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Abstract

The mean value theorem for harmonic functions has historically been an important and

powerful result. As such, a generalization of this theorem that was stated by Caffarelli in

1998 and later proved by Blank-Hao in 2015 is of immediate interest. However, in order to

make more use of this new general mean value theorem, more information about the mean

value sets that appear in the theorem is needed. We present here a few new results regarding

properties of such mean value sets.

In the first chapter we study the mean values sets of the second order divergence form

elliptic operator with principal coefficients defined as

aijk (x) :=


αkδ

ij, xn > 0

βkδ
ij, xn < 0.

In particular, we show that the mean value sets associated to such an operator need not be

convex as αk and βk converge to 1. This result then leads to an example of nonconvex mean

value sets for an operator where the aij(x) are smooth.

In the second chapter we show that all points on the free boundary of an obstacle problem

in some settings move immediately in response to varying data. Three applications of this

result are given, and in particular, we show the following uniqueness result: For sufficiently

smooth elliptic divergence form operators on domains in IRn and for the Laplace-Beltrami

operator on a smooth manifold, the boundaries of distinct mean value sets which are centered

at the same point do not intersect.
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Chapter 1

Introduction

1.1 Preliminary Results and Definitions

The mean value theorem has been one of the most important tools in the study of harmonic

and/or weakly harmonic functions. (By Weyl’s Lemma these sets of functions are identical.)

We define such functions over a domain Ω ⊂ IRn. (For a list of commonly used notation we

direct the reader to section 1.2.)

Definition 1.1.1. A function u ∈ L1
loc(Ω) is said to be weakly superharmonic (subharmonic)

in Ω if ∫
Ω

u∆φ dx ≤ 0 (≥ 0)

for all nonnegative φ ∈ C1,1
0 (Ω). We take this definition to be the meaning of the notation

∆u ≤ 0. Also, if a function is both weakly superharmonic and weakly subharmonic we say

the function is weakly harmonic, denoted as ∆u = 0.

The mean value theorem for these superharmonic functions can be stated as follows.

Theorem 1.1.2 (Mean Value Theorem). Let u ∈ L1
loc(Ω) satisfy ∆u ≤ 0 in Ω. Then, for

any 0 < r < s such that Bs(x0) ⊂ Ω, we have

u(x0) ≥ 1

|Br(x0)|

∫
Br(x0)

u dx ≥ 1

|Bs(x0)|

∫
Bs(x0)

u dx. (1.1)
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If instead we have ∆u ≥ 0 the inequalities in Equation (1.1) are flipped.

Remark 1.1.3. The inequality in Equation (1.1) and the flipped version are referred to as

the mean value inequalities. We also note here that these mean value inequalities hold if the

averages over Euclidean balls are replaced by averages over their boundaries.

Theorem 1.1.2 can and has been used to prove many of the classical results for harmonic

functions. For example the mean value theorem can be used to prove: the maximum prin-

ciple, Harnack’s Inequality, compactness results, regularity results, and interior derivative

estimates. (See [14] and [15].)

Throughout this paper instead of working with the Laplacian we will work with operators

that can be viewed as a generalization of the Laplacian. Specifically we will work with the

operator L defined as,

L := div(A(x)∇) = Di(a
ij(x)Dj),

where A(x) = (aij(x)) is a matrix valued function with aij(x) assumed to be bounded and

measurable functions that satisfy:

aij(x) ≡ aji(x) and 0 < λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for all ξ ∈ IRn, ξ 6= 0.

Such an operator appears in mathematics quite naturally. In fact, let

J(u) :=
1

2

∫
Ω

aij(x)DjuDiu dx

and

A := {u ∈ W 1,2(Ω) |u− g ∈ W 1,2
0 (Ω)}.

Then it is easy to show that a function w minimizes the functional J over the set A if and

only if 
Lw = 0 for x ∈ Ω

w = g for x ∈ ∂Ω.
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Furthermore, Lw = 0 is the associated Euler-Lagrange for the functional J. Outside of pure

mathematics, operators of this form appear in the study of anisotropic and inhomogeneous

materials. In this case the matrix A(x) carries constitutive information about the material

at the point x.

With this new operator we get a slightly different definition for weakly L-superharmonic

functions.

Definition 1.1.4. A function u ∈ W 1,2
loc (Ω) is said to be weakly L-superharmonic (L-

subharmonic) in Ω if ∫
Ω

aij(x)DjuDiφ dx ≥ 0 (≤ 0)

for all nonnegative φ ∈ W 1,2
0 (Ω). As before we take this definition to be the meaning of

the notation Lu ≤ 0. Also, if a function is both weakly L-superharmonic and weakly L-

subharmonic we say the function is weakly L-harmonic, denoted as Lu = 0.

Similarly we define solutions for such an operator in the weak sense.

Definition 1.1.5. Given f ∈ L2(Ω) and u ∈ W 1,2(Ω), we take “Lu = f” to mean

−
∫

Ω

aij(x)DjuDiφ dx =

∫
Ω

fφ dx for any φ ∈ W 1,2
0 (Ω).

Given the usefulness of the mean value theorem for harmonic functions, an analogous

result that holds when the Laplacian is replaced by the above operator L is immediately of

interest. One of the first such analogs can be found in [19], where a mean value theorem for

such an operator was proved. Using Equation 8.3 in their paper you can derive the following

theorem.

Theorem 1.1.6 (Littman-Stampacchia-Weinerger). Let u be an L-subharmonic function on

Ω with u = 0 on ∂Ω, define

I(y; s) :=
s

2

∫
DG(s)

u(x)aij(x)DxiG(x, y)DxjG(x, y)dx

3



where G(x, y) is the Green’s function for L on Ω and DG(s) :=

{
x ∈ IRn 1

s
≤ G(x, y) ≤ 3

s

}
.

Then we have

u(y) ≤ I(y; r) ≤ I(y; s) for all 0 < r < s.

While this formula does provide us with an integral definition of u(y), like the mean value

theorem for harmonic functions does, it also has a number of issues. First, it is not a simple

average due to the presence of weights and indeed these weights involve derivatives of the

Green’s functions, which may be nontrivial to estimate. Second, the sets involved are level

sets of the Green’s function instead of some nice set containing the point y.

On the other hand, in his Fermi Lectures for the obstacle problem, Caffarelli gave a very

elegant proof of Theorem 1.1.2, where he also stated that this proof would generalize to pro-

vide us with a mean value theorem for L-harmonic functions. It is worth recalling Caffarelli’s

proof here as it provides some intuition as to how the generalized mean value theorem for

L-harmonic functions is proved (see Theorem 1.1.8) and in particular can illustrate where

and why the obstacle problem appears in the statement of that theorem (see Equation (1.4).)

Caffarelli’s Proof of Theorem 1.1.2. Without loss of generality we will assume x0 = 0 ∈ Ω.

The main idea in this proof is to create a special test function, φ, to use in Definition 1.1.1

that naturally leads to the desired inequality. In order to construct such a function we make

use of the fundamental solution for the Laplacian centered at 0. More specifically we use

Γ(x) = Γ(|x|) :=


− 1

2π
ln(|x|) n = 2

1
n(n−2)ωn

|x|2−n n > 2

where ωn is the volume of the n-dimensional unit ball. We now define,

Pr(x) := −α(r)|x|2 + β(r)

where α(r) and β(r) are chosen so that Pr(x) ≤ Γ(x) and touches Γ(x) tangentially on

∂Br(0). (Note that r is not equal to |x| here.) Using these two functions we now construct

4



the crucial function that will be the main ingredient in our test function. Let

ψr(x) :=


Γ(x) for x ∈ Bc

r(0)

Pr(x) for x ∈ Br(0).

Note that ψr(x) is a nonnegative function in C1,1(IRn),

∆ψr(x) =


0 for x ∈ Bc

r(0)

−2nα(r) for x ∈ Br(0),

and that ψs(x) ≤ ψr(x) in IRn for 0 < r ≤ s. Hence, the function φr,s(x) := ψr(x) − ψs(x)

is a nonnegative function in C1,1
0 (IRn) and thus, is an appropriate test function. Then, from

Definition 1.1.1 we have

0 ≥
∫

Ω

u∆φr,s dx =

∫
Br(0)

u∆ψr dx−
∫
Bs(0)

u∆ψs dx

= −2nα(r)

∫
Br(0)

u dx+ 2nα(s)

∫
Bs(0)

u dx.

Therefore,

2nα(s)

∫
Bs(0)

u dx ≤ 2nα(r)

∫
Br(0)

u dx

which gives us,

2nα(s)
|Bs(0)|
|Bs(0)|

∫
Bs(0)

u dx ≤ 2nα(r)
|Br(0)|
|Br(0)|

∫
Br(0)

u dx. (1.2)

Now using the fact that u ≡ 1 is both weakly superharmonic and subharmonic and following

the previous computation we obtain,

0 =

∫
Ω

1∆φr,s dx =

∫
Br(0)

∆ψr dx−
∫
Bs(0)

∆ψs dx = −2nα(r)|Br(0)|+ 2nα(s)|Bs(0)|.

5



Hence, 2nα(s)|Bs(0)| = 2nα(r)|Br(0)| and so Equation (1.2) can be rewritten as,

1

|Bs(0)|

∫
Bs(0)

u dx ≤ 1

|Br(0)|

∫
Br(0)

u dx.

Finally, by using this equation centered at an arbitrary x0 ∈ Ω for 0 < r′ ≤ r and letting

r′ → 0 we obtain

u(x0) ≥ 1

Br(x0)

∫
Br(x0)

u dx

for almost every x0, using the Lebesgue Differentiation Theorem.

Remark 1.1.7. Note that the crucial function, ψr(x) in the previous proof, is the solution

to the obstacle problem given in (1.4) when L is the Laplacian with 2nα(r) = r−n. Hence, in

the general case the solution of the equations given in (1.4) ends up being the appropriate

replacement for ψr(x) when creating the test function.

The details of generalizing this proof were later provided by Blank and Hao in [7] where they

proved the following theorem.

Theorem 1.1.8. Let L be as above. Then, for any x0 ∈ IRn, there exists an increasing

family Dr(x0) which satisfies the following:

1. Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0), with c, C depending only on n, λ, and Λ.

2. For any L-subharmonic function v and 0 < r < s, we have

v(x0) ≤ 1

|Dr(x0)|

∫
Dr(x0)

v dx ≤ 1

|Ds(x0)|

∫
Ds(x0)

v dx. (1.3)

Finally, the sets Dr(x0) are noncontact sets of the following obstacle problem:


Lu = −χ{u<G(·,x0)}r

−n in BM(x0)

u ≤ G(·, x0) in BM(x0)

u = G(·, x0) on ∂BM(x0)

(1.4)

6



where BM(x0) ⊂ IRn, M > 0 is sufficiently large, and G(x, y) is the Green’s function for L

on IRn.

Remark 1.1.9. The boundary condition in (1.4) has a small technical issue in that u =

G(·, x0) on ∂BM(x0) is usually interpreted as u−G(·, x0) ∈ W 1,2
0 (BM(x0)). However, G(·, x0)

is certainly not in W 1,2(BM(x0)). On the other hand, G(·, x0) is in W 1,2 away from the

singularity at x0, which is away from where the boundary condition appears. Thus, we can

follow [7] and truncate G(·, x0) near x0 in a way that does not change what is occurring near

the boundary. (See [7] for full details about this technicality.)

Remark 1.1.10. Theorem 1.1.8 appears to assume n ≥ 3, since there does not exist a

Green’s function on IR2. However, the theorem still holds in this case by instead choos-

ing G(·, x0) to be the fundamental solution. This change works due to the fact that the

nondegeneracy statement for the obstacle problem, Theorem 3.9 in [7], guarantees that the

solution to (1.4) must be identically equal to G(·, x0) far enough away from x0. This fact is

also why there is no dependence on M when chosen to be sufficiently large. In fact in [5]

instead of using the Green’s function for IRn they use the Green’s function for a set S that

is “big enough,” meaning {u < G(·, x0)} ⊂ S. (See Theorem 1.1.14.) While this avoids the

technicality for the case n = 2 it appears to introduce a dependence on S. However, a simple

exercise shows that if one solves (1.4) on two such sets S and S ′, then the Green’s functions

and solutions differ by the exact same L-harmonic function. Thus, the noncontact set in the

two cases are the same set.

Definition 1.1.11. We defined the mean value sets associated to an operator L to be the

sets Dr(x0) in Theorem 1.1.8. When it is clear we may simply refer to these sets as the mean

value sets.

Remark 1.1.12. While we will refer to Dr(x0) as the mean value set associated to L, we

do not have a uniqueness statement for these sets in general. To be specific, it is possible

that there exists a set that satisfies the mean value theorem but is not a noncontact set for

the obstacle problem in (1.4). However, in the case for the Laplacian the Euclidean balls are

unique in some sense. (See [17] for details.)

7



Theorem 1.1.8 is a clear analogue of the classical mean value theorem for balls for the

Laplacian, but here the role of the balls is replaced with the sets, Dr(x0) = {ur(x) <

G(x, x0)} where ur is the solution to (1.4). Of course, this theorem immediately leads to

questions about exactly what can be said about these Dr(x0)’s. Initially all that was known

about these sets can be seen in Theorem 1.1.8 along with Corollary 3.10 in [7] which states

that ∂Dr(x0) is porous, so in particular has Hausdorff dimension strictly less than n. More

recently the following three properties of these sets were shown in [3]:

1. If y0 6= x0 then there exists an r > 0 such that y0 ∈ ∂Dr(x0).

2. Dr(x0) has uniformly positive density at every point on ∂Dr(x0).

3. Dr(x0) has exactly one component.

Moreover, it is rather trivial to prove the converse of Theorem 1.1.8

Theorem 1.1.13 (Converse MVT for Divergence Form Elliptic PDE). If {Dr(x0)}{r>0,x0∈IRn}

is a complete collection of sets obtained for a specific operator, L, of the form given in The-

orem 1.1.8, and v is a function such that

v(x0) ≡ 1

|Dr(x0)|

∫
Dr(x0)

v(x) dx (1.5)

whenever Dr(x0) ⊂ Ω, then Lv = 0 in Ω.

The upshot is that all of the information contained in the operator must be contained within

the collection of mean value sets and vice versa.

Soon after these properties were shown, Theorem 1.1.8 along with the above properties

were extended to the Laplace-Beltrami operator, ∆g, on Riemannian manifolds in [5], which

we state here for convenience.

Theorem 1.1.14 (Mean Value Theorem on Riemannian manifolds). Given a point x0 in a

complete Riemannian manifold M (possibly with boundary), there exists a maximal number

r0 > 0 (which is finite if M is compact) and a family of open sets {Dr(x0)} for 0 < r < r0,

such that

8



(A) 0 < r < s < r0 implies, Dr(x0) ⊂ Ds(x0), and

(B) limr↓0 max distx0(∂Dr(x0)) = 0, and

(C) if u is a subsolution of the Laplace-Beltrami equation, then

u(x0) = lim
r↓0

1

|Dr(x0)|

∫
Dr(x0)

u(x) dx ,

and 0 < r < s < r0 implies

1

|Dr(x0)|

∫
Dr(x0)

u(x) dx ≤ 1

|Ds(x0)|

∫
Ds(x0)

u(x) dx .

Finally, if r < r0, then the set Dr(x0) is uniquely determined as the noncontact set of any

one of a family of obstacle problems. In fact, as long as the set S ⊂ M is “big enough,”

then DR(x0) is the noncontact set of the following obstacle problem:

∆gu = −χ{u<G}R−n in S

u = G(·, x0) on ∂S ,

(1.6)

where G is the Green’s function for the Laplace-Beltrami operator on S.

Besides the few properties stated above, the topology and geometry of these mean value

sets was, and largely is, still unknown. As in [3] one can ask if such sets are convex, star-

shaped, or homeomorphic to a ball. On the other hand, one may instead ask for what types

of operators do the mean value sets have a given property. For example, by imposing extra

smoothness or structural assumptions on aij(x) do we get properties of our mean value set

that are not true in general? This type of questioning is the focus of the second chapter

where we study the mean value sets associated to operators with aij(x) of a particular form

and prove the following result.

Theorem 1.1.15. Let DR;k(x0, y0) ⊂ IR2 be as in Theorem 1.1.8 where the principal coeffi-

9



cients of Lαk,βk are defined as

aijk (x, y) :=


αkδ

ij y > 0

βkδ
ij y < 0

with αk and βk converging to 1 as k → ∞. Then, for almost every choice of y0, such that

∂DR;k(x0, y0) eventually crosses the interface {y = 0}, there exists a constant K > 0 such

that DR;k(x0, y0) is nonconvex for all k > K.

This result then leads to the existence of nonconvex mean value sets for operators with

smooth coefficients aij(x). Thus, suggesting that there is not a simple assumption one can

make on the coefficients of an operator to ensure convex mean value sets.

In the third and final chapter we will primarily be concerned with a question of uniqueness

in regards to property 1 in the previous list. If y ∈ ∂Dr(x0), then is it possible for there to

exist an r̃ 6= r such that y ∈ ∂Dr̃(x0)? One can restate this question as whether r < s merely

implies Dr(x0) ⊂ Ds(x0), or does it imply the stronger result: Dr(x0) ⊂ Ds(x0)? The main

results of this chapter show that in the case of the Laplace-Beltrami operator on Riemannian

manifolds, and for the case in IRn where the operator L has coefficients in C1,1, the answer

is yes. (When the coefficients are not C1,1 the question is still open.) More specifically we

prove the following theorems.

Theorem 1.1.16 (Compact Containment of Mean Value Sets, Part I). Under the assump-

tions of Theorem 1.1.8 along with the assumption that the aij belong to C1,1 the family

{Dr(x0)} is always strictly increasing in the sense that r < s implies Dr(x0) ⊂ Ds(x0).

Theorem 1.1.17 (Compact Containment of Mean Value Sets, Part II). Under the assump-

tions of Theorem 1.1.14 the family {Dr(x0)} is always strictly increasing in the sense that

(A′) 0 < r < s < r0 implies Dr(x0) ⊂ Ds(x0).

10



1.2 Notation

We collect here some basic notation that will be used throughout the paper:

χ
D the characteristic function of the set D

D the closure of the set D

int(D) the interior of the set D

∂D the boundary of the set D

Dc the complement of the set D

x (x1, x2, . . . , xn)

x′ (x1, x2, . . . , xn−1)

Br(x) the open ball with radius r centered at the point x

Br Br(0)

Ω(w) {w > 0}

Λ(w) {w = 0}

FB(w) ∂Ω(w) ∩ ∂Λ(w)

Sing(w) {x ∈ FB(w) |x is a singular point}

Reg(w) {x ∈ FB(w) |x is a regular point}

∆ Laplacian or symmetric difference operator

In the second case A∆B := (A \B) ∪ (B \ A)

Γ(x, y) the fundamental solution for the Laplacian on IRn (See [14] and [15])

Lα,β, Lk operators found in Equations (2.1) and (2.4)

dx used in integrals to denote integration with respect to the Lebesgue Measure

dHn−1 (n− 1)-dimensional Hausdorff measure

Ck(Ω) set of functions having all derivatives of order ≤ k continuous in Ω where k ≥ 0

or ∞
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Ck,α(Ω) set of functions whose k-th order partial derivatives are uniformly Hölder con-

tinuous with exponent α in Ω where k ≥ 0 or ∞ and 0 < α ≤ 0

Cα(Ω) the function space C0,α(Ω)

Cω(Ω) the set of functions that are real analytic on Ω

Lp(Ω) for 1 ≤ p <∞ the set of measurable functions on Ω that are p-integrable

W k,p(Ω) the set of functions whose weak partial derivatives up to order k exist and

belong to Lp(Ω) where k ≥ 0 and 1 ≤ p ≤ ∞

F (Ω)0 the set of functions in F (Ω) with compact support in Ω

F (Ω)loc the set of functions in F (Ω′) for all Ω′ ⊂⊂ Ω

We refer the reader to [14] for more detailed descriptions of the function spaces listed above.
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Chapter 2

Properties of Mean Value Sets: Angle

Conditions, Blowup Solutions, and

Nonconvexity

2.1 Introduction

In this chapter we aim to study operators with a very particular form. Namely operators

whose principal coefficients are defined as

aij(x) :=


αδij xn > 0

βδij xn < 0

for some α, β > 0. We have two main reasons for studying such operators. First these

operators appear in the study of composite materials where one has two different constituent

materials. (See [18].) Secondly these aij(x) have, what we view to be, the simplest type of

discontinuity for such coefficients. Indeed, we thought these operators to be the simplest in

which computing the mean value sets would be nontrivial, but still possible. In fact if α is

very close to β such an operator would be very close to the Laplacian. Hence, it is reasonable
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to assume the mean value sets would be very close to Euclidean balls. This intuition does

in fact turn out to be true. In particular, in Theorem 2.3.3 we show that

|DR(x0) ∆BR(x0)| → 0 as α, β → 1.

On the other hand, this fact makes our main result of this chapter, Theorem 1.1.15, somewhat

surprising, where we show that as α tends towards β almost every R such that ∂DR(x0)

crosses the interface, DR(x0) will be nonconvex. One may think that this behavior is due

to the discontinuous nature of the principal coefficients, but this idea is incorrect. In fact

we will prove the existence of nonconvex mean value sets corresponding to operators whose

principal coefficients are smooth on all of IRn. Moreover, this suggests that convexity may

only be possible for very simple operators, such as the Laplacian after a linear change of

variables.

The remainder of the chapter will be organized in the following way. In section 2.2 we will

state a few preliminary results that will be needed throughout the chapter and define some

specific notation we will be using. Section 2.3 is devoted to proving a measure stability result,

(4) in Theorem 2.3.3, which states that our mean value sets are close to Euclidean balls in

measure when the operator L is close to the Laplacian. For section 2.4 we prove a Weiss’

type monotonicity formula, Theorem 2.4.1, that leads to homogeneous of degree two blowup

solutions at free boundary points on the interface. We note here that other such quasi-

monotonicity formulas have been derived for rather general aij(x)′s, which lead to many of

the same results to that of a full monotonicity formula. In [12] Theorem 3.7 provides such

a formula where aij(x) are Lipschitz continuous and in [13] Theorem 1.1 provides such a

formula where aij(x) are in a fractional Sobolev space. While these formulas are shown with

few structural assumptions on the aij(x)′s the mild regularity that is required excludes the

aij(x)′s we will look at here. In section 2.5 we prove an angle condition for blowup solutions

at free boundary points on the interface, Lemma 2.5.1. This condition then leads to the proof

of Theorem 1.1.15. Finally, in section 2.6 we show an analog of Theorem 1.1.15 where the

principal coefficients of the operator are no longer discontinuous. This is done by convolving
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the discontinuous aij(x)′s with a mollifier and showing that the convergence results found in

section 2.3 still hold in this case.

2.2 Preliminaries and Terminology

The following notation is specific to this chapter:

B+
r (x), B−r (x) {y ∈ Br(x) | yn > 0}, {y ∈ Br(x) | yn < 0}

∂+Br(x), ∂−Br(x) {y ∈ ∂Br(x) | yn > 0}, {y ∈ ∂Br(x) | yn < 0}

IRn
+, IRn

− {x ∈ IRn |xn ≥ 0}, {x ∈ IRn |xn ≤ 0}

In the entirety of this chapter we will work with a divergence form elliptic operator

Lα,β := Dja
ij(x)Di (2.1)

with the aij(x) having the following structure

aij(x) :=


αδij xn > 0

βδij xn < 0

for 0 < λ ≤ α, β ≤ Λ (2.2)

where δij is the Kronecker delta function. Throughout the chapter we will refer to the

set {xn = 0} as the interface. For such operators the Green’s function on IRn have been

computed explicitly in [1]; we will restate them here for the convenience of the reader. Let

Γ̃(x, y) := Γ((x′,−xn), y). Then the Green’s function for Lα,β on IRn is as follows

G(x, y) :=


Gh(x, y) when yn > 0

Gl(x, y) when yn < 0
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where

Gh(x, y) :=
1

α
Γ(x, y) +


α−β

α(α+β)
Γ̃(x, y) when xn ≤ 0

α−β
α(α+β)

Γ(x, y) when xn ≥ 0

and

Gl(x, y) :=
1

β
Γ(x, y) +


β−α

β(α+β)
Γ(x, y) when xn ≤ 0

β−α
β(α+β)

Γ̃(x, y) when xn ≥ 0.

When n = 2 we will abuse the vocabulary slightly and still refer to such a G(x, y) as the

Green’s function, where in this case the limit at ∞ is −∞ instead of 0. We will also need

a well known transmission condition for Lα,β-harmonic functions in this setting, which we

state here.

Lemma 2.2.1 (Transmission Conditions). With aij(x) and Lα,β definded as above, if Lα,βw =

0 in IRn, then w ∈ Cω(IRn
+) ∩ Cω(IRn

−) and for any x′ ∈ IRn−1 we have

α lim
s↓0

∂

∂xn
w(x′, s) = β lim

t↑0

∂

∂xn
w(x′, t). (2.3)

The regularity of the solution w in this lemma was shown by Li and Vogelius in [18],

whereas the condition in (2.3) can be derived by doing an integration by parts with standard

arguments from calculus of variations. Note that Lemma 2.2.1 gives us solutions that are

real analytic up to and including the interface, but not across the interface.

2.3 Measure Stability

This section will show the convergence of solutions to obstacle problems of the form (1.4),

with the operator Lα,β, as α and β converge to 1. This fact is then used to show a type of

measure convergence for the mean value sets associated to the operator, Lα,β, to those of

the Laplacian, i.e. Euclidean balls. In this sense the mean value sets do begin to act like

Euclidean balls.
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Now we fix some x0 ∈ IRn and consider wk ∈ W 1,2(B16M(x0)) to be the solutions to


Lku := Di(a

ij
k (x)Dju) = −R−nχ{u<Gk(·,x0)} in B16M(x0)

u ≤ Gk(·, x0) in B16M(x0)

u = Gk(·, x0) on ∂B16M(x0)

(2.4)

where Lk := Lαk,βk with ellipticity constants 0 < λ < Λ for all k. We will choose M > 0

large enough so that the mean value sets are independent of M , see [7] for details. In fact,

we will choose M large enough to ensure that {wk < Gk(·, x0)} ⊂ BM(x0) for all k.

We now wish to show two compactness results for the solutions wk. These results are

very similar in proof and statement to that found in [8] Lemma 3.1 and Lemma 3.2. A key

difference being we can not assume 0 ∈ FB(wk) for all k. To accommodate this change we

first prove a uniform interior L∞ bound on the solutions. Another discrepancy here is that

we will not be able to utilize the height function Gk(·, x0)− wk due to the singularity from

the Green’s function.

Lemma 2.3.1 (Uniform Bound). There exists a constant C such that wk ≤ C in B4M(x0)

for all k.

Proof. By the proof of Lemma 4.4 from [7] we have

wk ≤ bk +K
(
bk +

R−nM2

4n

)
in B4M(x0) where bk := max

∂B16M (x0)
Gk(·, x0).

Using Gk(·, x0) ≤ 1
λ
Γ(·, x0) gives

bk ≤ b := max
∂B16M (x0)

1

λ
Γ(·, x0).

Hence, wk ≤ b+K
(
b+ R−nM2

4n

)
for all k.

Lemma 2.3.2 (Compactness). There exists a function w ∈ W 1,2(B2M(x0)) and a subse-

quence of {wk} such that along this subsequence we have uniform convergence of wk to w,
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and weak convergence in W 1,2.

Proof. Lemma 2.3.1 along with De Giorgi-Nash-Moser theorem implies there exists an α ∈

(0, 1) and a constant C such that {wk} ⊂ Cα(B2M(x0)) with ||wk||Cα(B2M (x0)) ≤ C. Then

by Arzela-Ascoli there exists a subsequence of {wk} that converges uniformly, to w ∈

C0(B2M(x0)). Also, standard elliptic regularity plus the uniform L2 bound on Gk(·, x0)

implies a uniform W 1,2 bound on wk. Then by standard functional analysis there exists a

subsequence such that wk ⇀ w in W 1,2.

Theorem 2.3.3. If we now assume that

αk and βk → 1 in BM(x0)

we then have

(1) Gk(·, x0)→ Γ(·, x0) uniformly in compact subsets of IRn \ {x0}

(2) χ{wk<Gk(·,x0)} → χ{w<Γ(·,x0)} almost everywhere in BM(x0)

(3) w satisfies 
∆w = −R−nχ{w<Γ(·,x0)} in BM(x0)

w ≤ Γ(·, x0) in BM(x0)

w = Γ(·, x0) on ∂BM(x0)

(4) |{wk < Gk(·, x0)}∆ {w < Γ(·, x0}| → 0

where w is the limiting function from the previous lemma.

Proof of (1). Let

Ψk(·, x0) :=


1
αk

Γ(·, x0) when xn > 0

1
βk

Γ(·, x0) when xn < 0

Then we have

|Gk(·, x0)− Γ(·, x0)| ≤ |Gk(·, x0)−Ψk(·, x0)|+ |Ψk(·, x0)− Γ(·, x0)|

18



which converges to 0 uniformly on any compact subset of IRn \ {x0}.

Proof of (2). Note that from (1) and Lemma 2.3.2 we have

(Gk(·, x0)− wk)→ (Γ(·, x0)− w) in BM(x0) \ {x0}.

Hence, in the interior of {Γ(·, x0)− w > 0} we have

χ{wk<Gk(·,x0)} → χ{w<Γ(·,x0)} on BM(x0) \ {x0}.

The same is true in the interior of {Γ(·, x0) − w = 0} by using the nondegeneracy of our

solutions, which can be found in [7]. Finally, we note that ∂{Γ(·, x0)−w = 0} has Lebesgue

measure zero from [7].

Proof of (3). For any φ ∈ W 1,2
0 (BM(x0)),

∫
BM (x0)

aijkDiwkDjφ =

∫
BM (x0)

(aijk − δ
ij)(Diwk −Diw)Djφ

+

∫
BM (x0)

aijkDiwDjφ+

∫
BM (x0)

δij(Diwk −Diw)Djφ =: I + II + III.

Since aijk → δij and Diwk ⇀ Diw, we have

I =

∫
BM (x0)

(aijk − δ
ij)(Diwk −Diw)Djφ→ 0

II =

∫
BM (x0)

aijkDiwDjφ→
∫
BM (x0)

δijDiwDjφ

and

III =

∫
BM (x0)

δij(Diwk −Diw)Djφ→ 0.
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Hence, ∫
BM (x0)

aijkDiwkDjφ→
∫
BM (x0)

δijDiwDjφ.

Together with (2), we proved

∆w = χ{w<Γ(·,x0)} in BM(x0).

From (1) and Lemma 2.3.2 it is clear that w ≤ Γ(·, x0) in BM(x0). Finally, recall we have

wk = Gk(·, x0) on ∂BM(x0) then again from (1) and Lemma 2.3.2 we have w = Γ(·, x0) on

∂BM(x0).

Proof of (4). This immediately follows from (2).

Remark 2.3.4. Due to the result in [17] we know BR(x0) = {w < Γ(·, x0)}. Hence, (4)

from the previous theorem can be rewritten to say

|{wk < Gk(·, x0)}∆BR(x0)| → 0.

In this sense we have shown our mean value sets converge to Euclidean balls.

2.4 Monotonicity Formula

In this section we aim to adapt Weiss’ monotonicity formula, from [22], to solutions of the

following problem


Lα,βu = 1

2
χ{u>0} in B1

u ≥ 0 in B1

0 ∈ FB(u).

(2.5)

Theorem 2.4.1. Let w be a solution to (2.5), f(x) := αχ{xn>0}+βχ{xn<0}, and x0 ∈ {xn =

0}. Then the function
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Φx0(r) := r−n−2

∫
Br(x0)

(f |∇w|2 + w)dx− 2r−n−3

∫
∂Br(x0)

fw2dHn−1

defined in (0, dist(x0, ∂B1), satisfies the monotonicity formula

Φx0(σ)− Φx0(ρ) =

∫ σ

ρ

r−n−2

∫
∂Br(x0)

2
(
∇w · ν − 2

w

r

)2

f dHn−1dr ≥ 0

for all 0 < ρ < σ < 1.

Remark 2.4.2. Note that this theorem requires x0 ∈ {xn = 0}. While this may seem

like a big restriction, realize that off of the interface Weiss’ original monotonicity formula

would hold. Also, the key difference in our monotonicity formula from Weiss’ original is the

necessity of the function f in the definition of Φ. This change is needed to reflect that our

solution w minimizes

∫
D

(f |∇u|2 + u)dx instead of

∫
D

(|∇u|2 + u)dx

among all functions u ∈ W 1,2(D) with u ≥ 0.

Proof. We will omit the measures dx and dHn−1 throughout the proof. It is to be understood

that the measure is dHn−1 when integrating over the boundary of a set and is otherwise dx,

which is the Lebesgue n-dimensional measure.

Let wr(x) := w(x0+rx)
r2

and observe that

Φ(r) =

∫
B1

(f |∇wr|2 + wr)− 2

∫
∂B1

fw2
r .

Since we have w ∈ Cω(IRn
+)∩Cω(IRn

−) from Lemma 2.2.1, it is convenient to work with Φ in

the form

Φ(r) =

∫
B+

1

(α|∇wr|2 + wr) +

∫
B−1

(β|∇wr|2 + wr)
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−2

∫
∂+B1

αw2
r − 2

∫
∂−B1

βw2
r .

Now compute

Φ′(r) =

∫
B+

1

2α∇wr · ∇
(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)

+

∫
B−1

2β∇wr · ∇
(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)

+

∫
B+

1

(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)

+

∫
B−1

(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)

−2

∫
∂+B1

2αwr

(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)

−2

∫
∂−B1

2βwr

(
x · ∇w(x0 + xr)

r2
− 2

r

w(x0 + rx)

r2

)
.

An integration by parts on the first two terms yields:

= −2

r

∫
B+

1

α∆wr(x · ∇wr − 2wr)−
2

r

∫
B−1

β∆wr(x · ∇wr − 2wr)

+
2α

r

∫
∂+B1

x · ∇wr(x · ∇wr − 2wr) +
2β

r

∫
∂−B1

x · ∇wr(x · ∇wr − 2wr)

+
2α

r

∫
B1∩{xn=0}

(−en) · ∇wr(x · ∇wr − 2wr)

+
2β

r

∫
B1∩{xn=0}

(en) · ∇wr(x · ∇wr − 2wr)
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+
1

r

∫
B+

1

(x · ∇wr − 2wr) +
1

r

∫
B−1

(x · ∇wr − 2wr)

−2α

r

∫
∂+B1

2wr(x · ∇wr − 2wr)−
2β

r

∫
∂−B1

2wr(x · ∇wr − 2wr)

=
2α

r

∫
∂+B1

(x · ∇wr − 2wr)
2 +

2β

r

∫
∂−B1

(x · ∇wr − 2wr)
2

+
2α

r

∫
B1∩{xn=0}

(−en) · ∇wr(x · ∇wr − 2wr)

+
2β

r

∫
B1∩{xn=0}

(en) · ∇wr(x · ∇wr − 2wr).

The last two terms cancel due to the transmission condition Lemma 2.2.1. Hence, we obtain

=
2

r

∫
∂B1

f(x · ∇wr − 2wr)
2dHn−1.

After rescaling we arrive at the desired result

Φ′x0(r) = 2r−n−2

∫
∂Br(x0)

f

(
ν · ∇w − 2

w

r

)2

dHn−1 ≥ 0

for r ∈ (0, 1).

Similar to Weiss’ original paper [22] we now use our monotonicity formula to prove blowup

solutions of (2.5) at free boundary points are homogeneous of degree two.

Proposition 2.4.3. Let w be a solution to (2.5) then we have

(1) For all x0 ∈ B1∩{w = 0}∩{xn = 0} the function Φx0(r) has a real right limit Φx0(0
+)

(2) Let x0 ∈ B1∩{w = 0}∩{xn = 0} and 0 < ρm −→ 0 be a sequence such that the blow-up

sequence wm(x) := w(x0+ρmx)
ρ2m

converges a.e. in IRn to a blow-up limit w0. Then w0 is

a homogeneous function of degree 2.
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(3) Φx0(r) ≥ 0 for every x0 ∈ B1 ∩ {w = 0} ∩ {xn = 0} and every 0 ≤ r < dist(x0, ∂B1).

Equality holds if and only if w = 0 in Br(x0).

(4) The function x0 7−→ Φx0(0
+) restricted to the set {xn = 0} is upper semi-continuous.

Proof of (1). Since w ∈ Cω(IRn
+)∩Cω(IRn

−) we get that Φx0(r) is bounded and non-decreasing

from Theorem 2.4.1, assuming that r is sufficiently small.

Proof of (2). First we may assume ρm’s are sufficiently small, depending on x0 so that

Theorem 2.4.1 holds. Then for all 0 < R < S < 1
ρm

we have

∫ S

R

r−n−2

∫
∂Br

2

(
∇wm · ν − 2

wm
r

)2

f dHn−1dr

=

∫ Sρm

Rρm

δ−n−2

∫
∂Bδ

2

(
∇w · ν − 2

w

δ

)2

f dHn−1dδ = Φ0(Sρm)− Φ0(Rρm)

where δ = rρm. From (1) we have Φx0(Sρm)− Φx0(Rρm) −→ 0. This together with the

boundedness of {wm} ⊂ C1,1
loc (IRn

+) ∩ C1,1
loc (IRn

−) implies w0 is homogeneous of degree 2.

Proof of (3). First suppose Φx0(0
+) < 0 for some x0 ∈ {xn = 0} ∩ {w = 0}. Then ∃ a se-

quence of positive real values ρm −→ 0 and wm := w(x0+ρmx)
ρ2m

−→ w0 in C1,α
loc (IRn

+)∩C1,α
loc (IRn

−)

such that

0 > lim
m→∞

Φx0(ρm)

= lim
m→∞

[ ∫
B+

1

(α|∇wm|2 + wm) +

∫
B−1

(β|∇wm|2 + wm)

−2

∫
∂+B1

αw2
mdHn−1 − 2

∫
∂−B1

βw2
mdHn−1

]
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=

∫
B+

1

(α|∇w0|2 + αw0) +

∫
B−1

(β|∇w0|2 + βw0)

−2

∫
∂+B1

αw2
0dHn−1 − 2

∫
∂−B1

βw2
0dHn−1.

From (2) we know that w0 is homogeneous of degree 2. An integration by parts yields

0 >

∫
B+

1

w0(1− α∆w0) +

∫
B−1

w0(1− β∆w0)

+

∫
∂+B1

αw0(∇w0 · x− 2w0)dHn−1 +

∫
∂−B1

βw0(∇w0 · x− 2w0)dHn−1

=
1

2

∫
B1

w0 ≥ 0,

a contradiction. Hence, 0 ≤ Φx0(0
+) ≤ Φx0(r). Finally if w = 0 in Br(x0) then obviously

Φx0(r) = 0. On the other hand if Φx0(r) = 0 then Φ′x0(r) = 0, which implies w is homogeneous

of degree 2. Then following as before

0 = Φx0(r) =
1

2
r−n−2

∫
Br(x0)

w ≥ 0.

Hence, w = 0 in Br(x0).

Proof of (4). Let ε > 0 and x ∈ {xn = 0}. If Φx0(0
+) > −∞ then there exists ρ such

that Φx0(ρ) + ε
2
≤ Φx0(0

+) + ε. Otherwise, if Φx0(0
+) = −∞ then ∃ m < ∞ such that

Φx0(ρ) + ε
2
≤ −m. Now, considering ρ to be fixed, if |x − x0| is sufficiently small we have

Φx(ρ) ≤ Φx0(ρ) + ε
2
. Also, from Theorem 2.4.1 we have Φx(0

+) ≤ Φx(ρ). Hence we have,

Φx(0
+) ≤


Φx0(0

+) + ε, Φx0(0
+) > −∞

−m, Φx0(0
+) = −∞
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by first choosing ρ then |x− x0| small enough.

2.5 Angle Conditions and Nonconvexity

In this section, working in IR2, we will explicitly construct the blowup solutions at free

boundary points on the interface to (2.5). This classification will lead to an interesting

condition on how the free boundary can cross the interface. In particular it will provide

an angle condition that depends only on the given α and β from the operator Lα,β. In

other words, the free boundary must cross the interface in a very particular way. Indeed,

we expected the angle of incidence and angle of reflection to be related, but that one angle

would be free. However, we find that both angles are completely determined by the given α

and β. Using this angle condition and the measure convergence in Theorem 2.3.3 we will be

able to construct examples of mean value sets that must be nonconvex.

Note that if w is a solution to (2.4) then locally, away from the singularity, Gk(x, y)−w

is a solution to (2.5). Hence, proposition 2.4.3 implies that blowup solutions to Gk(x, y)−w

at free boundary points are homogeneous of degree two. If we then restrict to working in IR2

these blowup solutions have the form r2g(θ). Using this fact the next lemma computes such

blowup solutions explicitly, in doing so we derive an angle condition for mean value sets as

they cross the interface, {xn = 0}.

Lemma 2.5.1 (Angle Condition Across the Interface). Let v0 = r2g(θ) be a blow-up solution

to (2.5) at the origin and assume ∃ θ1, θ2 ∈ (0, π) such that g(θ) = 0 ∀ θ ∈ [0, π− θ1]∪ [π+

θ2, 2π].

g(θ) :=



1
8α

[1− cos(2θ1) cos(2θ) + sin(2θ1) sin(2θ)] π − θ1 ≤ θ ≤ π

1
8β

[1− cos(2θ2) cos(2θ)− sin(2θ2) sin(2θ)] π ≤ θ ≤ π + θ2

0 otherwise

(2.6)
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θ2 =


θ1 + π

2
0 < θ1 <

π
2

θ1 − π
2

π
2
< θ1 < π

and cos(2θ1) =
β − α
β + α

Proof. Such a g must satisfy the following conditions:

1. g′′(θ) + 4g(θ) = 1
2α

for θ ∈ (π − θ1, π)

2. g′′(θ) + 4g(θ) = 1
2β

for θ ∈ (π, π + θ2)

3. g(π − θ1) = g(π + θ2) = 0

4. g′(π − θ1) = g′(π + θ2) = 0

5. αg′(π−) = βg′(π+)

6. g(π−) = g(π+)

Conditions 1 and 2 give us

g(θ) :=


1

8α
+ C1 cos(2θ) + C2 sin(2θ) π − θ1 < θ < π

1
8β

+D1 cos(2θ) +D2 sin(2θ) π < θ < π + θ2

Then conditions 3 and 4 give

C1 =
− cos(2θ1)

8α
C2 =

sin(2θ1)

8α
D1 =

− cos(2θ2)

8β
D2 =

− sin(2θ2)

8β

Now condition 5 implies

− sin(2θ2) = sin(2θ1)

which then gives

θ2 =


θ1 + π

2
0 < θ1 <

π
2

θ1 − π
2

π
2
< θ1 < π

.
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Finally using condition 6 we get

1− cos(2θ2)

β
=

1− cos(2θ1)

α

Hence we have

cos(2θ1) =
β − α
β + α

.

Remark 2.5.2. If in the previous lemma we instead assumed that Λ(v0) was on the “left”

side we get very much the same result. As in

g(θ) :=



1
8α

[1− cos(2θ1) cos(2θ) + sin(2θ1) sin(2θ)] 0 ≤ θ ≤ π − θ1

1
8β

[1− cos(2θ2) cos(2θ)− sin(2θ2) sin(2θ)] π + θ2 ≤ θ ≤ 2π

0 otherwise

(2.7)

with the same definitions for θ1 and θ2. Hence, assuming Λ(v0) crosses the interface, we only

have nine distinct cases. Four possible blowup solutions are as in equations (2.6) and (2.7).

(See figures 2.1a, 2.1b, 2.1d, and 2.1e.) Then by allowing the free boundary to be tangent

to the interface we find the standard half plane and whole plane solutions. (See figures 2.1g,

2.1h, and 2.1i.) Finally we obtain two more whole plane solutions by summing solutions as

in equation (2.6) and (2.7). (See figures 2.1c and 2.1f.)

At this point it is very easy to believe that convexity of our mean value sets will not

always be possible. The angle condition in Lemma 2.5.1 depends only on α and β and as α

converges to β we have (θ1, θ2) converging to either (π
4
, 3π

4
) or (3π

4
, π

4
). Thus, the boundaries

of our mean values sets must satisfy such an angle condition as they cross the interface or

become tangent to the interface, but we also have from Theorem 2.3.3 that these mean value

sets converge in measure to Euclidean balls as α and β converge to one. Then by picking

an appropriate center for the Euclidean balls they will cross the interface with any angle

we desire. This angle condition with the measure convergence statement in Theorem 2.3.3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1: The nine possible blowup limits at a free boundary point for fixed α and β,
assuming the positivity set crosses the interface

will force ∂DR to curve rapidly back towards ∂BR forcing DR to be nonconvex. Before we

can prove this we first need a small lemma to ensure the convergence of the contact and

noncontact set as we rescale our solutions.

Lemma 2.5.3. Let v be a solution to equation 2.5 and 0 < ρm → 0 be a sequence such

that the blowup sequence vm(x) := v(ρmx)
ρ2m

converges a.e. in IRn to a blowup limit v0. Then

for every ε > 0 there exists an M such that for any point p ∈ Ω(v0) ∩ B1 that is at least

ε away from FB(v0) we have p ∈ Ω(vm) ∩ B1 for all m ≥ M . Furthermore, for any point

q ∈ Λ(v0) ∩B1 that is at least ε away from FB(v0) we have q ∈ Λ(vm) ∩B1 for all m ≥M .
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Proof. Note that there exists a subsequence of vm, which we again call vm, that converges

to v0 uniformly on compact sets. Also, we have vm converging to v0 in C1,α
loc (IRn

+) and in

C1,α
loc (IRn

−).

Denote the ε-neighborhood of a set S as Nε(S). We first prove the statement for points

in Ω(v0). Outside of Nε(FB(v0) ∩ B1) in Ω(v0) we have v0 > M for some constant M > 0.

Since vm converges uniformly to v0 in B1 there exists a K such that |vm − v0| < δ < M in

B1. Hence, FB(vm)∩B1 can not be outside of the ε-neighborhood of FB(v0)∩B1 in Ω(v0).

Now we prove the statement for points in Λ(v0). If we suppose the statement is false,

then there exists an ε > 0 so that for any m there is a point pm ∈ FB(vm)∩Λ(v0)∩B1 such

that it is at least ε away from FB(v0). However, nondegeneracy implies

C

(
ε

2

)2

≤ sup
x∈Bε/2(pm)

vm.

Hence, for any m there exists a point qm ∈ Λ(v0) such that vm(qm) ≥ C( ε
2
)2 which contradicts

uniform convergence.

Proof of Theorem 1.1.15. Without loss of generality we will assume x0 = 0. Also, for sim-

plicity we will assume y0 = 0. This assumption is only to ensure BR(0, y0) does not satisfy

the angle condition in Lemma 2.5.1 and to ensure the mean value sets cross the interface.

It should be clear from the proof how to adapt this to any y0 6= 0 as long as ∂BR does not

satisfy the angle condition as it crosses the interface.

We wish to show that there exists a point qk := (q̃k, 0) ∈ ∂DR;k(0, 0) such that |−R−q̃k| →

0 as k → ∞. Note that we know such a point qk ∈ ∂DR;k(0, 0) exists due to Theorem 2.3.3

and the fact that DR;k(0, 0) has exactly one component. (See [AB] Lemma 2.5.) If we assume

that | −R− q̃k|9 0 then since all of the DR;k(0, 0) are contained in one fixed large ball we

can extract a convergent subsequence of the qk. Calling the new subsequence {qk} still, we

must have that the density of DR;k(0, 0) at qk converges to either 1 or 0 as k →∞ according

to whether the qk converge to a point inside or outside of BR respectively. In either case, it

is clear that the resulting set cannot remain convex while approaching BR in measure. See
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Figure 2.2 where a dotted line is drawn in the zoomed picture which must start and end

within DR;k(0, 0), but which (after a slight adjustment if needed) will necessarily contain

points of the complement in order to not violate the measure stability theorem. Thus, we

may assume that | −R− q̃k| → 0.

Figure 2.2: Cusps when qk does not converge to −R

By the argument above, for any arbitrarily small γ > 0, there exists a K > 0 such that

k ≥ K ⇒ | −R− q̃k| < γ.

Zooming in at qk we can be sure that our solution converges to one of the blowup limits in

Figure 2.1. Note that blowup solutions as in Figure 2.1c, 2.1f, and 2.1i immediately lead to

the nonconvexity of DR;k(0, 0). The remainder of these cases can be dealt with similarly, so

we will assume that there is a subsequence converging to a blowup limit of the variety in

Figure 2.1d and leave the other cases as an exercise for the interested reader. Now within

this setting, we observe that k can be chosen large enough so that the following quantities

are as small as we like:

1. | −R− q̃k|,

2. |θ1 − π
4
|, and
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3. |DR;k(0, 0) ∆BR|.

After fixing k sufficiently large to make the three quantities above adequately small, we can

then use Lemma 2.5.3 so that the distance from the free boundary within Bρ(qk) to the line

with slope one through qk is shrinking faster than ρ. In short, the zoomed picture within

Figure 2.3 is as accurate as we like. Now however, convexity together with measure stability

would give us a contradiction as we can use convexity to show that in the picture of BR

in the figure, as much of the region above the dotted line as we want cannot be part of

the noncontact set. On the other hand, the measure of that region is
(
π−2

4

)
R2 > 0, and

that leads to a contradiction with measure stability and our assumption that k is sufficiently

large.

Figure 2.3: Set above dotted line contradicts measure stability

2.6 Nonconvexity Continued

In the previous section the discontinuous structure of our aijk (x)’s seemed to play a major

role in the nonconvexity of the associated mean value sets. Here we will show that in taking

smooth approximations of such aijk (x)’s we will still have nonconvex mean value sets, even
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though the principal coefficients of the operators are no longer discontinuous. In light of

these examples we now expect that operators whose mean value sets are all convex are the

exception and not the rule.

Let bijs;k(x, y) be a smooth approximation of aijk (x, y) by convolving with a mollifier. De-

note the Green’s function associated to bijs;k(x, y) by Gs;k(x, y). Then from Theorem 5.4 in

[19] we know that Gs;k(x, y) converges uniformly to Gk(x, y) on compact sets away from the

singularity as s → ∞. Hence, the methods and results in Section 3 can be directly carried

over to this setting. In particular we get an analog of Theorem 2.3.3.

Before proving our final nonconvexity statement we will need a lemma to ensure the

regions causing DR;k(x0, y0) to be nonconvex are not of measure zero. Obviously if this

were the case then the measure convergence of the mean value sets would not guarantee

nonconvexity. For simplicity we will drop the dependence of R for the notation and simply

write Dk(x0, y0) and Ds;k(x0, y0) for the mean value sets associated the operators whose

principal coefficients are aijk (x, y) and bijs;k(x, y) respectively.

Lemma 2.6.1. Let aijk (x, y) and Dk(x0, y0) be as above. Then for almost every choice of y0,

there exists a constant K > 0 such that for all k > K we have an open set E ⊂ Dc
k(x0, y0)

with |E| > 0 and for every point p ∈ E there exists a line segment containing p starting and

ending in int(Dk(x0, y0)).

Proof. As before we will assume y0 = 0 for simplicity and without loss of generality assume

x0 = 0. Again it should be clear that the proof will still hold if y 6= 0. Let qk := (q̃k, 0) ∈

Dk(0, 0) such that q̃k ≤ pk for all (pk, 0) ∈ ∂Dk(0, 0). Now take a convergent subsequence of

the qk calling the new sequence qk again. We then have three possible cases, qk converges

either to a point in int(Bc
R), BR, or ∂BR.

Case I: qk converges to a point in int(Bc
R).

However, qk can not converge to a point in int(Bc
R) due to the lower bound on the density

of Dk(0, 0) at the point qk, as shown by Lemma 1.3 in [3].

Case II: qk converges to a point in BR.
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Then there exists δ > 0 such that | −R− qk| > δ for all k sufficiently large. Then we have

|Dc
k(0, 0) ∩Bδ(qk)|
|Bδ(qk)|

> 0 for all k sufficiently large,

since otherwise we would contradict the definition of qk. Note that there is no claim that the

above positivity be uniform. Then by choosing k large enough so that |(Dk(0, 0) ∆BR)∩{x ≤

−R + δ}| ≤ 1
100
|{x ≤ −R + δ} ∩ BR| the choice of E := Dc

k(0, 0) ∩ Bδ(qk) would satisfy the

desired properties.

Case III: qk converges to a point in ∂BR.

As in the proof of Theorem 1.1.15 we zoom in at qk and note that our solution converges to

one of the blowup limits in Figure 2.1. Note that blowups as in Figures 2.1c and 2.1f are

not possible here as this would lead to a contradiction to how qk was defined. If the blowup

is as in Figure 2.1i we can take E to be defined similarly to that in Case II where δ need

only be small enough. The remaining blowups are all dealt with similarly so we will assume

the blowup limit to be that of the form in Figure 2.1d. Again as in the proof of Theorem

1.1.15 we can choose k sufficiently large so that the zoomed in picture with in Figure 2.3 is

as accurate as we like. Hence the choice of E := {(x, y) ∈ Dc
k(0, 0)∩Bρ/2(qk) |x > q̃k} would

satisfy the desired properties.

Theorem 2.6.2. Let Dk(x0, y0) and Ds;k(x0, y0) be as above. If Dk(x0, y0) is nonconvex then

there exists an S > 0 so that Ds;k(x0, y0) is nonconvex for all s > S.

Proof. Again assuming y0 = 0 for simplicity and without loss of generality assume x0 = 0.

Let E be as in the previous lemma. Then from Lemma 2.6.1 we have for any p ∈ E there

exists points q1, q2 ∈ int(Dk(0, 0)) such that the line containing q1 and q2 also contains p.

Then let ε0 > 0 be the largest value such that Bε0(p) ⊂ E. Similarly let ε1, ε2 > 0 be

the largest values such that Bε1(q1), Bε2(q2) ⊂ int(Dk(0, 0)) and define ε := min{ε0, ε1, ε2}.

Then every line connecting points from Bε(q1) to Bε(q2) goes through Bε(p) and every point

in Bε(p) is contained in a line that crosses Bε(q1) and Bε(q2).

Using the analog of Theorem 2.3.3 for the sets Dk(0, 0) and Ds;k(0, 0) we can pick s
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large enough to ensure that almost every point in Bε/2(q1) and Bε/2(q2) belongs to Ds;k(0, 0)

and to ensure that almost every point in Bε/2(p) belongs to Dc
s;k(0, 0). Hence, Ds;k(0, 0) is

nonconvex.
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Chapter 3

Nondegenerate Motion of Singular

Points in Obstacle Problems with

Varying Data

3.1 Introduction

In this chapter we aim to prove the compact containment of mean value sets for the operator L

in IRn and for the Laplace-Beltrami operator on Riemannian manifolds. (See Theorem 1.1.16

and 1.1.17.) Interestingly there is almost a proof based on the Hopf Lemma that has already

been pointed out in [5]. Along these lines, if we assume that y0 ∈ ∂Dr(x0) ∩ ∂Ds(x0), and

we assume that ∂Dr(x0) is regular at y0, then by invoking Caffarelli’s famous free boundary

regularity theorem for the obstacle problem (see [9] and/or [10]), then we are guaranteed

that there will exist a ball Bρ(z0) satisfying:

1. Bρ(z0) ⊂ Dr(x0), and

2. ∂Bρ(z0) ∩ ∂Dr(x0) ∩ ∂Ds(x0) = y0.

Now if we let ur and us be the solutions to the problem in Equation 1.4, then it follows that

v(x) := ur(x)− us(x) will satisfy the following:
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1. v ≥ 0 in Bρ(z0),

2. Lv = s−n − r−n < 0 in Bρ(z0), and

3. v(y0) = 0.

In this situation we can apply the Hopf Lemma to guarantee that ∇v(y0) 6= 0. On the other

hand

∇v(y0) = ∇ur(y0)−∇us(y0) = ∇G(x0, y0)−∇G(x0, y0) = 0

which gives us a contradiction.

Of course the bad news in the “proof” above is that we assumed that y0 was a regular

point of the free boundary. Now in the most typical pictures of free boundaries with singular

points, it should be even easier to touch the boundary of Dr(x0) with a ball, in spite of

these examples, Schaeffer gave other examples of contact sets in the obstacle problem with

cantor-like structures (see [20]) and the recent work of Figalli and Serra that yields some nice

regularity results for the singular set seems to require that the operator be the Laplacian

(see [11]).

One can also ask if it is possible to repair the proof above so that it continues to hold

even at the singular points, and indeed, that was our first attempt at solving this problem.

In joint work by Alvarado, Brigham, Maz’ya, Mitrea, and Ziadé, a sharp form of Hopf’s

Lemma is shown which does not require touching with a ball; one only needs to touch with a

“pseudoball” (see [2, Theorem 4.4]). Furthermore in Caffarelli’s original 1977 Acta paper, he

shows “almost convexity” conditions which guarantee the existence of a half ball contained

in the noncontact set (see [9, Corollary 1 and Corollary 2]). Unfortunately, the union of the

half balls described by Caffarelli does not contain a pseudoball of the type described in [2],

so it appears that this route will not lead to a proof.

Now of course, one thing that really is shown by the argument above is that if there is

a situation with r 6= s and where ∂Dr(x0) ∩ ∂Ds(x0) is nonempty, then it can only happen

at singular points. In this respect, and in viewing the flow of ∂Dt(x0) as we vary t, this

situation should be compared to the results of King, Lacey, and Vázquez for the Hele-Shaw
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problem (see [16]). They show that if there is a corner built into the initial data, and if the

angle formed satisfies certain inequalities, then that corner will remain motionless for a while

at the beginning of the evolution. It is also worth observing that Serfaty and Serra have

shown a normal velocity formula for the free boundary in the obstacle problem at regular

points when varying the data, but their result (a normal velocity formula) obviously cannot

be applied at a point of the free boundary that does not have a normal vector (see [21]).

Another attack which could lead to a full proof via the Hopf Lemma would be to expand

the work of Figalli and Serra ([11]) to include more than the Laplacian, so that the better

regularity allowed us to touch the singular set with an interior ball. Although even the

Figalli/Serra results allow for some lower-dimensional “anomalous” points that would need

to be handled in order to get a touching ball, so generalization and improvement would be

needed for that route, and it is quite likely impossible. In any case, an examination of the

methods employed in their work reveals arguments that seem to be particular to the Lapla-

cian, and so perturbation arguments seem like a better attack as opposed to trying to do

their work from scratch in a more general setting. Even though we have not successfully ex-

panded that work, that perturbation approach is related to our third application of the main

idea in this work. The difficulty there is related to the instability of singular free boundaries.

Certainly it is a trivial matter to make a singular free boundary that disappears under an

appropriate perturbation. For example, u(x) = x2 satisfies ∆u = χ{u>0}f, with f(x) ≡ 2,

but if you raise the boundary data and/or reduce f anywhere and solve the new problem,

then the free boundary will disappear. That observation led us to the question of whether or

not we could find a way to make specific perturbations which always led to singular points.

In the third application, although we do not get results which are precise enough to allow

us to generalize [11], we do successfully find a way to approximate singular free boundaries

with other singular free boundaries of solutions to obstacle problems with operators with

constant coefficients and which have similar boundary data, and this approximation may be

of independent interest.

The main idea that has worked is the following: We use the derivative of the solution to

the obstacle problem as a barrier, and using that function we can come to a contradiction
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where a related function that we can show is nonnegative must also become negative due to

standard regularity and nondegeneracy estimates that we have for the obstacle problem if the

two distinct free boundaries share a common boundary point. We present three applications

of this idea in this chapter.

3.2 Preliminaries and Terminology

We will use the following basic notation and assumptions throughout the chapter:

M a smooth connected Riemannian n-manifold

g the metric for our ambient manifold M

ηδ(S) the δ-neighborhood of the set S

∆g the Laplace-Beltrami operator on M.

Frequently be more convenient to work with the height function, and so we define wr(x) :=

G(x0, x)− ur(x) which obeys either:

Lwr = χ{w>0}r
−n − δx0 (3.1)

or

∆wr = χ{w>0}r
−n − δx0 (3.2)

according to which case we are currently studying. (We use δx0 to denote the usual delta

function at x0.)

Finally, there is a simple lemma in [6] that we will use repeatedly, so we record it here

for the reader’s convenience:

Lemma 3.2.1 (Theorem 2.7c of [6]). Suppose that for i = 1, 2, the functions wi ≥ 0 solve

the obstacle problem:

∆u = χ{w>0}g in B1

u = ψi on ∂B1

(3.3)
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where 0 < µ1 ≤ g ≤ µ2, and ψ1 ≤ ψ2 ≤ ψ1 + ε, then

w1 ≤ w2 ≤ w1 + ε

and in particular

||w1 − w2||L∞(B1) ≤ ε .

3.3 Proof of Compact Containment of Mean Value Sets,

Part I

We assume that L := ∂i(a
ij(x)∂j), that ||aij||C1,1 < ∞, and as above we let ur denote the

solution to

L(u) = −χ{u<G}r−n in BM(x0)

u = G(·, x0) on ∂BM(x0)

(3.4)

and let wr(x) := G(x, x0)− ur(x).

Lemma 3.3.1. L(Dewr) is a function such that,

|L(Dewr)| ≤ C(ρ) <∞ in Ω(wr) \Bρ(x0)

for any direction e and ρ > 0 so that Bρ(x0) ⊂ Ω(wr).

Proof. Define E := Ω(wr) \Bρ(x0) and let φ ∈ C∞0 (E).

−
∫
E

aijDj(Dewr)Diφ dx =

∫
E

De(a
ijDiφ)Djwr dx

=

∫
E

Diφ(Dea
ij)Djwr dx+

∫
E

(DeDiφ)aijDjwr dx.

On the other hand, since Deφ ∈ C∞0 (E) is a permissible test function, the second integral
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turns out to be zero:

∫
E

(DeDiφ)aijDjwr dx =

∫
E

Di(Deφ)aijDjwr dx

= −
∫
E

Deφ r
−n dx

=

∫
E

φDer
−n dx

= 0 .

Hence, we have L(Dewr) = −Di(De a
ijDjwr) ∈ L∞(E), with a uniform bound since we have

excised a ball around the singularity.

Proof of Theorem 1.1.16. From [7] we know that Ω(wr) ⊂ Ω(ws). Hence, we need only

show that there does not exist a point q ∈ FB(wr) ∩ FB(ws). In order to show this we will

consider the function v := ws − wr which satisfies:

1. v ≥ 0 in BM

2. v = ws ≥ 0 on ∂Ω(wr)

3. Lv = s−n − r−n < 0 in Ω(wr)

4. v > 0 in Ω(wr)

Assume that there exists a point q ∈ FB(wr)∩ FB(ws). Consider the function Dewr for

some unit vector e to be chosen later. Lemma 3.3.1 ensures that in the set Ω(wr) \ Bρ, for

small ρ, there exists ε1 > 0 such that

L(v − ε1Dewr) < 0 in Ω(wr) \Bρ.

Also, note that, for ρ small enough, v > 0 on ∂Bρ by [7, Lemma 6.2], nondegeneracy, and

optimal regularity. Hence, there exists ε2 > 0 such that

v − ε2Dewr ≥ 0 on ∂Bρ .
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Now, in fact, for any ε2 whatsoever, by standard regularity results for the obstacle problem

(see [9], [10], or [6]) we automatically have

v − ε2Dewr = v = ws ≥ 0 on ∂Ω(wr) .

Then, by the Weak Maximum Principle

v − εDewr ≥ 0 in Ω(wr) \Bρ

for ε = min{ε1, ε2}. However, by optimal regularity and nondegeneracy we know that

sup
Bδ(q)

v ≤ C1δ
2 and sup

Bδ(q)

|∇wr| ≥ C2δ

for δ > 0 such that Bδ(q) ⊂ BM . Therefore, for δ small enough, there exists a point y ∈ Bδ(q)

and a unit vector e so that

v(y)− εDewr(y) ≤ C1δ
2 − εC2δ < 0

which gives us a contradiction.

3.4 Proof of Compact Containment of Mean Value Sets,

Part II

Now we turn to the proof of Theorem 1.1.17. Before starting, however, it is worth noting how

the previous proof fails in this case. Perhaps the greatest problem is the inability to define a

direction e globally. Accordingly, the set Dr(x0)\Bρ(x0) which could be huge (and therefore

nowhere close to being contained within a chart of the manifoldM) cannot be used for our

argument. We must work locally and so instead of working on Dr(x0) \Bρ(x0), we work on

Dr(x0) ∩ Bδ(q) where q ∈ ∂Dr(x0) ∩ ∂Ds(x0). On this new set, however, although we have
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no problem defining directions as long as δ is sufficiently small, we have a new problem of

potentially having our test function being negative on parts of the boundary.

The setting we have for this section assumes that we have a point q ∈ ∂Dr(x0)∩∂Ds(x0),

and a δ > 0 that is small enough so that

1. Bδ(q) is completely contained within a single chart (U , ϕ) of M,

2. we let y be points within the original manifold, and x denote points in ϕ(U) so that

x = ϕ(y), and

3. we assume that the ϕ is giving us normal coordinates around q and then the operator

∆g can be expressed:

∆gu(y) =
1√

|det g(x)|
· ∂
∂xi

(
gij(x)

√
|det g(x)| ∂

∂xj
u(x)

)

=: gij(x)
∂

∂xi

∂

∂xj
u(x) + bj(x)

∂

∂xj
u(x)

=: Lu(x) ,

(3.5)

with gij(p)→ δij, and bi(p)→ 0 as p→ q. (We are using δij to denote the Kronecker

delta.)

So the picture that we have on the manifold is given in Figure 3.1. In terms of a source for

Figure 3.1: The Picture on the Manifold M.

the differential geometry facts and conventions that we needed and used, we found the text

[4] by Aubin to be useful for everything above.
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Remark 3.4.1. An astute reader might complain that our mean value sets in Figure 3.1

lack the reflection symmetry that would be enjoyed on a piece of a perfect torus, so our

picture should be considered to be a “cartoon” in this respect.

Having seen the situation on the manifold above, we observe that in this section we can do

all of our work within the chart U and so we can view our entire problem in the local picture

found in V := ϕ(U) ⊂ IRn, and this fact allows us to get away with some obvious abuses of

notation. Indeed, we will use q,Dr(x0), and Ds(x0) as shorthand for ϕ(q), ϕ(Dr(x0) ∩ U),

and ϕ(Ds(x0)∩U) respectively. Since it will be convenient to work with a perfect ball in V ,

we use Bε(q) to denote the largest ball centered at ϕ(q) which is contained in ϕ(Bδ(q)). So

within V we have a nondivergence form elliptic operator, L, which we can take to be defined

on C2(V ∩Dr(x0)) and which converges to the Laplacian in the sense described above as we

zoom in on q. Lastly, we will obviously view all of our solutions to obstacle problems (so ur

and wr for example) as being functions defined on V . All of these conventions lead to the

local picture shown in Figure 3.2.

Figure 3.2: The Local Picture in V .

Before jumping into the main proof, we observe the following two lemmas:

Lemma 3.4.2 (Barrier Function Estimates). By shrinking ε if necessary, we have

2n− 1 ≤ L(|x− y|2) ≤ 2n+ 1 , (3.6)

for all x ∈ Bε(q) and for any fixed y ∈ Bε(q).

Proof. This estimate follows immediately by using Equation (3.5) along with the fact that

gij(x)→ δij and bi(x)→ 0 as x→ q.
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Lemma 3.4.3 (Boundedness Estimate). For x ∈ Dr(x0) ∩ V and any direction e we have

|L(Dewr)| ≤ C <∞ . (3.7)

Proof. We observe that this estimate is very similar to the estimate in the previous section

given in Lemma 3.3.1. On the other hand, this time the proof is easier. We know that in

Dr(x0) ∩ V we have

Lwr = gijDijwr + biDiwr = r−n .

Differentiating this equation in the e direction, we have:

0 = De

(
gijDijwr + biDiwr

)
= L(Dewr) + (Deg

ij)Dijwr + (Deb
i)Diwr ,

so by using regularity known for solutions of the obstacle problem along with the regularity

that we have for the coefficients in our operator L, we conclude that

|L(Dewr)| ≤ |Deg
ij| · |Dijwr|+ |Deb

i| · |Diwr| ≤ C <∞.

Proof of Theorem 1.1.17. We can assume by shrinking ε again if necessary, that x0 /∈ Bε(q)

and Bε(q) has no intersection with ∂M if M has boundary. (Lemma 6.2 of [7] guarantees

that we can find such an ε.) Now we consider the function

h := ws − wr − µDewr (3.8)

where µ > 0 will be a very small number and e will be a direction to be chosen later. We

are going to arrive at a contradiction by showing that h ≥ 0 in a ball around q intersected

with Dr(x0) while using the asymptotics of the functions which make up h along with a

good choice of the direction e allow us to show that h must be negative arbitrarily close to
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q within Dr(x0).

Now for any positive ρ < ε, we consider the set Eρ := Bρ(q) ∩Dr(x0) = Bρ(q) ∩ Ω(wr).

Within this set we have ws−wr ≥ 0 and L(ws−wr) = s−n−r−n < 0. Hence, in Eρ \ηγ(∂Eρ)

there exists a κ such that ws −wr ≥ κ > 0. Having made this observation, it turns out that

we will need a more precise lower bound, and by using the estimate from Lemma 3.4.2 we

will succeed. Along these lines we first shrink ε (and therefore ρ) if necessary to be sure that

that estimate applies, and we assume that z ∈ Eρ \ ηγ(∂Eρ) and observe that this implies

that Bγ(z) ⊂ Eρ. Next we define

Θ(x) :=
(s−n − r−n)(|x− z|2 − γ2)

6n

for use as a barrier function. Indeed, observe that

1. Θ = 0 ≤ ws − wr on ∂Bγ(z), and

2. recalling that L(ws − wr) = s−n − r−n < 0 and using the last lemma we get:

LΘ =
s−n − r−n

6n
· L(|x− z|2)

≥ (s−n − r−n) ·
(

2n+ 1

6n

)
≥ L(ws − wr) in Bγ(z).

Thus, by using the weak maximum principle we have

ws(z)− wr(z) ≥ γ2(r−n − s−n)

6n
for all z within Eρ \ ηγ(∂Eρ) .

We can now observe the following properties of h :

1. By assuming that µ is sufficiently small, we have

Lh = s−n − r−n − µL(Dewr) ≤ −α < 0 in Eε . (3.9)
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2. h = ws ≥ 0 on ∂Ω(wr).

3. Within Eρ \ ηγ(∂Ω(wr)), by assuming that µ is sufficiently small, we have

h ≥ γ2(r−n − s−n)

6n
− µDewr ≥

γ2(r−n − s−n)

10n
. (3.10)

4. Within Eρ ∩ ηγ(∂Ω(wr)), by using the optimal gradient bounds for wr, we have

h ≥ −µγC . (3.11)

The picture can be seen in Figure 3.3.

Figure 3.3: The Picture in Bρ(q)

We are now in position to use the ideas within [10, Lemma 11] in order to show that h

must be nonnegative everywhere in a small enough ball around q. On the other hand, for

the sake of keeping this article more self-contained, and because of slight changes that need

to be made (largely because we have an operator which is close to the Laplacian, and not

exactly the Laplacian) we will present the argument here. In any case we claim that h ≥ 0

within Eρ/100 = Bρ/100(q) ∩ Ω(wr) provided µ is sufficiently small.

To begin the proof of our claim, we assume that there exists an x1 ∈ Eρ/100 with h(x1) < 0.
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We now define

v(x) := h(x) + δ

(
r−n

4n
|x− x1|2 − wr

)
, (3.12)

and we observe that v(x1) < 0. We also know that

Lv ≤ −α + δ

(
r−n

4n
(2n+ 1)− r−n

)
≤ −α < 0

in all of Eε by using Lemma 3.4.2 and Equation (3.9) . So, by applying the weak maximum

principle, we can be sure that v must attain a negative minimum on ∂Eρ. On the other hand,

all along ∂Ω(wr), by using the definition of h(x) we have v(x) = ws(x) + Cδ|x − x1|2 > 0.

So, we know that v(x) attains its negative mimimum on ∂Bρ(q) ∩ ∂Eρ. For this remaining

piece of the boundary, it is convenient to split it into S1 := ηγ(∂Ω(wr)) ∩ ∂Bρ(q) and S2 :=

∂Bρ(q) \ ηγ(∂Ω(wr)), and then by employing Equations ( 3.11) and ( 3.10) on those sets

respectively, we get:

v ≥ −C1µγ + C2δr
−nρ2 − C3δγ

2 on S1 (3.13)

and

v ≥ C4(r−n − s−n)γ2 + δ(C5r
−nρ2 − wr) on S2 . (3.14)

On both sets we wish to choose constants so that v is forced to be nonnegative. For S1 we

choose γ << ρ to force C2r
−nρ2 > C3γ

2 and then choose µ as small as we need to give us

the desired inequality. For S2 we choose δ << γ2 and then shrink µ again if needed to fix

the inequality on S1. So, at this point we have a contradiction to any negativity of v within

Eρ/100.

Now, just as in the end of the proof of Theorem 1.1.16, it follows from standard regularity

and nondegeneracy estimates for the obstacle problem, that ws and wr are bounded by a

constant times |x − q|2 within Eρ/100, while Dewr(x) must grow linearly for some choice of

e within the same set. Now by replacing e with −e if necessary, we get h < 0 somewhere

within Eρ/100 and we have the desired contradiction.

Remark 3.4.4 (Existence of singular points in mean value sets). Currently, it is unknown
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whether or not mean value sets of the type described in the previous section ever possess

singular points. So, there is an outside chance that they do not exist. Having made this

observation, it is a rather simple matter to show the existence of mean value sets for the

Laplace-Beltrami operator on manifolds which have singular points. Indeed, at the moment

the topology of one of these sets changes, you will necessarily have singular points. (We

can also say that by using the results within [3] the free boundary won’t “jump” from a

configuration with one topology where the set is smooth to a different topology with smooth

boundary; there will always be a moment with a “collision.”) For a concrete example,

consider harmonic functions on a typical cylinder. Obviously for any such function, one

can “unroll” the cylinder and get a periodic harmonic function on IR2. Kuran proved that

any connected mean value set for the point x0 ∈ IRn which has positive measure and which

contains x0 must be (up to a set of measure zero) a ball centered at x0 ([17]). So, the Dr(x0)

which fit within one period should be disks centered at x0. By increasing the radius of the

disk until the diameter is the length of a period, we get a mean value set which when viewed

on the original cylinder, will have a “double cusp.” Thus, we can be certain that the proof

that we gave of the theorem in this section doesn’t apply only to the empty set.

3.5 Singular Point Approximation

As before in Section 3.3 we consider an operator L := ∂i(a
ij(x)∂j), but now, although we

are still working with the obstacle problem, we are no longer working with mean-value

sets, and currently we will only assume a bound on ||aij||
C0(B1)

. Because our coefficients are

always continuous, we can assume without loss of generality that aij(0) = δij by changing

coordinates. In this setting, we let w ∈ W 1,2(B1) satisfy:


Lu = χ{u>0} in B1

u ≥ 0

0 ∈ Sing(u).

(3.15)
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Next, for any r < 1, and any t ∈ IR, we let ur;t ∈ W 1,2(Br) to be the solution to


∆u = χ{u>0} in Br

u = (w + t)+ on ∂Br

u ≥ 0

(3.16)

with the goal in this section of getting ur,t to approximate w and to also have a singular

free boundary point at 0. One reason why we had this goal, was because we had hoped

to generalize the regularity results of Figalli and Serra ([11]) to obstacle problems with

more general elliptic operators than simply the Laplacian. Toward this aim, we will work

with quadratic rescalings of w and ur;t, and with T := t/r2, we make the following list of

definitions:

wr(x) :=
w(rx)

r2

vr;T (x) :=
ur;t(rx)

r2

aijr (x) := aij(rx)

Lr := Di(a
ij
r (x)Dj).

Then we observe that wr satisfies


Lru = χ{u>0} in B1

u ≥ 0

0 ∈ Sing(u),

(3.17)
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and vr;T is the solution to 
∆u = χ{u>0} in B1

u = (wr + T )+ on ∂B1

u ≥ 0.

(3.18)

Furthermore, we observe that by decreasing r we can make

||aijr (·)− δij||
C0(B1)

as small as we like.

Lemma 3.5.1 (Getting 0 into FB). Given 0 < r ≤ 1, and defining wr and vr;T as above,

there exists an S = S(r) so that 0 ∈ FB(vr;S).

Proof. We define the set I :=
{
T ∈ IR 0 ∈ int(Λ(vr;T ))

}
, and observe that I is a bounded

nonempty set. Indeed, if T is sufficiently negative, then vr;T ≡ 0, and if T is more than 1/2n,

then vr;T (x) > |x|2/2n. Indeed, the following inclusions follow from those observations:

(−∞,−max
B1

wr) ⊂ I ⊂ (−∞, 1/2n) (3.19)

So, we let S := sup I, and we claim that 0 ∈ FB(vr;S).

Suppose not. Then either 0 ∈ Ω(vr;S) or 0 ∈ int(Λ(vr;S)). In the first case we have a

closed ball Bε(0)⊂ Ω(vr;S), and so in this case we let

γ := min
{
vr;S(x) x ∈ Bε(0)

}
.

Now we define S̃ := S − γ/2 and by using Lemma 3.2.1 we have

γ ≤ vr;S(0) ≤ vr;S̃(0) +
γ

2
,

and this inequality implies sup I ≤ S̃ < S which is a contradiction.
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In the other case, we have a closed ball Bε(0)⊂ Λ(vr;S). Now we let Tj ↓ S and observe

that by the definition of S, we have 0 ∈ Ω(vr;Tj) for all Tj. Using the standard nondegeneracy

results for the obstacle problem, for every j, we have an xj in Bε/2(0) with

vr;Tj(xj) ≥ Cε2 .

This inequality leads to,

Cε2 ≤ ||vr;S − vr;Tj ||L∞(Bε(0)) ≤ ||vr;S − vr;Tj ||L∞(B1(0)) ≤ ||vr;S − vr;Tj ||L∞(∂B1(0)),

where the last inequality is by Lemma 3.2.1 again. However, since

||vr;S − vr;Tj ||L∞(∂B1(0)) ≤ ||S − Tj||L∞(∂B1(0)) → 0 ,

we have a contradiction.

Lemma 3.5.2 (Uniqueness of S). The S(r) given in Lemma 3.5.1 is the only number S,

such that 0 ∈ FB(vr;S).

Proof. Suppose not. Then there exists S1 < S2 such that 0 ∈ FB(vr;S1) ∩ FB(vr;S2). Now

from Lemma 3.2.1 we know that Ω(vr;S1) ⊂ Ω(vr;S2), and we consider the function

V := vr;S2 − vr;S1 . (3.20)

We observe that V = S2−S1 > 0 on ∂B1∩Ω(vr;S1), and V ∈ C0(B1). By using the continuity

of V, we have a δ ∈ (3/4, 1) so that V ≥ 1
2
(S2 − S1) on ∂Bδ ∩ Ω(vr;S1). We now define the

function

h := V − µDevr;S1 (3.21)

for a direction e to be chosen later. We observe that h is harmonic, and because vr;S1 ∈

C1,1(Bδ) we can choose µ to be sufficiently small so that h > 0 on ∂Bδ∩Ω(vr;S1). Now by the

optimal regularity results for the obstacle problem vr;S1 = Devr;S1 = 0 on all of ∂Ω(vr;S1)∩B1,
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so we observe that h ≥ 0 on all of ∂(Bδ ∩ Ω(vr;S1)). Thus, the maximum principle gives us

h ≥ 0 in all of Bδ ∩ Ω(vr;S1). Now by proceeding exactly as in the proof of Theorem 1.1.16

where we use the asymptotics of the functions making up h to find a spot where it is negative

(and assigning an appropriate direction e) we get a contradiction.

Lemma 3.5.3 (S(r)→ 0 as r → 0). For the S(r) given in Lemma 3.5.1 we have

lim
r→0

S(r) = 0 . (3.22)

Proof. Suppose not. Then since the S(r) are uniformly bounded, we can find a sequence

rj → 0 such that S(rj)→ S̃ 6= 0. By our assumptions about wr, and by applying [8, Lemma

3.1 and Lemma 3.2] we know that wrj → w0 = 1
2
(xTMx) uniformly where M is a nonnegative

matrix and ∆w0 = Trace(M) = 1. So, we know that w0 satisfies


∆u = χ{u>0} in B1

u(x) = xTMx on ∂B1

u ≥ 0

(3.23)

and additionally, 0 ∈ Sing(w0). On the other hand, since wrj → 1
2
(xTMx) uniformly, we

know that the boundary data of vrj ;Sj converges uniformly to (1
2
(xTMx) + S̃)+. So, we have

that the limit of the vrj ;Sj , which we will call “v0;S̃” satisfies


∆u = χ{u>0} in B1

u(x) = (xTMx+ S̃)+ on ∂B1

u ≥ 0

(3.24)

and furthermore 0 ∈ FB(v0;S̃). Now, since S̃ 6= 0 we can use the functions w0 and v0;S̃ along

with Lemma 3.5.2 to get a contradiction.

Remark 3.5.4 (v0;S̃ = w0). It follows from knowing that S̃ = 0 along with Equations (3.23)
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and (3.24) and the uniqueness of the solutions to such problems that v0;S̃ = w0 and in

particular 0 ∈ Sing(v0;S̃). We will use this fact in the next proof.

Finally, to strengthen the statement of our final theorem, we follow [11] and for m ∈

{0, 1, 2, . . . , n − 1} we define the m-th stratum of the singular set to be the subset of the

singular set where the dimension of the kernel of the blow up limit is m.

Theorem 3.5.5 (Preserving the Singular Point and Bounding the Stratum). Given the

function w, there exists an R > 0 such that 0 ∈ Sing(vr;S(r)) for all r < R. Furthermore, by

shrinking R if necessary, this singular point is in the same or lower stratum as it is with w.

(i.e. If 0 is in the k-th stratum of w, then it will always belong to the strata for vr;S(r) with

m ≤ k for r < R.)

Proof. Suppose there does not exist an R > 0 such that 0 ∈ Sing(vr;S(r)) for all r < R.

Then there exists rj ↓ 0 such that 0 ∈ Reg(vrj ;S(rj)) for all j. Fix ε > 0 to be chosen later,

and to simplify notation, we will let vj := vrj ;S(rj) for the duration of this proof. Using our

assumption, for each rj there exists nj ∈ ∂B1 so that with Prj := max{(x · nj), 0}2 we have

vrj ;S(ρx)

ρ2
→ Prj(x) uniformly as ρ→ 0.

However, there exists a subsequence of rj, which we denote again by rj, such that nj → n0

and so

Prj → P0 = max{(x · n0), 0}2

uniformly. Hence, given any ε > 0 there exists an R1 > 0 and a K > 0 such that if rj < R1

and ρ < K, then ∣∣∣∣∣∣∣∣vj(ρx)

ρ2
− P0(x)

∣∣∣∣∣∣∣∣
∞
≤ ε. (3.25)

On the other hand vj → w0 = 1
2
(xTMx) uniformly in B1 by Remark 3.5.4 , so there exists

an R2 such that rj ≤ R2 implies

∣∣∣∣∣∣∣∣vj(ρx)

ρ2
− xTMx

∣∣∣∣∣∣∣∣
∞
≤ ε. (3.26)
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By applying [22, Lemma 2] we know that there exists a constant γ > 0 so that

∣∣∣∣xTMx− P0(x)
∣∣∣∣
∞ ≥ γ . (3.27)

Now we fix ε < γ/2 and use the triangle inequality combined with Equations (3.25), (3.26),

and (3.27) to get a contradiction.

At this point we have the first part of the theorem. To show the second part we es-

sentially repeat the argument but replace the use of [22, Lemma 2] with the observation

that a nonnegative matrix M can be approximated arbitrarily well with matrices with lower

dimensional kernels, but it will stay isolated from all of the matrices with higher dimensional

kernels. To be more specific, the main difference from the first part of the proof is that in

place of Prj we would have a sequence xTMj x where the kernels of the Mj have dimension

greater than the kernel of the M, and this leads to a contradiction.
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of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-

Oleinik boundary point principle. J. Math. Sci. (N.Y.), 176(3):281–360, 2011. Problems

in mathematical analysis. No. 57.

[3] Ashok Aryal and Ivan Blank. Mean value sets of divergence form elliptic operators and

their properties. Potential Anal., 50(1):43–54, 2019.

[4] Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Mono-

graphs in Mathematics. Springer-Verlag, Berlin, 1998.

[5] B. Benson, I. Blank, and J. LeCrone. Mean value theorems for riemannian manifolds

via the obstacle problem. 2018. Preprint.

[6] Ivan Blank. Sharp results for the regularity and stability of the free boundary in the

obstacle problem. Indiana Univ. Math. J., 50(3):1077–1112, 2001.

[7] Ivan Blank and Zheng Hao. The mean value theorem and basic properties of the obstacle

problem for divergence form elliptic operators. Comm. Anal. Geom., 23(1):129–158,

2015.

[8] Ivan Blank and Zheng Hao. Reifenberg flatness of free boundaries in obstacle problems

with VMO ingredients. Calc. Var. Partial Differential Equations, 53(3-4):943–959, 2015.

[9] Luis A. Caffarelli. The regularity of free boundaries in higher dimensions. Acta Math.,

139(3-4):155–184, 1977.

56



[10] Luis A. Caffarelli. The obstacle problem. Lezioni Fermiane. [Fermi Lectures]. Accademia

Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, 1998.

[11] Alessio Figalli and Joaquim Serra. On the fine structure of the free boundary for the

classical obstacle problem. 2018. Preprint.

[12] M. Focardi, M. S. Gelli, and E. Spadaro. Monotonicity formulas for obstacle problems

with Lipschitz coefficients. Calc. Var. Partial Differential Equations, 54(2):1547–1573,

2015.

[13] Francesco Geraci. The classical obstacle problem with coefficients in fractional Sobolev

spaces. Ann. Mat. Pura Appl. (4), 197(2):549–581, 2018.

[14] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second

order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998

edition.

[15] Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1 of Courant

Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York;

American Mathematical Society, Providence, RI, second edition, 2011.

[16] J. R. King, A. A. Lacey, and J. L. Vázquez. Persistence of corners in free boundaries in

Hele-Shaw flow. European J. Appl. Math., 6(5):455–490, 1995. Complex analysis and

free boundary problems (St. Petersburg, 1994).
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