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Abstract

Emergency Medical Systems (EMS) are designed tdle@amergencies. Fortunately,
most emergencies faced have only one patient. Jéry elay system is not designed to respond
to emergencies in which there are many casualies.to natural disasters and terrorist attacks
that have occurred over the past decade, masshyadisaster response plans have become a
priority for many organizations, including EMS. Tresources available for constructing such
plans are limited. Physical simulations or pracioéthe plan are often performed; however, it is
not until a disaster strikes that the capabilitiEthe plan are truly realized. In this papersit i
proposed that discrete-event simulations are us@au of the planning process. A computer
simulation can test the capability of the plan urdlferent settings and help planners in their
decision making.

This paper looks at the creation of a discrete-esenulation using ARENA software.
The simulation was found to accurately simulaterésponse to the Greensburg tornado that
occurred May of 2008. A sensitivity analysis fouhdt the simulation results are dependent
upon the values assumed ¥olunteer Injury Ratgnjury Leve| Information Dissemination
RateandTransportation Decisiowariables.

When a disaster occurs, the local resources amvbeémed and outside aide must be
called in. Decision rules for when to request nautside ambulances and when to release them
to send them home are evaluated. The more resainatesre made available, the quicker
patients receive medical care. However, when oataidbulances are called in, they are putting
their home area at risk because it no longer hapl=ie (or any) ambulance coverage. As the
percent of coverage decreases, the amount of iatevictims spend waiting for ambulances
also decreases. Many decision rules were evaluasdlfing in various combinations of
ambulance wait times and average percent coveltageip to Disaster Planners to determine
how much of an additional wait can be assumed bylibaster victims to prevent outside

districts from taking on unwarranted risk of loweoage.
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CHAPTER 1 - Introduction

Emergency Medical Systems (EMS) are designed tdleamergencies. Fortunately,
most emergencies that they face have only onempalibe every day system, which | will call
the steady-state system, is not designed to bea@béspond to emergencies in which there are
many casualties. Due to natural disasters andrigredtacks that have occurred over the past
decade, mass-casualty disaster response planbéeweme a priority for many organizations,
including EMS. The resources available for congingcsuch plans are limited. Physical
simulations or practices of the plan are oftenqgrenkd; however, it is not until a disaster strikes
that the capabilities of the plan are truly realizia this paper, it is proposed that discrete-even
simulations are used as part of the planning psodesomputer simulation can test the
capability of the plan under many different setsirrgnd help planners to determine where holes
in their plan exist.

To demonstrate the possibilities of simulating slisaplans, this paper will show how the
ambulatory response to mass casualty tornadosecaimulated. According to the Federal
Emergency Management Agency (FEMA), tornados an&r@a most violent storms.
Approximately 1200 tornadoes touch down within theted States each year (NOAA Storm
Prediction Center). While only a small percenthedde tornados have been deadly, when a
tornado strikes a highly populated area, the resuitbe devastating. On Februafy2n08 a
storm that produced sixty-seven tornados rippedsadKentucky, Tennessee, Arkansas, and
Alabama killing 55 people (Kenning 2008). In theghseverely hit area, Macon County
Kentucky, fourteen people were killed and approxetya70 were seriously injured. Many others
were described as “walking wounded” (Greenway 2008)

In 2007, 81 people died from injuries that resdifrom a tornado. Twelve of these
deaths occurred when a tornado wiped out the sroadll town of Greensburg, KS. Along with
the twelve deaths, there were over 90 people regumedical assistance. The town’s medical
resources, including a small hospital were desttdyethe storm, leaving the town completely

reliant upon neighboring communities for assista#ddah 2007).



1.1 Differencesin Rural and Urban Ambulance Systems

When it comes to emergency management, there arg differences between that of
rural communities and those of larger urban arélas.challenges faced by rural EMS services
are different than those faced by urban ambulaystems. In rural areas the population served
by a single ambulance district is much smaller titat in urban areas. Conversely, the area
covered by a single ambulance district is muchelafgr rural areas. Rural ambulance services
struggle with being able to provide quick emergerasponse to their constituents because they
may have to travel thirty plus miles in one direntio reach their patients. The nearest hospital
for many rural patients is not in their small tovanif in the nearest city. Also, the call volumes in
some areas are so low that a regular staff of paglax® cannot be maintained. In these cases the
entire emergency medical staff may be volunteedsvat have to be called in from their work
or homes to respond to emergency situations.

While the lower population density of rural ar@assents problems in the funding of
ambulance systems and in enabling quick responskses not rule them out from the threat of
mass casualty events. There are many causes ofcamssty incidents, with terrorism being
only one of them. Nature provides many threatsitalrareas. Tornados, floods, fires,
earthquakes, all of these may lead to a disasa¢mtitl injure or kill a large number of people.
Industrial accidents also occur in rural areas. MVenass casualty event occurs in a rural
community, they have much fewer resources at theposal. For example, in 2007 New York
City had an average of 968 ambulances availabladerat a given time, answering an average
of 3,253 calls per day (FDNY Vital Statistics 200if) Greeley County, Kansas the picture is
completely different. A single ambulance staffedvblunteers serves its residents that are
spread across 778 square miles of land. The amimitasponds to an average of 120 calls per
year, including standbys and transfers (McCain 200is is one call per three days. It would
not take a very large disaster to overwhelm theel@geCounty ambulance system, where as in
New York City, resources could be quickly reall@shto accommodate an increased demand in
a specific sector of the city.

Along with differing demand patterns, charactecsf the population-base differ from
rural to urban settings, such as: age, gender, saverity of illness, and types of medical
problems. These can add to the differences thabwiseen in the response to and outcome of
emergencies (Stripe 1991). The research for ligisi$ will focus on the response to mass-



casualty events that occur in rural areas, a diefinof rural and mass-casualty is presented in
Section 1.3.

1.2 Differencesin Steady-state and disaster Ambulance Systems

The emergency medical system that emerges in acasasgalty or disaster situation is
greatly different than the steady-state ambulagstem. Under normal conditions, ambulance
systems rely on a dispatch routine that looks sbimgtike this: A phone call is received stating
that someone needs medical attention. An addreakeéa and an ambulance is dispatched to that
location. Paramedics perform first-aid and necgdgarsupport functions at the scene. If the
patient requires additional medical assistancey, #ine loaded into the ambulance and
transported to the appropriate hospital. The hakjgitgenerally contacted prior to arrival to let
them know that the patient is coming. The patisntriloaded at the hospital and the ambulance
returns to their station to restock their ambulazce await another call. The general process for
a steady state ambulance system is mapped in Figlirdn an emergency situation, the routine
can look much different.

Each EMS department has their own disaster plabagliit has its own methods for
every-day operation. The type of disaster will ¢gsemfluence the response. However, in
general, there are a couple of things that may rttakeisaster system significantly different
then the steady-state system. The first, and nimsbos one, is the increased number of patients
that need help. Second, there is the possibilay $bme of the resources that are considered
standard, such as electricity, water, and teleplcapabilities, may not be available due to the
disaster that caused the mass-casualty incidertloBs of power and running water will virtual
shut down hospital emergency departments (Boho#®8)1Depending on the type of disaster,
roads may be left impassable. To handle the inecetisx of patients, help is generally called in
or voluntarily supplied from surrounding areas.sTadds the challenge of establishing and
maintaining communication. In disaster situatiarspurces are overwhelmed. In many cases,
ambulance drivers may convert to a scoop and rategly where they do not wait on a call from
the patient, but go to the site of the disastad fhjured people, and transport them to the
hospital as quickly as possible. The level of oanrscfirst aid and triage may vary greatly
compared to that which would be seen under nororaditions. Also, make-shift first aid and

triage stations may be created to prove as a gagheoint for patients and to perform pre-



hospital care. A generalized process map of an katdoy disaster response system can be seen
in Figure 1-2.

There have been many papers written about whatsrageod safety plan. A disaster
plan is most easily adhered to when it maintairrsnab daily routine as much as possible
(Breakey 1988). Many resources are available th&isadisaster planners in creating their
disaster response plan. The National Incident Mamagnt System, a program released in 2004
by the Department of Homeland Security as a pafEMA, gives guidelines and training to
assist in the creation of local response plans.fotws of this thesis is not on the development of
the response plans, but on the use of discretet-siranlation as a tool to evaluate response
plans for the purpose of determining in what atbagplan is lacking and how the plan will

likely hold up in response to specific situations.
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Victim Routing to Medical Attention
during mass casualty event
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1.3 Definitions

1.3.1 Rural

Different agencies have different definitions of thord “rural”. This leads to an
interesting debate about how to define the wore &kact definition is not critical to this
research. EMS systems are as different as the caitiesuthat they are serving. There is not a
clear line in population or population density dtigh the struggles of the system change from
those of rural problems to those of urban probleatber it is a continuum. The United States
Department of Agriculture (USDA) defines rural asrg “open country and settlements with
fewer than 2,500 residents”. This may be true feonagricultural standpoint, but from a medical
standpoint, it takes significantly more than 2,p@@ple to support an urban medical system. The
Office of Management and Budget (OMB) defines rasahnywhere that is not within a
metropolitan area, with a metropolitan area beicgyawith at least 50,000 people. More
complex systems of determining ruralality have bestablished over the years (Ricketts 1998).

For the purpose of this paper, rural EMS systeragjaing to be defined as those that are
responsible for covering a large, sparsely popdletgion. Such counties may have a city of
over 50,000 people; however, if there are rurahsikgith a significant number of people who do
not have easy, immediate access to the medicatesrof that city, then the area shall be
considered rural. This is often the case for casntinat border metropolitan areas or those
containing small cities (50,000-100,000 people) toeeh several small towns or farming

communities.

1.3.2 Mass Casualty or Disaster

There are many differing definitions for mass edisuand disaster situations. In his
paper, “Disaster Epidemiology”, Noji states, “Franpublic health perspective, disasters are
defined by what they do to people; otherwise, desasare simply interesting geological or
meteorological phenomena. What might constitutesastier for one community might not
necessarily be considered a disaster in a diffe@mimunity.” (Noji 1996). There are many
types of disasters that exist. Often, they are édmakown into two categories, man-made
disasters and natural disasters. For the purpogesahesis, these categories are virtually
irrelevant. Issues such as the suddenness andatuoathe force that is resulting in medical

emergencies and the size of the area over whishguiccurring is more critical in simulating
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the emergency response. While bombings are man-tisasters, and tornados are natural
disasters, they are in many ways similar from tleglical response perspective. Both generally
result in a very dense disaster area where nelhdy the people in the area are affected. Injuries
due to shrapnel, flying debris and falling objeants prevalent. These situations are sudden and
results in many people being injured within juséa minutes, leaving many people needing
care at the same time.

A good definition of mass casualty incident is\pded by the Virginia Office of
Emergency Medical Services. They state that a wesmsalty incident is “one which generates
more patients than available resources can marsagg outine procedures” (Green, 2000).

This is the definition that will be used for botlags casualty and disaster throughout this paper.

The two words may be used interchangeably.



CHAPTER 2 - Literature Review

Over the years, a great deal of research has loeelucted on improving the efficiency
of medical care, including studies done on ambu@aystems. Most of these studies revolved
around urban medical systems. Rural medical systeovgever, have many unique
characteristics that leave some of the findingghese inapplicable to them. Assignment
problems and ambulance location problems that eareby complex in urban systems, may
become trivial in very rural areas where therenly @ne ambulance and it responds to very few
calls per year. There are still many similaritie$vizeen rural systems and urban systems, and
thus the knowledge gained by studies performedrbarusystems is beneficial in studying rural
systems. Both rural and urban areas face the dgallef dealing with budget constraints. All
ambulances face the challenge of responding rapdtglls. For urban areas, the issue may be
traffic and low speed limits. For rural areas, éaopverage areas force ambulances to travel a

long distance to reach many of the patients.

2.1 Modeling Emergency Medical Systems

Emergency Medical Systems have received a greabdlattention from the operations
research (OR) community since the 1960’s. Mucthisfhas stemmed from a group of OR
analysts that worked at New York’'s RAND Institutgrig the late 1960’s and the 1970’s. Their
research was strong in both theory and in apptinaaind covered Emergency Medical Systems,
Fire Systems and police operations (Goldberg 2(0®dne of the areas of research that have
been prominent over the years include:

1. The location of fixed position fire stations aadbulance bases

2. The dispatching of vehicles to calls

3. The number and type of vehicles, staff, andmgent

4. The use of flexible locations for un-dispatclaeabulances known as System Status

Management



Most of the models that have been created followesof the same basic rules. First,
instead of looking at every possible location @aall could arrive from, cities are broken into
small areas called “zones”. All of the calls origfimg from the zone are assumed to occur from
the center of the zone and travel times and coeeaag calculated accordingly. The more zones
a model considers, the higher the accuracy oftpeaed coverage due to an increased accuracy
in the actual time that it will take to arrive hetcall location. Three basic types of error that
result from the creation of zones were defined bigiHan and Rhoda in 1978.

A errors—errors in distance measurement for thlesgade the original call location is
not the location of the aggregated calls,

B errors—errors in distance measurement due t&mmwing the true location when a
vehicle or facility is located at an aggregationeo

C errors—errors in dispatching due to not knowimg ¢orrect distance from vehicles or
bases to calls in aggregated zones.

As technology improves and computing power increade size of each zone can be
decreased, decreasing the effect of such erroesrdduction and elimination of these errors
have been discussed by Current and Schilling [198Ffigson and Neuman [1993] and Erkut
and Bozkaya [1999].

2.1.1 Covering Models

Many modeling techniques have been used to sobaetproblems. Church and Revelle
(1974) created a maximal covering model that sotmhkoblve the problem of where to locate a
fixed number of ambulances. With this model, a zerednsidered covered if it is within the
travel time of an ambulance. It does not take amasideration that this ambulance may be faced
with a large demand and thus not always availadbieiSpatch to a call. This was then improved
upon by Daskin and Stern in 1981 to maximize thaler of zones that were covered by more
than one vehicle. Still, these models lacked texifflility that many urban emergency medical
systems needed. These models required that thendioraan area be constant over time and
that an ambulance remain at the same base lodh#oit is originally assigned to. In urban
areas where the population in a zone of the citygiven time of day is based on whether it is
residential, commercial, or industrial, the demandn area can be very dependent upon time. In

an attempt to solve this problem in order to depeaecision support system for locating
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ambulances with Lousiville, KY, John F. Repede d@gy®what he calls the TIMEXCLP model,
which incorporates time variation into the maxireapected coverage location problem (1994).

Set covering problems have also been used. Thevias developed by Toregas et. al. in
1971. The model minimizes the cost by finding theimum number of ambulances that can
cover all of the zones. As with the maximal covgnmodels, there is no regard to the demands
of each of the zones or whether an ambulance i druavailable for use.

For all of these models, the demand is assumed teterministic, as well as the travel
times and the service time. All calls are resportdeadith the same equipment; there is not a
distinction between calls that may need Advancée Eupport or calls that could be satisfied
with Basic Life Support units. Also, as mentionexddve, there is no regard for busy vehicles.
This will result in inflated expected values of tya coverage.

ReVelle has continued to work on improving thissaa@d has expanded models to
address many of these problems (Schilling, ReVelt#hen, and Elzinga 1980; ReVelle,
Schweitzer, and Snyder 1996; ReVelle and Hogan9)199

2.1.2 Queuing Approaches

The most notable queuing approach is the hypenndukels created by Larson (1974,
1975). In this model, there are a set number oicleh serving the area. They are then located
through out the area to minimize the total expetteel distance to serve all demands. It takes
into consideration which vehicles are preferrecegpond to each call and whether that vehicle
is busy. In order to do this, the state of theaysinust be kept track of and the rule for
responding to a call is dependent upon the statsytstem is currently in. The model his 2
states, making the problem NP-Complete. Larsonimoed to build and extend this model to
include locate-allocate heuristics (Larson 197@r8leau and Larson 1986). In 1996 Marcianov
and ReVelle used queuing theory to create a rigaligtation model for emergency systems. A

more complete review of queuing theory approachesbe found in Jia et al (2007).

2.1.3 Simulation Models
The popular use of simulation in terms of modeklmgergency Medical System
modeling is for model validation. Once a set ofgdole solutions is obtained from simple set
covering or maximum covering problems, a simulatian be created to evaluate each of the

solutions. City specific models have also beeatest the first of these being for New York
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City (Savas 1969). Another was produced by ErkdtRolat in 1992 to minimize the total travel
time and the percent of calls not served withirearpssible time in Istanbul, Turkey. Another
model was created for Richmond, VA and is detaigdaki, Cheng, and Parker in 1997.
Repede and Bernardo use simulation to developiaidesupport system for locating
emergency medical vehicles in Louisville, KY. TheIMEXCLP covering model provides
inputs for a simulation. If the results of the slation meet the requirements, then the locations
are used, if they do not, the TIMECLP is re-run #m@new locations simulated. This iterative
process continues until the simulation output meetgpre-determined requirements. Simulation
models are only currently created to validate sohst obtained by other models or for the use of
a specific city. Little research seems to have lakaTe into general simulation models that can

be adapted to serve a wide range of locations.

2.2 Validity of Emergency and Disaster Response Plans
Creating and practicing emergency and disasteorsspplans is something that has
become very common in our society today. Every miggdion from hospitals to schools to retail
stores and churches has considered and plannémwihey will respond in the face of a
disaster. Likewise, city, county, state, and nati@hsaster response plans exist that detail how
medical services will respond in the face of aisriEMS personnel have practiced this response
as with other emergency workers, but on what basisuch plans created? Is there evidence
that these plans will work, or that the situatitimst they are mitigating are likely to unfold ireth
manner that the plan is geared for? Many of tharapions made during emergency planning
are invalid (Auf der Heide 2006). The reasons tfesseimptions are invalid are explained in the
following sections (2.2.1-2.2.6). Some of the commssumptions that are often incorrect are:
1. Studies of previous disasters provide good fiaithuture incidents.
2. Communication systems will remain intact.
3. Only requested ambulances and emergency respamkers will respond.
4. Search and rescue is completed by emergencgnsspvorkers such as fire
fighters, police officers, paramedics, and othainid personnel.
5. Casualties will arrive at the hospital via anamae and will have been through
decontamination and field-triage.

6. The most serious casualties will arrive first.
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2.2.1 Studies of previous disasters do not always progmzl data for future incidents
The nature of disaster studies makes the colledfigonod, meaningful data very
difficult. There is no way to perform controlledpetiments. In most disasters you cannot choose
the location and there is a single-impact occumetids not possible to control the countless
variables that exist. Studies are generally peréar@fter the fact and it is difficult to compare
the pre-disaster data to post-disaster data dcleateges in population in the area due to death,
relocation, or an influx of relief workers. Mediaa¢tworks often have a very difficult time
keeping track of patients and recording the vefgrmation that would be useful in post-disaster
analysis. When a study was done on the tornadsthatk Oklahoma City in 1999, pre-hospital
care was not documented for 14.3% of the patiévigs/(2002). Since not all data is collected,
most data that exists rely on post-disaster suraagsaccounts of what occurred, which is less
accurate than data that would be collected atitte of the disaster. All of these factors make it
very difficult to collect accurate disaster datal aifficult to extrapolate that data to determine
how a similar disaster may affect a different comityu Better record keeping and data
collection during disasters would improve the &pilo provide accurate data as references for

disaster plans.

2.2.2 Communication systems are often unreliable duringssaasualty events

Communication is a key element in successfully engnting and carrying out most
plans. Unfortunately, in many disaster situatimmnmunication networks fail. Their failure
may be due to several factors. In a disaster ssieht@rnado or hurricane, telephone lines and
cellular phone towers may be taken out, leavingpifebne communication impossible. Even if
the phone lines and cellular phone towers remdatinin disaster situations, these lines are
quickly flooded and rendered useless. Radio comaation will experience the same flooding
of use, leaving them overloaded and ineffectivepienforming the needed communication.
Another problem that is often overlooked when ithes to communication is communication
with ambulances and workers who come from outsidée normal ambulance district. Not all
districts use the same type of radios, and theivgfyequencies of these radios may make it
impossible for outside ambulance and staff to he& £quipment to communicate with local
officials, dispatchers, and hospitals. In a Karieasado that struck on April 26, 1991
ambulances were directed to the closest hospitadrrghan the one with the proper capabilities.
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Communication had broken down due to neighboringhties having different radio
frequencies. On top of this, the radio frequenosmerloaded, preventing field crews from
communicating with the hospitals to notify themmfoming patients. Miscommunication
resulted in ambulances being dispatched to locatidrere no patients were found or where
patients had already been treated or transporgedthier means (Prillman 1993). Even in the
modern day of cellular phones, this problem iselmbinated. Most EMS systems still rely on
radios for most of their communication. The usealfular phones is unlikely to have a large
impact on the results found in this study for twasons. First, the focus of this paper is on rural
areas, which often have limited cellular phone cage to begin with. Second, just as radio
frequencies can quickly become overloaded, so ebmar phone networks. Except in the case
of cellular phones, you not only have emergencykexs flooding the network, but citizens as
well.

All of these communication problems should be adersd in disaster planning, as they
are likely to occur. Preventative measures, sudtaasg extra radios on hand to issue to outside
responders or collaborating with nearby distrioteisure that radios are compatible may
decrease the chance that the communication sysiéfail(Auf de Heide 2006).

2.2.3 Non-requested Ambulances and Emergency Workers wilixshp to help
When a disaster occurs, everyone assumes thatwilebe a shortage of resources.

Nearby communities may send non-requested aid uhgeassumption and the assumption that
it is better to have extra people than not enotrghmany cases, the initial reports broadcasted
via media and scanners may be inaccurate, andatbugplus of aid may arrive. While this does
not initially sound like a problem, it can leaddonfusion and a breakdown of the emergency
plan. An example of this occurred when an F3 toorfaitda camp ground at Pine Lake in Alberta
on July 14, 2000. There were over 254 people atdngpgrounds at the time. A campground
provides little shelter that can sustain a torn&dtotal of 12 people were killed by the storm,
and another 130 were injured. Upon hearing of thers ambulances were dispatched from all
over the region. Hospitals fully enacted their disaresponse plans, clearing as many beds as
possible and calling in all available staff. Howewdue to many people opting for private
transportation to hospitals, and the large quaofigmbulances that responded, a line of

ambulances sat idle waiting for a patient to transpMany of these ambulances had left their
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home region without an ambulance to respond td Em&rgencies. The scene-to-hospital times
were 1-2 hours, resulting in many doctors and reuwggting around for patients that would

never arrive, or would arrive much later then wegseeted. At one hospital there were three
doctors and three nurses waiting at each bay, mbwjom never saw a tornado victim

(Sookram 2001). Auf der Heide says that non-re@aesibulances are often not integrated into
the response plan. They may have no communicatittnlecal officials and are thus not utilized
efficiently. He suggests that if the disaster mal@zed, that the area is immediately barricaded

off so that all incoming emergency vehicles arected to a check-in area where they are briefed
and possibly given a radio so that they can comoat@iwith local personnel (Auf der Heide
2006).

2.2.4 Much of the search and rescue efforts are preformed by sorgiand other
untrained volunteers

Search and rescue efforts begin long before taiesponders arrive at the scene. It has
been documented in many cases that the survivertharfirst to begin search and rescue
(Sookram 2001). They are on the scene when thetdrsaccurs and thus begin search and
rescue efforts almost immediately. The survivotermhave information about the last location
of the missing, and are thus very beneficial inngdhe trained emergency workers in the search
and rescue effort. However, they do not tend to@gogh the search in a systematic fashion that
will in result in finding as many people as quickly possible and they do not plan ahead and
forsee future problems that their actions may eréauf der Heide 2006).

The initial impact is not the only occasion wheople are injured and need medical
attention. Up to 50% of injuries from tornadoes rbaysustained in the rescue and recovery
period. Minor injuries such as lacerations, foohgtures, sunburn, and heat injuries are some of

the common post-tornado injuries (Bohonos 1999).

2.2.5 A small portion of casualties will arrive at the$pital via ambulance and many
will not have been through decontamination and field-triage
A majority of the minor injuries are transportechimspitals via private transportation.
These victims often begin arriving at the hospitailhin 5 to 30 minutes of the disaster by foot,
by personal vehicles, by buses, by taxis, and bgraton-ambulatory forms of transportation

(Bohonos 1999). In some cases, the arrival ofitlseviictims in the ER is the first notification
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that officials receive of the disaster (Golec andr@@y 1977). The portion of patients that arrive
via ambulance seems to vary on a disaster by disbasis. This number is typically less than
half of all casualties that arrive at the emergeseyartment of a hospital (Arboleda, Abraham
and Lubitz 2007). Auf der Heide (2006) presentisttes given by the Disaster Research Center
which says that only 54% of disaster victims argally transported by an ambulance. Examples
are given of an earthquake in the San Franciscaleg/where only 26% of the earthquake
injured patients arriving at the hospital were sf@orted by ambulance. When the Murrah
Federal Building was bombed in Oklahoma City, d8@6 of the victims were transported by
ambulance. When the World Trade Center was attackdy 6.8% of the 7,364 patients were
transported by ambulance. With only a small porbbpatients arriving via ambulance, triage
and decontamination that is usually performed mepital is often not occurring. Even when
decontamination and field triage locations arel#stiaed, they are frequently bi-passed by
victims. This may be because they are unawareenf ¢éixistence or because they feel as though
they will receive better care at the emergency room

Generally, by the time doctors and nurses aretedahte tornado site to aid victims, there
are few people requiring assistance. The dispdtdoecors and nurses to the tornado site has
little impact on morbidity or mortality (Bohonos 99). This is not always the case. In the case
of the Greensburg tornado of May 4, 2007, a trzagger was the only way to connect many
victims with the help that they needed. The tovaswemolished, with 95% of the homes and
businesses in this 1,400 person town being destr@yalah 2007). Along with the houses,
emergency response resources, hospitals, powsr telephone lines and cellular phone towers
were demolished. Roads were blocked and many inigp@s$he closest hospital was 30
minutes away at the Pratt Regional Medical CeMitims did not have the capability of calling
for help and with many cars destroyed and impassalalds, private transportation was not an
option for many. A triage center was establishethéparking lot of a grocery store and was
used as the base for search and rescue and madieaRmbulances from as far as 100 miles
away came to the scene and transported victims finenriage station to hospitals in Pratt,
Dodge City and Wichita (Potter 2007).
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2.2.6 The walking injured and minor casualties arrive firs

The first victims to arrive at the emergency departt are usually those with minor
injuries, or those classified as “walking-injure@he more serious injuries arrive later, generally
within one to four hours after the tornado occurf@dhonos 1999). Those suffering the worse
injuries many be covered in piles of debris, uncanss and unable to seek help, or may require
ambulance transportation. This results in it takorgyer for the severely injured to reach the
emergency room. Hospitals and emergency workerspiaayon prioritizing patients and
treating them in the order of the severity of thejuries; however, since all casualties do not
arrive at the emergency department at the same ¢éimergency personnel are often busy with
minor injury patients when the severely injuredwar(Mandelbaum 1966, Golec 1977, Auf der
Heide 2006).

2.3 Modeling Disaster Response

Disaster response is greatly different than emexgessponse, and thus requires
different modeling techniques. There has been nessresearch done in this area, compared to
that of steady-state emergency responses systemsyhr, with the changing times, this area of
research has become more and more necessary aatepteCommunities every where are
preparing disaster response plans, and many of waitd like to asses the capabilities of these
plans. Arboleda, Abraham, and Lubitz (2007) hakenea System Dynamics simulation
technique to show how a system will respond tosdésesituations and the impact that the
condition of the infrastructure systems will havetbe ability to respond.

Gong and Batta (2007) have research methods aesl fiarl the allocation and
reallocation of ambulances during a disaster relfration. They suggested that responders
only respond to what they call “casualty clustes”areas that have at least N casualties waiting
for ambulance assistance. This is due to the fiattih disaster situations, it is likely that
multiple people will be loaded into the same ambecdafor transport. They then develop a
dynamic model for the growth and decay of clustaey time.

Jia, Ordonez, and Dessouky (2005) developed a nfioddetermining the location of
medical services for large-scale emergencies. ishdgferent from models that determine the
location of hospitals or fire stations or ambulabeses. This does not consider the staffing of

medical personnel or ambulances that are used daiher it is used for determining the
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location within a region at which a large stockoddical supplies will be kept for easy dispatch

to any disaster or large-scale emergency that saeitinin that region or through out the nation.

2.4 EMS Statistics

2.4.1 Time on scene

Time on scene is defined as the interval betweesmvitie ambulance arrives at the scene
to when they depart the scene. This time may el by many factors, including the type of
injury, the severity of the injury, the size of thatient, and the location of the patient (do they
have to be carried up or down stair or extricatechfa vehicle?). No research was found that
determined the individual effect of any of thesetdas. However, several papers have been
written that analyze the overall average time ansdor trauma patients. In a tornado, nearly all
of the injuries sustained will be trauma injuri#s)s these studies are useful.

Grossman, Kim, et al (1997) looked at the diffee=in rural and urban response to
“major trauma” victims. He looked at 452 calls frame EMS district that contained both rural
and urban areas. He found that the average tinse@me was 21.7 minutes for rural areas and
only 18.7 minutes for urban areas. 98% of the prarts in the study were provided by non-
volunteer, Advanced Life Support (ALS) equipped arahces. When Grossman looked at the
effect of the severity of trauma injury on the tiorescene, he found that there was no
significant effect. It should be noted, that he waky looking at “severe trauma” victims, thus
the relationship between severity of injury andeion scene may be found to be significant if all
trauma patients were considered and not just twbsewere classified as severe.

The effect of ALS care on the time on-scene wasuated by Eckstein, Chan, et al
(2000). The use of two different airway interventiechniques on trauma patients were
evaluated to determine if they had a significafeécifon the mean time on-scene. The difference
in on-scene times was found to be insignificanisBtudy was performed in a large
metropolitan area, with 54% of the victims havingighot wounds or stabbing wounds. The
conditions of the study are very different thansihthat would be experienced by a rural EMS
system responding to tornado victims, and thusehelts of this study will not be taken into
consideration when determining time-on-scene estigni@r the simulation.

Morrisey and Ohsfeldt, et al (1996), analyzed timdalance trip reports for rural trauma

patients who were served by the EMS system thatigee services to 12 rural counties
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surrounding Augusta, Georgia. 2,416 trip reportsavexamined, each of which indicated
“trauma” as the clinical area. The minutes at ttenge were evaluated in two separate groups.
The first group was of 2,416 patients and it waséwho were alive upon arrival and still alive
when the ambulance departed the scene. The seomungl gonsisting of 36 patients, was of the
patients who were dead on ambulance arrival or dwbd while the paramedics were on the
scene. The times for these two groups are significaifferent. For the “alive” group, the mean
time on scene was found to be 13.9 minutes witlhredgird deviation of 7.9. For the “dead”
group, the mean was 38.7 minutes with a standanatiten of 28.3. The overall mean time on-
scene was 14.3 minutes. A summary of the time enesstatistics given in this paper can be
found in Table 1.1. Of the trauma calls that amhcis report to, nearly 8% of the patients were
not transported. Information on the location ofiguatis and the frequency of various medical
techniques performed is also given.

Table2-1 Timeon scene statistics (Morrisey and Ohsfeldt 1996)

n Mean | St.Dev | Mean by Percentile
50th | 75th | 90th

Alive | 2416 | 13.9 7.9 12 18 23

Dead | 36 38.7 28.3 31 58 87
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CHAPTER 3 - Methods

A computer simulation was constructed for a gdira disaster response plan.
Changes to the simulation may be necessary to #uagtmulation to the response plan of a
specific county; however, this model shows thatrdie-event simulation can be used to model
the response of an ambulance system to a massigastent such as a tornado. Such
simulations could prove very useful to emergen@npérs, as they seek to determine the
weaknesses of their plan and methods for improwirighysical simulation of several different
disaster response plans to determine which iseékeib impractical and could lead to confusion
within the Emergency Personnel as to how they shaciually respond when a disaster occurs.
Thus, it is difficult for disaster response plars&r know what policies are most appropriate for
their region and how different policies would afféweir ability to respond to various situations.
In this section, the assumptions made are discums@then the details of how the simulation

model was created.

3.1 Assumptions
In creating the simulation many assumptions hduetmmade. Not all of the assumptions
would hold true for every EMS system since poli@as emergency response procedures vary
greatly between EMS departments. The followingdassumptions were made. Other

assumptions are discussed in the Modeling Detad8® as the model is explained.

3.1.1 Assumption 1 — Non-disaster related call volumes
The rate at which ambulances will be called for-dmaster related emergencies will be
the same as the EMS department experiences dhergéady-state, non-disaster time period.
This call volume is assumed to be constant througtie day, and to be unaffected by the
disaster. It is assumed that the dispatch locatr@hareas that were not directly hit by the
disaster still have telephone capabilities, and this possible for people who are not in the
disaster zones to call for an ambulance. Thoseambavithin the disaster zone but who have an

emergency that is not disaster induced will betéet@n the same manner as those who were
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injured in the disaster. It is assumed that they n@ have telephone capabilities or any means
of calling for assistance. It is also assumed ey will not seek assistance at a triage or field
station or opt for private transportation, but eaxtthat they will seek out ambulance
transportation. Non-disaster related calls thanaten the disaster zone will be responded to by

the first available local ambulance.

3.1.2 Assumption 2 — Number of people killed or injursdoopulation dependent
It is assumed that the number of people who aledkdr injured by a disaster is

dependent upon the number of people in the areaay that all F-5 tornados kill 20 people or
F-3 tornados kill 12 people, is an obvious erraritee number of people that will be affected will
depend on the number of people that are in theatrdee time of the disaster. When a tornado
hits a highly populated area, it is common sensssaume that more people will be injured and
in need of medical assistance than if the samagttieof tornado was to hit a sparsely populated
region. Determining the number of people that tdlinjured in a storm is difficult. Most reports
of tornados tell you how many people were injurad @what the strength of the tornado was, but
few tell how many people were in the area wherntaheado struck. Resources such as the
Tornado History Project (tornadohistoryproject.cqrgvide the beginning and ending longitude
and latitudes for thousands of tornados as wedtasstics on deaths and injuries; however, even
knowing the beginning and ending points of the adim it is difficult to determine the
population that was in the path of the storm. Tdaosaare not constrained to moving in a straight
line, and with some of the most powerful tornadstaging on the ground for as many as 40 to
50 miles, the number of people and small townsrtret or may not have been directly in its
path is hard to determine. Also, when looking giyation data and census statistics the
numbers are generally given for entire cities amtees. If only a small portion of a county is
affected by the tornado, then it is not appropriatase the entire county population as a means
of comparison. Measurements such as populationtgemsild be used and compared to the area
of the tornado’s path; however, population denséty vary greatly within a county and is thus
very dependent upon the region within the countyxzhSspecific population statistics are not

available for most counties.
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3.1.3 Assumption 4-Number of people killed or injureddependent upon the
percentage of destruction

It is intuitive that the greater the destructioatth tornado generates, the more people
who will be injured or killed. More destruction nresamore debris flying through the air and
more buildings or parts of buildings collapsing dnds more opportunities for people to be
injured. There are very few tornados for which datahe percentage of destruction is available;
however, data was found for a few. The percentdgesiruction and the percentage of people
injured or killed were compared and it was founat tine relationship between the two can be
modeled using the equation: Percent Injured/Ki#e2B.4344 — 1.12210*Percent Destruction +
0.0083036*Percent Destructfor\ graph of the five data points that were usefinm this
relationship is shown in Figure 3-1. A p-value @@ was calculated for the regression model,
allowing the model to be accepted at a 95% con@idéevel. The details of the regression
analysis can be found in Figure 3-2. An explanatibhow the data points were obtained can be
found in the Appendix A. Due to the quadratic nelaship, this model does not work well for
values of percent destruction that are lower tha62% minimum point used in creating the
model. For low values of percent destruction, teecent of injuries increases, which is the
opposite of what actually occurs. For this readfathe percent destruction is less than 63, the
guadratic relationship is abandoned and a lindatioaship is adopted. This relationship is a
line between the points (0,0) and (63, 0.7). Theeslof this line is 0.001111.

Regression Plot
Injuries = 38.4344 - 1.12210 Destruction
+0.0083036 Destruction™2
S=0193043 R-Sgq= 997 %  R-Sgad)=99.4 %

Injuries

1) 1] 70 78 80 85 a0 95
Destruction

Figure 3-1 Graph of relationship between Per cent Destruction and Per cent I njured/killed
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REGERESSTON AHATLYSTS: Percent Injuries vs. Percent Destruction
Injuries = 35.4344 - 1.12210 Destruction + 0.0053036 Destruction**2

8 = 0,19304%9 R-3q = 99.7 % R-Sqiadj) = 99.4 %

Analy=sis of Variance

Source DF 58 MS F P
RBegression 2 24,8569 12,4434 333.892 0.003
Error 2 0.0745 0.0373

Total 4 24,9514

Source DF Seq 55 F P

Linear 1 21.4103 15.08%8 0.024

uadratic 1 3.4765 93.2850 0.011

Figure 3-2 Regression Analysis of Percent I njured/killed ver sus Percent Destruction

3.1.4 Assumption 3-The disaster strikes at a single reotcausing all injuries to

occur simultaneously

The length of time that a tornado is on the groand bringing destruction on a
community can vary. For some tornados, it may beter of minutes, for others it may be
closer to an hour. However, while the tornado ishenground in an area, there is little that can
be done for the victims. Emergency personnel mast umtil the tornado has lifted or passed
through their community before they can begin deard rescue and provide medical care. For
this model, it is assumed that all of the injuleesur simultaneously at the beginning of the
model. Thus, all of the victims are generatedraétzero in simulation time. This can be thought
of as the first instant that the tornado has liftegpassed on far enough for people to come out of
hiding and begin seeking help. Obviously, not atimns begin to seek help at the same moment.
Some who have minor injuries may first look foritHeved ones. Others may be stuck under
piles of debris or trapped in basements. A delaywéen when the injury is sustained, TNOW=0

and when the medical help is sought exists ancdated based on the severity of the injury.

3.1.5 Assumption 5-Priority of providing medical care
In mass casualty situations, the ideal situationld/ be for medical officials to be aware

of all injuries at the beginning and thus be abl&dat the most severely injured victims first.
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This has not been found to be the case. Genetlaflyfirst people to seek medical attention are
those who suffer minor injuries and are capableegking help on their own, also referred to as
the walking-injured (See section 2.2.6). Prioritiaa still must occur; however, it can only
consider the victims who are currently seeking hetit those who emergency workers do not
know about. This may be because they have notayeéd consciousness or been found by an
emergency worker or other capable person. It igraed that emergency workers will aid the
most severely injured of those currently seekinglicad assistance first and that once an
emergency worker begins assisting a victim, theynoaleave that victim to help another
victim—regardless of the severity of their injutyis assumed that ambulance crews will not
spend their time on uncovering or transporting deadies, as those responsibilities will be left

up to other emergency workers such as firefighfeobce, etc.

3.1.6 Assumption 6-The amount of time that it takes fonlaulances and private

vehicles to travel to and from the scene is dependent upon theepésige of destruction
The greater the level of destruction that resutimifa tornado, the more debris there will
be covering roads and blocking ambulances from iegnm and out of the area. Entire sections
of road may be ripped from the ground by a tornaities leaving it impassable. The speed at
which vehicles can travel is greatly dependent uperamount of debris that is covering the
roads. Gong, Jotshi, and Batta made a similar gssomthat speed of travel is dependent on the
percentage of damage in their research on emergemigie response to earthquakes (2004).
The ambulances in the model were given the veloklgx(1-(Percent Destructioffrield
Location1)/100),0.2)), where the velocity is the amountimie that it takes the ambulance to
travel one unit length from the distance matrix.ths percentage of destruction approaches
100%, the travel speed of the ambulances approaeinesThe Max function is used to prevent
ambulance velocities from reaching 0 and thus pgittescue efforts at a stand still. As
emergency crews work to clear roads and make thera passable, it is intuitive that the travel
speeds should increase. The model takes this actmuat by decreasing the value of percentage

of destruction over time.
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3.1.7 Assumption 7-Many of the survivors will assist gasch and rescue efforts and
some of them will be injured in the process
As is explained in section 2.2.4, it is commontfa@ survivors of a disaster to assist in
the search and rescue efforts. This can be darngjeasut may involve sifting through piles of
debris, working in intense heat, or lifting heapjexts. As a result, those who are assisting in
rescue efforts are at risk of becoming injured a@elding medical attention. This is taken into
consideration in the model by having a percentdglkeosurvivors (based on the user input
variableWillingnes$ participate in rescue efforts. A percentage eséhare then injured based

upon the variabl&olunteer Injury Rate

3.1.8 Assumption 8-The area being modeled is a rural amdy one Level 1 Trauma
Center is considered
This is a rural area, thus only one Level 1 Tra@eater will be considered. Most rural
communities are a great distance from a Level Limeacenter and it is very rare that a rural
community would have the luxury of having more tloare Level 1 Trauma Center in close
proximity. “Hospital 1” in the simulation will alwgs be considered the closest Level 1 trauma

center.

3.1.9 Assumption 9-The area can be divided into regionghll times calculated from
the center of the region

It is not practical or possible to consider theattacation every person within the county
and their relationship to EMS services and the ialsd hus, the county or EMS district is
divided into several regions. It is assumed tHadexhand originates from the center of the
region. All travel times are based upon the tina thtakes to reach the center of the region. The
population for each region must be input into tredel. The disaster is unlikely to affect all
regions equally. The disaster may strike only agean, or multiple regions may be affected.
Regions that are not affected by the disaster rihpsed ambulance support to cover the every-
day demand or ailments and injuries that were iaddpnt of the disaster.
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3.2 Modeling Details

A discrete-event simulation was created using ArEh@. The modeling details are
explained in this section. Many assumptions hdsetanade about time relationships and the
amount of time that different processes would tdkeese assumptions will be explained and
suggestions for further research into improvingabeuracy and validity of these numbers will
be made.

3.2.1 Model Input

3.2.1.1 Region Population
The number of people that are in each region maigtut into the model. This is done
through changing the initial values for the varggBegion PopulationThis is arr x 1 matrix,

where r is the number of regions in the model.

3.2.1.2 Hospitals and Trauma Levels

The system must be initialized with the trauma lléeeeach of the hospitals. It is
assumed that Hospital 1 is the closest Level Inteacenter. The other hospitals could be Level
2 or Level 3 trauma centers. The type of hospitahdlicated through the variableauma
Levels. This is arh x1 matrix, wherd is the total number of hospitals that are beinguéated.
The trauma level of a hospital will be taken inemsideration when the ambulance drivers are

determining which of the hospitals to take victitos

3.2.1.3 Distances and Travel Time

A variable calledlimeis used to store a matrix of the amount of tins thtakes to get
from each region to each of the other regions aoth @ospital. If there areregions, andh
hospitals, then the dimension of this matrix walrbx (r+h), like the following example for 3
regions and 3 hospitals and 2 other districts fvamch to pull resources.

The values in the matrix represent the distanerimutes of travel time during normal
conditions. These times will then be adjusted bageuh thePercentage of Destructicio
determine the actual amount of time that it takega from one point to anothdrimg1,1) is the
average time that it takes to get from a point@gi@n 1 to the center of Region 1. Time(2,1) is

the average time that it takes to get from theearemitRegion 1 to the center of
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Region1l Region2 Region3 Hospital 1 Hospital 2 Hospital 3
Region 1 | Time(1,1) Time(1,2) Time(1,3) Time(1,4) Time(1,5) Time(1,6)
Region 2 | Time(2,1) Time(2,2) Time(2,3) Time(2,4) Time(2,5) Time(2,6)
Region 3 | Time(3,1) Time(3,2) Time(3,3) Time(3,4) Time(3,5) Time(3,6)

Region 2. All of these times are during normal gbods. The EMS ambulance station and the
triage center will each be assigned a valuetd-indicate which of the regions they are located
in. The EMS ambulance station’s location must Ipeiirby the user before the model runs. This
is done by setting the initial value of the var@Bmbulance Statioto the number of the region
that it is located in. The location of the triagmter is determined by the model based upon the
number of injuries in each of the regions.

Along with theTimematrix, the distances must be input into Ambulance.Distance
distance set for the ambulance transporter. THisrequires the distances between each of the
regions and each of the hospitals.

Another matriXTimes for OD Ambulances used to indicate the time from each of the
out of district facilities to each of the local regs. This is am x d dimensional matrix, wherne
is the number of regions (local) adds the number of other districts that resourceslm

brought in from.

OD1 OD 2
Region 1 Time(1,1) Time(1,2)
Region 2 Time(2,1) Time(2,2)
Region 3 Time(3,1) Time(3,2)

3.2.1.4 Ambulances and their location

The number of ambulances available and their lonatmust be input into the model.
The “Transporter-Advance Transfer” table allows yowchange the total number of ambulances
and the initial location of the ambulances. Theeeessentially two types of ambulances, local
ambulances and out of district ambulances. Thepaite modeled by the samenbulance
transporter; however, their initial status is diéiet. The local ambulances will initially be
positioned at the EMS station and will be actiangporters. It is assumed that out of district
ambulances will report to the triage station betmgginning service, thus their initial position is

the triage station. Their initial status is Inaeti he out of district ambulances will be activated
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once their assistance has been requested andateyben delayed for the appropriate time that
it would take for them to travel to the triage @arftom their home location. It is assumed that
out of district (OD) regions are ordered from ckige farthest, thus OD 1 is the closest district
to the local region.

Keeping track of which ambulances are being dispatdo aid in the disaster relief and
which are not requires the creation of severaladeis, some of which require user input for the
initialization. The number of ambulances that eagtside district has is indicated through the
variableOD # Total Ambulancesvhere the # is replaced by the number of theidige.g.OD 1
Total AmbulancesOD # Ambulancess used to keep track of which of the ambulan@&dsriy
to each of the districts. The input into this vhleais the number of ambulances that precedes the
districts first ambulance on the ambulance list. &@ample, if there are 8 ambulances, with the
first 4 being local ambulances, then two from Destt and two from District 2, the@D 1
Ambulancesvould be set equal to 4 a@D 2 Ambulancewould be set equal to 6. The rest of

the ambulance variables should not be changedebydér.

3.2.1.5 Victims Decision Making Process

The decisions that the victims make greatly implaetperformance of the EMS system.
Some of these decisions may be based off of laeakb towards one option over another. One
decision that has to be made is whether those whoat injured will aide in the search and
rescue efforts or not. Th&illingnessof the survivors may vary greatly from one region
another. The number of people who decide to hellpdwectly impact the number of people
who are injured while helping and thus the demamthe medical systems. The initial value of
the Willingnessvariable should be input as a whole number betvdesmd 100. This can be
thought of as the percentage of survivors who altengrto help with the rescue efforts.

In order for a victim to decide to go to the Triggf@ation, they must know that the Triage
Station exists. The variableformation Dissemination Ratadicates how many people are
aware of the Triage Station. Communities that Haghly visible emergency response plans in
place so that citizens know where a triage locatonld be established at a may have a very
high Information Dissemination Rat# the triage location is in a highly visible aresay right
along a main road that would have to be used ttlexiarea to reach a hospital, theormation

Dissemination Ratenay also be high (Perry and Lindell 2003). Theugadf the information
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dissemination rate should be between 0 and 10@amesponds to the total percentage of

victims who will be aware of (not necessarily ch®ts go to) the Triage location.

3.2.1.6 Level of Destruction and Severity of Injed

The level of destruction greatly impacts the nundfgreople that will require medical
attention. The magnitude of the disaster that isgosimulated is input through the variable
Percent Destructionyhich forms arr x 1 matrix, which indicates the percentage of esion
for each regioni,. These values should be between 0 and 100.

The number of people injured is related to the @etrof destruction. The severity of their
injuries must then be determined. For this madglry severity is divided up into three
categories. Level 1 injuries are those that requieelical attention, but that are not severe
enough that they will cause the patient to be aeuhiio a hospital. This group is made up of
“walking-injured”. Level 2 injuries are more seeand will require more immediate attention.
Patients with Level 2 injuries are critical enoupht the patient may not be capable of seeking
medical attention on their own and will require pitesl admission. Level 3 injuries are fatal
injuries that will likely result in the loss of &f Level 3 injuries can be divided into two groups.
The first group contains those whose injuries tasuhearly instantaneous death. These victims
will not require or receive medical care. The setcgroup is made up of those who are fatally
injured, and will die if they are not administema@dical attention quickly. Table 3-1

summarizes the injury levels.

Table 3-1 Severity of Injury Levels

S.e"e“ty of Explanation of Injury Levels
Injury Level
1 Minor injuries, walking injured, no admission to hospital
5 Severely injured, may be incapable of seeking medical assistance, will
require hospital admission
3 Deaths. Fatally injured, injuries will likely result in death either immediately
or prior to arrival at the hospital.

The variabldnjury Severityis a 3 x 1 matrix that contains the percentagbeictims
who fall into each of the three injury levels. TWadue in each of the cells should be between 0
and 1 and the sum of the three cells should equabdsistent data was not available for the
severity of injuries caused by tornado disasteepd®s that contained information about the
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injuries sustained were inconsistent in how thepsneed and reported their data and thus the
results could not be aggregated to determine aralbexpected value for tornado disasters.
Sensitivity analysis was performed on this varidbldetermine how the system is affected by
variouslnjury Severityvalues. See section 4.2. The default value treblkan entered for this
variable is (0.7, 0.2, 0.1) or in matrix form:

Level 1 Injury 0.7

Level 2 Injury 0.2

Level 3 Injury 0.1

TheVolunteer Injury Rat@andVolunteer Injury Severitgan both be changed as well.

The volunteer injury rate determines the percentdgleose volunteering who are going to be
injured. It is a value between 0 and 100 thatpsasentative of the percentage of those
volunteering who will be injured. The default valige this is 1, indicating that 1% of the
volunteers will suffer injuries. As with tHejury Severity a sensitivity analysis was performed
on this variable (Section 4.2). T®lunteer Injury Severitis similar to thdnjury Severity
except it is used only for those hurt during tHeefefforts. While many injuries occur during
rescue efforts, they do not tend to be as severguwfes (Bohonos 1999). The default value for
Volunteer Injury Severitis (0.7, 0.3, 0), or in matrix form:

Level 1 Injury 0.7

Level 2 Injury 0.3

Level 3 Injury 0.0

3.2.1.7 Normal Call Volume

Even during the disaster, people will still haventtlisaster related medical emergencies,
for instance an elderly person having a stroke sThus assumed that the normal call volume
for the EMS services will continue through out theaster and thus those calls will be added on
top of the disaster calls. It is assumed that tieerhal call volume” calls arrive according to an
exponential distribution with an inter-arrival tinn&€ Time Between Normal Callehich should
be initialized by the user to contain the hist@verage time between calls. Along with the
average time between calls, the severity of therie$ must also be assigned. This should also be
established from the ambulance services histodiat and assigned via tNermal Call
Severityvariable. Like theénjury Severityand thevolunteer Injury SeveritytheNormal Call
Severityis a 3 x 1 matrix containing values between ze @ne that sum to one. The location
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of the normal calls must also be initialized, \ha variable_ocation Normal CallsThis is arr x
1 matrix and likeNormal Call Severitythis matrix contains values between zero andtloae

sum to one.

3.2.2 Model Design
There are two major parts to the simulation, theugation of what is occurring directly
to the victims, and the simulation of the decisitreg are going on behind the scenes. Figure 3-3
shows how each of the sections of the simulatiodehthat deal with the victims fits into the

overall process.
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Figure 3-3 Routing of victimsthrough simulation model

3.2.2.1 Entities

Two different entities are used within the simuatmodel, each with its own function.
The majority of the entities in the model axgctims” or people who were in the region(s) that
the disaster hitVictimsare assigned attributes such as location andisegémjury to represent
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their need for emergency medical assistance. Awientity is also used to represent people who
call for an ambulance with a medical emergencyithahrelated to the disaster. These are the
people that would be calling on a regular day, peshelent of the occurrence of a disaster. Like
the othewictims they are also assigned the location and sewvarityjury attributes.

A single“Local EMS Official” Entity is created to run the decision processmnat be
done by the Local Emergency Director. This entiggthrough a series of branch blocks and

evaluates the state of the system and makes chandedterations to the system as needed.

3.2.2.2 Victims

A CREATE block exists for each of the regions witkiie model. It create®egion
Populatior(n, 1)” victim entities, whera is the region number. Not all of these victims ar
actually injured; they are simply the people whe iarthe region at the time of the disaster.
Once created, each of the victims is assignedaditotand their station (m) is set to the
appropriate value. A 2-way by expression DECIDEckls used to determine what the Percent
Destruction in the area is. This determines whicBBCIDE blocks is used to determine if the
victim is injured or not. If the Percent Destructiis greater than or equal to 63% then the
following quadratic expression is used to deterntiveepercent of victims injured, which is the
percent true in the DECIDE block:

38.4344 - 1.12210 Percent Destructiofi,1) + 0.0083036 *Percent Destructiofi,1) *
Percent Destructiofi,1)

If the Percent Destructioims less than 63%, then the following linear expi@s is used
as the percent true: (0.00Percent Destructiofi,1))

This utilizes the regression formula that was fotmcepresent the relationship between
the percent of destruction and the percent of meaplo are injured or killed, which was
discussed in section 3.1.3 and ensures that salaks of percent destruction will not result in a
larger than appropriate percent injury.

Those that are not injured will go to the “Rescii@iEs” Section of the simulation. The
number of injured victims from each region is tloeainted before all of the injured are sent
through an assign block to assign théictim NumberndSeverity of Injunyattributes Severity
of Injury is assigned by using the expression: DISfO(y Severityl,1),1]njury
Severityl,1)Hnjury Severity2,1),2,1,3); wherénjury Severityis a variable containing a 3 x1
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matrix representing the percentage of each typejudfy. This matrix was explained in section
3.2.1.6.

Once aSeverity of Injuryis determined, thExpiration Timeattribute must be assigned.
TheExpiration Timetells how long the victim can survive without haapcare. The system will
periodically compare the victinsxpiration Timeto TNOW, if theExpiration Timeis less than
TNOW, the victim will be assumed to have died. TD#CIDE block named “Fatally Injured?”
is used to separate the victims®gverity of Injuryjtevel. Those who haveSeverity of Injury
equal to 3 are the fatally injured. As explainedgeation 3.2.1.6, some of these will die almost
instantaneously; others will survive the initialpgact, but are in a grave condition and will die if
they do not receive medical assistance very quidihe DECIDE block “Dead on Scene?” splits
the Level 3 injures into two groups. In the firsbgp, 90% of the victims are found dead on
scene and are thus counted and then disposedtimeystem; they will not require medical
assistance. The other 10% are in desperate nerddi€al attention and are assigned an
expiration time based on the distribution: TRIA@GED,240), indicating that the expiration time
of the victim will be between one and six hourghvthe most likely value being two hours.
These numbers were established based on the pBdhonos (1999) that indicates that the
more severely injured patients generally arrivihatEmergency Room one to four hours after
the disaster occurs. Victims with a Level 2 injleyel are assigned &xpiration Timeof 1440,
which is equal to one day, their injuries are cali however, they are not likely to die if they do
not receive immediate medical attention. Victimghwa Level 3 injury level have injuries that
are not life threatening, thus thé&gpiration Times set to a very large number (50,000) so that
TNOW will never be greater than th&xpiration Time

The number of each type of injury is then countad] the entity goes to a DELAY block
which represents the amount of time that it takesvictim to begin seeking medical assistance.
This delay may be due to the victim being trappeden debris, unconscious, or preoccupied
with assisting family members and other victimgh# victim is severely injured, then it may be
the amount of time that it takes for someone whaajgable of seeking help for them (conscious
and mobile) to find them.

The length of the delay is given by the expressitXPO(Delay Time(Severity of
Injury,1)). Giving delay times that are exponemyialistributed with a mean of “Delay

Time(Severity of Injury, 1)” Where “Delay Time” en Expression containing the following
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values: [Gamma(25,1.25), Gamma(45,1.5), Gamma(bd,B¢ first value corresponds to the

delay time for those with level 1 injuries, the sed to level 2 injuries, and the third to level 3

injuries. Figures 3.4-3.9 show the approximateygtaes produced by such a distribution.

These values were found by performing 5 replicatioith 500 observations within each

replication. Gamma distributions were sought thaiil give delay times that line up with the

observations about patients arrivals made by Bahi¢1@99).
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Figure 3-4 Confidence Intervalsfor the mean delay timefor Level 3injuries
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Figure 3-6 Delay timesfor Level 2injuries
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3.2.2.3 How to seek help

Once the victims are ready to seek help (they leaited the “Time to seek medical
Attention” DELAY block) the must determine how thage going to seek help. There are many
factors that may influence this decision, suchhay availability of private transportation, the
availability of ambulance transportation, the sayef their injuries, the distance to the hospital
and if a triage center has been established, asaliifthey know about it. First, it is determined
if the victim is still alive. The DECIDE block, “8tAlive?” checks to see if the entities attribute
Expiration Timeis still greater than TNOW. If it is, then the tima continues through the
process, if it is not, then the victim has died andounted in the Deaths RECORD block and
then disposed of. Victims who are still alive assigned a\warenesattribute. Awarenesss
equal to O if the victim is unaware of the field&tion (because it either does not exist or they
have not been informed), and is equal to 1 if lkéna is aware of the field location. In order to
assign this, the variabRercent Informeds first set toinformation Dissemination
Raté Existence of Field Centevhere the information dissemination rate is aaldd that is
defined by the user before running the model (sega 3.2.1.5) an#xistence of Field Center
is a binary variable that is initially zero andassigned to 1 by the model when the field stason i
establishedAwarenesss then assigned based on the expression: DIB€E(dent Informedd, 1,
1). At this time, an attributéjelp Soughtis also assigned to the entity taking the value o
TNOW and indicating at what time the victim begaelsng help. The variablEime of Last
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Victim Seeking Hels also set to TNOW to indicate how long it took &ll patients to have
sought help.

The entity then leaves the ASSIGN block and goesutih a DECIDE block to separate
the entities that have &wareneswvalue of 1 from those with a value of 0. Thoséwan
Awareness value of 1 go through an ASSIGN block déisaign distance attributes to each of the
entities indicating th®istance to TriageDistance to Hospital IDistance to Hospital 2and
Distance to Hospital 3The attribute Shortest Distance to Help is thesigmed to be the
minimum of the distance values. The expressioe&ah of these attributes is shown in Table 3-
4.

Table 3-2 Values assigned to attributesin Distances ASSI GN block

Attribute Value Assigned

Distance to Triage Time(Location, Field Location)

Distance to Hospital 1 Time(Location, 4)

Distance to Hospital 2 Time(Location, 5)

Distance to Hospital 3 Time(Location, 6)

Shortest Distance to Help Min(Distance to Triage, Distance to Hospital 1,
Distance to Hospital 2, Distance to Hog#)a

Once the distances for all of the possible destinatfor the patient have been decided,
the decision on whether they are going to go tortiege Location must be determined. A
DECIDE block with the expressioShortest distance to helpdistance to triages used to
determine if the Triage Station is the closestapfor the victim. It is assumed that if the Triage
Station is not the closest location for receivingdisal attention, the victim will not choose to go
to the Triage Station over going to a hospital ejaecy room. It is generally assumed by people
that they will receive better medical care in areggency room than in a field location, thus it
would be uncommon for a victim to decide to go a@iutheir way to go to a Field Location (see
section 2.2.5). An attribufEriage Desirabilityis set up as a binary value, with “0” indicating
that going to the Triage Station is an undesiraht@ce for the victim (either they are unaware
of its presence or the distance to the triage locas greater than that of the distance to one of
the hospitals) and “1” indicating that the Triagat®n is a desirable option for the victim.

Victims that evaluate “True” to the expressionhe Go to Triage Location DECIDE block
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(Shortest Distance to HelgDistance to Triage)Go to an ASSIGN block (ASSIGN 41) where
the attributelriage Desirabilityis set to 1.

Victims who had an Awareness equal to 0, go td'thstances without Triage” ASSIGN
block where the distance to each of the hospisa¢évaluated and tlghortest Distance to Help
is determined. This is done in the same way asDisances” ASSIGN block that is detailed
above, except that tHgistance to Triages not evaluated or included in the calculation of
Shortest Distance to Help

After the distances to each of the hospitals haenlevaluated as well as the desirability
of going to the triage station, the availabilityashbulances is evaluated before determining if
the victim is going to seek help at the Triageistatby ambulance, or through private
transportation to a hospital. The DECIDE block “Ense Availability of Ambulances” uses the
expression: TAVGAmbulance Wait Time2*Shortest Distance to Held-Percent
DestructiorfLocationl)) to determine if the amount of time that woht&lspent waiting for an
ambulance is significantly longer than the amodrinoe that it would take for the patient to use
private transportation or reach the triage stafidmns expression compares the average amount
of time that is spent waiting for an ambulancertova to the amount of time to the amount of
time that it would take to reach the closest fofrhalp. If the average wait time for ambulances
is less than twice the amount of time that it waiakke the patient to reach the closest form of
help, then the desirability of ambulances will hetpenalized and the attributeng Ambulance
Queuewill be set to 0 (Assign 40). However, if the titiat is spent waiting on an ambulance is
more than twice the time of an alternative, thendtiributeLong Ambulance Queuwill be set
equal to 5 (Assign 39) and will consequently deseethe probability that the victim will choose
to use ambulance transportation. The value of 5sgkested because it will reduce the overall
percentage of people who select ambulance trarsjmorty 10 percentage points. If 20% would
have chosen ambulance transportation, only 10%will choose ambulance transportation. For
many people, ambulance transportation may be thyeoption. This may be due to the lack of a
personal vehicle or that their vehicle was destidygthe tornado. The person may be injured
beyond the point of being capable of transportiregiselves and there may be no else available
to transport them. Thus, even when ambulance wadtstare large, there are still people who

will have to select that option.
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Once thd.ong Ambulance Queualue has been set, the entity goes through a BRAN
block to determine where it is going to seek h&lpe BRANCH block is 3-Way by chance. The

first two percentages are given by the followingressions:
(Transportation Decisioffl, Severity of Injury+ Long Ambulance Queldrriage Desirability

(Transportation Decisiolf2, Severity of Injury+ Long Ambulance Quele

Where the first branch is sent to the triage statilbe second branch chooses to use private
transportation to reach the hospital, and the reimgipeople choose to wait for an ambulance.
Transportation Decisioins a 3 X 3 matrix that gives the percentage oppethat will

make each choice if the ambulance wait time ishight and the triage station is a desirable
option. The expression for the first branch wilakate to zero iTriage Desirabilityis equal to
zero. Long Ambulance Queue will be either 0 orépehding on the current average wait time
for those being transported by ambulance. Whevsiiuates at 0, the percentage of people going
to the Triage location and who choose private frartation is equal to the values in the
Transportation Decisiomatrix (assumingdriage Desirabilityequals 1). ILong Ambulance
Queues equal to 5, an additional 5 percent of the pegp to the triage location and an
additional 5 percent choose private transportatiediicing the percent of people who will
choose to wait for an ambulance. From this brahetkh the victim will go to the “Triage
Station”, “Private Transport to Hospital”, or “Lo@&inbulances” portion of the simulation. Each
of these areas will be described in the subsecgestions.

3.2.2.4 Triage Station

Victims that are going to the Triage station mirst go through a DELAY block to
represent the amount of time that it takes thetrateel from their current location to the Triage
station. The delay used is normally distributethvei mean oDistance to Triag§1-Percent
DestructiorfLocation1)/100) minutes and a variance of 2 minutes. Anaddistribution was
selected because it the commonly selected disimiuised to describe travel times (Smeed and
Jeffecoat 1971). The expressiDistance to TriageMax(1-(Percent Destructioffrield
Location1)/100),0.2) takes the time that is would takeetach the triage station under normal
conditions, and multiplies it by a number betweean@ 1 that is dependent upon Bexcent
Destructionin the area. This is based upon the previous gssoamthat the travel time is

dependent upon theercent Destructionsee section 3.1.6
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After the DELAY, the victim goes through an ASSI®GbMck where its station value, M,
is set equal té&ield Location The value of-ield Locationrepresents the region in which the
field location has been established. Another DEUAYCK is then used to represent the amount
of time that the victim spends at the triage cepte@r to being stabilized to the point that they
are ready to be transported as soon as an ambutaacailable. The length of the delay is
Uniform(5,30). It was assigned to this value basi#df a conversation with Riley County EMS
Lieutenant Sherry Reinhardt in which she expresisatit could take anywhere from 5 to 30
minutes to stabilize a patient depending on theberrof patients that were in need of help, the
severity and type of injuries, and the number oflived personnel available. She said that the
“walking-wounded” and those with minor injuries Iagenerally be transported to the hospital
via buses or other non-ambulance modes. For tagore in the model, none of the Level 1
injuries receive ambulance transportation aftey thsit the triage location and only half of the
Level 2 victims receive ambulance transportatiemfithe triage location to the hospital. All
Level 3 injuries are sent to the “Load Ambulancesftion of the model because they will all

require ambulance transportation.

3.2.2.5 Private Transport to Hospital

Victimsthat choose private transportation to the hospilsimply counted using the
Private Transport to Hospitatounter, and then disposed from the system. Thiépot require
ambulance assistance and thus considering th@nagas not within the scope of this

simulation.

3.2.2.6 Normal Call Volume

The occurrence of a disaster does not releadeNt&from its obligation to respond to
“everyday” calls, see section 3.1.1. To simulats, thtnother CREATE block is used to create
victims These entities are created according the expre&XPO{Time Between Normal Ca)ls
whereTime Between Normal Calis a variable that must be initialized by the uUsefiore the
simulation is run. The value of this variable shiblé assigned by using historic data and can be
calculated by taking 1440 (the number of minutea day) and dividing it by the average
number of calls received per day. This gives theraye number of minutes between calls. Just

like with the othewictimg alocation, anM value (station value), &everity of Injuryand an
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Expiration Timeare assigned to each entity. The entities theto ¢joe “Load Ambulances”

section of the model.

3.2.2.7 Load Ambulances

As victimsarrive at the “Load Ambulances” portion of the rabdhey first go through a
RECORD block to record the Tally statisenbulance InterarrivalThis is the time between
subsequent arrivals at the block and representatbet which patients are requesting
ambulance help. After recording this statistic, tfitimsare separated by location. During mass
casualty events ambulances will transport muliyt&ms in the same ambulance. According to
Riley County EMS Captain David Adams, this can $en@ny as four patients per ambulance.
However, an ambulance would not pick up a patienrhfregion 1 and a patient from region 2
and two patients from region 3, rather, an ambw@amould go to a region and pick up as many
of the victims at that region as possible and tn@nsport them to the appropriate hospital. This
is the reason for separatimgtimsby region. The loading methodology is the sameafioof the
regions, thus it will only be explained for Regibn

Each entity is assigned an attribtiienelnwhich is equal to TNOW. This is the time that
they began seeking ambulance help. This will bel leter in the model to determine the
Ambulance Wait Timavhich is the amount of time that thietim waits for an ambulance to
arrive.

Location 1 Ambulance Kag a resource that is used to ensure that the lamdms are
loaded properly and the multiple entities are rmng through the loading process at the same
time. The resource capacity is 1 and the entitytreeige this resource before it can go through
the rest of the loading logic. The entity then gtmean ASSIGN block where it seAsnbulance
Severity of Injuryto: Ambulance Severity of InjusySeverity of InjuryThe initial value for
Ambulance Severity of Injurg 0. It then sets the variablleimber of Patients in Ambulante
Number of Patients in Ambulane€l. The initial value oNumber of Patients in Ambulanise0.

A decide block is then used to determine if thithesfirst patient that will be loaded onto
the ambulance, in which case the victim must retilesambulance, or if an ambulance is
already on its way, then the victim can simply dded to the ambulance. The DECIDE block
contains the expressions:

Ambulance Loading = Ambulance Number

Number of Patients in Ambulanee= 1
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(Number of patients in ambulance4) && Ambulance Severity of Injusg

Else

The first expression determines if the current aliautice that is loading has already left
for the hospital or not. Not all ambulances willdent to the hospital full. Ambulances will
arrive at the scene, pickup everyone that theyndamis there, and then leave. If there are only 1
or 2 victims there, then they will leave with ordlyor two victims. If the first expression is
evaluated as true, then the current ambulancelteslyg left the region and thus the entity will
have to request an ambulance.

If the second expression evaluates as true, tleeprevious ambulance is full (it may or
may not have already left the region) and thus/itm will be the first entity into the next
ambulance. Thus, the entity must request an amébellan

If the third expression evaluates as true, theretis a partially full ambulance in the
region. An ambulance is considered full when thenlber of patients reaches four or when the
Ambulance Severity of Injurgaches 8 or higher. While ambulances can trandpaatims,
they will not have space or the personnel requogdansport 4 level three injuries. When a
partially full ambulance is available, the victimes not have to request an ambulance, rather
they are assigned an attribétsab Nunmequal to the variabldBmbulance Numberelease the
Location 1 Ambulance Kegnd then wait in the Pickup Queue for the padytiall ambulance to
pick them up.

Entities that must request an ambulance (ExpredsmrExpression 2 evaluates as true),
go through the following logic. First, they go thgh an ASSIGN block and make the following
assignments:

Variable:Ambulance Number = Ambulance Number 1

Attribute: Amb Nunm= = Ambulance Number

Variable:Ambulance Severity of Injury= Severity of Injury

Variable:Number of Patients in Ambulanse= 1

Ambulance Numbas a variable that increments by one each timevaambulance is
called.Amb Nunrecords the value of the variable to the entity s@rves like a serial number to
tell the entity which ambulance-load it belongsAs.the firstvictim on the new ambulance load,
it is up to this entity to reset the valuesfohbulance Severity of InjugndNumber of Patients

in Ambulance
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Once all of the assignments have been made, titg goés to an ALLOCATE block
where it is allocated the next available ambulaffaaultiple ambulances are available, the
selection rule is Shortest Distance to Station%3Once an ambulance has been allocated, the
entity releases thieocation 1 Ambulance Keso that another entity can begin going through the
loading process. A MOVE block then moves the aliedambulance to the location of the
victim, which for Location 1 is Station 1.

Once the ambulance arrives at station, the eriéy te-seizes the Location 1 Ambulance
Key. It assigns the variabkmbulance Loadingp its attributeAmb NumA SEARCH block
then searches thlRickup Queudor entities with the sam&mb NumThe Pickup Queue has the
gueuing rule of First-in-First-Out, thus the valwéAmb Num will be in order from smallest to
largest. Thus the expressigimb NurerAmbulance Loadinglentifies the first entity that
belongs to a different ambulance and Setgual to that value. After searching the queue the
entity then goes through a PICKUP Block. If therskalid not return any entity in which the
expression was met, then all entities in the qumsleng to the same ambulance. Thus, the
number of entities picked up is NEI¢kup Queug which is the number of entities in tReckup
Queue NQ(X) is the Arena notation for the number ofiges in queue X. If a value is returned
for J, then the number picked upJdl. TheLocation 1 AmbulancKeyis then released. The
entity is now actually a group of entities andatg to the “Ambulance Transportation” section

of the model.

3.2.2.8 Ambulance Transportation

First the amount of time that was spent waitingagorambulance to arrive is calculated by
the TallyAmbulance Wait Timavhich evaluates the time interval of Timeln (TN©Wneln=
Ambulance Wait Time

The amount of time that the ambulance spends oscige is then considered by the
Time on Scene DELAY block. The time on scene delag determined using the conclusions of
the study done by Morrisey and Ohsfeldt (1996).o&arview of this study is given in the
Literature Review in Chapter 2, section 2.4.1. $tagistics for trauma patients who were found
alive on the scene were used, because it is assinaiethose who are found dead will not be
treated or transported until those who are silMeadnd are in need of medical attention have
been helped. The study only gave mean, standaidtitevand 58, 75" and 98' percentile
data, but did not give the distribution that wofitdhe data. It was found that a Gamma
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distribution with a shape parameter of 3.1 andadesgarameter of 0.2222 would produce similar
statistics. The statistics produced by this distidn can be seen and compared to the actual
Morrisey and Ohsfeldt statistics in Table 3.5.

Table 3-3 Comparison of Gamma distribution to statisticsfor trauma time on scene

n Mean | St.Dev | Mean by Percentile
50th | 75th | 90th

Actual (Morrisey and Ohsfeldt) 2416 13.9 7.9 12 18 23

Gamma(3.1, 4.5) 10000 | 13.948 | 7.92 | 12.48 | 18.18 | 24.57

Difference (Gamma-Actual) 0.048 0.02 0.48 | 0.18 | 1.57

The expression: Gamma( .222222, 3.1 )*NG is usethidelay, with NG being the
number of victims in the group. After the delaye #mtities are separated out by the severity of
their injuries to determine which hospital the afabae will take them to. If there is a Level 3
injury, then the victim will be taken to a Levelltauma Center. Under the assumptions of the
model, Hospital 1 is the closest Level 1 Traumat@efhus, all ambulances containing a Level
3 injury will be routed to Hospital 1.

If the entity has Level 1 injuries, then theinings are minor and do not require special
treatment, thus the patient will go to the hosghal is the shortest distance away. Level 2
injuries may require more sophisticated care; h@vévey do not necessarily need a Level 1
Trauma Center. Some people with Level 2 injuriey decide to go to the closest hospital, while
others may decide to go a little further to a béttespital. For this model, it is assumed that half
of the people with Level 2 injuries will make théiecision based on the closest hospital while
the other half will seek a larger hospital (Leveldrl2 Trauma centers).

This is done by evaluating tHeauma Level$or each of the hospital$rauma Levelss
anh x 1 matrix that gives the trauma level, 1-3, facke of the hospitals. If the trauma level is
equal to three, then the victim will not want torbeted to that hospital. THgistance to
Hospital #attribute is thus set to a very large number, n@akinndesirable. Once all of the
hospitals have been evaluated, the attriitertest Distance to Help set to: MinDistance to
Hospital 1, Distance to Hospital 2Distance to Hospital 3 A DECIDE block then compares
each of théistance to Hospital #ttributes to th&hortest Distance to Help determine which
of the hospitals theictim will be routed to. The attributdospital Selecteds then set to the
appropriate station number and the entity goeBddalfRANSPORT block. An ambulance

transporter is used with a destinatiorHaispital Selectedrhe velocity of the transporter is set
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to: Max(1-Percent Destructiofhocation1)/100),0.2). This expression takes into constilama
that increasing percent destructions will resulbimger travel times due to debris in the roads,
see assumption 6, Section 3.1.6. It puts a lowst bf the velocity at 0.2, which would make
the travel time five times the normal travel timdis is done to prevent the velocity from
reaching zero if the percent destruction is sé08@%.

From the TRANSPORT block the entities are routethé appropriate hospital station. A
Separate block then duplicates the entity, senttiegluplicate through a series of logic that
represent the “ambulance driver” and take contfthe ambulance. The originals then go
through a second separate block and are splithetoriginal entities, with each entity retaining
its original values. A DECIDE block evaluates ttaue ofExpiration Timeto determine if the
victim arrived at the hospital in time. If TNOW ggeater thafExpiration Timethe victim is
considered dead and is counted and disposed NG is less thaExpiration Timethen
arrival times are collected and then the patiedigposed.

Meanwhile, the entity that has become the “amhadairiver” goes through a DELAY
for decontaminating and restocking the ambulanceoAding to Riley County EMS Captain
Dave Haefke the amount of time for this will rarfgem 5 to 30 minutes depending on the
amount of decontamination that needs to occur.ditetee most likely value would be about 10
minutes. Thus, a Triangular(5,10,30) was usednulsite this delay time.

The entity then enters a MOVE block and movesathbulance back to the field
location. This is done under the assumption thatynod the communication lines, whether
phones or radios, are not useable. Thus, a redigiaatching pattern is not being used, rather
when an ambulance is available it returns to télel fiocation and is then dispatched from there.
Section 2.2.2 talks about the breakdown of comnatiwn that can occur in disasters. Once the
ambulance has been moved to the field locatias,fieed. At this point th&otal Ambulance

TimeTally is recorded and then the entity is disposed.

3.2.2.9 EMS Director Decisions
While victim entities are going through the sectadrthe model described abovscal
EMS officialentities are going through a separate portion@htiodel evaluating the situation
and making decisions that change the values ofaldriables and the status of transporters.
A CREATE block creates a single Local EMS officaltity at time equal®fficials

Alerted Officials Alerted is a user specified time thadicates at what point the EMS officials
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realize that there is a problem. This could be eguaero if the EMS officials know that the
tornado is coming, it could be longer if the firstlication that they receive is when patients
begin arriving at the hospital. The default vali®©dficials Alertedis zero. With the weather
forecasting tools that exist today, emergency w@ffscare often aware of and monitoring the
possibility of a tornado before it actually occurs.

Once theDfficial is Alerted there is a delay for the official to create anplahis is a very
short delay, because it is assumed that a disasigonse plan already exists and the only real
decision is at what level the plan should be emadtdey County EMS Captain Dave Haefke
commented that the initial truck and a supervisitirbe dispatched within one minute of
notification of the disaster and the disaster pidhbe activated at Level 1; however, the rest of
the plan will not be activated until informationrexeived from those at the scene of the disaster.
This could be the EMS personnel that are dispatalteh receiving the call or it could be
reports from police or fire crews that reach thengcfirst. To fully activate the plan at the
appropriate level, it could take officials up to@@hutes, not to mention the time that it takes to
travel to the scene of the disaster once the @arbken enacted. Based on the information from
Haefke, the delay time was set using a UNIFORM(1L¢i§tribution.

An ASSIGN block is then used to initialize the nienbf ambulances available and
make the decision of in which region to locate Thiage station. An assumption of the model is
that only one triage center will be created. If wé created in the area that sustained the most
injuries. Thus the variablgax Injuries in Regioms set to: Max(NGRegion 1 Number Injured
NC(Region 2 Number InjurgdNC(Region 3 Number Injurgl In Arena code, NC(X) is the
value of counter X. A BRANCH block is then usediwtermine which of the regions has the
maximum number of injuries. The varialfieeld Locationis then assigned to the appropriate
region value.

The entity then goes through a SEPARATE block lmvalt to complete multiple
functions simultaneousiyOD 1 Total Ambulances OD 2 Total Ambulanceduplicates of the
entity are made and are sent through the “Set elp Station” portion of the model. The original
goes to the “Release Out of District Ambulancestipa of the model.

3.2.2.10 Request Out of District Ambulances

The expression to determine if more ambulancesegded is:
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1, Max(TAVTotalAmbuanceTimg30)
2 TAVETimeBetweeHelpSough)

8
> MT (Ambulancg+ #EOD#InrouteDisaster

The numerator is the average of the Tally statiBtial Ambulance Timavhich is the average
amount of time that it takes an ambulance to gmfpacking a patient up to being freed and
available to be dispatched to another patient. Gaisbe thought of as the total time for one
ambulance trip. At the beginning of the simulatina,ambulance trips will have been made and
the tally value would evaluate at zero. This is vl Max function is used. A value of 30
minutes is a very conservative estimate for thal #mnount of one ambulance trip. The
denominator is the average of the tally statiSimne Between Help Soughhich is the inter-
arrival time of patients at the “Load Ambulancesitpn of the model. The left side of the
expression can be seen as the amount of timet ttaddeis for one trip to the hospital divided by
the rate at which victims are arriving, thus itlwilve the approximate number of ambulances
that are needed to serve all of the victims. ihidtiplied by %2 under the assumption that
ambulanes will be transporting multiple patienta &ime. This allows for the average ambulance
to be transporting 2 victims. If this value is gerahan the number of activated ambulances,
MT(Ambulancg plus the number of ambulances that are in-rautbée disaster then more
ambulances will be requested.

If the expression evaluates as false, the erstisgnt to a delay block, waits 30 minutes,
and then reevaluates the need for the transpdirtbe expression evaluates as true, then the
entity seizes th@mbulance Dispatch Kegnd then goes through a branch block to determine
which district to request the ambulance from. Timbalance is requested from the region with
the max percentage available. If there is a tig kgdh are at 100%), then it is requested from the
closest region first, based on the assumptionaiiabf district regions are numbered in order of
closest to furthest from the local region. Thetgns sent to the section of the model for the
appropriate district.

3.2.2.11 Out of District #

When arriving at the appropriate “Out of Distri¢tséction of the model, the entity
amends the values of the variabl@® # requestedOD # Available OD # Percent Coverage
and the attributdmbulance to Releas@here # is the number of the district. The newes of

these variables are:
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Variable/Attribute Value Assigned

OD # Requested OD # Requested + 1

OD # Available OD #Auvailable - 1

Ambulance to Release OD # Ambulances + OD # Respliest

OD # Percent Coverage OD 1 Ambulances AvailablelOtal Ambulances

The Ambulance Dispatch Key is then released soadtiar ambulances can be requested.
A DELAY block then delays the entity for an amowoftime represented by the distribution:
Normal(Times for OD Ambulanc@éSeld Location #), 2).Times for OD Ambulances a matrix
of travel times that must be input into the modek section 3.2.1.3. A normal distribution is
used because this is a common distribution to arsedvel times. A standard deviation of 2
allows for variation depending on the conditiortlué roads, traffic, etc.

An ACTIVATE block is then used to change the statfithe ambulance transporter from
inactive to active. The unit number of the ambuéis?Ambulance to Releasehich is an
attribute that was assigned to the entity wherdgwsion to release an ambulance was made.

Once the ambulance is activated, the entity isodisg.

3.2.2.11 Set up Field Station

The original of thd_ocal EMS Directorentity was sent to this section of the model. As
soon as the field location is established, emengpecsonnel such as police and relief workers
can begin telling the public where the triage statvill be at. An ASSIGN block is used to
change the variabExistence of Field Centéo 1 and the variabl€reation of Field Centeto
TNOW.

A DELAY block delays the entity for the amount ohe that it will take for emergency
personnel to reach the chosen site for the triadield station. The value of this delay is
normally distributed with a mean ®fmg Ambulance Statigrield Location)*Max(1-(Percent
DestructiorfField Location1)/100),0.2) wherdmbulance Statiors a variable that is input by
the user before the model is run &held Locationis a variable that was determined by the
model in the “EMS Director Decisions” section oétimodel. As indicated before: Max(1-
(Percent Destructioffrield Location1)/100),0.2) is the velocity at which ambulancas travel
due to the destruction and blockage of roadways.st&ndard deviation is set to 2 to allow for
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variation depending on the condition of the roaasfic, etc. Once the emergency crews arrive
at the field location area, then the triage cestiirhas to be set up. According to Riley County
EMS Captain Adams, this will generally take appnoaiely 30 minutes. In the delay block, the
delay is represented by the distribution Normal@O0, At this point the field location is up and
running, so the variableield Station Operatings set to 1 and th&ime Field Station Operating
is set to TNOW. The entity then goes to the “Redg@st of District Ambulances” section of the
model.

3.2.2.12 Release Out of District Ambulances

A single Local EMS official entity will enter thsection of the model and go to a decide
block that contains the expression: (HifbulancMT(ambulanc®)<Release RuléVhere in
Arena code, NT(X) is the number of transporterypé X that are currently busy and MT(X)
are the number of transporters of type X that areeatly available. This expression is
evaluating if the utilization of the ambulanceseiss than a specified percentage contained in the
variableRelease Ruldkelease Rules determined by the user before the model islfihe
expression is false, then the entity is delayed.@ominutes and then goes back through the same
BRANCH block. Once this value is evaluated as ttlien the entity goes to a delay block, is
delayed for 10 minutes and then is re-evaluatethi®same condition at a second delay block.
This is to prevent ambulances from being premagusteased at the first small lull in the
demand. If the expression evaluates as false ahdd8BRANCH block, then it returns to the first
BRANCH block. If the expression still evaluatesiage at the second BRANCH block, then the
entity seizes thR®elease Ambulance Kaynd begins the process of releasing an ambulance.

First, an ASSIGN block updates the values of the#tO®ercent Released variables to be
equal to: OD # Ambulances AvailableOD # Inroute HomgOD # Total Ambulancedhis is
the number of ambulances that are currently availabd the number of those currently in-route
to returning to their home district divided by tlaéal number of ambulances for this district. The
expression: MinDD 1 Percent Release@D 2 Percent Releasgs then used to evaluate the
Min Percent Released

A BRANCH block then determines if all of the amlbnudas have already been released
(Min Percent Released =1) or which district's ambulance should be askedMin Percent
Released =OD # Percent Releasetf all of the ambulances have been released, ttien

variableAll Ambulances Releasésiset to 1 and the entity is disposed of. Othsgwihe entity is
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routed through the appropriate set of blocks baseithe district from which the ambulance is
being released. These blocks are similar for e&thd, just changing the value of # in the
variables. An ASSIGN block updates O® # Ambulances ReleasaddOD 2 Inroute Home
variables and thBend Home Ambulanegtribute as follows:

Variable/Attribute Value Assigned

OD # Ambulances Released OD # Released + 1

OD # Inroute Home OD # Inroute Home + 1

Send Home Ambulance OD # Ambulances + OD # AmbesaReleased

The entity then goes through a HALT block and clesnifpe status of ambulance number
Send Home Ambulante inactive. ThdRelease Ambulance Keythen released so that other
ambulances can be released. A SEPARATE block geedsriginal entity back through the
system to see if any other ambulances need tdéeesezl. The duplicate goes through a DELAY
block that simulates the time it takes for the alabce to return to its home area from the
disaster area. Its delay time is Norraijes for OD AmbulancéSeld Location #), 2). This is
the same delay time that was used for the ambulan@ach the disaster area when it was
dispatched, see section 3.2.2.11. After this delagther ASSIGN block is used to update the

value of the variables that control the out ofiistambulances. The values were set as follows:

Variable/Attribute Value Assigned

OD # Ambulances Available OD # Ambulances Availahle

OD # Requested OD # Requested - 1

OD # Percent Coverage OD # Ambulances Available#Ol»tal Ambulances
OD # Inroute Home OD # Inroute Home - 1

After updating these variables, the entity is dssmbof.

3.3 Running the Simulation

After initializing the simulation by inputting theformation described in section 3.2.1,
the simulation can be run. The run time of the $ation is negligible (5 replications took 0.7
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minutes). During the simulations statistics onvhkies of each of the variables can be
collected; however, the ones that have been chiodemrecorded in the output are @B #
Percent Coverage, OD # Below 50%, Active AmbulgraseArrival Timevariables.

Tallies are used to record the Total Ambulance Timbulance Wait Time, and Time
to Arrival at Hospital. The Total Ambulance Timetle amount of time that it takes for one
complete ambulance trip, from the time that theyalocated to a victim to when they are
released to assist another victim. The Ambulancé Wiae is the amount of time that passes
between when a victim begins seeking help and valnesmmbulance arrives to transport them.
Time to Arrival at Hospital is the amount of timerih when a victim begins seeking help to
when they arrive at the hospital.

Counters are used to record the number of eachayipgury, the number of injuries that
occur in each region, and the number of people dwoThe number of ambulance trips to the
hospital is also recorded through a counter.

Other statistics could be collected while running simulation; however, these are the
statistics that were seen as necessary for valgl#tie model and testing decision rules. Chapter
4 explains the model validation processes, anchispr 5 the statistics are used to evaluate

decision rules.
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CHAPTER 4 - Resultsand Modedl Validation

4.1 System Setup

The tornado that hit Greensburg, Kansas on M3y2807 was used as a reference to test
out the system. Greensburg is a small, rural toawkiowa County. The input variables were all
set based upon Kiowa County.

4.1.1 Regions, Distances and Population

The county was divided into four regions, the ftrsee representing each of the three
small towns in the county: Greensburg, Havilandl ktullinville. The third region represents all
of the people living outside of any of these thi@ens. Figure 4-1 shows a map of Kiowa
County and each of regions assigned for the maxsiances for Region 4 were calculated from

the geographical center of the county.

i i =) reenshu ri r"
- =7 P "Region 1 Region 2
__‘.:; Region 1
in
Region 4 Region Population Matrix
"1 Region Population
i" Greenshurg 14572
Haviland 505
Kiowa County | Mullinville 255
| V¢ SN W | SU— — %iq Other B77

Figure 4-1 Map of Kiowa County Table 4-1 Value of Region PopulationVariable

The values for th@imevariable were found by using Google Maps and abtgithe
driving directions from the center of each of tegions to the appropriate point (center of
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another region or hospital). The approximated dguime was then used as the time-distance

value. Table 4-2 shows the values that were usetthéd imematrix.

Table4-2 Value of Timevariable

Time Matrix

Greensburg |Haviland | Mullinville | Other |Wichita Via Chnsti|Pratt Regional Med Center|VWestern Plains Medical Center
Greenshurg 4 11 11 10 120 33 o5
Havilane 1 2 23 21 112 25 B7
Muliirilie 11 23 1 20 133 46 44
Other 10 21 20 23 130 44 54

Many sources reported the percent destructioGfeenburg at 95%. No reports were
found for the percent destruction that occurretherest of the county. The tornado was on the
ground for 22 miles, sweeping across a large podidiowa county (Ablah 2007). Arbitrary
values of 30 percent destruction were selectetddtr Haviland and Mullinville. Since the rest
of the county is such a large area, only 20 persstselected for this area. Such small
percentages are unlikely to generate many if ajoyies in the simulation, but they do provide
the possibility of an injury occurring in these @aseTable 4-3 shows the value of Bercent

Destructionvariable.

Table 4-3 Value of Percent Destruction Variable

Percent Destruction Matrix

Hegioh Destruction
Greensburg J5
Haviland ]
hAullinwille 30
Cther 20

There are 5 hospitals that are within a short trak&reensburg or are the nearest Level
1 trauma center; however, only three hospitals wensidered for the simulation. The
assumption that the first hospital is the closegtll one trauma center was fulfilled by using
Wichita’s Via Christi hospital as the first hospita the simulation. A majority of the victims of
the tornado were sent to Pratt Regional Medicak&ewhich is approximately 30 minutes east
of Greensburg. It is a level 2 trauma center amdush larger than the rural community hospitals
that are the same or a greater distance in othectotins. Finally, Western Plains Medical Center

which is located in Dodge City was used for thedospital. It too is a Level 2 trauma center.
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From Greensburg, it is farther than Pratt Regidvedlical Center; however, from Mullinville it

is slightly closer. Table 4-4 gives a summary @&f tiospitals used and their trauma levels.

Table4-4 Valueof Trauma LevelsVariable

Trauma Levels
Hospital Leval
Wichita “ia Christi 1
Fratt Hegional Med Center 2
Western Plaing Medical Center 2

Willingnesswas arbitrarily set to 0.7, indicating that appnoately 70% of those who
were not injured will assist in search and resdine impact of varying this variable was not
evaluated; however, its affect would be similathat of increasing the volunteer injury rate.
Together, the two variables determine how many lgewpl be injured during the search and

rescue phase.

4.1.2 Normal Calls

Time Between Normal Calis 1440 minutes, this represents one normal ealtlpy. The
historical data for Kiowa County was not availalaed this estimate is likely to be more calls
per day then what is typical of a county of thizesiAccording to general rules of thumbs, the
number of emergency transports completed by an Eméei district can be expected to be
approximately 3.5% of the population per year (§adi1989). Kiowa County’s population of
approximately 3000 people result in an expecteldvofime of one every 3.5 days. With an
average of one call per simulation run, the norcadls are unlikely to have a significant impact
on the simulation; however, the fact that ambulamest still respond to their regular demands
could not be overlooked. Table 4-5 shows the vdlaewas used for the variable Normal Call
Severity. Once again, historical data was not abéel and the numbers were selected arbitrarily.
An effort to determine highly accurate values fustvariable was not made since the number of
calls going through the system during the twenty-foour simulation (an average of one) was
known to be small and the affect of the value of tfariable would be very small.

TheLocation of the Normal Cahas the possibility of having a larger impact loa t
system. If the normal call occurs in an area whieeee are no other victims, an ambulance will

have to go after the single patient, whereasa€durs in the disaster area where there are many
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victims and ambulance would be shared with othEns.values for the location of normal calls
were calculated based upon the population of eagiom, with the assumption being made that
all people are equally likely to call for an aminda. These values are shown in Table 4-6.

Table 4-5 Value of Normal Call Severity Table 4-6 Value of Location Normal Calls

Normal Call Severity Location Normal Calls
Leval Value Region Fercent
1 0.25 Sreenshurg 0.49
2 0.5 Haviland 0.2
3 0.25 Mullinwille 0.09

Cther 0.02

4.1.3 Ambulance Transporters

Kiowa is a part of Kansas EMS Region lll. Disagtepardness is something that this
region has taken seriously. They have formed whlhown as MERGe, Major Emergency
Response Group. The group facilitates communicdt@ween ambulance districts and provides
combined training and response plans. When a disasturs within the coverage area of one of
the counties, it is the other MERGe ambulanceswhibtend their services. Figure 4-2 shows
all of the ambulance districts that participatdiBERGe. Table 4-7 gives a list of each of the
ambulance districts and the number of ambulanaghiey staff. Their distance in minutes from

Greensburg is also given.
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Table 4-7 MERGe Ambulance Districts (Region I11 EMYS)

MERGe Ambulances
Ambulances Minutes to Weighted
Ambulance District Staffed Greenshurg Minutes | Group

Pratt County ELS 2 32 a4 1
Comanche County EME 2 32 104 2
Edwards County Ambulance 1 i i 3
Larned ELE 1 ) ) 3

Burdett ELIE 1 4 4 3

Central Bush County EMS 1 25 25 3
Fush County Amblance Dist. #1 1 85 85 3
Stafford County ELIS 3 Al 153 4
Creat Bend Fire Dept. 2 B 172 4
Ellinrood ERE 1 L] L] 4
Hoisington EME 2 101 202 4
Claflin Fire & EMG 2 103 2la 4

Fice County EME 2 121 242 4
Kingman EM3 1 ) ) 5]

Pretty Praivie ELS 1 o2 o2 5

Eeno County EM3 3 92 a0 3
Bedgaick County ELIS 15 110 1&50 f
Hawven ELS 1 115 115 5

Mt. Hope Community Ambulance 1 119 119 5
Nongrich ERS 1 118 118 7
Clearwater ELS 2 1232 244 7
Argonia EMS 1 137 137 7
Mulvane EME 1 138 138 7

Eelle Plaitie EML3 1 142 142 7
Halstead EME 1 137 137 3
Hewton Fire/ELE 4 144 576 3
Hesston EME 2 147 204 3

Butler County ENLS 3 148 444 2
MePherson ELS 2 151 302 TF
Moundridge EMZ 1 154 154 TF
Sumnier County Hospital District #1 1 158 158 TF
Canton Ambulance Service 1 161 161 TF
Lindshorg ELS 1 164 164 TF
Florence Ambulance Service 1 166 166 TF
Marion County EMLE 4 178 712 TF
Atkansas City Fire/ELS 3 124 552 TF
Greemarood County ELS 1 199 199 TF
Fredonia EM3 2 228 456 TF
Iola Firef&llen County EMS 2 235 470 TF
Sedan Area EMS 1 235 235 TF
Heodesha EME 2 242 424 TF
Independence ENLI 1 256 256 TF
Cherryrale Fire/EME 1 263 263 TF
Heosho Memorial Regional Medical 3 274 232 TF
Erie Emergency Care Group 1 278 278 TF
Coffeyville Eegional Medical 3 281 243 TF
Lahette County Medical Center 4 286 1144 TF
Crawford County EMI 3 301 03 TF
Cherokee County Ambulance 2 317 B34 TF
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Not all of the ambulances in MERGe are within asanable distance of Greensburg. All
ambulances that were greater than 150 minuteh () away were considered too far to
provide assistance. This left 61 ambulances weHireasonable” distance to the disaster area.
These ambulances were broken up into 8 groups hgsedtheir location. It would be too
tedious to input all of the districts individuailyto the model. The distance for each of the
groups was considered to be the weighted averathe afistances to each of the individual
districts within the group. If a district staffsavambulances, its distance would be considered
twice while the distance to a district that onlgftg one ambulance is only considered once.
Figure 4-3 shows a map of the groups. The distmaeked by the markers that do not have a dot
in the center are not considered by the simuldigrause their distance is too far (greater than
2.5 hours).

- b Wamego WVal E;-.'F alls qn'

j Min r:;;;li-: Manhattand __.n Topeka =X ﬂ,._-: y
o F BT e it

s S DR P - et U Qe Overland,

. Russall . j| Ablene Flunction L 4

A78y = Pk
¥ : Sardn '.‘_TFQE-EHE::

- — . = ""A"kﬂnﬂ-;!ﬁ — e
Al Gity

Figure 4-3 Grouping of Ambulance Districtsfor Simulation
Using this information, the variables for the siatidn can be set. Tables 4-8 and 4-10

contain the values that would be put into @@ Total AmbulanceSimes for OD Ambulances

andOD # Ambulancesariables.
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Table4-8 Values for Out of District Ambulances

Ot of District Ambulances
Total
Ambulances | Average Weighted
Group Staffed Minutes | Average Minuies

1 2 32 32

2 2 52 52

3 5 712 T2

4 12 055 o3

5 o o7 4 ]

f 15 110 110

7 fi 1314 145

2 10 144 156

Total a1l
Table 4-9 Ambulances by simulation district Table 4-10 OD # Ambulancesvariables
— Ambulances — OD # Ambulances Value
Ambulance| District |Ambulance| District |Ambulance| District Variahle Value

1 Loeal 22 4 43 ]

- Local 3 P i 5 0D 1 Ambulances 2
S ] =4 5 T 5 0D 2 Ambulances 4
4 ] =3 5 Py 5 0D 3 Ambulances f
5 5 6 5 17 5 0D 4 Ambulances 11
5 5 7 5 5 7 OD 5 Ambulances 23
7 3 2% X 10 7 0D 6 Ambulances 32
2 3 20 5 50 7 0D 7 Ambulances 47
g 5 20 F B 7 0D E Ambulances 53
10 3 31 5 52 7

11 3 32 5 53 7

12 4 33 f 54 2

13 4 34 f 535 2

14 4 35 f il 2

15 4 3f fi 57 2

16 4 37 ] 58 2

17 4 38 & 50 2

18 4 39 ] i 2

19 4 40 a al 2
20 4 41 f f2 2
21 4 42 f 63 2
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4.2 Sengitivity Analysis

A 3* Experimental Design was used to perform a seitgitwalysis on the variables:
Volunteer Injury Ratenjury Leve| InformationDissemination RateandTransportation
Decision This allows us to see how the value of each edehvariables affects the system. Each
of these variables was run at three different kevehis allows for the possibility that their effec
on the response variables is not linear. The valtiisese levels are shown in Figure 4-4. The
statistics: Total Ambulance Time, Ambulance Wainh&iand Time to arrival at hospital were
used as responses. Total Ambulance Time is the rinodbtime that it takes one ambulance to
make one complete hospital run. This is the timenfivhen the ambulance is allocated to a
patient to when it is released and available tallmeated to another patient. The Ambulance
Wait Time is the amount of time that a victim spemaiiting for an ambulance once they have
made the decision that they are going to seek ambaeltransportation. Time to arrival at
hospital is the amount of time that it takes fa gatient from the time they begin seeking help
to when they are at the hospital. For analysisatlezage of each of these statistics is used.

DOE Factors
Variahle Level Value Variahle Level Value
Volunteer Inj 1 0.5 Information 1 03
Al Rate M 2 1 (" Dissimination 2 | 0§
3 4 Rate 3 0o
0.7 ad 45 20
1 0.2 1 |20 35 30
0.1 10 20 30
0.4 . a0 40 10
B: Injury Severnty 2 03 D: E?:il:f::tahﬂn 2 |30 30 a0
0.2 30 30 50
03 ad 40 10
3 0.4 3 110 20 20
03 30 40 a0

Figure 4-4 DOE Factorsand their levels

4.2.1 Total Ambulance Time
The ANOVA table produced from the DOE analysigAmiTab is shown in Figure 4-5.
At an alpha level of 0.05, the factors A, D, AB @@ are found to have a significant

contribution towards the variation in the Total Audnce Time. That is théolunteer Injury
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Rate Transportation Decisiomand the interaction betweémjury SeverityandVolunteer Injury
rate and the interaction between timgury Severityand thenformation Dissemination Rat&he
residual values are relatively high and widespraad;an be seen in the Histogram of the
Residuals in Figure 4-6.

AHOYA Table: Total Ambulance Time
A=Volunteer Injury REate B=Injury Sererity
C=Information Dissemination Rate D=Transportation Pecision
Source DF Seq S5 adj SS Adj MS F P Significant?
I 2 94527, 4 94527, 4 47263.7 299,55 0.000 *
E 2 2aa.1 222.1 111.0 0.70 0,509
C 2 289.7 289.7 144,58 0.92 0,419
D 2 8620.4 8620.4 4310.2 27.32 0.000 *
A*E 4 L550.6 L550.6 1387.6 .79 0,001 *
A%C 4 207.3 207.3 5l.8 0.33 0,855
A%D 4 095,49 l0a5.9 274.0 1.74 0,191
BE*C 4 1957.4 19587.4 495,49 3.15 0.043 *
BE*D 4 L7a.9 L78.9 1447 0.92 0.478
C*D 4 10477 047,77 261.9 l.66 0,208
AFE*C o] 2550.7 2550.7 3ls.8 Z2.02 0,110
AFE*D o] 2275.0 2275.0 2584, 4 l.80 0,150
AFCED o] 1114.9 1114.9 139.4 0.85 0,551
BE*C*D g 1522.8 1522.8 190.3 1.21 0.355
Error 16 2524, 5 2524, 5 157.8
Total a0 124115.3
Unusual Obzervations for Total Ambul ance Time
Dbz Total Am Fit AE. Fit. Rezidual . . Sf Reszid
4 751.134 764,231 11.252 -13.097 -2.35R

Figure4-5 ANOVA tablefor Total Ambulance Time (Output from MiniTab)

Histugram of the Residuals
fresponse is Total Am)

Frequency
h
|

o [

I | I
-0 0 1]

Residual

Figure 4-6 Histogram of Total Ambulance Time Residuals
The F-value fololunteer Injury Ratgs very high (299.55) indicating that the Total
Ambulance Time is highly dependent upon the voleniejury rate. The Main Effect plot
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(Figure 4-7) shows that the Total Ambulance Timsigmificantly lower when th&olunteer

Injury Rateis at Level 3 than it is at Level 1. This mearst @is the percentage of volunteers
who are injured increases, the total ambulance deweeases. Initially this seems counter
intuitive. However, and increase in t¥{elunteer Injury Raténcreases the demand for an
ambulance. As time goes on, the roadways are desn@ transportation within the region
improves. This is simulated by decreasingRleecent Destructioover time. The velocity at
which the ambulance transporters move is depengent thePercent DestructionAs time goes
on, the velocity of the transporters will incregsiecreasing the amount of time that it takes for
each ambulance trip, and thus decreasing the a¥&mdgl Ambulance Time

The values ofnjury Severityandinformation Dissemination Rateve virtually no effect
on the Total Ambulance Time. This is evident byvkey high p-value and a main effect plot
that doesn’t show much movement.

The value offransportation Decisiofs directly related to the Total Ambulance Time. A
high F-value (27.32) and the Main Effect Plot (Feyd-7) demonstrate this. From the Main
Effect Plot it appears that the Total Ambulance &imcreases with increasing levels of
Transportation Decisiofthis corresponds to increasing percentages @ratchoosing the
ambulance form of transportation. This is intuifisence when the system has more victims, it is
likely that the number of victims per ambulancel witrease. This will increase the amount of
time that is spent on the scene performing immedi&ge procedures before transporting the

patients to the hospital.

A B C D

Figure 4-7 Main Effects Plot for Total Ambulance Time
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The Interaction Plot shown in Figure 4-8 shows thast of the interaction effects are
insignificant. The AB interaction is significam-yalue of 0.001) and it appears that this
interaction in most prevalent when telunteer Injury Ratés high (Level 3) and thimjury
Severityis low (Level 1) and results in a higher Total Autdnce Time value. In this situation,
there are a high number of volunteers and mogieirjuries sustained by victims are Level 1
and Level 2. Since theolunteer injury ratevas at the default value of (0.7, 0.3, 0) this nsea
that nearly all of the patients in the system wddde Level 1 or Level 2 injuries, with only a
very few sustaining Level 3 injuries. In this siioa, more patients would be put in a single
ambulance, and thus the amount of time spent osdiee would increase, which in turn

increases the Total Ambulance Time.
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Figure 4-8 Interactions Plot for Total Ambulance Time

4.2.2 Ambulance Wait Time
The Ambulance Wait Time is the amount of time thaiatient spends waiting on an
ambulance once they have decided they are goisgeio ambulance transportation. From the

ANOVA table in Figure 4-9 it can be seen that aliif of the main effect factors contribute
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significantly to the value of the Ambulance Waitrd. The interactions betwe®iolunteer

Injury RateandInjury Severityand the three way interaction betwaéésunteer Injury Rate

Injury Severityandinformation Dissemination Ragge also significant. The residual values are
very low, and center around zero. A histogram esévalues can be seen in Figure 4-10.

ANOYA Table: Ambulance Wait Time
A=Volunteer Injury Rate DB=Injury Severity
C=Information Dissemindtion Rate D=Transportation Pecision

Source DF Seq 55 ndj S5 ndj Ms F P Significant?
A 2 6361.11 63gl.11 3180.55 994.3% 0.000 *
B 2 1246.04 1346.04 273.02  304.21  0.000 *
C 2 g5.29 g5.29 42,85 13.33 0.000 *
] s 1776.94 1776.94 ggg.47  Z77.78  0.000 w
A%E 4 323.08 323.08 g0. 77 25.25 0.000 *
A%C 4 14.95 14.95 3.74 1.17 0.38l1

AFD 4 30.56 30.56 T.64 2.3% 0.094

B*C 4 a. &0 a.30 1.70 0.53 0.714

B*D 4 30.96 30.96 T.74 2.42 0.091

C*D 4 1.47 1.47 0.37 0.1z 0.975

A*B*C g I 8. 4a 9.80 3.08  0.027 *
A*B*D 8 26.97 26.97 3.37 l1.05 0.439

AFCFD g 35.98 33.98 4,87 1.52 0.225

B*C*D g 27.16 27.16 3.39 l.0a 0.435

Error la 5l.18 5l.18 3.20

Total ao 10733.91

Unusual Observations for Ambulance Wait Time

Obz Ambulanc Fit SE Fit BRezidual 3t Reszid

4 26,7500 28,5606 1.60z21 -1.8106 -Z2.28R
36 43,9818 42,1608 1.60z21 1.8z10 Z.29E
54 33.4928 35.2369 1.60z21 -1. 7441 -Z.19R

Figure 4-9 ANOVA tablefor Ambulance Wait Time (Output from MiniTab)

From the Main Effects plot (Figure 4-11), it cands®=n that the Ambulance Wait Time
increases with increasing values\vflunteer Injury RateThis is intuitive, as the higher the
Volunteer Injury Rateneans more people needing medical assistant arsg¢goently more
people seeking ambulance transportation. As thebeuwf people in queue for an ambulance
increases, it is logical that the amount of timat they are spending waiting for the ambulance
will also increase.

As thelnjury Severitylevel increases, the Ambulance Wait Time decreasigber levels
of Injury Severityhave a higher portion of victims sustaining LeXelnd Level 3 injuries. One
reason that this may decrease the Ambulance Wai¢ T8 that as more victims sustain Level 3

injuries, more of them will die immediately uponpact of the disaster, resulting in fewer people
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requiring medical attention. It is also possiblattmore of them will expire prior to seeking
ambulance help, again resulting in a lower demandrbulance transportation.

Thelnformation Dissemination Rateas a significant but not a large effect on the
Ambulance Wait Time. From the Main Effect Plotancbe seen that increasing values of the
Information Dissemination Raightly reduce the Ambulance Wait Time. Thisdgital, since
if people know about the Field Triage Location ytlage less likely to seek immediate ambulance
assistance and only a portion of those who goddtiage Location will eventually require
ambulance transportation.

The value offransportation Decisiohas a large effect on the Ambulance Wait Time. As
the level of thelransportation Decisiomcreases, the Ambulance Wait Time increases. ddns
be explained by an increased percentage peopleicigpambulance transportation, and thus a

longer queue waiting for an ambulance to becoméadle.

Histograrm of the Residuals

(response is Ambulanc)

154 —

Freguency

1o -

T T T T T
-2 -1 1} 1 )

Residual

Figure 4-10 Histogram of Ambulance Wait Timeresiduals
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Figure4-11 Main Effects Plot Ambulance Wait Time

The interaction betweéviolunteer Injury RatandInjury Severitywas also found to be

significant. From the Interaction Plot shown in tiig 4-12, it can be seen that the trend of the

line produced wheNolunteer Injury Ratés at Level 2, is different from that of the otiteo

lines. When botWolunteer Injury RatandInjury Severityare at their second level,

Ambulance Wait Time is larger.
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Figure 4-12 Interaction Effects Ambulance Wait Time
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4.2.3 Time to arrival at hospital

The Time to arrival at hospital is the amount ofdithat it takes from when a patient
begins seeking help to when they arrive at the italsf his includes both the time that they
spend waiting for the hospital and the time thédkes to be transported by ambulance to the
hospital. From the ANOVA table in Figure 4-13 indae seen thatolunteer Injury Rate, Injury
SeverityandTransportation Decisiosignificantly affect the Time to arrival at hositAt the
alpha equals 0.05 levéhformation Dissemination Ratioes not have a significant affect.
However, thg-value is quiet low (0.085) indicating that theraynbe some relationship. The
interaction betweeWolunteer Injury Rat@andInjury Severityis also significant. The residual
values center around zero. Five of the eighty-aetp were considered unusual due to large

residual values. A histogram of these values caseka in Figure 4-14.

AHOYA Table: Time to arriwval at hospital
A=Volunteer Injury REate B=Injury Severity
C=Information Dissemindtion Rate ID=Transportation Pecision

Source DF Seq S8 Adj SS Adj MS F P Significant?
A z 1310.19 1310.1%9 £55.09 2z.04 0.000 *
E z 4005 . 52 4005. 82 2004.41  67.44  0.000 *
C 2 171.36 171.36 55,65 2.85 0.085

D 2 525.40 5z5.a0 262.95 5.85 0.003 *
L*E 4 2312.39 251Z2.39 575,10  19.45 0.000 *
A*C 4 263,08 263.08 65,77 2,21 0.114

L*D 4 147.01 147.01 36.75 1.24 0.335

B*C 4 190,95 190.95 47,74 1.61 0.221

B*D 4 190,99 190,99 47,75 1.61 0.221

C*D 4 293.01 293.01 73,25 z.46 0.087

AFB*C 8 445, 41 443, 41 56.05 1.89 0.133

LAFE*D 8 236,93 236,93 29,62 1.00 0.475

LFCED g 204. 55 204. 55 25,57 0.86 0.567

B*C*D g 249,79 249,79 31,22 1.05 0.441

Error 16 475,53 475,53 29,72

Total g0 11028.93

Unusual Observations for Time to arrival at hospital

bz Time tao Fit ASE.Fit.  Rezidual. . . 3r Resid

1 294 502 289,179 4. 884 L. 323 2. 20R
1a 310.288 305,104 4,534 5.1l84 2. 148
22 291,252 286,151 4,534 5.1l00 2. 10R
24 280.020 285.439 4,534 -5.419 -2.24R
55 289.11%8 294,303 4,534 -5.185 -2.14R

Figure4-13 ANOVA tablefor Timeto arrival at hospital (Output from MiniTab)
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Histogram of the Residuals

fresponse is Time to)

Fregquency

Residual

Figure4-14 Histogram of Timeto arrival at hospital residuals

The main effects plot (Figure 4-15) indicates tmthevolunteer Injury Raténcreases,
the Time to arrival at hospital decreases. Thiparse does not appear to be linear. As the
Volunteer Injury Raténcreases, the number of victims will increaseiciwlone would think
would increase the average Time to arrival at akgiowever, the statistics show otherwise.
One explanation for this may be that since the mMalers that are injured are of Level 1 or Level
2 injury, more of them can be placed in a singléalance, decreasing the amount of time that
they spend waiting for an ambulance. Also, as #mahd increases the amount of time over
which ambulance trips are being made increaseslaiéeambulances will be able to drive
much faster than the first ones because emergeaass avill have cleared some of the debris
from the roadways. This means that over time, tiheeTo arrival at hospital decreases. With an
increased demand (caused by increasinythenteer Injury Ratg those who seek an
ambulance at later times will have shorter Timartoval at hospital values.

As thelnjury Severityincreases, the Time to arrival at hospital alsorekses. A possible
cause for this is a decrease in demand for ambeifaansportation due to more of the victims
sustaining Level 3 injuries, resulting in a largertion being dead on impact. A higher
information dissemination rateesults in a slightly higher Time to arrival atspdal, although as
stated previously, according to thevalue this effect is statistically insignificadloving from
the second to the thifransportation Decisiotevel results in a large increase in the Time to
arrival at hospital. This is intuitive as the thiedel of Transportation Decisionesults in a much

greater demand for ambulance transportation.
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Figure4-15 Main Effects Plot Timeto arrival at hospital

The interaction effect betwe&folunteer Injury Ratandinjury Severitywas also found
to be statistically significant. From the Interacis plot in Figure 4-16, it is evident that the €m
to arrival at hospital is greatly dependent upanreiationship between the two variables. The
values of each of these variables will have arcaffe the total demand for ambulances as well
as the mixture of levels of injury. Together theffects can combine to have a larger impact, or

cancel each other out, depending on the selectadsia
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Figure 4-16 Interactions Plot for Timeto arrival at hospital
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4.3 Comparison to actual events

The output of the simulation was compared to thea@vents that occurred after the
May 4, 2007 Greensburg tornado to see how clossitiglation was to reality. This comparison
is not perfect, as the decision rules used inithelation are not necessarily the decision rules
used by the Emergency Management team in Kiowa @obknen if the rules were precisely
what was stated in their response plan, thereniaya the possibility that the plan was not be
enacted properly.

A total of 12 fatalities were reported, with 10tbése being immediate and 2 occurring
later (One 4 days later and the other 9 days ldtethe twenty-four hours following the tornado,
approximately 20 ambulances arrived at Greensidird,5 of which were active (Ablah 2007).
Statistics for the total number of injuries requirimedical attention are not consistent. In the
report published by Ablah, 90 people arrived addrespital emergency departments seeking
help during the twenty-four hours following thertado. According to the report, 59 of these
patients were treated at Pratt Regional Medicat&@eAn interview with Sherry Besser, a
director at Pratt Regional Medical Center, revedted 102 tornado victims were treated at Pratt
Regional Medical Center alone; 72 of these werbiwithe first 9 hours, 85 were injured
directly by the tornado and 17 were workers injuladng rescue efforts. Assuming that the
numbers reported from each of the other hospital®accurate and making adjustments for
those treated at Pratt Regional Medical Centertdta® number of injuries would be brought to
133 victims.

When the simulation was run for five replicatioeach consisting of a twenty-four hour
run length, the following results in Figure 4-17rev@btained. The simulation was initialized as
described in section 3.2.1. The values for theofadhat the sensitivity analysis was performed
on were all set to Level 2. While the results wapsecompletely off from what actually occurred
in Greensburg, it was very obvious that the ingeyerities were off, as none of the 95% Lower
Confidence Limit (LCL) and Upper Confidence LimdCL) contained the value from the
Greensburg actual occurrence. The values of tr@mdedence intervals can be seen in Figure 4-
17. The Total Injuries and First arrival at hoapwere within the confidence range, as was the
maximum number of ambulances that were activatethd Figure, a * beside the statistic

indicates that it did not fall within the confidenange.
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Simulation Statistics
All Factors at Level 2

Statistic Replication 1 | Replication 2 | Replication 3 | Replication 4 | Replication 5 | Average UCL LCL Greenshurg
First Arrival at hosphial 167 143 167 150 251 1756 21368387 | 137.51613 195
Last Arrival at hospital® 328 465 493 439 405 444 50428931 | 383.71079 340
Total Injuries 120 131 135 135 129 126 131.40325 | 12059675 00-133
Total Dead on Scene*® 24 18 17 15 a5 198 23.690417 | 15909583 10
Total Dead Later™ 0 1 0 1 2 02 1.5333514 | 00666426 2
Level 3 Injuties™ 23 24 22 19 3l 242 28.090417 | 20302583 12
Level 2 Injuties® 35 28 36 41 34 348 32883128 | 30716872 30
Level 1 Injuties® 59 68 78 fid 63 fifi T1.Ad6601 | 60353309 72
Max Ambulances Active 13 14 19 24 12 176 21450718 | 13740382 20

Figure 4-17 Simulation statistics compar ed to Greensburg statistics, all factorsat Level 2

Since the injury mix seemed to be skewed, the gitimnl was run again. This time the
Injury Severityvariable was set to the first level from the DOHRis value has a smaller percent
of people being severely injured. The results fthim are shown in Figure 4-18. In this case, the
simulation aligned much better with the actual omence. The number of people who died later
was much lower than the actual occurrence and faméulances were activated than what
actually occurred. These can be explained by tttetiat both of the people who died after the
initial impact in Greenburg died more than 24 hafter the disaster, thus it would have been
outside of the period of this simulation. Accordiogan interview with Sherri Besser, one of
them died 9 days later. The other died 4 days.latekblah’s Regional Health System Response
to the Greensburg EF5 Tornado, she reports thatflilances made themselves available
within the first 24 hours, but only 10 to 15 wergige. This simulation model assumes that only
requested ambulances arrive at the scene, andrttiatlances are only requested if they are
needed. In the model, the average Max Ambulancéseédwas 15, which goes along with the
number of ambulances that were actually being dseidg Greensburg. The other statistics

were all within the appropriate ranges.

Simulation Statistics

All Factors at Level 2, Except Injury Severity at Level 1
Statistic Replication 1 | Replication 2 | Replication 3 | Replication 4 | Replication 5 | Average UCL LCL | Greenshurg
First Arrival at hosptial 177 168 240 168 230 1964 227.64919 | 165.55081 195
Last Arrival at hospital 406.84 324258 461.8 H52.49 509.92 494.73 | 60749957 | 381.06043 540
Total Injuries 120 121 131 125 128 135 12006427 | 12093573 90-133
Total Dead on Scene 10 10 9 g 11 05 10.509380 | 24006105 10
Total Dead Later* 0 1 0 ] 0 0z 05919928 (-0.1919028 2
Levwel 3 Injuries 11 13 12 10 12 114 12.509389 | 10400611 12
Level 2 Injuries 31 20 &7 31 31 28 32203654 | 23.796348 30
Level | Injuries® 77 &7 o1 83 84 84.4 85937645 | TO.8A2355 T
Ilax Ambulances A ctive® 14 13 17 16 15 15 16.335004 | 13614096 20

Figure 4-18 Simulation statistics compared to Greensburg statistics, all factorsat Level 2,

Injury Severity at Level 1
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4.4 Evaluating Decision Rules

The decisions rules for when to request more amiseaand when to release the
ambulances that are currently providing their aasce are very critical. These decisions will
determine how quickly victims receive medical atitem and how much risk outside districts are
being put at by lending their ambulances to disastef. A balance between quick medical
response and an acceptable level of risk mustuadfo

There are infinite many decision rules that cowdddsted. However, for this paper the
decision rules tested will be limited. The decisafnwhen to request more ambulances is
currently based on the expression:

1, MaxTAVETotalAmbuanceTimg30)

8
, > MT(Ambulancg+ > OD#InrouteDisaster
2  TAVETimeBetweeHelpSougt) #1

The Y% at the beginning of the expression is basati@assumption that ambulances will
be transporting multiple victims in one ambularm&d. It considers the average number of
victims transported in a single ambulance to be @tanging this value would change the
number of ambulances requested.

Another method of changing the decision rule igit@ the outside districts more control
over how many ambulances they send. Creating ttegiarthat an ambulance district will not
send an ambulance if their current coverage isvb8l@ allows outside ambulance districts to
protect themselves. This may also have a significapact on the overall system performance.

Finally, the order in which ambulances are requestam districts is important.

Currently, an ambulance is requested from the deitdistrict with the highest percent coverage,
with those closest in distance being considered. #knother method would be to take all of the
available ambulances in order of distance to teasder. This will result in the districts close to
the disaster carrying the majority of the risk.

Ambulances are released based upon the expression:

(NT(ambulanc&MT(ambulanc® < Release Rule

By changing the value of Release Rule, the timehath the ambulance is released to go
back home may be changed. The default value ferhils been 0.80. Other values will be tested
to see how they impact the system performance.

To evaluate decisions rules, the simulation wasaitim the input from Greensburg, with

the variables that were evaluated during the DQRatstheir Level 2 values, except for timgury

73



Severitywhich was put to its Level 1 value. This is thefiguration of the system that was

found to fit what actually occurred at GreensbusglwEach of the decision rules were run for 5
replications, so that paired t-tests could be parém on the output. For this paper, 5 replications
seemed sufficient to show the capability of thewdation to test decision rules. If decision rules
were really going to be tested and enacted intgaster response plan, performing more
replications would improve the quality of the résullhe decision rules listed in Table 4-11 were

evaluated.

Table4-11 Decision Rules

Decision Rule | Expression

Request Rule 1 1, Max(TAVETotalAmbuanceTimg30)
2 TAVETimeBetweeHelpSough)

> MT (Ambulancg

Request Rule 2 1, Max(TAV@ETotalAmbuanceTimg30)
TAVETimeBetweeHelpSough)

> MT (Ambulancg

3
Request Rule 3 1, Max(TAVTotalAmbuanceTimg30)
2 TAVETimeBetweeHelpSough)

AND Coverage > 0.50

> MT (Ambulancg

Request Rule 4 Max(TAVETotalAmbuanceTimg,30)

TAVETimeBetweeHelpSough)
AND Coverage > 0.50

AND requested in order of distance, closest first

%* > MT (Ambulancg

Request Rule 5 1, Max(TAVETotalAmbuanceTimg30)
2 TAVETimeBetweeHelpSough)

> MT (Ambulancg

AND requested in order of distance, closest first

Release Rule 1 (NafnbulancyMT(ambulancg) < Release Rule
Release Rule=0.80

Release Rule 2 (N&MmbulancgMT(ambulancg) < Release Rule
Release Rule=0.90

Release Rule 3 (N&MmbulancgMT(ambulancg) < Release Rule

Release Rule=1.00
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Eesults from Request Eules and Release Rules
Average Average Average 040
Request Release Ambulance Max Arrival Average  Minimum %o Time
Rule Rule Replication Wait Time Time Deaths Coverage Coverage  Coverage<50%p
1 1 1 47557 401 280 0,000 0.Es52 0.205 0.145
2 53283 322.580 1.000 0341 0.308 0.204
3 45452 461 500 0,000 0.726 0.0aa 0.142
4 32301 622,450 0,000 0.E52 0.197 0.147
5 42735 500.930 0,000 0216 0.151 0313
AVERAGE 44 260 493730 0.200 020 0.168 0.170
1 2 1 47557 461260 0,000 0246 0.205 0.143
4 53IE3 334120 1.000 0246 0.308 0.190
3 48432 461500 0,000 0.786 0.0aa 0.142
4 25759 632,450 0,000 0828 0.197 0.14g
5 4549 500.930 0,000 0.220 0.151 0.138
AVERAGE 44.104 430,030 0.200 0825 0.168 0.1s2
1 3 1 44405 387.210 0,000 053 0.205 0.120
2 45394 303100 1.000 0247 0.308 0.17a
3 51827 496,030 0,000 0E1E 0.0aa 0.14z2
4 28261 632,450 0,000 0254 0.197 0.140
5 373581 540.850 0,000 0817 0.151 0.138
AVERAGE 41 472 500.9364 0.200 0238 0.168 0.143
2 1 1 707E7 200670 0,000 0274 0.131 0060
2 a4l 400.500 1.000 0.765 0.155 0.065
3 48907 347520 0,000 0.234 0.155 0.143
4 41364 462050 0,000 0250 0.163 0086
5 39423 4175350 0,000 0.702 0.385 0.140
AVERAGE 51824 385504 0.200 0.205 0.17s 0.100
3 1 1 64888 423 680 0,000 0298 0.472 0035
2 35361 425300 1.000 0.294 0.476 0036
ER ) 424,840 0.000 0243 0.476 0052
4 41364 643160 0.000 0298 0.476 0042
5 49338 641800 0.000 0.793 0.474 0.052
AVERAGE 54714 513756 0.200 0865 0.475 0.043
4 1 1 65480 338.710 0.000 08864 0.476 0.067
2 59050 338.740 1.000 0889 0.476 0.092
3 31881 461 800 0.000 0E15 0.476 0055
4 34907 645160 0.000 0873 0.476 008
5 51334 454950 0.000 0812 0.476 0.052
AVERAGE 521,568 456 474 0.200 0855 0.476 0071
5 1 1 47784 368.070 0.000 020 n.2s0 0.133
2 41847 417.110 1.000 0232 0317 0.204
30 48548 441800 0.000 0.787 0.0a0 0.142
4 24793 496 870 0.000 0237 0.z 0.134
5 43069 470.270 0.000 0218 0.125 0.138
AVERAGE 41 205 442 824 0.200 0E25 0.184 0.1s0

Figure 4-19 Results from Simulating Request Rules and Release Rules
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The default decision rules that were used forfalhe analysis previously done on the
system were Request Rule 1 and Release Rule 1wilhize used as the standard to which all of
the other decision rules are compared. From the oh&igure 4-20, it is obvious that none of
the decision rules have an impact on the numbdeaths. Average Ambulance Time, Average
Coverage and Average Percent of Time that Covasdgss than 50% will be used to evaluate
the performance of the systems under the variocisida rules. The desire is to minimize
Average Ambulance Time and the average percemnefthat coverage is less than 50%, while
maximizing the Average Coverage. Paired t-testsheilused to determine if the decision rules

have a significant impact on the performance ofsystem.

Request Rule 1, Releases Rule 2

Request Rule 1 and Release Rule 2 change the tgfatém by increasing the
percentage that is used in the release rule expnedshis will allow for ambulances to be
released and sent home more quickly, since theselgased as soon as the utilization drops
below the specified percentage (90%). When RedRlst 1 and Release Rule 2 were
implemented, the resulting average Ambulance wag tvas 44.104 minutes compared to the
default decision rule average of 44.860 minute® pdired t-test found that the difference in
means is statistically insignificant, as the boot jph Figure 4-20 shows. The average percent
coverage dropped from 82.9% to 82.5%. This is siatstically insignificant. A box plot of the

differences in average percent coverage can balfouRigure 4-21.

76



Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)

Differences

Figure 4-20 Box-plot of the Differencesfrom paired T-test on Ambulance Wait time

Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)

Ho X

Differences

Figure 4-21 Box-plot of the differencesfrom paired t-test on average per cent coverage

The percent of time that the coverage is less 5@ dropped from 17% to 15.2% (4
hours and 4 minutes to 3 hours and 38 minutes)ré&sdting confidence interval for the mean
difference is -0.0223 to 0.0583, with the meanedéhce falling at 0.0145. Since the confidence
interval contains zero and a p-value of 0.282 iatdis that the difference is statistically

insignificant. A box plot of this can be seen igufe 4-22.
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Boxplot of Differences

{with Ho and 95% t-confidence interval for the mean)

Hao X

Differences

Figure 4-22 Box-plot of the differencesfrom paired T-test on Percent of time that coverage

islessthan 50%

Request Rule 1, Releases Rule 3

Request Rule 1 and Release Rule 3 change the tgfatém by increasing the
percentage that is used in the release rule expness100%. This will allow for ambulances to
be released and sent home more quickly, sincedfreeseleased as soon as the utilization drops
below 100%. Since the release process involveskaigthat the release rule is met twice, with
a ten minute delay between checks, before releasiregnbulance to return to its home district,
ambulances will not be sent home the first instiaat they are not allocated to a victim entity.
When Request Rule 1 and Release Rule 3 were imptedhehe resulting average Ambulance
wait time was 41.472 minutes compared to the detidision rule average of 44.860 minutes.
The paired t-test found that the difference in nsdarstatistically insignificant, as the box plot i
Figure 4-23 shows. The p-value for this test wA8®. The average percent coverage increased
from 82.9% to 83.8%. This is also statisticallyigmsficant, with a p-value of 0.232. A box plot
of the differences in average percent coveragédedound in Figure 4-24.
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Boxplot of Differences
{with Ho and 95% t-confidence interval for the mean)
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Figure 4-23 Box-plot of the differencesfrom paired T-test on average ambulance wait time

Boxplot of Differences

{with Ho and 95% t-confidence interval for the mean)
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Differences

Figure 4-24 Box-plot of the differences from paired T-test on aver age per cent coverage

The average percent of time coverage is less th@mdecreased from 17.02% to 14.32%
(4 hours and 4 minutes to 3 hours and 26 minutgghe 95% confidence level, this is also
insignificant with a p-value of 0.109. This is showm Figure 4-25. More replications could be
run to determine if there is in-fact a differenoghe means. With 5-replications, none of the

output statistics were found to experience a sicgnit change due to this decision rule.
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Boxplot of Differences

{with Ho and 95% t-confidence interval for the mean)
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Figure 4-25 Box-plot of differencesfrom paired T-test on average percent of time coverage

islessthan 50%

Request Rule 2, Release Rule 1

Request Rule 2 and Release Rule 1 changes thesteglesby increasing the assumed
number of victims transported per ambulance tigpnfi2 to 3. This results in fewer ambulances
being requested initially. The Release rule isamanged from that of the default system. A
paired t-test on the difference average ambularaetime showed that the increase in wait time
from 44.86 minutes to 51.824 minutes is statidiydakignificant. A paired t-test on average
percent coverage indicates that its differencdsis imsignificant. However, the average percent
of time that coverage is less than 50% decreasas 1Ii7% to 10%, which as shown in Figure 4-
28 is statistically significant at the 95% confiderievel. The resulting p-value is 0.035.

This system of decision rules appears to be supirithe default system. It decreases the
risk taken on by outside districts by decreasimggbrtion of time that they have less than 50%
coverage. It does this without significantly insem the average ambulance wait time. Running
more replications of each of these systems wouddige a stronger assurance that the increase

in ambulance wait time is in fact insignificant.
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Boxplot of Differences

{with Ho and 95% t-confidence interval for the mean)
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Figure 4-26 Box-plot of differencefor paired t-test of average ambulance wait time

Boxplot of Differences
{with Ho and 95% t-confidence interval for the mean)
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Figure 4-27 Box-plot of differencesfor paired t-test of aver age per cent coverage
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Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)

Differences

Figure 4-28 Box-plot of differencesfor paired t-test of average percent of time coverageis
less than 50%

Request Rule 3, Releases Rule 1

This system of decision rules uses the same requiesis the default system, but gives
more control to the outside ambulance districtrigrt them self from undo risk. It allows for
them to not send any more ambulances if tReiicent Coverages currently at or below 50%.
This means that at worst, the district will maintane less than 50% of their fleet of
ambulances. As would be expected, this results in@ease in the average ambulance wait
time, from a mean of 44.86 minutes to a mean of binutes, and increase of approximately
10 minutes. A box-plot of the differences can bensia Figure 4-29. The difference is

statistically significant with a p-value of 0.02.
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Boxplot of Differences
{with Ho and 95% t-confidence interval for the mean)
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Figure 4-29 Box-plot of differencefor paired t-test of average ambulance wait time

The mean average percent coverage increased fr@%8a 86.5%. A box-plot of the
differences is shown in Figure 4-30. At the 95%fmance interval, the difference is statistically
insignificant; however, a p-value of 0.074 sugg#sés it is possible that if more replications
were run, then it may be found to be significarite Bifference in percent of time that coverage
is less than 50% is much greater, with a mean deeref 12.68%. Figure 4-31 shows the box-
plot of differences and the resulting (0.083, 0.dahfidence interval, which indicates that
implementing this decision rule will decrease thierage percent of time that coverage is below
50% by 8.3-17%. That is a difference of 2-4 houdrsaverage below 50%. This is a very
significant improvement to the level of risk thattaken on by outside ambulance districts.

This system of decision rules increases the aveaadmilance wait time by 2-18 minutes,
but decreases the percent coverage below 50% By8-Emergency Management officials
would have to decide if they believe that the dasean risk is worth the increase in ambulance

wait time.
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Boxplot of Differences

{with Ho and 95% t-confidence interval for the mean)
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Figure 4-30 Box-plot for difference of paired t-test of average percent coverage

Boxplot of Differences

[with Ho and 95% t-confidence interval for the mean)
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Figure 4-31 Box-plot for difference of paired t-test of aver age percent of time coverageis

lessthan 50%, theresulting p-valuefor the differencein meanswas 0.001

Request Rule 4, Releases Rule 1
Request Rule 4 maintains the default request adlés the criteria that ambulances will
not be released if the percent coverage is alraadybelow 50% and it changes the order in
which ambulances are requested from districts. Utisedefault system, the district with the
highestpercent coverages the one that the ambulance is requested frardelJRequest Rule 4,

ambulances are requested based solely upon digtative disaster area. Thus, all of the
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ambulances from OD 1 would be requested untpétxent coveragéell below 50%, then
ambulances from OD 2 would be requested untpétsent coveragéell below 50%, then
ambulance from OD 3 would be requested, and sabhalli the ambulances that are needed are
requested. The release rule is maintained the aamath the default system. The result is an
increase in the mean average ambulance wait tiome 44.86 to 52.57 minutes. The resulting
95% confidence interval for the mean difference1%.51, 0.09), with a p-value of 0.052. At
95% confidence level, this is difference is consdestatistically insignificant, but from looking

at the p-value it is likely that there is in faaliference in means. Running more replications of
these systems would improve the accuracy of thédance interval. This increase in ambulance
wait time is possibly because ambulances thataatleer away are requested last, and thus they

will not arrive on the scene as early.

Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)
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Figure 4-32 Box-plot of differencesfor paired t-test of average ambulance wait time

The mean average percent coverage increased fr@@%20 85.5%. With a p-value of
0.41, this difference is statistically significdfigure 4-33). The resulting improvement in
coverage is 1.7-4.9%. The difference in the percemérage less the 50% is more dramatic. The
mean decreased from 17% to 7.1%, decreasing tmage/éme that a district has less that 50%
coverage from 4 hours to 1.7 hours. The p-valuth@ntest is 0.005. The large improvement in
percent coverage below 50% is a result of greatorgments for the districts that are farthest
away from the disaster zone. If the coverage fsiridis that are far from the disaster drops

below 50%, then it will stay below 50% for a lomigné because of the large travel times. With
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this request rule, the ambulances that are faftber the disaster area are less likely to be called

into duty.
Boxplot of Differences
{with Ho and 95% t-confidence interval for the mean)
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Figure 4-33 Box-plot of differencesfrom paired t-test of average percent coverage

Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)
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Figure 4-34 Box-plot of differencesfrom paired t-test of average percent of time coverageis
less than 50%
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Request Rule 5, Releases Rule 1

Request Rule 5 is similar to Request rule 4, exitejgtes not require thaercent
coveragebe greater that 50% to dispatch an ambulancesithesame decision rule as the
default system, but prioritizes the requests bageth shortest distance to the disaster scene
instead of maximum percent coverage. This shifesnewore of the burden onto the districts that
are near the disaster then was done by RequesdRile Release Rule remains the same as
that used in the default system.

The mean average ambulance wait time decreased#d6 minutes to 41.21 minutes.
The p-value from the paired t-test was 0.211 witofidence interval on the difference in
means being (-3.16, 10.47) indicating that thifedénce is not statistically significant (Figure 4-
35). The mean average coverage went from 82.9482.48%, with a p-value of .228 this
difference is considered statistically insignifitaf box-plot of the difference in percent
coverage is shown in Figure 4-36. The mean pemrégrage below 50% decreased from 17%
to 15% (4 hours and 4 minutes to 3 hours and 3@ites). The resulting p-value of .227
indicated that this difference is not statisticalignificant (Figure 4-37).

This system of decision rules did not significardghange any of the standards that are

being used to judge the capability of decisionsule

Boxplot of Differences

fwith Ho and 95% t-confidence interval for the mean)
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Figure 4-35 Box-plot for differencesfrom paired t-test of average ambulance wait time
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Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)
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Figure 4-36 Box-plot of differencesfrom paired t-test of aver age per cent coverage

Boxplot of Differences

(with Ho and 95% t-confidence interval for the mean)
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Figure 4-37 Box-plot of differencesfrom paired t-test of average percent of time that

percent coverageislessthan 50%

Conclusions about Decision Rules
The request and release rules that are selectga glgnificant role in determining how
the system will operate. Simulating various decisues can assist disaster planners in

determining what their policy should be for requegtind releasing ambulances. Changing the
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release rule did not have a significant impacthendystem. None of the statistics that were being
evaluated were found to be significantly differéortany of the release rules tested.

Decision rules that prevent outside districts freending additional ambulances if they
have already sent 50% or more of their ambulaneesedse the risk that is taken on by the
outside ambulances. This is seen through an inelieabe overall average percent coverage and
by a decrease in the percent of time that the egeels less than 50%. While this decision is
good for the outside districts, those who are atdisaster scene find it less desirable.
Implementing this policy increases the amountmgtthat victims must wait for an ambulance.

Only a small number of replications were run focheaf the configurations of the
system, and the system is limited by many assumgt&o the output should not be considered
proof that one of the decision rules is always gop¢o the others. What this exercise did show
is that the decision rules that are selected bgddés planners are critical to how the system will
perform. Some decision rules have a larger effedhe system then others. The effect of the
decision rule is not always intuitive. Often oneyncansider the main effect that is the reason
that they are implementing the rule, but they deowsider all of the side-effects that may come
along with it. This is where the value of discreteent simulation lies. It allows for the decision

rules to be implemented into the system so thabteeall impact can be seen.
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CHAPTER 5 - Conclusions

Discrete-event simulation should become a very pfuvand effective tool within
emergency preparedness and disaster planning.dvasiter response plans are never used and
the physical simulations of them are good pradticehose involved by are not a good tool for
assessing the capability of the response systempGier simulations allow the disaster
response plan to be run under different scenaridslatermine how effective the current plan is
at responding to different levels of disasteralltiws for various decision rules and policies to
be tested out to see what their overall impachersiystem will be. Due to the many factors that
contribute to the performance of the system, afisn hard to accurately guess how the system
will respond to a given change. Simulating the exystakes away much of that guess work and
would allow disaster planners to see the effechainging the system.

While simulation can be a powerful tool, the outptithe simulation is only good if it is
a close model to reality. The underlying assumjtiofithe simulation and the numbers and
values that are used as input are critical in enguhat the output from the simulation is in-fact
a representation of what would likely happen iditgaA sensitivity analysis was performed to
determine how much of an affect the values of aextariables have on the performance of the
system. It was found that the values/olunteer Injury Ratgnjury Severity Information
Dissemination RateandTransportation Decisiomll have a significant impact on at least one of
the output statisticd/olunteer Injury Ratelirectly affects the demand for ambulances and thu
has a significant impact on the Total Ambulance §ilkmbulance Wait Time, and Time to
arrival at hospitallnjury Severityaffects the number of victims that will be trangpd in a
single ambulance and the time at which victims tégin seeking medical help. This has a
significant impact on the Ambulance Wait Time aratal Ambulance Time statistics.
Information Dissemination Ratdfects the number of people who will choose araibce
transportation, which affects the demand for anmméa. This has a significant impact on the
amount of time that a victim spends waiting foraambulance, as reported in the Ambulance
Wait Time statistic. The value of the Transportatizecision variable affects the demand for
ambulance assistance and has an impact on theAmatallance Time, Ambulance Wait Time
and Time to hospital statistics. The model is sas@sto changes in the values of the variables.
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Improving the accuracy of the variable values is thodel by capturing more real-life,
historical data would improve the simulations apito accurately simulate what would actually
occur.

Even with limited data, the simulation createdtfos paper appears to do a satisfactory
job of aligning with reality. The model was run wihe input data from the tornado disaster that
hit Greensburg, KS in May of 2007. The output & simulation matched what occurred for
nearly all of the statistics that were known. Tinge of the first arrival of a patient at the
hospital, the time of the last arrival of a patiahthe hospital, the total number of injuries
sustained, the number of deaths, the number ofl 22aed Level 3 injuries, and the number of
ambulances needed were all accurately predictedebgimulation model. The only statistic that
was not accurately predicted was the number of ILeuguries. A 95% confidence interval for
the number of Level 1 injuries created by the ougdsimulation was 60-71 victims. The actual
value from the Greensburg tornado was 72. If thdidence level were dropped to 90%, then
this statistic would also align with the actual etge All of the other statistics output by the
simulation matched nicely with what occurred in &rgburg (See section 4.3).

In Section 4.4 it was shown that this simulation ba used to test how the system will
perform with various decision rules. Only a smalinber of replications were run for each of the
configurations of the system, and the system igditnhby many assumptions, so the output
should not be considered proof that one of thesitatirules is always superior to the others.
What this exercise did show is that the decisidesrthat are selected by Disaster planners are
critical to how the system will perform. Some demisrules have a larger effect on the system
then others. The effect of the decision rule isaletays intuitive. Often one may consider the
main effect that is the reason that they are implaimg the rule, but they do no consider all of
the side-effects that may come along with it. Tisighere the value of discrete-event simulation
lies. It allows for the decision rules to be impkarted into the system so that the overall affect
can be seen.

In the future, discrete-event simulations coulddmee a tool that is found in the
toolboxes of disaster planners everywhere. The hueteribed in this paper could be expanded
to include the ability to simulate different kindkdisasters, not just tornado disasters. More

scenarios could be considered, such as which emergesources are destroyed by the disaster,
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how much of the communication network is left inttaand what if the surrounding counties and
ambulance districts are also being face with astisasituation?

This same idea of looking at the capability of éimebulance response in providing timely
care to tornado victims while minimizing the burderrisk that is put on surrounding districts
could have many other applications. The most ols/islambulance response to other types of
disasters such as terrorist attacks, plane crastemthquakes. It could also be applied to other
emergency response efforts such as the Fire Degattr@sponse to forest fires.

A military war application could exist to simulatpecial missions that require pulling
troops from many areas to help. If a war campaigts @ll of the troops from surrounding areas
to complete the mission, the areas that the trtefpare under covered and they are at a much
higher risk.

In the utility industry, this same idea could bediso simulate the response of lineman to
downed wires due to an ice storm, tornado, or bane. Linemen may be pulled from many
states to aid in the efforts of restoring powet,they leave their home region uncovered should

repairs be needed there.

5.1 Improvements
There are many improvements that could be mat@danodel. Many assumptions are
made, which may or may not line up with the acpratocol and procedures of a given areas
disaster response plan. Many of the inputs andegaddi variables that are used in the model are

unsupported or under supported.

Model Inputs and Variable Values

Improving the numbers in the model will increasevialidity and its ability to be used as
a decision making tool. Currently there are vexy &atistics available about medical emergency
response or disaster response. This is due toniwgst First, statistics are not always collected,
especially in disaster situations. For exampléheGreensburg tornado, no data was collected
about whether a person arrived via ambulance aratieans. The hospitals focus was on
providing medical care as quickly as possible, #wd data collection was not considered. This
is not a problem unique to Greensburg or Pratt &tediMedical Center, Robin Blair discusses
this problem in her articlBisaster-Proof Patient€2007). She says, “During any mass casualty

episode, be it a terrorist attach, pandemic eveatratural disaster, we have an enormous
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problem keeping track of what we do to and withgrdas.” She goes on to say that a large source
of this problem is that much of the record keepiag to be done manually with no continuity of
record keeping. Such a problem would be magnifiediial communities where the adoption of
technology is generally well-behind that of theetnopolitan counter parts.

When data is collected, the information collected the methods of reporting it seem to
vary greatly. This makes it difficult to compiletddrom numerous sources. Finally, much of the
data that is collected by the medical industryasrmeleased. Confidentiality is critical to the
medical industry and they often do not have thetirasources, or willingness to clean-up the
data and remove confidential information so thatdhta can be released. Until more data is
made available by the medical industry, it willdi#ficult to make a significant contribution to

improving their systems.

General Model
The precision and accuracy of the model can beawgal by using more regions. The
more regions that the disaster area is divided theomore accurate the travel times will be.
Doing this will add to the complexity of initialiag the system because it will require more
values for Percent Destruction to be input, whigkans more decisions for the user about what
values to set them at. Dividing the out of distantbulances into more regions will also improve

the accuracy of their travel time as will as thecpat coverage statistics.

Decision Rules
Increasing the number of replications that arefonrevaluating various decision rules
would improve the ability to distinguish the diféerces that each rule causes to the system. For
the scope of this project, a small number of repions (5) were thought to be appropriate as the
goal was simply to demonstrate the simulationstgt@k a decision tool, not to prove that a
specific rule should be adopted into an emergeesganse plan. If decisions are going to be

made from the simulation output, running five regtions may not be sufficient.

5.2 Areasfor Future Research

Further research should be done into methods afadkection within the emergency

and disaster response arena. Standardized methrogkdt type of data is collected should be
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established. Easy, non-time consuming collectiotnigfdata is important, as time is critical to
emergency response and if collecting data takes éway from the patients, then it is unlikely
that hospitals, ambulance districts, or medicas@enel will cooperate. Also, a method of
cleaning-up medical data that is not time consuraimg)does not require a great deal of
computer ability may make obtaining data from thedioal industry easier.

The simulation could be expanded to take into aeration the effects of population and
geographic parameters such as the average age pbplulation, the type of houses that are in
the area, the climate of the region, and otheofaciThere are many factors that may have a
significant impact on the likelihood of a persoringeinjured. Research into the relationship
between the type of dwelling that a person is ith their likelihood of injury has been researched
by Bohonos (1999), but the results of this resehsale not been incorporated into the planning
of medical response. These same factors may agyaaplole into the decision that a victim
makes on how to reach the hospital.

The purpose of the triage station is to providgtfaide care to patients at the scene of the
disaster so that they do not have to wait to besprarted to the hospital. If the triage location is
very close to the hospital, then its usefulnessedsmes. Research into the distance between the
location of the disaster and hospitals and at wifsidinces the triage location is beneficial could

have a strong impact on disaster response planning.
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Appendix A - Calculationsfor Tornado Destruction Percentages

Table 5-1 Summary of Percent Destruction statistics

% %
Tornado Destruction | injured/killed
Wichita Falls 62.5 0.57
Texas 87 85 2.97
Greensburg, KS 95 6.80
Henderson, KY 64.29 0.81
Andover, 91 84 2.8

Kansas, 1991—CDC reports that more than 8000 peeqlered disaster-relief services
(assume 8000 people directly in the path of thergtaOver 200 injuries and 24 deaths (assume
224 dead/injured). This means that 2.8% of the leeiopthe path of the storm were
injured/killed. CDC reports that 205 out of 244tleé homes in a mobile home park were
destroyed, thus we will assume an 84% destructten r

Wichita Falls, 1979—Glass, et al reports that 360the 4800 homes were either
completely destroyed or rendered uninhabitable5@?2. They later report that the estimated
total population of the tornado zone was 18,043 ®f these 102 were fatally or seriously
injured. Giving a percent injured of 0.565%

Texas, 1987—CDC reports that Saragosa was a Hispammunity of approximately
5,415 people. 30 people were killed and 131 inju@sing a percent of injured/killed of 2.97%.
www.stormtrack.org/library/1987/saragosa.heports that 85% of the town was destroyed.

Greensburg, 2007—Ablah, et al (2007) reports tbé&b ®f the homes and businesses in

Greensburg were destroyed. It also reports that thvere 12 deaths and 90 people who were
treated in hospitals. It reports that the poputatbthe Greensburg area at the time of the
disaster was 1500 people. This means 6.8% of thel@evere injured or killed.

Henderson, KY—Fox Newsftp://www.foxnews.com/story/0,2933,174687,00.Html

reported that 22 were killed and 200 injured inttv@ado that struck Henderson, KY on
November 6, 2005. 225 of the 300 homes in a trpgek were destroyed or severely damaged,
giving a destruction rate of 64.24%. Accordinghie 2000 census data, the population of
Henderson, KY was 27,373. This makes the injuryideate 0.81%.
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