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Abstract: Statistical specifications for highway construction provide the means to measure the 

important quality control attributes and ensure their compliance.  The pay adjustments in these 

specifications reflect the amount of pay reduction and the optimized risk distributed between the 

owner agency and the contractor. The Kansas Department of Transportation (KDOT) has built a 

comprehensive database of as-constructed properties of materials for Portland Cement Concrete 

(PCC) pavements from the tests required as part of the Quality Control/Quality Assurance 

(QC/QA) program. Currently, KDOT pays incentives/disincentives for thickness and strength for 

PCC pavements.  A practical performance model and composite index that include these two 

quality characteristics (thickness and strength) and air content (for durability) are needed to 

reflect the combined effect on the performance of PCC pavements. The main objectives of this 

study were to investigate the effect of levels of significance and lot size, and to develop practical 

performance model and composite index for PCC pavements in Kansas. Thirteen projects from 

four administrative districts of KDOT were selected for this study. Statistical Analysis Software 

(SAS) was used for statistical analysis. Microsoft excel was used to develop the performance 

models.  Lot-wise comparison showed that QC means are significantly different in most of the 

cases. These cases increase with an increase in significance level. A practical performance model 

and composite index using quality characteristics (thickness, strength, and air content) have been 

proposed as an integral part of performance-related specifications (PRS) in Kansas.  

CE Database subject headings: PRS, composite index, PCC pavements. 
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Introduction 

The history of highway quality assurance has progressed from the early materials and methods 

specifications through statistical end-result specifications to the current trend toward 

performance-related specifications (PRS) based on mathematical models and statistical concepts 

(Weed 2000). Many states have adopted statistical quality control/quality assurance (QC/QA) 

programs. The properties controlled under such programs should be either related to performance 

or desirable end-results. These end-result specifications are usually based on statistics from 

historical construction data (Schmitt et al. 1998; Parker and Hossain 2002).  The QC/QA term 

used by the Kansas Department of Transportation (KDOT) is similar to the one given by the 

glossary of terms of the Transportation Research Board (TRB), in which quality assurance 

specifications (QC/QA specifications) are defined as a combination of end result specifications 

and materials and methods specifications. The contractor is responsible for QC (process control), 

and the highway agency is responsible for acceptance. In Kansas, KDOT is also responsible for 

QA (verification).  Contractor and KDOT use random sampling and lot-by-lot testing that 

enables the contractor understand if the operations are producing an acceptable product (TRB 

2002).  

Many agencies now also include bonus provisions that award payment somewhat in excess 

of the contract price when the quality level substantially exceeds the level that has been specified 

mailto:daba.gedafa@engr.und.edu
mailto:mustak@ksu.edu
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(NCHRP 1995; Weed 2002; Weed 2005). One of the advantages of statistical specifications is 

the generation of accurate data from valid random sampling procedures. This data may be 

analyzed later to improve the specifications further (Afferton 1992). 

Some agencies are moving in the direction of PRS that specify the desired levels of key 

construction quality characteristics that have been found to correlate with fundamental 

engineering properties that predict performance. When there are different types of tests to be 

performed on a particular construction item, it can become a complex matter to design an 

acceptance procedure that is fair, effective, and free from inconsistencies. Composite index 

avoids certain inconsistencies in practice that may occur with other methods for dealing with 

multiple quality characteristics. It leads to rational pay schedules in that it assures that all 

combinations of individual quality measures that predict the same level of expected life will 

receive the same amount of pay adjustment (Weed 2006). 

Pratico (2007) developed a new acceptance model based on mechanical and surface 

performance of flexible pavements, particularly for porous asphalt concrete pavements. 

Performance-related specifications based on mechanical and surface performance of Portland 

cement concrete pavements can be developed as well. 

 

Problem Statement 

The Kansas Department of Transportation (KDOT) has built an impressive database of as-

constructed materials properties for Portland Cement Concrete (PCC) pavements from the tests 

required as part of the Quality Control/Quality Assurance (QC/QA) program. KDOT also has a 

Construction Management System (CMS) that captures data on selected attributes related to 

highway construction in Kansas. Burati et al. (2003) have argued that any specification must also 

be an evolutionary process. Since new information is constantly becoming available in the form 
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of additional test results, and as new construction or testing processes are employed, the 

specification must be continually monitored to see if improvements are needed. Thus a review of 

the current QC/QA specifications of KDOT is needed to find the opportunities for improvement. 

This need has also been echoed by the recent FHWA QA Stewardship Review of KDOT with 

respect to changing level of significance for statistical testing, developing practical performance 

model, and composite index.  

 

Objectives of the Study 

The objectives of this study were to: 

 Investigate any systematic bias in KDOT QC data using moving average control chart 

analysis, 

 Compare lot-and sublot-wise means, 

 Analyze the consequences of changing the level of significance  from 1% to 2.5%, and 

 Develop practical performance model and composite index. 

 

Test Sections 

Thirteen PCC pavements were selected from four KDOT districts as shown in Table 1. The 

projects were selected based on availability of large sets of data on PCC strength, thickness, and 

air content for statistical analysis. Most of the PCC pavements are on interstate highways. 

Data Collection  

Random sampling procedures were used to collect QC/QA data for PCC pavements. It is well 

established that random sampling procedures avoid biases and lead to a more reliable estimate of 

the as-built construction quality (Weed 1989). 
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In Kansas, pay adjustments for pavement thickness and concrete compressive strength are 

based on the results of tests on cores taken from each lot. All cores for determining strength shall 

be taken a minimum of 21 days after the pavement has been placed, and in time to determine 28-

day compressive strengths. For mainline and other pavements subject to coring for pay 

adjustments for both thickness and strength, a lot is defined as the surface area of mainline 

pavement lane placed in a single day. Normally, a lot representing a day's production is divided 

into five sublots of approximately equal surface area. For high daily production rates (rates 

exceeding 5,015 square meter per day), the contractor may choose to divide the day’s production 

into two approximately equal lots consisting of five sublots each. Normally one core is taken per 

sublot (Khanum et al. 2006). Cores are transported to the laboratory as soon as possible and the 

thickness is measured at three points at approximately 120º apart. Then the 100 mm diameter 

cores are cured to be tested for the 28-day compressive strength.  

In general, certified technicians are available on the project site whenever concrete for 

pavement is being produced and placed. They perform and utilize quality control tests and other 

quality control practices to assure that delivered materials and proportioning meet the 

requirements of the mix designs, including temperature, slump, air content, strength, and 

thickness. 

 

Data for Practical Performance Model and Composite Index 

Burati et al. (2003) concluded that percent within limit (PWL) is well suited as a statistical 

measure of quality since it has been well studied, statistically unbiased, suitable for both normal 

and distribution-free (attributes) applications, and works equally well for single-sided or double-

sided specifications.  To develop practical performance models and composite index, data in 
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Table 2 has been used. Acceptable quality level (AQL) has been taken as PWL=90 for all quality 

characteristics based on previous studies (Burati et al. 2003, Weed 2006) whereas different 

rejectable quality levels (RQL) have been used partly to investigate the effect of different RQL 

on the models and partly based on the effect of each variable on the performance of the 

pavement. RQL was taken as PWL=50 for PCC thickness, PWL=40 for PCC strength, and 

PWL=30 for air content. The expected life (EL) was taken as 20 years when PWL=90 for all 

quality characteristics whereas EL was taken as 10 years when one of the quality characteristics 

is at RQL level. These values can be updated based on continuous inflow of QC/QA data, 

performance data, and/or experience.  

 

Research Methodology 

Comparison of Means 

The F-test in the Analysis of Variance (ANOVA) can signify that not all the means of the levels 

of the classification variable are the same, but it cannot indicate which means differ from which 

other means. Comparison methods for means provide more detailed information about the 

differences among the means (UCDAVIS 2010). Four comparison methods for means have been 

used at three different significant levels: 1%, 2.5%, and 5%. The comparison methods are 

described here. 

 

Fisher’s Least Significant Difference (LSD) Test: Multiple t-tests are used to compare pairs of 

means. Fisher’s LSD tests is most powerful for finding differences between pairs of means since 

it does not adjust the significance level needed to achieve significance in order to account for 
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multiple testing. As a result, it has the greatest chance of resulting in one or more Type I errors. 

Type I error is the error of rejecting a null hypothesis when it is actually true. 

 

Tukey’s Honestly Significant Difference (HSD) Test: This test is generally recommended when 

a researcher plans to make all possible pair-wise comparisons since it controls the Type I error 

rate so that it will not exceed the significance level value pre-specified in the analysis. It 

maintains an acceptable significance level without an excessive loss of power.  

 

Student-Newman-Keuls (SNK) Test: This test is similar to and/or more powerful than Tukey’s 

HSD. However, it does not control experiment-wise error rate at significance level.  

 

Scheffe’s Test: This test is extremely flexible, allowing for any type of comparison. This 

increased versatility results in less power to detect differences between pairs of groups. It is the 

most conservative of the unplanned comparison procedures. The test specifies a fixed value of 

significance level which does not depend on the number of comparisons conducted.  

 

Development of Practical Performance Model (PPM) and Composite Index 

One of the first steps in developing a mathematical model is the choice of model form. Since 

most quality characteristics have points of diminishing returns, a model with an “S” shape may 

be appropriate (Weed 2006). PPM of the form shown by Equation (1) has been developed using 

data in Table 2. Expected life (EL) was used as a measure of performance (dependent variable) 

whereas PCC thickness (TH), PCC strength (ST), and air content (VA) were used as independent 

variables.  
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Different shape factors (C) were assumed and simultaneous equations were solved using 

Microsoft Excel for the model coefficients. Similar procedure was followed to develop 

composite index using the same independent variables for expected life. 

 

C
VA

C
ST

C
TH PWLBPWLBPWLBB

eEL 3210 
                                         (1) 

 

where EL=expected life; PWL=percent within limit; TH=thickness; ST=strength; VA=air 

content; B0, B1, B2, and B3 = model coefficients;  and C=shape factor. 

 

Results and Discussions 

Control Charts 

Microsoft Excel was used to calculate moving averages, average, lower limit, and upper limit. 

The lower limit and upper limit was taken as minus/plus three times standard deviation ( 3 ) 

of the average, respectively.  Fig. 1 shows the control charts for PCC strength and PCC thickness 

on I-70 in Dickinson County. Fig. 1(a) shows moving averages of QC PCC strength are 

sometimes lower and higher than the average value but they are within 3 . The moving 

averages and average are almost equal for most sublots for QC PCC thickness as shown in Fig. 

1(b). The moving average is outside 3  in one sublot only. It is the only point which lies 

outside the lower and upper limits out of all PCC projects in this study.   

 

Lot-Wise Mean Comparison 

Lot-wise QC mean difference was investigated using four comparison methods at three different 

significant levels. Significance difference test was summarized as frequency distribution of 
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whether lot-wise QC means are similar or not for the different projects in this study. Fig. 2 shows 

lot-wise mean comparison for PCC strength and thickness using QC data. There is significant 

difference between lot means in most cases using all methods at all significance levels except 

Scheffe. This confirms that Scheffe method is the weakest in detecting significant differences. 

The number of cases with a significant difference in means increases with an increase in 

significance level. It should be noted that lot-wise QA comparison was not done since there is 

usually only one QA data per lot. 

 

Sublot-Wise Mean Comparison 

Sublot-wise QC and QA means differences using four means comparison methods at three 

different significance levels have been summarized as frequency distribution and plotted. Sublot-

wise QC/QA comparison for PCC thickness and strength has been done using four QC sublot 

readings and QA reading as the fifth sublot reading in each lot. The fifth QC sublot data has not 

been used since it was incomplete in some projects.  Fig. 3 shows sublot-wise mean comparison 

for PCC pavements using four mean comparison methods at three different significance levels. 

Fig. 3(a) shows that significant difference using all methods increases with an increase in 

significance level for PCC strength. There is no significant difference between sublot means 

using all methods at all significance levels for PCC thickness except LSD at 5% significance 

level as shown in Fig. 3(b). This confirms that LSD is the most powerful method to detect 

significant differences. Like lot-wise mean comparison, significant difference increases with an 

increase in significance level. 
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Practical Performance Model 

Practical performance model (PPM) for PCC pavements that includes PCC thickness, 

PCC strength, and PCC air content was developed using data in Table 2. Air content is the 

property that is traditionally measured, as screening tests, to determine the durability (Diwan et 

al. 2003, Schell and Konecny 2003). Air content was included in the model development as a 

surrogate for durability of PCC pavements.  The total plastic air content based on concrete after 

placement behind the paver was used since it gives a better measure of entrained air. Now, non-

normality in the form of skewness and kurtosis can significantly disrupt PWL based pay factor 

calculations (Uddin et al. 2011). Burati and Weed (2006) also investigated the effect of deviation 

from normality on the calculation of the PWL by simulating distributions with different skewness 

levels. Normality tests based on Pearson’s Chi-square test, D’Agostino’s K-squared test, and the 

Anderson-Darling should be done before air content is used in performance-related specifications.   

Different values of shape factors were tried. The model was checked whether it returns 

precisely the values used to develop it. It was also checked at extreme values (PWL=100 and 

PWL=0), and examined how extra quality in one variable can offset the deficient quality in other 

variable while still producing a design life of 20 years. All checks proposed by Weed (2006) 

were done in this study. 

 

Checking the Model when Shape Factor, C=1: The model was checked to make sure that it 

returns precisely the values used to develop it. Table 3(a) shows that the model returns the values 

used to develop it. 

A second test is to check at the extremes, an area in which many models break down. The 

extremes in this case occur when the individual PWL values are all either 100 or zero percent. 
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These results are presented in Table 3(b). When PWL= 100 in all three quality characteristic, the 

model predicts that the typical expected life of 20 years will be extended to about 31 years. This 

is an appreciable increase, but it certainly falls within the experience of many agencies. At the 

other extreme, the model predicts an expected life less than a year. The model predicts about two 

years when one of the quality characteristics has PWL=100 and the rest have PWL=0. Although 

not a frequent occurrence, most highway agencies have experienced this type of result at one 

time or another. At this stage, there is nothing to indicate the model is unsatisfactory, but several 

additional tests are required. 

The third test is designed to examine how extra quality in some characteristics can offset 

deficient quality in others while still producing the design life of 20 years. This is an inherent 

feature in most design methods, and is believed to be an appropriate feature in any model of 

multiple quality characteristics. However, there would be concern if the model produced a 

sufficiently low level of quality in any individual characteristic that did not seem consistent with 

achieving the intended design life, even though the other characteristics were at excellent levels.  

Table 3(c) suggests that the model may have such a shortcoming. For example, if 

PWLTH=PWLST=100, and PWLVA=63, the model predicts a design life of 20 years. This finding 

has raised doubts about the efficacy of the model when shape factor is one. It is now appropriate 

to consider other shape factors. Shape factors: 0.15, 0.25, 0.5, 0.75, 1.5, and 2 were considered. 

Results from shape factor 0.5 are presented since it was found more reasonable and convenient. 

 

Checking the Model when Shape Factor, C=0.5: As before, the first test of this model is to 

check that it correctly returns the values of expected life that were used to derive it, which it 

does. The next check is to repeat the series of tests shown in Table 3 (c) that led to the rejection 
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of the simpler model. The equivalent results, obtained with the revised model, are presented in 

Table 4(a). The values in Table 4(a) seem more reasonable than those obtained in Table 3(c) 

even though the difference is not significant from a practical point of view.   

The next test is to revisit Table 3(b) to check the values obtained at the extremes of PWL = 

100 and PWL = 0. These are presented in Table 4(b) where it is seen that the inclusion of the 

exponential “C” term has given the revised model a “diminished returns” effect by reducing the 

maximum predicted life from the previous value of about 31 years to value of about 28 years. 

The expected value was obtained from Equation (2) using PWL=100 for all quality 

characteristics.  

Further test was conducted. All quality measures decline together. Table 5 shows a very 

logical progression as the results range from the maximum expected life of about 28 years for 

excellent quality down to the minimum of less than a year for extremely poor quality. It is 

believed that most pavement engineers would consider this to be reasonably representative of 

field experience. 

The final PPM is shown by Equation (2). The model is used to better understand the 

consequences of either exceeding or falling short of the desired quality levels, and to provide a 

logical and defensible basis for the adjusted pay schedules that are an integral part of PPM. This 

model can be updated based on continuous inflow of QC/QA data, performance data, and/or 

experience.  

 

5.05.05.0 173.0219.0287.0446.3 VASTTH PWLPWLPWL
eEL


                                                             (2) 

 

 

where EL = expected life; PWL = percent within limit; TH = PCC thickness; and ST = PCC 

strength. 
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Pay Schedule: The performance model serves two purposes. One is to better understand the 

consequences of either exceeding or falling short of the desired quality levels, and the other is to 

provide a logical and defensible basis for the adjusted pay schedules that are an integral part of 

PRS. Ideally, the purpose of the pay schedule is to provide incentive to the contractor to produce 

the desired levels of quality. Majority of highway agencies often include an additional incentive 

in the form of small bonus payments to contractors whose extra attention to quality control has 

produced work that substantially exceeds the acceptable quality levels. At the other extreme, 

when the desired levels of quality are not achieved, it is the purpose of the pay schedule to 

recoup for the highway agency the anticipated future losses resulting from poor performance 

(Weed 2006). 

To justify such an approach, there must be a link between quality received and economic 

gain or loss to the highway agency. Perhaps the most logical and consistent way to establish this 

link is through the use of life-cycle-cost analysis (Weed 2006). Equation for pay adjustment 

based on life-cycle-cost analysis was published by previous researchers (Weed 2001, Burati et al. 

2003). The authors assumed for the derivation of Equation (3) that moderate deficiencies of 

construction are not repaired but, instead, lead to premature failure and an earlier scheduling of 

the next overlay. Values for the constant terms in this equation could be readily obtained.  

 















OL

ELDL

R

RR
CPA

1
              (3) 

 

where PA = appropriate pay adjustment for pavement or overlay (same units as C); C = present 

total cost of resurfacing; DL = design life of pavement or overlay; EL= expected life of 
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pavement or overlay (independent variable); OL= expected life of successive overlays (typically 

10 years); and R = (1 + INF) / (1 + INR) in which INF is the long-term annual inflation rate and 

INT is the long-term annual interest rate, both in decimal form.  

Equation (2) links quality to performance. It is used to predict the expected life (EL) used in 

Equation (3). Equation (3) links performance to economic gain or loss. Combining the two 

equations to link quality to economic effect provide a solid analytical basis for the pay schedule 

(Weed 2003). It should be noted that Equation (3) was developed for asphalt pavements, but the 

authors think that it can be used for PCC pavements as well. 

 

Composite Index 

Composite index avoids certain inconsistencies in practice that may occur with other methods for 

dealing with multiple quality characteristics. It leads to rational pay schedules in that it assures 

that all combinations of individual quality measures that predict the same level of expected life 

will receive the same amount of pay adjustment (Weed 2006). To demonstrate the practicality of 

the composite quality measure, a complete acceptance procedure must be specified. This 

includes the acceptable quality level (AQL), the rejectable quality level (RQL), the retest 

provision, and the pay schedule.  

Not all individual quality measures are equally suitable for incorporation into a composite 

measure. Measures that are best suited are those that jointly affect performance in such a way 

that higher quality in one tends to offset deficiencies in the others, within practical limits. 
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Another requirement is that they be convenient to measure in association with each acceptance 

lot. The example involving strength and thickness of rigid pavement is obviously well suited 

(Weed 2006). Composite index that includes PCC thickness, PCC strength, and PCC air content 

was developed in this study. Composite index without and with cross-product of quality 

characteristics was considered separately. 

Without Cross-Product of Quality Characteristics: Composite index (PWL*) was developed in 

terms of thickness (TH), strength (ST), and air content (VA). The coefficients were obtained 

using the data in Table (2). The magnitudes of the coefficients reflect the effect of the variables 

on the long term performance of the pavements. The coefficients may be modified based on 

continuous inflow of QC/QA data, performance data, and/or experience. Composite index varies 

from zero to 100%. The final model developed is shown in Equation (4).  

 

VASTTH PWLPWLPWLPWL 270.0324.0405.0*          (4) 

 

where PWL* = composite index; PWL = percent within limit; TH= PCC thickness; ST = PCC 

strength; and VA= PCC air content. 

 

Pay Schedule: To determine the comparable value of PWL* associated with the AQL, the values 

of PWLTH=PWLST= PWLVA =90 are substituted into Equation (4) to obtain PWL* = 90 as the 

AQL. Therefore, the pay equation must produce a pay adjustment of zero at PWL* = 90. To 

determine the value of PWL* associated with the RQL, any combination of values that give 10- 
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year-life can be substituted into Equation (2). For example, entering PWLTH=72, PWLST=72.5, 

and PWLVA =70 into Equation (4) produces PWL*=71.5. Similarly, any combination of values 

that gives the 15-year-life produces retest provision. Using PWLST= 82.5, PWLST=83, and 

PWLSM =80   gives PWL*=82.0.  Assuming a simple linear pay equation will be sufficient, the 

pay schedule given by Equation (5) was derived. 

 

000,901000 *  PWLPA           (5) 

 

where PA = lot pay adjustment ($/lane-kilometer); and PWL* = composite quality measure. 

When PWL* equals the RQL value of 71.5, the pay reduction of -$18,500/lane-kilometer. 

For truly excellent quality, PWLTH= PWLST= PWLVA =100, PWL* =100, the pay equation 

awards a maximum bonus of $10,000/lane-kilometer.  At the other extreme, when PWLTH= 

PWLST= PWLVA =0, PWL* =0, the pay equation assigns the maximum pay reduction of -

$90,000/lane-kilometer. In between, all pay adjustments are related to performance in that all 

quality levels that give any particular life will receive the same level of payment.  

 

With Cross-product of Quality Characteristics: Data in Table (6) was used to develop expected 

life for three variables. Cross-product was included to investigate the difference between only 

addition and the one which has cross-product. Microsoft excel was used to solve eight 

simultaneous equations. The final expected life model that includes thickness (TH), strength 

(ST), and air content (VA) is shown by Equation (6). The model predicts an expected life of 

about 2.1 year when PWL=0 for all three quality characteristics. Equation (6) was converted into 

composite index in terms of PWL* as shown in Equation (7). Equation (7) gives PWL* ranging 

from 0 to 100%.  
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VASTTHVASTVATH

STTHVASTTH

PWLPWLPWLPWLPWLPWLPWL

PWLPWLPWLPWLPWLEL





0000361.000180.0000401.0

000339.00721.00388.00368.0066.2
   (6) 

VASTTHVASTVATH

STTHVASTTH

PWLPWLPWLPWLPWLPWLPWL

PWLPWLPWLPWLPWLPWL





000145.000721.000161.0

00136.0289.0156.0147.0*

      (7) 

               

where EL=expected life; PWL* = composite index; PWL = percent within limit; TH= PCC 

thickness; ST = PCC strength; and VA=PCC air content. 

Pay Schedule: To determine the comparable value of PWL* associated with the AQL, the values 

of PWLTH=PWLST= PWLVA =90 are substituted into Equation (7) to obtain PWL* = 72 as the 

AQL. Therefore, the pay equation must produce a pay adjustment of zero at PWL* = 72. To 

determine the value of PWL* associated with the RQL, any combination of values that give 10- 

year-life can be substituted into Equation (6). For example, entering PWLTH=PWLST= 70, and 

PWLVA =64.5 into Equation (7) produces PWL*=32. Similarly, any combination of values that 

gives the 15-year-life produces retest provision. Using PWLTH=PWLST=81, and PWLVA =80.5 

gives PWL*=52. Assuming a simple linear pay equation will be sufficient, the pay schedule 

given by Equation (8) was derived. 

 

000,721000 *  PWLPA                                                           (8) 

where PA = lot pay adjustment ($/lane-kilometer); and PWL* = composite index. 

It can be seen that when PWL* is at the AQL value of 72, Equation (8) produces a pay 

adjustment of zero. Similarly, when PWL* equals the RQL value of 32, the pay reduction of -

$40,000/lane-kilometer is obtained. For truly excellent quality, PWLTH= PWLST= PWLVA =100, 

PWL* =100, the pay equation awards a maximum bonus of $28,000/lane-kilometer. At the other 
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extreme, when PWLTH= PWLST= PWLVA =0, PWL* =0, the pay equation assigns the maximum 

pay reduction of -$72,000/lane-kilometer. In between, all pay adjustments are related to 

performance in that all quality levels that give any particular life will receive the same level of 

payment.  

 

Conclusions 

Based on this study, the following conclusions can be made: 

 Moving average control chart does not clearly show any systematic bias in QC data for 

PCC pavements in Kansas. 

 Student-Newman-Keuls (SNK) and Tukey’s Honestly Significant Difference (HSD) 

show similar results at all significance levels. LSD and Scheffe are the strongest and 

weakest test, respectively, in detecting significant difference in means. 

 The number of cases with a significant difference in means increases with an increase in 

significance level. It is recommended that 2.5% be used as significance level as a 

compromise between 1 and 5% instead of current 1%. 

 The performance model is used to better understand the consequences of either exceeding 

or falling short of the desired quality levels, and provide a logical and defensible basis for 

the adjusted pay schedules that are an integral part of PRS. 

 Composite index avoids certain inconsistencies in practice that may occur with other 

methods for dealing with multiple quality characteristics. It also leads to rational pay 

schedules. Composite index with cross-product of quality characteristics gives a more 

realistic pay adjustment ($18,000/lane-kilometer difference) in Kansas. 

Recommendations 
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Based on this study, the following recommendations can be made: 

 It is recommended to validate and/or improve practical performance models and 

composite index based on laboratory tests, QC/QA data from other part of the region, 

field performance, and/or experience before starting to use for pay adjustment. 

 The models can be used by other agencies that collect similar data after validating the 

models for their local conditions and/or similar models can easily be developed for the 

local conditions. 
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Table 1. PCC Pavements Test Sections 

Sr. No. Route County Name District No.  Let Date 

1 I035 Osage 1 07/16/03 

2 I035 Wyandotte 1 12/17/03 

3 I035 Wyandotte 1 01/14/04 

4 I035 Johnson 1 06/16/04 

5 I035 Leavenworth 1 07/21/04 

6 I070 Wyandotte 1 06/15/05 

7 I070 Dickinson 2 07/21/04 

8 U054 Bourbon 4 04/16/03 

9 I035 Coffey 4 -  

10 U069 Miami 4 12/17/03 

11 U069 Bourbon 4 06/16/04 

12 U054 Sedgwick 5 01/08/03 

13 I135 Sedgwick 5 07/16/03 
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Table 2. Data for Practical Performance Models and Composite Index 

Percent Within Limit (PWL) for Various Quality Measures Expected Life 

(years) Thickness (TH) Strength (ST) Air Content (VA) 

90 90 90 20.0 

50 90 90 10.0 

90 40 90 10.0 

90 90 30 10.0 
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Table 3. Checking the PPM when Shape Factor, C=1 

Percent Within Limit (PWL) for Various Quality Measures Expected Life 

(years) Thickness (TH) Strength (ST) Air Content (VA) 

(a) Test of Derivation 

90 90 90 20.0 

50 90 90 10.0 

90 40 90 10.0 

90 90 30 10.0 

(b) Test of Extremes 

100 100 100 30.7 

100 0 0 2.4 

0 100 0 1.7 

0 0 100 1.4 

0 0 0 0.4 

(c) Test of Offsetting Property 

90 90 90 20.0 

75.0 100 100 20.0 

100 69.0 100 20.0 

100 100 63.0 20.0 
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Table 4. Checking the PPM when Shape Factor, C=0.5 

Percent Within Limit (PWL) for Various Quality Measures Expected Life 

(years) Thickness (TH) Strength (ST) Air Content (VA) 

(a) Test of Offsetting Property 

90 90 90 20.0 

77.0 100 100 20.0 

100 70.5 100 20.0 

100 100 63.5 20.0 

(b) Test of Extremes 

100 100 100 28.3 

100 0 0 0.6 

0 100 0 0.3 

0 0 100 0.2 

0 0 0 0.0 
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Table 5. Test of Progressively Poorer Quality Level when Shape Factor, C=0.5  

Percent Within Limit (PWL) for Various Quality Measures Expected Life 

(years) Thickness (TH) Strength (ST) Air Content (VA) 

100 100 100 28.3 

95 95 95 23.9 

90 90 90 20.0 

85 85 85 16.7 

80 80 80 13.8 

75 75 75 11.4 

75 50 45 5.7 

65 65 65 7.6 

60 60 60 6.1 

55 55 55 4.9 

50 50 50 3.9 

45 45 45 3.0 

40 40 40 2.3 

75 50 45 5.7 

30 30 30 1.3 

25 25 25 1.0 

20 20 20 0.7 

15 15 15 0.4 

10 10 10 0.3 

5 5 5 0.1 

0 0 0 0.0 
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Table 6. Data for Composite Index with Cross-product 

Percent Within Limit (PWL) for Various Quality Measures Expected Life 

(years) Thickness (TH) Strength (ST) Air Content (VA) 

90 90 90 20.0 

50 90 90 10.0 

90 40 90 10.0 

90 90 30 10.0 

70 45 35 5.0 

45 65 25 5.0 

30 50 65 5.0 

40 40 55 5.0 
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Figure Legends 

Fig.1. Moving average control chart for PCC pavements. (a) Typical QC PCC Strength, 

(b) QC PCC Thickness 

Fig.2. Lot-wise means comparison for PCC pavements. (a) QC for PCC strength, (b) QC 

for PCC thickness 

Fig. 3. Sublot-wise means comparison for PCC pavements. (a) QC/QA for PCC strength, 

(b) QC/QA for PCC thickness 
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