equations 3.3 and 3.4.  

Finally, all 27 models were applied using both the probit and logit links, resulting in a total of 54 

models.  An exhaustive display of these models can be found in Tables 3.6 and 3.7.  These 

changes can be summarized by five alterations to the 2PP IRM: 

 

1) the hyper-parameters were changed for the Normal 𝛼 prior, keeping 𝛽 ~ 𝑁(0,1) 

2) the hyper-parameters were changed for the Normal 𝛽 prior, keeping 𝛼 ~ 𝑁(1,1) 

3) the prior distribution for 𝛼 was restricted to a positive support 

4) the parameterization was altered 

5) probit and logit links were used for all models created in 1-4 above 
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 In order to compare 54 models’ goodness of fit and complexity, we employed the 

deviance information criterion (DIC).  DIC is analogous to the Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), and it can be easily calculated using our 

MCMC samples.  DIC is the standard method of comparison in Bayesian model selection with 

MCMC simulation.  Deviance is a measure of model fit, and is given by 

𝐷(𝝀) =  −2log [𝑝(𝒚|𝝀)],    ( 3.5 ) 

where 𝛌 = (𝜆1, … , 𝜆𝑝) are the parameters of interest and 𝑝(𝒚|𝝀) is the data likelihood.  The fit of 

a model under the Bayesian framework can be expressed by the posterior expectation of the 

deviance, 𝐷̅ = 𝐸𝝀|𝑦[𝐷].  The model is then penalized according to the effective number of 

parameters it uses, 𝑝𝐷 = 𝐷̅ − 𝐷(𝝀̅), where 𝝀̅ is the posterior mean vector of 𝛌.  The DIC is 

defined as the sum of these two quantities, 

𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷     ( 3.6 ) 

Since a low 𝐷̅ indicates good model fit and a low 𝑝𝐷 indicates simplicity, a better model will 

generally possess the lower DIC.  Although the DIC says nothing about a model’s objective 

“correctness,” it is a powerful tool for determining which of our 54 models fit the data with the 

most accuracy and efficiency. 

 Recall from the Methods chapter that the algorithm was implemented using OpenBUGS, 

in order to simplify model specification.  The fitting of these 54 models required very little 

adjustment to the existing OpenBUGS code, usually a one-line adjustment to the model file.  

Once the OpenBUGS model files were adapted, the DIC values were easily extracted and 

compared from the default output using ‘BRugs’ in R.  Table 3.6 displays the full DIC results 

from all 54 models for the Raisin Bran dataset, and Table 3.7 displays those for the Cola dataset.  

The Two-Parameter Models (often called 2PP and 2PL) implement a discrimination parameter 
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and a difficulty parameter for each preference test replication.  The General One-Parameter (𝛽) 

models (often called 1PP and 1PL) fix discrimination across replications but allow that value to 

be estimated, while difficulty is estimated at each replication.  In contrast, the General One-

Parameter (𝛼) models fix difficulty across replications but allow that value to be estimated, while 

discrimination is estimated at each replication.  The One-Parameter models set discrimination 

and difficulty to one and zero, respectively.  Note that, with a logit link, Model 24 becomes the 

well-known Rasch model.  The probit link is overwhelmingly favored in these results, as no DIC 

values for logit models are within 15 units of the best DIC for either dataset. 

 These DIC results also allow a glimpse into the mechanisms behind the Item Response 

Model and the estimation algorithm.  We can now compare adjustments to the prior distributions 

to adjustments in the parameterization in terms of the resulting DIC.  For example, we often see 

a large difference in DIC between the full two-parameter models and the models with reduced 

parameterization.  As mentioned above, there is also a noticeable difference between the probit 

and logit link functions, with probit displaying a clear advantage.  However, changing the prior 

distributions did not seem to affect the models’ DICs quite so dramatically.  For the Cola dataset 

in particular, no fewer than nine models gave a DIC within 5 units of the lowest value.  This 

indicates that the prior specification is not as crucial for the Cola data, since many priors produce 

results that fit the data equivalently.  On the other hand, no alternative models were within 5 

units of the lowest Raisin Bran DIC, indicating that this particular data is marginally more 

sensitive to the choice of prior distributions. 

 Although DIC does not identify an objectively “best” model, the 2PP with prior 

distributions 𝛼 ~ 𝑁(2, 0.33) and 𝛽 ~ 𝑁(0,1) resulted in the lowest DIC for both datasets.  

Further examination revealed that models with relatively low DIC values produced nearly 
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identical posterior parameter distributions, so this choice of priors is particularly interesting.  All 

posterior mean 𝛼 values for both datasets are near 1, yet the DIC statistic prefers an informative 

prior with a mean of 2; the underlying causes must remain a topic of future investigation. 

 

Table 3.6  DIC values for all 54 models applied to the Raisin Bran dataset.  The notation 

N(µ,σ2) indicates a Normal prior distribution with mean µ and variance σ2, G(α,β) indicates 

a Gamma prior with shape α and rate β, and TN(µ,σ2) is the Truncated Normal 

distribution bounded below at zero.  The lowest DIC value is given in bold. 

 

ID Parameterization Alpha Prior 

Dist. 

Beta Prior Dist. DIC (Probit) DIC (Logit) 

1 Two-Parameter N(1, 1) N(0, 1) 1186 1216 

2 Two-Parameter N(0.5, 0.33) N(0, 1) 1197 1233 

3 Two-Parameter N(0.5, 1) N(0, 1) 1192 1214 

4 Two-Parameter N(0.5, 3) N(0, 1) 1189 1205 

5 Two-Parameter N(1, 0.33) N(0, 1) 1190 1241 

6 Two-Parameter N(1, 3) N(0, 1) 1189 1206 

7 Two-Parameter N(2, 0.33) N(0, 1) 1178 1200 

8 Two-Parameter N(2, 1) N(0, 1) 1186 1221 

9 Two-Parameter N(2, 3) N(0, 1) 1186 1208 

10 Two-Parameter N(1, 1) N(-1, 0.33) 1186 1216 

11 Two-Parameter N(1, 1) N(-1, 1) 1186 1212 

12 Two-Parameter N(1, 1) N(-1, 3) 1187 1211 

13 Two-Parameter N(1, 1) N(0, 0.33) 1195 1226 

14 Two-Parameter N(1, 1) N(0, 3) 1190 1211 

15 Two-Parameter N(1, 1) N(1, 0.33) 1202 1234 

16 Two-Parameter N(1, 1) N(1, 1) 1193 1220 

17 Two-Parameter N(1, 1) N(1, 3) 1186 1214 

18 Two-Parameter Gamma(3, 3) N(0, 1) 1195 1212 

19 Two-Parameter Gamma(1, 1) N(0, 1) 1192 1206 

20 Two-Parameter Gamma(0.33, 0.33) N(0, 1) 1191 1206 

21 Two-Parameter TN(1, 1) N(0, 1) 1192 1206 

22 Gen. One-Parameter (𝛽) N(1, 1) N(0, 1) 1202 1216 

23 Gen. One-Parameter (𝛽) N(1, 3) N(0, 1) 1203 1215 

24 One-Parameter (𝛽) --- N(0, 1) 1201 1264 

25 Gen. One-Parameter (𝛼) N(1, 1) N(0, 1) 1212 1227 

26 Gen. One-Parameter (𝛼) N(1, 1) N(0, 3) 1213 1226 

27 One-Parameter (𝛼) N(1, 1) --- 1229 1250 
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Table 3.7  DIC values for all 54 models applied to the Cola dataset.  The notation N(µ,σ2) 

indicates a Normal prior distribution with mean µ and variance σ2, G(α,β) indicates a 

Gamma prior with shape α and rate β, and TN(µ,σ2) is the Truncated Normal distribution 

bounded below at zero.  The lowest DIC values are given in bold. 

 

ID Parameterization Alpha Prior Dist. Beta Prior Dist. DIC (Probit) DIC (Logit) 
1 Two-Parameter N(1, 1) N(0, 1) 1487 1509 

2 Two-Parameter N(0.5, 0.33) N(0, 1) 1496 1516 

3 Two-Parameter N(0.5, 1) N(0, 1) 1493 1507 

4 Two-Parameter N(0.5, 3) N(0, 1) 1490 1502 

5 Two-Parameter N(1, 0.33) N(0, 1) 1491 1521 

6 Two-Parameter N(1, 3) N(0, 1) 1491 1504 

7 Two-Parameter N(2, 0.33) N(0, 1) 1484 1503 

8 Two-Parameter N(2, 1) N(0, 1) 1484 1512 

9 Two-Parameter N(2, 3) N(0, 1) 1484 1503 

10 Two-Parameter N(1, 1) N(-1, 0.33) 1489 1507 

11 Two-Parameter N(1, 1) N(-1, 1) 1488 1508 

12 Two-Parameter N(1, 1) N(-1, 3) 1488 1508 

13 Two-Parameter N(1, 1) N(0, 0.33) 1490 1509 

14 Two-Parameter N(1, 1) N(0, 3) 1485 1508 

15 Two-Parameter N(1, 1) N(1, 0.33) 1495 1512 

16 Two-Parameter N(1, 1) N(1, 1) 1492 1510 

17 Two-Parameter N(1, 1) N(1, 3) 1487 1509 

18 Two-Parameter Gamma(3, 3) N(0, 1) 1494 1505 

19 Two-Parameter Gamma(1, 1) N(0, 1) 1490 1504 

20 Two-Parameter Gamma(0.33, 0.33) N(0, 1) 1490 1499 

21 Two-Parameter TN(1, 1) N(0, 1) 1490 1503 

22 One-Parameter (General) N(1, 1) N(0, 1) 1519 1524 

23 One-Parameter (General) N(1, 3) N(0, 1) 1517 1523 

24 One-Parameter --- N(0, 1) 1513 1520 

25 Gen. One-Parameter (Alpha) N(1, 1) N(0, 1) 1491 1505 

26 Gen. One-Parameter (Alpha) N(1, 1) N(0, 3) 1490 1504 

27 One-Parameter (Alpha) N(1, 1) --- 1508 1526 
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Chapter 4 - Computation  

 The Gibbs sampler for this model requires great care in terms of programming and model 

specification.  Whereas the primary advantages to the use of the Item Response Model in the 

preference testing context are related to interpretation, most of the potential drawbacks are 

related to computation.  Although the MCMC simulations are easily accessible, certain 

conditions may produce unfavorable results.  Such issues will be addressed here, along with a 

summary of the computational journey which brought us to the published results. 

 The first step in applying the Two-Parameter IRM was the Shyness data example, which 

outlined the step-by-step process for sampling values from the appropriate posterior 

distributions.  We first programmed this algorithm into the function ‘gibbs’, whose sampling 

functions are contained in the packages presented by Trautmann (2014) and Venables (2002).  

The full function can be found in Appendix A.  The function inputs the data, prior information 

about all three of the model’s parameters, the number of iterations, and the duration of the burn-

in period.  Using a loop structure, we then employ the aforementioned latent variable approach 

and sample from the full conditional densities of every 𝛼, 𝛽, and 𝜃 parameter, as outlined in 

Equations 2.4, 2.5, and 2.6 in the Methods chapter.  In this approach, the sampled values of the 

latent variable 𝑍𝑖𝑗 are stored, although we do not use them.  With the full collection of sampled 

values stored in R objects, plot generation is simple and efficient.   

 Next, the five hypothetical datasets were created to evaluate the model’s performance 

under specific conditions.  Initially, the Increasing Difficulty datasets featured 81 consumers, 

where the observed proportion of preferences for A in each replication were (𝑝1, 𝑝2, 𝑝3, 𝑝4) =

(1, 2 3⁄ , 1 3⁄ , 0).  The original Monotone Increasing Difficulty dataset can be seen in Table 4.1.  

Whereas all of these preferences were contiguous in the Monotone dataset, their location was 
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randomized in the Non-Monotone dataset.  These locations were only randomized once, and the 

resulting dataset was used through the entirety of the estimation process.  This original Non-

Monotone Increasing Difficulty dataset can be found in Table 4.2.  However, when verifying 

algorithm convergence, the Non-Monotone dataset experienced less than ideal mixing, 

particularly for the four 𝛼 parameters.  The initial structure used observed proportions of A 

preferences of 100% and 0% in replications 1 and 4, respectively.  Such extreme proportions can 

often cause computational issues, so, to obtain a dataset for illustration purposes, more response 

patterns were added to make the observed preference proportions more realistic.  This was 

accomplished by adding 27 consumers who consistently preferred product A and 27 consumers 

who consistently preferred product B.  The adjusted Monotone and Non-Monotone datasets were 

shown in Tables 3.4 and 3.5, respectively.  The addition of B preferences to the first replication 

and A preferences to the last replication greatly improved the algorithm’s mixing, though it is far 

from exemplary.  Plots of the sampled 𝛼3 values for the Non-Monotone Increasing Difficulty and 

Extreme datasets are shown in Figure 4.1 for comparison. 

 In order to expedite the exploration of different model specifications, we used 

OpenBUGS software, specifically designed for “Bayesian inference Using Gibbs Sampling” 

with adaptive rejection sampling.  This method does not require the use of the data augmentation 

method presented in the Methods chapter; instead, the model in Formula 1.10 is used.  The full 

OpenBUGS model file and data file code can be found in Appendix B.  As stated earlier, the 

appropriate model files were easily obtained by adapting the code written for the two-parameter 

logistic item response model (2PL IRM) by Curtis (2010).  Once these model and data files are 

deemed functional, they are inputted to R via the ‘BRugs’ package, which runs the OpenBUGS 

sampling algorithm and returns the sampled values in R.  This allowed use of R’s powerful  
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Table 4.1 The three distinct response patterns present in the original Monotone Increasing 

Difficulty dataset. 

 

 Rep 

1 

Rep 

2 

Rep 

3 

Rep 

4 

Total A 

Selections 

Count 

 1 1 1 0 3 27 

 1 1 0 0 2 27 

 1 0 0 0 1 27 

Total 81 54 27 0   

 

Table 4.2 The four distinct response patterns present in the original Non-Monotone 

Increasing Difficulty dataset. 

 

 Rep 

1 

Rep 

2 

Rep 

3 

Rep 

4 

Total A 

Selections 

Count 

 1 1 1 0 3 16 

 1 1 0 0 2 38 

 1 0 1 0 2 11 

 1 0 0 0 1 16 

Total 81 54 27 0   

 

graphics capabilities, while still utilizing OpenBUGS’s efficient computational process.  Table 

4.3 compares the elapsed procedure times of the sampling process for both the Raisin Bran and 

Cola datasets between the two methods of computation.  While marginally higher in 

computational costs, ‘BRugs’ saved time via the simplicity of the OpenBUGS syntax.  The 

necessary adjustments to the model specifications in our DIC calculations were typically one-line 

changes in prior distribution or link function, where an identical adjustment to our original R 

function would have required detailed specification of the appropriate conditional distributions.   

 In cases where OpenBUGS is not available or the user is unfamiliar with BUGS syntax, 

many standalone R packages are available for the purpose of Item Response Modeling.  The 

‘ltm’ package by Rizopoulos (2006) fits several variations of the latent trait model, where ‘eRm’,  
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Figure 4.1 Plots of the sampled values over time for the third item discrimination 

parameter.  Shown are values resulting from the Non-Monotone Increasing Difficulty 

dataset (a) and the Extreme dataset (b).  Although much improved over the initial dataset 

structure, the Non-Monotone Increasing Difficulty data still experiences minor mixing 

issues, where the Extreme data plot is ideal. 

 

 

 

 

 

 

 

 

 

 

Table 4.3 A comparison of elapsed computing times between two programming methods 

for the item response model with Gibbs Sampling, (6000 iterations).  The Manual method 

uses a custom R function with a single nested loop, requiring the installation of the 

‘truncnorm’ and ‘MASS’ packages.  The alternative was use of the ‘BRugs’ package in R, 

whose primary function ‘BRugsFit’ allows OpenBUGS to sample values through the R 

interface.  The Manual programming proved quicker in computation, but required much 

more effort to specify. 

 

 Programming Method 

 Manual ‘BRugs’ 

Raisin Bran Data 48.61 sec 56.81 sec 

Cola Data 49.56 sec 58.20 sec 

 

 

(b) 

(a) 
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presented by Mair (2007), focuses on extensions of the Rasch Model, both in unidimensional 

environments.  The ‘mirt’ package from Chalmers (2012) was created for estimation of 

multidimensional IRT parameters.  From a Bayesian perspective ‘ltbayes’ by Johnson (2014) and 

‘MCMCpack’ by Martin, Quinn, and Park (2011) are well-known alternatives.  Mair (2015) 

names and explains these and many more packages which can be used for item response 

modeling in R. 

 Lastly, the Two-Parameter Item Response Model naturally brings an issue of non-

identifiability, due to the product of discrimination and latent preference.  𝛼 is expected to be 

positive, because we expect an increase in a consumer’s underlying preference for product A to 

be accompanied by a higher probability of selecting A as the preferred product.  Therefore, 

positive latent preference values can be interpreted as above-average preferences for product A, 

and negative latent preference values indicate below-average preferences for product A.  

However, samples from OpenBUGS will occasionally contain negative discrimination values 

and, thus, latent preference values with opposite interpretations.  This problem can be 

circumvented by restricting 𝛼 > 0.  If one would rather not sacrifice the flexibility of allowing 𝛼 

to be freely estimated, it will often suffice to suggest such a restriction through a prior 

distribution with either a positive mean or an entirely positive support.  Johnson and Albert 

(1999) argues that identifiability fails to be a problem when a proper prior is selected for the 

latent preference parameters, and Curtis (2010) states that the variance of the latent preferences 

must be constant over time to establish identifiability, but we still encountered difficulties.  In 

these instances, it is still possible to interpret latent preference and discrimination: consumer 𝑖 

possesses an above-average preference for product A in replication 𝑗 when the sign of 𝜃𝑖 matches 

the sign of 𝛼𝑗 and a below-average preference for product A when the signs are different.  
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However, this is not a solution to the issue of non-identifiability, and the interpretation is much 

more easily understood when positive and negative values of 𝜃𝑖 indicate above-average and 

below-average latent preferences, respectively.  The search for such a solution will remain a 

topic of future research.  Because the primary goal of this research is to propose the model and 

aid in its interpretation, we only present results which contained mostly positive discrimination 

values.   

 Although the application of a hierarchical version of the IRM would be a natural 

progression, our focus on interpretation led to use of a simpler version of the model.  The 

hierarchical model could be useful for further research and in practice. 
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Chapter 5 - Discussion 

 The primary problem with conventional analysis of preference test data using 𝑝𝐴, the 

probability of preferring product A over product B, is the inability to allow these probabilities to 

differ among consumers.  Cochrane et al. (2005) found that results become more stable with 

replicated preference tests, due to potential inconsistent consumer preferences over time.  The 

Two-Parameter IRM allows this flexibility in probabilities and accounts for multiple preference 

tests per customer, making it a powerful tool for preference test data analysis.  Although other 

Bayesian models could be applied in this setting, our goal was to explore the interpretation of the 

Two-Parameter IRM, not perform an exhaustive search for the best model. 

 In addition, the Two-Parameter IRM estimates characteristics of the preference tests 

themselves, rather than only characteristics of the consumers.  Given a consumer’s latent ability 

and a replication’s discrimination and difficulty, we may be able to predict a preference response 

more accurately than by using the consumer’s history of responses alone.  This can be 

determined by investigating several models’ posterior predictive distributions.  Secondly, the 

discrimination and difficulty measures provide insight into consumer preferences over time, 

information which transcends any specific product or dataset.  Even with two different products 

with entirely different consumer demographics, there may exist similarities in patterns of 

recorded preferences from one replication to the next.  These item parameters represent the 

similarities and differences in response patterns between different products and consumer panels.  

As such, the IRM may be better-suited for exploring the nature of consumer preferences than for 

making conclusions about a specific product.  Although it may be difficult to make product 

decisions based directly on results from the IRM, this information could greatly benefit the 
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advertising and market research sectors by approaching the psychology of preference testing 

through a proven mathematical model. 
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Appendix A - R Code for Gibbs Sampling 

 

# Install Necessary Packages # 

install.packages("truncnorm") 

library(truncnorm) 

install.packages("MASS") 

library(MASS) 

 

# gibbs function runs the Gibbs Sampling algorithm and returns arrays of 

#  parameter values 

 

gibbs <- function(y,mu.a=1,mu.b=0,sigma0=diag(2),mu.theta=0,niter=6000, 

 nburn=1000){ 

   

  # data dimensions 

  n <- dim(y)[1] 

  k <- dim(y)[2] 

   

  # creation of output storage arrays 

  z <- array(0,dim=c(n,k,niter)) 

  a <- matrix(mu.a,nrow=niter,ncol=k) 

  b <- matrix(mu.b,nrow=niter,ncol=k) 

  theta <- matrix(mu.theta,nrow=niter,ncol=n) 

   

  # these are used to store parameter values at each iteration 

  zt <- z[,,1] 

  at <- a[1,] 

  bt <- b[1,] 

  thetat <- theta[1,] 

   

  # the Gibbs Sampling loop 

  for (i in 2:niter){ 

    # sample latent values zij 

    at.mat <- matrix(at,nrow=n,ncol=k,byrow=T) 

    bt.mat <- matrix(bt,nrow=n,ncol=k,byrow=T) 

    thetat.mat <- matrix(thetat,nrow=n,ncol=k,byrow=F) 

    mean.z <- at.mat*thetat.mat-bt.mat 

    zt <- ifelse(y==1,rtruncnorm(n*k,a=0,mean=mean.z), 

 rtruncnorm(n*k,b=0,mean=mean.z)) 
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    # sample latent traits thetai 

    d <- sum(at^2)+1 

    mean.theta <- apply(at.mat*(zt+bt.mat),1,sum)/d 

    se.theta <- sqrt(1/d) 

    thetat <- rnorm(n,mean.theta,se.theta) 

     

    # sample item parameters (aj,bj) 

    X <- cbind(thetat,-1) 

    sig.inv <- solve(sigma0) 

    mu0 <- c(mu.a,mu.b) 

    for (j in 1:k){ 

      vj <- solve(t(X)%*%X+sig.inv) 

      mj <- vj%*%(t(X)%*%zt[,j]+sig.inv%*%mu0) 

      abt <- mvrnorm(1,mj,vj) 

      at[j] <- abt[1] 

      bt[j] <- abt[2] 

    } 

     

    # store sampled values 

    z[,,i] <- zt 

    a[i,] <- at 

    b[i,] <- bt 

    theta[i,] <- thetat 

  } 

  return(list(z=z[,,(nburn+1):niter],a=a[(nburn+1):niter,], 

 b=b[(nburn+1):niter], theta=theta[(nburn+1):niter,])) 

} 

# z is 3-D array with dimensions [n,k,iter] 

# a is 2-D array with dimensions [iter,k] 

# b is 2-D array with dimensions [iter,k] 

# theta is 2-D array with dimensions [iter,n] 

 

########################## 

## Shyness Data Example ## 

########################## 

 

# Shyness dataset can be found at  

# http://www-math.bgsu.edu/~albert/ord_book/Chapter6/ratings.dat 

 

set.seed(20) 

sim <- gibbs(shyness) # all other arguments are default 

 

# pull out results for easy plot generation 

a <- sim$a 

b <- sim$b 
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z <- sim$z 

t <- sim$theta 

k <- length(a[1,]) 

n <- length(t[1,]) 

 

# # # # # # # # # # # # # # # # # # # #  

# Plots for Shyness Data in Figure 1.3 # 

# # # # # # # # # # # # # # # # # # # # 

 

## Whisker Plots for A 

list.a <- lapply(seq_len(ncol(a)), function(i) a[,i]) 

means.a <- apply(a,2,mean) 

stripchart(list.a,col="white",axes=F,frame.plot=T,group.names=rep("",k),xlab=

 "Item",ylab=expression(alpha),ylim=c(-1.8,4.5),vertical=T) 

for (i in 1:k) points(i,means.a[i],pch=19,cex=0.5) 

for (i in 1:k) lines(c(i,i),quantile(a[,i],c(.05,.95))) 

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(a[,i],c(.05)),2)) 

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(a[,i],c(.95)),2)) 

axis(1,at=seq(1,k,10)) 

axis(2,at=seq(-3,5)) 

 

## Whisker Plots for B 

list.b <- lapply(seq_len(ncol(b)), function(i) b[,i]) 

means.b <- apply(b,2,mean) 

stripchart(list.b,col="white",axes=F,frame.plot=T,group.names=rep("",k),xlab=

 "Item",ylab=expression(beta),ylim=c(-3,3),vertical=T) 

for (i in 1:k) points(i,means.b[i],pch=19,cex=0.5) 

for (i in 1:k) lines(c(i,i),quantile(b[,i],c(.05,.95))) 

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(b[,i],c(.05)),2)) 

for (i in 1:k) lines(c(i-.5,i+.5),rep(quantile(b[,i],c(.95)),2)) 

axis(1,at=seq(10,k,10)) 

axis(2,at=seq(-3,3)) 

 

## Whisker Plots for Theta 

list.t <- lapply(seq_len(ncol(t)), function(i) t[,i]) 

means.t <- apply(t,2,mean) 

stripchart(list.t,col="white",axes=F,frame.plot=T,group.names=rep("",n),xlab=

 "Student",ylab=expression(theta),ylim=c(-2.2,2),vertical=T) 

for (i in 1:n) points(i,means.t[i],pch=19,cex=0.5) 

for (i in 1:n) lines(c(i,i),quantile(t[,i],c(.05,.95))) 

for (i in 1:n) lines(c(i-.5,i+.5),rep(quantile(t[,i],c(.05)),2)) 

for (i in 1:n) lines(c(i-.5,i+.5),rep(quantile(t[,i],c(.95)),2)) 

axis(1,at=seq(10,n,10)) 

axis(2,at=seq(-3,3)) 
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######################### 

## Real-World Datasets ## 

######################### 

 

# note that 0=’preference for B’, 1=’preference for A’ 

 

# Raisin Bran 

rb<-matrix(c(rep(c(1,1,1,1),139), 

             rep(c(1,1,1,0),6), 

             rep(c(1,1,0,1),13), 

             rep(c(1,0,1,1),16), 

             rep(c(0,1,1,1),28), 

             rep(c(1,1,0,0),5), 

             rep(c(1,0,1,0),10), 

             rep(c(0,1,1,0),8), 

             rep(c(1,0,0,1),9), 

             rep(c(0,1,0,1),6), 

             rep(c(0,0,1,1),13), 

             rep(c(1,0,0,0),11), 

             rep(c(0,1,0,0),8), 

             rep(c(0,0,1,0),7), 

             rep(c(0,0,0,1),12), 

             rep(c(0,0,0,0),14)),ncol=4,byrow=T) 

 

# Cola 

cola<-matrix(c(rep(c(1,1,1,1),65), 

               rep(c(1,1,1,0),17), 

               rep(c(1,1,0,1),24), 

               rep(c(1,0,1,1),19), 

               rep(c(0,1,1,1),19), 

               rep(c(1,1,0,0),16), 

               rep(c(1,0,1,0),11), 

               rep(c(0,1,1,0),14), 

               rep(c(1,0,0,1),15), 

               rep(c(0,1,0,1),9), 

               rep(c(0,0,1,1),17), 

               rep(c(1,0,0,0),9), 

               rep(c(0,1,0,0),12), 

               rep(c(0,0,1,0),20), 

               rep(c(0,0,0,1),8), 

               rep(c(0,0,0,0),21)),ncol=4,byrow=T) 
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# # # # # # # # # # # # # # # # # # # # # # # 

# Results and Plots for Real-World Datasets # 

# # # # # # # # # # # # # # # # # # # # # # # 

 

set.seed(10) 

gibbs.rb <- gibbs(rb) 

 

# Summarize results 

a <- gibbs.rb$a 

b <- gibbs.rb$b 

t <- gibbs.rb$theta 

z <- gibbs.rb$z 

n <- length(t[1,]) 

k <- length(a[1,]) 

iter <- length(a[,1]) 

 

set.seed(10) 

gibbs.cola <- gibbs(cola) 

 

# Summarize Results 

a <- gibbs.cola$a 

b <- gibbs.cola$b 

t <- gibbs.cola$theta 

z <- gibbs.cola$z 

n <- length(t[1,]) 

k <- length(a[1,]) 

iter <- length(a[,1]) 

 

########################### 

## Hypothetical Datasets ## 

########################### 

 

# Balanced 

y <- matrix(c(rep(c(1,1,1,1),5), 

             rep(c(1,1,1,0),5), 

             rep(c(1,1,0,1),5), 

             rep(c(1,0,1,1),5), 

             rep(c(0,1,1,1),5), 

             rep(c(1,1,0,0),5), 

             rep(c(1,0,1,0),5), 

             rep(c(0,1,1,0),5), 

             rep(c(1,0,0,1),5), 

             rep(c(0,1,0,1),5), 

             rep(c(0,0,1,1),5), 

             rep(c(1,0,0,0),5), 
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             rep(c(0,1,0,0),5), 

             rep(c(0,0,1,0),5), 

             rep(c(0,0,0,1),5), 

             rep(c(0,0,0,0),5)),ncol=4,byrow=T) 

 

# Extreme 

y <- matrix(c(rep(c(1,1,1,1),40),rep(c(0,0,0,0),40)),ncol=4,byrow=T) 

 

# Increasing Discrimination  

# Dataset from Table 3.3 was written to a text file and imported as follows: 

y <- as.matrix(read.table("examplefilepath\\Increasing Discrimination 

 Data.txt")) 

 

# Increasing Difficulty (Monotone) 

# 81 consumers originally, 54 consumers added later (see Results chapter) 

y <- matrix(c(rep(1,81),rep(1,54),rep(0,27),rep(1,27),rep(0,54),rep(0,81)) 

 ,ncol=4) 

y <- rbind(matrix(rep(1,108),ncol=4),y,matrix(rep(0,108),ncol=4)) 

 

# Increasing Difficulty (Non-Monotone) 

# Uses Incr. Diff. (Monotone) data and randomizes 2nd and 3rd columns 

# 81 consumers originally, 54 consumers added later (see Results chapter) 

set.seed(10) 

y <- matrix(c(rep(1,81),sample(y[,2],81),sample(y[,3],81),rep(0,81)),ncol=4) 

y <- rbind(matrix(rep(1,108),ncol=4),y,matrix(rep(0,108),ncol=4)) 

 

# # # # # # # # # # # # # # # # # # # # # # # # 

# Results and Plots for Hypothetical Datasets # 

# # # # # # # # # # # # # # # # # # # # # # # # 

 

set.seed(7) 

sim <- gibbs(y) 

 

a <- sim$a 

b <- sim$b 

t <- sim$theta 

z <- sim$z 

n <- length(t[1,]) 

k <- length(a[1,]) 

iter <- length(a[,1]) 
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Appendix B - R and OpenBUGS Code for using ‘BRugs’  

################################################################### 

## OpenBUGS Model File: Two-Parameter Probit Item Response Model ## 

################################################################### 

 

model { 

 # Rearrange data into full dataset 

 for (i in 1:culm[1]) { 

  for (j in 1:p) { 

   Y[i, j] <- response[1,j] 

  } 

 } 

 for (i in 2:R) { 

  for (j in culm[i-1] + 1 : culm[i]) { 

   for (k in 1:p) { 

    Y[j, k] <- response[i, k] 

   } 

  } 

 } 

 # Calculate probability of preferring A for each replication 

 for (j in 1:p) { 

  P[j] <- phi(-beta[j] / sqrt(1 + pow(alpha[j],2))) 

 } 

 # 2-Parameter Probit Model specification 

 for (i in 1:n) { 

  for (j in 1:p) { 

   Y[i, j] ~ dbern(prob[i, j]) 

   prob[i, j] <- phi(alpha[j] * theta[i] - beta[j]) 

  } 

  theta[i] ~ dnorm(0, 1) 

 } 

 # Specification of Prior Distributions 

 for (j in 1:p) { 

  beta[j] ~ dnorm(0,1) 

  alpha[j] ~ dnorm(1,1) 

 } 

} 
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######################### 

## OpenBUGS Data Files ## 

######################### 

 

## Raisin Bran Data ## 

list(n=305, R=16, p=4, culm=c(139, 145, 158, 174, 202, 207, 217, 225, 234, 

240, 253, 264, 272, 279, 291, 305), response=structure(.Data=c( 

 1,1,1,1, 

 1,1,1,0, 

 1,1,0,1, 

 1,0,1,1, 

 0,1,1,1, 

 1,1,0,0, 

 1,0,1,0, 

 0,1,1,0, 

 1,0,0,1, 

 0,1,0,1, 

 0,0,1,1, 

 1,0,0,0, 

 0,1,0,0, 

 0,0,1,0, 

 0,0,0,1, 

 0,0,0,0), .Dim=c(16,4))) 

 

## Cola Data ## 

list(n=295, R=16, p=4, culm=c(65, 82, 106, 125, 144, 160, 171, 185, 200, 209, 

226, 235, 247, 267, 275, 296), response=structure(.Data=c( 

 1,1,1,1, 

 1,1,1,0, 

 1,1,0,1, 

 1,0,1,1, 

 0,1,1,1, 

 1,1,0,0, 

 1,0,1,0, 

 0,1,1,0, 

 1,0,0,1, 

 0,1,0,1, 

 0,0,1,1, 

 1,0,0,0, 

 0,1,0,0, 

 0,0,1,0, 

 0,0,0,1, 

 0,0,0,0), .Dim=c(16,4))) 
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## Balanced Data ## 

list(n=80, R=16, p=4, culm=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80), 

response=structure(.Data=c( 

 1,1,1,1, 

 1,1,1,0, 

 1,1,0,1, 

 1,0,1,1, 

 0,1,1,1, 

 1,1,0,0, 

 1,0,1,0, 

 0,1,1,0, 

 1,0,0,1, 

 0,1,0,1, 

 0,0,1,1, 

 1,0,0,0, 

 0,1,0,0, 

 0,0,1,0, 

 0,0,0,1, 

 0,0,0,0), .Dim=c(16,4))) 

 

## Extreme Data ## 

list(n=80, R=2, p=4, culm=c(40, 80), response=structure(.Data=c( 

 1,1,1,1, 

 0,0,0,0), .Dim=c(2,4))) 

 

## Increasing Discrimination Data ## 

list(n=60, R=15, p=4, culm=c(5,7,12,21,28,33,34,37,40,41,48,53,55,56,60), 

response=structure(.Data=c( 

 1,1,1,1, 

 1,1,0,1, 

 1,0,1,1, 

 0,1,1,1, 

 1,1,0,0, 

 1,0,1,0, 

 0,1,1,0, 

 1,0,0,1, 

 0,1,0,1, 

 0,0,1,1, 

 1,0,0,0, 

 0,1,0,0, 

 0,0,1,0, 

 0,0,0,1, 

 0,0,0,0), .Dim=c(15,4))) 
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## Monotone Increasing Difficulty Data ## 

list(n=135, R=5, p=4, culm=c(27,54,81,108,135), response=structure(.Data=c( 

 1,1,1,1, 

 1,1,1,0, 

 1,1,0,0, 

 1,0,0,0, 

 0,0,0,0), .Dim=c(5,4))) 

 

## Non-Monotone Increasing Difficulty Data ## 

list(n=135, R=6, p=4, culm=c(27,43,81,92,108,135), 

response=structure(.Data=c( 

 1,1,1,1, 

 1,1,1,0, 

 1,1,0,0, 

 1,0,1,0, 

 1,0,0,0, 

 0,0,0,0), .Dim=c(6,4))) 

 

########################### 

## R Scripts for ‘BRugs’ ## 

########################### 

 

# ‘BRugsFit’ will run simulations in OpenBUGS and store results in R 

 

install.packages("BRugs") 

library(BRugs) 

 

# Raisin Bran Data 

 

sim.rb <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Raisin Bran 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000, 

 nIter=5000, seed=10) 

 

# Cola Data 

 

sim.c <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Cola 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000, 

 nIter=5000, seed=10) 

 

# Balanced Data 

 

sim.b <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Balanced 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000, 

 nIter=5000, seed=10) 



65 

# Extreme Data 

 

sim.e <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Extreme 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"),nBurnin=1000, 

 nIter=5000, seed=10) 

 

# Increasing Discrimination Data 

 

sim.d <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Discr. 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"), 

 nBurnin=1000, nIter=5000, seed=10) 

 

# Increasing Difficulty (Monotone) Data 

 

sim.dm <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Diff. 

 (M) Data.txt", parametersToSave=c("alpha","beta","theta","P"), 

 nBurnin=1000, nIter=5000, seed=10) 

 

 

# Increasing Difficulty (Non-Monotone) Data 

 

sim.dnm <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Incr. Diff. 

 (NM) Data.txt", parametersToSave=c("alpha","beta","theta","P"), 

 nBurnin=1000, nIter=5000, seed=10) 

 

########################################## 

## Plot Generation for OpenBUGS Results ## 

########################################## 

 

# # # # # # # # # # # # # 

#   RB:        sim.rb   # 

#   Cola:      sim.c    # 

#   Balanced:  sim.b    # 

#   Extreme:   sim.e    # 

#   Discr.:    sim.d    # 

#   Diff. (M): sim.dm   # 

#   Diff. (NM): sim.dnm # 

# # # # # # # # # # # # # 

 

# Boxplots for alpha, beta, P 

boxplot(samplesSample("alpha[1]"),samplesSample("alpha[2]"),samplesSample 

 ("alpha[3]"), samplesSample("alpha[4]"),xlab="Replication", 

 ylab=expression(alpha)) 
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axis(1,at=seq(1,4)) 

boxplot(samplesSample("beta[1]"),samplesSample("beta[2]"),samplesSample("beta

 [3]"), samplesSample("beta[4]"),xlab="Replication", ylab= 

 expression(beta)) 

axis(1,at=seq(1,4)) 

boxplot(samplesSample("P[1]"),samplesSample("P[2]"),samplesSample("P[3]"), 

        samplesSample("P[4]"),xlab="Replication",ylab="p") 

axis(1,at=seq(1,4)) 

 

# Example Histograms and Sim. Sequences for alpha, beta, theta 

hist(samplesSample("alpha[3]"),xlab=expression(alpha[3]),main=" ") 

hist(samplesSample("beta[2]"),xlab=expression(beta[2]),main=" ") 

hist(samplesSample("theta[30]"),xlab=expression(theta[30]),main=" ") 

 

samplesHistory("alpha[3]",mfrow=c(1,1),ylab=expression(alpha[3]),main=" ") 

samplesHistory("beta[2]",mfrow=c(1,1),ylab=expression(beta[2]),main=" ") 

samplesHistory("theta[30]",mfrow=c(1,1),ylab=expression(theta[30]),main=" ") 

 

  # Optional Kernel Density Estimates for above nodes 

  samplesDensity("alpha[3]",mfrow=c(1,1)) 

  samplesDensity("beta[2]",mfrow=c(1,1)) 

  samplesDensity("theta[30]",mfrow=c(1,1)) 

 

# Whisker Plots for theta 

 

  # sim.b used for example, use appropriate sim results 

  n <- dim(sim.b$Stats)[1]-12 

  means.t <- tail(sim.b$Stats[,1],n) 

  quant.t <- cbind(tail(sim.b$Stats[,4],n),tail(sim.b$Stats[,6],n)) 

 

t <- matrix(seq(1,n*10),nrow=10) 

list.t <- lapply(seq_len(ncol(t)), function(i) t[,i]) 

stripchart(list.t,col="white",axes=F,frame.plot=T,group.names=rep("",n),xlab=

 "Panelist", ylab=expression(theta),ylim=c(-3,3),vertical=T) 

for (i in 1:n) points(i,means.t[i],pch=19,cex=0.5) 

for (i in 1:n) lines(c(i,i),c(quant.t[i,1],quant.t[i,2])) 

for (i in 1:n) lines(c(i-.5,i+.5),rep(quant.t[i,1],2)) 

for (i in 1:n) lines(c(i-.5,i+.5),rep(quant.t[i,2],2)) 

axis(1,at=seq(10,n,10)) 

axis(2,at=seq(-3,3)) 
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################################ 

## Model Comparison Using DIC ## 

################################ 

 

############################################################ 

##        LIST OF PRIOR DISTRIBUTIONS AND NOTATION        ## 

##                                                        ## 

##  Standard: a ~ N(1,1), b ~ N(0,1)                      ## 

##  a - (.5,.33): a ~ N(.5,.33), b ~ N(0,1)               ## 

##  a - (.5,1): a ~ N(.5,1), b ~ N(0,1)                   ## 

##  a - (.5,3): a ~ N(.5,3), b ~ N(0,1)                   ## 

##  a - (1,.33): a ~ N(1,.33), b ~ N(0,1)                 ## 

##  a - (1,3): a ~ N(1,3), b ~ N(0,1)                     ## 

##  a - (2,.33): a ~ N(2,.33), b ~ N(0,1)                 ## 

##  a - (2,1): a ~ N(2,1), b ~ N(0,1)                     ## 

##  a - (2,3): a ~ N(2,3), b ~ N(0,1)                     ## 

##  b - (-1,.33): a ~ N(1,1), b ~ N(-1,.33)               ## 

##  b - (-1,1): a ~ N(1,1), b ~ N(-1,1)                   ## 

##  b - (-1,3): a ~ N(1,1), b ~ N(-1,3)                   ## 

##  b - (0,.33): a ~ N(1,1), b ~ N(0,.33)                 ## 

##  b - (0,3): a ~ N(1,1), b ~ N(0,3)                     ## 

##  b - (1,.33): a ~ N(1,1), b ~ N(1,.33)                 ## 

##  b - (1,1): a ~ N(1,1), b ~ N(1,1)                     ## 

##  b - (1,3): a ~ N(1,1), b ~ N(1,3)                     ## 

##  a - gamma(3,3): a ~ gamma(3,3), b ~ N(0,1)            ## 

##  a - gamma(1,1): a ~ gamma(1,1), b ~ N(0,1)            ## 

##  a - gamma(.33,.33): a ~ gamma(.33,.33), b ~ N(0,1)    ## 

##  a - Truncated Normal: a ~ TNorm(1,1), b ~ N(0,1)      ## 

##  1P a - (1,1): a ~ N(1,1), b ~ N(0,1)                  ## 

##  1P a - (1,3): a ~ N(1,3), b ~ N(0,1)                  ## 

##  1P a - 1: a = 1, b ~ N(0,1)                           ## 

############################################################ 

 

# DIC function returns DIC from model specified for Cola and Raisin Bran 

# datasets, (probit and logit), then they are inserted into a storage 

# matrix 

 

DIC <- function(model.file.P,model.file.L){ 

 

# Cola, Probit 

  sim.c.P <- BRugsFit(modelFile=model.file.P, numChains=1, 

 data="examplefilepath\\Cola Data.txt", parametersToSave= 

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10) 
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# Cola, Logit 

  sim.c.L <- BRugsFit(modelFile=model.file.L, numChains=1,  

      data="examplefilepath\\Cola Data.txt", parametersToSave= 

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10) 

# Raisin Bran, Probit 

  sim.rb.P <- BRugsFit(modelFile=model.file.P, numChains=1,  

      data="examplefilepath\\Raisin Bran Data.txt", parametersToSave= 

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10) 

# Raisin Bran, Logit 

  sim.rb.L <- BRugsFit(modelFile=model.file.L, numChains=1,  

      data="examplefilepath\\Raisin Bran Data.txt", parametersToSave= 

 c("alpha","beta","theta"), nBurnin=1000, nIter=5000, seed=10) 

# Results Storage 

  res <- vector(length=4) 

  res[1] <- sim.c.P$DIC[2,3] 

  res[2] <- sim.c.L$DIC[2,3] 

  res[3] <- sim.rb.P$DIC[2,3] 

  res[4] <- sim.rb.L$DIC[2,3] 

  return(res=res) 

} 

 

# creation of matrix for storage of DIC values 

DIC.store <- matrix(nrow=24,ncol=4) 

 

# Standard Model 

DIC.store[1,] <- DIC(model.file.P="examplefilepath\\Standard Model 

 (Probit).txt", model.file.L="examplefilepath\\Standard Model 

 (Logit).txt") 

 

# a ~ N(.5,.33) 

DIC.store[2,] <- DIC(model.file.P="examplefilepath\\a - (.5,.33) (P).txt",  

                     model.file.L="examplefilepath\\a - (.5,.33) (L).txt") 

 

# a ~ N(.5,1) 

DIC.store[3,] <- DIC(model.file.P="examplefilepath\\a - (.5,1) (P).txt",  

                     model.file.L="examplefilepath\\a - (.5,1) (L).txt") 

 

# a ~ N(.5,3) 

DIC.store[4,] <- DIC(model.file.P="examplefilepath\\a - (.5,3) (P).txt",  

                     model.file.L="examplefilepath\\a - (.5,3) (L).txt") 

 

# a ~ N(1,.33) 

DIC.store[5,] <- DIC(model.file.P="examplefilepath\\a - (1,.33) (P).txt",  

                     model.file.L="examplefilepath\\a - (1,.33) (L).txt") 
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# a ~ N(1,3) 

DIC.store[6,] <- DIC(model.file.P="examplefilepath\\a - (1,3) (P).txt",  

                     model.file.L="examplefilepath\\a - (1,3) (L).txt") 

 

# a ~ N(2,.33) 

DIC.store[7,] <- DIC(model.file.P="examplefilepath\\a - (2,.33) (P).txt",  

                     model.file.L="examplefilepath\\a - (2,.33) (L).txt") 

 

# a ~ N(2,1) 

DIC.store[8,] <- DIC(model.file.P="examplefilepath\\a - (2,1) (P).txt",  

                     model.file.L="examplefilepath\\a - (2,1) (L).txt") 

 

# a ~ N(2,3) 

DIC.store[9,] <- DIC(model.file.P="examplefilepath\\a - (2,3) (P).txt",  

                     model.file.L="examplefilepath\\a - (2,3) (L).txt") 

 

# b ~ N(-1,.33) 

DIC.store[10,] <- DIC(model.file.P="examplefilepath\\b - (-1,.33) (P).txt",  

                      model.file.L="examplefilepath\\b - (-1,.33) (L).txt") 

 

# b ~ N(-1,1) 

DIC.store[11,] <- DIC(model.file.P="examplefilepath\\b - (-1,1) (P).txt",  

                      model.file.L="examplefilepath\\b - (-1,1) (L).txt") 

 

# b ~ N(-1,3) 

DIC.store[12,] <- DIC(model.file.P="examplefilepath\\b - (-1,3) (P).txt",  

                      model.file.L="examplefilepath\\b - (-1,3) (L).txt") 

 

# b ~ N(0,.33) 

DIC.store[13,] <- DIC(model.file.P=”examplefilepath\\b - (0,.33) (P).txt",  

                      model.file.L="examplefilepath\\b - (0,.33) (L).txt") 

 

# b ~ N(0,3) 

DIC.store[14,] <- DIC(model.file.P="examplefilepath\\b - (0,3) (P).txt",  

                      model.file.L="examplefilepath\\b - (0,3) (L).txt") 

 

# b ~ N(1,.33) 

DIC.store[15,] <- DIC(model.file.P="examplefilepath\\b - (1,.33) (P).txt",  

                      model.file.L="examplefilepath\\b - (1,.33) (L).txt") 

 

# b ~ N(1,1) 

DIC.store[16,] <- DIC(model.file.P="examplefilepath\\b - (1,1) (P).txt",  

                      model.file.L="examplefilepath\\b - (1,1) (L).txt") 
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# b ~ N(1,3) 

DIC.store[17,] <- DIC(model.file.P="examplefilepath\\b - (1,3) (P).txt",  

                      model.file.L="examplefilepath\\b - (1,3) (L).txt") 

 

# a ~ gamma(3,3)  (mean,var) = (1,1/3) 

DIC.store[18,] <- DIC(model.file.P="examplefilepath\\a - gamma(3,3) 

 (P).txt", model.file.L="examplefilepath\\a - gamma(3,3) (L).txt") 

 

# a ~ gamma(1,1)  (mean,var) = (1,1) 

DIC.store[19,] <- DIC(model.file.P="examplefilepath\\a - gamma(1,1) 

 (P).txt", model.file.L="examplefilepath\\a - gamma(1,1) (L).txt") 

 

# a ~ gamma(.33,.33)  (mean,var) = (1,3) 

DIC.store[20,] <- DIC(model.file.P="examplefilepath\\a - gamma(.33,.33) 

 (P).txt", model.file.L="examplefilepath\\a - gamma(.33,.33) (L).txt") 

 

# a ~ Truncated Normal 

DIC.store[21,] <- DIC(model.file.P="examplefilepath\\a - Truncated Normal 

 (P).txt", model.file.L="examplefilepath\\a - Truncated Normal 

 (L).txt") 

 

# 1P a - (1,1) 

DIC.store[22,] <- DIC(model.file.P="examplefilepath\\1P a - (1,1) (P).txt",  

                      model.file.L="examplefilepath\\1P a - (1,1) (L).txt") 

 

# 1P a - (1,3) 

DIC.store[23,] <- DIC(model.file.P="examplefilepath\\1P a - (1,3) (P).txt",  

                      model.file.L="examplefilepath\\1P a - (1,3) (L).txt") 

 

# 1P a - 1 

DIC.store[24,] <- DIC(model.file.P="examplefilepath\\1P a - 1 (P).txt",  

                      model.file.L="examplefilepath\\1P a - 1 (L).txt") 
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Appendix C - Additional Code 

######################################### 

## Item Response Curves for Figure 1.2 ## 

######################################### 

 

# Typical Item Response Curve: Figure 1.2 (a) 

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)") 

 

axis(2,at=seq(0,1,.1)) 

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02) 

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02) 

 

# Changing Difficulty, Keeping Discrimination Constant: Figure 1.2 (b) 

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)") 

curve(pnorm(x-1),from=-3,to=3,add=T,lty=5) 

curve(pnorm(x+1),from=-3,to=3,add=T,lty=3) 

 

axis(2,at=seq(0,1,.1)) 

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02) 

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02) 

 

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = 1, ",beta," = -

 1")),expression(paste(alpha," = 1, ",beta," = 

 0")),expression(paste(alpha," = 1, ",beta," = 

 1"))),lty=c(3,1,5),bty="n") 

text(x=c(-1.2,-.3,.7),y=c(.5,.5,.5),labels=c("Easy","Moderate","Difficult")) 

 

# Changing Discrimination, Keeping Difficulty Constant: Figure 1.2 (c) 

curve(pnorm(x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)") 

curve(pnorm(2*x),from=-3,to=3,add=T,lty=5) 

curve(pnorm(.5*x),from=-3,to=3,add=T,lty=3) 

 

axis(2,at=seq(0,1,.1)) 

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02) 

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02) 

 

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = .5, ",beta," = 

 0")),expression(paste(alpha," = 1, ",beta," = 

 0")),expression(paste(alpha," = 2, ",beta," = 

 0"))),lty=c(3,1,5),bty="n") 

text(x=c(2,1.6,.77),y=c(.8,.89,.88),labels=c("Low","Moderate","High")) 
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# Extreme Values of Discrimination: Figure 1.2 (d) 

curve(pnorm(0*x),from=-3,to=3,xlab="Latent Ability",ylab="P(y=1)",lty=5, 

 ylim=c(0,1)) 

curve(pnorm(10000*x),from=-3,to=3,add=T) 

 

axis(2,at=seq(0,1,.1)) 

axis(3,at=seq(-3,3),labels=rep("",7),tck=.02) 

axis(4,at=seq(0,1,.1),labels=rep("",11),tck=.02) 

 

legend(x=-3,y=.9,legend=c(expression(paste(alpha," = 0, ",beta," = 

 0")),expression(paste(alpha," = 10,000 , ",beta," = 

 0"))),lty=c(5,1),bty="n") 

text(x=c(1.5,1.5),y=c(.45,.95),labels=c("'Useless'","'Ideal'")) 

 

################################### 

## Calculation of Computing Time ## 

################################### 

 

# this method returns system, user, and elapsed time for the called functions 

# Raisin Bran used as example 

 

# Gibbs Sampler programmed directly in R 

ptm <- proc.time() 

set.seed(10) 

gibbs.rb <- gibbs(rb) 

proc.time() – ptm 

 

# Gibbs Sampler using OpenBUGS through ‘BRugs’ package 

ptm <- proc.time() 

sim.rb <- BRugsFit(modelFile="examplefilepath\\2-Parameter Probit Item 

 Response Model.txt", numChains=1, data="examplefilepath\\Raisin Bran 

 Data.txt", parametersToSave=c("alpha","beta","theta","P"), 

 nBurnin=1000, nIter=5000, seed=10) 

proc.time() - ptm 

 

 

 


