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INTRODUCTION

Operations Research is a body of knowledge used to assist in the de-
cisions necessary for the efficient operation of organized systems. The
field is concerned with the problems of how to conduct or coordinate the
activities of large and usually complex organizations. The approach used
to solve the problems encountered is the scientific approach. There are
many descriptions of the scientific approach. Hillier and Lieberman [11]

give;;héfginplgég;

1, The structuring of the real life situation into a mathematical
model ... 50 that a solution relevant to the decision-maker's
objectives can be sought.

2. Exploring the structure of such solutions and developing sys-
tematic procedures for obtaining them,

3. Developing a solution that yields an optimal value of the

(decision-maker's) objective,

The approach is three=fold., It requires the development of a model, eval=-
uation of the model, and determining the best possible ecourse of action
from the model. It may not be necessary to proceed through the entire
sequence of this approach for the solution to the problem may be found in
any of the three steps.

Simulation is a technique used both in developing a model and evalue-
ating the model, Simulation is a numerical technique for performing experi-
ments upon a mathematical model of the system., Th; three general cases which
call for the use of simulation are (1) analysis of a system which has a very
complex mathematical and statisical nature, (2) analysis of systems not yet

in existence, and (3) evaluation of possible alterations of existing systems,



The system under consideration is subdivided into a number of sub-
systems, each of which can be easily described mathematically or statis-
tically, Programming these subsystems causes the results to be discrete,
For this reason, it is not possible to obtain a continuous mathematical
expression of any of the processes under consideration, Since all con-
tinuous processes must be approximated numerically, a true optimal solu-
tion cannot be found using simulation.

By creating a number of subsystems and allowing them to interact, the
investigator is able to stu&y a large complex system, The investigator
must select measures of performance which he will observe, It is impor-
tant that measures of performance be selected which are pertinent to the
decision-maker's objective, It is possible to observe the effect on the
entire system of a change in any of the subsystems. In this way, possible
alternatives are studied., It is also possible to create subsystems which
do not yet exist in the real world or may never exist.

Simulation is a useful technique; therefore, studies of the problems
encountered when using this technique will be valuable to operations
researchers, One of the problems encountered is the transient stage. The
transient stage of a simulation is the initial period of the simulation
when the mean and variance of the measures of performance are erratic and
not true to the real-life system. The transient stage problem is the sub-

ject of this paper.



STATEMENT OF THE PROBLEM

In the past it has been observed that simulations initially go through
a "warming-up" period., During this period of time, the system's measures
of performance are quite unstable and erratic in behavior. Once this warme
up or transient stage is past, the simulation is said to be in equilibrium,

The problem to be considered is the estimation of the length of the
transient stage, Unfortunately, due to the experimental nature of simula-
tions, it is not possible to statistically forecast the length of the tran-
sient stage. The problem becomes one of determining when the simulation
has reached equilibrium, We shall state the problem as the estimation of
the termination of the transient stage.

Since the transient stage is not stable, the output during this stage
is not usually desirsble. It is to the experimenter's advantage to know
when the similation has passed through the transient stage, It is possible
to get a rough idea of when the simulation has reached equilibrium within
a reasonable degree of accuracy by doing the simulation for a long period
of time and examining the output. This can be quite expensive in terms of
time and computer costs,

The problem will be constrained to require that the soclution be dynamie.
A dynamie solution is one which will indicate whether or not equilibrium has
been reached while the simulation is still running on the computer.

A second constraint comes from the definition of equilibrium, Equili-
brium, according to Cox and Mize [5], is achieved "when the system's measured
performance varies only within an acceptable and predictable range", This
definition implies that the simulation must be stable in both mean and

variance, It is easy to see that a constant mean may be associated with



an erratie variance. We must therefore find a method of estiﬁating termi-
nation of the transient stage which considers both mean and variance.

It is suggested that a possible approach to the problem can be found
through spectral analysis. Spectral analysis does not adjust for auto-
correlation, rather, it decomposes the variance so the effect of autocorre-
lation can be studied. Autocorrelation is a measure of the relationship
between Xt and Xt+1 . The suggestion is toc evaluate spectral analysis as
a possible technique in determining when the simulation has attained equi-
librium.

It is proposed that by comparing spectra from successive segments of
a simulation-generated time series of parameter estimates, it can be deter-
mined vhether or not equilibrium has been attained. When there is no longer
a significant difference between spectra of adjacent segments, it can be

said that there is no longer a significant difference in the segments' vari-

ance or that equilibrium has been achieved.



LITERATURE SURVEY

Simulation is a well-established method of evaluating a system. The
common problem of determining the length of the transient stage has been
encountered by all who have used the technique. Statistical methods of
solving the problem have only recently been sugpgested.

Previously the experimenter generally followed the advice given by
Conway [3] who recommended making several pilot runs and examining the re=-
éulta. Upon examining the results, the experimenter may either pre=load
the system at the expected value of the parameters, or determine the aver=-
age length of the transient stage and begin data ecollection at that point
in the next simulation.

Conway's approach requires repetitive simulations, which increases come
puter costs, and does not satisfy the need for a well-defined solution of
the problem, Bueno [2] realized the need for more study of the problems
involved in the stabilization of computer simulation. His preliminary work
indicated that much could be learned from such studies and the work was in-
deed necessary. He suggested approaching the problem by comparing sample
means with a grand mean through the student's t-test, Fishman [6,T] also
became interested in the problem and began work regarding the autocorrela=-
tion nature of simulations, He first showed that simulation-generated time
series are highly autocorrelated (7] and established an application of spec-
tral analysis to such time series, He indicated in the second paper [6]
how the problem of obtaining independent observations might be resolved
and how the changing nature of the autocorrelation affects the simlation.

Reese [20] combined the ideas of Bueno and Fishman by introducing a

dynamic approach to the problem, He suggested a sequential t-test of



estimated parameter means in searching for stability. This method is dy-
namic, thus eliminating the necessity of repetitive simulations. It is
important to have a dynamie solution to the problem; the question of
vhether or not a simulation has achieved stability should be answered in
regard to some analysis of the sample variance, as well as the sample mean,
It is possible for repetitive samples having a stable mean to be erratic
in variance., The simulation cannot be thought of as being in equilibrium
according to the definition presented above,

Let us first review the work done by Bueno, Fishman, and Reese.



SOME PRACTICAL SOLUTIONS TO
TWO STATISTICAL PROBLEMS IN SIMULATION

Ramon J, Bueno

The purpose of Bueno's paper is to propose a solution for two problems
encountered in simulation work, The problems dealt with are: (1) estimating
the length of the transient period and (2) estimaticn of the length of runm
required to produce a desired precision in the statistic,

The procedure chosen for estimating the transient period varies according
to the type of simulation, The three types of simulations considered are:
(1) systems with endogenously independent periods, (2) systems with exogen-
ously independent periods, and (3) systems with continucus and inter-dependent
periods, By endogenously independent, Bueno means the system repeatedly
reverts back to an initial stage independent of the previous period. The
length of simulation time between stages 1s not a function of time, but de-
pends on the nature of the system, For example, an inventory system which
reverts back to a maximum stock level when stock reaches some minimum stock
level, The exogencusly independent system is one which reverts back to an
initial stage periodically, such as retail sales systems in which cash-on=-
hand reverts back to some level at the beginning of each day. The simula-
tion time between stages is a function of time. The continuous system is
one which operates without reverting back to an initial stage., For example,
 a continuously operating production line is a contiﬁuous system,

For simulations of types (1) and (2) , Bueno proposes using the stu-
dent's t-test to determine the periods biased by transient behavior, The
‘simulation is diﬁided into n time periods. The statistic's mean within the

h -
it period, X is compared to the statistic's grand mean for periods i+l



through the nth period, §i+1' Bueno suggests discarding the first period
as it is known to contain transient bias.

Application of the student's t-test requires three criterion:

1. The observations, the X, ‘s, must be independent.

i
2. The observations must be normally distributed.

3. The known values, the X 's, must be normally distributed.

i+l

Bueno states that since the ii's and ;i+1's are calculated from several
single observations, they are normally distributed by virtue of the Central
Limit Theorem. It should be mentioned that if the several single observa-
tions are autocorrelated, the assumption of independence is not jJustified.

In applying the student's test to simulations of the third type, Bueno
suggests that by observing the change in the sample variance from period to
period, a correction factor, 61 , can be applied to the mean. This correction
factor is based on the sum of the correlation of period i, P, , with all
remaining periods. Bueno asserts that by correcting for the autocorrelation
of the system, the three criterion of the student's t-test are met.

Fishman [6] has pointed out that successive statistic means of simula-
tion-generated time series are highly autocorrelated. Reese [20] also found
that observations of simulation statistics are highly autocorrelated. Similar
results were encountered in this study, as will be shown later in this paper.

In dealing with autocorrelation, one must consider the source of the
sutocorrelation. It may be that the system being simulated is autocorre-
lated, that the simulation may induce autocorrelation, or that both may be
true. It is possible that the time interval between observations is short

and the system does not change between observations. This would induce



autocorrelation that is not in the real system., Studies by Fishman [7]
have shown that the length of the transient stage is related to the amount

of autocorrelation in the simulation,
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THE ANALYSIS OF SIMULATION-GENERATED TIME SERIES

George S, Fishman and Philip J. Kiviat

This paper presents the first published application of spectral
analysis to simulation-generated time series., The application of spectral
analysis is used for comparison of simulaticns of queueing systems differ-
ing only in queue management. Fishman and Kiviat first present a dis-
cussion of why spectral analysis can and should be applied to simulation-
generated time series, Tbéy then give a brief development of spectral
theory, and its application to single-channel queueing systems. They con-
clude that the differences in the statistical properties of queueing sys-
tems can be easily identified by using spectral analysis,

The relevance of their work to this paper is in Fishman and Kiviat's
Justification of the use of spectral analysis in studying simulation out-
put and their interpretation of the simulation in the light of spectral
analysis,

Fishman and Kiviat have two reasons for using spectral analysis in
studying simulation-generated time series, First, as previously mentioned,
simulation data are autocorrelated; thus, the investigator cannot apply
commonly used statistical tools. They point out that some investigators
attempt to adjust for autocorrelation., The criticism of this is twofold,
One, they doubt that methods used to remove autocorrelation actually accom=
plish the purpose; and, two, doing away with autocorrelation removes infor-
mation about the system with which the investigator should be concerned.

This leads to their second reason for advocating spectral analysis, The
purpose of simulating a system is to study a stochastic process. The

investigator 1s interested in the average level of activity, deviatioms
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from this level, and the length of time the deviation lasts. Since spectral
analysis is concerned with estimating the occurrence of cyclic elements

and the period of these elements, spectral analysis is particularly suited
for the investigator's needs.

In their analysis of the simulation-generated time series, Fishman
and Kiviat first plot both the autocorrelation function and the spectral
density function. By doing this for two simulations, a visual comparison
of the graphs indicates to the investigator where statistical analysis of
the differences would be most fruitful, For example, they choose to com—
pare the queue length of two simulated queueing systems. One system oper-
ated with FIFO queue management and the other operated under SHOPN queue
management, By using the sample mean and variance from a segment of the
time series after equilibrium had been obtained, they place confidence
limits on the mean queue size. By assuming that the spectral function was
normal log[f(}) ] \N{log[£(2)],y(M,T)}, the confidence interval

P{e-?i £E/EQ) < e—@] = l-o was derived, The estimated spectrum at

frequency X is £(A). ¢(M,T) = 2M/3T, where M = the number of lags in the

P(a/2) [y(M,T)]

estimate and T = total simulation time, and ¢
The confidence interval was used to determine whether or not f£{iA} may be
considered to have been drawn from a process with f£(}) as the spectral
density function,

By observing both the autocorrelation function and the spectral density
functions, the investigator can estimate what cyclic elements are present
in each of the simulations, By comparing these, he can gain some insight
as to the similarities or differences between the processes being studied.

By using the null hypothesis and the confidence intervals mentioned, he



will be able to test for a statistical difference between the two simula-
tions., This is clearly of ald to one interested in comparing two simula-
tions. The application of these methods toward finding the end of the
transient stage remains to be seen, It is noted that Fishman and Kiviat
did not use these methods in determining the end of the transient stage
in their examples; however, they were not interested in this problem. It
would be interesting to apply cross-spectral analysis to the problem of

comparing simulation-generated time series from two simulations.
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PROBLEMS IN THE STATISTICAL ANALYSIS
OF SIMULATION EXPERIMENTS: THE
COMPARISON OF MEANS AND THE LENGTH
OF SAMPLE RECORDS

George S, Fishman

This paper presents a technique for comparing the means of two simu-
lations, The paper is of importance to this work because of Fishman's
study of the spectra of simulation-generated time series and the discussion
concerning autocorrelation,

Fishmsn points out that simulation-generated time series are highly
autocorrelated, He has found that the variance of the sample mean for
autocorrelated data is inversely proportional to a fraction of the number
of observations, This fraction is related to the autocorrelated properties
of the simulation. The fractional number of observations can be regarded
as the equivalent independent observations,

The number of equivalent independent observations is related to the
strength of autocorrelation over t® wunits, Fishman terms +* +the correla-
tion time, which is a measure of the interval of time over which the time
series is autocorrelated and outside of which the time series is not corre=-
lated with itself, Correlation time t* is a measure of the strength of
autocorrelation relative to time., The importance of correlation time is
that simulation-generaéed time series are autocorrelated and the autocorre=-
lation is not constant throughout the simulation., The amount of asutocorre-
lation changes as the simulation progresses and it seems to decrease, as
was the case in this study.

The correlation time is defined as T =v£(0)/2 , vhere f£{0) 1is the

spectral density function. Since correlation time is a measure of the longest
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effect of autocorrelation, the zero frequency is used. This value is not
known and in order to estimate it, we use spectral analysis to find G(0),
the spectral distribution function. Since G(}) = Rof(l) and R is the
covariance, we can estimate ;* = wG(O)/ZRO.

Fishman also points out that two simulations of the same system will
likely have different values of 1*. He suggests that each simulation be
evaluated in the light of its unique T*. The importance of this can be
illustrated by considering two simulations of the same system, both having
the same variance for a paréicular statistic but with differing t*, The
simulation with a higher 1% will have fewer changes during any given length
of time and fewer equivalent independent observations. We could not expect
as good an estimate of the parameter mean due to the larger value of 1%,
The simulation with a lower value of t* will have a greater change over
the given period of time and more equivalent independent observations, thus
a better estimate of the parameter mean.

The important points, from this view, are that each simulation has a
unique autocorrelation function and that the autocorrelation function for

the simulation changes with time.
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STEADY STATE PARAMETER ESTIMATION
IN
COMPUTER STMULATED SYSTEMS

Peter A, Reese

This work suggests a method for determining the termination of the
transient stage of a simulation, The technique is the application of
sequential t-testing to observations made at m intervals. The technique
was evaluated using a queueing model and the theoretical value of the
waiting time.

Reese relies on (though does not mention) Fishman's concept of corre-
lation time. He suggests that by selecting a lag time of length m, which
corresponds to the longest autocorrelation interval, and sampling only ob-
servations separated by m time units, the samples are independent and nor-
mally distributed. This is consistent with Fishman's development of
equivalent independent observations.

The sequential t-~test is designed for making a decision regarding a
population parameter by taking repetitive samples, A simple hypothesis is

set up, Ho= 8=Bo against H B%Bo. Decisions can be made continuously

1t
in time using the sequential t-test., The decision criterion is
6

B < e—° £(x:0) < A where f(x:6) is the probability density function of which ©
1

is a parameter and A = o¢/1-B, B = B/l-a. If the sample statistic is less

than B, accept Ho; and if the sample statistic is gféater than A, reject

Ho' If the sample statistic is between A and B, no decision can be made,
Reese develops the sequential t-test for a mormally distributed sample

mean, If the sample statistic is An' the test is B < ln < A
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where

4 1 _—}—_1
9 2(nt+l) 9 2(n+l)
nt+t nt+t
1 o) o
n+t1 n+t2
\ o
¢, = §:§ y ty = xgx~5 » ty = x;x+6 and § is the longest
= 5 = correlated interval,

This corresponds to Fishman's correlation time.

The procedure being Accept Ho if An < B3 Hb= u = E[x-x] = 0

Reject Ho if ln > A; le pu#o

The important aspects of the application of the sequential t-test to de-
termining the termination of the transient stage are:

1) the test is dynamic

2) the test deals with the sample mean
One of the most difficult problems in estimating the length of the transient
stage has been in selecting or constructing a technique which allows the
experimenter to determine the end of the transient stage while the simula-
tion is still in the computer. To meet this requirement, any selected
technique must be programmable and may not interupt the continuous flow of
the simulation. The sequential t-test seems to this writer to be the first
method suggested to deal with the transient stage problem which fully meets
this dynamic requirement,

The second aspect is of interest to this writer., Reese assumes that
once a sample mean does not differ from the grand mean of a statistic, the

statistic has reached stability. This implies that stability is a function
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A
of the first moment. It is suggested that by the above eriterion, ui
A A A A A
] R R
and “i+1 may be statistically equal, while ui and §41 or i and 141

are very unequal, It is reasonable that stability should be sought in both

the mean and the variance.



18

APPROACH TO THE PROBLEM

The proposal to be evaluated is that of comparing successive segments
of a simulation-generated time series in order to determine whether or not
equilibrium has been attained. It is contended that when there is no longer
a significant difference between the spectra of adjacent segments, it can
be said that equilibrium has been achieved.

It is our contention that initially a simulation-generated time series
can be described as some trend function plus a series of cyclic components

plus an error term,

k
Xt = g[X(t)] + Z aj[sin(mjt) + i cos(w

t)] + ¢
1=1 ’

J

An analog to this is the color spectrum, When we see a color (i.e., blue)
we know that actually the entire color spectrum is present with the shorter
blue light frequencies dominating.

The same is true of simulation statistics, The parameter estimates
are actually some trend function and a number of cyclic elements or fre-

quencies., As the simulation progresses, some of these frequencies,

t)l, degenerate. ‘These terms do not completely

k
a,[sin(w,t) + i cos(uw
L, =ylsintuye) 3
j=1
degenerate, rather some portions of it become equivalent to zero, while

others remain. Once the parameter has achieved stability, it can be

expressed such that

k
X, = glX(t)] + ] [a,(sin(§t) + i cos(jt))] + ¢
1 ‘

- where a.:i is the strength of the frequency j. It is not known whether or

not it is possible to forecast how fast or which frequencies will degenerate

before the simulation is run.
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For testing the above hypothesis, it is suggested that a simulation
be studied to see if the spectrum of the time series does change with time,
Such a procedure cannot prove the contention, but it will give evidence as
to whether or not the hypothesis is worth entertaining. Since our primary
interest is with a system that when simulated, will have a definite transient
stage and a measurable state of equilibrium, a queueing- system with multiple
serving staticns was selected., The system will have a definite transient
stage and the expected values [1] of the system can be found.

The system simulated for this study was a simple queueing system with
multiple serving stations. The time between arrivals was generated from
an exponential distribution. The sarrivals entered the system singly and
wvere served on a first-in, first-out basis. The queue was not restricted
in size, The service stations were parallel, each serving a single unit

at a time, The underlying service time was exponentially distributed.

\
[

0 —>V}—o0—0—o¢




20

Turning to queueing analysis as presented in Chapter 6 of Sasieni,
Yaspan, and Freidman's Operations Research: Methods and Problems [21],

we find the average number of units in the system,

ko
(A/u) Ap P

Ls = l'+ 20
Yot )

s

the average number of units in the queue,

L =L -
q s

= >

and the average utilization of service stations which is

E[stations occupied]

E(u) = Total stations
E(u) =%Pl+%P2+%P3+...+%1P_1+Pr [1—rian]
n=1
where
A = average arrivals per hour
L = average service per hour
r = number of serving stations

1} r
p =QLO_L O amyt e

_o/m” P
o n! r! n n!

s, O <n«<r
o e

By observing the number of units in the system every hour, one can
construct a simulation-generated time series., The variance of the time
series can be analyzed by using spectral analysis. Spectral analysis
decomposes the variance into a series of cyeclic elements. The set of
these cyclic components is termed the spectrum of the time series. In
_ order to compare_the spectrum at time t with the spectrum at time t + T,
we use cross-spectral analysis. Cross-spectral analysis will give the
investigator a measure of the correlation between corresponding cyclic

elements, This measure is termed coherence,
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It is possible to determine whether or not the spectrum of a simulation-
generated time series changes with time by utilizing cross-spectral analysis.
If successive segments of the time series are significantly different, then
the simulation is considered to be in the transient stage. If the successive
segments do not change, the simulation is considered to be in the steady
state, or equilibrium., We must also be concerned with the lag between the
actual end of the transient and the first indication that the simulation has

passed out of the transient stage.
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SPECTRAL ANALYSIS

Much of the output of simulations can be considered simulation-
generated time series. Let us first discuss time series in general and
a method of analyzing such data, A time series is a continuous or dis-
crete series of values which are related to time, though the relationship
need not be a causal one, Examples of time series are the daily tempera-
ture reading in Manhattan, Kansas from 1801 to the present, the Dow-Jones
stock market averages for the past seven years, the wegkly national sales
of Zappo Peanut Butter, or the number of items in a simulated system ob-
served every hour for 2000 simulated hours. The daily temperature readings
are a good example of a continuous time series, for at no time is there
no temperature. The stock market averages are an example of discrete time
series, for the series is not continuous with time. Since stock cannot be
bought or sold in the market on Sunday afternoon, there is some time interval
when stock market averages do not exist.

Time series are spoken of as having a trend., The stock market seems
to have had a downward trend lately. This trend is the line about which
the values of the series seem to fall., Time series also are often cyclic;
for example, daily temperature readings vary with the season, Zappo Peanut
Butter may have yearly cycles as well as bi-monthly or quarterly cycles.

If we were to look at only six months of Zappo Peanut Butter sales, the
yearly cycle may appear to be a trend in the data. Extending this idea,
a time series can be considered a series of cyclic elements, some longer
than the sample length, some cycles shorter than the sample length. When
considering a time series with constant trend, x, the variance around x

can be thought of as the result of combining the cyclic elements with lengths,
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or periods, shorter than our sample record, The amount of variance con-
tributed by each cyclic element will be related to its period and ampli-
tude. One way to estimate thé length of these cyclic elements is to observe
the autocorrelation function of the time series. If the autocorrelation has
equidistant peaks or valleys, the existence of cyclic elements should be
strongly suspected.

Spectral analysis is a statistical technique designed to estimate the
cyclic elements, i,e,, spectral components, of time series' variance. This
technique is uniquely appliéable to simulation-generated time series for it
utilizes the time series' autocorrelation function in estimating the
spectral components., (We have previously mentioned that simulation-generated
time series are autocorrelated.,) The application of spectral analysis for
examination of simulation output was first suggested by Fishman [7], but
not in conjunction with the problem being considered in this thesis. We
shall give a brief &evelopment of spectral analysis,

Consider a series of finite length

X.:t=1,2, ..., n}
As has been mentioned, the time series will have a trend of some form,
This trend may change with time or be constant., Let us consider a(t)a

constant with time as the trend of Xt. We can express Xt

Xt = a(t) + e(t)
' where e(t) is the amount of

error at time t,.
‘The time series can also be thought of as a series of cyclic elements,

oscillating about, g=a,

-
X = .(cos w,t + i sin w,t
. jzl aJ(c 5 5 )
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Where w., j=1, 2, ..., n is a set of real numbers |mj| <k and a

j’
j=1, ..., k is a set of independent complex variables, with E[aj] =0,

- 2 - . . -
all j, E[ajaj] = cj, E[ajak] =0, j # k. This can be thought of as

k iw,t
Xt = '21 aje ; however, by using the trigonometric equivalent, the
J=

cyclic concept is more apparent.
The cyclic terms of this generating process will have 2 period of

%E . The cyclic elements in the time series arise from the (cosmjt+i sinmjt)

terms. If we allow E[Xt} = 0 then,

b= EIXX ]

c? (cos w.t + i sin w,.t)

1 3 J 3

L
[Maer b

3

The autocorrelation is a function which increases by the amount of variance

in the interval (0,t), and as w, moves from 1 to k. In a continuous form

3
this is expressed,
n
K, ™ I“ (cos mjt + i sin wjt)dF(w)

a linear cyclic function,

If we can isolate the c? we can know at which wj the most of the
variance is contributed. This is termed spectral estimation at mj. Once
the important wj are located, the periods can be identified.

S8ince we are concerned with real processes of constant mean, dF(w)=dF(-w)

is true., The above expression of M, can be written , M, = cos (tw)dF(w),

giving the following representation of the spectrum,

[u, + j£1 My cos(mj)]

{4

Flw) =

b

To put this in a computational form
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m-1
[CO + 2 z C cos(mj)]

flw) =
s=1

roj-

N-k
where Ck =-% Z X(t)X(t+k), k=0, ..., N-1 is the estimate of uj.
t=1

In order to get a better estimate of the frequency, a weighting

factor is necessary. The estimate becomes

~ 1 m-1
f(w) m {colo(m) + 2 jzl Aj(w)Cj cos (mj)}

The weighting factor has had much discussion and many have been suggested.
For the scope of this work, only two will be mentioned.

The Tukey-Hanning Window

)Lk 2 [] cos ' where m is an integer usually
m
chosen m n/3

The Parzen Window

2
6k k )
1——2—(1—;), D<k_<_m/2
A, = o
k
K 3
2[1—;} . m/2 <k<m

For further discussion of weighting factors, see Spectral Analysis of

Economic Time Series by C.W.J. Granger [9], Power Spectrum from the View

of Communications Engineers by Blackman and Tukey [11], or Spectral Analysis

and Its Applications by Jenkins and Watts [14].

The final form of the spectral estimate is

a m
£w) =% T Aw) C, cos(w)
27 h|

i=1
Experience (Granger [9)] pages 59-62) has shown that in using this
estimate, a sample of at least 200 points is desirable; for with fewer

sample points, it is possible that cyclic elements would go unnoticed.
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The estimate of the spectrum is presented graphically.
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There are two areas in which error can arise in the estimate., First, there
will be some error in the height of the estimate, This error is related to
the window used., Second, there is error associated with cell width., Both
errors involve the number of lags, m. A problem arises at this point. If
one set m at n/3, the bandwidth is wide, thus giving an accurate estimate
of the power at the frequency, but a less accurate estimate of the frequency.
If one sets m low, n/6, the reverse'is true, We have a good estimate of the
frequency, but a poor estimate of the power at that frequency. Parzen [17])
suggests doing the analysis three times with m = n/3, n/6, n/12.

The estimates have been programmed in FORTRAN and computed for simulation-
generated time se-ries on an IBM 360/50. A listing of this program is shown
in Appendix A, A sample spectrum from a simulation-generated time series

is also shown.
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CROSS=-SPECTRAL ANALYSIS

In order to study the transient stage of a simulation, it was decided
to examine the spectrum of a sample time series taken from the transient
stage of a simulation. The spectrum gave an indication of the cyeclie
structure of a ;pecific interval of the simulation-generated time series,
By comparing the spectra of two successive samples, one can determine
vhether or not the spectral components have changed. The hypothesis of
this study is that a change-in successive sample spectra will indicate
degeneration of the transient properties of the simulation.

From the theory of stationary processes we know that the power at a

frequency, w, , 18 independent of the power at all other frequencies [9].

J
It can also be shown that the power at UJ is independent of all other
frequencies of another variable-except the component at “J .

If we are given two time series X(t) and Y(t) which are not indepen=
dent and we obtain the spectra of the two series, we can determine the

J
tral power contributed to the variance of X(t) at w

squared correlation of Xu (t) and Yu (t). x“J(t) is defined as the spec-
J

3y Since the power

at each frequency is independent of the power at all other frequencies, the
squared correlation between all XuJ(t) and !u (t) pairs need not be cone
stant. A smoothed plot of the squared correlation against the frequency
over all frequencies is termed the coherence diagram. By observing the
coherence diagram of [Xu (t),!m (t)]  the similarity of the two spectra
can be measured, A cohegence dgagram of two homogeneous time series will

be in the neighborhood of one for all frequencies, Similarly, the coherence

diagram of two completely unlike series will approach zero for all frequencies.
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Before disucssing how cross-spectral analysis will be used to study
the transient stage problem, we shall first consider a method of estimating
the coherence at each frequency.

In order to estimate the cross-spectrum of two time series, X(t), Y(t)
we first compute their autocorrelation functions, Cxx(k), CYY(k) as

described above. We then compute their cross—correlation functions,

1 M=k 1 Nk

fo(k) =N ) X(eHk)Y(t) and CYX(k) ol z X(t+k)Y(t), where
t=0 t=0

k=0,1, ..., m. Cross-correlation can be interpreted to mean the

correlation of X at time t with Y at time t + k, as k moves from 1 to
N-1,

Recall that the power spectrum is

) =§-;; (1 (0) + 2 ) Hg(T) cos ﬁ:]

=1
which is estimated by
~ 1 m-1
fe(w) = 5= [Cor (02 () + 2 I i (0)Cyy (3) cos(wj)]

=1 3

We can obtain Ex(m) and EY(m). The cross-spectrum is a linear combin-

ation of the in-phase cyclic elements of X(t), Y(t), and the out-of-phase
cyclic elements of the two series. The spectrum of the in-phase elements
is termed the-co-spectrum, c(w). The out-of-phase spectrum is termed the
quadrature spectrum, q(w), and is an imaginary number. These spectra are
estimated in a similar fashion as the power spectrum,

The co-spectrum is estimated
A 1 b

Z(mj) = 22 [Cy(0) + Cpy (0] + 5 k£1 Ae[Cry(K) + Gy (9] cosu,k

The quadrature spectrum is estimated
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~ 1 m
q(mj) - Zl A [Cey(R) = Gy ()] simujk

Since the co-~ and quadrature are spectra, they are the summation of the
cross—product of the cyclic elements and the associated cross-correlations,
This is analogous to the power spectrum being the cross-product of auto-
correlation and cyclic elements,

As mentioned above, the cross—-spectrum is the linear combination of

the co- and quadrature spectra, This is expressed Cr{w,) = c(mj) + 41 q(wj)

3

and is a real number.

Granger states, without proof, that

cz(w ) * qz(w

4 ) j_fx(wj) fY(wj).

3

This relationship is the coherence-inequality. From the coherence-

inequality, we obtain the coherence

Clu) = [e?uy) + a w1/ [5 ) )],

Clearly, C(wj) will range from zero to one, and is always positive.
Jenkins points out the analogy between C(mj) and the correlation coef-
ficient, He also mentions that the points (of the coherence diagram)
will be scattered about a straight line with a scatter which is large
if the coherency is low and small if the coherence is high [12],

The co-spectral and quadrature estimates were found for simulation-
generated time series. The program used is found in Appendix B as well
‘as a sample coherence diagram, A short discussion of the program is

found in Appendix B,
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Let us now turn to how cross=spectral analysis will ald in the study
of the transient stage., The hypothesis is that when a state of equilibrium
has been achieved, the simulation statisties will not change in mean or
variance, Since the approach to a time series is that X(t) is the summation
of all cyclic elements with & constant mean, any change in the mean will
result in a disproportionate contribution to the spectrum at low frequencies,
A changing mean will be observed in the successive power spectra of two
successive samples from the simulation statistie. By using eross-spectral
analysis, one can determine if the variance of the successive samples are
statistically similar, It is believed that in both mean and variance,
successive samples from a simulation statistic will be different during the
transient stage. During the steady state, both the mean and the variance
of a simulation statistie will be similar for successive samples. This will
be reflected in the coherence diagram, If one can show that the coherence
changes as the simulation passes into equilibrium, then a basis exists for
the hypothesis that by comparing spectra from successive segments of a
simulationegenerated time series, it can be determined whether or not equili=-

brium has been attained.
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THE SIMULATION

We have given a statement of the problem, a survey of the literature,
and a discussion of the techniques to be used to study the transient stage.
Before the presentation of the results of the study, a short discussion of
the simulation will be presented to aid in understanding the results and
conclusions,

The simulation was done in GASP II, GASP stands for General Activity
Simulation Program, It is a collection of subroutines vhich accomplish most
of the tasks common to simulation experiments., GASP is written in FORTRAN,
which allows it to be used on almost all computer systems, Since the langue
age is FORTRAN, the output can easily be input into special analysis programs
such as the spectral analysis programs used in this study. Other simulation
systems, such as GPSS and SIMSCRIPT, do not have this feature at this time,

The GASP subroutines are designed for "next event" simulation. A "next
event” simulation is one in which time does not move forward in equal incre=
ments, such as hours, but in unequal increments from one event to the next,
In order to accomplish thig an event calendar is constructed. This calendar
Xeeps track of the coming sequence of events and amount of simulation time
between events, The investigator is required to write event subroutines
vhich compute what type of event next occurs at what time.

GASP is & collection of subroutines., The activities described above
are accomplished in the subroutines GASP, SET, FILEM, REMOVE, and FIND,

The CGASP routine provides two subroutines for gathering statistics, COLECT
‘and TMSTAT, The subroutine HISTOG is included to collect histograms of at

most five distributions in which the investigator may be interested. The



32

subroutines PRINTQ, SUMARY, and OUTPUT, are provided to report statistical
computations and any special information the investigator may desire.
In explaining how GASP II operates, let us consider the system being

studied in this paper, A diagram of the system is seen below.

1 —d

1 >
N I ;

1 #

To initiate the system, we must have an initial arrival into the queue.
This is done with input read by subroutine DATAIN. Upon the arrival of an
item, the simulation must check to find if a service station is free to pro-
cess the new item. If no station is free, the item is placed in the queue
by FILEM, Notice that all arrivals wait in a single queue; if it were
desired, the GASP routine could provide separate queues for each station
and either FIFO or LIFO queue management. The simulation must generate the
next arrival and the inter-arrival time, The inter-arrival time is obtained
from an exponential deviate generator. GASP provides several random deviate
generators as well as a random number generator., The exponential generator

used in this simulation was from Computer Simulation Techniques by Naylor,

" Baintfy, Burdick, and Chu [15]. The technique is straightforward. Since

the exponential is f(x) = ae_ux, the cumulative distribution is F(x)=l—-e—c‘x



33

It is known that random numbers are uniformly distributed; if p = ™%X |
then the exponential deviate x is equal to a log r . From this scheme, the -
inter-arrival time for the next arrival is obtained. The next arrival can
then be stored in the GASP calendar,

If the current arrival is placed in the queue, the GASP routine will
consult the calendar to determine what event should occur next and when it
ghould occur, Let us assume the item was immediately assigned to a station.
The number of frae stationq would be decremented by one and a completion
of service must be determined. The completion would be stored in the GASP
calendar with the time of its occurrence,

Wnen a completion of service occurs, the simulation determines whether
or not an item is waiting in the queue, If one is waiting, it is assigned
to the free station and the completion time is computed. The simulation
then checks the calendar for the next event, If there is no item in the
queuve, the simulation immediately checks the calendar for the next event.

As the pimulation is progressing, the experimenter will be interested
in gathering statistics concerning various aspects of the system, The
statistiés gathered in this simulation were the total items in the system,
the items in the queue, and the utilization of the system. The distributions
of the inter-arrival time and the service time were also gathered, Both
were anticipated to be exponentially distributed, Statisties related to
time, such as the number of items in the system and the number of items in
the queue, were c¢ollected in TMSTAT, Statistics not related to time, such
as inter-arrival time and service times both related to the exponential
" random number generator, were collected in COLECT., The subroutine SUMARY

will print the mean, standard deviation, minimum and maximum of all
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statistics gathered. The subroutine OUTPUT will print or punch any special
output the investigator may desire. OUTPUT is used to punch the three
series, utilization, queue size, and system size, as input for special
analysis programs, A REPORT subroutine was constructed by the investigator
in order to gather gtatistiecs every DELTA hours and print these statistics
after every NOBS observation., The general logiec dlagram, Fig. 1.1, of this
simulation can be found in Appendix C., The program and a sample of the
output are also located there.

There was a problem encountered in the simuletion experiments., As
mentioned above, a multiple service station queueing system was studied
in order to easily determine the steady state stage of the simulation.

This was to be done by using theoretical values of the average utilization,
the average size of the gqueue, and the average size of the system. The
first attempts to simulate the system resulted in wvalues far divergent from
the expected values, A table of these values and the expected values can
be found below, The REPORT subroutine was revised after the first experi-
ment to give samples of the inter-arrival distribution and the service

time distribution. A histogram of the inter-arrival times (Fig. 1.2 in
Appendix C) indicates that the distribution is not exponential as was
expected.,

The random number generator was examined to determine if it was the
cause of the unexpected distribution. The random numbers used in the expo-
nential generator were again generated in the same order as in the simula-
tion. This was possible by the fact that random numbers generated by digital
- methods are not truly random, but pseudo-random. Although a Chi-Square test

would show the numbers to be random, they can be generated again in the same
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order. The reason for this is that the numbers are not based on the cone
ventional base ten number system:. They are based on a modulo system of

base 236.2. A modulo number system is described by the relationship

Ai+l = Aib(mod M),
vhere A and b are integers and M is the base of the modulo system. In
digital simulation, b is referred to as the seed and A as the random number.

The following is an example of a modulo number system, base 1l and using

the seed 7T,
Ay =8 e T (mod 1)
L AgnT A;#T(mod 11)
T 1,7 j ]
5 TaT k9 = 4(11) + 5
2 SuT 35 = 3(11) + 2
3 24T k= 11 +3

Continuing the example would show the system to be cyclic. The random num-
bers used in the simulation were examined to determine if they were cyclic

and thus not random. First, a Chi-Square test was done, The results revealed
within 95% confidence that it was not possible to show that the values were
not random. The spectrum of the random number series was obtained by main-
taining the order of the values occurrences and considering the series a
gsimlation-generated time series. The result was that no significant fre-

quencies were found,



36

While these tests were being done, a classroom project done by Ruben
Kacinhoff showed that the exponential distribution could be approximated
by allowing a simulation to run for over two million simulated hours. In
light of this information, the transient stage of this simulation was com-
pared to the transient stage of other simulations. Examination of the
transient stage of the simulation indicated that the behavior of the simu-
lations measures of performance are typical of simulations performed by

investigators in the past (see Job Shop Simulation by Santosh Dipchand

Vaswani [22]). It is also found that the length of the transient stage
could be found by the methods suggested by Conway. Since the end of the
transient stage could be found, there was no reason to discard the simula-
tion in favor of redesigning the random number generator or running it again
for over a million simulated hours.

In the literature survey, it was mentioned that simulation-generated
output is highly autocorrelated, This was found to be true. Shown in
Appendix C are ten graphs showing the autocorrelation functions of twenty
segments of the simulation-generated time series associated with the number
of items in the system, Each segment of time represents 100 simulated
hours with an observation taken every half hour or 200 observations., It
can be seen that the autocorrelation is quite strong throughout the simu-
lation (1100 hours), This means that it cannot be assumed that the ob-
servations of the time series are independent. As the reader will recall,
this was Fishman and Kiviat's criticism of most simulation analysis; it
does not account for autocorrelated output. It was for this reason that
-they suggested spectral analysis as an approach to analysis of simulation

output,



It can be chserved from Fig, 1.3 in Appendix C that the autocorre-
lation function changes as the simulation progresses. It is asserted that
the autocorrelation found is the sum of the actual autocorrelation of the
system and the autocorrelation induced by the simulation, If it were known
how to separate these two autocorrelation functions, a better analysis of
the simulation could be accomplished, The changing autocorrelation reflects
the changing variance of the time series, The changing variance is indica=
tive of the transient stage of a similation, Fishman and Kiviat suggest
the use of spectral analysis in comparing variance if the data is known to
be autocorrelsted, Since a definition of equilibrium in simmlation statis-
tics is that the variance and mean vary within acceptable ranges, it is -
reasonable that comparing the variance of successive segments of simulation-
generated time series would indicate whether or not the simulation is in
equilibrium., Spectral analysis would be an appropriate approach since it
is known that the data is autocorrelated.

To illustrate the long range effects of the transient stage, a simu-
lation of a simple FIF0O, single-channel queue was allowed to run for 135,000
similated hours. The average number of arrivals per hour was 100, while
the average number of departures per hour was 95. Both arrivals and departures
vere generated from an exponential distribution. An observation of the
number of units in the system was made every 100 hours. The cumulative
. average of this statistic was given every 1000 hours.

It can be seen in Fig, 1.4 in Appendix C that the statistic is clearly
in the transient stage for 25,000 hours. The statistic does not seem to
become more or less constant, as would be expected of the cumulative average

number of units in the system, until beyond 90,000 hours, The statistic
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seemed to pass out of the transient stage somewhere between 25,000 hours
and 70,000 hours; yet the effect of having been in the transient stage
can be seen for another 20,000 hours.

Let us now turn to a method of determining the end of the transient
stage. We will present Conway's method, We will then compare the methods
suggested by Bueno and Reese, Upon discussing those results, a discussion

of the application of cross-spectral analysis will be presented.
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COMPARISON OF THE METHODS SUGGESTED
BUENO E‘IID REESE

The first experiment was a simulation of a multiple station queueing
system. The simulation was begun with no units in the system and allowed
to operate for 1100 hours. The end of the transient stage was determined
by the two methods mentioned sbove,

As stated previously, the criterion of a good solution is that it be
dynamic and consider both mean and variance, It was found that the solution
needs another constraint. The method used to evaluate the end of the tran-
sient stage must be practical., If the method is so sensitive to changes
in the test statistic that after a reasonable length of time it has not
reached a decision, the method is impractical. One reason for determining
the length of the transient stage is to conserve computer time, A method
which is wasteful of computer time due to oversensitivity is not of prac=-
tical value,

We shall now discuss the determination of the length of the transient
stage by Conway's method [4]. The system was sirmlated and the simulation
statistics were plotted. Conway suggests that various parameter estimates
should be examined in search of limiting, Vaswani [22] followed Conway's
advice and plotted average inter-arrival times along with average inter-
departure times., As these values converge, the simulation is thought to
be in equilibrium, This is intuitively reasonable, for if the inter-arrival
of units is equal to the inter-departure of units, the number of units in
the system is neither increasing nor decreasing. If the size of the system
is stable, it is reasonable to assume that the stochastic processes within

the system are not varying except within acceptable and predictable ranges.
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The average inter<arrival and average inter-departure times seem to
converge after approximately T00 hours as shown in Fig. 2.1, Appendix D.

In order to gain more insight into the length of the transient stage, a few
more parameter estimates were plotted (Fig, 2.2 through Fig. 2.6)., These
indicated that the size of the system seemed to stabilize between 625 and
T50 hours, One should be warned against plotting the number of units in
the system, This will include a large amount of variance and is difficult
to interpret meaningfully (gee FPig. 2.3). The moving average of the number
of units in the system is more meaningful (Fig. 2.2). The average service
time was plotted. This plot brings up an interesting peint.

Bueno mentioned that the individual stochastic processes of a simue-
lation seem to stabilize before the entire system reaches egquilibrium,

The average service time begins quite large and quickly levels off in the
neighborhood of 55 hours, It indicates eguilibrium after only 100 hours,
This lends credit to Bueno's belief,

The average change in the size of the system was plotted for T0O hours,
after which it approached zero. This statistic (Fig. 2.5) indicated that a
steady state condition exists after approximately 600 to TOO hours. The
average time in the queue was plotted. This was less helpful than the others.
The statistic (Fig. 2.6) seemed to reach a plateau between 625 and 750 hours;
however, a sharp increase in the last three observations made it difficult
to interpret. In the light of the previous material, this was likely to
have been a random fluctuation.

It can be seen that the length of the transient stage for this simula=-
tion is between 600 and 700 hours, This seems to be the best method for

eptimating the length of the transient stage. Although it does not meet
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the criterion of being dynamic, it dces provide a good estimate against
which other methods were compared. Since the solution to the problem of
estimating the length of the transient stage has no definite answer, the
above was considered the best estimate.

Let us now consider Bueno's suggested method [2]. Bueno suggested
setting an upper and a lower limit of successive sample means of a particular
simulation statistic., For this experiment, the total items in the system
were chosen as the simulation statistic, Bueno's criterion is that when
two successive sample means‘fall within the limits, we can consider the
simulation in equilibrium. The length of the transient stage is from time
zero through the period preceeding the two sample means falling within the
limits, This procedure is the application of control charts to the transient
stage problem,

In order to employ the technique we must first calculate the grand
mean, the variance of the sample means, and the upper and lower bounds,

Let N be the number of samples taken. Bueno suggests discarding the first

sample as it is known to be biased.

1. The Grand Mean

X,
s 1

= 1
2 SHT
1

Il 12

2. The Variance of Sample Means

2 1
§° = —
N-2 |
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3. The Upper and Lower Bounds

Limit = X ¢+ 2S/vW=T

Once this is done, the sample means are plotted against time, The upper
and lower limits are drawn. Starting from the first sample period, we
locate the first two sample periocds, m and m + 1, such that both lie within
the area bounded by the control limits. Periods one through m - 1 are
considered the transient stage.

This has been done for the simulation in question (see Fig., 3.1).

We observe that the length of the transient stage, according to Bueno, is
300 hours. This is not in acecord with the conclusions drawn from the method
proposed by Conway. The reason is that Bueno has set the limits such that
+95 of the variance is included within the limits. This causes the lower
limit to be closer to zero, thus allowing the statistic to enter the
acceptance interval sconer. If the limits would include only .90 of the
variance, the transient stage would be considered from zerc to 600 hours,

It is observed that the sample means fall outside the limits at the
tenth sample period, or the 1000th hour sample., While this event is not
inconsistent with the concept of control charts, it does leave the investi=-
gator in doudt as to the length of the transient stage. Bueno makes no pro=-
vision for the event,

In order to employ Bueno's method, we require the use of the grand mean.
It in turn requires that the simulation be completed before the output can

be analyzed. The method is not dynamic,
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USE OF THE BUENO METHOD TO
FIND THE END OF THE TRANSIENT STAGE

1, Calculate the grand mean.

where x

i sample mean for perioed i

N = number of periods considered

2, Calculate the variance of sample means,

88 e A - B0, &= 0,01

3. Calculate the upper and lower control limits,

UCL = X + 2S/VN-1 = 57,09
LCL = X - 2S/VN-1 = 45,43

4, Plot sample means against time periods,
5. Draw in UCL and LCL.

6. Starting from X find the first X_ such that both X_ and X
o m m mtl

lie within the area bounded by UCL and LCL.

7. Consider periods 1 through m — 1 as the transient period.
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We shall now consider Reese's proposals. As mentioned above, this
technique is based on the sequential t-test, As long as the test statistic
lies between B and A, no decision can be made. This can be taken to mean
that the simulation is still in the transient stage. Again, the number
of units in the system is the simulation statistic under considerationm.

In order to use the sequential t-test, we must set our sample size,

n, and the lag associated with the process, m. Reese states, "It is
suggested that a large value of m should be used." and "The values of m
should be smaller than n." -The value of n was set at 100, so the value

of m was set at 60. With each sample, we compute the following:

1. The grand mean, up to and including the current sample

N
) X where N is the total observations
i=1 up to the present

2, The sample mean

il
]
=N [

Nmrin
]
i=N+mtl

3. The sample variance

Nmn
1 =, 3
pey 3 (X,-X)
j=Ntmt+l  J
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4, The sample autocorrelation

Il o~13

s
i
= IS

(Xi—x)(xi+T - X

j=1

5, The variance, adjusted for autocorrelation

It is at this point that Reese considers the autocorrelation of the
time series, He computes tﬁe autocorrelation for each sample in recognition
of the changing nature of autocorrelation.

With the above information, Reese has developed the following test.

In testing:

Ho: u = E[X -~ X] = 0, the steady state hypothesis
Hl: u#EO0

we will accept HO if kn is less than B, and we will reject H0 if An

is greater than A, If B < An < A, then we can make no decision, and go
on to the next sample, In testing for the end of the transient stage,

a no~decision situation implies that the simulation is still in the trans-
ient stage.

From Wald [23] we find that

in this case 6, = 6§, = §

gn(t;uo+61) + gn(t;u0~62)
’ i 2

gn(t;uo)

>
1
B | et
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where g, (+) is the density function of a t distribution with n degrees of

freedom, Reese has derived

A= 2 ([vtD) /b)) 2D ey (a2 0D,

_ XX _ R=X-5  XFs 18 g

where t =g, £ T g s Bg =g s B ARSEE s BREas
X X X

This test was programmed for an IBM 1620, (A listing can be found in
Appendix D), It was found that after 900 hours, we could make no decision.
According to the test, the transient stage has not terminated, Reese points
out that the method is quite conservative and forces the accumulation of
a large number of samples. The reason given is that the grand mean is biased,
and the bias decreases only after the transient stage has passed, As can
be seen, while Reese's method is dynamic and does consider the variance as
well as the sample mean of the simulation statistic, it is overly conser-
vative, The method eliminates too many of the early periods of the simu-
lation to be practical, It is also noted that Reese adjusts the sample
variance for autocorrelation., Removing the information provided by the
autocorrelation is a loss of knowledge concerning the system being studied.

Reese does suggest that this method might be improved if an upper limit
of N could be established or if the test was derived using Chebychev's In-
equality. These suggestions are beyond the scope of this paper but are

worthy of further consideration.
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THE REESE METHOD

Given

Size of sample, n = 100

= 1 Ig _ 1 N-i-nﬂ-n
X == X,y X == X
L D oiSNtmtl 9
Ntmtn m
si = ;;;1'i & -HE o -% {5}2( +2 ) R}
=N+mt+1 X =1
1t =
R a .Z (2;-X) (R ~%)
i=1

We also have the following information concerning the sequential t-test:

A =_:]z. {[(n+t2)/(n+t§)]l/2(n+l) % [(n+t2)/(m_t§)]1/2(n+l)}
_ XX - XX=8 . Xxes 1-8 - B
t=s 281775 B TF s A5 BEI3
X X X
B<a <A
n

This An may be used to test the hypothesis

Ho; u = E[X-X]) =0

Hi; w#0

When An less than B, accept the steady state hypothesis.
When ln greater than A, reject the steady state hypothesis.,
When B less than An less than A, no decision can be made.

The experimenter should move to the next sample.
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EXPERIMENTS

The interest of the investigator during this study was to determine
how the spectrum of a simulation-generated time series changes during the
transient stage of the simulation. As mentioned above, part of the output
of the simulation was three time series, the utilization of service stations,
the size of the queue, and the size of the system. Graphical analysis ine
dicated that the size of the system would be the most interesting to study.

Since the variance during the transient stage is known to be erratic
and the spectrum can be thought of as a decomposition of the variance, we
can expect that the spectra of two segments of a time series will be dis-
gimilar if both segments are within the transient stage of the simulation.
As mentioned above, the coherence diagram is a measure of the correlation
of two spectra at each frequency of the two spectra. In short, if we
select two segments of a time series, both within the transient stage and
obtain their spectra, the changing variance of the transient stage will be
reflected in the coherence diagrams,

A coherence diasgram is composed of M values, one for each frequency
to be considered by the investigator. ZEach value of the ccherence diagram
represents the coherence, or squared correlation, of the two associated
spectral power estimates at that frequency. The mean of the coherence dia-
gram is considered the average coherence of the two spectra. This value
is a point estimate of the similarity of the two spectra.

We now have a measure of the similarity of two segments of a time
series, By comparing this value for the first two segments of a time
series, then the second pair of segments, and so forth, we can find out

whether or not the variance is becoming more or less similar. We would
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expect the gimulation-generated time series to remmin gquite dissimilar
throughout the transient stage of the simulation. We would expect the
variance to become quite similar during the steady state period of the
simulation. It is expected that a plot of the average coherence of
successive pairs of segments will be rather low initially (in the neigh-
borhood of 0,00 to 0.20) then, upon entering the steady state periocd, to

rise sharply. To summarize:

1, Select a time series for consideration.

2, Subdivide the series in segments. The segments may or may not
be disjoint. All segments must be of equal length and should
consist of at least 200 observations of the process.

3. Compute the spectra of each segment,

i, Compare successive spectra by computing the coherence diagram.

5. Determine the average coherence of each pair of segments.

Since a sharp increase in the average coherence is expected as the simu-
lgtion passes into equilibrium, we use this increase to indicate the end
of the transient stage. There will be a lag between the actual end of
the trasient stage and the increase of average coherence. The lag is due
to the need to have two segments in equilibrium before the average coherence
begins to rise.

The next problem to be encountered is how far will the coherence rise
before we can conclude the simulation is in equilibrium. Studies by Goodman
[8] have shown that coherence values are distriubted in a bivariate normal

distribution. OCranger [9] gives the following distribution function:

Flu) = 1 = (Leu)?/m-1

where n is sample size and m is frequency bands. In this experiment, n = 200
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and m = 30 for all spectra. From the above example, if the true C(j) = 0,
where j = 1, k, then the mean coherence would be less than .325. We now
have an upper bound for average coherence values., When the average co-
herence is below the upper bound, we can conclude that the true coherence
is not different from zero. When the sample average coherence is greater
than the upper bound, we can conclude that the true coherence is rising
and that the sample average coherence is the best estimate of the true
coherence,

Another problem was encountered in this study, Upon determining the
transient stage in the previous section, it was found that only seven
segments of 200 observations could be studied before the simulation passed
into equilibrium. It was also found that 200 simulation hours would pass
before the average coherence values would indicate equilibrium, due to the
time lag problem mentioned before. These two problems were resolved by
overlapping segments. It was decided to overlap the segments by 50
simulation hours, or 100 observations of the process. This was done for
the utilization statistic, the size of the queue series, and the size of
the system series. The overlapping segments were zero to 100 hours, 50
to 150 hours and so forth, This not only increased the number of segments
during the transient stage to fourteen, but also cut down the time lag
to 100 simulation hours.

The first time series considered was the number of items in the system.
Observations were made every half hour of simulation time, The first ana-
lysis of this series was illustrative of the general nature of the change
in the average coherence values as the simulation progressed. Fig. 4.1 in
Appendix E shows the change in the average coherence values as the simulation
passes through the transient stage. Recall the length of the transient stage

was found to be 700 hours for this simulation. It can be seen that during
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the transient stage, the average coherence values remain quite low, below
«20, VWhen both segments are beyond the end of the transient stage, the
average coherence values move abruptly upward. An upper control limit of
95% confidence level has been drawn in to show there has been a definite
change in the ﬁrocesé. Unfortunately, not all of the trend was removed
from these spectra, As a result of this, the average coherence values
cbtained during the steady state period do not exceed the .325 value men-
tioned earlier,

A line was fitted to the trend of each segment of the series under
consideration using least squares regression, The removal of the trend
from the data did not seem to affect the average coherence values from
within the transient stage period as much as it seemed to affect the
average coherence values associated with steady state period. As can be
seen in Fig. 4,2, upon passing into equilibrium, the average coherence
values are greater than the required value of .325, and they continue to
move upward. We can conclude that the variance of the size of the system
has stabilized after TOO hours.

The next time series was the size of the queue statistic., This series
was obtained by gathering half hour observations of the queue size. The
series brings up an interesting point. From Fig. 4,3, it can be seen that
the queue size is not in equilibrium. Although the trend was removed in
the same way as in the size of the system statistic, the average coherence
values remain too low to conclude that the series has reached a steady state.
This is a clear example of equilibrium not occurring simultanecusly with
all statistics of a simulation. An upper control limit of 95% confidence
level has been drawn onto Fig. 4.3, It can be seen that after the size of

the system passed into equilibrium, it was reflected in the queue size
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statistic, If more computer time had been available, the same pattern
would have occurred as seen in Fig. 4.2,

A yet unresolved problem with the use of cross-spectral analysis in
determining the end of the transient stage was encountered in the utili-
zation statistic, Each observation of this statistic was of the percentage
of service stations in use at the time of the observation. The problem is
how to handle a segment of a time series which has no variance. The average
coherence values are based on spectra which are decompositions of the
variance, When there is no'variance, there are no average coherence values,
In this experiment, a constant value of 100% utilization was observed for
200 simulated hours, or one segment of the time series. The rule adopted
by this investigator was that if 95% of the values in the following segment
are the same as the constant value in the segment with no variance, conclude
that the series is in equilibrium, If this is not the case, continue waiting
for equilibrium, This problem will relate to the nature of the simulation
or the investigator's knowledge of the system.

The spectra from the three series were interpreted to determine if
the cyclic elements identified from the spectra could be identified as
having a particular physical cause. The most frequently occurring cyclic
elements in the size of the system statistic, shown on Table 4.5, are 13.1
items per cycle and 10.5 items per cycle, The only relationship between
the cyclic elements in this statistic and the parameters of the simulation
is between the second element and the average time between arrivals in the
system, The average time between arrivals was 1.05 hours, which is omne-
tenth of the second element. The two most frequent elements in the queue
size statistic are 10.5 items per cycle and 13,1 items per cycle. These

are the same elements found in the size of the system statistic., The most
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frequently occurring cyclic element of the utilization statistic was 10.0
items per cycle, This is very close to the 10.5 items per cycle element
found in the other two statistics, No relatioﬁship, other than the one
mentioned, could be found between the cyclic elements and the simulation.
It is interesting to notice in Tables 4.5, 4.6, and 4,7 that only the two
most frequently observed cyclic elements are present in the spectra after
the statistics have reached equilibrium, All other elements disappear

from the spectra after the transient stage. This is indicative of wvariance

which is changing, as is the case in the transient stage of a simulation.
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CONCLUSIONS

The problem which was considered is the estimation of the end of the
transient stage of a simulation. Since the steady state of a simulation
is characterized by stable variance and the transient stage of a simulation
is characterized by unstable variance, the end of the transient stage can
be detected by a change in the spectrum, If the variance of two successive
segments of a simulation statistic are similar, the statistic is in the
steady state. It was found that cross-spectral analysis can be used to
solve the problem, It has been shown that by comparing two successive seg-
ments of a simulation statistic, it is possible to detect a change in
variance.

An important requirement of the solution is that it be dynamic. The
solution must be programmable and capable of detecting the end of the tran-
sient stage while the simulation is in progress. The cross-spectral tech-
nique is dynamic. The investigator need only determine the size of the
segments of the statistic and the number of lags to be considered (M).

The spectrum of each segment can be computed as the statistic is generated
and retained in memory until the next spectrum has been computed, The
cross-spectrum can then be computed and the coherence diagram found. Since
the size of the segments are fixed, as is M, the average coherence can
always be compared to a fixed critical value as described above, Once the
average coherence value exceeds the critical value, it is known that the
statistic is in equilibrium and the simulatiom can be constructed to stop
testing for the end of the transient stage.

This solution has some limitations, At the present time some simu-

lation languages, such as GPSS, require special equipment to be compatable
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with FORTRAN. The solution requires a FORTRAN subroutine to compute the
spectrum of each segment. Computer time might be a limitation, depending
upon the nature of the simulation. At no time was more than four minutes
of computer time required to compute a spectrum.

Further research is encouraged in this area. In trying to resclve the
problem, practical considerations such as number of observations required
or complexity of computer programming were not taken into account. The
major consideration was to resolve the problem in a way which did not dis-
regard the effect of autocofrelation and could solve the problem in a
dynamic fashion. It may be possible to achieve a dynamic solution which
accounts for autocorrelation without using spectral analysis, perhaps by
some comparison of the sutocorrelation functions of successive segments of
the simulation statistic. Another interesting problem which needs to be
studied with regard to this solution is the effect of changing the time
between observations and the effect of using disjoint segments rather than

overlapping segments as was done in this study.
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LISTING OF INPUT VARIABLES FOR SPECTRAL

ANALYSIS PROGRAM

N - length of time series to be considered

M - lag to be used

NQ - number of plot points in spectrum

NVAR - number of different time series to be considered

X(I) - the individual observations
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THIS PROGRAM IS USED TO ARRANGE THE INPUT DATA FOR THE PARZEN

SUBROUTINES WHICH FOLLCW.

PR....PROBLEM NUMBER (MAY BE ALPHAMERIC)

PRles+ PROBLEM NUMBER (CONTINUED)
Neaeos NUMBER OF OBSERVATIOUNS
NPLOT.OPTION CODE FOR PLOTTING
0O IF PLOT IS NOT DESIRED.
1 IF PLOT IS DESIRED.
MaaeasLAG USED IN PARZN]1 AND PARINZ
NQ+sose o NUMBER OF POINTS PLOTTED

IW.0PTION CODE FCOR SPECTRAL WINDOW USED

0 IF TUKEY-HANNING WINDOW USED
1 IF PARZEN WINDOW USED

IPROBeess e« NUMBER OF PRCBLEMS TO BE PROCESSED
MDEGeeees« HIGHEST DEGREE POLYNOMIAL SPECIFIED

DIMENSION XL(B0OO),A(1500),X(800)
REAL XR(800)/800*%C.0/

FORMAT (513)

FORMAT(15F5.0,5X)

FORMAT(® SAMPLE */(15F8.0))

FORMAT(A4,A2,12,11)

FORMAT (27THLIPOLYNOMIAL REGRESSIONeseseyA4,A2/)

FORMAT(' N="y14," M=',13,' NQ=',13,"

1,13)

IH=',I3"

FORMAT (* kX XDATA SET 'y 12, %%%&

READ{(141)N,MyNQ,IW,IPRCB

DO 8 K=1,1PROB

READ(14+5) PR,PR1,MDEG,NPLOT
WRITE(3,2) K

WRITE(3,+6) PR,PRI1

WRITE(3,7) NyMyNQ, IWsMCEG,NPLOT
READ(L42) (X{I)sI=14N)
WRITE(3,3)(X(I)sI=14N)
L=N%*MDEG

DO 110 TI=14N

AlL+I)=X(1)

AlI)=1-151

DO 4 J=1,N

XL{J)=J

XLOJ+N)=X(J)

CALL POLRG(NysMDEGsNPLOT4A4XR)
DO 100 M=1,100,25

CALL PARZNL(XRyNyNQyM,IW)
CONTINUE

END

MDEG="'4,13,"

')

NPLOT="

FRH
FRH
FRH
FRH 1
PLRG1
PLRG1
PLRG1
PLRG1
PLRG1
PLRG1

Pt s et

PLRG1
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH

ot ot bt et et Pt it et P ot

FRH
FRH
FRH

p—

P

FRH 1
FRH
FRH 1

o

FRH 1
FRH 1
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-

SUBROUTINE POLRGI(N«MaNPLOT 4 Xy XR)

v PLRG

- A REVISIJIN OF THE SAMPLE PROGRAM, POLRG, FROM THE IBM
SCIENTIFIC SUBROUTINE PACKAGE, VERSION III, PAGES 408-412.

* PLRG

. SAMPLE MAIN PROGRAM FOR POLYNOMIAL REGRESSION - POLRG PLRG

PLRG

L PURPOSE PLRG

- (1) READ THE PROBLEM PARAMETER CARD FOR A POLYNOMIAL REGRES-PLRG

SION, (2) CALL SUBROUTINES TO PERFORM THE ANALYSIS, (3) PLRG

PRINT THE REGRESSIUN COEFFICIENTS AND ANALYSIS OF VARIANCE PLRS
TABLE FOR POLYNOMIALS OF SUCCESSIVELY INCREASING DEGREES, PLRG
AND (4) OPTIONALLY PRINT THE TABLE OF RESIDUALS AND A PLOT PLRG

.
alsiaiziaslsEesNaslslsEsEalslsisEsslalsNaNalalsReRalalsiaknls)

-’ OF Y VALUES AND Y ESTIMATES. PLRG

PLRG

REMARK S PLRG

THE NUMBER OF OBSERVATIONS, N, MUST BE GREATER THAN M+l, PLRG

’ WHERE M IS THE HIGHEST DEGREE POLYNOMIAL SPECIFIED. PLRG

IF THERE IS NO REDUCTION IN THE RESIDUAL SUM OF SQUARES PLRG

- BETWEEN TWO SUCCESSIVE DEGREES OF THE POLYNOMIALS, THE PLRG

PROGRAM TERMINATES THE PROBLEM BEFORE COMPLETING THE ANALY- PLRG

SIS FOR THE HIGHEST DEGREE POLYNOMIAL SPECIFIED. PLRG

¢ PLRG

" MET HOD PLRG

.. REFER TO B. OSTLE, *STATISTICS IN RESEARCH', THE I0OWA STATE PLKG

L COLLEGE PRESS'y 1954, CHAPTER 6. PLRG

PLRG

..l-.t......l.l...l...l.....l‘."-..-....lIli...l...l!Oilil-..lll.PLRG

PLRG

. THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PLRG

) PRODUCT DF N#(M+1), WHERE N IS THE NUMBER OF OBSERVATIONS AND M  PLRG
0l1) IEY0331 COMMENTS DELETED

- - DIMENSION X{1) FRH 8

* c PLRG

g THE FOLLOWING DIMENSION MUST BE GREATER THAN DR EQUAL TO THE PLRG

. C PRODUCT OF M%M,. PLRG

| o PLRG

DIMENSION DI(100) PLRG

-« o PLRG

the c THE FOULLIOWING DIMENSION MUST BE GREATER THAN DR EQUAL TO PLRG

C (Me2)&(M+1) /2., PLRG

— C PLRG

| DIMENSION D(66) PLRG

C PLRG

= . C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL T3 M.. PLRG

- C PLRG

DIMENSION B(10),E(1C),SB{10),T(10) PLRG

- c PLRG

. c THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO (M+l)e. PLRG

c PLRG

-~ - DIMENSION XBAR(11),STD(11),COE(11),SUMSQ(11),ISAVE(1]) PLRG

| C ' PLRG

o THE FOLLJOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 10.. PLRG

P c PLRG

s DIMENSION ANS(10) PLRG

c PLRG

M C THE FOLLDWING DIMENSION WILL BE USED IF THE PLOT OF OBSERVED DATA PLRG

! C AND ESTIMATES IS DESIRED. THE SI1ZE OF THE DIMENSION, IN THIS PLRG
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|| Ld

-, C CASE, MUST BE GREATER THAN OR EQUAL TO N*¥3. OTHERWISE, THE SIZE PLRG
N C OF DIMENSION MAY BE SET TO 1. ‘ PLRG
C PLRG
. DIMENSION P(900) FRH ¢
| c PLRG
> L THE FOLLOWING OIMENSION WILL BE USED FOR PLOTTING THE RESIDUALS
5 s DIMENSION XR(1)
2 C
4 C ..‘Q........Q..OQ...‘.QCG...IC.Il....!....'."...l.ll.'.'........‘PLRG
. C PLRG
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE PLRG
- > - C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION PLRG
.y C STATEMENT WHICH FOLLOWS. PLRG
4 c PLRG
- C DOUBLE PRECISION X,XBAR,STO,D,SUMSQ,DI,E+BySByT9ANS,DET,CDE PLRG
.. C PLRG
| c THE C MUST ALSD BE REMOVED FROM DOUBLE PRECISION STATEMENTS .. PLRG
. c APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS PLRG
o c ROUTINE. PLRG
. c PLRG
' c PLRG
b 4 S FORMAT {32HOPOLYNOMIAL REGRESSION OF DEGREE,I3) PLRG
6 FORMAT(12HO INTERCEPT,E20.7) PLRG
= 7 FORMAT(26H0 REGRESSION COEFFICIENTS/{6E20.7)) PLRG
B 8 FORMAT{1lHO/24X,24HANALYSIS OF VARIANCE FORsI4,19H DEGREE POLYNOMIPLRG
- 1AL/) PLRG
’ 9 FORMAT({1H0,5Xy19HSOURCE OF VARIATION,7Xs9HDEGREE OF,7Xs6HSUM UF,9XPLRG
' 1y4HMEAN, 10X, LHF 39Xy 20HIMPROVEMENT IN TERMS/33X, THFREEDOM,8X, THSQUAPLRG
2RES » TX 3 6HSQUARE , 7X, SHVALUE, 8X, 17THOF SUM OF SQUARES) PLRG
- 10 FORMAT(20HO DUE TO REGRESSIONs12XsI164F17454F14.5,F13.5,F20.5) PLRG
P 11 FORMAT(32H DEVIATION ABOUT REGRESSION  ,164F17.5,Fl4.5) PLRG
12 FORMAT(8X,5HTOTAL,19Xs164F17.5///) PLRG
T 13 FORMAT(17HO NO TMPROVEMENT) PLRG]
14 FURMAT(1HO//27Xs18HTABLE OF RESIDUALS//16H OBSERVATION NO.,5X,7HX PLRGI
LVALUE , TX, THY VALUE,7X,10HY ESTIMATE,7Xs8HRESIDUAL/) PLRG
0T 15 FORMAT{1HO+3X,164F18.54F14.5,F17.54F1545) PLRG1
P G PLRGI
o C ...l.......".'.C........‘..'.........l..l..Q‘.'Ot‘....l.l..l'...aPLRG]-
. C PLRGL
- c PLRGI
CALL GDATA (N,MyXyXBAR,STDsDySUMSQ) PLRG1
- c PLRGI
- - MM=M+1 PLRG]
_, SUM=0.0 PLRGI
- NT=N-1 PLRG!
- c PLRG1
R DO 200 I=1,M PLRG!
' ISAVE(I)=1 PLRGI
- G PLRGL
. C FORM SUBSET UF CORRELATION COEFFICIENT MATRIX PLRGI
- c PLRG]
CALL ORDER (MM, DsMM,I,ISAVE,DI,E) PLRGL
. C PLRGL
C INVERT THE SUBMATRIX OF CORRELATION COEFFICIENTS PLRG]
s c PLRG),
o CALL MINV (DI,[,DET,B,T) PLRG#
- c PLRG

CALL MULTR (Nyl¢XBARySTD,SUMSQyDI+EsISAVE.BySB,TsANS) PLRGI
|
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- 200
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‘
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220

230

!
i
zNaNel

- 240

OO0

18 POLRG

PRINT THE RESULT OF CALCULATION

KRITE (3,5) 1

IFCANS(T)) 146,130,130
SUMIP=ANS (4)-SUM

IF(SUMIP) 140, 140G, 150

WRITE (3,13)

GO 1O 210

WRITE (3,6) ANSI(1)

WRITE (3,7) (B(J)sJd=1,1)
WRITE (3,8) I

WRITE (3,9)

SUM=ANS({4)

WRITE (3,10) IsANS(4)4ANS{6),ANS{10),SUMIP
NI=ANS{8)

WRITE (3,11) NI,ANS(7),ANS(9)
WRITE (3,12) NT,SUMSQ(MM)

SAVE COEFFICIENTS FOR CALCULATION OF Y ESTIMATES

COE(11=ANS(1}
DO 160 J=1,I
COE(J+1)=B(J)
LA=1

CONT INUE

TEST WHETHER PLOT IS DESIRED
IF(NPLOT) 300,300,220
CALCULATE ESTIMATES

]
NP3=N+N
DO 230 I=14N
NP3=NP3+1
PINP3)=CDE(1)
L=I
DO 230 J=1,LA
PINP3)=P(NP3)+X(L)*COE(J+1)
L=L+N

COPY DBSERVED DATA

N2=N

L=N#%*M

DO 240 I=1,N
PIT)=X(I)
N2=N2+1
L=L+1
PIN2)=X{L)

PRINT TABLE OF RESIDUALS

WRITE (345) LA
WRITE (3,14)
NPZ2=N

NP3=N+N

DATE = 70310
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PLRG1
PLRG1
PLRG1
PLRG1
PLRG1
PLRG1
PLRG1
PLRG1
PLRGL
PLRG1
PLRG1
PLRGL
PLRG1
PLRG1
PLRGI1
PLRGI1
PLRG1
PLRG1
PLRGL
PLRG1L
PLRG1
PLRG]
PLRG1
PLRG1
PLRG1
PLRGL
PLRG1
PLRG1
PLRGI

PLRGI
PLRG1
PLRGI
PLRG1
PLRG
PLRG
PLRG
PLRG
PLRGI
PLRG
PLRG
PLRG
PLRG
PLRG
PLRG
PLRGI
PLRG
PLRG
PLRG
PLRG
PLRG
PLRG
PLRG
PLRG
PLRG
PLRGY
PLRG
PLRG
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DO 250 I=1,N

NP2=NP2+1

NP3=NP3+1

XR(11)=1

XR(I+N)=P{(NP2)-P(NP3)

WRITE(3,15) [,P(I),P(NP2),P(NP3),XR(I+N)

CALL PLOT(44XRyNy23sN,0)
CONT INUE

RETURN
END

59C
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PLRG

PLRG
PLRG

PLRG ]

PLRGY

PLRG 4
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AN IV G LEVEL 18 PARZNL DATE = 70310 23/24/20
| =
| SUBROUTINE PARZNL{XsNsNQyMyI®) FRH
- c FRH
Lo C THIS PROCEDURE COMPUTES THE AUTO CORRELATION FUNCTION, R1l, FOR FRH
. & [=192s00esM+l. THE FUNCTION AT LAG M IS STORED AT I=M+l. THE FRH
c TIME SERIES ARE OF LENGTH, Ny, AND IS STORED IN THE ARRAY Y, FRH
p-* o BEGINNING AT Ll. THE AUTO CORRELATION FUNCTION IS NORMALIZED FRH
o c TO HAVE A VALUE 1 AT THE ORIGIN. THE NORMALIZING FACTOR IS Dl. FRH
C THE FUNCTIONS ARE ADDED INTO THE ARRAY R1. FRH 1
e c FRH 1
.. 1 FORMAT(214) FRH 1
2 FURMAT(4X4F5.0,4X,F5.0) FRH 1
-t 3 FORMATI(F12.5,12XyF12.5) FRH 1
.. DIMENSION X(1) FRH 1
. REAL R1(400)/400%0.0/,CI(400)/400%0.0/ FRH 1
r g DATA D1,D3/0.0,0.0/ FRH )
. MM=0 FRH 1
B DO 5 I=1,N FRH 1
" D1=D1+X[[)*%2 : FRH 1
. 5 CUNTINUE FRH 1
MM=M+1 FRH 1
r DD 7 KK=14MM FRH 1
. KK1=KK-1 FRH 1
- NM=N+KK-1 FRH 1
- NK=N-KK+1 FRH 1
o SUM1=0.0 FRH 1
; DO 6 JL=1,NK FRH 1
SUM1=SUML +X (JL)*X{ JL+KK1) FRH 1
6 CONTINUE FRH 1
R1L{KK)}=SUM1/D1 FRH 1
7 CONTINUE FRH 1
CALL SPLIT(MsR1,2) FRH 1
CALL PARZNZ (R14NQyMyIW) FRH 1
RETURN FRH 1
END FRH 1
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SUBRODUTINE PARZNZ(R14NGsMyIW)

70310
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THIS PROZEDURE COMPUTES N+1 POINTS OF THE ESTIMATED SPECTRAL

DENSITY FUNCTION FROM R{I) WHICH IS THE AUTO CORRELATION FUNCTION
THE TRUNCATION POINT IS M,
THE SINES AND COSINES NEEDED ARE COMPUTED RECURSIVELY

DIMENSION R1(400),RE(400)

THE WEIGHTING KERNEL USED IS OMEGA.

FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH

REAL OMEGA(500)/500%0.0/,T1(500)/500%0.0/,T2(500)/5C0%0.0/,4TE(50C)FRH
1/500%0.0/,T0O(5001/500%C.0/,F1(500)/500%0.0/,C0(500)/500%C.0/

DATA PI/3.1416/,P1V/0.3183/
1 FORMAT(4F10.5)

2 FORMAT(* RESULTS OF PARZEN TRANSFORM'//?
1 Cco QU'/ (F10.5410X,F10.5))°
IF{IW) 32,30,32
PARZEN WINDOW
32 M1=M/2
M2=M1+1

33

34

30

il

DO 33 K=1,Ml

Fl

OMEGA(K)=1e=( (6 *(K%x%2))/(M*x%2) )*(1a-((1la%K)/M))

DO 34 K=M2,M

OMEGA(K)=2.%(le~(1.%K) /M)

GO TD 31

DO 3 I=1,M

TUKEY HANNING WINDOW

OMEGA(I)1=.5*%(1.0+COS(I*PI/M)})

C=NQ
C1=COS({PI/C)
C3=C1

D1=C1
C2=SIN(PI/C)
D&4=C2
D6=2.0*C1
P1=0.5*R1(1)
K=M+1

DO 4 [=2,K
A=0OMEGA(I)
P1=PL1+R1(1)*A
CONTINUE
F1(1)=P1%*PLV
00 6 I=14NQ
Ull=0.0
ulz=ull
Ul3=uUll
Ul4a=Ul1l
uzli=ull
uz2z2=ull

CO 5 J=2,K
JJ=M+3-)
A=0OMEGA(JJ)

U31=D6%U21-ULL+R1(JJ)*A

ull=u2l
U2l=uU3l
ulz=uz22
CONT INUE

FLII+1)=(D1*U21-ULL+R1(1)*0.51*P1V

F2

FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH

PP R RO PO RO RO RN PO R RN N PN NN PO N PO R e e e et e b po ot ot o e ot bt o et B ot et et et et B et et et et et et B e i et it s et o



61A

LEVEL 18 PARZINZ DATE = 70310 23/24/2G
D1={C1*C3)-(C2%D4) FRH
D4=(D4&*CL)+(C3%C2) FRH
C3=D1:+ FRH
D6=2.0%*01 FRH

6 CUNTINUE FRH
CALL SPLITINQ,F1,3) FRH
RETURN FRH
END FRH

my R R

MY Ay AL Ry Ay
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106
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* 10
- il
o 20

18 MAIN DATE = 70310

SUBRUUTINE SPLOTIN,X,NQ)

62
23/24/20

FRH
FRH
FRH
FRH

THIS ROUTINE IS USED TO MODIFY THE RESULTS FROM THE PARZEN SUBRFRH

SO THAT THEY CAN BE GRAPHED BY SUBROUTINE PLOT.

DIMENSION X(800),0UT(101},YPR{11},ANG{9),PLTI1600)},Y(B0C)

FORMAT (" PLOT VALUES */{8Fl4.5))
INITIALIZE VALUES

P1=3.1415927

K=0

M=2

IF{NO.NE.3) GO 70 10

DO 106 I=1,4N
IF{XI(I))100,100G,99
X{I)=ALOGI(X(I))

GO TO 106

X{I)=-10.0

CUONT INUE

DO B T=14N

PLT{I)=1*PI /N
PLT(I+NY=X(T)

CONTINUE

GO TO 20

DO 11 I=1,N

PLT(IN=1

PLTII+N)=X({])

CONTINUE

CALL PLOT(NO,PLTyNsMsN,y0)
WRITE(3,102) {X{I)sI=1,N)
RETURN

END

FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
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N:tv G LEVEL

b
P,

»

-

c
C
c

1

2

3

4

5

7

8

9

200

201

202

203
C
C
c
c
c
c
¢

10

11

12

14

15
c
c
c

16

18
C
c
c

20

91

92

93

94

21

63

18 MAIN DATE = 70310 23/24/20

FRH

SUBROUTINE PLOT(NU+AsNyMyNLsNS) FRH
FRH

DIMENSION OUT(101),YPR{11) ,ANG(9)sA(1) FRH
FRH

FORMAT{1HL 460X,7H CHART ,13,//) FRH
FORMAT(IH  Fll.4,5H+ +101A1) FRH
FORMAT(1H ) FRH
FORMAT{10H *+0156789) FRH
FORMAT{ 10Al) FRH
FORMAT(1H ,16X,101H,. . . o . FRH
[ ] L ] L ] a - .) FRH
FORMATI(1HO 49Xy 11F10.4//) FRH
FURMATI(]1IH ,16X,101A1) FRH
FORMATIL 10X,° PLOT OF DATA!') FRH
FORMAT( 10X," PLOT CF AUTO CORR. FUNCTION?') FRH
FORMAT( 10X." PLOT OF SPECTRUMY) FRH
FORMATL 10X,? PLOT OF RESIDUALS') FRH
FRH
.’."...'............'.‘....‘.........-...........‘........III...'FRH
FRH

NLL=NL FRH
FRH

IFINS)16416,410 FRH
FRH

SORT BASE VARIABLE IN ASCENDING ORDER FRH
FRH

DO 15 I=1,N FRH
DO 14 J=14N FRH
IFTA{I)~-A(J))14,14,11 FRH
i=I-N FRH
LL=J—-N FRH
DO 12 K=1,M FRH
L=L+N FRH
LL=LL+N FRH
F=A(L) FRH
AlLY=ALLL) FRH
A(LL)=F FRH
CONTINUE FRH
CONTINUE FRH
FRH

TEST NLL FRH
FRH

IF{NLL)20,18,20 FRH
NLL=50 f FRH
FRH

PRINT TITLE FRH
FRH

WRITE(3,1)NO FRH
GO TO (91,92,93,94),4N0 FRH
WRITE(3,2030) FRH
GO TO 21 FRH
WRITE(3,201) FRH
GO TO 21 FRH
WRITE(3,202]) FRH
GO TO 21 FRH
WRITE(3,203) FRH
CONTINUE FRH

Ead el Lad tad Lwd Lol W0 tad Bl Y W0 W) ) W W W) b L W M PN N PN N MR AR RN R NN RPN MR N RN RPN RO N MO NN RPN PR RN
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N IV G LEVEL 18 PLOT DATE = 70310 23/24/20
,’
C FRH
¢ c DEVELJIP BLANKS AND DIGITS FOR PRINTING FRH
* § C FRH
REWIND 1) FRH
> WRITE(10,4) FRH
L. REWIND 10 FRH
READ(10+5)BLANK, (ANG(I)41=1,9) FRH
s REWIND 10 FRH
[ n c ' FRH
C FIND SCALE FOR BASE VARIABLE FRH
» C FRH
. XSCAL={AIN)=-A{1))/{FLOAT{NLL-1)) FRH
C FRH
* C FIND SCALE FOR CROSS VARIABLES FRH
T C FRH
Ml=N+1 FRH
- YMIN=A{M]) FRH
.. YMAX=YMIN : FRH
M2=MEN FRH
te DO 4G J=M1,M2 FRH
v IF{A(J)-YMIN)28,28,26 FRH
26 IF(A(J)-YMAX)40,40,30 FRH
. 28 YMIN=A{J) FRH
-~ GO TO 40 FRH
30 YMAX=A(J) FRH
" 40 CONTINUE FRH
. YSCAL=(YMAX-YMIN)/100.0 FRH
c FRH
C FIND BASE VARIABLE PRINT POSITION FRH
% c FRH
. XB=A(1) FRH
- L=1 FRH
v MY=M-1 FRH
N I=1 FRH
45 F=1-1 FRH
- XPR=XDB+F#XSCAL FRH
L (o IF{A(L)-XPR)S1,51,70 THIS CARD HAS BEEN REMDVED FRH
c FRH
s C FIND CROSS VARIABLES FRH 3
" C FRH 3
51 DO 55 IX=1,101 FRH 3
- 55 QUT(IX)=BLANK FRH 3
_a 57 DO 60 J=1,MY FRH 3
LL=L+J%N FRH 3
v JP=({ (A(LL)-YMIN)/YSCAL)+1.0 FRH 3
§ QUTLJP)I=ANG(J) FRH 3
60 CONTINUE FRH 3
- C FRH 3
o C PRINT LINE AND CLEAR, OR SKIP FRH 3
c FRH 3
- . WRITE(3,2)XPR,(0UT(1Z),12Z=1,101) FRH 3
" - L=L+1 FRH 3
G0 TO 80 FRH 3
- 70 WRITE(3,3) FRH 3
- 80 I=1+1 FRH 3
IF(I-NLL) 45,84, 86 FRH 3
" 84 XPR=A(N) FRH 3
- GO TO 51 FRH 3



IN"Iv ¢ LEVEL

|-

C
c
C

PRINT CROSS VARIABLES NUMBERS
WRITE(3,7)

YPR(1}=YMIN

DO 90 KN=1,9
YPRIKN+1)=YPR(KN)}+YSCAL*10.,0
YPRI(11)=YMAX
WRITE(3,8)IYPR(IR)4IR=1,411)

23/24/20

FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
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SAMPLE OUTPUT
The time series used for this sample was a series of random
numbers generated from the random number generator used in this
study. The ourput is organized such that the input variables are
shown first, then the auto-correlation and cross-correlations are
given, and finally the results of the Parzen transformation, which

is the spectrum.



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



N= 5C0 M=150 NQ=1092 NvAR=
THE INPUT
B X Y

26.70000  47.0070)
63.00000 21.00)00
N 64,00C00 37.00300
78.70000 5.00:3G0
26.00C00 5.C00300
) 52.00000 5.20200
13.0CC0Y  37.90009
18.00C00 10,00009
T ) 31.00000 1.00000
7.0C000  249.0C300
21.0CC00  39.0000)

T T 7777 23.00000  37,000090
16.200000 %.00500
- 18.00090 2.00200
7 T72.00000 43.0000D
i 46.00000 72.00200
24.00000 8).0099)
T T 4,00000  34,00970
15.00000 153.00600
o ~ 56.00000 0J.001%00
67.00C00 91.032190
: 64.00070 24.0030)
\__ ________ 20.00000  35.00100
71.000006  28,002300
77.0CC00 57.CC200
70.00C00 41,00939
o T 36.00000  5.2,00000
r 5.00006 17.03000
L - 20.00000  14.00%99
| 70.00000 74,00uCD
| $9.,00030 20.0002)
66.,0UCCI0 4,00900
o 43.00000  42,000L0G0
. 53.0000U 55.00000
| 18.00000 72.03190
86.000722 12,.20300
54.00000 9J.0000
60.30CHU  27.200D9
‘_"" ) 93.0CCVY  13.0CCo0
b 33.00020 17.0C090
9.00000 635.0C227
o 74.00000 [71.009730
74.00000 75.00900
6.00C00 33,0079)
o 10.03000 27.90209
77.0CCI0 18.00320
38,.00003 11.0031)
o 61.0CCO0uU  45.0030)
B86.00000 23.0020)
25.00000 23.0009)
T 78.00C00 72.03CI0
26.00000 17.0G62329)
60.0CCOY  35.0001)
"~ 99,)3CC00  41.20)2D
84,0000U 61.00300
61.70000 23.00200

1

33.70009
62.0000u0
71.20000
48.00000
43.N00000

5.000%0

3.00090

- 33.,00000

73.30000
20 lL)OOOJ
32.00000
59,00000
5270000
17.20000
60.9200u
40.209590

B6T.0U000

94,0000
85.00200
23.007°Ju
24.,00004
73.00000

67.00000

20.00000
86.03000
47.C0000

3.0009u0
16.03%00

60.U0000

31.00000
49.C03000
697.000404
95.,00000

3.00050
24.00090
39.03290
957.03%24d9
18.307200
23.0030u
79.000095
54.22000
35.00000
95,0003

5.00000
254333340
43.17000
64.00000
45.90700
47.00000
63.0000u
683.70)200
34.20000
21.00300
937.09230u
32.00004

89.03000¢C
6.000390
23.{0000
18.00000
82.00000
46.,00000
87.00000
83.J0309
45.00000
64 .2005C
49,02000
89.020007
55.0000U0
30.30000
67.90J00
77.C2000
39.00000
61.02000
17.00000
42.00000

500%3)

31.00000
10.20000
42 .,20000
20.00300
04+ 3020C
R4.00000
71.00009
23.00000
77.00000
58.,00000
5G.020000
l4.009u0
T4 .30003
44 ,000U00
46.00000
46 .010009
T3.020ud

26.37000

74.0C0900
97.00009
39.50000
45,00000

9.002490
71.20200
69.30000
63.005u0

61.00000

11.00009
14.00000
64.230003
22.00090
£2.0000C
28.02004
57.0009C
63.000600

59.32000
38.00200
34.730000
13.3G20C
37.22090
71.35000
23.J8090
17.292050
23.J0000
43,30C00
28.,50000
74,50000
94 ,u0000
55.20000
25 .00000
80.00000
74.0CC00

" 18.20000

32.00000
717.00000
35.590G0
143309200

8.uJ000

45,00000

65.00000
87.3C000
51.,0020C0
41.09302
11.30000
31.4C000
24437000
24.03000

15.20000

6.00000
31.30000
47.00000
16.03500

2.00000
12.0C0C0
53.00000

4,00000
T3.000C7C
47.,00000

Z2.000350
73.00300
77.00000
14.20000
20403000
37.0CQOO
27.00000
17.029230

4,200C0
52.0CC20
17.00G00
23.,00030
45,00000
79.00000
63.30000
Tu.0300C
37.00309
LE«22309

1 93.306000C

68,0C00G

30.30000
78.90000
57.9000C
10,30500
66.20030
58. U030
28.J30000
49.450000
74.30000
56,000C0
64 .200000
T7.30000
23.20000C

5.20000
86.20000
41.00000
73.30000
33.,00000
90,3000
60.,00000
4%,03000
34.2C000
95.00200

93.00320
87.00000
51.000G0
33.00400Q0
B7.00000
71.0000C0

0.00000
52.00000
")3; JOOOO
80.00000C
41.33600
8%.00000
35.,0C300
T7.003500
18.0G000
63.00GC0C
3E£.0UD00
21.00000
56.00000
82.00000
36.00000G
84.00000
53.00L00

£ .000C0
11.00000

2.00C20

67

16.053000
60.03000
67.00000
24,ud000
56 .00002
gl.0Cud0
50,00000
26.030G0
86420000
13.00000
32 WG
14.,00000U
58.00000
82.52000
34.,2000u
62.03000
25.32000
25599020
30.33000
193.00G00
92.000C7
13.00020u
2%945000C
0.200300
33,00000
86.,00000
33,0000
93.5300C
533.230200
87.320000
63.090020
T4.,00000
TT.05C00
42 .000C0
97.03020
6%,030CD
T4.00000
49, 50000
B3.32000
45,05000
T4.0C0000
54.23000
43,00000
TT 0000V
92 .0J3020
54.,CLU000
38.0UC0CL
58.020000
30.000G0C

baul 00
20.C0000
54.00000

2.00000
31.03000U
27100000



91.0CC00
28.0CC00
35.00C00

- 90.00000

75.0CC00
66.00C00

0.0CCOu
34.00000
25.00000

- 29.0CC00

96.00C20
42.00020

~ 97.00000

98.30000
88.J30000

70.30009
90.920000

89.2J0C00

88.0CC00
32.00C00

 8.J00000

76.00C00
97.20000
81.20000
93.90000

2.2CC00
95.00000
37.00CJo0
55.,0CCI0

31.00000

?5.0000U

"71.066000

68
64,030V
98,00000
51.00000
33.,00000

H.00000
56,00000
33.030C0
47.00000
84.00000
35.,00000
79.0000G
55.00000

" 55.05000

19.0d00vu

3.00000
98,00500
54,00000
71.00000
88.00000
87.00000
21.G0G00

35,00800
85.03000

2.00C00
90.03000

85.00000

46.00CC0 3.00000 40.00000 75.0000¢
95.00202 83,0000C 74,000CC 19.00000 11.G000C
98.000G0  25.00000 42.00000 60.00000 83.CulLC
61.0C000 57.0000¢ 35,0000C 7C.00000 97.00000
42 .0C300 22.90000 39.C0000 28.00000 99.00000
16.00000 28,00000 76.00000 20.u0000 46.00000
11.0CCCO 22.00000 45%.0CC00 26.00000 17.0C0040
77.00C00 62.0000U 54.00000 9,00000 34.2000C
6.00000 3.00005 61.00000 87.00000 97.00000
12.00C07  98.00000 57.G0C00  18.00000 25.0000C
37.06000 32.00000 99.006000 18.03000 99.00000
91.00C00 1€.,0000C 22.0C0CC 33.00000 2.0000C
27.C0020  5.00000 14.00000 45.00000 76.0000G
36.00000 23,00000 51.000CC 12.00000 £23,0006C0
32.0€C027 91.70006 87.06000C 37.0000C 62.00000
69.00000 36.,00000 72.00000 35.00000 27.00000
23.00002 62.20000 89.00000 30.00000 40.00000
62.00C02 64.00000 13.000C0 51.00000 321.00000
48.00C02 19.00000 51.0060C 93.00000 96.00000
50.CCC00 T77.00000 44.00000 26.00000 84.,0C000
73.00C0C0 67.00000 81.0000C 54.00200 99.00000
47.00702 5B,00000 1.00000 19.050000 83,.00000
44,0000 21.00000 3.00000 0.00000 10.,0G000
5.00C00 10.00700 22.00000 53.00000 20.000G0
7.0CC02  30.0000¢ 30.000GC 23.00000 43,00000
14.000G0 €8.20000 79.00CG0 69.00000 59,.00000
59,GCZC0 51.,00000 £.00000 61.00000 10.00000
T27.0CC00 83.000C0 83.00000 71.00C00 96.00000
11.00000 75.20792 99.C00C% 75.00000 53.00000
51.00000 9.000035

- THE AUTC-CORRELATICNY FUNCTIONS

THE CROSS-CORAELATION FUNCTIONS,CI(),CT()

R1

~ 1.00000

0- T’f9')3
C.74233
- 0.73532
0.74241
C.73196

 0.75G76

0.75791
C.74328

T CL.T76075

0.72534
CeT4489
T C.T72164
0.75755
0.74136
C 0.T72377
C.71033
0.72710
T 0.71953
0.72568
C.73652
TB. 72401
0.72737
0' 7144‘5

T 0.71245

0. 706065
0.71107

R2
1.2002¢C
0.75837
0.73838
0.736233
0.738273
0.7586%
0.74851
0.76433
J. 72657
0.72933
Ce73615
C.7393¢
0.73646
0.73754
0.73377

0.72925

0.72251
D.70112
0.714175
0.70994
O.71617
0.70723
0.70911
0.7N228
0.70738
D.7T1715
O.716172

CI
0.75271
0.73606
0.74773
0. 73038
N.74363
2.73336
0.75069
0.73262
0.75931

 0.70512

0.72746
0.74487
C.72594
0.75203
0.71690

0.72761

0.73574
N, 73131
2.71439
C.71675
0.72895
0.71771
0.73138
0. 70153

0.73901

G.71835

0.70978

0.73330

0.72847

LeT74324
0:73387

C.73085
0.74091

0.73373
Q.74193

" 0.72858

0.73809
0.734453

" 0.71655

0.73617
0.73198

0.72590

0.73896
0.71186
0.71690
C.69272
0.7z021
C.7234]
0.72187
0.72303

T 0.72242

0.73160

0.70L512

JR1(),R2() AND

CT

0.75291

11.00600



0.72905
0. 73964

- 0.70556
 0.70060
C.71228

- 0.700120
0.71048
0.72110

| C. 69818
T 0.71545
0.70040
~0.69931
0.69526
0.70388
0. TN644
 0.69385
0.68075
069104
0.70423
0.65124
0.68752
~ 0.70052
0.69141

~ 0.67970
- C. 068474
0.64893
0.66€76

T Ul.67367
C. 65622
0.67759
 0.68309
0. 65885
C.66271
T 0.66879
0.65765
C.669%4

- 0.65573
C.67364

0. 66104

T 0.67029
0.668%6
C. 65875
0.66059
0.66537
0.65752
0. 65540
0.64523
0.658u6
C. 66477
C. 66170
0.6463%6
C. 652821
0.64879

- 0.63312
0.645499
G. 64300
0.625G2
0. 65142
0.64176

D.624)C
0.70465
0.70959
0.70641
C.HT649
0. 70159
0.70034%
0.684467
0.69431
" 0.69423
0.69237
0.68242
0.6E126
0.70C97
2.6784%1
0.69384
0.68B244
0.67211
0.66832
J.69080
0.68938

 0.67859

0.67993
0.69110
0.67312
0.66377
0.68751

T 0.67624

0.6B8436
0.66275
" 0.67259
0.67329
0.564705
0.67515
0.65058
0.45251
' 0.559138
U.65309
0.67348
0.563958
0.54158
0.65213
0.65511
0.66031
0.63570
0.63348
0.64022
0.6403!
0.62919
0.64549
0.H3584
D.62717
J.63118
0.63131
0.63526
0.62126
0.63541
0.61095
0.61887
0.62351

J.6B688
2.71403
0.71301

0.69169

0.71110
0. 70194
0. 72Jb849
0.70472

~ 0.70517

. 0.66888

0.59793
0.69150
0.66938
0.70047
0.58396
N.66624

0.67292
N.677498
0.67984
0. 66467
0.66209

0.66669

0.66687
0.68025
N.66187
0.66146
0.65715
N.67373
N,63455
D. 64525

0.67178

0.67280
0.66550
- 0.54516
2.66649
2.63791

0.64925

0.670172
0.65431

0. 64930

0.65778
0.64751
0.63640
0.63571
0. 64994
0. 65014
0. 65762
D.62665
0.62486
0.63436
9.63258
(.629177
0. 62551
- 0.61896
0.61659
(.61462
Ve 61296
0.62580
0.61377

 0.61490

C.712053
0.70048
C.71G71

0.68984

0.68932
0.711567
0.69490
0.70878
0.70616

0.70361

0.69484%
0.70263

0.67080

0.68745
0.69371
0.68159
0.67878
0.68703

" 0.68636

0.69260
0.67691

0.69459
0.67661

0.69220

0.69692
0.70131

" 0.70486

0.68443
0.67783

- 0.67899

0.68985
0.67789

0.68533

0.68754

0.67636
Leb6TI27

0.677173
0.68405
Cc 6753"; -
0.65565
0.66690
0.66280
0.65357
C.67453
C.66311
C.66570
0.63591
0.65458
0.65286
0.65422
0.66603
0.54543
0.64657

U.63243

0.6’1’5';0
C.64017
C.64126
C.63432
0.64619

" C.68654
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0.625C8
0.63538
C. 641736
0.634%54
C.61361
C.62406
0.63472
OGe62617
0.62235
C.613!2
0.62516
Ceb64143
C.632¢7
0.596C5
C.610¢91

' 0.63039

0.593(C¢%
C.61233
0. 60703
0.60937
0.62775
C.61343
0.59435
0.59926

0s59815

0.58551
0.60724
0.59679
C.59937
0.58167
0.60206
0.59974%
C.60890

0.60143

0. 59575
J. 57807

- 0.58291

0.57367
00 532‘)4
C.60919
0.58047
0.58247
0.57131
0.59022
C.56971

- 0.57074

0.5611¢
0.56731
C.55893
0.5733C
C.57102
C.57257
C.543913
0.55034
0.55845
0.567E3
0.5639¢

- C.54672

0.55536
C.56123

0.60871
0./A1279
O.5352h%
Ue6130 0
0.59255
0.62111
0.62120
0.60158°
0.60250
0.58235
0.58312
0.58417
0.59144
Ua.ll81%
0.5847¢

- N.6656¢

0.5929G
0.5787%
0.59399
LeSTB37
0.59010
0.5714C
0.56814
0.57850
0.56651
0.58594
G.57445
0.556234
0.576176
J.583013
0.56533
0.572%)
7.25384
D.56218
N.351229
0.57232
Je25474
D.955163
Je 345373
J.95886
JeH6298
0.56619
0.55544
0.53996
0.731585
0.54541
NeH4495
0.53733
0.53201
0.52777
0.51672
0.5179¢
0.53321
0.52842
0.51637
0.536177
U.51671
0.5176%
CaS1108
CaH2671

0.60849
0.60938
0.60253
V. 592881
0.60408
D.61462
Ue 62124
0.61079
N. 58509
0.39417
0.59359
0.58CE5
0.61296
(. 60700
0.60E34
£.5937¢
0.28617
0.59832

© 0.59902

0. 61207
0.59722
0.57768
0.57068
0.57410
'0.57871
0.57457
0.56672
" 0.58827
0.573%6
0. 54421
0.55456
0.56630
0.56871

" 0.556&84

0.58382
C.56731
0.53623
0.55644
0.2273>
Oo 549&0
0.54851
0.56121
0.54481
0.54393
0.%3849
0.55257
0.5594/
0.55407
0.5376%
0.53350
0.5439%
0.51677
0.23475
0.59%154
0.55534
0.23770
0.51567
0.524u7
0.48700
0.21547

0.65412
0.64878
O.03075
0.62769
0.64437
0.64225

T 0.62404

N.62618
0.618%5
U.62927
0.62686
0,62191
V.62204
0.60134
C.62695

0.63410

0.62845
0.59156
0.61342
0.59486
0.59973
0.61623
D.59648
0.59736

0.57804

0.59167
0.59218

0.58789

0.59544

0.57844

0.58007
0.56817
CG.56%43

G.59915

0.579506
0.57462
0.57808
0.57576
0.56297

- 0.58372

0.59514
0.59395
0.56753
0.57330
0.56080
0.561493
0.56133
0.57750
0.56993
0.57122
0.57123
0.55449
0.56467
0.50158
0.56383
0.26625
Oc HWOaTOT
056527
0.55415
0.05622
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}., C.55534 0.5172¢ 0.52855

£ 0.5393¢C 0.52208 0.51766

0.5420¢ Q0.51213¢ 0.50366

R RESLLTS OF PARZEN TRANSFLFM
Fl F2 co Qu

ST 16433110 16.10693  16.02914  0.0000C
" 3.56782  3.60439  3.58290 9.76773
2.17293  0.15027 C.15037 3.77343
T 0.04193  0.10756  C.01778  2.576%51
(= 0.04458  0.1145% -0.20602 1.96406
0.C8612 0.08143 -C.01205 1.52824
YT 0.,06308  0.04629 0.02456  1.2104C
(4 0.02598  0.35147 0.0J028  1.07123
0.03208  0.05452  0.0327%4 0.95681
"7 0.03434 0.02637 -0.00159  0.83736
& 0.02583 0.01835 =-0.00027 0.73861
_0.02227 0.02421 0.03993 0.65653
PTTTT0.027982 0.03442 0.01419 0.62882
T J.03022 0.02752 0.00387  0.5%387
i 0.02609 0.04324 -0.01397  0.50424
. 0.03412 0.06212 -0.01332 0.44523
I J.04531 0.04936  0.00782  0.44984
. 0.04645  0.04859 0.02261 0.43967
T 0.C4103  0.03322  0.00445  $.42193
& 0.04086  0.02734 -0.02389  0.41678
- 2.05%64  0.02525 =-0.01230 0.38261
LT 0.07267  0.93120 -0.01598 0.32562
& 0.04441 0.23419 -0.01379 0.23855
0.02941  0.02071 -0.00997  0.321¢5
7 0.05218 0.03822 2.,01465 0.29817
o 0.03716  0.233939 0.00104 0.26505
. 0.01917 0.04823 =-C.00027 0.27682
_ 0.03650 0.02545 0.01009 0.26012
& J.C8643 . 06295 0.03744 0.26476
T- 0410395  0.07271 -0.03C045 (.25643
 0.07305 0.07307 0.01567 0.237672
¥ 0.04503 0,05387 0.02286 0.24411
e 0.05005  0.06449  (.CO0E89  (.22674
0.02917 0.053z8 C€.0C71C  0.17900
(- 0.C2688  0.07647 0.02707 0.19804
T+ 0.03365  0.04551 0.01389  0.19406
0.04192 0.03412 0.01F98 C.16786
o 0.04£67 0.05135 -C,00839 0.17174
¥ 0.C1318  0.0549% -0.01066 0.17C03
'''' 0.01837 0.05068 -0.00913 C.17284
iy 0.02546  0,06482 -0.00059 0.17044
T e 0.C3749  0.05582  0.02127 0.15574
0.C3763  0.0361%8 =-0.01619 0.17433
e 0.C5586  0.04676 -0.05133  (.13995
"y 0.04948 0.03745 -(.02221 0.14438
 0.07804 0.01034 0.0C03¢  0.1434¢6
" 0.03954  0.02096 -C.01585  0.13615
Te C.02411 0.0374%7 -0.00188  0.11307
0.C1895  0.04247  U.Cl1094 ©.11227
. C. 06651 0.05031 0.03426  0.13491
o 0.C4067  0.02932  (.03108  0.14390
' 0.03826 0.018724 0.00545 0.13789
: €.C1309  0.04349 C.00710 0.10351
2 0.03606  0.03393 =-0.01%30 0.1089%

Ce54975
0.54832
0.54474



0.04515
0.C1989
0.C3666
C.C4011
0.063468
0.CE4B5
"U. 04946
0.03074
0.01842
0.07129
0.04102
0.02490
- 0.€3596
0.06200
0.02533

- 0.C1187

0.03218
0.08618

" 0.06188

0.03096
0.02292

-~ 0.03598

0.01892
0.02983
0.03688
0.02342
0.02311
0.02713
0.02472
1 0.02248
0.64373
0.03403
2.02319
1 0.C3403
0.03884
0.06911
" 0.C7144
0.€5792
0.04951
70.06453
0.C8257
0.03489

- 0.Cl959

0.C3054
0.02729

T 0.02372

0.02234
0.CCCOO

- 0.00000

C.CcocGoo
0.CCO000
0.C0000
0.00000
0.CCO00
0.CCGOO
0.CC000
0.CC000
0.CCCCO
0.CCO0O0
0.CCOCO

0.032723
0.C70836
0.07683
0.03251
0.0123¢6
0.01304
0.C6011Y
0.05266
0.04547
0.04457
0.03245
0.0384°2
0.03105
0.03292
0.03413
0.03291
0.0311%
0.02250
0.01736
0.03377
0.03983
0.02945
0.05154%
0.03316
V.02224
0.D03924
0.081775
0.227122
0.03537
0.03150
0.04914
0.024173
0.07C97
D.V6215
C.02697
0.C4664
0.04754
C.050b56
0.3367C
0.02597
0.03260
¢.02719
0.01631
0.00903
0.02255
0.23193
0.05034
0.00000
0.000C0C
L. 00000
0.00000
0.00000
0.0000G0Q
0.00000
0.000u0
0.C0000
C.00000
0.002300
0.00000
0.00000

-0.N2959
0.00306
0.N4251

0.00690

-0.00779
0.00317
0.00170

-0.02n00
0.00193
0.01358

-0.01246

-0.01086

0.00022

-0.03102
-0.03111

-0.01883

—D.00348
N.0N02458

- 0,J2052

0.0009%
0.00932
2.023C0
0.02104
0.03045
Je.CC25E
2.0C0221
-J.02019
d.C1051
0.0071%
-0.01416
-0.01567
-C.0C93C
"'0003")?1
-G.0&443
-0.01945
-0.00254
C.03109
0.04081
D2.0327¢
-C.00407
0.00174
0.01327
C.01357
C.02523
0.C27406
G.024954
0.C000U
C.0u00n
(00000
{0000
0.00000
C.C0C00
C.00000
0.0000u
0.00000
0.00000
0.00N00
C.0000U
0.00000

0.10324
0.,09172
0.09494
0.09003
0.09444
0.11517
0. 09725
0.07925
0.0U8334
1 0.08155
0.06938
0.0926Y9
0.06233
0.06433
0.0485¢

DeD4735

0.06637
0.07165

© 0.02953

0.02037
- 0.0349b
0.05647
0.03973
0.05141

0.04629

0.04860
0.06442
C. 04379
0.04503
0.035830
0.04233
0.01369
0.01711

- ~0.00¢Ce1

0.01695
0.01675
- 0.04297
0.05510
- 0.02265
0.00754
C.C0v21
~0.00043
0.01248
C.C0407
~0. L0673
~0.01127
0.0000U
G.U000u
0.0000u
0.00000
U. GOULIU
0. 00000
0.00000
0.,U000U
0.0000%u
0.00000
0.00000
0.0000U
0.0000U
0.920000

T2
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A CHART 3 73

;- ~ PLUT OF SPECTRUM
FC? 0.0314+
0.0628+

| 0.1257+ *
0.1571+ #

D .- T 0.1885+ S ¥

*G 0.2139+ *
0.2513+ *

had 0.2827+ R ) o

L 0.3142+ %

0.3456+ £

p =< 0.3770+ % ) -
" 0.4C84+ *

, 0.4398+ *
ghad T 0.4T12+ * - T
G 0.5C27+ *

0.5341+ &

T T 045655+ ' ¥ B - -
& 0.5969+ *

: 0.6283+ *
s T0.6597+ T 2 T
o) 0.6911+ %*
| 0.7226+ *
:‘.- 0.7546*‘ - —*_ o T
(% 0.7854+ *

. 0.8168+ i *

_ TTT0.8482+ N B
g 0.8796+ *

0.9111+ *
T 0.9425+ ' *
‘.'-\‘_:1 0.9739+ *
- 1.0C53+ *
)  1.0367+ Tk .
e 1.0681+ ' ¥
| 1.0996+ *
S l.1310+ o x
Pilj:!! 1.1624"‘ ¥
e l.193g+ %
T 1.2252+ ' o *
e 1.2566+ *
l1.2881+ *

Eg* 1.3509+ *
e  l.3823+ *
 1.4137+ . .
= l.4451+ *
1.4765+ &=

~ 1.5080+ T T ® 0
e 1.53944 . *
. 1.5708+ %
T 1.6022+ ' ) o T
e 1.6336+ *




APPENDIX B:
1) Cross-Spectral Analysis Program
2) Sample of Cross-Spectral Output
3) Sample Coherence Diagram and Method of Calculating

Average Coherence
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(P

CROSS-SPECTRAL ANALYSIS

PROGRAM

The program is designed to accept two time series, each of
N observations. The trends of the two series are removed in the
main program using least squares. In most cases, the only remain-
ing components are the variance and random error. If there should
be some trend remaining, it will show an unusually high amount of
power in the lower frequencies of the spectra.

The de-trended, or whitened, series are then passed to PARZN1.
This subroutine calculates the auto- and cross-correlation functions
of the two series. The co- and quadature spectra are calculated
in PARZN2. The coherence diagram is found in PARZN2, and passed
into a plotting routine,

This is the program which was used for all experimental work

in this paper.



EL 18 MAIN DATE = 70238 Lﬁf(7/7:76

THIS PROGRAM IS USEC TO ARRANGE THE INPUT DATA FOR THE PARZEN SFRH 170

TIMES WHICH FOLLOW, FRH 1310
FRY 1392vu

CIMENMSION X{ZCCC)4XL(4&4CT)
1 FORMAT(6]5) FRH 1040
2 FORMAT(25F3.2,5X) FRH 1290
3 FORMATI(? THE INPUT') FRH 1 o6.
T FORMAT(Y N=V,T14,"' M=",13," NL=",13," NVAR=1,13,! [GO=',13," NPROFRH lﬁ(&
1e=',13) FRH 1071
9 FCRMATIHICY 22U X VX% %%JATA SET' 12,V %5%% TIME SERIES (', 16,',",I6,")FRH 17332
Ly (', 164y Y3164 ) ") FAH 170l
11 FCRMAT(® VARIABLE'4I13) FRH 1990
12 FCRMAT(S5X,15F5.1) FRH 1171

13 FURMAT(OX 3 " XTUT 46X, 'YTOT 46X,V ZTUT " 46X "X 2" 33X 'YZ",8X,"'X2',6X,"'Y
12 EXs ' 72" /5F10.1)
14 FORMAT (LCOX4'LEAST SQUARE REGRESSIOI',IZ, Z="43F843, '+ ', FB8,3,'X")
READ (141) NyMyNTsNVAR,IGO,NPROB FRH 1113
WRITE(3,7) NyMyNQyNVARSZIGONPROS FRH 1122
LAP=]1CO
IKONT=0
CO 4 J=1,7NVAR
4 READ(1,42) (X{I+NF(J=1)),1=1,%) FRH 113¢
READ(L,1) ID1,I2,1003,I04 FRH 1122
DO 1C L=1,NPR0SB FRH 1121
KRITE(3,7) L,IC1,1D2,1C3,104 FRH 1123
WRITE(3,3) FRA 114y
IK=1CC+H(TKONT*N)
JK=Tk+4
£Lo 6 J=112
WRITE(3,11) J FRH 1160
6 WRITE(3,12) (X(I+LAP:{J-1)),1=1KsJK)
FIND AND SUBTRACT THE NMEAN FOR EACH VARIABLE FRH 1184
A=N
B=N+ 1
XZI=0.90
YZ=C.C
X2=C.C
Y:."\.’nu
22=C.0C
X10T=0.0C FRH
YTOT=C.C FRH
LT0T=C.C
LO 8 K=]KyJE
X2=X2+ (¥ (K)*%.)
LK=K=-IK+1
YZ=Y2+(X(K+LAP })**2)
12=212+(LK%**2)
XZ=XZ+{X(K)*LK)
YZ=YZ+(X{(K+LaP)*LK])
ITOT=2ZTOT+LK

P
Ny
o
[P

-

XTOT=XTOT+X (K) : FRH 12.u
8 Y1IT=YTOT+X(K+LAP)

XBAR=XTOT /N FRH 1240

YBAR=YTOT /N - FRH 129D

ILAR=Z2TOT /Y
=(ZhAR®2TUT)I=22
XSLOPE=U(XBARFITOT }~XZ)/C
YSLOPE=((YBAR*ZTCT)I=YZ) /L




!
5-LEVEL 18 MAIN DATE = 70238 Les 70

7
|~ XC=XRBAR-( ZBAR®XSLOPE)
| - YO=YEAR-( ZBARSYSLUPE)
. WRTTE(3,03) XTOT,YTUT $2ZTOUT 9 XZ Y2 4 X2,YC 22
' KNT=1
oy WRITE (3,14) KNT,XJ,XSLOPE
. KNT=2
- WRITE (3,14) KNT,YO,YSLOPE
) b BO &5 4214 3
P NL=J+IK-1
ZJ=XO4+(XSLULE*X{NL) )
o Z1=YO+{YSLOPE®X (NL+LAP))
N AL(J)=X(NL)=ZJ
' 5 XL(J+M)=X(NL+LAP)=2Z1
b o CALL PARZN1IXLyNsNQyM,1G0) FRH 129,
r, I01=101+120
102=1D2+189
b ID3=1N3+410C
. I04=1N4+120
' IKONT=TKONT+1
~=4 10 CONTINUE FRH 1231
> . sToP FRH 1340
END FRH 121w
| =2
!-—-e
-t
L?
-y
- =-a
'ﬂ'
-—
—a
- -
- =7
—_
-
-4
-



b=+ EVEL 18 PARZNY NATE = 70238 10/(3/;u78
i SUBROUTINE PARZNI (XN yNGe¥,y 160) R
- FRH
r; THIS PXOCEDURE CUMPLTES THE AUTO AND CRUSS CORRELATINY FUNCTIOWFHH
o B2()4C10)}4AND CTU)y FUR I=1s2ye0eM+1oTHT FUNCTION AT LAG M IS SFRH
'~ AT I=M+1l. THE TIME SFRIES ARE OF ELUAL LENGTH, 3 , AND BOTH ARcF
&k STORED IN THE ARRAY Y(), ONE BEGINNING AT L1y AND THE OTHER AT FxH
THE AUTU CORRELATION FUNCT1ONS ARE NORNMALIZED TO MHAVE A VALUE LFRAH
= ORIGIN, ANL THE CROSS CORRELATION FUNCTIONS ARE ALSO CONSISTENTFRH
f & NORMALIZED. THE NORMALIZING FACTORS ARE D1,D2, AND D3, THE FUNCHFRI
c ARE ADDED INTO THE ARRAYS R1(),R2()4CI(),AND CT(), T ALLOA POLERH
~£ OF COVARIANCES. FR
£ FRH
1 FORMAT(? THE AUTU~CORRELATIUN FUNCTIONS 4R1()},R2() ANDV /" F2H
k 4 1THE CROSS—-CCRRELATION FUNCTIONS,CI(),CT()1/? R1 RFRAH
" 22 cI cT') FRH
3 FORMAT( 4F12.5) FRH
t e CIMENSION X(1) FRrRH
- CIMENSION R1(250)4R2(250),CJ(250),CT(25G)
El‘-‘0.0
- £2=0.0
» £3=0.0C
DD 2 I=1,N
=t R1(1)=0.0
™ R2(11=0.0
CItI)=0.C
¥ 2 CTI1)=0.0
- PO 5 I=1,N FRH
Cl=Dl+X{I) %% FRH
DZ=DZ2+X(1+N)=x%2 FRH
- 5 CCONT INUE FRH
C3=SCRT(D1*02) FRH
e FM=M+1 : FRH
- CO 7 KK=1,MM FRH
KKl=KK-1 FRHA
NM=N+KK-1 FRH
o SUMli=C.0C FRH
' SUM2=0.C FRI
ad SUM3=C. G FrRH
SUM&=C, 0 FRH
CO & JL=1,NK FRH
-x o SUMI=SUMI+X[{JL)#X{JL+KK1) FRH
. SUM2=SUMZ+ X {ri+JL)*X(NM+JIL) FH
SUM3I=SUMI+X (JL) =X (HM+JL) FRH
o~y & SUML=SUMA+X (ii+JL) XX (KK1+JL) , FRH
" % RI(KK)=SUM1/D1 FRH
RZ(KK)=SUM2/D2 FRH
- CI{KK)=SuUM3/L3 FRH
- 7 CTIKK)=SUM4/D3 FRH
WRITE(3,1) FRH
" % CALL PARZNZ (R1,R24CI,CTsNCyM,IGC) FRH
RETURN FRH
-4 END FRH
— %

1322
14432
1345
1354
136.
1372
133%
1340
1423
141¢C
1423
1437
la4 s
145
146
L4
14E0

152¢
1933
1549
1550
156U
1570
158%
1597
1604
1ald
1627
1633
1545
1550
1652
relc
1552
1632
172G
171¢
172¢
17345
1744
1750
1755
L1172
176¢L
1799
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18 MAIN DATE = 70233 15/;7/5579

FrH

SUBRGCUTINE PARZNZ2 (R14R2:CI,CT4NG,M;IG0O) FRH
FRH

THIS PRUOCETURE COMPLTES W+l POINTS OF TwO ESTIMATED SPECTRAL DEFRN
FUNCTIONS AND GF THE CO-SPECTRUM AND QUADRATURE SPeECTRUM FROM RFRH
AND R2(1), WHICH ARE THE AUTC-CURRELATION FUNCTIONS AND RE{I) AFRH
WHICH ARE THE eEVEN AND QDD PARTS OF THE CROSS-COUORRELATION FUNLCTFRH
TwO TIME SERIES. THE TRUNCATICGN POINMT IS M, THE THE WEIGHTING KFRH
USED 1S OMEGA(I). THE SINES AND CUSINES NEEDEDO ARE COMPUTED RELFRH

FRH

IGO IS AN INDICATUR REFERING TO THE WINDOW DESIKED FRH
IGO=1, THE PARZEN WINDOW IS USED FRH

=0, THE TUKEY-REANNING WINDUW IS USED FRH

FRH

FRH

CIMENSION RI(1),RZ2(1),C(530),P(500),AA(500),8(5C0),CT{1),CI(1) FRH

DIMENSION FL1(53C),F2(35C0},CO(5C0),QUISCL),0MEGA(5Q0) ,RELS500),R0OI52

i 1C) :

L CATA PI/3.1416/,PIV/0.3183/ FRH
** 1 FORMATI(4F10.5) : FRH
=" 2 FORMAT(' RESULTS UF PARZEN TRANSFORM'//! F1 F2 FRH
; 1 co Qu COF. PHASE'/(6F10.5)) FRH
o4 B0 15 I=1,5CG '

s F1(1)=C.C

. F2(1)=0.0

e d COt1)=0.0

« QuUII)=2.0

OMEGA(I1)=0.0

RE(I)=0G.0
= 15 RO(I)=0.r _

IF{1G0)8,9,8 ' FRH
~% 8 CONTINUE : ' FRH
= FRH
" THE PARZEN WINDOW FRH

C FRH
- PASS=#/2 ' FRH
&5 CO 10 K=1,M FH
- [F(K.GT.PASS) GO TO 11 FRH
= CMEGA(K)=1a—( (6% (K%%2) )/ (M#£2) ) ¥ (La=((1e%K)/ M)} FRH
o GO TO 1¢ FRH
11 OMEGA(KI=2.%(Lle=(1.%K)/M)¥%3 FRH
=3 10 CONTINUE FRH
ol GC TO 13 FR

¢ FRH
£ THE TUKEY-HAWNING WINDCW FRH
¢ . FRH
© 9 L0 3 I=l4M FRH
3 CMEGAII)=.5%(1.C+COS{(PI*I)/M)) FRH

13 CGNTINUE FRH

FRH

CALCULATE THE SUMS .AND DIFFERENCES OF THE CROSS-CORRELATINNS FRIH

FRH

CO 14 I=1,M FRH

RE(II=(CI(IN+CT(I))/2.C FRH

RGII)=(CI(II-CT(I))/2.C ' FRH

14 CONTINUC FRi}

C1=COS(PI/NQ) FRH

€3=C1 FRH

180C
131C
152
1837
1847
18920
1860
1872
l18sC
1690
19240
19io
192¢
1930
1947
1955

1984
1990
2020
2310

2020
2430
25470
2{50
2G6U
2674
2083
2372
21902
21193
2125
2130
2140
2152
21673
2173
ZlBu
2199
2200
22U
2220
2230
2243
2254
2260
2270
2260
22943
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C1=C1l

CZ2=SINIPI/NQ)

La=C2

Co=2.0%C1

Pl1=0C.5%R%1(1)
P2=0,5%RE(1)
P4=0,5%¥r21(1)

K=M+1

CO &4 [=2,K

A=0OMEGA(I)
P1l=P1l+R1(])*A
P2=P2+RE(])=A
P4=P4+22( 1) %A
F1(1)=P1%PlV
F2(1)=P&%pPlV
COtl)=p2xpPlV

CUl1)=0.2

BO 6 I=1,H0Q

Ull=c,.0

u12=0.0

ui3=_Cc.0

Ul4s=0.C

uz21=0C.0

Uzz=_L.0

L23=C.0

L24=G.0

CLO 5 J=2,K

JJ=M+3-J

A=UOMECGA(JJ)
U31=06%U21-ULL+R1(JJ)*D
U3Z2=06%U22-ULZ+RE(JJ)*A
U33=D6%U23-UL3+R0O(JJ)*A
U34=D6%U24-Ul4+R2(JJ)=*A
Lll=u21

uzl1=u3l

Llz2=uz2

L22=U32

Ui3=uz3

uz23=u33

L14=U24%

Lz4=U34

CUONT INUE
FI1(I+1)=(0D1*U21-ULlL1+R1(1L)*C.5)%P1V
F2UI+41)=(D1xU24-Ui4+R2(1)%0.,5)}%PIV
CO(I+1)=(D1*uU22-U124RE(]1)}*0.5)=PIV
CULTI+1)=04%U23xP]V
Bl=(C1%C3)-(C2%D4)
N4=(D4*Cl)+(C3*C2)
C3=D1

C6=2.N0n*1

CONTINUE ,
CALCULATE THtE COHERENCE AND PHASE DIAGRAM
Cu 7 I=1'nvi
CUI)=(CO(T)=#=2+QU(TI)=%2)/(FL(I)*F2(1))
PII)=ATAN(QU(T)/CO(T1))

WRITE BOTH SPECTRAL POWER FUNCTICNS,THE CO-SPECTRUM FUNCTIOCN,
THE GUADURATUREc FUNCTICN,THE COHERENCE AND THE PHASE DIAGRAM,.

FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRY
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
Fii
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRr
FrRH
FHRH
FRH
FRH
FRH

230¢C
231C
2320
2335
2340y
2350
2360
2310
2380
2333
2400
2410
2420
243%
2440
2459
24640
2470
246
2492
25700
2510
2520
2530
25440
2550
2560
2510
2580
2599
260Gy
2615
262C
263C
2640
2650
2660
2alu
268
2699
2(Iv
2171¢C
22
2730
274
2155
2765
2
2190
2609
ZBL0
2822
2830
2840
285¢
£EBD
2815
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KRITE(3,2)(FL10I)F201)CO0I),QUITL) »CUT)4yPIT)yI=1,M)

PLOT BOTH POwER SPECTRA,THE CCHERENCE, AND PHASE DIAGRAM

CALL SPLOT(ANGsF143)

CALL SPLOT(NG4FZ43)

CC 12 I=1,M

Aatiy=1

AA(T+M+1)=C(])

E(I)=1I

BlI+i)=P({ 1)

A DUNMY CUHERENCE VALUE IS ADCED
AA(M+L)=H+1]
AA(M+EM+2)=1,.3CC

NU=M+1

CALL PLOT({lsRA,NU,24NU,0)
CALL PLOT(24BsMe2404,2)
RETURN

END

TG THE COHERENCE VECTOR

FRH
FRH
FRI
FRH
FRH
FRH
FRH
FRH
FRH
FRH

FRH
FRH

FRH
FRH
FRH

ZBEL
2o09)
2905
eIl
232¢
2932
29352
2360
2974

293y
3ust

3220
3238
32475
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FRH 3(5¢

SUBRCUTIME SPLOT (X yNC) FRIH 3000

FRH 3073

THIS RNUTINE 1S USEC TO MOCIFY THE RESULTS FRUM THE PARZEN SUBRFRH 308>

SO THAT THEY CAN BE GRAPHEC BY SUBROUTINE PLOT, FRH 309)

FRH 3190

CIMENSION X({4GC),0UT(L1C1) 3 YPRIL1)$ANG(9),PLT(4CC),Y(40() FRH 31105

FORMAT( 4TX4F6.Cy9X,F4.0) FRH 3120

FORMAT (14 43X sF1Ce5+5X91443XyF104595X91493X4F1045) FRH 313C

2 FORMATI(' PLUT VALUES /) FRA 314C

FRH 3150

INITIALIZE VALUES FRH 3163

PI=3.1415927 FRH 3175

K=0 FRH 31E0

y=2 FRIH 3190

WRITE(3,122) FRH 320%

' FRH 321

CO 1C 1=1,N _ FRH 3220

PLT(I)=0, FRH 3232

10 Y{(1)=0C. - FRH 32435

FO 166 I=147 FRH 3250

IF(X(I))100,100,99 FRH 32673

99 X(I)=ALOG(X(I)) FRH 327C

GO TO 108 FRH 3287

100 X(1)=3,9993 FRH 32933

=+ 106 CONTINUE FRH 330U

<Y NCOL=N/3 FRH 331.

. CO 6 I=1,NCCL FRH 332C

| I[I=1+NCOL FRH 333

1I1=1+(2%NCOL) FRH 33435

," 6 WRITE(3,101) LoX(I1) oIl geXC(II),III4X(III) FRH 3350

-3 CO 8 I=1,N ‘ FRH 3367

b PLT(I)=1%PI/n FRH 3372

- PLT(I+M)=X(1) FRH 33ecC

hd 8 CONTINUE ' FRH 339G

. CALL PLOT(NC,PLTyNyMyN,0) FRH 3403

PETURN FRH 3&41l¢

4 END FRH 342€C
| -
fﬂg
‘-a
e
=g
o

»

F‘f_l
e
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12 MAIN DATE = 70238

SUBROUTINE PLOTINUO AN MyNLyNS)
CIMENSION OUT(LICL) s YPR(L11)4ANG(9),A(1)

FCRMAT(IHL,6CX,TH CHART 4,13,//)

FORMATLIN ,Fll.4,5H+ y101A1)

FORMAT(IH )

FORMAT(I0H *+C156789)

FORMAT( 10Al)

FORM&T(IH QIGX!I?lHn L] . .

FORMATI(LIH ,16X,1C1A1)
FORMAT( 10X, PLOT OF COHERENCE')
FORMAT( 10X, PLOT OF PHASE ')
FCRMAT( 10X, ? PLOT OF SPECTRUM')

LI B B B B BB BT BN BB BE B B R BB BN BN RE RN B B B BN BN DR BN BE BN BN N BL RN N BN BN NN B B RE OB RN RN B R B L BN BB N BN LA B BE B INCBE BB NN

NLL=NL
IF(NS)16,416,1C
SORT BASt VARIABLE IN ASCENDING ORDER

t0 15 I=1,N
GO 14 J=1,4N
IF(A(TI)=A(J))14914,11
L=1-N
LL=J-N

DO 12 K=l.M
L=L+N
LL=LL+N
F=A(L)
AfLY=A(LL)
A(LL)=F
CONT INUE
CONTINUE

TEST HLL

TF(NLL)ZC,18,20
NLL=5C

PRINT TITLE

WRITE(3,1)NU

GC TN (919924331 4N0
WRITE(3,2CC)

GCC 72 21
WRITE(3,201)

GO 10 21
WRITE(3,202)
CONTINUE

DEVELOP BLANKS ANC CIGITS FCR PRINTING

los.

i3

J83
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRri
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRrRA
FrRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH
FRH

343G
3hé
3450
3407
3470
3480
34 33
35,0
351
35205
3530
3947
3555
3564
357C
3552
3597
3620
3610
3620
3630
3640
300
3667
3670
360bC
3699
3700
3713
372w
3730
3740
3752
3760
377¢C
3TED
3739
38¢o
3810
3820
3837
384y
3850
3860
3ETC
3838¢C
389¢C
1900
3910
392
3935
3940
393:¢
396
3970
3933
3922
4350
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18 PLET DATE 70238

I

REWIND 10

WRITE(10,4)

REWIND 10

READ (1C,5)BLANK, (ANG(I),1=1,9)
REWIND 1C

FIND SCALE FCR BASE VARIABLE
XSCAL=(A(N)=-A(1))/(FLOATINLL=-1))
FIND SCALE FCR CROSS VARTADLES

MI=N+1

YMIN=A(M] )

YMAX=YMIN

M2=M=N

CO 4C J=M1,M2
IF(A(J)-YMIN)28B,28,26
IFTALJ)-YMAX) 40,440,330
YMIN=A(J)

GO TC 4C

YMAX=A(J)

CONT INUE
YSCAL={YMAX-YNMIN}/1CQ.C

FIND BASE VARTABLE "PRINT PGSITION

XB=A(1)

L=1

FY=M-1

1=1

F=I-1

XPR=XB+F=XSCAL
IFIAIL)-XPR)51,51,7C

FIND CRCSS VARIABLES

CO 55 IX=1,1¢1
CUT({IX)=BLANK

Bo 6C J=1,MY

LL=L+J*N
JP={(A(LL)-YMIN)}/YSCAL)+1.C
CUT(JP)=ANGI{J)

CONTINUE

PRINT LINE AND CLEAR, OR S5SKIP

WRITE(3,2)XPR,(0OUT(1IZ),12=1,1C1)
L=L+1

G0 TO 87

WRITE(3,3)

I1=1+1

IF({I-NLL)45,84,86

XPR=A(N)

GO TO 51

PRINT CROSS VARIABLES NUMBERS

FRH 4Clo
FRH 48

FRH 4930
FRH 423
FRH 4032



GLLEVEL 13 PLCT DATE = 70238

L‘ 96 WRITE(3,T)
L% YPR(L)=YAIN

- 1Y 9C KN=1,9

SO OYPRURN4L ) =Y UM +YSTAL%*LD.V
i YPR{LL)=YMAX
i YRITEL3,8)(YPR(IR),I"=1,11)
RETURM
oy CND
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AVERAGE COHERENCE

The average coherence was found by
M
lzci .
M=

For example, using the sample output, average coherence, x,
x= (1/30) (.7580 + .7522 + ... + .0385)
= ,1944.

93



APPENDIX C:

1)

2)
3)
4)

5)

Histograph of Inter-arrival Distribution
Figure 1.1

GASP Simulation Program

General Logic Diagram of GASP Simulation
Autocorrelation functions of successive segments of
the Number of Units in the System Statistic

Figures 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5

Average Number of Units in the System Statistic
Figure 1.4
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GASP Simulation Program

Shown here are the seven subroutines written for the sim-

ulation of this paper. The subroutines are:

MAIN - wused to initiate the simulation

EVENTS - used to determine which event is to be called

ARRVL - wused to simulate the arrival of an item into the system

SERVE - used to begin the service of an item

DONE - used to complete service of an item and remove it from
the system

REPORT - wused to observe the various statistics at regqular

intervals

OUTPUT - a special subroutine which punched the output in a
form compatable with the spectral program

The five standard GASP subroutines were used with this simulation.
They have not been shown and may be found in GASP II: A FORTRAN

Based Simulation Language by A.B. Pritsker and P.J. Kiviat.




f—G LEVFL 178 MalN DATE = 70238 Te /17 "L

e COMPOM DDy 1My TNIT g JEVENT g JMONL T, MEA M STOP y 5K 9 1XC 4
v IACULCT g NHIS T, NCQ o MURPT NOT g NPRANMS 3 IRUN ¢ NRUIS 3 HSTAT 4
~ ZOUT, SCALE g ¥SEED, THOW, TSTART,, TSTUP, MXX
} COMMON ATTRIB(4) y 1014 ) s THN(4) 3 JCELLS(5922) yKRANK (&) 4
s INMAKNG (&) MFE(4) 9 LG4 ) yMLE (414 MCELLS(5) 4NQ (4) yPARAMS(20,4)
L,4 2CTIFE (&) 3 SSUNALL 5} 9 SLMALLUS ), 1X (4)

COMMON XSR, IKUNTy XGUE 4 XSYS 911 ISERVE 4P yEXyDELTA ¢ NOBS,YREP, TLAST
" COMFLH UTIL(5CC ), JRUE(S00) 4 JSYSI50C) 3 XX(500), TIME(5GC)
& CIVENSICN MSET(6,3000)

] FURMAT(F5.2,215,2F10.4)
- 2 FURMAT (FSuZy '—DELTA "y [5y "=NIBS 16, ' —ISERVEY yF1U 4y '=P 'y F1Tu 4y ' =4
e 1')
3 FORNMAT(3FLC.4)

— 4 FORMAT (Fbely t=XSR ', F10,3, v =XQUE' yF 1043, '=XSYS")
e READ(141) LELTA,NUBS, ISERVE,P,EX

WRITE(342) UELTA,/OBS s ISERVE,P,EX
d REAT(1g3) X5R s XWUE y XSYS
- WRITE(3,4) XSK,XQUE 4 XSYS

IKOMT =0
iy 11=C
2" NREP=C

TLAST=0.0
rid CALL CASP(MSET)
- sTaP

END
-
e




.6 LEVEL 12 EVENTS CATE = 70234 FO

SUHROUT INE EVENTS(K,NSET)
COMPGNY [0 g TN INIT g JEVERT MO IIT,itFA,MSTOP,, X, MXC,
TRCOLCY o MHTISTU My NORP Ty VU T dPRUANS g WRUN g NRUNS g NSTAT,
CUUT g SCALY 9L ED s Tl g TSTART o TSTUP, M XX
COMFOL ATTR1004) yENGI4) o INNT4) 3 JCELLS(5,22),KRAUK(4),
IFAXNC (A ) g MFE(4) yMLC (4 ) ¢ MLE(4) 3 NCELLS(9) yNwl4), PARAMS(20,4),
SLVIEF{A) y SSURATLIC 5) 3 SLMALLC5),IX(E)
COMP UM XSRy IKGNTy KQUEy XSYSy [ L g I SCAVE 32 3L Xy DELTA L QUBRS s 4RED, TLAST
CUMPON UTTILIID00C) 9 JCUELSDI) pJSYSIBUL) o XX(D02),TIM(50)
CIMENSIOCN NSET(E,1)
CU TC (142,3,1C0),k

1 CALL AQRVL (4SE1)
RETURA:

2 CALL DUNEINSET)
RETUKN

3 CALL REPORTY(NSET)
RETURN

100 CALL MOMNTR(NSET)

RETURN
ENn

e——
4

|
-

T
(B

b A




.G~ LEVEL

- -

1¢

12 ARRVL DATE =
SUMRPOUTINLE ARRYL(MSET)

CUMMON IRy T INI T JEVENT o JMUNIT o MFALMSTOP, MX s MXE
INCOLCT G MHISTOUy NHC R NORAT y NUT yNPRAMS 3 (RU Ly NRUNSyHNSTAT,
ZOUT y SCALE o NSETL 3 TDW, TETART » TSTUPy X 1

COCMMUI ATTP I (4) 6 N004) s INN(4) , JCELLS(S54,22),KRANK (&),

IMAXNGIA) yMFE(4) yMLC (4 ) yMLE(4 )y NCELLS(5) yNQI4) s PARAMS{2U,4)
ZOTIMEL4) y SSUMALLIG,S) ,5LMATLIO,5),1IX(3)

COMMON XSRyTRONT 3 ZdUE g XSYS LT g ISERVE 4y PHEX s DELTAZHIOBS ¢NREPL,TLAST
COMMOM W ITLASCT)y JOUETS0C0) yJSYSIHD0) 2 XX(5320),TIME(HT()
CIMENSTION NSET(4,1)

FORMAT(Y ERRLR = XSYS LESS THAN ZER( wwkdxt)
XSYS=HQ({2)+X35"
IFIXSYS.GECWU) 60 TO 10

WRITE(3,11)

CALL ERROR(1,NSET)

XCUE=NG(2)

CALL TMSTAT(XGQUE,TNOW,2,NSET)
CALL TMSTAT(XSYS,TNUW,32,NSET)
CALL FILEMI(2,NSET)
ATTRIB(L1)=TNCk+EXPII(P])
AT=ATTATL (1 )-THCW
ATTRIBU3)=AT

ATTRIB(Z2)=1.0
ATTRIB(4)=ATTRIB(L)

CALL FILEM{I,NSET)

CALL HISTIGUAT,1.0s2.0,41)
CALL CCLECT(AT,1,NSET)
IFOXSR.EDGTSERVE)

CALL SEPVE({NSET)

RETURN

END

RETURY

70238 R A

9



1e SCRVE CaAlC = 70238 1:

-
~
4

.1/100
SURRNUT INE SERVE(HSET)

CUMBOY IRy TH y TN Ty JEVENT y INUNIT 3 MEFA,BSTUP P X MXE,

LNCOLET 3 IS Ty NUG, TARPT G NOT pNPRAMS  IRUN s nRUNS y NSTAT,
CCUT s SCALF gNSELD yTHOW TSTART,,TSTCP VXX

COMMODN ATTRIGUIG) s EQ(4) s INNT4) 3 JCELLS(5+422) yKRANK(4)

3 IMAXMNQ(aY yMEE(4) 3 MLCT4) yMLE(4) o NCELLS(5) 303 (4),PARAMS(2C,4),
ZOTIME(4) y SSUMALLT D) 4SUMA(LOy2),IX(3)
= COMMUN XSRyTAUNTyAWUE XSYS 11, ISERYL P Xy DELTA, NOBS,NPEP, TLAST

COMMUN UTTLUS2¢) 3 JUUECSD0) 3 JSYSI5C), XX (500), TLIE(LSN0)
CIMENSION NSET(&,1)

-+ XCUE=NRI(2)

{,, CALL TMSTAT(XSR,TNOwW 1l ,NSET)
CALL TMSTAT(XQUE.TNUAN,Z4HSET)

;" CALL TMSTATUXSYS,TNOW,3,NSET)

-7 XSR=XS5R+]

| MFE2=MFE(2)

* CALL SEMOVEIMFE242,NSET)

G ST=EXPO(LX) )
CALL HISTOGISTyleC9240y2)

'1 CALL COLECTIST,Z,NSET)

= ATTRIB(OL)=TAHUW+ST

ATTRIE(2)=2.0

CALL FILEM(L,NSET)
TSYS=ATTRIBIL}-ATTRIB(4)
CALL BHISTUOSITSYS CeU93.044)
CALL CCLECTI(TSYS,4,NSET)
TCUE=TMNNK-ATTRIDB(4)

CALL HISTUGITUUE, Q. y3.0,3)
CALL CCLECTI(TCUE,3,NSET)
RETURN

END
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& LEVEL

O

18 DUAE DATE = 70238 I/
SURRUUTINE DUNE(NSET)

COMMUBN Th g IV INT Ty JLVENT o IMUNTT y MEALNMSTOP, I'X 4 MXC,
INCOLCT o MHISTI g NOCy NURP T G NUT  UPRAMS 3 IRUN o NRUNSy HSTAT,
ZCUT  SCALT yMSEEL y THOW o TSTART L TSTUPy KX

COMMON ATTRLG(4) y LHO(4) y INN(%), JCELLS(5,22),KRANK (4],
IVAYNC(4) gy MFE(4) s MLCTU4) 4 MLE(4) yNCELLS(5) 3N (4) s PARAMS(20,4),
2CTIME(4), SSUFALLC5)ySLMACLD,H), IX(3)

COMMUN XSPy IKGNTy XQUE 4 XSYSy 114 ISERVE ¢P+EXsDPELT A, HUBS yNREP, TLAST
COMMON UTTL(5CC) 2 JQUECECO) 9 JSYSISGC) » XXI500)» TIME(SCO)
CIYMENSICY NSET(6,1)

CALL TMSTAT(XSR,TNUW,1,NSET)

CALL TMSTAT(XSYS, TNCOWs24NSET)

XSR=XSR-1

XSYS=NQ(2)+X35R

RECORD TIME SINCE LAST DEPARTLURE

CEP=TNOW=TLAST

TLAST=TNOw

CALL COLECTI(CEP,5,NSET)

IF(LO(2)) 1, 1,4

CALL SERVE(NSET)

RETURN

END

" 101
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-6 LEVEL 18 REFORT DATE = 72238 il Lwd

. ‘102
i SUBRLUTINE REPURT(NSET)
gﬁ COMMON TNy IV IKLIT G JEVERNT  JMONTITyMFAZMSTIIP Xy MXC,
T IACOLC Ty MHISTL yNUCy NORPT yHUT y MPREANMS s MRUM, NRUNS y NSTAT,
' ZOUT g SCALE s MSELED, TNUW, TSTART,, TSTOP, M XX
-t COMMUN ATTRIB(4) g ENQU4) s INN({4) 2 JCELLSU5922) 4 KRANK(4) 4
. IMAXME(G) g MFE(G) M LC14) yMLE (4) yNCELLSI5) yNQL&), PARAMS (20 44)
? ) 2CTIMELS4) ySSUMALLC %) 3SLMA(1Q,5),1X(8)
- CUMMUM XSRyIRUNT g XGUE,XSYS s 11y ISERVEZPLEXs DELTAZNUBSyNREP, TLAST
A COMMUMN UTIL{5C3) 3 JQUEISOT) yJSYSI5I0) XX (50C),TIME(5CQ)
| CIMENSTIN AR (50C)yDEP(SQ0) ,QUET(50C) ,SYST(SCE) + SER(500)
> CIMERSICN NSET(6,1)
e 6 FORMAT{ =1, 24X, "UTILIZATIONY 332X, CUEUE® 427X 'N0. UNITS IN SYSTEM!
176Xy "HEAN Y y Xy "STDLDEV, ' p6X g "MAXY 3 TOX s PMEAMT ;5 Xy ' STD.NCTY. ', 6%, ' MA
- 2KV G 1K P MEANY yE Xy ' STDGCEY . T 46Xy VHAXT)
a® T FORMAT(4X 3 Ftie € g aY 3 FBeb 44Xy FBab 94X FB8.334XFB8a3,4X,F8.3,3%,FY9.3,3%,
1F9.3,3X,F9,3)
kA P OFORMAT('1 %, 1uX," SYSTEM STATISTICS'5X+15,' OBSERVATIONS AT SIMUL
- IATION TIME' ,F1C.2)
11 FORMATI '-—',4\_,)(, ***##m##f#***m#*#«***#n* ')
-t 12 FURMAT(EX, "TIME" 48Xy "UTIL " 37Xy "QUEUE" y TXs *SYSTEMY, 3X, ' AVE ARRIVAL-
- IAVE MEPART',' (UEUE TIME SYSTEM TIME SERVICE TIME"')
13 FORMAT(2F12.442112,5F12.3)
gl IKONT=IKOIT+]
o ATTRIP(LY=TAGw+LELTA
| ATTRIBI2) =3.0
. CALL FILFM(LyNSET)
~* [1=11+1

SERVE=1SERVE

LTIL{II)=XSR/SERVE
it JOUE(TI)=4E12)

JSYS{IT)=30(2)+XSR

T TIME(II)=TNUR

- AR{TI)=5UmMAlL,1)/SUMA(],3)

= IF{SUMA(5,3).GT.C) GG TO 1
FFD{I})-C.C

e CUETILIT)=0

' SYST(II )=v-u

I SER(I1)=0,

— RETUERRN

= 1 FEP(TI)=SUNMALS,1)/SUMA(5,3)
QUETIII)=SUMA(3,1)/SUMA(3,3)

W SYSTITI)=SUNA(4,1)/SUMA(G,3)
SER(IT)=SUMA(2,1)/5UMA{2,3)

e TF(IKGUT LT o vCGES) RETUEN

s CALL OUTPUTINSET)

. TKONT=0

‘ NREP=NREP+1

- C COVPUTIMNG MEAN, STU.DEV., AND MAX

[_ L5 T=1,11

F 5 ¥X{1)=UTIL(I1)

o CO & J=1,3

- FHAX=XX(1)
PO 14 I=2,11

oL 14 IF(FMAXLLT W XX(1)) FMAX=XX{1])

;’ XS'—'C’-"

i X55=C.0
- CO 21 1=1,11

" XE=X5+0(])



. G- LEVEL 1*® REFURT CATE = T0z38 Vil L/

103
~a 21 XSSEXSSHIXXY(I)#XX(1))
- AVF=XS/ 11
- STP=SCRTIXSS/TI-AVE=*AVE)
ELIwGT 1) GG 10 19
o ¥ CO 20 N=1,11
2C XX(N)=JCUE(N)
e X1=AVE
L X2=STD
o X3=FMAX
GG TU &
ol 19 1F(J.6T.2) GO TO 4
R [0 22 N=1,11
e 22 XX(N)=JSYS(N)
-~ X4=AVF
LT X5=STD
XO=FMAX
—~ 4 CONTIMUE
X7T=AVE
e XP=STO
-t X9=FMAX
_* C PRINT QUT STATISTICS
WRITE(3,8)
e WRITE(3,6)
. FRITE(3,7) XL yXZ9sX39X49X59Xb4XT9XEyX9
P WRITE(3,11)
- WRITE(3,12)
1% [(C 15 1=1,11

WRITE(3,13) TINECI) yUTILAI) 4 JGUELT) 1 JSYSII),ARIT),DEPLT),QUETII),S
1YSTU1),SER(T)
;ﬁg 15 CONTIKUE
11=0
= RETURN
l EHD



/G LEVEL
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11
12
13
14
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21
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1¢ ouiPuT DATE = 70238 S =

SUBRUUTIME CUTPUT (MSET)

CUMMON TU 3y TV INIT L JEVENT JNCNITyMEA,MSTOP, FXyMXC,
INCOLCT yNhISTUSRCR,NORPT G NCT o JPRAMS 3 MRLNyNRUNS G NSTAT,
ZOUTy SCALL pISELED o THUOWy TSTART, TSTOP y ¥ XX

COMMON ATTRIG(A4)YENQ(4), INNL4),JCELLS (5,22 ) KRANK(4),
IMAXHC(4) yMFE(4) 3MLC(4) yMLE(4 ) yNCELLS (D) yNQ (4 ), PARAMS12C,4),
2ETIME(4) s SSUXATLIL,5) 3y SLMA(LIC,5),IX(8)

COMMUN XSRyIRUNT yXQUEsXSYS oy I+ ISERVE sPoEX s CELTAZNUBSyNREF, TLAST

COMMON UTIL(SCC)yJQUELS00) 3 JSYSISTT) 4 XXIS50C),,TIME(SCU)

CIMENSTION NSET(641)

CIMEMSICN TU(SCC)

FORMAT (4T 5,F_.Cs3,10X,15)

FGRMAT (4] 5)

FORMAT (4F1C.4)

FORMAT(TIC y4F10.4)

FOURMAT (4Z21¢)

FORMAT(2513,'UTL',12)

FORMAT(2513,"CUE",I2)

FORMAT(D513,'5YS5',12)

FCRMAT (RF15.5)

N=11/25

ITEST=N*Z5

IFIITESTWNELIT) GC T0 17
TC 1 I=14N
A 19 JY=1425

TULIY+25%(I=-1))=UTIL(JY+25%(]-1))*1CC
WRITE(2,13) (IU(J+25%(I-1)),4J=1,425),1
CG 2 T=14N
WRITE(Z2,14) (JCUELJ+25%(1-1)),4d=1,425),1
CO 15 I=1,N
WRITE(Z2416) (JSYS(J+25%(I-1)),J=1,25),1
FUNCH THNPUT FUOR NEXT RLN
WRITE(246) XSRyXCUELXSYS
WRITE(244) MSTCFPL2JCLEAR,NORPT yNEP, THNCK4NSEED
WRITE(2,,12)IX(L),1IX(2)

WRITE(2,5) (INN(]),I=1.,NOQ)

WRITE(24+5) (KRRANF(I1)4I=1,NCQ)

WRPTITE(2,5) (NCELLS(T)I=1,NHISTC)

WRITEL2,6) (PARAMS(Y4J)4d=1,4)

PUNMCH THE CALENCAR

U0 7 JG=1,NCC

LINE=MFE(JC)

IFILINE=-1) 8,1C,1C
CO 9 I=1,1M

ATTRIB(TI)=NSET(I,LINE)

ATTRIBIIV=ATTRIL(I)/SCALE
WRITE(24,11) JCy (ATTRIBUI)yI=1,1M)

LINE=NSCT (MX 4 LINE)

TF(LINE-TT?7) 1C,8,8
CONT INUE
CUMNT INUFE _

PUNCIH CURRENT STATISTICS

CO 2C I=1,NCOLCT
WRITE(2y21) (SUFA{TJ)sd=1,45)

(L0 22 T=1NSTAI

WRITE(2,21) (SSUNMA(TJ)4d=1,45)

RzTURN

YEITE(3,18)

104
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Main Progran '

Tnitialize lon=-GASP Variables

Call GASP > Call DATATH
I < Is Run Over?
No Yes
l ! Determine Next Run
Select Event

Is
there a
free
station?

Print Su_r'l_‘qar:}r J

(®

General chic Diagram
Figure 1.2
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APPENDIX D:

l) Documentation of Conway's Method
Pigures 2.1, 2.2; 2:3; 2:4; 2:5; 2:86

2) Documentation of Bueno's Method
Figure 3.1

3) Documentation of Reese's Method
Listing of Reese's Method Program and Results
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TRIAL

(=AW Y, B S

-

10

11

20
21
22
23
2k
25
26

RESULTS OF THE REESE METHOD

(Including sample computations)

TIME

15
100
125
150
175
200
225
250
275
300

325

550
375
600
625
650
675

T00

150
200
250
300
350
Loo
450
500
550
600

650

1100
1150
1200
1250
1300
1350

1Lkoo

1875
1875
1875
1875
.1875
1875
1875
1875
.1875
+1875
<1875

.1875
«1875
1875
.1875
1875
1875
«1875

.99
.99
«99
.99
99
.99
«99
«99
.99
.99
.99

.99
«99
«99
«99
99
+99
.99

4,25
h,25
4,25
4,25
L,25
k,25
4,25
L.25
b,25
k.25
L.25

4,25
4,25
4,25
k.25
L,25
L, 25
4,25

121



~$J08B RGP,KP=26,TIME=5,PAGES=100 122
.G C A PROGRAM FOR REESE METHOD
DIMENSION X{1400)
'« 10 FORMATI(315¢<
& 11 FORMATI(25F3.0¢<
12 FORMAT{10HGRAND MEAN,F15.5,10Xy 1 1HSAMPLE MEAN,F15.5¢
'+ 13 FORMAT(BHVARIANCE F10.5,10X,10HSAMPLE VAR,F10.5¢<
READ 10,My IN,N
READ 11,(X(1)y1=1,1400)
" " PRINT IDfM’IM'N
. CALCULATE GRAND MEAN
X2=0.0
B Z=N
. DO 1 I[=1,N
1 X2=X2+X(1)
‘. X2=X2/1
“C CALCULATE SAMPLE MEAN
J=M+N
i K=J+IN
.k Xl=0.0
Y=IN
'.ﬁ DO 2 I=J’K
" 2 X1=X14X(I)
X1=X1/Y
T CALCULATE VARIANCE
. % $5=0.0
DO 3 I=J,K
: DIF=X{1)-X1
3 SS=SS+(DIF*DIF)
$5=$S/(Y-1.0)
C CALCULATE VARIANCE OF SAMPLE
. % R=0.0
DO & IT=1,M
= A=0.0
r - DO 5 [=1,IN
ok IQ=1+IT
S A=A+ [[X(I)-X1)&(X{ IQ )-X1))
L. A=A/Y
l 4 R=R+A
f S2=(SS+{2,0%R})) /Y
- PRINT 12,X2,X1
o PRINT 13,55,52
SX=SQRT(S2)
y > B={X1-X2)/5X
| DELTA=(.20%X1)/SX
T TO=B%%2
- - T1=(B-DELTA)*%2
r T2=(B+DELTA) *%2
c PRINT OUT TO,T1l,T2
ik PRiNT 10?'erT3rT11TZ
. -.102 FORMAT(3HSX#4F1045410X,3HTO#,F10.5410X,3HT1#,F10.5,3HT2#,F1045¢<
: STOP
- . END
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APPENDIX E:

1) Documentation of Experiments
Tables 4.1, 4.2, 4.3, 4.4
Figures 4,1, 4.2, 4.3, 4.4

2) The Relationship of Spectra and Simulation Input
Tables 4.5, 4.6, 4.7



Sample

n

& W

10
11
12

"3

*14

5
16
17
18
19

20

¥The transient stage terminates within these gamples,

Table k4,1

Size of System Statistic

Average, Maximum, and Minimum Coherence

M=30, Not Pre-Whitened

Time
(0.100)
(50.150)

(50.150)
(200,200)

(950,1050)
(1000,1100)

Mean

1681

.0224

.0798
+0339
.0572
(0127
0879
«1590
+0310
«0557
. 0624
.0980
1407
<1595
+0347
.081L
+2949
.1786
1212

L4260

Maximum

1,0000

+2119

«2555
.2952
+1270
1085
692k
4507
+5180
«1972
2125
«1T15
JAT16
Jb361

0830

42559

6377
5092
2709
6938

Minimum

.0019

0197

.0007
,0370
L0176
.0000
.0012
0004
000k
.0003
.0092
0017
.0123
.0016
.0000
,0003
.0250
.0010
.0006

«1159

124

Above U.C.L.
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Table L.2

8ize of System Statistic
Average, Maximum, and Minimum Coherence
M=30, Least Squares Used to Pre-Whiten

Sample Time Mean Maximum Minimum

1 (0,100) 1641 .89L5 .0013
: (50.150)
T2 (50.150) .1295 3021 .0195
(100,200)
.0822 +2486 0034
b 1213 +2682 .0354
5 .0526 1226 .0088
6 .0528 J12hY4 .0005
T .1835 6273 .0022
8 . 0955 5791 .0012
9 »1761 1,0000 .0006
10 0521 1728 .00k6
11 0795 .1823 .01k46
12 0950 .1949 .0011
3 J132 .3836 .0018
®1l 1061 +2070 .0193
"5 .0LT6 0579 .0002
16 093k 3627 .0026
17 + 3973 .8130 .1210
18 3026 STHLT .0238
19 | .33k . 8640 1504
20 (950.1050) 14916 .8298 .08TL
(1000,1100)

¥The transient stage terminates within these samples.
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Table 4.3

Queue Size Statistie
Average, Maximum, and Minimum Coherence

M=30
Sample Time Mean Maximum Minimum
1 (0.100) 1127 5481 .0018
(50,150)
2 (50.150) 1471 .3083 .0021
(100,200)
3 ' ,1082 .3222 .0019
4 «1297 .3176 .0207
5 0615 +1357 010k
6 .0683 +2110 .0032
T 1460 .6199 0043
8 +1311 Jhoké .0020
9 0781 .2269 .0039
10 .0595 . 3087 .0006
1 0288 .0880 .0002
12 .0221 .0488 .0020
%13 0542 2612 .0000
"k .0665 .2292 .0010
#15 +1058 «311k .0022
16 0817 «2748 .0066
17 2791 .6239 .0893
18 2130 5246 .0037
19 | 0560 1635 .0016
20 (950.1050) 0976 6579 .0130
(1000,1100)

*The transient stage terminates somewhere within these samples.
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Table L,k

Utilization Statistic
Average, Maximum, and Minimum Coherence

M=30
Sample Time Mean Maximum Minimum
1 (0,100) 0022 .0192 »0000
(50,150)
2 (50,150) <0047 .0170 .0006
(100,200)
3 0078 .0397 0000
4 .0706 3998 0002
5 .0822 2771 0027
6 .0193 .0784 000k
T «1702 .8086 .0003
8 2159 6290 0252
9 «1671 .T620 .0138
10 1555 1855 .0026
11 .12h2 «2668 .0053
12 1656 J4h29 .0053
13 1321 5221 +0082
1k 2553 671k +0549
15 +0376 +1081 0003
16 .0631 W17k .0010
%7 ——— ——— ———
18 ———— ——— e
%19 S PESTO PR

'20 sttt —EEm ——

*These samples had no variance, thus no coherence exists,
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Table 4.5

Interpretation of Cyclic Elements in
Size Of System Statistic

Segment Time Elements (Items/cycle)
1 (0,100) 13.1 10,5
2 (50,150) 13.1
3 (100,200) 13,1
4 (150,250) 13.1 8.3
5 (200,300) 10,0
6 (250,350) 12,5 Te7
7 (300,%00) 1k,0 8.3
8 (350,450) 13.5 11.0
9 (k00,500) 13.5 11,0

10 (450,550) 16.7 10.5
1 (500,600) 10.0

12 (550,650) 13.1 10.5
13 (600,700) None found

14 (650,750) 13.1 10,5
15 (700,800) None found

16 (750,850) 8.3

17 (800,900) 13.1 10.5
18 (850,950) 13.1 10.5
19 (900,1000) None found

20 (950,1050) 13.1 10.5

T.T

T.7T

8.0



Segment

& W

o =N O W

10
11
12
13
1k
15
16
7
18
19
20

Table

L6

Queune Size Statistic

Time

(0,100)
(50,150)
(100,200)
(150,250)
(200,300)
(250,350)
(300,%00)
(350,450)
(400,500)
(450,550)
(500,600)
(500,650)
(600,700)
(650,750)
(700,800)
(750,850)
(800,900)

(850,950)

(900,1000)

(950,1050)

Elements

13.1
12.5
13.1

8.3

8.3
12,5

T.2
13.1
10.5
10.5
None
10.5
10.5
13.3
13.3

8.3
13.1
13.1
12,5

10.5

133

(Items/cycle)

10.5

63.5

10.5

8.0

10.5



Segment

= w

o =N O W\

10
11
12
13
1k
15
16
17
%8
#19

*20

%7t was not possible to compute the spectra for these samples,

Table 4,7

Utilization Statistie

Time

(0,100)
(50,150)
(100,200)
(150,250)
(200,300)
(250,350)
(300,400)
(350,450)
(400,500)
(450,550)
(500,600)
(550,650)
(600,700)
(650,750)
(700,800)
(750,850)
{800,900)
(850,950)
(900,1000)

(950,1050)

Elements

48.0
48,0
55.6
None
1.00
1.00
13.1
13.1
13.1
16.7
10,5
16.7
None
16,7
None
9.1

1.00

(Items/cycle)

1,00
1,00
1,00

1,00

134
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ABSTRACT

The purpose of this paper is to consider the problem of estimating
the termination of the transient stage of a simulation, The trensient
stage of a simulation is that period of simulated time in which the
statistics of the simulation are erratic and unstable, Ia the past,
knowledge cf a simulation's transient stage was gaimed by making pilot
runs of the simulation, or by examining the statistics after the simu-
laticn was completed, These technigues can be wasteful of coxzputer time
and may cause the experimenter to mistzkenly interpret transient stage
statistics as representative of & truely stable system, There is clearly
a need for & technique which estimates the end of the transient stage as
the simulation is in progress.,

Past research in this arez has been presented. The initizal work
by Conway suggested making several pilct rums cf a2 simulaticn and deter-
mining the transient stage by graphing the varicus statistics. The use
of contrel charts was suggested by Bueno. A sequential t=-test was sug-
gested by Reese, Fishman first intro?uced the use of spectral analysis
in examining the simulation generated oﬁtput. He did not consider the
translent stage problen,

This paper presents the concept of using spectral znalysis to resolve
the problem, The approach is based on the fact that two spectra from
a statistic with stable variance will be strongly correlated. The
squered correlaticn, the ccherence, of two successive spectra of a
simulation statistic was found. An upper bound was determined, If the
coherence of the two segments was greater than the bound, the two

segments can be considered part of the stabillized simulaticn, If



the coherence was less than the bound, the two segments can be considered
part of the transient stage. This technique was applied successfully
to three simulation statistics, The technique is presented es a2 solution

to the problem,



