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Abstract

In this work we present the main concepts of Fourier Analysis (such as Fourier series,
Fourier transforms, Parseval and Plancherel identities, correlation, and convolution) and
illustrate them by means of examples and applications. Most of the concepts presented
here can be found in the book “A First Course in Fourier Analysis” by David W.Kammler.
Similarly, the examples correspond to over 15 problems posed in the same book which have
been completely worked out in this report. As applications, we include Fourier’s original
approach to the heat flow using Fourier series and an application to filtering one-dimensional

signals.
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Chapter 1

Introduction to Fourier Analysis

Fourier analysis, or frequency analysis, in the simplest sense, is the study of the effects of
adding together sine and cosine functions. This type of analysis has become an essential
tool in the study of a remarkably large number of engineering and scientific problems.
Daniel Bernoulli, while studying vibrations of a string in the 1750s, first suggested that
a continuous function over the interval (0,7) could be represented by an infinite series
consisting only of sine functions. This suggestion was based on his physical intuition. Later,
J. B. Fourier reopened the controversy while studying heat transfer. He argued, more
formally, that a function continuous on an interval (—7, 7) could be represented as a linear
combination of both sine and cosine functions of different frequencies which could later be
combined to reconstruct the original function.?

The two main aspects of Fourier Analysis are the Fourier Series and Fourier Transforms.

The Fourier series of a periodic function (with period T) is defined, in rectangular form as

ft) = g {Ak cos<29kt> + By, sin(QﬁTktﬂ )




where the Fourier coefficients A, and B, are given by

2
:—/ COS 7Tkt)dt, k=1,2,...,00

3

T
Ao_? 7§f()

2 (7 okt

Bk:? _;f()sm( 7; )dt, k=1,2,...,00
BOZO.

Given the function f(t), we define the Fourier transform pair as

— / f(t)ef%rist dt,

ft) = /_ Z F(s)e*™ ds.

The first equation is known as the (direct) Fourier transform, and the second equation is
the inverse Fourier transform?

In this section, we will be dealing with functions defined on R, T, Z, and Py. Besides this,
we will focus on Gibbs Phenomenon. These applications stem from different useful properties
of Fourier Transforms, some of them being Parseval Identities, Plancherel Identities, and

Orthogonality relations while the remaining will be covered in the other sections.

1.1 Functions defined on R

If f is any suitably regular complex-valued function defined on R, then it can be analyzed
using
0 .
= / f(x)e ™" dy,  —oc0 < s < o0 (1.1)
This function F'is also a complex-valued function defined on R from which we can synthesize

the function f as

flz) = / F(s)e*™* ds, —o0o << 00 (1.2)

o0

The function F' is said to be the Fourier Transform of f. (1.1) is the analysis equation

and (1.2) is the synthesis equation for f.!



1.2 Example of functions defined on R

In this section, we will illustrate how the Fourier representation (1.1)- (1.2) from section 1.1

is valid for the box function
1 if-i<az<y,
f(x) =< 1/2 ifz =41,
0 ifx<—%orx>%.

(a) Evaluate the integral (1.1) in this particular case and thereby show that

1 if s =0,
F(S) = { sin(7rs) lf S # 0

Solution: Using (1.1) we have,
— / f(l,)e—Qﬂ'isx dr
%

— f(x>6727rism d.??

— + -
—2mis  2mis
sin(7s)

s
1 if s =0,
I QG )
(b) By using the fact that F is even, show that the synthesis equation (1.2) for f reduces

to the identity

fz) = /000 2<Sin7£:8)>cos(27rsx) ds.

Solution: By (1.2) we have,

/ F 2msx d

/ F(s)[cos(2msz) + isin(2msx)] ds.

[e.9]



since F'(s)sin(2wsx) is odd

flz) = /_OO F(s)cos(2msz) ds

= 2/ F(s)cos(2msz)ds

0
< rsin(ms)

=2 ( ) cos(2msx) ds.

0 s
(c) Use integration by parts to verify that
/00 e Pcos(mqs) ds = %, p > 0.
0 P>+ (mq)

Solution: Suppose,
I:/ e Pcos(mqs) ds
0
Using integration by parts

- e (B [ ()
— [e—PS(Mﬂ < [<pe_p:> COS(WQS)] -

Tq 0 m2q 0
P [~
- e P cos(mgs) ds
7r2q2/o
I N
2@ g
Hence,
2
p p
I+ 7qugl = pyel
Therefore,
= p
I = e PPcos(mqs) ds = ———.

(d) Integrate the identity of (c) with respect to ¢ from ¢ = 0 to ¢ = a to obtain

/00 e_ps(w) ds = l arctan(la).
0 T8 T P



Solution: From (c), we have

> p
e Pcos(mgs)ds = ————.
/0 (ras)ds = =Ly

Then Integrating with respect to q from 0 to a,

a (o] _ a p
e PPcos(mqs) dsdq = / —————dg
/qo /so (mas) o P?+mig?
o0 : 1 a
/ e [Sm(ﬂqs) } ds = [arctan <7rq) ]
0 s 0 7 p /o
° sin(mas ma
/ < ) ds = — arctan( )
0 p

(e) Let p — 0+ in the identity of (d), and thereby show that

> sin(mas) _% if a <0
/ —ds = 0 ifa=0
0 s % if a > 0.

Solution: From (d), we have

[e.9] 3 1
/ e_ps(—SIH(WCLS)> ds = — arctan(la),
0 s T P

Thus,

o0

sin(mas 1 a
lim e P? <L> ds = lim — arctan<l>
p—0t Jo TS p—0t T P

/ ( lim e_p5> <M> ds = — lim arctan(ﬂ—a>
0 p—0t+ s T p—0t p

> sin ras 1 2 ?fa <0
ds = — ifa=0
0 T

0
e T ifa>0
—% ifa<0
=< 0 ifa=20
: ifa>0.

(f) Use a trigonometric identity to write the integral from the synthesis equation of (b) in

the form

/°° 2sin (7s) cos (2msx) s — /°° sin[m(1 + 2z)s] ds + /°° sin[7(1 — 2z)s] s

s s s




Solution: We have,

2sin(ms) cos(2msx) = sin(ws + 2mwsx) + sin(ws — 2wsx)

/°° 2sin(7s) cos(2msz) p /OO sin(ms + 2msx) + sin(ws — 2wsx) p
s = s
0 s 0 s
_ /°° sin(ms + 27wsw) s + /°° sin(ms — 2wsz) s
0 s 0 s
_ /°° sin[r(1 4 2x)s] ds + /°° sin[m(1 — 2x)s] is.
0 s 0 s

(g) Finally, use the result of (e) (with @ = 1 £ 2zx) to evaluate the integrals of (f) and
thereby verify the synthesis identity from (b).

Solution: From (e) we have

* sin(mas) —3 ifa<0
/ ———2ds=<¢ 0 ifa=0
0 s ;s ifa>0.

But from (f) we have,

/OOQSin(Ws) cos(2msa) /00 sinfr(1 +20)s] /oo sinfr(1 = 20)s]

s ™8 s

=1+ IL
Then we have the following cases:

(i) When 1 +2z < 0=z < —1
Then, I:—% and H:%

And,when1—2$<():>x>%
We get, =1 and I1=—1

(ii) When 1—’—2]}:0:}1':_%
Then, I=0 and H:%
And, When1—2m20:>x:%

We get, I:% and [1=0



(iii) When 1422 > 0= —1 <=z
Then, I:% and H:%
And,when1—2x>0:x<%

We get, I=1 and I1=3

Combining these 3 cases, we have

/OO 2sin(7s) cos(2msz) s — /°° sin[m(1 + 2z)s] s + /°° sin[m(1 — 2x)s] s

e s ™Ss

1 if—j<z<i
= 1/2 ifxz:l:%
0 ifx<—%0rx>%.

1.3 Functions defined on T,

Let p > 0, a function f defined on R is p-periodic when,
flz+p)=flx), —oo<z <00
This p-periodic function f is analyzed as,
1 4 —2mikx
Fli| = —/ F@)e 5 de, k= 0,41,41... (13)
PJo

F' in this case is a complex-valued function on Z. Using the function F[k] we can construct

[ as,

fz) = i Flkle™ ", —o0o< <00 (1.4)
k=—o00

(1.3) is the analysis equation and (1.4) is the synthesis equation for p-periodic function f.!

1.4 Example of functions defined on T,

In this section, we will derive the cosine and sine transform pair for a regular real valued

function.

Let g be a suitably regular real-valued function defined on the “right hand side” of T,, i.e.

for 0 <o <L



(a) Use (1.3)- (1.4) to observe the cosine transform pair

g(x) = G[0] + QiG[k] cos<2ﬂkx>, 0

and

Glk] = 3/05 g(x) cos<27rpk$> dr,

which shows how to synthesize g from cosine functions.

Solution: Using (1.4) we have

= 2mike
gle)= Y  Glkle
k=—o00
= Z Gk] cos<27rkx>
k=—o0 p
-1 00
2rkx 2rkx
:k;OOG[—kJ]cos< >+;G[k’]cos< » >—|—G
2rkx - 2rkx
= Gk] cos + G|k] cos + G0
> Gl (=) >l (%,7) +cw
— Glo] + QiG[k] Cos<27rkx) 0<z<?
k=1 7 STz
Now, from (1.3) we have,
1 [? _ 2mike
Gk] :—/ gx)e v dx, k=0,£1,£2, ...
P Jo
1 (7 2rkx
= - x) cos dz
p/o 9(x) ( » )
2 [2 2rkx
= — x) cos dz
p/o g(x) ( 5 )
(b) Derive the analogous sine transform pair
= 2
g(x) = ZZG[k:] sin( ka), 0<z< g

k=1

g(x)sin ( 27rpkx) dx.



Solution: From (1.4) we have

gl) = 37 GlKe s

k=—o00

p 1 b

1 [P _ 2mike
G[k;]:—/ g(x)e” v dx, k=0,+1,£2,...
0

1.5 Functions defined on 7Z

If f is any suitably regular function on Z, then it can be analyzed using,

F(s) :]13 S e (1.5)

This function F' is a complex-valued function on T, from which we can synthesize the

function f as,

fln] = /OP F(s)ezﬂ;m ds. (1.6)

(1.5) gives the analysis equation for function on Z and (1.6) is the synthesis equation of f.!



1.6 Functions defined on Py

If f is a complex-valued N-periodic function defined on Z, then it can be analyzed using,

N-1
1 —27mikn

F[k]:NEO:f[n]e " k=0,1,...,N—1 (1.7)

F is the discrete Fourier Transform (DFT). Using this, we can construct the synthesis

function f as,

2mikn

fln] = Flkle™™", n=041,+1,... (1.8)

(1.7) gives an N-periodic discrete function on Z when k takes integer values, so, say F is a

function on Py. (1.8) is the discrete synthesis equation of f.!

1.7 Notes

e [ has real argument s when f is aperiodic (non-periodic) and the integer argument &
when f is periodic.
f has real argument x when F' is aperiodic and the integer argument n when F' is

periodic.

e The argument of the exponentials that appear in the synthesis-analysis equations is
the product of £27i, the argument s or k of F', the argument x or n of f, and the

reciprocal 110 or % of the period if either f or F is periodic.

e Synthesis equation uses +¢ exponential and all values of F' to form f.

Analysis equation uses —i exponential and all values of f to form F.!

1.8 Parseval Identities

If f, g be functions on R with Fourier Transform F', GG respectively, then

/_Oo f(@)g(@) dx = /_OO F(s)G(5) ds. (1.9)

[e.9]

10



If f, g be functions on T, with Fourier Transform F', G respectively, then,

/ f(@)g(z)dx =p i F[K]G[k]. (1.10)

S flnlgl] —p/opF(s)G(s) ds. (L.11)

n=—oo

If f, g be functions on Py with Fourier Transform F', G respectively, then,

Zf NZF k|GIk]. (1.12)

These equations (1.9)- (1.12) are called Parseval’s Identities (the bar on the function denotes

the complex-conjugate of corresponding function).!

1.9 Example on Alternative forms of Parseval’s Iden-
tity

In this section we will illustrate some concepts from section 1.8 by informally deriving
alternative forms of the Parseval identities (1.9)- (1.12) using the corresponding synthesis-
analysis equations and freely interchanging the limiting processes associated with integration

and summation.

(a) Use (1.1)- (1.2) to show that

| taterds= [~ P65 ds

/ F@)G (@) da = /_ Z F(s)g(s) ds.

where F', G are Fourier Transform of the suitably regular functions f, g on R.

and,

Solution: We have,

[ rwntaras= [~ s [ oo

11



/

Letting s = —5/,

[

o)
f / _S/)€—27ris’x ds'

L.
/ T G(-s)ds’ / f(@)e ™" d
—/

T G(=s)ds'F(s)
— / Z F(s)G(—5) ds’
Letting s' = s,
/Z Fl@)g(x) de = /Z F(3)G(—s) ds
Also,

f(ﬁw/wM$€m“%

A
e / J—
[
/

(b) Use (1.7)- (1.8) to show that

and,
> fnGn = Flklglk],

where F', GG are Fourier Transform of the functions f, g on Py.

Solution: We have,



K

Letting k

s /n
e =
= =
a g
RS ©
e u_m
_ i
& S
AN
Wz,k Z
= =
ey S~
TR T
2, g =

finlgln) = N'S" FRG[-K].

ALK

Letting k' = k,

Also,

v o
= W
NZ I _ - -
1_N 1_N =5 =
) =,
ﬂ = L3
NZ: T 1 _ T N_ 1
I I Il
W
©)

(c) Use (1.3)- (1.4) to show that

fx)g(w)de =p Y FKG[-K],

k

13



where F', G are Fourier Transform of the suitably regular functions f, g on T,,.

Solution: We have,

/Opf(x)g(x) i — Op (z) dx kij@a[k]e%ﬁ’"
Letting k — —k.
/ dx—/ fa d:)sk/_oo =Ko =25
= k,_ / f 727”’{ .
- f Gl-KpFIK)
Letting k' — k.
/ F@)g(x) da —pki FIHGH.

(d) Use (1.5)- (1.6) to show that
a P
> Sinlglnl =p [ F(s)G(=s)ds,
n=-—oo 0
where F', G are Fourier Transform of the suitably regular functions f, g on Z.
Solution: We have,

> sl = 3 1l [ 6t

n=—oo n=—oo

/

Letting s = —5/,

o0

3 il = 3 fiol-
:—/O_G dst e
:_/_p

n=—oo

G(—s")ds'F(s)

0

14



Letting s’ = s,

o= [ e

(e) Use (1.3)- (1.4) and (1.5)- (1.6) to show that

/ f@)Gla)ds = Y Fiklglk

k=—o00

n=—oo

where F', G are Fourier Transform of the suitably regular functions f, g on T,, Z
respectively.

Solution: We have,

)= [ ) e i glk]e 5
! /0

=St [

1.10 Plancherel Identities

Setting f = ¢ in equations (1.9)-(1.12) gives,

| 1@pde= [P (1.13)

[e.e] [ee)

@ =p S FHP. (1.14)
> 1l =p [ PGPS (1.15)

N-1
Do WIP=NY IFRP. (1.16)
n=0 k=0

These above equations (1.13)- (1.16) are called Plancherel’s Identities.*

15



1.11 Orthogonality

p-periodic complex exponentials on R are orthogonal, i.e.,

/p exp<27r;kx> eXp(—Q;ilx) dp — { p ifk=I, (1.17)
0

0 otherwise.

where k£, =0,£1,+2,...

Corresponding discrete orthogonal relations are given as:

=

-1

(1.18)

(27m'kn> (—27riln>_ N ifk=11+N,1+2N,. ..
P\ Ty )P N 1 0 otherwise.

where k.1 =0,+1,£2,...}

3
Il
o

1.12 Example to prove orthogonality relations

In this section, we will derive the real version of the orthogonality relation of (1.17).

Let £, [ be nonnegative integers. Use suitable trigonometric identities to show that

. ok o] p ifk=10=0
/cos(ﬂx)cos(ﬂx>dx: P ifk=1#0
0 p p .
0 otherwise,

/Op cos<27rpkx> Siﬂ(ﬁ#) dr =0,

and,

P 2 2 Eoifk=1
/ sin( ka) sin( Wlw) de =42 ' .7&0
0 p p 0 otherwise.

16



Solution: We have,

p 2k 27l
/ COS< il :z;) cos( 7rq:> dz
0 p p

Also,

/Op cos(zﬂp]m> sin(?) dx =

1 [P 2rkx 2mlx

— 2 cos < > cos( ) dx
2 Jo p p

1 D

_ /0 cos[%”(kﬂ)x} +cos[2§(k;—5)x] dz

[\]

1 [sin Tk + D

sin 22 (k — 1)z "
_ 1 P
27
21 S(k+1)

2k —1)

p

P [Sin 2n(k+1)  sin2w(k — l)]

s k+1 k—1
p ifk=10=0

= g itk=101+#0
0 otherwise.

; /Op 231n(?> cos(zﬂpk:B) dx

1 [? 2 2
5/0 sin[%([ + k)x] + Sin[f(l - k)x] dx
1 _—cos%”(k%—l)m cos%”(l—k)xr
5 2w - 21
2| Z(k+1) (k)
1 [ cos 27’T(k—l)sc _ cos Qf(k—i-l)x P
27 2T

I (k=1 Z(k+1)
p |cos2m(k—1) cos2m(k+1) 1 N 1
47 k—1 k41 k=1 k+1
P [ 2 5in? k=1 2sin® 7(k + 1)
47 k—1 k41
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And,

D 2 2 1 D 9 9
/ sin( ka) sin( 7rla:> dx:—/ 2sin< ka) sin(—ﬂx> dz
0 p P B P D
P

/0 cos [Q—W(k — l)x} — cos[2—7r(k: + l)x] dx

2
1
2
1
2

2 / p p
1 sin 27”(1{: — Dz B sin Qf(k+l)x P
- 2w 2

Z(k=1) Tk +1)

sin2m(k —1)  sin2m(k+1)
2| 2m(k—1) 2m(k +1)

[z itk=1£0
0

otherwise.

1.13 Gibbs Phenomenon

The Gibbs phenomenon, named after the American physicist J. Willard Gibbs, is related to
the study of the Fourier series. Consider a periodic function f(x) with jump discontinuity.
If this function is represented using a Fourier series, then the Fourier series is observed
to have oscillations near the discontinuity. Adding more terms to the series causes the
oscillations to move closer to the jump. Actually the overshoot (“a consequence of trying
to approximate a discontinuous function with a partial sum of continuous functions”) at
the jump is larger than that of the function itself. Adding more terms does not cause the
overshoot to disappear. Thus, in an interval containing a point of discontinuity, the partial
sums approximation of f(x) never approaches f(x) uniformly. This phenomenon is referred
to as the Gibbs Phenomenon.

It was in 1848 that Henry Wilbraham first noticed and analyzed Gibbs phenomenon, but it
went unnoticed due to limited analysis. Later, Albert Michelson observed the phenomenon.
He developed a device in 1898 that could compute and re-synthesize the Fourier series up to

n = £79. But the problem with this was that whenever the Fourier coefficients for a square
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wave were input to the machine, it would produced oscillations at points of discontinuities.
So he thought the overshoot was a result of some problem with the machine. In 1899, J.
Willard Gibbs observed that the oscillations were the result of synthesizing a discontinuous
function with Fourier series. Later, Maxime Bocher demonstrated the phenomenon in 1906

and named it the Gibbs phenomenon.*°

1.13.1 Description.

Consider a rectangular function defined as,

. ry 1 if|z|<a
s(@) = Ted(%) B { 0 if |z|] > a.

The wave represented by this function is given by figure 1.1.

08

06

041

02r

Figure 1.1: Rectangular wave s(x)

The Fourier series of this function is given as

S(x) =2« Z sinc(2ak)e*™
k=—00

where, the sinc function is given in chapter 3 by equation (3.2).

The K partial sums Sk () is,
K
Sk(z) =2a Z sinc(20k)e*™ e
k=—K
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It is clear from figures 1.2, 1.3, 1.4 and 1.5 that as the number of terms rises, the oscillations

] L L L L L L L L L % L L L L L L L L L
08 04 03 020 01 0 01 0z 03 04 05 06 04 03 02 01 i} o1 02 03 04 05

Figure 1.2: Gibbs Phenomenon for K=5 Figure 1.3: Gibbs Phenomenon for K=15
12 T 152

|

0ar
0B
04F
02r

n-—-—wm/‘ jwm

02 L L L L L L I L I 032 L I L I L I L I L
08 04 03 02 01 u] 0.1 0z 03 04 05 456 04 03 02 01 o 0.1 02 03 04 04

Figure 1.4: Gibbs Phenomenon for K=50 Figure 1.5: Gibbs Phenomenon for K=125

move closer and closer at the points of jump. It turns out that the Fourier series exceeds

the height of the rectangular wave by
t
/ Slidt T 3(0.089490. )

or about 17.9 percent. Actually the jump in the partial series is approximately 18 percent

more than that of the original function.

20



1.13.2 Gibbs phenomenon for wj

Define £ := 2nz = -, so that £ provides us with a measure of x in units of % We can
2n

then write

sn(T) = SN(%)

in 27k (5-)

n
=2 :
Z sin 7 ( kE )€
B LIS
where s, (z) is the sequence of partial sums of Fourier series of the I-periodic saw-tooth

function w, given as

wm:{? ifw =0 (1.19)

53— fo<z<l.

that is continuously differentiable at all points of T; except the origin. In terms of Fourier

representation, we have

W, = ism(?_wkx) (1.20)

k
k=1
and s, (x) is this sequence of partial sums of w,(z).

This s,(z) is a very good Riemann sum approximation

to the Gibbs Function,

¢ sin 7u
¢(&) ::/O du. (1.21)

when n is large and 2nx is of modest size.

1.13.3 Example of Gibbs Phenomenon on piece-wise smooth func-
tions

To further illustrate the concepts of section 1.13, in this section we will study the Gibbs
phenomenon associated with Fourier’s representation of piecewise smooth functions on R

with small regular tails.
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(a) Show that the glitch function defined in Exercise 1.40 of Chapter 1, ‘A First Course in

Fourier Analysis’ by David.W.Kammler has the Fourier representation

|z ife<0 * 4rssin(2msr)

z(x) == 0 ifx=0 :/ — 5 ds.
2| e itz>0 s=o  L4dms

Solution: We have,
—2mis
Z(8) = ———.
() 1 4 4m2s2

Then,

o0
Z(s g2rise ds, —o00o<x <00

88

—27rzs

=/
/
/

27risa: ds

88

—2ms
1+ 4m2s?
—2ms
1+ 4m2s?

(cos2msx + isin 2msx) ds

88

* _2ms

1+ 47252

sin(2wsx) ds

cos(2msx) ds + i /

o0 —0o0

|
o

2
+ 2/ ﬁsm@wsx) ds
0

/ sin(2wsx) ds.
0

1+47T 1+ 4n2s2

(b) Let

L .
4mssin(2msx)
(@) /0 1+ dm2s? 7

be the approximation to z that uses only the complex exponentials having frequencies

in the band —L < s < L. Show that
1
zp(x) = z(x) + ((2Lx) — §sgn(x) + Rp(x),

where ( is the Gibbs function (1.21) and

[ sin(27so)
Re(e) = /L ms(1 + 472s?) ds

Solution: We have,
1
s1(w) = 2(2) + ((2Lx) = Ssgn(z) + Ry ()

22



ie.,

zr(x) — z(x) — (2Lx) + %sgn(:ﬁ) —Ry(z)=0

Then,
1 L 4rs .
zp(z) — z(x) — {(2Lx) + Esgn(x) —Ry(z) = T s sin(2wsx) ds
0
<4

— /0 ﬁ sin(?wsx) ds

B /2“ sin s s
0 s

©  sin(2wsx)

T (x) / d
—sgn(zx) — ——— s
2% . ms(1+4m2s?)

* Adms
/L = sin(2wsz) ds

/OO sin(27wsz)
- ————F s
. ms(1+ 4m2s?)

2Lx
sin s 1
_ d il
/o —ds + 2sgn(x)

* sin 2wsx 2L gin s
= — ——ds — ds
L s 0 s

1
+ ésgn(‘r)a

Letting x = %,

1) = 2(0) = C(2La) + oone) ~Rule) == [ a5 [ Fsins

s s
1 1
+ §sgn(§)
*sinTs 1 1
- — ds + = s
/0 — s + 2Sgn(2)

1 1 1 1

= —§sgn(§ + isgn(?

= 0.
Therefore,zr,(z) — z(x) — ((2Lx) + %sgn(x) —Ry(z) =0.

(c) Let f be a piecewise smooth function with small regular tails, and let F' be the Fourier
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transform. Describe the appearance of the approximation

fo(x) = /L F(s)e*™" dg,

-L
to the function in a neighborhood of some point where f has a jump discontinuity.

Solution: We have,

fr(z) = /_L F(s)e*™* dx

L

L I | |
= /_L (LE};.I.}_;'_ /;L f(x)€—2msw dS) e?wzsx dx
L ,L
Li&/L/Lf(a:) sda
L L
L_I&F/_Lf(x) x/_L S
L

= lim 2L f () dx.

L—oo+ _L
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Chapter 2

Convolution of Functions

In mathematics and in particular, functional analysis, convolution is a law of composition
that combines two functions f and ¢ to yield a third.?

Convolution is a mathematical tool with applications including statistics, computer vision,
image and signal processing, and differential equations.

The concept of convolution is inherent in almost every field of the physical sciences and
engineering. For instance, in mechanics, it is known as the superposition or Duchamel
integral. In system theory, it plays a crucial role as the impulse response integral, and in

optics as the point spread or smearing function.?

2.1 Definition of Convolution and Correlation

The convolution of two functions f and g, denoted f*g, is mathematically defined as follows:

(f o)t /f gt — 2)d 2.1)

Rather than a simple point to point multiplication, the convolution product is carried out
as per the operation given in equation (2.1). Consider two functions x and h. From equa-
tion (2.1), we see that the convolution of z, h is given as the integral of the product of two
functions z(7) and h(t — 7). Figure 2.1 shows the function z(¢) and figure 2.2 shows the
function h(t). In figure 2.4, we first reflect h(7) about origin to obtain h(—7) and then shift

it to the right by an amount ¢ = 2.5s to obtain h(t — 7). Figure 2.3 shows the function
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Amplitude

Figure 2.1: Signal x(t) Figure 2.2: Signal h(t)

x along with the function h and figure 2.5 shows = with the reflected and shifted function
h(t — 7). The product y of these two functions z(7) and h(t — 7) at t = 2.5s is shown as

the curve in the Figure 2.6. The convolution of x and h at t is the area under this product

curve.

09

06

07r

Amplitude
Amplitude

Figure 2.3: Signals x(t) and h(t) Figure 2.4: Shifted signal h(t-7) at t=2.5s

The cross-correlation of two functions f and g, denoted as (f * g)(t), is mathematically
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Amplitude

03t
Value of y{t) at t =25 s equals the area under this curve

02r

01F

Tifme Tau ()

Figure 2.6: Product of signals x(7) and h(t-7)
Figure 2.5: Signals x(7) and h(t-7) at t=2.5s

defined as,
(f*g)( / f(x)g(t + ) (2.2)
where g(t) denotes the complex-conjugate of the function g(t). When both the functions

are real, then ¢(t) = g(t) and the cross-correlation becomes

(f=g)(t /f g(t+xz)d (2.3)

When we form the cross-correlation of two real functions, we simply displace the second
function by an amount of ¢. However, if the functions are complex, then we take the
complex-conjugate of the second function then displace it by ¢. When a function f(¢) is
cross-correlated with itself, the result is known as the auto-correlation product and the

resulting function is known as the auto-correlation function.?

2.1.1 Convolution of Functions on R ,T, ,Z and Py

If f, g are two suitably regular functions, then the convolution product (f * g) is,

= / fwg(x —u)du for f,g,f % g functions on R. (2.4)

P
= / fu)g(x —u)du for f,g,f = g functions on T,. (2.5)
0

27



o0

(f*9)] Z flmlgln —m] for f,g,f * g functions on Z.
(f*xg)n Zf gln —m] for f,g,f * g functions on Py. *

2.1.2 Example of computing convolution
Let f(z) :=e ™, —o0 < < 0.

a) Verify that f(u)f(z — u) = e 2737
(a) y fu)f( )

Solution: We have,

—mu? 677T($2 —2zutu?)

=€
o e*ﬂu27ﬂ12+ﬂ2xu7ﬂ’u2
— 6727ru277rx2+ﬂ'2xu
2 2
2
_ 6727ru +ﬂ2xu7%f%
2 2
_ e—27ru +ﬂ2xu—%e—%

2

_ e—27r(u —zu+Z- ) —%
—2m( 2_9 £+ﬁ) _mz”

= ¢ MW —2UGTT T )T 2

2

_ ()

(b) Using (a), show that (f * f)(x) = Ie"’% where [ := ffooo e—2my? dy.

Solution: From equation (2.4), we have,

/ F()f (@ w)du
xT Trz2
_/ e~ 27 w=2) =" qu
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Let u — § = y such that du = dz. Then

(f * f)(x) = / e dy

(e e}

7'rz2 i 2
— e—z/ e 2™ dy
—00

7rz2

= Je 2.

2.1.3 Correlation of Functions on R ,T, ,Z and Py

If f, g are two suitably regular functions, then the correlation product (f % g) is,

(f*g)( / fw)g(u+x)du for f,g,f g functions on R.
(f*xg)(x) = mg(u +x)du for f,g,f % g functions on T,.
0
(fxg)n] = Z flmlglm +n] for f,g,f * g functions on Z
.
(fxg)n] = flmlgim+n] for f,g,f*g functions on Py

29
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2.2 Mathematical Properties of Convolution

2.2.1 The Fourier Transform of f xg

If f, g be suitably regular functions on R and ¢ := f * g, then using equation (1.1),

Q) = [ e i

— [ o)
:/ / glx —u)e” mise oy da
:/ / g(x —u)e” mise do du

(e}

f(u>e—2msu/ g(l’ o u)6—27ris(z—u) dr du
) du

f(u)€—27risuG(S

Thus, we find that

q(z) = (f+g)(x) on R has FT  Q(s) = F'(s)G(s) on R,

q(z) = (f+g)(x) on T, has FT  Q[k] = pFK]G[k] on Z,

dnl=(f+ gl onZ has FT  Q(s) = pF(s)G(s) on T,,
qln] = (f x g)[n] on Py has FT  Q[k] = NF[k|G[k] on Py.!

2.2.2 Algebraic Structure

Consider suitably regular functions f, g and h. Let a and § be scalars. Some of the other

familiar properties satisfied by the convolution product (2.4)- (2.7) is

(a) Homogenous:

(af)xg=oalf*g)=fx*(ag). (2.12)
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(b) Distributive:

fxlg+h)=(fxg)+(f=*h), (2.13)
(f+g)xh=(f*g)+(fx*h) (2.14)

(c) Linearity:

(Z amfm) * (Z ﬁngn) = Z Z amﬁn(fm * gn)a (2'15)

m=1n=1

where fi, ..., far, 91, ..., gn are suitably regular functions and oy, ..., ay, G, ...,

Oy are scalars.

(d) Commutative:
frg=gx[. (2.16)
In order to show that f,g are commutative when they are suitably regular functions

on Py, we need to prove the following two claims:
Let g be N-periodic on Z i.e.,
gln] = g[n +pN] for all n, peZ, (2.17)

Claiml: Given keZ, we have

N-1 k+N—1
Y glml= > glm]. (2.18)
m=0 m=k
In particular, since,
N—1 k+N-1
Z glm — k] = Z glm] (by change of variables),
m=0 m=k
we obtain,
N-1 N-1
Z glm] = Z glm — k| for all keZ. (2.19)
m=0 m=0

Proof of Claiml: Given keZ, there exist qeZ and reZ with 0 < r < N such
that,

k=gqN+r (division algorithm)
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If » = 0 then equation (2.19) follows from equation (2.17) since r = 0 implies

k =qN.
Suppose r > 1. Then,
k+N-1 gN+r+N-1 gN—N-1 qN+r+N-1
dogml= > gml= > glml+ D glm]
m=k m=qN+r m=qN+r m=qN+N
But then,
gN—N-1 N-1 N-1
Z g[m]:ng—l—qN:Zg I (letting m’ = m — ¢N)
m=qN-+r m/=r m/=r
And,
gN+N+r—1 r—1 r—1
Z glm] = Z glm’'+(¢+1)N] Z glm’]  (letting m’ = m — gN — N)
m=qN+N m/=0 m’=0
Then
k+N-1 N-1 r—1
> glml =) glml+ ) glm']
m=k m/=r m/=0
N-1
= ) _ glm]]
m’=0
N-1
=) _glml.
m=0

Hence equation (2.18) is obtained as desired.

Claim2: We have,

ig ml =3 gl-m], (2.20)

for all N-periodic function g on Z.

Proof of Claim2:
N-1 N-1
Z gl—m| = gl-m+ N —1] (by equation (2.19) with k = N — 1)

= glm']  (withm’ =N —1—m).
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(e) Associativity:
fx(gxh)=(f*g)=*h. (2.21)

(f) Identities:

1 ifn=0 1 ifn=
dn] = 1 " and d[n] = 1 n=0
0 ifn==+1,4£2,... 0 ifn=12,...,N—1.

(2.22)
These functions serve as identities for the convolution product of functions on Z, Py,

le.,
Oxf=fx0=f.
but we don’t have any functions on R or T, that serves as identity.

2.2.3 Showing that f x ¢ is Commutative

In this section we will show that the convolution product is commutative, i.e., fi* fo = fox fi

when

(a) fi1, fo are suitably regular functions on R.

Solution: We have,

(fix f2)( / fi(u) fo(x — u) du

Let v = x — u such that du’ = —du. Then,

(f1% f2)(z / file =) fo(u') du

/ fo(u) fi(z — o) du

(f2* f1)(x).

(b) fi1, fo are suitably regular functions on T,,.

Solution: We have,

0= [ " i) ol — )
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Let ' = & — u such that du’ = —du. Then,

- [ i - ) du
—/pfl x—u)fo(u) du
/fz ) fi(z —u')

= (fo* f1)(7).

(c) fi, fo are suitably regular functions on Z.
Solution: We have,
Z f m f 2| —

Let m’ = n — m such that m = n —m/. Then,
(f1 = fo)ln Zfln— ']

Z fz fln— ]

m/=—o0

= (fa * fi)[n].

(d) fi, fo are suitably regular functions on Py.

Solution: We have,

(ox fo)ln) = S fulm) faln — m]
=S Almlplm—n] (b (4)

= Z fi[—=m + n] fa[m] (by (3) with £ = —n)
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2.2.4 Showing that f % g is Associative

In this section we will show that the convolution product is associative,

e, f1* (fax f3) = (f1 % fo) x f3 when

(a) fi, fo, f3 are suitably regular functions on R.

Solution: We have,

(e £ x ) = [ fiwfaler = ) du] » fola)
[ 1] hwnt - wdd fe -0 do
_ /Z /Z Fu) v — ) fa(w — v) dv du

Let y = v — u such that dy = dv. Then,

() fuw) = [ ) / A ) fale —y — u) dy du
-/ A / " ) ol — u— ) dy] du
= /_OO fi(w)[fe * f3)(z — u) du
= fi* (f2 * f3)<x)'

(b) fi, fo, f3 are suitably regular functions on T,,.

Solution: We have,

(hxf)+ flo) = [ [ " R ol — w) du] * fy()
:/Op[/opﬁ(u)ﬁ(v_u)du}fg(x—v)dv
:/Op/()pfl(u)fg(v—u)fg(a:—v)dvdu
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Let y = v — u such that dy = dv. Then,

(fo* fo) * fola //f )\ (y) Falz — y — u) dy du

:/Oflu /Onyfgx—u—ydy] u

= /Opfl(u)[f2 x f3](z —u) du
= fix(fa* f3)().

(c) fi, fa, f3 are suitably regular functions on Z.

Solution: We have,

(f1* f2) = f3[n] = Z filk]fa[n — k]| = f3]n]

:Z Zfl |folg — K] f3[n—Q]

q—ook——
:Zfl Zfzq— ] f3[n —q]

Let m =n — ¢q. Then,

(f1* f2) Z filk Z foln —m — k] fs[m]
:Zfl Zan— ) —m] fs[m]
= Z filkl(f2 + f3)[n — K]
—fl (fz*f3)[ J-

(d) fi, f2, f3 are suitably regular functions on Py.
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Solution: We have,

(fu* fa) x faln] = [ > filk] faln — K]] * fs[n]

k=0
N-1N-1
= filk] falg — Kl faln — g
q=0 k=0
N-1 N-1
= > filk] >  falg —klfs[n —q]
k=0 q=0
Let m = q¢ — k. Then,
N-1 —k+(N-1)
(fr= f2) * fsln] = ) filk] 2: folm] fs[n —m — k]
k=0 m=—k
N-1

=2f1[k1<f2*f3>[n— |
= 1*(f2*f3)[]

2.2.5 Translation Invariance

Consider two suitably regular functions f, g on R and let —oco < a < oo. Then function

g(x + a) is the translation of g(x) by a, and
flz)xg(x+a)= / fw)g((x —u)+a)du
/ fw)g((z+a) —u)du

fxg)(x+a).

Hence, the convolution product is translation invariant. It is also the case for suitably

regular functions on T,, Z or Py.*
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2.2.6 Differentiation of f x g

If f, g be suitably regular functions on R, we can write

(F o) dx/ (gl —u) du

/ f()g'(z — u) du

9)(@).

Since, f x g = g * f, it follows

(fxg) =fxg=fx*g
(f*g)ll:f//*g:fl*g/:f*g//

(f*g)(n):f(m)*g(n_m)7 m:O’]‘7"'7n
when f has (m) derivatives and g has (n — m) derivatives for some m = 0,1,2,...,n."

2.2.7 Example on Differentiation

In this section, we will show how to use the differentiation rule to find convolution products

of functions.
Let fn(x) := "¢~ ™ n = 0,1,2. Consider the convolution product fo* f, from Exercise 2.6

of Chapter 2, ‘A First Course in Fourier Analysis’ by David.W.Kammler.

(a) Use the differentiation rule to find fy * fi.
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Solution: Using the hint given, we have

Jo* f1 = fox <—%>f6

(e
= (‘%)(fo * fo)/

(b) Use the differentiation rule to find f; * fi.

Solution: We have,

o) ()
(s

=%< o)?

= — re
4\/5
L SR
= — —TXr e [
4\/§7T
1 T
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(c) Use the differentiation rule to find fy * fo.

Solution: We have,

Jox fa = fo*%(fo - f)
1
= %[fo * (fo— f{)]
= %[fo*fo—fo*fﬂ

:%[fo*fo]—%[fo*fﬂ
:%[fo*fo],—%[fo*fl],
1 _ra? 1 9 _ma?
= gl F I+ ol — 1))
1 _ma? 1 [ 5 _m? 1 _ma?
[ze™ 27|+ —=[z"e 2] — e 2]

N 12 1/2r
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Chapter 3

FT Calculus for Functions on R

3.1 Definition of functions

3.1.1 The Box Function

The box function is defined as,
1 if-l<a<i
[[ey=<. 2778
0 ifz<—g5orz>3.
and the cardinal sinc (sinc function) is defined as,
sin(7s)

sinc(s) = ——=, s#0,

s

Since, f := ][] is even, we get,

F(s) = / ZH(:U)@—?M da
_ / ZH(@ cos(2msz) da

-/

_ [sin(Qﬂsx)] 3

cos(2msz) dx

NI Nl

1
2ms i

sin s

s

= sinc(s).
Thus, the box function f(z) = [[(z) has FT F(s) = sinc(s).

41
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3.1.2 The Heaviside Step Function

The Heaviside step function is defined as,

o) :_{1 %fx>0

0 ifz<0.

This h is used to create functions that vanish on a half line.

1

3.1.3 Example on Heaviside Step Function

(3.3)

Let u(z) := e **h(x) where a > 0 and h(z) is the Heaviside step, and let u; = u,uy :=

Uk U, U = URUKU,....

(a) Find the Fourier Transform of u; and then use the convolution rule to deduce that w, 4

has the Fourier Transform U, 41(s) = (a + 27is) ™" L.

Solution: We have,

1 ifx>0
=e *h d hx):=
u(z) :=e () an (x) {0 £ <0
e ifx>0
Th = =
en, t(z) = u(z) {O if z <0
Now,

Ul(S) _ / e—am€—2msx dx

_[ e
N a+27ms

a4+ o+ 2mis’

Then, upi1(z) =usuxux...*u(x).
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/ —ax —27rzsa:d
0
[eS)
/ —(a+2mis)x dr
0

(a+27is)x

el



And,

(o 4 2mis)nHl

= (o + 2mis) "1

(b) Use the power scaling rule and the fact that

Uns1(s) = %%(a + 27is) L,
to deduce that u"(x) = x"e‘o‘x%, n=01,....
Solution: We have,
Upti(s) = %%(a + 27is) L,
Also,
g(z) := 2 f(x) has the FT G(s) = (—2mi) ' F'(s),
But,
F'(s) = % /OO f(z)e 2™ dg.
From (a),
(v + 27is) ™t = /000 u(z)e” ™5 dg,
Thus,
U'(s) = —n(oz + 2mis) ! = 4 u(z)e ™ dy = 4 u(z)e” ™5 dy.,
ds™ ds™ J, ds™ J_o
Hence,
Upi1(s) = %U”(s).
This implies
Upt1(T) = vu(z) = xne_axh(x), n=0,1,...

n! n!
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3.1.4 The Truncated Decaying Exponential

The truncated decaying exponential function is defined as,

f(z) :==e"h(x), (3.4)

where h is the Heaviside function given by (3.1.2).
Then, its Fourier Transform is,

(e 9]

F(S) — / e—xe—Zﬂ'ism dr

L — (14273
d | —e (14-27is)x
— | dx

L—too Jy dz| 1+ 2mis

1— 67(1+27T’L'S)L

= lim -
L—+o00 1+ 2ms
B 1
14 2mis
1 2ms

1447252 1+ 4m2s?
So, the truncated decaying exponential f(x) := e *h(x) has FT F(s) = ﬁ.l

3.1.5 The Unit Gaussian

The Unit Gaussian function is defined as,

flx) :=eT™. (3.5)
Since f is even,
F(s) = / A / e~ cos(—2msz) dx,

Since the integrand and its derivative with respect to s rapidly approaches 0 as z — 400,

we can write

Y R
F'(s) —/ e a—(cos (27sz)) dx,

oo S
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Hence,

o0

F'(s) + 2msF(s) e ™ (—2n) sin(2wsx) + (2ws) cos(2msx) dx

I
—

T d
dx

[e‘”Q sin(27rsx)} dx

It follows that,

d
T |:€W82F(S)} =™ [F’(s) +21sF( )] =0
s
So that,
™ F(s) = F(0), —oo<s<o00
Then,
F(0) = / e ™ dz.
Also,
2 OO B - —my?
F(0)* = e ™ dx e ™ dy
= /Oo h e @) gy dy
=—00 Jy=—00
00 2m )
:/ e " rdfdr
r=0 J6=0

2

And so, F(0) = 1. Hence, F(s) = e ™".
So, unit gaussian f(z) = e ™" has FT F(s) = ¢ ™.
3.2 Rules for Finding FT

3.2.1 Linearity

If ¢, ¢1, g, ... be complex scalars and g(z) := cf(x). Then,

G(s) = /_OO cf (z)e ™ dy = c/_oo f(z)e ™" dx = cF(s).

[e.9]
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Thus,
g(x) == cf(z) has FT G(s) = cF(s). (3.6)

Again, if g(z) := fi(z) + fo(z), then

G(s) = /_ h [ fie) + fala)] e da

/ fl —Qﬂzsa: d +/ f2 —27TZS£E d

= Fi(s) + Fy(s).

Thus,
9(x) := fi(z) + fa(x) has FT G(s) = Fi(s) + Fa(s). (3.7)
From equation (3.6) and equation (3.7), we have
g(z) == fi(x) + ...+ cnfm(z) has FT G(s) = 1 Fi(s) + ... + cnFin(s).!
3.2.2 Reflection and Conjugation

The reflection rule is defined as,
g(x) := f(—x) has the FT G(s) = F(—s.)
We verify this by writing,

= /00 f(=z)e 2% dy = /00 flu)e 29 gy = F(—s).

oo

The conjugation rule is defined as,

g(x) := f(x) has the FT G(s) = F(—s).

We verify this by writing,

= /OO me_%i“ dr = /OO f(x)e=2mi=s) dy = F(—s). !
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3.2.3 Example using Parseval’s and Conjugation

Let a > 0, b > 0. Here, we use Parseval’s identity along with conjugation rule defined in

above sections to

(a) show that:

o dx B T
/_OO (22 + a?) (22 +b2)  abla+b)’

Solution: Let,
flx) = 7ran has FT F(s) = Ze ?ms,
has FT G(s) = Tem2mbs,

2+b2)

Then, using Parseval’s identity,

/_OO (:r;2+a2 x2+b2

— 27 |:€727r(a+b)si| o
ab(2m(a + b)) 0

B _ab(cZ:L b) [e—oo B 60}

ab(a+b)
(b) show that:

* sin(max) T —rab
_— d = — 1 —_ Ta .
/oo x(z® + b?) ! 52( )
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Solution: Let,
f(z) = 2209 has FT F(s) = 7 [](as),

has FT G(s) = Tem2mbs,

2+b2)

Then, using Parseval’s identity,

© sin(mwax) ee
/ 3:2—|—b2 :/ Ut

2 a
- b(igﬂ'b) [ei%bs} 0

Q0 —mab
=g [1-™]

3.2.4 Translation and Modulation

The translation rule (or shift rule) is defined as,
g(x) := f(x — x0) has the FT G(s) = e 2™ F(s),
where z( is a real parameter. We verify this by writing,

— / f(.I - l,o)e—Qm'sz dr = e—27ris:po / f(u)e—27risu du = e—27risac0F(S>‘
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The modulation rule (or transform shift rule) is defined as,
g(x) := ¥ f(x) has the FT G(s) = F(s — sp),
where sg is a real parameter. We verify this by writing,

G(S) _ / 627risoa:f(x)e—27risw dr = / f($)6_2m(8_80)x dr = F(S . 30)« 1

[e.e]

3.2.5 Dilation

The dilation rule (or similarity rule) is defined as,

g(x) := f(az) has the FT G(s) = F;FG%

where a # 0 is a real parameter. We verify this by writing,
G(s) = / flaz)e ™" dx
B {% 2 flw)e @ du if a> 0

B L% flu)e @ dy ifa <0

! F(2). !

~ Jal
3.2.6 Inversion

The inversion rule is defined as,
g(x) := F(x) has the FT G(s) = f(—s).
We verify this by writing,

G(s) = / h F(x)e 2™ dg = / h F(x)e?™ 9% dg = f(—s).

3.2.7 Derivative and Power Scaling
The derivative rule is defined as,
g(x) ;= f'(x) has the FT G(s) = 2misF(s),
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where f is a suitably regular function on R. We verify this by writing,

/ .f —27rzs:c dx

= [ —27rzsacf( )} _OO+27TZS/_ f(x)e_QmsdeE

[e.e]

= 2misF(s).
The power scaling rule is defined as,
g(x) := xf(x) has the FT G(s) = (—2mi) ' F'(s),
where f is a suitably regular function on R. We verify this by writing,

G(s) = /_OO xf(x)e ™ dx

1 d OO —2misx
= (—27”')%/_00 f(z)e dx

= (—2mi) " F(s). !

3.2.8 Examples on how to find function f using above rules

In this section, we illustrate the method to find the inverse Fourier Transforms when Fourier

Transform F'(s) is given as

a) [ F(—s)e*™s ds;

Solution: Letting ¢ = —s such that dq = —ds, we have

/ F<_8)627risac ds = _/ F(q)e—qu;t dq

[e.o] o

[ e

o0

= f(—x).

) f_oooo F(_S)627risa: dS,
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Solution: Letting ¢ = —s such that dqg = —ds, we have

/ me%risx ds = _/ We—%riqr dq

o0 o)
o0

We—%riqx d(]

o0

Flg)e=247dg

o0

(x).

—

~

(c) [o F(s—5)e*™s ds;
Solution: Letting ¢ = s — 5 such that dq = ds, we have

/ F(S - 5)627”'53: ds = / F(q)627ri(q+5)x dq

(e 9] o0

— 61071'1'90/ F(q>€2ﬂ'iqx dq

o0

— €1O7Tixf(l').

(d) [0 F(2s)e’™s* ds;
Solution: Letting ¢ = 2s such that dqg = 2ds, we have

/ F(25)e*™ ds = —/ F(q)e*™"2 dq

o0 2/
-4G)

(e) foo 2F(s)e*™s ds;

S
—00

Solution:
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(f) [ cos(2ms)F(s)e*™ = ds;

Solution:

/ cos(2ms) F(s)e*™" ds =

o0

<627ris 4 6—27ris)F(S)627risx dS

P
g 8

o0

F(s)e2mile=Ds ds]

P
8

F<S)€27ri(w+1)s d8+/

[e.9] —0o0

fla+1)+ flz— 1)]

NI~ N~ N~

<g> ffooo F”’(S)e%risx dS,

Solution:

> " . 1 o0 .
/ F (S)€27rzsz dS — / F/l(s)eZWzsa: dS

—2mix J_

1 > TLST
:—(—27Tz'x)2/ F'(5)e*™* ds

[e.o]

1 OO TiSX
= m/ F(s)e?™* ds

[e.9]

= (=2mi) a3 f ().

(h) [ sF(2s)e ™% ds;

Solution:

/ sF(2s)e 2™ ds = / F(QS)%e_Q’”s’C ds

o =21 J_o
1 d [ .
— el F(2 —2misx d
—omidr ) ., (25)e °

Letting ¢ = 2s such that dq = 2ds,

OO - 1 d [~ ay 1
/ sF(2s)e™ 5% s = F(q)e (37— qq

. —omidr | . 2
1 d [~ @
_ Bl )a 27rzp(—7)d
(—4mi) dx /_OO (a)e T
1 ., T
= a2



—o0 2

() J°2 5[ F(s) + Fls)| e ds:

Solution:

/_Z 9 [F(S) + W] p2misT g _

N~ N~ N~

3.2.9 Example to find Cross-correlation and Plancherel’s Identity

The cross-correlation product f; * fo of the suitably regular functions f;, fs is defined
by (2.8). In this example, we illustrate the way to derive the Fourier Transforms for the

cross-correlation, auto-correlation and Plancherel’s Identity for these function.

(a) Let us derive the cross-correlation rule:
g(x) := (f1 % f2)(z) has the FT G(s) = Fi(s)Fy(s).
Solution: We have,
6(2) = (u » ) ).
Then,

G(s) =

g(x)6727risx d.fl?

P
8

83

(f1* f2)(x)€72m'sx dx

83

/OO fi(u) fo(u + 2)e ™ dx du

=—o00 Ju=—00

|:/ fl(u)€727”'3u du f2(U+ x)e—Qﬂ'i(u—i-a:)s dx

=—0Q =—00

Fl (s)fQ(u + x)€—27ri(u+:t:)s dr

\\8 — —

—00

I
>
—~
Va)
N—

Fy(s).
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(b) Specializing (a) we obtain the autocorrelation rule:
g(x) = (f* f)(x) has the FT G(s) = |F'(s)*.
Solution: Using f; = fo = f in (a), we get,

g(x) := (f * f)(z) has FT G(s) = F(s)F(s) = |F(s)[".

(c) Then, using (b) obtain Plancherel’s identity

Solution:

/_oo F(s)e?misu ds] du
b f(u) /_ F(s)e 2msu ds] du
_ / " F(s)[ [ rape du] ds

3.2.10 Convolution and Multiplication

The convolution rule is defined as,

g(x) == (f1 * f2)(z) has the FT G(s) = Fi(s)Fy(s),
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where fi1, fy is a suitably regular function on R. We verify this by writing,

G(s) = /_OO /_00 f1(w) fo(w — w)e 2™ du dx
— /OO fi(u) /oo fox — u)e™ 2™ dy du

_ /oo fl(u)e_zm‘su /OO . u)e_zm‘s(a:—u) dx du
/ fl —27rzsuF ( )d

= Fi(s)Fy(s).

The multiplication rule is defined as,
g(x) := fi(x) fo(x) has the FT G(s) = (Fy * Fy)(s),

where f1, fo is a suitably regular function on R. We verify this by writing,
~ [ n@he i

_ / / Fl <u>62ﬂ'iuzf2 (x)ef%risx du dI‘
_ / Fi(u) / fal@)e 2 ) g du

= /_OO Fi(u)Fy(s —u)du

o0

= (F x Fy)(s). !

3.2.11 Example using Convolution and Multiplication Rule

Let f,g be piecewise smooth functions with small regular tails, and let F,G be the corre-
sponding Fourier transforms. In this exercise we will illustrate that the multiplication rule
can be used with fg, fG, Fg, FG, and the convolution rule can be used with f x g, F' x G

to

(a) show the following



Solution: We have,

/_(f*g)( )e 2T dy = h /Oof x—u)du]e_%isrdx

o0

¥
/Oof —2”18“[/_29(:0—@@ 2mifa- Ude] du
/

8

8

8

f 727r7,suG( )

[e.9]

F(s)G(s)

(b) show the following
/ F(s)G(s)e*™* ds = (f * g)(x).

o)

Note. Together (a)-(b) establish the convolution rule for f x g and the multiplication
rule for F'G.

Solution: We have,

/oo F(S)G(s)€2ﬂ-isx ds — /00 [/OO f(u)eiQﬂ-isu du G(8)672ﬂ'i51‘ ds

(c) show the following

/_ " f@)g(@)e T dr = (F  G) ().

oo

Solution: We have,
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|t an= [

/ F(u)€27riux du] g<x)€—2m’sx dr

/ g(x)e—Qﬂ'i(s—u)x d.’E] du

= h Fuw)G(s —u)du
= (F*xG)(s)

(d) show the following
/ (F x G)(s)e*™* ds = f(x)g(z).
Note. Together (c)-(d) establish the convolution rule for F'« G and the multiplication

rule for fg.

Solution: We have,

/_:<F £ G)(5)e¥™" ds — /::

/ T PG — ) du] £2mis® g

/ G(s — u)erits—we ds] du

= _OO F(u)e*™ g(x) du
= f(x)g(x)

(e) show the following
/_ f(2)G(—x)e ™" dx = (F * g)(s).

o0

Solution: We have,
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G(_x)e—Qm'sx dx

/ F (u)e%iw du

/ G(—x)e*ilts—w=) dx] du

Let v = —p such that dv = —dx. Then,

/ G(v)e?rits—u®) dv] du

:/_ F(u)g(s — u) du

o0

= (Fxg)(s).

58



Chapter 4

FT Calculus for Functions on T), Z
and Py

4.1 Fourier Series

4.1.1 Introduction

Suppose f is a p-periodic function. Then, as we saw in Chapter 1, the Fourier Series is given
as,
flz) = Z F[k]e%, —00 < T < 00 (4.1)
k=—0oc0

and [ in this case is a complex-valued function on Z. The function F[k] can be constructed

by evaluating the integral from the analysis equation,

—27mika

Flk] = Z%/OOO flz)em» dx, k=0,£1,£1... (4.2)

Recall from Chapter 1 that the synthesis equation (1.4) for f on T, can be written as the

analysis equation,

for F' on Z.

Hence, every Fourier Series (1.4) tells us that,
f(z) has FT F[k], (4.3)

F[k] has FT @ ! (4.4)
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4.1.2 Direct Integration

Suppose f, g are suitably regular functions. Then, using integration by parts formula,

/f v)di = f /f g

- [f<x>q<—1><x> I / 7 (@)=

and so on..
Here, ¢©=1, ¢1=2), ... are successive antiderivatives of q(z).
When f is a polynomial, the integrated terms will eventually disappear from the above

equation such that,

b b
/f(ﬂf)Q(x)de=f(x)q(_l)($)+---+(—1)(”_1)f(”_1)(37)q(_")(93) , M=o (45)

(4.5) is known as Kronecker’s Rule.'

4.1.3 Elementary Rules

Linearity
If ¢1, o, ..., ¢, be scalars. Then,
g(x) :=cfi(z)+ ...+ cmfm(z) has FT Glk| = et Fi[k] 4+ ... + e Fn k). (4.6)

Reflection and Conjugation

The reflection rule is defined as,
g(x) := f(—x) has the FT G[k| = F|[—k]. (4.7)

The conjugation rule is defined as,

g(x) := f(x) has the FT G[k] = F[—k]. (4.8)
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Translation and Modulation
The translation rule (or shift rule) is defined as,
g(x) == f(x — x¢) has the FT G[k] = ef%ik%oF[k], —00 < Zp < 00

where x is a real parameter.

The modulation rule (or transform shift rule) is defined as,
g(z) = *™*% f(x) has the FT G[k] = Flk — ko), ko =0,%1,...

where s is a real parameter.
Convolution and Multiplication
The convolution rule is defined as,

g(x) := (f1 * fo)(z) has the FT G[k] = pFi[k]Fa[k].
The multiplication rule is defined as,

g(x) := fi(z) fo(z) has the FT G[k] = (F} * Fy)[k].
Derivative

The derivative rule,
2mik
p

g(z) := f'(x) has the FT G[k] = ( )F[k).

can be used when f is continuous and f’ is piecewise smooth.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

4.1.4 Example to compute Fourier Series and Fourier transforms

using the above properties

In this section, we will use the above properties to first find the Fourier Series for the given

functions and then compute their Fourier Transforms.
Let b, r be 2m-periodic function on R with

1 for0<zx<m (z) x forO<z<m
r(zr) =
0 form<ax<2m, 0 form<a<2m.

b(x) :==
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Verify that b, r have the Fourier Series

1 (1) —1] % =D (D1
b(x>:§+z[(+k}e”“, T(x):Z+Z[(2k) = 27)rk;2 o

k0 k0

and then use the Fourier transforms calculus to find the Fourier series for

() t(x) := (b#b)(x) = r(z) + r(=x);  (b) f(2):=b(z) - b(—x) = 2b(x) — 1 = t'(x);

(c) g(x) :=r(z) +r(z —7); (d)j(z) :=r(m —z) —r(7 +2) = 2mwo(5%);

(e) d(z) :==b(x —F) — bz + T); (f) pn(z) := b(x)sin(nx),n =1,2,....

Solution: We have,

1 27 )
Bl = 5 / b(z)e 0% iy
0
1 vy
= — d
2m /0 v
B 1
=35
And,
1 27 o
Blk] = By b(z)e > er dy
™ Jo
1 27 )
=5 ek dy
™ Jo
B 1 e—ikx ™
oo | —ik 0
1 . ™
= ok [cos kx — sin k‘x} .
= 2Z—k [cos km — 1}
T
i k
=5 [(=D" =1].
Thus,



Also,

_T
=7
And,
Rlk] = L 2ﬂr(x)e’2”k% dx
2m Jo
1 T :
= — ze T dy
2 Jo
1 r T ) s ™ )
= — x/ e_”“dx—/ / e‘lkmd:ﬁdm}
2r | Jo 0 Jo
1 [zem® 1 [
- - —ikz g
2r | —ik +ikm 0 ‘ x}
B i 'ixe—ikx +€—ik‘x 7T
C2m| ok k2 ],
_ |imcos (mk) N cos(mk) — cos(0)
N 2k 2mk?
i(—1)" —1)F—1
D, o]
2k 2mk?
Thus,
s i(=DF  (=DF -1
T(x)_1+z[ 2%k onk? ]e '
k0
Then,

(a) t(z) = (bxb)(z) =r(z)+r(—2).

Since,

and




Then,

T S o ETET TP
= g + 2 [i(—l)k (_17);_ 1] cos(kx).

(b) fl(x) == b(z) — b(—z) = 2b(z) — 1 = ()

Since,

o) = 24y M e

k0
Then,

21k

(c) g(z) =r(x)+r(x—m)
Since, | ) )
=5+ [ e
and
o= = 5+ X[+ e
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Then,

. Fi(—1)F  (=1)F -1 i\ ik
9(‘”>—§+Z ok T ork2 (14 (=1)%)e
k#0 L
m [i(=1)* k\ ik (—1)F -1 k\ ik
= — 1 1 LET 1 -1 ikx
2+;_ g (L D)+ e (L (1))
_T [i(=1)* ke, (D17 0
_§+Z 5% (1+( 1))6 + SRTE
k#£0 L
2 2k
k0
BCR 2k ‘
k0
(d) j(z) :=r(r—z) —r(r+ ) = 2rwo(5%)
Since,
_ T Z(_l)k (_1)k — 17 ik(m—1)
rim—e) =g+ 2% ok )¢
"
and
_T i(—DF (=1 -1y ik(m+a)
r(7r+:v)—z+ o + 5 )° )
h
Then,
](l‘) _ Z -i(_l)k + (_1)k —1 <_eikﬂ<€ik1‘ _ efikx))
2k 2mk?
k£0 L
= o + e <—22k(—1) sm(k:x))
k0
- [ —14i(=1)k] .
= -1+ T] sin(kx)
k40
ok
= Z ==t 1} sin(kx).
wk
k£0
(e) d(z) := b(x — %) — b(I + %)
Since,
1 i[(=1)* = 1] o
Mo- =5+~ 7



and,

Then,

21k 21
k0
2 ok <—2Z€ sm(—)>
#£0
_ Z Z[<_;7)rk_ 1} (—\/57:6““)
k0
= \/EZ ¢ [(;;])C 1} ( zkx)
k=0
[(_1>k 1} ikx
= (™)
kzﬂ) Vork

(f) pu(z) :=b(x)sin(nz), n=1,2,...

Since,

Then,

() = F + Z Meik”’] sin(nx)

k0

- sin(nz) + [Z —i[(_l)k _ 1} eikm] sin(nx).

2 2k
k#£0
4.1.5 Poisson’s Relation

Let f be a piecewise smooth function on R that has small regular tails. Using Poisson

relation, we have,

g(x) == i f(x —mp) (f on R and g on T,) has the F'S Z%F(E

2mikE 1
e r, 4.14

m=—00
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4.1.6 Bernoulli Function

Suppose,

L2 ifo<z<1.

0 if v = 0,1
wo(z) = { Pr=S (4.15)
2

Then, taking antiderivatives, we have polynomials,

N

X

r 1
= —— 4 - — — <zxr<l1 4.1
wy () CIETL 0<z< (4.16)
R
=——4 == <zr<l 4.1
wa () st T 0<z< (4.17)
with,
wh(z) =w,_1(x), n=1,2...(and x # 0,1 when n = 1), (4.18)
1
wy(z)dz =0, n=0,1,... (4.19)
0
But we have
1 627r2'k3:
wo(x) = 3% 0 <z <1has FS gﬁ% S (4.20)

Using (1.11) with (1.9)- (1.10), and the derivative rule, we obtain the 1-periodic Bernoulli

functions,

627rzk:p

— " n=0,1,..., —c0<z< 4.21
< (2mik)" =L TOSTR00 (4.21)

wn(x) =
[

These functions have been constructed so that,!

" " 1 ifm=n
%)MH_%)QJZ{Oﬁm:Ol n—1ln+1 (4.22)

4.1.7 Laurent Series

A Laurent series

C(z) = Z ez, 2eC, a<|z| <b (4.23)
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is a complex power series that may contain terms with 27!, 272, ... as well as terms 1, z,

22 ..
If the Laurent series (4.23) converges within some non-degenerate closed annulus that con-
tains the unit circle then, we can produce FS by setting z = 627”%, ie.,

f(z) := C(e*™) has the FS Z cpe™ 1 (4.24)

k=—00
4.1.8 Dirichlet Kernel

The Dirichlet kernel, named after Johann Peter Gustav Lejeune Dirichlet is the collection

of functions
sin (n + 3)z

Dy () = — & which have FS ) ~ ¢, (4.25)

k=—n

The convolution of D, (z) with any function f of period 27 is the n'*-degree Fourier series

approximation to f, i.e.,

n

(Dux i) = o= [ Fw)Date =)y = Y e, (4.26)

k=—n

where
fo =5 [ st dn (1.27)

is the k' Fourier coefficient of f by Chapter 1.

4.1.9 Dilation and Grouping rule

When f is a p-periodic function on R, and m = 1,2, ..., the dilate f(mz) is p-periodic as
well as Z-periodic.
The Dilation rule (or similarity rule) is defined as,

F[E] if k=0,+m,+2m,...

g(x) := f(mx) has the FT G[k] = ' (4.28)
0 otherwise.
We verify this by writing,
> — k ooz
— F k 27rzkm; — F|:_] 271'7,’65'
g() kzzoo [Ke %; —|e
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Let f be a p-periodic function and m = 1,2,.... We sum the £ translates of f to produce

a £-periodic function,
m

fm(2) ::f(x)+f(x—%)+...+f<$—M),

m

that has p-periodic dilate fm( )

Z
m

The Grouping rule,

m—1
x p
= — — —) has FT G|k|] = mF|mk]. 4.29
o)1= D2 (5= 1) s BT Gl = bk (4.29)
is verified as,
m—1 oo L,L>
g(x) =Y > Flkle™™
=0 k=—o0
o] m—1 .
_ Z F[k]e%rzkmip 6_27”kﬁ
k=—o00 =0

i e {m if k =0, +m, £2m, ...
= e mp

0 otherwise

4.1.10 Example on how to compute Fourier Transform of given
function f

Let f be a suitably regular function on T,, —oo < 29 < oo, and m =1,2,3,....

What can you infer about the Fourier transform F' of these given functions if you know that:

(a) flz) = f(z)?
Solution: Integrating on both sides from 0 to p with respect to x and then dividing

by p, we have,

L [P orige 1 [r 2k
—/ flz)e ™% dx = —/ fz)e ™% dx
D Jo b Jo

L[ omi(—R)E L[ —omik2
—/ flz)e ™o do = —/ f(x)e ™% dx
b Jo D Jo

F[—
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(b) f(z) = f(~x)?

Solution: Integrating on both sides from 0 to p with respect to x and then dividing

by p, we have,

= L[ e

1 [ :
_/ f(x)e—%rz(—k); dl':—/ f(—l’ —27i(— k) dl’
P Jo P Jo

F=h] =

(¢) flz+3) = f(x)?

Solution: Integrating on both sides from 0 to p with respect to x and then dividing

by p, we have,

T p 2. T
/ f ZE—f- 27T1,k‘; d[[’ _ 1/ f(l‘)ef%rzk; dl’

;Af@+nﬂ_m“ wdy = - /j‘ e TRy dy
2™ Fk] = F[k].

(d) flz+5) = —f()?

Solution: Integrating on both sides from 0 to p with respect to x and then dividing

by p, we have,

e 1 [P e
/ f ZL‘—f- 2mk’; dr = __/ f(x)e—%mk; dr
P Jo

1/ f(.??-'- ) 27rzk‘< 1) 271'12 dr = _1/’;0 f(l_)e—%rik% dr
PJo 2 P Jo
" F[k] = —Fk].

(e) f(zo+x) = flvo—2)7

Solution: Integrating on both sides from 0 to p with respect to x and then dividing
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by p, we have,

1 p _omik® 1 P —2mikZ
—/ f(.il? + .170)6 rdr = —/ f(.iljo — 1‘)6 ? dx
D Jo P Jo
p . Tr+x . X p . ro—x .. T
1/ f(l’ + xo)e_ZMki( +p 0)627rzk70 dr — 1/ f(xo B m>e—2ﬂ'2(—k’) Op e—?ﬂ'zk?o dx
D Jo P Jo

€2m;k170F[]{} _ 6727”’16%)}7[—]{]

Flk] = e ™5 P[—k).

(£) flzo+2) = —f(xo — 2)?
Solution: Integrating on both sides from 0 to p with respect to x and then dividing

by p, we have,

1 Comie 1 ik
—/ fz+ xg)e ™ pdx:——/ flzog —x)e” "> da
b Jo P Jo

1 p . (z+zq) A 1 P i To—
— / f(l' + x0)6*2ﬂlk7p 0 627Tzk?0 dr = — = / f(xo _ x)6727rz(7k) Op
D Jo D Jo

e27rikx?0F[k] _ —e_%ik%OF[—l{:]

x

_9mik X0
e 27mkp dZL‘

Flk] = —e ™% F[—k].

(8) Jy fla)de =17
Solution: We know by equation (1.3) that,

Flk| = ]19 /0 " F@)e ¥ da

Taking k = 0, we get

p
But then,
P
/ flx)de =1
0
So,
1
Fl0] = —.
[0] p
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) Jo If (@) dw =17

Solution: We have,

1K7u75m=
/ f(z Flkle 2wk dp = 1

k*—oo

L ) Y T a1
p 0 k=—o0
p > FIS [ s ar =1
p > IR -1
k=—o00
S |FHP =t

(i) If you know that,

p sin [ (2m o=
fla) = [ s (Ot ) p]pm

D sin [ﬂ' (x;”) }

/f Py f

where D, (x — u) is Dirichlet’s Kernel (4.25)

1
= * D))

Integrating on both sides from 0 to p with respect to x and then dividing by p, we

have,

(LU R ik
—/ flz)e ™™ pdx:—/ (f * Dy)(x)e ™% dx.
Db Jo D Jo

Then, using Subsection 2.2.1, we get,
F[k] = pF[k]D,[k] (where D,[k] is the FT of D,(x)).
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4.2 Direct Fourier Transform

4.2.1 Direct Summation

Some of the commonly used DFT can be found by evaluating the finite sum from the analysis

equation,

F[k]:N flnle= v, k=0,1,...,N—1
n=0

When m = 1,2, ... evenly divide N, we define the discrete comb,

i) 1 ifn=0,+m,4+2m,...on Py
Cm|n] =
0 otherwise.

We verify that,

1
fn] := ¢ [n] has the FT F[k] = —Cw [k],
m m
by,
L N
Glk] = N Crn[n]e 27w
n=0
1 m/—1 ,
—2mik 2 /
= — mm/ h = —
N e ,  where m’ = —

™ if k=0, £2m, . ..
10 otherwise

4.2.2 Basic Rules

Linearity

If ¢1, ¢o, ..., ¢, be scalars. Then,

gln] :==cifiln] + ...+ cnfmln] has FT Glk] = ei FAlk] + ... + e Fonlk].

Reflection and Conjugation
The reflection rule is defined as,
g[n] := f]—n| has the FT G[k] = F[—k].
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The conjugation rule is defined as,

g[n] := f[n] has the FT G[k| = F[-k]|.
Translation and Modulation

The translation rule (or shift rule) is defined as,

g[n] == f[n — no] has the FT G[k] = ¢ > ¥ F[k], no=0,+1,...

The modulation rule (or transform shift rule) is defined as,

g[n] == ™" X f[n] has the FT G[k] = F[k — ko], ko =0,%1,...

Convolution and Multiplication

The convolution rule is defined as,
g[n] := (f1 * f2)[n] has the FT G[k| = N Fi[k]F[k].
The multiplication rule is defined as,
g[n] := fi[n]f2[n] has the FT Glk] = (F1 * F3)[k].
Inversion

The inversion rule is defined as,

gln| := F[k] has the FT G[k] = %f[—k]

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

4.2.3 Rules that link functions on Py with functions on P~ P, n

Zero packing rule

The zero packing rule (or up-sampling rule)

flx] ifn=0,4£m,+2m,...
gln] == .
0 otherwise
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is verified by,

Repeat rule

The repeat rule

gln] := fln] (with f on Py, gonPy ) has FT Glk] = {5[%]

is verified by,

Summation rule

The summation rule
fln— IN]

is verified by,

N—-1 M-1

. 1 —27rzk 2
Glk .:Nn O(an—uv)
1 N—-1M-1 (ntN)
= fln — IN]e~2"*
n=0 [=0
mN—1
1 n
_ N f[nl]ef%'rzk
n’=0
= mF[mk]. !

5

(with f on P,,n, g on Py ) has FT G[k]

if k=0,+m,+£2m, ...

otherwise.

= mF[mk].

(4.42)

(4.43)



Decimation rule

The decimation rule (or down-sampling rule or sampling rule)

m—1
gln] == flmn] (with f on P,,y, g on Py ) has FT G[k] = F[k — IN]. (4.44)
=0
is verified by,
N-1 N—-1 m-1
GIk)e>™ 5 = 37 (7 Flk — IN]) 24
k=0 k=0 [=0
N—-1m-—1
_ Z F[k? . ZN]€27ri(k—lN)%
k=0 =0
mN—1

4.2.4 Example on how to compute DFT using zero packing and
translation rule

Let (A,B,C,D), (E,F,G, H) be the discrete Fourier transforms of (a,b,c,d), (e, f,g,h),
respectively. In this section, we make use of the zero packing and translation rule to find

the discrete Fourier transform of

<a> (a707b707c707d70);
Solution: Let f = (a,b,¢,d) and g = (e, f, g, h). Then,
Let hy = (a,0,b,0,¢,0,d,0)

Using the zero packing rule, define,

haln] fl5] ifn=0,£m,£2m,...
n| =
! 0 otherwise.

(with f on Py, hy on Pg ) has FT



Then,

1
Hi[k = 3(4.B,C.D,A,B,C.D).

(b> (07e7o7f707g707h);
Solution: Let hy = (0,¢,0, f,0,9,0,h)

Using the zero packing rule, define,

h [ ] g[%] ifn:O’:l:mijQm,.”
nl =
2 0 otherwise.

(with g on Py, hy on Pg ) has FT

1
HQ[k]:éG[k'], k:O,l,Q,...,’?
Then,
1
Hy[k] = 5(E, F.G,H, E,F,G H).

(c) (a,e,b,fcg,dh).
Solution: Let hs = (a,e,b, f,c,g,d, h)

Using the zero packing and translation rule, define,

haln] == 5] +gl5] ifn=04+m,£2m,...
o otherwise.

(with f + g on Py, hy on Pg ) has F'T

HyK = S(FI+ G, k=012...7

Then,

1
Hylk) = J(A+ E, B+ F.C+G.D+HA+EB+FC+G.D+H).
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4.2.5 Dilation

First consider the the case where dilation parameter m =1,2,...,N —1and N = 2,3, ...
are relatively prime | i.e, ged(m, N) = 1.

The P-dilation rule

g[n] := flmn] (gcd(m,N)=1) has FT G[k] = Fm'k] where mm' = 1(mod = N).

(4.45)
is verified by,
=
Gl = 5 X Flmnlem5
n=0
| N1
_ N f[Tnn]e—?ﬂ'i(km’)M
n=0
1 mN—1 ,
_ = f[n/]e—Qm(km’)"ﬁ
N n/=0
= F[m'k].
Next consider the the case where dilation parameter m = 1,2, ..., N is a divisor of N. Then,
the D-dilation rule
m—1 k N .
FI= —1=] it mlk
g[n] := flmn] (with m—N) has FT G[k] = o Flyn =] itml ‘ (4.46)
0 otherwise.

is verified by,

— %71 m—1 N
G[He?m’f% — Z( FIK —1 ]> 2mik!m 2
=0 k'=0 1=0 m
Nlm1
- Z FlK — lﬂ] ik —1 2y mn
k'=0 1=0 m
N-1
= F[k.]e%rzk%
k=0
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4.2.6 Poisson Relations

Suppose first that f is absolutely summable function on Z with the FT F on T,,.
Then, we can use the summation rule
< o . P,/ P
gln| == Z fln —mN] (with fin Z, g in Py ) has FT G[k] = Nf<k_> (4.47)

m=—00

by writing,

Let feT, that has absolutely summable Fourier coefficients F'[k]. Then, the sampling rule
is,
P e . -
g[n] := f[nﬁ} (with f in T,, g in Py ) has FT G[k] = Z Flk —mN]. (4.48)

m=—o00
Suppose now that f is a smooth function on R with small regular tails. The function f and
its F'T are then linked by Poisson sum formula, and we can use sample-sum rule,

gln| == Z f[n%} (with fin R, g in Py ) has FT

m=—0oQ

1—k_mN] (4.49)

1 o0
GmpwavﬁégéFb —

Here, a is a nonzero real dilation parameter.®
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Chapter 5

Applications of Fourier Analysis

5.1 Heat Flow

Consider an idealized long thin rod, with the assumption that heat energy neither enters
nor leaves the rod and that it is neither created nor destroyed.

Let T'(x,t) be the heat at time ¢ at the point z in the rod. The heat equation in one dimen-
sion is derived from two physical laws, Fourier’s Law and the Conservation of energy.
Fourier’s law states that the heat T is transported in the direction opposite to the temper-

ature gradient of u and is proportional to it, i.e.,
T(x,t) = —kVu, (5.1)

where x is the proportionality constant also known as the thermal conductivity.

Also, the heat T is related to the mass m and temperature u via the following formula,
T(z,t) = Amu(zx,t). (5.2)

where )\ is known as the specific heat.
Let us now consider an infinitesimal piece from the rod with length [,z + Az]. Then, if
the rod has a cross section A, then this piece has volume AAz. Further assuming that the
density of the material is p, then the infinitesimal mass of our infinitesimal volume element
is simply given by

Am = pAAz, (5.3)
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Therefore, based on (5.1), the equivalent heat for our volume element is described by,
T(x,t) = Amu = ApSAzu. (5.4)

Also, we know that rate of change of heat is given by the difference in rate of heat flowing
in and rate of heat flowing out.

Mathematically written as,

or
o = Tin(x,t)S — Tous(x + Az, t)S. (5.5)
Rate of change of heat can also be found by differentiating (5.4),
orT ou
— = A\pAAzr—. 5.6
ot~ P (5:6)
Substituting (5.6) in (5.5),
ou
)\pAAxE = A[T(xz,t) — T(z + Az, t))].
Dividing by Ax and A,
) Ou | Tow(z + Az, t) — Tin(z, 1)
Por ~ Az ‘
If Az — 0, then,
T
Pot =~ oz
Finally using Fourier law of Heat condition (5.1) in one dimension,
ou
T = —g—
" ox
we have,
ou 0%
—=q -,
ot 0z?
where a? = & is the thermal diffusivity constant.®”

Ap

Fourier used the equations (1.3)- (1.4) and (1.1)- (1.2) to solve problems involving the
flow of heat in solids. He showed that the temperature u(x,t) at times ¢ > 0 and coordinate

x along a thin insulated rod of uniform cross section is a solution of the diffusion equation
wy(z,1) = a*ugy(z,t) * (5.7)
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Let f be a generalized function on R. If the solution of the equation (5.7) exists that has

the initial temperature,
u(x,0) = f(x) (5.8)

then, we can Fourier transform (5.7) and (5.8) to obtain,
Us(s,t) = a*(2mis)*U (s, t), U(s,0) = F(s).

Using the fact that the initial value problem

y'(t) +ay(t) =0, y(0) = A
has the solution
y(t) = Ae ™, t>0,
we then write,
U(s, t) = e W5 p(s), t>0. (5.9)
The Gaussian factor
K(s,t) = e 7@t t>0

is the Fourier transform of the diffusion kernel

k@¢y:{5“) 2 ift=0

wrjrﬁe‘mifwo

Then,
U(s,t) = K(s,t)F(s),

is the Fourier Transform of

u(z,t) = k(z,t) * f(z) '
Fourier observed that the function

; 42,22
e27rzs:1:6 4m¢a“s t’
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satisfies the equation (5.7) for every choice of the real parameter s.

For the temperature in a rod, Fourier wrote
& ; 2,.2.2
u(z,t) = / A(s)e*misredmatsTt g,
—00
with the intention of choosing the amplitude function A(s), —oo < s < 00, to make his

formula agree with the known initial temperature u(x,0) at time ¢ = 0, i.e., to make
u(zx,0) :/ A(s)e*™s* ds. (5.10)
This identity is actually the synthesis equation (1.2) for the function u(z,0) so we can use
the corresponding analysis equation (1.1) to write,
A(s) = / u(z,0)e 2™ dz, —00 < § < 00,
thereby expressing A in terms of the initial temperature. In this way Fourier solved the
heat flow problem for a doubly infinite rod.!

For the temperature in a ring of circumference p > 0, Fourier used the p-periodic solutions
e2rike/po—ina’k/p*t k=0,41,42, ...

of the diffusion equation (with s = k/p)to write

oo
; 4202k /02
U(QE, t) _ § Ck€27mkx/p€ 4ma®k/p t’

k=—o00

with the intention of choosing the coefficients ¢, k = 0, +£1,£2,... to make

o0

u(z,0) = Z cpe?mihe/p,

k=—0o0
This identity is actually the synthesis equation (1.4) for the function u(z,0) so we can use
the corresponding analysis equation (1.3) to write,

1 (7 A
e = —/ u(zx,0)e2mk2/P dy. k=0,+1,+2,...
P Jo

in terms of the known initial temperature. In this way Fourier solved the heat flow problem

for a ring.!
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5.2 Example of Heat Flow

In order to illustrate the concepts from the above section 5.1, we will show how to find the
temperature function for box function.

Fourier derived the formula
u(x, t) = / A(S)e27risxe*47f2a282t ds.

for the temperature at the point x, —oo < x < oo, at times ¢ > 0 along an infinite one
dimensional rod with thermal diffusivity a®. Suppose that when ¢ < 0, the rod is held at

the uniform temperature u = 0. At time ¢t = 0, that portion of the rod from x = —= to

1
2
T = +% is instantaneously heated to the temperature u = 100 thereby producing the initial

temperature

> omisz 5. 100 if 2] <
/ A(s)e ds = u(z,t) == { 0 if 2] >

DO [0 [

[e.9]

Use the analysis equation (1.1) together with the Fourier transform pair of Exercise 1.6
of Chapter 1, ‘A First Course in Fourier Analysis’ by David.W.Kammler to find A and
thereby produce a formula for u(z,t).

Solution:Using analysis equation (1.1), we have,

A(S) = / u(xjo_i_)e*Qﬂ"ism dl‘, —00 < § < 00
= / 2 u([[‘, ()_|_>6—27Tisr d{L’ + /2 u<x’0+)€—2ﬂ-ism dl’ +/ U([E, 0+>e—27rism d[L'

oo — 1

[

—/ 100e= 2757 (g

1

—2misxr 4 1
- 100[e ] .

—2mis
100 |:€7ris _ e—m’s]
B 2i

ms
100y .
= (E) sin(7s)
{100 if s=0
— 10022 if 5 £ 0
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Then,

u(z,t) = /OO Als)e2misze—intatstt g

= /OO 1OO<M>GQMSIG_4WZ“25% ds
—00 s

= / 100 <81n(7r3)> [cos(2msz) + isin(2msz)|e 4™ 0 ds
s

—00

Using odd and even functions,

u(z,t) = 2/ 1OO(M>64’T2“252t cos(2msx) ds
0

s

= 200/ <M>e_4ﬂ2a252t cos(2msx) ds.
0 s

5.3 Convolution Factor as Filters

In Fourier Analysis, convolution is basically a means of filtering. Consider a signal x given

by figure 5.1. Then, the Fourier Transform of z is given by X as shown in figure 5.2.

03

02F

a1r

L1

N2k

L3

. . . . . . . . . n4 . . . . . . . . .
1} 5 10 15 20 25 30 ] 40 45 a0 0 a0 00 180 200 250 300 350 400 450 &00
tirne (millisecaonds) Frequency (Hz)

Figure 5.2: | X (f)|=Fourier Transform of the
Figure 5.1: x(t)=Original Signal Signal x(t)

Suppose we want to keep the components of x(t) that vibrate at frequencies between 75
and 125Hz. Let H be the Fourier transform of a signal i such that H is 1 for frequencies

between 75 and 125Hz and zero at other frequencies. The signals h and H are shown in
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figure 5.3 and figure 5.4 respectively.

60 T T T T T T T T T 1

09r

0gr

07

06|

= E st
04r
03f
n2r
IR
-EDD 5I 1ID 1I5 QID 2I5 Sb 3I5 AID AIS a0 DD SID 160 1%0 QDID QéU 360 3%0 4DID déD |00
tirne (milliseconds) Frequency (Hz)
Figure 5.4: H(f)=Fourier Transform of the
Figure 5.3: h(t)= Band Pass Filter Band Pass Filter h(t)

The product Y (f) of | X (f)|H(f) is given by figure 5.6. Taking the inverse of this product
gives the convolution of x and h i.e., y = x x h as given by 5.5.

Here, y is the desired filtered version of x and h is called a Band-Pass Filter.

0.4

0.0s

006

004

002

£ 0
002
-0.04 F
. . . . . ) . . . -0.06
-D.4U 5 10 15 20 25 30 35 40 45 a0
time (milliseconds) 008 L I L L L L L L L
a0 100 180 200 250 300 350 400 450 s00
Frequency (Hz)
Figure 5.5: y(t)=Convoution of Signals x(t)
and h(t) Figure 5.6: Y (f)=Product of | X (f)| and H(f)

Now, consider GG to be the Fourier transform of a function g, G being 1 only for frequencies

between -50 and 50 Hz and zero at other frequencies. As in above case, if we take the
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product for X and GG and then take the inverse of that product, the resulting figure again
is a smooth component of x that “sounds” at frequencies between -50 and 50. g is called a

Low-Pass Filter.

5.4 Convolution and Correlation

Consider two finite functions f[n] and g[n]. By the Cauchy-Schwartz inequality, we have,

S sialal] < (X2 1) (S ob)’

with equality if and only if g = f or g = —f. Suppose that,

Sl =Ygl =1 (5.11)
Then,

1< Y flnlgln) <1

If the equalities in (5.11) are not met, we normalize f and g as follows
Sl
(X fn)2
A D i
2= DS ) T S P
Here C(f,g) =>_ fIn]g[n] is the correlation between f and g.
If C(f,g) =1, then f =g.
If C(f,g) = —1, then f = —
If C(f,g) =0, then f is orthogonal to g.

fln] =

Then,
=Y flnlgln — =] = C(f, (- — x)).

where we set g[n] = g[—n| and x is the ‘shifting’ parameter.

Similarly, consider two suitably regular functions f, g be on R. Then,

(f*g)(x / Fu)g(u+z)du
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Using change of variable u = —v, we have,

(f *g)(x /f gz —v)dv = (f * g)(x). (5.12)

Here f is the hermitian conjugate of f i.e.,

f(x) = f(—=x) for f on R or T,

f[n] = f[-n] for f on Z or Py.

This relation (5.12) works for any function defined on R, T,, Z and Py.

Since, f = f, we have,

frg=(fxg)=Fxg (5.13)

The relations given by equations (5.12) and (5.13) is taken in reference to Chapter 2 of ‘A

First Course in Fourier Analysis’ by David.W.Kammler, pg 91.

5.5 Fourier Analytical Method for Noise Reduction

Suppose that a noisy time series/signal is given by Figure 5.7.

“n 5 10 15 20 25 30 ] 40 45 a0
tirne (millisecaonds)

Figure 5.7: y(t)=Signal Corrupted with Zero-Mean Random Noise
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Under the assumption that the noisy time series above is representing an oscillatory
periodic phenomenon, we use Fourier Analysis to remove noise from it. Taking Fourier

Transform, we obtain Figure 5.8.

o5
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0.1 ‘
l
: 1 i ; i A 05

| | | I | | I | | | I
0 50 100 150 200 250 300 350 400 450 500 0 a0 100 180 200 250 300 350 400 450 500
Freguency (Hz) Frequency (Hz)

Figure 5.8: [|Y(t)|=Single-Sided Amplitude  Figure 5.9: Y1(t)=Decimated Single-Sided
Spectrum of y(t) Amplitude Spectrum of y(t)

We see two predominant frequencies, namely 60 and 210 Hz. There are also many contribu-

tions from other frequencies which encode the noise (in particular the higher frequencies).

()

e w5 m » wm ® % w@ 5w 5w » W B a4 B @
time (milliseconds) time (milliseconds)
Figure 5.10: x1(t)=Signal reconstructed by  Figure 5.11: Original Signal
using ifft of Y1 x(t)=cos(2760t) — 0.5 cos(2w210¢)

To get rid of most of the frequencies we use threshold or decimation method. We fix a T
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and say, every frequency with intensity less than T will be dropped (thresholding) or given
a parameter N we can keep only the N frequencies with biggest intensities (decimation). For
sake of illustration, consider the decimated signal, given by Figure 5.9.

Thus, only the predominant frequencies are retained. The good news is that this map of
frequencies can now be taken back to the “time series side” by the means of the inverse
Fourier Transform. This yields Figure 5.10.

This is a de-noised version of the original signal y(t). To verify how effective this method
is, let us say that the signal y(t) was the function x(t)=cos(2760t) — 0.5 cos(27210¢) plus
some MATLAB generated random noise. The function x(t) looks as given by Figure 5.11.
This is very similar to the reconstructed signal x1 above. In fact, their correlation is illus-

trated by the following Figure 5.12.

Figure 5.12: Correlation between the signals x(t) and x1(t)

Notice that when coming up with the de-noised signal x1(t), we knew nothing about the

existence of the “underlying” function x(t).
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