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Abstract

A rigorous theory of electromagnetic (EM) wave scattering by one and many per-
fectly conducting small bodies of an arbitrary shape is developed. Equation for the
effective field is derived in a medium in which many small particles are distributed.
A method is given to change the refraction coefficient of a given medium in a
desired direction by embedding into this medium many small particles.
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1 Introduction

The electromagnetic (EM) wave scattering by a small perfectly conducting particle was
studied in many papers. Rayleigh (1871) initiated this study and understood that the
main term in the scattered field is given by a dipole radiation, [13]. The smallness
of the particle D is characterized by the inequality ka ¿ 1, where a = 1

2 diamD is the
characteristic size of the particle, k = ω

c is the wave number, ω is the frequency, c is the
wave speed. The dipole radiation is generated by the induced dipole polarization of
the small body. In [13] there was no method given for calculating the induced dipole
moment for a body of an arbitrary shape. This was done in [3, 5], where formulas were
derived that allowed one to calculate the polarizability tensor for a body of an arbitrary
shape and, therefore, the induced dipole moment. In paper [2] the EM wave scattering
problem was solved for spheres by the method of separation of variables. This method
cannot be used for bodies of arbitrary shapes. The first basic new result of the current
paper is an analytic explicit formula for the EM field scattered by a small perfectly
conducting particle of an arbitrary shape and the method used for the derivation of this
formula.
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The second basic new result is a numerical method for solving EM wave scattering
by M small perfectly conducting bodies. The number M can be very large, M =O(1012),
and M = M(a) →∞ as a → 0.

More precisely, the distribution of the small bodies is described as follows. The
number N (∆) of small bodies in an arbitrary open set ∆⊂Ω, whereΩ is an arbitrary
fixed domain in R3, is given by the formula

N (∆) = 1

a3

∫
∆

N (x)d x(1+o(1)), a → 0. (1.1)

Here N (x) ≥ 0 is a continuous function that can be chosen arbitrarily by the experi-
mentalist. If Dm ,1 ≤ m ≤ M , are the small non-intersecting bodies distributed in Ω
according to the law (1.1), then one has

M = M(a) = 1

a3

∫
Ω

N (x)d x[1+o(1)] =O

(
1

a3

)
, a → 0. (1.2)

By xm we denote an arbitrary fixed point inside Dm . Thus,

N (∆) = ∑
xm∈∆

1. (1.3)

The EM wave scattering problem for one small perfectly conducting body is formulated
as follows:

∇×E = iωµH in D ′ :=R3 \ D, (1.4)

∇×H =−iωεE in D ′, (1.5)

whereω,µ are constants in D ′, k =ωpεµ, ε andµ are dielectric permitivity and magnetic
permeability satisfying Maxwell’s equations (1.4)-(1.5) in R3, and vE , vH be the scattered
fields, satisfying equations (1.4)-(1.5) and the radiation condition

r

(
∂vE

∂r
− i kvE

)
= o(1), r := |x|→∞. (1.6)

The boundary condition on the surface S of the small body D is

[N , [E , N ]] = 0 on S, (1.7)

which means that tangential component of E vanishes on S. Here N is the unit normal
to S directed into D ′, [A,B ] stands for the vector product, A ·B stands for the scalar
product.

Suppose that

E0 = E e i kα·x , E ·α= 0, H0 := ∇×E0

iωµ
, (1.8)

is the plane incident wave, E = const ,α ∈ S2, S2 is the unit sphere in R3. Then

∇·E0 = 0, ∇·H0 = 0, (1.9)
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and E0, H0 satisfy equations (1.4)-(1.5) in R3.
The scattered field

vE = e i kr

r
A(β,α,k)+o

(
1

r

)
, r = |x|→∞, β := x

r
. (1.10)

The coefficient A(β,α,k) is called the scattering amplitude. If vE is known, then

vH = ∇× vE

iωµ
. (1.11)

In section 2 a formula for A(β,α,k) is derived.
In section 3 a numerical method is developed for solving many-body EM wave

scattering problem in the case of small perfectly conducting bodies of an arbitrary
shape and a limiting equation is derived for the effective field in the medium as a → 0.

In section 4 applications of our theory to materials science are discussed. It is
explained how to change the original refraction coefficient in the desired direction.

In section 5 it is stated that basic results of this paper are formulated in theorems
2.1, 2.2, 3.1, 4.1.

The ideas we use in this paper are similar to the ideas developed in [6]. In [12] the
generalization of our theory to the case of EM wave scattering by small impedance
particles of an arbitrary shape is given. In [1] one finds a recent report about light
scattering by small particles.

2 EM wave scattering by one small perfectly conducting
body

Let us look for a solution to problem (1.4)-(1.8) of the form

E = E0 +∇×
∫

S
g (x, t )J (t )d t , g (x, t ) := e i k|x−t |

4π|x − t | . (2.1)

Here J(t) is a tangential to S field that should be found from the boundary condition
(1.7). Thus, we look for

vE :=∇×
∫

S
g (x, t )J (t )d t . (2.2)

Equation (1.4) is satisfied if one takes

vH := ∇× vE

iωµ
. (2.3)

Equation (1.5) is satisfied also:

∇× vH = ∇×∇×∇×∫
S g Jd t

iωµ
= −∇2∇×∫

S g Jd t

iωµ
= k2vE

iωµ
=−iωεvE . (2.4)
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This is true for any J . Let us prove that J is uniquely determined by the boundary
condition (1.7), namely, that equation (1.7) has at most one solution.

To prove this, it is sufficient to prove that equation (1.7) is of Fredholm-type for J ,
and that the corresponding homogeneous equation has only the trivial solution.

Let us write equation (1.7) for J :

[N , [E0, N ]]+ [N , [∇×
∫

S
g (x, t )J (t )d t |x→s− , N ]] = 0, (2.5)

where x → s− denotes the limit as x → s from outside D along the normal to S at the
point s. We will use the known formula (see, for example, [6], p.86):

lim
x→s−

[N ,∇×
∫

S
g (x, t )J (t )d t ] = J (s)

2
+

∫
S

[Ns , [∇s g (s, t ), J (t )]]d t . (2.6)

Take a vector product of N with the left side of equation (2.5), use (2.6) and get

[N ,E0]+ [N ,∇×
∫

S
g (x, t )J (t )d t ]x→s− = 0,

or
J (s)

2
+T J := J (s)

2
+

∫
S

[Ns , [∇s g (s, t ), J (t )]]d t =−[N ,E0]. (2.7)

Equation (2.7) is equivalent to equation (2.5): taking the vector product of (2.7) with N
one gets (2.5).

Lemma 1. Equation (2.7) is of Fredholm-type in the space C (S) of continuous tangent to
S fields.

Proof. It is sufficient to check that the operator T in (2.7) is compact in C (S) and that
any solution J to equation (2.7) is tangential to S, that is,

Ns · J (s) = 0, ∀s ∈ S, Ns := N . (2.8)

To prove (2.8), scalar multiply (2.7) by Ns . Since Ns ·[Ns ,E0] = 0 and Ns ·[Ns , [∇s g , J (t )]] =
0, the desired relation (2.8) follows.

Compactness of T follows from the formula

T J =
∫

S

(
∇s g (s, t )Ns · J (t )− J (t )

∂g (s, t )

∂Ns

)
d t , (2.9)

relation (2.8), and the estimate∣∣∣∣∂g (s, t )

∂Ns

∣∣∣∣=O

(
1

|s − t |
)

, |s − t |→ 0, (2.10)

known from the potential theory for the C 2 surfaces (see, for example, [6], chapter 11).
Lemma 1 is proved.
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Lemma 2. The homogeneous version of equation (2.7) implies J = 0, provided that a is
sufficiently small.

Proof. It is sufficient to prove that

||T || =O(a), a → 0. (2.11)

Estimate (2.8) implies that
|Ns · J (t )| =O(|s − t |)||J ||. (2.12)

Therefore

max
s∈S

∫
S
|∇s g (s, t )||Ns · J (t )|d t ≤ max

s∈S

∫
S

O

(
1

|s − t |
)

d t ||J || =O(a)||J ||. (2.13)

Furthermore, if S ∈C 2, then

max
s∈S

∫
S

∣∣∣∣∂g (s, t )

∂Ns

∣∣∣∣d t =O(a). (2.14)

Estimates (2.13) and (2.14) imply (2.11).
Lemma 2 is proved.

From these lemmas the following theorem follows:

Theorem 2.1. Equation (2.7) has a solution in C (S), this solution is unique and satisfies
condition (2.8).

If r := |x|→∞, x
r =β, and the origin is inside D , then formula (2.1) implies

A(β,α,k) = i k

4π
[β,Q], Q :=

∫
S

J (t )d t . (2.15)

Let us derive a formula for Q. Integrate equation (2.7) over S and keep the main terms
as a → 0. One has

Q

2
+

∫
S

d s
∫

S

(
∇s g (s, t )Ns · J (t )− J (t )

∂g (s, t )

∂Ns

)
d t =−

∫
S

[N ,E0]d s. (2.16)

Clearly,

−
∫

S
[N ,E0]d s =−

∫
D
∇×E0d x =−(∇×E0)(x1)|D|, (2.17)

where x1 ∈ D , and |D| = cD a3, cD > 0 is a constant which depends on the geometry of D .
Furthermore ∫

S
d t J (t )

∫
S

(
−∂g (s, t )

∂Ns

)
d s = Q

2
, a → 0, (2.18)

where we have used the relation

−
∫

S

∂g (s, t )

∂Ns
d s = 1

2
, a → 0, (2.19)
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see, for example, [6], p.8.
Finally,

I : =
∫

S
d s

∫
S

d t∇s g (s, t )Ns · J (t )

=
∫

S
d t J (t ) ·

(∫
|s−t |<δ

Ns ·∇s g (s, t )d s +
∫
|s−t |≥δ

Ns ·∇s g (s, t )d s

)
:=

∫
S

d t J (t )(I1 + I2). (2.20)

One has J(t) · N (s) ≤ c|t − s||J(t)|, and |Ns · ∇s g (s, t)| ≤ c
|s−t | for C 2− smooth surface,

where c > 0 is an estimation constant. Thus,

|I1 + I2| ≤ c
∫

S

d s

|s − t | ≤ ca, (2.21)

and

I =
∫

S
d t J (t )O(a), a → 0. (2.22)

Therefore, one gets
|I | ≤O(a)|Q|, a → 0. (2.23)

From (2.16)-(2.18) and (2.23) one obtains

Q =−(∇×E0)(x1)|D|, a → 0, (2.24)

where x1 ∈ D is an arbitrary point.
From (2.24) and (2.15) it follows that

A(β,α,k) =− i k

4π
[β, (∇×E0)(x1)]|D|, |D| = cD a3, a → 0, (2.25)

and
(∇×E0)(x1) = i k[α,E ]e i kα·x1 . (2.26)

Since ka ¿ 1 and |x1| ≤ a, one may write

(∇×E0)(x1) = i k[α,E ], (2.27)

and

A(β,α,k) = k2

4π
[β, [α,E ]]cD a3. (2.28)

Let us summarize what we have proved.

Theorem 2.2. If ka ¿ 1, then formulas (2.15), (2.25), and (2.28) hold.

Theorem 2.1 and 2.2 are our basic results for EM wave scattering by one small
perfectly conducting body of an arbitrary shape.
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3 Many-body wave scattering

Consider now the case of many-body EM wave scattering.
Let Dm be small perfectly conducting body, xm ∈ Dm be an arbitrary point, D :=⋃M

m=1 Dm ,D ′ :=R3 \ D,D ⊂Ω⊂R3.
Assume that formula (1.1) gives the distribution of small bodies in Ω. The total

number M = M(a) of small particles, distributed inΩ is given by formula (1.2).
The distance d between closest neighboring particles is assumed to be large com-

pared with a:
d À a (3.1)

Let L be a side of a cubeΩwhere small particles are distributed. Then
( L

d

)3 =O(M) =
O

(
1

a3

)
. Thus

d =O(La). (3.2)

Therefore, condition (3.1) holds if L is large. If L is fixed, then (3.1) holds if N (x) ¿ 1,

d =O
((∫

ΩN (x)d x
)−1/3 a

)
.

The many-body scattering problem consists of solving equation (1.4)-(1.7), where
now D =⋃M

m=1 Dm .
Let us look for the solution of the form

E(x) = E0(x)+
M∑

m=1
∇×

∫
Sm

g (x, t )Jm(t )d t

= E0(x)+
M∑

m=1
[∇g (x, xm),Qm]+

M∑
m=1

∇×
∫

Sm

(g (x, t )− g (x, xm))Jm(t )d t , (3.3)

where

Qm :=
∫

Sm

Jm(t )d t . (3.4)

Lemma 3. If

ka + a

d
¿ 1, (3.5)

then

J ′m :=
∣∣∣∣∇×

∫
Sm

(g (x, t )− g (x, xm))J (t )d t

∣∣∣∣¿ ∣∣[∇g (x, xm),Qm]
∣∣ := Im . (3.6)

Proof. One has ∣∣∇g (x, xm)
∣∣≤ c

(
k

d
+ 1

d 2

)
, (3.7)

where c > 0 is a constant and d = |x −xm |.
Similarly, ∣∣∇(g (x, t )− g (x, xm))

∣∣≤ ca

(
k2

d
+ k

d 2
+ 1

d 3

)
, (3.8)

8



where |t −xm | ≤ a, |x −xm | = d . Therefore,

J ′m ≤ cQ

(
ak2

d
+ ka

d 2
+ a

d 3

)
, Im =QO

(
k

d
+ 1

d 2

)
. (3.9)

From (3.9) one gets

J ′m
Im

≤ c
ak2d 2 +kad +a

d(1+kd)
≤ c

(
ka + a

d

)
¿ 1. (3.10)

Lemma 3 is proved.

From lemma 3 it follows that one can solve the many-body EM wave scattering
problem by finding quantities Qm ,1 ≤ m ≤ M, rather than the unknown functions Jm(t ).
This allows one to solve numerically the scattering problem with very large M, provided
that assumption (3.5) holds.

The solution is given by the formula

E(x) ∼ E0(x)+
M∑

m=1
[∇x g (x, xm),Qm]. (3.11)

Let us introduce the notion of the effective field: it is the field acting on a particular
small particle D j from all other particles and from the incident field:

Ee (x) := E0(x)+ ∑
m 6= j

∇×
∫

Sm

g (x, t )Jm(t )d t . (3.12)

In the limit a → 0 the effective field differs negligibly from the full field already at the
distances of the order of a because the radiation from a small particle is O(a3), as we
proved in section 2.

If condition (3.5) holds, then the effective field, scattered by the j-th particle, can be
calculated by the formula analogous to formula (2.24):

Q j =−(∇×Ee )(x j )cD a3, 1 ≤ j ≤ M . (3.13)

Let us assume for simplicity that cD := c0 does not depend on j . This, for example,
happens if all the particles are of the same geometry. Then Q j is known if the quantities
A j := (∇×Ee )(x j ) are known, 1 ≤ j ≤ M .

Let us derive a linear algebraic system (LAS) for finding these quantities. This will
give a numerical method for solving many-body EM wave scattering problem. Take curl
of equation (3.12) and then put x = x j in the resulting equation. This yields

A j = A0 j −
∑

m 6= j
∇x × [∇x g (x, xm), Am(t )]|x=x j c0a3, 1 ≤ j ≤ M , (3.14)

where
A0 j := (∇×E0)(x j ), A j := (∇×Ee )(x j ). (3.15)
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If A j are found from (3.14), then the solution to the scattering problem is given by
formula (3.11):

E(x) = E0(x)−
M∑

m=1
[∇x g (x, xm), Am]c0a3. (3.16)

If M is very large, then the order of LAS (3.14) is very large. Let us reduce this order
drastically.

Consider a partition of the domainΩ into a union of cubes ∆p ,1 ≤ p ≤ P,P ¿ M . Let
xp be the center of ∆p and b be the side of ∆p . Assume that b = b(a),

b À d À a, lim
a→0

b(a) = 0, (3.17)

where d = d(a) is the distance between closest neighboring particles. Then there will be
many particles in each of the cubes ∆p . Let us transform formula (3.16) as follows

Eq := E(xq ) = E0(xq )−
P∑

p=1
[∇x g (x, xp ), Ap ]|x=xq c0a3

∑
xm∈∆p

1

:= E0q − c0∇×
P∑

p=1
g (x, xp )Ap N (xp )|∆p |, (3.18)

where by formula (1.1) one has

a3
∑

xm∈∆p

1 = N (xp )|∆p |(1+o(1)). (3.19)

Here |∆p | is he volume of the cube ∆p and we have used the relations

∇x g (x, xm) ∼∇x g (x, xp ), Am ∼ Ap , ∀m : xm ∈∆p . (3.20)

These relations hold because the side of ∆p tends to zero as a → 0, and the functions
∇x g (x, y), A(y) are continuous functions of y ∈∆p when x 6∈∆p . A similar transforma-
tion of LAS (3.14) yields

Aq = A0q − c0∇×
P∑

p 6=q
[∇x g (x, xp ), Ap ]|x=xq N (xp )|∆p |, 1 ≤ q ≤ P. (3.21)

The order of LAS (3.21) is P ¿ M .
Equation (3.18) is a Riemannian sum for equation

E(x) = E0(x)− c0∇×
∫
Ω

g (x, y)N (y)∇×E(y)d y. (3.22)

This equation describes the limiting field in the domainΩwhen the number of particles
tends to infinity while the size of the particles tends to zero, the particles are distributed
by the law (1.1) and condition (3.5) holds.

Let us summarize the result.
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Theorem 3.1. Assume that condition (3.5) and equation (1.1) hold. The the many-body
EM wave scattering problem (1.4)–(1.7) with D =⋃M

m=1 Dm has a unique solution that
can be computed by formula (3.11) with Qm given by formula (3.13) and the quantities
(∇×Ee )(xm) := Am can be computed by solving LAS (3.14) or (3.21). The effective field
in Ω has a limit as a → 0 and this limit solves equation (3.22). Equation (3.22) has a
solution in C 2(Ω) and this solution is unique.

Proof. Only the last statement of theorem 3.1 is not yet proved.
To prove it, assume that E0 = 0, apply the operator ∇×∇× to the homogeneous

version of equation (3.22) and use the formulas

∇×∇×∇×= (∇·∇−∇2)∇×, ∇·∇×= 0,

and
∇·E = 0, −∇2g (x, y) = k2g (x, y)+δ(x − y).

We obtain the following equation:

∇×∇×E = k2E − c0N (x)∇×∇×E ,

or

∇×∇×E = k2

1+ c0N (x)
E .

This equation and the relation ∇·E = 0 imply

−∇2E −k2E + k2c0N (x)

1+ c0N (x)
E = 0. (3.23)

The field E satisfies the radiation condition and equation (3.23) is a Schrödinger equa-
tion with non-negative compactly supported potential

q(x) := k2c0N (x)

1+ c0N (x)
.

Therefore, the only solution E(x) to equation (3.23) is zero.
Let us prove this. Let u be any Cartesian coordinate of E(x). Then

[∇2 +k2 −q(x)]u = 0 in R3 (3.24)

ur − i ku = o

(
1

r

)
, r →∞. (3.25)

Multiply equation (3.24) by u, subtract complex conjugate equation (3.24) multiplied
by u, and integrate over BR := {x : |x| ≤ R}. The result is

0 =
∫

BR

(u∇u −u∇u)d x =
∫
|x|=R

(uur −uur )d s = 2i k
∫
|x|=R

|u|2d s +o(1). (3.26)
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Thus

lim
R→∞

∫
|x|=R

|u|2d s = 0. (3.27)

Since q(x) = 0 outsideΩ, equation (3.24) yields

(∇2 +k2)u = 0, |x| > R0, (3.28)

where R0 is any number such that BR0 ⊃Ω.
By lemma 1 from [4], p. 25, it follows from (3.28) and (3.27) that u = 0 in R3 \ BR0 . By

the unique continuation property for solutions to elliptic equation (3.24), it follows that
u = 0 in R3. Thus, E(x) = 0 in R3.

This proves the last statement of Theorem 3.1.

4 Applications to materials science

Let us show that the new medium inΩ has a new refraction coefficient.
Apply the operator ∇×∇× to equation (3.22), take it into account that

∇×∇×E0 = k2E0, ∇×∇×∇×= (∇·∇−∇2)∇×, (4.1)

and −∇2g = k2g +δ(x − y). Thus,

−∇2∇×
∫
Ω

g (x, y)∇×E(y)N (y)d y =∇×
∫
Ω

(k2g +δ(x − y))∇×E(y)N (y)d y. (4.2)

Consequently, the equation resulting from (3.22) is:

∇×∇×E = k2E−c0∇×(∇×E(x)N (x)) = k2E−c0N (x)∇×∇×E−c0[∇N (x),∇×E ]. (4.3)

This implies

∇×∇×E = k2E

1+ c0N (x)
− c0

1+ c0N (x)
[∇N (x),∇×E ]. (4.4)

Let us interpret this equation physically. First, the new refraction coefficient is

n2(x) = 1

1+ c0N (x)
. (4.5)

By the refraction coefficient n2(x) one means the coefficient n2(x) in the equation

∇×∇×E = k2n2(x)E . (4.6)

Secondly, to interpret the last term in (4.4), consider equation (1.4) and assume that
µ=µ(x). Then

∇×∇×E = iωµ∇×H + iω[∇µ, H ], (4.7)

where H = ∇×E
iωµ and ∇×H =−iωεE .

12



Thus,

∇×∇×E = K 2(x)E +
[∇µ
µ

,∇×E

]
, (4.8)

where

K 2(x)E =ω2εµ(x) = k2

1+ c0N (x)
. (4.9)

Consequently,

µ(x) = µ

1+ c0N (x)
, (4.10)

and ∇µ
µ

=− c0∇N (x)

1+ c0N (x)
. (4.11)

Therefore, equation (4.4) is exactly equation (4.8) with µ(x) defined in (4.10).
We have proved the following theorem.

Theorem 4.1. The new medium in Ω corresponds to the material with the refraction
coefficient (4.5) and permeability (4.10).

Several papers dealing with creating materials by embedding many small particles
into a given material are [7]- [11]. Of these papers most deal with the scalar wave
scattering, papers [11] deals with electromagnetic wave scattering by many very thin
impedance cylinders, and [9] deals with an inverse problem for Maxwell’s equations.
The ideas related to creating materials with a desired refraction coefficient are of interest
to people working in optics and physics of sound, but they were not used earlier in the
form presented in our work.

5 Conclusions

Basic results of this paper are formulated in Theorems 2.1, 2.2, 3.1 and 4.1.
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