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Abstract 

This work focuses on the ultrafast dynamics of electrons and phonons in graphitic 

materials. In particular, we experimentally investigated the factors which influence the transport 

properties of graphite and carbon nanotubes. In the first part of this dissertation, we used Time-

resolved Two Photon photoemission (TR-TPP) spectroscopy to probe the dynamics of optically 

excited charge carriers above the Fermi energy of double-wall carbon nanotubes (DWNTs). In 

the second part of this study, time-resolved anti-Stokes Raman (ASR) spectroscopy is applied to 

investigating in real time the phonon-phonon interactions, and addressing the way the 

temperature affects the dynamics of single-wall carbon nanotubes (SWNTs) and graphite.  

With respect to the first part, we aim to deeply understand the dynamics of the charge 

carriers and electron-phonon interactions, in order to achieve an as complete as possible 

knowledge of DWNTs. We measured the energy transfer rate from the electronic system to the 

lattice, and we observed a strong non-linear increase with the temperature of the electrons. In 

addition, we determined the electron-phonon coupling parameter, and the mean-free path of the 

electrons. The TR-TPP technique enables us to measure the above quantities without any 

electrical contacts, with the advantage of reducing the errors introduced by the metallic 

electrodes.  

The second investigation uses time-resolved ASR spectroscopy to probe in real time the 

G-mode non-equilibrium phonon dynamics and the energy relaxation paths towards the lattice by 

variation of the temperature in SWNTs and graphite. The lifetime range of the optically excited 

phonons obtained is 1.23 ps to 0.70 ps in the lowest (cryogenic temperatures) and highest 

temperature limits, respectively. We have also observed an increase in the energy of the G-mode 

optical phonons in graphite with the transient temperature. The findings of this study are 

important since the non-equilibrium phonon population has been invoked to explain the negative 

differential conductance and current saturation in high biased transport phenomena.   
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materials. In particular, we experimentally investigated the factors which influence the transport 
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excited charge carriers above the Fermi energy of double-wall carbon nanotubes (DWNTs). In 
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investigating in real time the phonon-phonon interactions, and addressing the way the 

temperature affects the dynamics of single-wall carbon nanotubes (SWNTs) and graphite.  

With respect to the first part, we aim to deeply understand the dynamics of the charge 

carriers and electron-phonon interactions, in order to achieve an as complete as possible 

knowledge of DWNTs. We measured the energy transfer rate from the electronic system to the 

lattice, and we observed a strong non-linear increase with the temperature of the electrons. In 

addition, we determined the electron-phonon coupling parameter, and the mean-free path of the 

electrons. The TR-TPP technique enables us to measure the above quantities without any 

electrical contacts, with the advantage of reducing the errors introduced by the metallic 

electrodes.  

The second investigation uses time-resolved ASR spectroscopy to probe in real time the 

G-mode non-equilibrium phonon dynamics and the energy relaxation paths towards the lattice by 

variation of the temperature in SWNTs and graphite. The lifetime range of the optically excited 

phonons obtained is 1.23 ps to 0.70 ps in the lowest (cryogenic temperatures) and highest 

temperature limits, respectively. We have also observed an increase in the energy of the G-mode 

optical phonons in graphite with the transient temperature. The findings of this study are 

important since the non-equilibrium phonon population has been invoked to explain the negative 

differential conductance and current saturation in high biased transport phenomena.   
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CHAPTER 1 - Introduction 

 
The discovery of multi-wall carbon nanotubes formed in a carbon arc discharge by Sumio 

Iijima in 1991 at NEC Corporation had an enormous impact on the condensed matter and 

materials science fields of nanoscale science and electronics. In his Nature publication [1], Iijima 

reported on the preparation of a new type of finite cylindrical carbon structure. In particular, he 

cited that the formation of these tubes, ranging from a few to a few tens of nanometers in 

diameter, suggested that engineering of carbon structures should be possible on scales 

considerably greater than those relevant to the fullerenes.  

Graphene is a single layer of carbon atoms densely packed in a honeycomb crystal lattice 

[2]; thus carbon nanotubes can be thought of as graphene sheets rolled up into nanometer-sized 

cylinders. Novoselov et al. [2] showed that graphene could be isolated from graphite simply 

using adhesive tape. The many exotic features which graphene presents are due to linear 

dispersion of the electronic bands with the momentum, near to Dirac-points where the 

conduction and the valence bands cross. The electrons can be described as though they are 

massless particles similar to photons [3]. 

Nowadays, these graphitic materials seem to have unlimited potential, and further 

breakthroughs in fundamental physics are expected. For example, carbon nanotubes are stronger 

and at the same time lighter than steel, they have exceptional thermal properties, while they 

demonstrate semiconducting or metallic properties depending on their structure. They have low 

production cost and are relatively easy to grow. In addition, due to their excellent optical 

properties, it is expected that making both electronic and optoelectronic devices from the same 

material will become possible [4]. Thus, interest has grown in the potential applications of 

carbon nanotubes, ranging from – but not limited to – optics, electronics, materials science, and 

biotechnology.  

For power transmission or high performance electronics, the ability of materials to carry 

current is fundamental and of high importance. However, there are mechanisms which restrict 

the performance of the materials. For example, the dominant mechanism which limits the 

conductivity is the scattering of electrons by phonons or by impurities.   
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At room temperature and at low bias, it is has been suggested that the origin of the 

resistivity is the scattering of electrons from acoustic phonons [38]. At high biases, electrons gain 

enough energy (e.g. > 0.2 eV) to emit optical phonons, which results in  very effective scattering. 

Several groups have extensively investigated this kind of scattering and they have found that the 

current saturation and the negative differential conductance are due to the non-equilibrium 

optical phonons [29,40,44,]. Lazzeri et al. [43] have shown that at the above conditions the 

resistivity strongly depends on the optical phonon thermalization time. In other words, the 

lifetime of the phonons reflects the phonon coupling with a thermal bath.   Thus, by increasing 

the phonon coupling with a thermalized source, the performance of the nanotubes increases 

drastically. Therefore, the measurement of the decay-time of the non-equilibrium phonons is of 

fundamental importance. Parallel to that, the dynamics of the optically excited states in 

nanotubes play a decisive role in the electronic devices. By measuring the electron-electron and 

electron-phonon interaction scattering times we can determine the timescale in which the energy 

of the excited electrons is lost. 

The above interactions (i.e. electron-phonon and phonon-phonon) strongly influence the 

conductivity of the materials. These procedures are very sensitive to temperature and in addition 

to the above we address the response of the nanotubes and graphite under different temperatures. 

Ultrafast dynamics of electronic excitations and decay processes in carbon nanotubes and 

graphite materials are studied in this thesis.  The study of these processes is made possible by the 

use of ultafast femtosecond laser pulses. This study is divided into two parts: the first was 

conducted in the James R. Macdonald Laboratory of the Kansas State University physics 

department.  The detection and time history of the events were measured with an apparatus 

equipped to perform Time-Resolved Two-Photon Photoemission (TR-TPP) spectroscopy. In 

particular, the energy transfer rate from the optically excited electronic system to the lattice, and 

the electron-phonon coupling have been estimated. In addition, the mean free path of electrons in 

double-wall carbon nanotubes have been measured. The second part of this work was performed 

at the Nanoscale Science and Engineering Center at Columbia University. Time Resolved Anti-

Stokes Raman spectroscopy has been applied in order to measure the temperature dependence of 

the decay dynamics of optically excited phonons in carbon nanotubes and graphite. More 

specifically, the relaxation rate 1/τ of the G-mode in these graphitic materials at different 

temperatures has been measured.  
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Estimating the energy relaxation rate, the electron-phonon coupling, the electron mean 

free path, and the optical phonons decay rate are of high importance in understanding the 

restrictions and overcoming the barriers which limit the performance of the carbonic materials as 

fundamental components in electronic devices. 

The structure of this dissertation is as follows: Chapter 2 gives a description of the 

current understanding of the structural parameters of carbon nanotubes, and in particular a 

description of the electronic structure and phonon dispersion relations. The following two 

chapters present observational results. Chapter 3 presents the first part of the thesis project, 

which is the study of the electron dynamics in double-wall carbon nanotubes (DWNTs). The 

experimental setup and the TR-TPP spectroscopic technique used in this part of the work are 

described in detail. Chapter 4 presents the observation of temperature dependence of the G-mode 

optical phonons in carbon nanotubes and graphite. An analytic description of the experiment and 

the method applied for this study (i.e., Time Resolved Anti-Stokes Raman spectroscopy) are also 

given. A brief summary of results is given in Chapter 5, while more details for various parts of 

the analysis are given in the Appendices at the end of this dissertation. 
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CHAPTER 2 - Structure of Carbon Nanotubes 

 

2.1 Introduction 
 

A tube made of a single graphite layer (graphene) rolled up into a hollow cylinder is 

called single-wall carbon nanotube (SWNT). Many concentrically arranged nanotubes are 

referred to as multi-wall carbon nanotubes (MWNTs). At the surface of the tube the carbon 

atoms are organized in a honeycomb lattice. The coordination number is 3 and the surface 

curvature induces some sp3 hybridization in addition to the sp2, which is typical to graphene. 

Moreover, carbon nanotubes are one-dimensional systems with translational periodicity along 

the tube axis.  

 

 

 
 

 

Figure 2.1 Graphene honeycomb lattice with the lattice vectors a1, a2. The chiral and the 

translation vector form a rectangle, which is the unit cell of the tube. These two vectors are 

highlighted on the tube on the right [5-7]. 

 

T 

C
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Different diameters and microscopic structures of carbon nanotubes (CNTs) can be 

achieved based on the way the sheet of graphene has been wrapped to form a cylinder. These are 

defined by the chiral angle, which is angle of the hexagon helix around the tube axis. Many of 

the properties of MWNTs are very close to those of the graphite, since the latter is made of many 

sheets of graphene connected to each other by Van Der Waals forces.  

The nanotubes are usually labeled in terms of graphene lattice vectors because they are 

closely related materials. The graphene sheet is wrapped such that the graphene lattice vector   

Ch = n1a1+n2a2 (see Figure 2.1) becomes the circumference of the tube. The vectors a1, a2 are 

unit vectors and connect two equivalent points. This chiral vector uniquely defines each 

nanotube and it is denoted by the pair of integers n1 and n2. The angle between Ch and a1 is called 

the chiral angle and gives the direction of Ch. It is given by the formula  
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Characteristic parameters of the nanotubes are the length of Ch, the translation period Ttr of the 

circumference along the tube axis, and its diameter d, which are given by equations (2.2) to (2.4), 

respectively. 
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In the above equations ac-c is the carbon bond length, n is the highest common divisor of (n1,n2),  

and  R = 3 if (n1-n2)/3n is integer or R = 1 otherwise.  

The unit cell is formed by a cylindrical surface with length Ttr and diameter d. The 

number of atoms in the unit cell is then given by the formula 

 

                                               q =
St

Sg
=
2 n

1

2
+ n

1
n
2
+ n

2

2( )
nR

                                             (2.5) 

 

where the St is the area of the cylinder surface and Sg is the area of the hexagonal graphene unit 

cell. 

 

 

 
 

Figure 2.2 Brillouin zone of the graphene with the high-symmetry points K, Γ and M. The 

reciprocal lattice vectors k1, k2 in Cartesian coordinates are k
1
= (0,1)4! / 3a

0
 and 

k2 = (0.5 3,!0.5)4" / 3a0 . 

 

Since the graphene unit cell contains two carbon atoms, there are nc =2q carbon atoms in 

the unit cell of the nanotube. The nanotubes are divided in three categories depending on the 

integers n1, n2: Armchair (n,n), Zig-Zag (n,0) and Chiral  (n1,n2). In the first two categories they 

exhibit metallic or semiconducting behavior, respectively. If (n2-n1)/3 is an integer they have 

metallic behavior, otherwise semiconducting. The Brillouin zone (BZ) of graphene is displayed 

in Figure 2.2. 
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2.2 Electronic structure of Carbon Nanotubes 
 

For simplicity we will first study the electronic structure of graphene and then present 

some differences between graphene and the carbon nanotubes. The electronic structure of the 

latter can be studied by using the tight binding approximation Linear Combination of Atomic 

Orbitals (LCAO). The basic bonding of the carbon atoms involves the formation of sp2 

hybridized atomic orbitals.  These lead to the 3-fold coordination in the graphene lattice and the 

corresponding σ bonds.  The additional electron for each carbon atom is in a pz orbital.  These 

interact to form the π-electron system of graphene, which controls all the electronic and optical 

properties to be discussed in this thesis. Due to sp2 hybridization the carbon nanotubes have two 

types of bonds, the σ and π. The σ bonds are in the lattice plane and they are very strong, but 

their energy is far away from the Fermi level, so there is not any contribution to the conductivity 

or absorption of light. In contrast, the π and π* orbital are perpendicular to the lattice plane, thus 

normal to the plane of σ, and they are responsible for the above electronic properties.  

 

 
 

Figure 2.3 Energy dispersion E(kx,ky) of graphene. The K, K′ are the crossing points of the bands 

π and π* and have conical shape. The π band is completely filled in the ground state and π* 

completely empty [8]. 

Γ 

K 

M 



 8 

The π and π* cross the Fermi level at the K, K′ points of the BZ in a way which forms six cones 

with reflection symmetry with respect to the Fermi level (see Figure 2.3). These six distinct 

points define the Fermi surface, which is responsible for the metallic or semiconducting behavior 

of the nanotubes. The bands close to the Fermi level are linear [5]. 

A starting point to describe the π-electron system we use is the Schrödinger equation in 

the form [7] 

 

                                                        H!! = E!                                                                (2.6) 

 

where                           H =
! p "#
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, with properly chosen wave functions to satisfy the above relation. One of the 

favorable hybridizations of carbon is the sp2 type where a 1s and two 2p atomic wavefunctions 

are combined in order to form the hybridized. The electronic wave functions !
l
(k,r)  can be 

approximated as a linear combination of the atomic wave functions !
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(r " R
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where N0 the number of the unit cell in the crystal, RA the lattice vectors and l denotes the atomic 

orbital. The !
l
(k,r)  are the eigenfunctions of the unperturbed Hamiltonian, which satisfy the 

Bloch theorem !
l
(k,r + R) = e

ik"R
!

l
(k,r) . The eigenfunctions of the total Hamiltonian 

H = H
0
+ H

int
 can be expressed as 
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                                          !(k,r) = C
l
(k)

l

" #
l
(k,r)                                                    (2.8) 

 

which solve the eigenvalue problem, described by the equation (2.6). Equation (2.6), in 

combination with equations (2.7) and (2.8), gives the energy eigenvalues [7] 

 

                             E = !
2 p ± " 0 1+ 4 cos(

3akx

2
)cos(

aky

2
) + 4 cos

2
(
aky

2
)                                 (2.9) 

 

where γ0 represents the interactions (i.e. the perturbation) between the two π electrons and takes 

values between 2.7 eV and 3.1 eV, k is the electronic wave vector for the graphene BZ and a is 

the lattice vector length. 

 

2.2.1 The zone folding approximation 
 

The zone folding approximation is suitable for understanding the electronic properties of 

SWNTs from the electronic structure of graphene. The basic assumption of this approximation is 

that the curvature effects of the tube do not play an important role for the electronic properties 

and it is applicable for nanotubes with diameters  > 1nm. 

Since the length of the nanotubes is several orders of magnitude larger than their 

diameters, they can be considered as one-dimensional solids. The electrons or phonons can have 

quantized states along the circumference Ch of the nanotubes and continuum spectrum in the z-

axis, which is the axis of the cylinder. The quantization condition is 
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where k is the wavevector (with k
!

, k
z
 perpendicular and parallel to the tube axis, 

respectively), d is the diameter, and m is an integer number which represents the number of 

wavelengths which fit in the circumference of the tube. The values of m are –q/2+1,…0,1…,q/2. 

Specifically, the wave function of the electron or the phonon needs to have 2π phase shift, 

around the circumference, otherwise it will interfere destructively. The result of this construction 

is that nanotubes can be either metals or semiconductors depending on their indices (n1,n2). If the 

K point (the crossing of π , π* energies) is included from one of the allowed k lines, then the 

nanotube is metallic, otherwise it is semiconducting (Figure 2.4). 

 

 

 

 

 
Figure 2.4 The BZ for semiconducting (left) and metallic (right) nanotubes. The green lines are 

the allowed wavevectors. In the left panel there is not any cutting line (k) passing from the point 

K, and thus BZ belongs to the semiconducting type of nanotubes. In contrast, in the right panel 

there is a k line, which passes from the K point and the nanotube belongs to metallic type.  

 

 

The maximum k
!

 follows from the number of atoms (2q). Then the first BZ is divided 

in q lines parallel to the z-axis separated by k
!
= 2 / d  and k !("# / a,# / a]  [5,6]. Each one of 

M M 
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these lines corresponds to a sub-band. The energies of these sub-bands are given from the 

relation 
 

E = E
0
+
!
2
k
2

2m
*

, which implies a whole spectrum of distinct states that in turn gives a 

distinct density of states (DOS) spectrum. Generally the DOS is given by n = cdE(d-2)/2 [9], where 

cd is a constant and d is the dimension of the space.  For one-dimension system like the 

nanotubes, the DOS is ~1 / E  [10]. The spikes of the DOS are called Van-Hove singularities 

and they are the points where the group velocity is zero (Figure 2.5). 

 

 
 

Figure 2.5 The band structure and the density of states (DOS) for metallic (left) and 

semiconducting (right) nanotubes (adopted from [73]). 

 

 

It is instructive to pay closer attention to the density of states (DOS), an important quantity for 

the study of the electronic properties of any material. The density of states n(E) of the nanotubes 

is given by [10]  
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The g(E,E
m
) for Em≠ 0 shows a divergence at E  = Em as expected for a particular point of a one-

dimensional system. The density of states is a characteristic difference between graphene (2-D 

system) and nanotubes. 

At this point it is worth mentioning that the optical excitations in nanotubes demonstrate 

an excitonic character, which means that the optical transitions, e.g., E11 and E22, are excitons 

governed by electric-dipole selection rules [11].  
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CHAPTER 3 - Electron dynamics in double-wall carbon nanotubes 

 

3.1 Introduction 
 

The carbon nanotubes have been established as one of the most promising components 

for electronic transport and high performance electronics. SWNTs have been shown to sustain 

current densities exceeding 107 A/cm2 before damage [12,29]. This property makes SWNTs 

promising material for interconnects. It is known that the resistance ρ = h/(2e2)(1/nl) is inversely 

proportional to the number of tubes n and the mean free path l and h the Plank constant [74]. 

Therefore, the conductance can be increased by a factor which is equal to the number of shells. 

One can also use MWNTs, but these systems are more difficult to describe. DWNTs can be 

considered a limiting case of MWNTs and as such they are of prime interest to researchers. On 

the basis of their inner and outer (I-O) wall types, DWNTs can be classified into four groups: 

semiconducting-semiconducting (S-S), semiconducting-metallic (S-M), metallic-semiconducting 

(M-S), and metallic-metallic (M-M). These types of nanotubes could have diverse uses in 

nanoscale devices. Therefore, it is essential to correctly quantify the electron mean-free path, l, 

of DWNTs, a crucial parameter in transport phenomena. 

The conductivity of MWNTs has been extensively investigated in transport 

measurements, where the observed values of l varied widely from 0.1 to a few microns or even 

greater. This range is most probably due to a combination of factors, such as variations in contact 

resistance at the nanotubes-electrode junctions and unknown distribution of current density 

among different tubes. When the DWNT is placed between the two electrodes, the electric 

current will be determined by the nature of the contacts and the intrinsic conductivity. The 

scattering rate of electrons between the metal and the nanotube can be expressed through the 

Fermi rule, where the coupling operator is proportional to the length of the conducting area, the 

geometry and the configuration between the nanotube and the electrodes: end or side contacts 

effects [13]. This combination of different factors introduces difficulties in accurate evaluation of 

the conductance. 
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In an alternative to transport measurements, we use a non-contact approach for studying 

the conductivity parameters of DWNTs. This alternative method probes the temporal evolution 

of the electronic excitations in the vicinity of the Fermi level, EF. In this work a direct 

measurement of the electron-phonon (e-ph) energy transfer rate for DWNT at room temperature 

and its dependence on the electron and lattice temperatures Te and Tl, respectively, are presented. 

The energy transfer rate can be obtained by probing the dynamics of the excited electrons above 

the Fermi level following excitation by a femtosecond laser pulse. The rate at which the energy 

is exchanged depends on the e-ph coupling, which in turn is directly related to the mass-

enhancement parameter λ. This parameter is a factor by which the effective mass of an electron 

is changed due to e-ph interactions. More details about λ are given in Section 4.2.4 and appendix 

B. By analyzing the dynamics of the electrons one can determine λ. Applying the theory of Allen 

[14] we calculate the e-ph scattering time and then the mean free path. We use femtosecond TR-

TPP spectroscopy [30] to carry out these measurements [15,16].  

The TR-TPP method enables us to study the relaxation dynamics of the charge carriers on 

a femtosecond timescale with very high resolution of about 10 meV for detected ~1 eV electrons. 

In this experiment we were able to determine the temperature dependence of the energy transfer 

rate, H, from the excited electronic system to the lattice, which has been derived by 

differentiating the time evolution of the internal energy with respect to time. 

The reported experimental values of the electron mean-free path for SWNTs are 15 µm 

[15]. Experiments using the TR-TPP technique have shown that the electron-electron (e-e) 

scattering time strongly increases as the carrier energies approach the Fermi level [17-19]. The e-

e scattering times are becoming extremely short, few tens of femtosecond or less, as the carrier 

energies are far above the Fermi level. However, the temperature dependence of the energy 

transfer rate yields a small mass-enhancement parameter λ of 0.0004 ± 0.0001 for SWNTs [15], 

which is directly related with the electron-phonon coupling [15]. Details about the mass 

enhancement parameter are given in appendix B. We infer the mean free path, l, and the intrinsic 

conductivity by measuring the e-ph scattering time τ(E), which along with impurity effects is the 

dominant mechanism for the resistance in metals [17,18]. In our experiment for DWNTs we find 

a mass enhancement parameter (m = m0(1+λ), see appendix B) of λ = (1.16 ± 0.16) × 10-4. This 
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value of λ gives us at room temperature an e-ph scattering time of 25 ± 1 ps. By multiplying this 

time with the Fermi velocity vF (108 cm/sec) we then infer a mean free path of 25 ± 1 µm. 

In this project we would also have liked to confirm the Fermi-Liquid Theory (FLT), i.e. 

that τ ∝ (E-EF)-2 [15-17,19]. However, this was impossible with the current experimental 

conditions (see below section 3.2.2).  

 

3.2 Experimental 

3.2.1 Samples and Ultra High Vacuum system 

  

DWNT samples of high-purity (>95%) produced by the chemical vapor deposition 

(CVD) method were used in the present study. The experimental medium consisted of 0.4 mm 

thick freestanding DWNT ‘‘bucky’’ paper, with the outer diameter of the nanotubes of 4 ± 1 nm. 

To prepare the BuckyPaper sheet, nanotubes are suspended in a fluid, and then filtered onto a 

membrane support. After drying, the paper is removed from the support, leaving a freestanding 

paper. Standard BuckyPaper is ~50% dense, and it can be tailored for particular applications. 

The sample was attached to a Tantalum (Ta) substrate and outgassed in multiple heating and 

annealing cycles with a peak temperature of 700 K. The sample temperature was measured using 

a thermocouple attached on the Ta disk. Figure 3.1 shows the configuration of the sample holder. 

The position of the sample within the chamber was controlled with a linear feedthrough 

manipulator. This configuration gives the option to change the position of the laser spot on the 

sample. Ultra-high vacuum (UHV) of typically 10-10 mbar was maintained by a combination of a 

roughing-pump and a turbo-molecular pump. 
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Figure 3.1 Sample holder-heater. The white color cables are used to provide the power for the 

heater, which consists of a plate of Ta. The shiny wires beneath the Ta frame are connected to 

the thermocouple. The black material in the middle of the frame is the sample (bucky paper) of 

DWNTs. 

 

 

3.2.2 Laser system and optics for time-resolved spectroscopy 
 

The laser system, used in this experiment, is a homemade light source.Femtosecond laser 

pulses at 790 nm are generated by a Ti:Sapphire oscillator and subsequently amplified to reach 

an energy of 2.5 mJ per pulse and a duration of ~ 25 fs. The 10 fs seed pulse with nanojoule 

energy is stretched to 100 ps by a pair of gratings (stretcher) in order to avoid damaging the laser 

amplification medium, which is a crystal of Ti:Sapphire. After the amplification, the energy of 

the pulse is around 5 mJ with 30 ps duration. Subsequently the pulse is compressed to ~25 fs by 

sending it through another pair of gratings (compressor). The chirp, which has been introduced 

during the stretching, has been removed during the opposite procedure, the compression. At this 

final stage the energy, which has been reached, is 2.5 mJ per pulse. The repetition rate of the 

laser system is 1 kHz. Our experimental setup was located in a different room than the laser 

source, and evacuated transport lines were used in order to guide the laser radiation to the 

experimental table. 
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Figure 3.2 The optical setup for the time-resolved photoelectron spectroscopy. The red lines 

show the paths of the excitation beam (IR radiation at 790 nm), while the blue lines represent the 

beam used to probe the excited states (UV at 263 nm). The chamber, which contains the time-of-

flight tube, is on the bottom of the picture. At the end of the chamber (right side) there is a 

flange, which supports the detector. 

 

 

The linear polarization of the 790 nm beam is controlled by a λ/2 waveplate. The initial 

laser beam is separated into two parts, the pump and the probe beams, with a polarized splitter. 

The pump beam had s-polarization, in order to suppress the ionization of the electrons due to the 

pump only, while the probe had p-polarization. The λ/2 waveplate in combination with the 

polarized splitter was used to control the fluence of the pump beam. The 263 nm UV photons of 

(probe beam) were produced through non-linear effects during the photoionization of N2 

molecules by focussing the 790 nm beam in air using a 150 mm focal length lens. A second lens 

with 150 mm focal length was used to collimate the 263 nm beam. Dielectric mirrors have been 

used in the UV path so as to eliminate the residual of the IR radiation after the tripling of the 

frequency (see Figure 3.2). 
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The resulting UV and IR beams were delayed with respect to each other and spatially 

overlapped on the sample in collinear configuration at 30o incidence angle. The fluences of the 

IR and UV beams were ~40 µJ/cm2 and 30 nJ/cm2, respectively. The 30o angle was introduced in 

order to prevent the scattered light reaching the detector. A mirror can be flipped into the beams’ 

path in front of the UHV chamber to send the beams onto a mimic sample consisting of a pinhole 

100 µm outside of the chamber. The optical path from the last lens of the optical setup to the 

pinhole was set equal to the optical path from the lens to the surface of the sample.  To achieve 

the spatial overlap of the probe and the pump, both beams were steered through the pinhole. 

In order to find the zero-time delay for which the beams (IR-UV) reach the sample 

simultaneously, the flipped mirror was used to send them through the pinhole setup, with the IR 

to be primarily focused by a parabolic mirror in the air. This produced a secondary plasma and in 

turn UV radiation for a second time. The initial and the secondary UV pulses are overlapped in 

space by passing them through the 100 µm pinhole (mimic sample). The time delay between the 

two pulses was adjusted by the delay stage until the fringes from the interference were produced 

and observed due to fluorescence of a screen of paper (see Figure 3.3).  

 

 

 
 

 

Figure 3.3 Interference fringes of the UV photons 263 nm of the two collimated beams 

overlapped in the time and space domains. 

 

 

After finding the zero delay, the parabolic mirror was removed. The optimization of the zero-

time delay was further improved by maximizing the photoelectron signal.   
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One of the main problems that affected our experimental data was vibrations of the laser 

transfer lines as a result of the very long distance between the laser source and the experimental 

setup, the laser beam pointing was very sensitive to the vibrations of the transport lines. The 

spatial overlap of the split and subsequently recombined laser beams was frequently lost, thus 

making it impossible to get data in the needed long integration times. An additional problem to 

the first was the drift of the beams in space.  

 

 

3.2.3 Time-of-flight and photoelectron detection 

 

The principles of a time-of-flight (TOF) spectrometer are very simple [20]. Typical 

photoemission geometry at a solid surface is sketched in Figure 3.4. Photons with energy  !! and 

angle ! with respect to the normal on the surface are incident on the sample and photoelectrons 

are emitted. We can calculate the energy of the electrons by measuring the time t in which the 

electron flies through distance L. The energy is given by [20] as 
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                                                                  (3.1) 

 

where m is mass of the electron. In practice, we do not measure the energy of an individual 

electron but the distribution of an electron beam having a pulse width !t . It follows that the 

relative energy resolution (ΔE/E)=[(2Δt/t)+ (2ΔL/L)]1/2 depends on the resolution Δt and the 

uncertainty distance ΔL. An accurate estimate of !t  and the length, L, of the drift tube determine 

the achievable resolution, which is given by the equation,  
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where the second term (2ΔL/L)1/2  has been neglected. 
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  Photoelectrons following the photoionization by the UV pulse, drifted into the 

magnetically shielded and electrically isolated 31 cm long spectrometer tube and were detected 

with a backgammon position-sensitive detector. The detection of the electrons in our 

experimental configuration, is not normal to the surface, but rather at 30o. This angle introduces a 

component in their momentum given by 
 
!k
"
= 2m

e
E sin(30)  where 

 
k
!
is the parallel component 

to the sample surface of the electron’s momentum. Since the electron’s TOF is measured, the 

energy resolution ΔE of the spectrometer depends on the electron energy. In our case for Ekin ~ 1 

eV the resolution is around 10 meV. The TOF and the electronic setup are shown below in 

Figure 3.4.  
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Figure 3.4 The vacuum chamber with the electronics for measuring the time-of-flight of the 

ionized electrons. The inset describes the geometry of the excitation in more detail. The start 

signal of the time amplitude converter (TAC) is provided by a photodiode responding to the laser 

pulse. The stop signal comes from the multi-channel plate (MCP) detector when the electrons 

arrive. The signals (start and stop) are initially amplified by the pre-amplifiers, then by using 

constant fractions discriminators the noise is removed, and in turn the time delay between the 

two signals is converted to a voltage with the TAC. The analog-digital converter (ADC) converts 

the analog signals in a digital sequence of pulses that are read into the computer. 
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3.2.4 Time-resolved photoelectron spectroscopy-spectra from DWNTs 
 

We investigate the nature of low-energy excitations in DWNTs by pumping the states 

using femtosecond infrared laser pulses. The temporal evolution of the population is examined 

by ionizing the resulting population with delayed femtosecond UV pulses. The TOF of the 

ionized electrons is recorded for a range of energies above the Fermi energy, EF, in order to 

investigate the relaxation dynamics of the charge carriers. The initial fast relaxation is attributed 

to the internal thermalization of the electronic system, and it is primarily driven by e-e scattering 

processes. After the system returns to a Fermi-Dirac distribution, it continues to decay with a 

slower rate associated with electron gas cooling through e-ph interactions. The evolution of non-

equilibrium carriers due to the presence of the pump beam is illustrated schematically in Figure 

3.5. 

 

 
 

Figure 3.5 Schematic illustration of the non-equilibrium carrier distribution induced by 

absorbing femtosecond laser pulses of 790 nm wavelength. At first, 200 fs electron-electron 

scattering takes place, which redistributes the energy of the excited electrons. In turn, the energy 

is transferred to the lattice through electron-phonon interaction in a  picosecond timescale. The 

above plot is adopted from [16].  
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In general the non-equilibrium carrier’s distribution can be described by the Boltzmann 

equation:                                             
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The collision term !f * / !t is zero for equilibrium distribution. The two terms on the right side of 

equation (3.3) represent the collision terms due to e-e and e-ph interactions, respectively. The 

non-equilibrium electron distribution is generated by absorption of energy from the pump pulse. 

Then the thermal equilibrium is acquired through a number of processes such as carrier-carrier, 

carrier-phonon scattering, electron-hole recombination and carrier diffusion out of the laser-

excited area.  

The carrier-carrier scattering takes place on the timescale of few hundredths of a 

femtosecond. This process changes neither the total energy stored in the carriers nor the carrier 

density, but it spreads out the non-equilibrium population in k space for electron densities greater 

than 1018 cm3. Carrier-carrier interactions include e-e, hole-hole, and electron-hole scattering as 

well, which are separate processes. The first two interactions lead to internal thermalization of 

the excited electron and hole population while the third process leads to equilibrium of the 

conduction electron population with the hole population in the valence band. Inelastic scattering 

of carriers by phonons reduces the energy of the carriers, resulting in heating of the lattice.  

[21,22]. Assuming that the internal thermalization has taken place (i.e., ~200 fs after the 

excitation), the photoexcited carriers are still far out of equilibrium with the lattice on this 

timescale. The carrier-phonon scattering time is longer when compared to the carrier-carrier 

scattering time, due to the weaker coupling of the former.  

In the experiments presented in the second part of this thesis we measure the phonon 

dynamics (see below Figure 4.2). The rise-time of the anti-Stokes Raman intensity, indicates that 

the scattering-time between electrons and phonons is on the order of ~400 fs, i.e., longer than the 

for e-e interaction. However, the phonons, which are primarily responsible for cooling the hot 

electrons, have energies on the order of meV, which is generally smaller when compared to the 

excess energy of the carriers.  For instance, a carrier pair generated in a carbon nanotube with 

band gap ~1 eV (semiconducting) with photon energy at 1.6 eV has an excess energy of 600 
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meV, whereas the longitudinal optical (LO) phonon is 200 meV. Three phonons must be emitted 

in order for the carrier pair to get rid of its excess energy, or in other words 3 phonons must be 

emitted per electron excess energy measured form the bottom of the conduction band. The 

relaxation time due to LO emission is in the scale of picoseconds, around 1.2 ps at room 

temperature. More details about this process are presented in the Chapter 4. 

Intervalley phonon scattering can also be present during the relaxation of the excited 

carriers [23]. Since the valleys are centered at different values of the crystal momentum, in order 

for the momentum to be conserved phonons with large wavevectors q are required. If the 

electron energy is lower than a phonon quantum below the minimum of the destination valley, 

then the intervalley scattering does not occur. The internal thermalizaton, which is in the scale of 

femtoseconds, and the e–ph interactions, which take place in the scale of picoseconds, are 

sufficiently different and thus easy to identify. Zamkov et al. [72] did measure the decay time of 

the excited charge carriers using MWNTs, and they found ~220 fs for the e-e interaction and 1.9 

ps for the decay through e-ph interactions. These measurements are presented in Figure 3.6 and 

were taken with the same apparatus shown in Figure 3.2. Figure 3.6 shows the evolution of the 

photoelectron intensity versus the time as measured by Zamkov et al. [72]. The signal at longer 

time delays slowly decays and reflects the relaxation of the energy (temperature) of the 

thermalized electron population towards the lattice background value.  

The electron-hole pairs can also recombine by radiative or non-radiative processes. 

During the first process a photon is emitted with energy equal to the energy difference between 

the initial and final states. Both the electron and the hole have identical wavevectors such that the 

energy and momentum conditions are conserved. The radiative process takes place on a 

nanosecond scale, therefore it is very slow compared to the other. Consequently, it does not play 

a significant role in the dynamics on the picosecond and sub-picosecond timescales.  For the 

non-radiative processes, the so-called Auger recombination, the e-h recombination energy is not 

emitted as a photon but is transferred to an electron or a hole. While electron-hole energy 

transfer does not change the total energy of the e-h pair, Auger recombination leads to heating of 

the electronic system, which in turn can slow down the carrier dynamics. In carbon nanotubes, 

which are characterized as one-dimensional systems (1D), the effective Coulomb interaction is 

greatly enhanced and the optical transitions lead to the formation of strongly bound e-h pairs, 

known as excitons. Exciton-exciton annihilation through Auger recombination can be driven by 
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the Coulomb interaction if more than one exciton are present. It has been found that the rate of 

this process increases sharply with the exciton binding energy [11].  

 

 

 

Figure 3.6 The two-photon photoemission signal as a function of the delay between the pump 

and the probe beams. The signal is recorded for electron energy of 170 ± 20 meV above the 

Fermi level. This figure is adopted from [72]. 

 

Another important mechanism that reduces the free-carrier density in the laser excited 

region is the diffusion, which refers to the average motion of free carriers from high-carrier 

density regions to low-carrier density regions. If the laser spot is larger than the penetration depth 

δ, then the carrier density varies only in the direction normal to the sample surface: N(z) = 

N(0)exp(-z/δ). In this case the diffusion time τdiff is proportional to δ2. 

 

3.2.5 Excitation scheme and spectral analysis 

 

The sample is initially excited with the IR pump beam with photon energy of 1.57 eV, 

which promotes the electron population from just below the Fermi level into the conduction 

band. The resulting charge distribution consisting of electron-hole pairs is then probed with the 
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delayed UV pulse, with an energy of 4.71 eV, which energetically exceeds the sample work 

function eΦ of ~ 4.41 eV by ~ 0.3 eV. In this configuration, the energy-dependent lifetimes of 

both the conduction electrons and the valence holes can be investigated [24]. The initial-state 

energy (E-EF) of photoemitted electrons with respect to the Fermi level, EF, is obtained from 

their kinetic energy Ekin using the relation 

 

                                      (E-EF) = Ekin + eΦ - hvprobe                                                       (3.4) 

 

where eΦ is the work function of the sample and hv the energy of the probe beam (UV at 263 

nm).  

 

 
 

 

Figure 3.7 Photoelectron spectra of DWNTs. The red line is due to simultaneous pump and 

probe (790 nm and 263 nm) pulses, while the blue line is only due to probe pulse (only 263 nm). 

The inset represents the excitation scheme (more details are given in the text). 

 

 

The photoelectron signal before and after the perturbation with the pump pulse is 

presented in Figure 3.7. The probe beam exceeds the work function of the sample, thus it can 
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excite electrons from below the Fermi level to the vacuum in our experiment. In order to isolate 

the photoelectrons originating from the excited states above the Fermi energy, we recorded the 

change in the photoemission signal induced by the IR pump pulse (ΔI = Ipump+probe – Iprobe). The 

spectrum due to probe beam only has been subtracted from the spectrum due to both beams.  

Figures 3.8 and 3.9 present the difference between the two spectra. This ‘‘excitation’’ 

difference reflects the non-equilibrium carrier distribution as induced by the pump pulse. The 

negative signal below the Fermi energy is due to vacancies induced by the pump pulse. In 

contrast, the positive signal above the Fermi level increases due to the electrons that have been 

removed from occupied states. 

 

 

 

 
 

Figure 3.8 The time evolution of the photoexcitation spectra, which show the changes in the 

electron distribution due to absorbed energy from the IR pump pulse. For negative delay (red 

line) the signal is very small and is due to the UV probe pulse, which exceeds the work function 

of the sample in energy. 
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Figure 3.9 Changes in the Fermi-Dirac distribution due to different electronic temperatures. The 

red line shows the experimental data for delay 570 fs. The brown line is the difference of two 

Fermi-Dirac (F-D) distributions; one of them characterized by the room temperature 300 K and 

the other one by an elevated temperature of 2000 K.  

 

 

A fit to the Fermi-Dirac (F-D) distribution of the experimental data is usually used to 

determine the electronic-system temperature, and in turn estimate the internal energy. The 

function which has been used for this purpose is the difference between f (Te), which represents 

the pump-induced changes in the distribution of the electrons with Te being the electronic 

temperature, and the distribution f (Tl), where Tl is the lattice temperature. This is a very good 

approximation for estimating the internal energy of a non-thermal electronic system [16]. For 

long delays (i.e. > 400 fs) between the pump and probe pulse, an equilibrium between electrons 

and phonons has been established and the F-D statistic describes the system. Figure 3.10 shows 

the fit of the data with the F-D distribution for a delay of 570 fs. The data are well described at 

this delay time. The reason is that the system requires some finite time, a few hundreds of a 
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femtosecond, in order to reach its internal equilibrium after the perturbation by the pump pulse, 

which can then be described by a F-D statistics. 

 

 

 
 

Figure 3.10 Photoexcitation spectra for a delay (570 fs) between the pump and the probe beams. 

The data are well described by the Fermi-Dirac statistics at an elevated temperature Te, of the 

electron gas.  

 

 

Another way of calculating the internal energy of the excited electronic gas is by using 

equation (3.13). It is described in the next section.  

 

3.3 Two-Temperature model approximation, internal thermalization cooling 

of the electron gas and electron-phonon interactions 
 

The optically excited carriers, electrons in the conduction band and holes in the valence 

band, lose their excess energy and relax to the band minimum (electrons) or to the band 

maximum (holes) by several types of interactions as has been mentioned above. The cooling of 

the thermalized electron gas with temperature Te can be attributed to the coupling with the 

phonons of the lattice with temperature Tl. The Two-Temperature model (TTM) [25], which is 
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described by a set of coupled differential equations (3.7 and 3.8), is invoked to give a description 

and interpretation of the electron-phonon coupling between the carriers’ and the phonons’ 

dynamics.  

 

3.3.1 Internal thermalization 

 

The electron gas immediately after the excitation is internally thermalized mostly through 

electron-electron scattering. At high excitation energies above the Fermi level, EF, the relaxation 

rate of the hot electrons is faster since more phase space is available. At energies close to the 

Fermi level this process becomes slower due to the secondary electron contribution. The FLT for 

electron interactions explains this trend. The lifetime τe-e is given by equation  
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where m and e are the electron mass and charge, respectively, and n is the density of the electron 

gas [18,19]. A behavior similar to lifetime behavior described by equation (3.5), is observed by 

Zamkov et al. [17]. They performed measurements close to the Fermi level (0 < E − EF < 170 

meV) and found that the measured lifetimes follow the FLT power-law energy dependence [17]. 

The decay rates depend not only on the carrier energy, but also on the initial-state sub-band, due 

to constrains imposed on e-e scattering processes by momentum and energy conservation 

[16,26]. 

The decay of the primary electron distribution is described by the differential equation,  
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where S(t) is the excitation rate that is proportional to the pump pulse envelope, and N = N(E,t)  

is the transient population. 
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3.3.2 Electron phonon interactions 
 

The thermalized electron gas due to e-e interactions even though it has acquired internal 

equilibrium (redistribution of the energy) is far away from equilibrium with the lattice. At this 

stage the electrons follow the F-D distribution with characteristic temperature Te. This 

temperature represents the excess energy of the non-equilibrium electrons (initial free-carrier 

excess energy) and it corresponds to the energy above the conduction band minimum for 

electrons and the energy below the valence band maximum for the holes. The time evolution of 

the energy in the two subsystems is described by a set of coupled differential equations 

introduced by Anisimov et al. [25] 
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In equation (3.7), Ce is the electronic heat capacity, and! "!T
e( )  is the diffusive electronic heat 

transport out of the excited region. This term can be neglected because it describes a very slow 

process. For instance, it is ~ 0.05 W/cm⋅K for graphite. The diffusion timescale is of the order of 

100 ps. This process is too slow to be relevant to the time scale of the observed electron-cooling 

rate. The coupling term H T
e
,T

l( )  plays a crucial role and it represents the rate that the electronic 

system loses energy towards the lattice when Te  > Tl. In other words, it describes the rate that the 

energy flows from the electronic system to the phonons. S t( )  is the source term and it describes 

the absorbed laser energy density per unit time. 

The lattice can be thought of as a sink which stores all the injected energy, a process 

which is completed on the picoseconds timescale. Regarding equation (3.8), Cl is the lattice heat 

capacity with 
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term ! "!T
l( )  is absent in this equation because heat diffusion occurs much more rapidly 

through the electron gas than through the lattice phonons. The electronic heat capacity is then 

given by [27]  
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where N(EF) is the density of states at the Fermi energy.  For instance, in metallic SWNT (9,9) 

the density of states N(EF) at the Fermi level is 0.015 atom-1eV-1 [16,26], while for the graphite 

the N(EF) is 5.5 × 10-3 atom-1eV-1 [16,26]. Thus an average electronic heat capacity with a 1:2 

mixture of metallic to semi-conducting tubes is 12 µJ/mole⋅K, which is almost the same as for 

the graphite 13.8 µJ/mole⋅K. The electronic heat capacity at room temperature is much smaller 

than the lattice specific heat, which is 7.8 J/mole⋅K [24]. Thus the lattice temperature does not 

increase noticeably. 

Neglecting the lattice heat transport (since it occurs in the nanosecond scale), and 

assuming that the radius of the laser spot is much larger than the penetration length (~15 nm for 

graphite at 790 nm wavelength) and using the fact that the specific heat of the lattice is 100 times 

larger than the electronic specific heat, we end up with the simple formula 
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where C
e
T
e( ) = !T

e
. The energy transfer rate is a sum over all the elementary one-phonon 

absorption and emission processes weighted by the energy transfer per collision [28]  
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where Wq,k

e  and Wq,k

a are the transition rates for emission or absorption of a phonon - with 

wavevector q - by an electron in the state k. The set of the coupled differential equations (i.e., 3.7 
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and 3.8) is know as the Two Temperature Model (TTM) [25], which describes the energy flow 

rate after the laser excitation of the electronic system. 

Experimentally, the energy transfer rate H T
e
,T

l( )  can be measured using TR-TPP 

spectroscopy as follows. The function H T
e
,T

l( )  can be written in terms of the internal energy 

Uint of the electronic system 
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The calculation of the internal energy Uint can be carried out using only the positive energies 

from the photoemission signal (such as the one shown in Figure 3.8). 
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The first term Uint(Tl) in equation (3.13) is the electronic energy before excitation when the 

system is in equilibrium with the lattice. The factor of 2 is due to the contribution of the holes 

and B is a normalization constant, while ΔI is the measured change in the photoemission signal. 

The constant B is calculated using the temperature obtained by the F-D differences fit (see Figure 

3.9) but for very long delay times such that the internal thermalization is switched off.  

We note that both methods, i.e., the F-D distributions difference and formula (3.13), give 

similar results with very small deviations. 

The internal energy Uint(Te) of the electron gas is calculated using the relation 

U
int
(T

e
) = !T 2  with γ = 2.4 J/m3K2 and T derived from the F-D fit. The decay curve of this 

energy as a function of time is presented in Figure 3.11. The experimental data have been fitted 

with a simple exponential decay function exp(-t/τ), and a decay time of 1.52 ± 0.76 ps has been 

found. Our data correspond to delays ≥ 500 fs, where in this region the e-e interactions have been 

switched off. The laser beam instability (vibrations, drifts) did not allow us to gather data for 

shorter delay times.  
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Figure 3.11 The temporal evolution of the energy density Uint(Te). The blue line is an 

exponential fit of the data. 

 

 

The energy transfer rateH T
e
,T

l( )  is obtained by differentiation of the data shown in 

Figure 3.11 with respect to time. These rates are plotted as a function of the temperature 

difference ΔT = (Te - Tl), where Tl = 300 K, in Figure 3.12. A strong non-linear increase in the 

rate with the temperature is observed. Using the theory of Allen [14, 26], the data shown in this 

figure can be fit with   
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where 
 

h =
144! (5)k
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, where ζ(5) = 1.0369 is Riemann’s  zeta function, ΘD is the Debye 

temperature (~1000 K), and  λ is the mass-enhancement parameter [31-33], which is determined 

to be λ = (1.16 ± 0.16) × 10-4.  

 

 

 
 

 

Figure 3.12 The energy transfer rate, H(Tl-Te), from the electronic system to the lattice versus 

the temperature difference between the electronic system and the lattice. The solid line is the fit 

of the data given by equation (3.14), with h as adjustable parameter. 

 

Using the following equation  
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given by the Allen theory [14,31] and the value of the mass enhancement parameter, λ, which we 

found above, it is possible to calculate the electron-phonon scattering time. In the above equation 

ζ(3) = 1.2020 and ωD ~ 2.3 × 1013 sec-1
 is the Debye frequency, while using λ = (1.16 ± 0.16) × 

10-4 gives τe-ph = 25 ± 1 ps which, in combination with the Fermi velocity of υF = 106 m/sec, 

corresponds to 25 ± 1 µm mean free path le-ph at room temperature for DWNTs. Hertel et al. 

[15,16] have calculated the same order of magnitude for the mean free path of SWNTs in 

bundles. Actually they found it equal to 15 µm. Taking into account that in our study the samples 

are DWNTs and the fact that the resistivity is inversely proportional to the number of shells, this 

large value of the le-ph is totally compatible with previous studies.  

 To conclude this section, we studied the energy transfer rate from the electronic system to 

the lattice, and we determined the mass-enhancement parameter λ = (1.16 ± 0.16) × 10-4, which 

represents the electron phonon coupling strength. Using this information we finally found the 

mean free path for DWNTs samples to be le-ph = 25 ± 1 µm, which is of the same order of 

magnitude as the values found previously for SWNT. 
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CHAPTER 4 - Temperature dependence of the anharmonic decay of 

optical phonons in carbon nanotubes and graphite  

 

4.1 Introduction 
 

 Carbon nanotubes, due to their structure, have unique properties and are ideal systems 

for the study of many fundamental physical phenomena in one-dimensional materials. Lately, 

graphite has also attracted great interest because of its similarity to graphene and nanotubes. In 

particular, SWNTs are potential candidates for nanoscale electronic devices and interconnects, 

based on the fact that they can carry a high current density. However, there are mechanisms that 

limit the current through the nanotubes, such as electron-electron or electron-phonon scattering. 

Extensive investigations of electron-electron [34-36] and electron-phonon [37-39] interactions 

have been reported in the literature. The phonon-phonon interactions, which are related to the 

temperature, play an essential role in thermal transport and induce variations in the mobility of 

the charge carriers. A non-equilibrium population of optical phonons can be created at the zone-

center and at the edges of the Brillouin zone, for SWNTs under high electrical bias conditions, 

[29,40-43] or by optical excitation. The presence of these hot optical phonons has been shown to 

reduce the mobility of the charge carriers. Current saturation and negative differential resistance 

behavior in nanotubes have been attributed to these hot phonons [29,42-44]. It is apparent that 

the decay rate of these phonons, through anharmonic interactions, will influence the non-

equilibrium phonon populations and, hence, the electrical transport properties. Raman scattering 

provides a means of study of such nonequilibrium phonons. Important information about the 

mechanisms responsible for the broadening can be extracted from the linewidth of the Raman 

signal [45,46]. Temperature-dependent effects including phonon-phonon and electron-phonon 

scattering contribute to the total linewidth. However, the dominant contribution to the linewidth 

results from the electron-phonon interaction; thus it makes it difficult to deduce the lifetime of 

the hot phonons against anharmonic decay from Raman line-broadening measurements. 

An alternative method is to probe the lifetime of the non-equilibrium optical phonons 

directly in the time domain [47]. This can be accomplished by time-resolved Anti-Stokes Raman 
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(ASR) scattering. This technique constitutes a reliable tool for investigating these non-

equilibrium populations.  Measurements of the lifetime of the zone-center (G-mode) optical 

phonons in graphite and SWNT in room temperature have already been carried out by our group 

[48,59], by monitoring the ASR signal in the time domain. Decay times of 1.1 ± 0.2 ps (for 

SWNTs) and 2.2 ± 0.1 ps (for graphite) were found. Recently Kang et al. [49] extended the 

above work for SWNTs from room temperature to ~ 450 K and found a decay time ranging from 

1.2 ps to 0.9 ps.  

In the present work we measure by time-resolved anti-Stokes Raman spectroscopy (ASR) 

the relaxation rate of optically excited zone-center (G-mode) optical phonons over an extended 

temperature range, i.e., 6 K to 515 K for SWNTs and from 340 K to 685 K for graphite. Using 

these data, we examine possible relaxation channels of the zone-center optical phonons.   The 

phonon population n(ω,T) is a function of the temperature T  and therefore, by changing this 

variable, we can infer what routes the energy follows in order to relax through the anharmonic 

interactions. It is known that an increase of the temperature increases the density of the excited 

acoustic phonons. Therefore, the collision probability between the optical and acoustic phonons 

increases, resulting in an increased relaxation rate. The frequency of the optical phonons is also 

slightly shifted [50-53,60].  

 

 

4.2 Experimental 

4.2.1 Laser system and pump-probe setup for time-resolved Raman spectroscopy 
 

In our experiment the laser beam exciting the samples had an 800 nm central wavelength, 

and it was supplied by a 1-KHz repetition rate, regeneratively-amplified, mode-locked 

Ti:Sapphire laser, with pulse duration of ~100 fs. To probe the samples, we introduced a second 

beam at 400 nm at an adjustable delay time. The probe beam, obtained by frequency doubling 

the 800 nm pump beam, had a duration of ~150 fs. The beams had parallel linear polarization.  

The fluences were 0.7 mJ/cm2 for the probe and 2 mJ/cm2 for the pump (see Figure 4.1). The 

samples were mounted on the cold finger of a cryostat (model RC102 from CIA) with optical 
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access. All measurements were made under vacuum (10-6 Torr). Liquid helium was used to cool 

the samples for the low temperatures (6 K and 100 K) regime. For the high temperatures, a 

homemade electrical heater was used. All temperatures were measured with a type K 

thermocouple. 

 

 

 

 

Figure 4.1 Schematic representation of the experimental setup. The delay Δt between the pump 

and the probe pulses was introduced by a mechanical delay stage. The scattered Raman radiation 

produced by the probe beam was collected as shown and analyzed with a spectrometer. 

 

 

 

A charge-coupled device (CCD) cooled by liquid nitrogen was used to detect the 

scattered light, which was first collected through a laser blocking bandpass filter and dispersed 

by a single-pass spectrometer equipped with a diffractive element of 1800 lines/mm. The 

resolution of our system was restricted by the bandwidth of the probe pulses.  

 All our samples were obtained from commercial sources. The SWNTs were synthesized 

by the High Pressure Carbon Monoxide (HiPCO) process, producing nanotubes with 1-2 nm 

diameter, 5-30 µm length, and purity better than 90%. The SWNTs were a mix of 

B

BO 
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semiconducting and metallic species. Initially, they were in powder form and were dissolved in 

dichloroethane, in order to deposit them on a quartz substrate. For the graphite sample, we used 

Highly Oriented Pyrolitic Graphite (HOPG) with a mosaic spread of 0.8°. Our samples were 

commercial and in particular SWNTs purchased from Cheap Nanotubes Companies and graphite 

from Advanced Ceramics. 

 

4.2.2 Results and discussion of time-resolved anti-Stokes Raman scattering 
 

The pump beam induces a non-equilibrium optical phonon population. This quantity is 

then monitored by the strength of the ASR signal, which is directly proportional to the 

population of excited phonons ( I ! n ) (see Figure 4.2).  

 

 
 

Figure 4.2 Raman spectra of the G-mode for the Stokes and antiStokes signal, with and without 

pump excitation.  The probe wavelength for the Raman measurements is 400 nm. The left panel 

shows the Stokes signal at 427 nm, with and without excitation of the pump pulse. The shoulder 

at 423 nm is the D-mode peak due to defects in the sample. The right panel shows the anti-

Stokes Raman signal at 375 nm, with and without excitation. It is obvious that the effect of the 

excitation pulse is more pronounced. A slight blue shift is observed for the pumped spectra of 

Stokes and anti-Stokes in both panels (see details in the text). 
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Thus, by introducing a time delay between the pump and the probe beam, we can monitor 

directly in the time domain the decay of the phonon population. The procedure we followed was 

to collect spectra as a function of the delay time and integrate the Raman intensity measured at 

each delay.  

 

 
 

Figure 4.3 Anti-Stokes Raman signal for graphite (left panel) and for SWNT (right panel). The 

signal of the Eg mode optical phonons is plotted as a function of the delay time Δt introduced 

between the pump beam (800 nm) and the probe (400 nm) beams, for different initial sample 

temperatures. The data are fitted with an exponential decay, convolved with the instrumental 

response function (shown as solid lines). The inset in each plot shows the contribution Γph-ph to 

the Raman line (in cm-1) due to phonon-phonon interactions. The Γph-ph is a small contribution to 

the total width and is given by the imaginary part of the phonon self energy. 

 

 

We derive the decay time τ by fitting the data with the convolution of the instrument response 

function and an exponential decay. Figure 4.3 displays our measurements of the anti-Stokes 
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Raman scattering intensities for graphite and SWNTs as a function of the delay of the probe 

beam for different temperatures T. We also show the corresponding decay rate (FWHM of 

spectral line in cm-1) in the inset of each set of measurements. 

In terms of phonon lifetimes, we measured 1.23 ± 0.15 ps at 6 K and 0.75 ± 0.15 ps at 515 K 

decay times for SWNTs, corresponding to our extreme temperature limits. For graphite we found 

1.92 ± 0.02 ps at 340 K and 1.27 ± 0.05 ps at 685 K. Our measurements for room temperature 

are consistent with results from previous studies [48,49,59] for both samples. Measurements at 6 

K and 100 K for SWNTs, i.e., 1.23 ± 0.15 ps and 1.18 ± 0.08 ps, respectively, show no 

significant difference.We find that the relaxation time of the zone-center optical phonons (G-

mode) in the nanotubes is shorter compared to that in the graphite. This result is probably due to 

the coupling between the G-mode and the additional radial-breathing mode (RBM) [54], pinch, 

and bending modes that do not exist in the graphite.  

 

4.2.3 Anharmonic scattering 
 

We first consider briefly the origin of the non-equilibrium phonons produced by the laser 

pump pulse. These phonons are produced by two mechanisms: by absorption of a photon [37,39] 

or by exciton-exciton annihilation [55] (Auger recombination). The latter procedure produces a 

high-energy electron-hole pair that is cooled by emission of phonons. The cooling process 

described above will lead to a large non-equilibrium population of optical phonons and also to an 

electron-hole gas, whose temperature is higher than that of the lattice. The fast rise time of the 

ASR signal verifies that the electron-phonon interaction is also a very fast process. According to 

our measurements (Figure 4.3) the rise-time for the build up of the phonon population is < 400 fs 

for both samples.  

 From the ratio of anti-Stokes to Stokes intensities IAS/IS at 300 K (Figure 4.2), we obtain 

a G-mode phonon population n = 0.3 due to the optical excitation for SWNT. From this we 

deduce an effective temperature of 1560 K for the G-mode phonons, which confirms the creation 

of this non-equilibrium distribution by the pump pulse. The temperature is much greater than 

what could be caused by laser heating effects. We can estimate an upper limit of the local surface 

temperature of the graphite under the laser irradiation. The fluence we use is ~2 mJ/cm2 and the 
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radius of the spot is ≥ 500 µm. The penetration depth is ~ 15 nm [56] at 800 nm and Cp = 8.58 

J/mol⋅K at 300 K. The transient temperature increase of the sample surface after the pumping is 

T = F(1-R)α/ρCp ~ 450 K, where the reflectance R is equal 50% [57].  The considerably higher 

effective temperature observed for the G-mode optical phonons shows that the pump pulses 

create non-equilibrium phonon populations. 

 We now discuss the temperature dependence of the decay processes for the G-mode 

phonons.  In the harmonic approximation, phonons are independent of each other. However, in a 

real crystal, the vibrations are not harmonic and the V3 (third) anharmonic term of the expanded 

potential energy of the crystal describes the phonon-phonon interactions.  These become more 

important as the temperature of the crystal increases. 

We can write the intrinsic linewidth as Γin = Γe-ph + Γph-ph, where Γph-ph represents the 

inverse of the anharmonic phonon lifetime, 1/τ, and Γe-ph is the contribution from electron-

phonon interactions. The width Γph-ph due to phonon-phonon interactions is given [50-53,60] by 

the imaginary part of the self-energy of the phonons 

 

 

! ph" ph (q
'
, j,#G ) =

36$
!
2

V
3

q
'

j

q

j
1

"q
j
2

%

&'
(

)*

2

{[1+ n(q, j
1
) + n("q, j

2
)]

q, j1 , j2

+

,- (#G (q
'
) ". (q, j

1
) ". ("q, j

2
))

+ 2[n(q, j
1
) " n("q, j

2
)], - (#G (q

'
) +. (q, j

1
) ". ("q, j

2
))}

 (4.1) 

 

where n = [1/exp(ωq,j/kBT)-1]-1  is the Bose-Einstein distribution. The frequencies ω(q, j1) and 

ω(−q, j2) are those of the lower energy phonons into which the G-mode phonon (at frequency 

ΩG) decays. Here j1, j2 denote different branches in the phonon dispersion curves. The matrix 

element V3 is proportional to the third derivative of the inter-atomic displacement. At the Γ point 

of the Brillouin zone the optical phonons are defined to have zero wave vectors (q′ = 0). Since 

conservation of energy and momentum must be satisfied, we require 

!G (q
'
) =" (q, j

1
) +" (#q, j

2
)with q' = q

j
1

! q
j
2

. The first term in equation (4.1) corresponds to 
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the down-conversion process, where the initial ΩG phonon with wave vector q′  ~ 0 decays into 

two lower-energy phonons ω(q, j1), ω(−q, j2) with opposite wave vectors (Figure 4.4). The 

down-conversion process always has a finite contribution even at 0 K. The second term describes 

the up-conversion process, where an optical phonon is scattered by a thermal phonon of 

frequency ω(q, j1), resulting in a phonon of higher frequency ω(q, j2), This process is 

unimportant in CNTs and graphite, since the zone center optical phonons have  (essentially) the 

highest frequency of any phonons in the system. Thus the second term is not included in the 

function used to fit our data shown in Figure 4.5.  

 

 

  
 

Figure 4.4 The upper panel represents the decay channels of the G-mode optical phonons at the 

Γ point of the Brillouin zone that have been predicted theoretically. The lower panel shows the 

predicted spectrum of the generated phonons.  These plots have been adapted from [61]. 

 

 

Another implication of equation (4.1) is that the linewidth depends on the temperature through 

the occupation numbers, n, of the phonons, into which the optical phonons decay. Analysis of the 
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temperature dependence of the phonon lifetime thus provides information about possible 

channels. For j1≠ j2, equation (4.1) results in a combination channel; for j1 = j2 (Klemens model 

[58]), it gives an overtone channel, depending on the band structure of the material under 

investigation.  

 In the Klemens model [58], an optical phonon decays into two acoustic phonons of 

opposite wave vectors, q, and equal energy ω(q,j1) = ω(−q,j2) (overtone). This leads to Γph-ph∝ 

[1+2n(ΩG /2)]. However, the last relation does not fit our data well, suggesting the overtone 

channel is less likely in our case than the combination channels. Therefore we fit our data with 

equation (4.1) for a decay into pairs of phonons with different energies. We thus treat ω1 as an 

adjustable parameter, with the sum of the two phonons giving ΩG = 1585 cm-1. Figure 4.5 

represents a comparison of the temperature dependence of the experimental data and the results 

of the fit to equation (4.1). We find 306 cm-1 and 1279 cm-1 for the frequencies of the resulting 

phonons and 0.82 ± 0.05 ps-1 for the rate Γph-ph at T = 0 K in SWNTs (see Figure 4.5). For 

graphite, the corresponding parameters are 452 cm-1, and 1133 cm-1 with an  anharmonic rate 

equal to 0.47 ± 0.05 ps-1 at zero temperature. These results are summarized in Table 4.1.  

 

 

Sample 
ω( q,j1) 

[cm-1] 

ω(−q,j2)  

[cm-1 ] 

Anharm. const.  

[ps-1] 

Graphite 452 1133 0.47 ± 0.05 

SWNT 306 1279 0.82 ± 0.05 

 

Table 4.1 Frequencies of the decay channels of the G-mode phonons for graphite and SWNTs. 

These values arise from the fits of equation (4.1), as discussed in the text. 

 

 

 The occupation of the created phonons should follow the selection rules, L⇔T+T, L⇔T+L 

[57,62], where T and L denote the transverse and longitudinal polarization branches, 

respectively. We find that the values of ω1, and ω2 for the graphite are in good agreement with 
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the theoretical prediction of Bonini et al. [61]. Since there is no theoretical prediction for SWNT, 

we compare our results with that of graphene [61].  

 

 

 

Figure 4.5 The relaxation rate of the G-mode optical phonons in SWNT and graphite as a 

function of temperature. The left vertical axis represents the corresponding width (measured as 

the FWHM) of phonon-phonon interactions in cm-1, while the right vertical axis gives the decay 

rate in ps-1. The data for SWNT (green points) and graphite (red points) are fitted with equation 

(4.1) (solid lines), while the extrapolations of these fits are shown with dashed lines. The blue 

points represent the theoretical prediction of Bonini [61] for the decay rate of graphite (see text). 

Since there is no prediction for SWNT, we compare our results with the predictions of [61] for 

the graphene/graphite. In particular, the two top blue curves are the theoretical models of [61] 

multiplied by factors of 1.5 and 2.8, respectively. However, one has to keep in mind that two 

somewhat different systems have been compared. The inset shows a three-phonon process, 

where the ΩG decays into two lower energy phonons E1 = ω(q, j1) and E2 = ω(−q,j2). 
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We find that the relaxation rate for SWNTs while of the same order of magnitude as for 

graphene, is approximately a factor of two greater.  This is presumably due to the presence of 

additional phonon modes, as mentioned above. From our analysis above, the inferred energies of 

the two final phonons are between  ~ 300 cm-1 and ~1280 cm-1.  

Bonini et al. performed ab-initio calculations of the anharmonic decay of the G-mode 

phonons in graphene. They found that the higher percentage (56%) follows the decay channels 

TA-LA and the remaining (44%) follows all other channels. We can safely argue that the decay 

channels that we found in the energy range mentioned above are the TA, LA branches. The 

difference between ω1 and ω2 is 973 cm-1 for SWNT, and 681 cm-1 for graphite.  

In the high-temperature regime, i.e., for T  !  ΘD, where ΘD is the Debye temperature, 

n(ω) ≈ ω /kBT. Thus, it can be shown from equation (4.1) that 1/τ ∝T. For the G-mode optical 

phonons equal to 0.196 eV (corresponding to a temperature of ~ 2279 K) a very high 

temperature must be reached before the relaxation rate becomes linear with the temperature. This 

also means that for other modes with lower energy the linear behavior will be reached at lower 

temperatures. According to our results (Figure 4.5), the linear behavior of the relaxation rate is 

observed at T ≥ 295 K, so it cannot be considered that we are in the high-temperature limit. This 

has also been observed by Kang et al. [49] without any explanation.  

All the measured decay lifetimes for SWNTs we have reported so far are for an average 

over metallic and semiconducting CNTs. Our results agree well with those reported in [49], 

despite the different substrate and diameters of the nanotube samples. This confirms that there is 

no obvious dependence on environment or diameter for the range of our investigations. 

 

4.2.4 Anti-Stokes Raman blue shift 
  

In addition to the changes in the decay rate of the G-mode phonons with the initial 

temperature (Figure 4.5), a time dependence in the G-mode energy shift (see Figure 4.6b adapted 

from [59]) is also observed for measurements in graphite. In particular, an increase of the optical 

phonon frequencies with the pump excitation of the sample has been observed. The shorter the 
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delay time between the pump and the probe pulses, the higher the frequency of the G-mode 

phonons. 

 

 

 
 

Figure 4.6 The G-mode phonons time evolution adapted from [59] is depicted. (a) The anti-

Stokes signal intensity from the non-equilibrium phonons is shown on the left axis and the 

corresponding phonon population on the right axis. The data are fitted with an exponential decay 

function with time constant of 2.2 ps, convolved with the response function of the instrument 

(shown in red). (b) The shift of the energy of the phonons as a function of delay time. The blue 

line represents the Raman signal in the absence of the pump beam. (c) The inferred evolution of 

the phonon and electronic temperature as a function of delay time. 

 

 

By using the phonon population n (shown in Figure 4.6a), their temperature evolution 

(Figure 4.6c) has been derived. This is in turn used to study the Raman shift as a function of the 

transient phonon temperature T (Figure 4.7). The observed shift is about 8 cm-1. 
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Figure 4.7 Observed blue shift of the G-mode optical phonons versus the transient phonon 

temperature (adapted from [59]). The shift is attributed to a corresponding change in the 

electronic temperature, which leads to a shift in the phonon frequency similar to that observed 

for electrostatic doping  [63,64].  

 

 

The blue shift of the energy of the phonons under pump excitation can be understood 

qualitatively in terms of Kohn anomaly. Kohn showed that metals may have singularities in their 

phonon dispersion with !q" (q) = # [68] due to strong coupling between electrons and phonons 

for particular values of the phonon wave vector q. The Kohn anomaly occurs at q = k2 – k1 with 

the phonon having the correct symmetry to couple the electrons at the Fermi energy. In graphene 

the Fermi surface is a single point, hence in the limit k2 → k1 a Kohn anomaly is anticipated at q 

= 0. For q = K, which is the wave vector which connects K, K′, a second anomaly occurs. Similar 

qualitative behavior is expected for graphite. For those wave vectors and phonon symmetries, the 

electron phonon coupling can generate distortions in the lattice known as Peirels distortions 

[69,70]. This effect in turn leads to a reduction of the energy of the system due to the fact that a 

gap in the Fermi energy has been opened up. In the region of such an anomaly, the dispersion 

relation becomes linear with a slope proportional to the electron-phonon coupling. Thus, changes 
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in the electron-phonon coupling will alter the Kohn anomaly and, hence, the phonon frequency 

[59].  

 We can model the energy blue shift of the optical phonons more quantitative using the concept 

of the phonon self-energy [33,65].  Following Ando’s  [66] analysis for the graphene band 

structure, we have for the phonon-self energy 
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where ε is the difference between the  initial and the final state of the electron and 
 
!!

G
is the  

energy of the phonon. The fT(ε) is the Fermi-Dirac distribution functions [66]. The real part 

represents the energy shift (Figure 4.7) and the imaginary Im{!}  the lifetime of the phonon. 

The data have been fitted with equation (4.2) by taking into account only the points which 

correspond to delay times larger than 200 fs, so that the equilibrium between the electronic gas 

and phonons can be established. From the slope of the line one can find the electron-phonon 

coupling parameter λ.  

In summary, we have directly measured the temperature dependence of the anharmonic 

decay rate, Γph-ph(T), for the zone-center (G-mode) optical phonons in graphite and nanotubes by 

time-resolved Anti-Stokes Raman scattering. We find that 1/ Γph-ph(T) varies from (a) 1.23 ± 0.15  

ps to 0.75 ± 0.15 ps  for the temperature range 6 K to 512 K for SWNT, and (b) 1.92 ± 0.02 ps  

to 1.27 ± 0.05 ps  for the temperature range 340 K to 685 K for graphite. Both of these decay 

rates are somewhat faster than predicted theoretically by Bonini et al. [61]. The temperature 

dependence of the decay rate, Γph-ph (T), in graphite agrees well with theory, and we find that two 

decay channels TA-LA contribute most to the decay rate. However, the rate Γph-ph (T) in SWNT 

increases faster than theory predicts for graphene. This suggests the presence of additional decay 

channels involving low-frequency modes, such as the RBM, pinch and bending modes. Higher 

anharmonic decay rates suggest that non-equilibrium phonons may be more difficult to generate 
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than previously predicted. A blue shift of the optical phonons of about 8 cm-1 under the pump 

influence has also been observed for graphite. We anticipate the same effect for the SWNTs. 
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CHAPTER 5 - Conclusions 

 
In this dissertation the ultrafast dynamics of electrons and phonons in graphitic materials 

has been studied. 

  

By using time-resolved Two-Photon photoemission (TR-TPP) spectroscopy we probe the 

dynamics of optically excited charge carriers above the Fermi energy of double-wall carbon 

nanotubes (DWNTs). In particular, we found:  

 

• At long delay time (i.e., 570 fs) after the excitation, an equilibrium has been established 

between the electrons and phonons, and the Fermi-Dirac function describes well the 

experimental data (Figure 3.10). 
 

• The energy of the electronic gas decays exponentially towards the lattice with a time 

constant of ~1.52 ± 0.76 ps (Figure 3.11). 

 

• The energy transfer rate exhibits a rapid non-linear growth with temperature see (Figure 

3.12). 
 

• An electron-phonon mass enhancement parameter of λ = (1.16 ± 0.16)  × 10-4. 

 

• An electron scattering  mean free path of  ~25 ± 1 µm. 

 

The above results are described in Chatzakis et al. (2009a; to be submitted). 

 

 

We also applied time-resolved anti-Stokes Raman spectroscopy to study the optically 

excited zone-center (G-mode) non-equilibrium optical phonon population in single-wall carbon 
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nanotubes (SWNTs) and graphite in a wide temperature range. In particular, we measured the 

energy relaxation rate due to anharmonic interactions between the phonons from 6 K to 515 K 

for SWNTs and from 340 K to 685 K for graphite and we found: 

 

• Decay times of 1.23 ± 0.15 ps at 6 K and 0.75 ± 0.15 ps at 515 K for SWNTs, and 1.92 ± 

0.02 ps at 340 K and 1.27 ± 0.05 ps at 685 K for graphite.  

 

• Results consistent with previous studies at room temperature for both samples, i.e., 1.1 ± 

0.1 ps for SWNTs and 2.2 ± 0.1 ps [59] for graphite, respectively. 

 

• The frequencies of the decay phonons ω1 and ω2 to be 396 cm-1 and 1189 cm-1 with an 

anharmonic constant of 0.82 ± 0.05 ps-1 for SWNTs. For graphite we found ω1 and ω2 

equal to 539 cm-1 and 1046 cm-1 and an anharmonic constant of 0.47 ± 0.05 ps-1. 

 

• The Γph-ph rate in graphite agrees well with theory [61]. 

 

• Two decay channels TA-LA contribute the most to the decay rate. 
 

• The Γph-ph rate in SWNTs increases faster than theory predicts for graphene [61], thus 

suggesting the presence of additional decay channels involving low-frequency modes, 

such as RBM, pinch and bending modes. 
 

• An increase of the optical G-mode phonons energy decay rate with temperature (see 

Figure 4.5), which behaves linearly above room temperature. 
 

• An increase in the energy of the G-mode optical phonons in graphite with the transient 

temperature. 

 
 

These results are described in Chatzakis et al. (to be submitted), and Yan et al. (2008; PRL 

submitted). 
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Appendix A - Electronic energies for graphene and graphite 

Table A.1 Electronic energies of graphite and graphene for the π and σ states at high symmetry 

points. The differences between the calculated and measured values are mostly due to the 

differences between graphene and graphite. 

 

                                Valence (eV)                                   Conduction (eV) 

                      Γ               Μ                 Κ                 Γ                 Μ                 Κ    

 

Graphite (experiment)                

 

π                -8.8            -1.8             -0.2              12.2             2.2              0.46 

                                     -2.6            -0.8                                   2.9 

                 -7.9             -3.1             -0.57 

σ               -4.0            -6.4             -10.3             7.5               8.6             14.7           

                                   -11.8            -11.3  

                                   -16.3 

                  -4.2            -7.8            -11.7 

                 -21.8          -16.7           -14.4 

 

Graphene (calculation) 

 

π               -7.67         -2.35                0.0          11.45             1.66                0.0 

σ                                -6.44             -10.6                                7.56              12.8 

                 -3.05                                                  8.33 

                                   -13.2                                                     12.8              19.9 

                 -19.3         -14.0 

 

* All the information contained in this page has been adopted from [5]. 
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Appendix B - Mass enhancement parameter 

The parameter λ is a factor by which the effective mass of an electron is changed due to 

electron-phonon interactions. and it is given by the following equation 
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being the phonon density of states and ! 2 the electron-phonon coupling. The Eliashberg function 

is given by  
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In equation B.3, g
kk

'
!

 is the electron-phonon coupling matrix element for scattering from one 

electronic state k to another k′ with the emission of a phonon of wavevector q, polarization σ 

and group velocity υ(k). The ! 2
F(k," )  can be thought as a total transition probability from one 

electronic state to another with the contribution of a phonon, while the wavevector q satisfies the 

momentum conservation condition. 

The relation which then describes the increase of the effective mass is 

 

                                                             m*
= m

0
(1+ !)                                                                 B.4 

 

where m0 is the effective mass without electron-phonon coupling.  
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