# A CUlTURAL CENTER DESIGNED FOR <br> KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 

## by

MICIMRL TUNG-REN
YU
-
B. Arch., Chung King University Taiwan, China, 1958

## A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OP ARCHITECTURE

Department of Architecture

KAnSAS STATE UNIVERSITY
Manhattan, Kansas

1963
Major Instructor now int of sintivile
LD
2665
TABLE OP CONTRNTS
Document
Intanduction ..... 1
GENERAL CO:SIDERITION ..... 3
The Site ..... 3
The Deprartment of Music ..... 1
The Department of Drama ..... 8
The Auditorium ..... 8
The Little Theater ..... 11
GENERAL COMCEPT OR DESIGN ..... 12
The Education Center. ..... 14
The Iuditorium ..... 15
The Little Theater ..... 16
ACOUSTIC תALCULATION. ..... 18
FRTSDRNATION. ..... 38
CONCLUSION ..... 55
ACKNONLSDGMENT ..... 56
REFEMENCE ..... E 7

## INTRODUCTION

According to the university statistics, tie predicted enrollment of Kansas State University will increase to 12,000 students hy the year 1970. To accomodate these students, it will be necessary to provide more and better facilities for studying and recreation.

So far K-State has an auditorium that has a capacity of 1,000 seats and the euditorium was built in the year of 1913 . This building is constructed of limestone and wood. It is unfit for public assembly according to modern building codes. In addition, the building is too small for the present student enrollment, the old facilities are outdated and the acoustics are rather poor for the presentation of music, drama, and public speaking.

Recently tbe University has started planning for a new auditorium. This auditorium should at least have a capacity of one-fourth to one-fifth of the total number students enrolled in the year 1970. It will be used for multiple purposes such as assembly hall, music performances and drama presentations, also for certain incidental metings.

The project will also include additional facilities for the Department of Music, and the Department of Drama which Lave the closest relation to this auditorium, so that these departments will have separate facilities for their teaching, research, and administration. This building, however, should be located near to the proposed auditorium.

The Department of Music, now, has separate offices, studios, practice rooms and classrooms in the corners of the present auditorium and Nichols gymasium. Recently it had fiftysix musical major students and an additional 560 students who attend music classes or practices. Tbis figure is approximately $8 \alpha^{G}$ of the tetal enrollment of the entire university. The Department also cooperates with the city of Manhattan in the presentation of different musical activities for the students and the public as well, such as concerts by well known orchestras and small scale chamber music. By 1970 this Department hopes to donble its enrollment and engage in more activities, therefore, they are also anticipating the need for more snace.

At present the Department of Drama is a sub-department of the Department of Speech in the College of Arts and Science. Therefore they do not have any spaces and rooms of their own. Due to the fact that the Drama Department is a very active department on the campus, (They usually present two to three plays for the stident's practices each month), this department shall have a larye and a small stage for this variety of needs. These stares should be huilt separately from the main hall containing the working shop and studios for generally practice and teaching nirposes.

As mentioned above, these two departments have similar needs for classrooms, library and certain rebearsal rooms. In order to be effective and save space, it is better to house
these two departments in one single building.
Because the auditorium is too big to be nsed for the routine practices and experinents of these two departments, a proposed little theater is to be built which will provide for small assemblies and rehearsals. This little theater vill be a great benefit to both departments, and one assumes it will be frequently used.

This cultural center will form an important featmre on the campus of The Kansas State University.
general considerations

THE SITE

Tine pronosed site is located at the sonth-east corner of the cmpus, and is on the east side of the present All Faith Chapel. It is also close to the sub-community center of tygieville as shown in the drawing. (page 40, 41)

This area is bounded on the Fast, South, and North respectively by Manhattan Avenue, Anderson Avenue, and Vattier Drive. According to the city's future plan, lith Street will be connected with Vattier Drive, and Anderson Avenue will be directly connected with rluemont at lith Street as a main traffic highway. The length of the streets along each side of the project are:

| Anderson Avenue | 380 ft. |
| :--- | :--- |
| Hanhattan divenue | 535 ft. |
| Vattier Drive | 440 ft. |

The total area is about $390,000 \mathrm{sq}$. ft . which includes the Anderson-Bluemont road space.

The elevation is 1034 feet above sea level at the northwest corner of the site, and slope down to 1030 feet at the south-east corner, contour line about 4 feet difference.

The site is two miles away from the downtown area, going throurh Bluemont Avenne and through lith Street and Poyntz Avenue. It is three blocks from the city park and one block from the Aggieville shopping center. North Manhattan Avenue is connceted to State Highway 13 which also leads to Olsburg and Tuttle Creek State Park. Anderson Avenue, on the other hand, leads to !ighway 24 and 40 , which leads to Topeka, Lawrence and wansas City going east, and leads to Ogden, Junction City, Abilene, and Salina going west.

TIIR DEPARTMENT OF MUSIC
A. The Room Requirements

1. Rehearsal Rooms
a. One rehearsal room, capacity for 150 persons.
b. One band and orchestra room, capacity for 120 persons.
c. One all purpose rehearsal room, for 400 persons.
2. Tile Studios (practice)
a. Piano studio.
b. Voice and instrumental studios.
c. Pive studio-ofifes.
d. Organ studio.
3. Practice Poom
a. Small practice room.
b. Large practice room.
c. Organ practice rooms.
4. Four class rooms
5. Main office room
6. Library
7. Necia:ical room
8. Transformer room
9. Other rooms
a. Poyer.
h. Toilets. (Gentlemen, Ladies)
c. Telephone booth.
d. Janitor.
e. Corridors.
f. Storages, thus as band storage, band uniform storage, library storage.
S. Locker space room for 200 persons near the practice and rehearsal rooms.
10. Shops: Repair shops and storage
B. The Study of the Rooms of Nusic Department
11. General Rehearsal Room:
a. Permanent stage of $3^{\prime}$ levely above floor.
b. Ceiling should be $15^{\prime}-0^{\prime \prime}$ to $18^{\prime}-0^{\prime \prime}$ high.
c. A storare area (about $12^{\prime} \mathrm{x} 20^{\circ}$ ) located adjacent to choral room, totally closed.
d. Another storage room for choral library.
e. An exit to auditorium.
12. Band and Orchestra llehearsal Room
a. It should have a storage of about $600 \mathrm{sq} . \mathrm{ft}$.
b. Moveable risers.
c. Recessed percussion storage.
d. An exit to outside or anditorium.
13. All Purpose Relearsal Room. This room will be used for
a. Combined choral and instrumental group.
b. Small auditorium.
c. Music appreciation lecture.
d. Student recitals.
e. Wind and string classes.
f. Must have a stare.

General Consideration of all Rehearsal Rooms
a. Anple storare area.
b. Outside exits convenient to auditorium.
c. Near library and repair area.
d. Located on the ground floor.
e. Higher space, about 15 feet high.
P. Persons should be installed in areas near the rehearsal ronms.

1. The Studios
a. Door large enough to move in grand piano.
b. Puilt in shelves and storage.
c. Sound proof.
d. Built-in blackboard.
2. The Practice Rooms
a. All in one area and near studio and classrooms.
b. Sound proof.
c. Built-in shelf.
d. Pull length mirror in each room.
e. Suggest ceiling $9^{\prime}$ 。
f. Locker space and locker benefit.
3. The Classrooms
a. Ceiling $12^{\prime}-0^{\prime \prime}$ high. (Rough low for screen)
b. Blackboard on three sides.
c. Back wall constructed to contain storage cabinets.
4. The main office shomld include:
a. Counter and reception area.
b. Ticket office.
c. Closet for clothes.
d. Rest room.
5. Storages to be used for storage of department supplies, and musical reproducing and for other storage use
6. Miscellaneous

The general requirements
a. With exception of main office, no wall should be parallel with any other wall.
b. Cooling and heating systems for whole building.
c. All rooms should have proper acoustical treatment.
d. Paculty rest room in addition to public rest rooms should be provided.
e. Ploor surface should be tile-covered to permit movement of heavy instruments.
f. All rooms must be sound proof so that sound cannot be transmitted to other rooms.
g. All office studios and classrooms should be equipped with audience spaces and chairs.

TIIE ROOMS AND SPACES OF DEPARTMRNT OF DRAYA

Most rooms will be like Department of Music.

1. Main office.
2. Dean's office.
3. Offices.
4. Classroom.
5. Studios.
6. Staff lounge.
7. Library.
8. Two rehearsal rooms.
9. Telephone booth and janitor's quarters.

THE AUDITORIUM

Pront of house area:

1. Lobby area should have direct access to:
a. Audience charabers.
b. Ticket, show window and information booth.
c. Rest roor.
d. Coat check service.
e. Bar and refreshment.

## f. Telephone booth (public)

2. Toilet (rest room) and facilities will be dictated by code.
3. A refreshment bar where soft drinks and coffee can be obtained.
4. Public telephone booth should be provided so the box office phone is clear for business.

The requirement of the large Auditorium Audience Chamber:

1. The treatment should be functional, comfortable, and aesthetic. The decorations should not be over-powering or ostentatious. Fverything should focus on the area where the entertainment is to take place----the stage.
2. Seating: The seats should be comfortable, provide ample space for the increasing size of the human race. Adequate ley room and passaze space between seats; assume the $\quad$ ross area (including aisles) at about seven sq. ft. per seat. A continental or modified continental arrangement of seating should be observed. Aisles at the extreme outer edges of the seating are desirable. The first row of seats is as close to the stage as possible.

Stage Orientation and Access

1. Direct access to front of house and stage without going through audience.
2. Outside loading dock and door ( $8^{\prime} x 2^{\prime}$ ) directly onto stage (or storage shop). Doors should be at side or side rear.
3. Direct accessibility to shop-opening size capable of taking a full size stage weapon.
4. As close to the dressing room as possible.
5. All stage control curtain, light, etc. on the same side of the stage, preferably on the right side of the stage.

Stage

1. Requirement of stage (proscenium).
a. A $48^{\prime} \times 28^{\prime}$ acting area should be floored with pine and unfinished.
b. Above acting area should be entirely trapped by $4^{\prime} \times 8^{\prime}$ removed sections.
c. Acting area should start at honse curtain line.
d. Apron should be of soft wood.
2. Requirement of front stage elevator. (the orchestra pit)
a. At least the width of proscenium openind.
b. Should accomodate 40 musicians and their instruments.
c. Motor control worm gear.
d. This space sometines can be used for:
i. stage extension
ii. extra seating
iii. orchestra pit
iiii. basement loading
Green room: Actors gathering area
3. Space requirement $40^{\prime} \times 50^{\prime}$.
4. Comfortable lounge furniture.
5. Small kitchenette to prepare coffee, etc.

Dressing room: Two large rooms $20^{\circ} x 40^{\prime}$ (one for ladies and one for gentlemen).

1. Dressing table, mirrors, and lights along one of $40^{\prime}$ walls.
2. Stools for tables.
3. Near costuine room and costume shop.

Small Dressing Rooms
Projection Booths
Designing for good sound control and projection.

## THE LITTLF TILEATER

This pronosed little theater will have an area about one fourth the size of the auditorium mentioned above and will have a seating capacity of 500 persons, except for the area of the rooms which will be similar to the ones in the auditorium. This thester being a place for the students' experimental and practice uses, the facilities of the chambers and stage must be easy to re-arrange to fit the different occasions.

In relation to the audience, the stage must be able to adapt for the following basic types:

Proscenium: The contemporary proscenium Baroque Theatre is a performing area at one end of the theater, which the a dience watches through the picture frame of the proscenium arch. So the performing area and Chamber area are separated. The trouble with this form is that there is no intimate relationship between the actor and the audience.

Arena: This form has a central stage area surrounded on all sides by audience. Both andience and actor areas are in the same room. This is based on the round nlan of the early amphitheater. This arrangement may have large numbers of spectators in closest proximity to the actor. But some spectators find the absence of all scenic background and the substituted wall of faces disturbint.

Airon: The pure apron theater is a combination of the axial and round plans. The main performing area projects into the audience, which surrounds three sides and perinits the actor to come into intimate proximity with the spectators. Belind the performing area can be set some scenic backyround. So the stage area is open, no picture frame separates audience, and both are in the same room. This open stage theater was used in the old Greek and Shakespearean plays.

Caliper: One stage form which sems to be a product of the modern theater, reverses the arena concept of the audience surrounding the stage. It has a side stage, which extends out to surround the audience.

## general concert op design

The desirner had several primary ideas in mind as a general planni: considicration for the design of pronosed cultural center.

These are some fundamental considerations which relate to the design:
rirst vill be the function, which the design objuct can have to create the biryest effects. The two different functions are namely for the people who use the facilities for gnneral teaciing, practice, and presentation, and for the audience who attend meetings and performances. So the designer thought that the functinral coisideration will effect the whole planning, chiefly in tro ways: First, in the relation buildinzs to each other and to the lot. Second, in the design of the means of communication between them.

Secondly, the acoustics is another important factor in the design. It controls the most part in this project. The acoustics not only restrict the space and shape of the desizn, but also determines the materials which will be used in the interior design. The acoustical effects, like acoustic imare and the optimum reverberation tine, will be carefully taken into consideration.

The desi fner thought that the project will create a place for highly cultural life, also that the design objectives are to create a spacions and serene atmosphere, which the peonle will enjog. The whole composition will have some kind of unity rhich gives balance, harmony, cortinuity and climaxes. Too ruch unity also creates monotony. So the best features may often be eraphasized throurh some contrast.

All of these fundamental considerations are minch unfer the desizner's control. It is also through his careful exercise of this control and play of his creative imagination that he de-
signed the cultural center's auditorium, educational center and the little theater. "e will find that the precision and whiteness of the concrete forms have some kinds of unity, but also have some sharp contrast between each other. (pages 42, 43, 44)

## TII: EDICATION CENTRR

The education center is the nucleus of the whole desizn. This Y-shaped building will be developed according to the acoustic principle which provide the best advantage for good sound characteristics. The desizner used a simplo column and beam structure which gives wide onen floor areas. fubdivisinn will be made in aceordance with the requirement of individual Departments and to provide flexibility and accessibility. These are the main deteraining factors of the design.

The main entrance, lobby, and three hij rehearsal rooms which provide for a large number of nses, are locited on the first floor, and tie hasic shape of these is desiryed to çive the best sonnt effects. The stairs and the elevator are in the center of the flonr for casy vertical transportation. The seconl floor houses the Departments' offices, class ronms, the library, and the shop. The non-parallel walls avoid tion lutter. The shon which is two stories high, can be used ws a wace for the drama-set for hoth the auditorium and lit,tle theater. The wactice center is in the tuird floor. Yost practice rooms and studios are located in this floor.
The roof of this building uses fold-plate units. The
columns carry the loads to the foundation.
The concrete floor covering nay be of rubber, carnet, or terrazzo tile for different places as shown in the acoustical calculation shects. The front wall will be covered with mosaic mural, while concrete hlock screen wall will be constructed at the sonth-east and north-east side as sun breakers and as an architectural feature. (pages 44, 45, 46, 47)

## TIIE AUDITORIUY

The Auditorium is the largest building in the group. This
 lindrical starehouse. The front circle is the space for rublic audience, and the presentation space is in the smaller back circle.

The audience chanber is the center of the public service area, and surrounded by the outer ring of utility spaces, such as the lobby, lonnge, rest rooms and refreshment centers.

The seatiny area is on a sloped floor, which is elevated for the pur onses of good sight and sound wave receiver. The side walls and the ceiling are broken so that the best sound reflection and diffraction will be obtained. This diffusion was also needed to prevent the possible blur and echo from the side
 for the purpose of preverting blur and echo. The back wall is designed in a zig-zagged form. The back wall and side wall behind the screen is of plaster material which is necessary for
the absorption of sound.
The ventilating equipment, colums and ducts are placed in the pipe space between the walls which separates the chamber and intermission lounge, lobby.

For the purposes of circulation and intermission, the deeigner thought the circular intermission area etc, wifh surrounds the chamber, was the best answer. The space divided by the entrance lobby, lounges, which connected the inside and outside areas. The rest rooms and refreshment counter are easy to approach. The exterior walls are all made by aluminum, glass panels, and with concrete block sun screens.

The presentation space which includes the revolving stage, green room, and wagon storares is located at the back part of the theater. The large opening of the stare is adjustable, such that it may be closed or onened if the circumstances so demand. The acoustical reverbration time of this area and stage house which is the same as the auditorium was also carefully calculated. Above the green room are six dressing rooms of different sizes.

The roof of this huilding is of thin shell concrete slab curved upward in the outside part, and the dome is over the chamber which gives more volume to the room. The horizontal structure of stage house gives a kind of sensual delight and balance. (pages $44,48,49,50,51$ )

THR LITTLE THEATER

This round theater is different from the auditorium. It
is smaller amd more efficient, and also an attractive sculptured piece among the group.

The seating area is an elliptical shape and the curvature of the walls $\quad$ ives a very pleasiny shape. The $\mathrm{V}^{\prime} \mathrm{d}$ wall provides acoustical diffusion. Between the walls are the utility space for ducts and pipes. The lobby and lounge, wlich are on the same side, are not only a connection of the chamber, entrance, green room and the outside, but also a place for intermission use. The floor windows have nice view of the corrt which can be used for interaission. The landscaping and sculpture are used to enhance the space and to create more intimate closerup views of planting and surrounding areas.

The revolvint stare with the elevated orchestra pit, are another special feature in this theater. This easy changeable installation may satisfy any kind of stage presentation forms as previously mentioned.

Tbe stage and orchestratran, dress rooms, mechanical room and some areas are located in the basement.

The thin shell roof construction rives a high lizht for the group desifn, It makes this small piece of sculpture like a bright star. The light weight concrete cap supported by colnmis with compression beam in the bottom and tension ring on top, contains the stare bouse, the light box, and plenty of room for the air-conditioning ducts. (pages 44, 52, 53, 54)

## THP ACOTHTICAL CAICULATION

Now the designer is ${ }_{j}$ oing to calculate the optimum reverberation time for the rehearsal rooms, little theater and auditorimm. In determining this optimum reverberation time versus frequency characteristic for these rooms, the designer shall assume that the roon's shape and the distribution of absorptive and reflective surfaces, are such as to give proper diffusion of sound, thus proper uniformity and smoothness of decay. So that the rooms reverberation time is optimum over a large frequency scale we will calculate it for 128 , 512 , and 2048 cycles. The calculation in the following sheets will be bed on the tables hy Knudsen, in his book of Acoustical Design for Architecture, also adapted fron the book of Acoustics for the Architect by Rurrismeyer \& Goodfriend and Perkin's book nf Acoustics Noise and Building.

## REARCI OF RLBVATION OF AUDITORIW! PLOOR

The distance that does not need raise.

$$
s=\frac{r}{h} I I+r
$$

where: $s=$ the distance that does not need raise
$r=$ the distance between rows
$h=t h e r a i s e ~ b e t w e e n=0.00^{\circ} \quad r r=4.7^{\prime \prime}$
II = the height of the sound source $s=\frac{r}{h} I I+r=\frac{2.6}{0.39} \times 5.6+2.6=37.3+2.6=30.9^{\prime} \pm 10^{\prime}$

The raise after $40^{\prime}$ will use the following formula.

$$
h n=h n-1+h=\frac{r(\pi 1-h n-1)}{s+(n-1) r}
$$

where: $n=t h e$ row begins $40^{\prime}$
$h_{n}=t h e$ raise of the row $n$
$h=t h e d i s$. elev. of hearer between two rows $=4.7^{\prime \prime}$
$s=$ need not elev.
$r=$ horizontal dis. between $=2.6^{\prime}$
II = elev. of source
$h_{1}=+0.03^{\prime}$
$\mathrm{h}_{5}=+0.053^{\prime}$
$h_{10}=+1.16^{\prime}$
$h_{15}=+2.47^{\prime}$
$\mathrm{h}_{20}=+3.97^{\prime}$
$\mathrm{h}_{25}=+5.90^{\prime}$
$\mathrm{b}_{30}=+7.88^{\prime}$
$h_{35}=+10.06^{\prime}$
$h_{10}=+12.07^{\prime}$
$\mathrm{h}_{45}=+15.02^{\prime}$
AUDITCRIUM

| 1. | Floor |  |  |  | 14060 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | Wall |  |  |  | 7464 |
| 3. | Ceiling |  |  |  | 14476 |
| 4. | Opening |  |  |  | 2160 |
| 5. | Surface S. $(1)+(2)+(3)+(4)$ |  |  |  | 38156 |
| 6. | Volume V. |  |  |  | 392161 |
| 7. | Volume/Person 392161/2000 |  |  |  | 196 |
| 8. | @ $72^{\circ} \mathrm{F} . \quad 50 \%$ Relative Humidity |  |  |  |  |
| 9. | Sound Amplication Needed |  |  |  |  |
| 10. | Opt. Reverb. Time | ${ }^{t} 60$ | 128 | 512 | 2048 |
|  |  |  | $1.34 \times 1.44=2.00$ | 1.38 | 1.39 |
| 11. | $x \quad\left[-2.30 \log _{10}(1-\bar{x})\right]$ |  |  |  |  |
|  | $t_{60}=(0.49 \times \mathrm{V}) / \mathrm{sx}$ |  |  |  |  |
|  | $x_{1}=\frac{0.49 \times 392161}{39156 \times t_{60}}$ |  | . 252 | . 363 | . 363 |
| 12. | $\bar{\alpha}$ |  | . 223 | . 304 | . 304 |
| 13. | Total Abs. Area Req. | S. $\bar{\sim}$ | 8510 | 11599 | 11599 |


| ® | $\begin{aligned} & \infty \\ & \stackrel{\circ}{0} \\ & \hline \sim \end{aligned}$ | Nơo | O－ | － | $\cdots$ | $$ |  | N ぶ N | ¢ | $\stackrel{10}{15}$ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \dot{\text { I}} \\ & \dot{0} \end{aligned}$ | $\cdots$ | กั． | $\begin{aligned} & \text { ¿O } \\ & \text { O } \\ & \dot{\circ} \end{aligned}$ | $\omega$ | $\bar{\circ}$ | $\cdots$ | \％\％ | $\stackrel{N}{\sim}$ | $\because$ | ベ | 8 |
| $\stackrel{\text { § }}{\substack{4}}$ | $\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{2}{\mathrm{~N}} \end{gathered}$ | OO |  | O్p | og | - |  | $\begin{aligned} & \square \\ & \text { in } \\ & \text { in } \end{aligned}$ | స్ల్ల | $Y$ | ก్ల్ర |
| $\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$ | ？ | $饣$ |  | 15 | $\bigcirc$ | $\nabla$ | $\because \square$ | $\bigcirc$ | へ． | $\stackrel{\sim}{\text { ¹ }}$ | $\stackrel{\circ}{\circ}$ |
| $\begin{aligned} & \text { © } \\ & \text { O4 } \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\sim} \end{aligned}$ | :o |  | 으N | $\cdots$ | ¢ٌ | N゙ ¢ | ¹ กิ N | ～ | ल్ల్ల | $\square$ N |
| $\begin{aligned} & \dot{8} \\ & \dot{0} \end{aligned}$ | $?$ | ؟ | $\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$ | $\nabla$ | O＇ | $\cdots$ | $\because \because$ | $\stackrel{\oplus}{\text { ก }}$ | $\vartheta$ | $\stackrel{\square}{\square}$ | \％ |
| $\begin{aligned} & \text { 玉 } \\ & \text { 岂 } \end{aligned}$ | O | ঙ్ల్స | $\begin{aligned} & 11 \\ & > \end{aligned}$ | 8 | $\underset{\underset{y}{*}}{\stackrel{\circ}{6}}$ | ～～ | Niఝ Ni | \％ | N్N్N | $\underset{\sim}{\text { N}}$ | ¢ |
|  |  |  | Кว！̣pṭuny an！̣zetax \％SL วe xị |  |  |  |  | ${ }_{3}^{K}$ <br> N <br> $\stackrel{\otimes}{\aleph}$ |  |  |  |
| $\dot{\square}$ | $\stackrel{1}{9}$ | $\stackrel{\square}{-1}$ | $\stackrel{\square}{5}$ | $\infty$ | $\stackrel{\circ}{-1}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\square}{\sim 1}$ |  |  | กั่ | ๗ั |


| 34. | Door $\mathcal{E}$ Casing <br> Total Abs. Area <br> Check $\begin{aligned} & \bar{\alpha}=S \bar{\alpha} / S \\ & x=-2.3 \log _{10}(1-\infty) \end{aligned}$ | 588 | . 07 | $\begin{gathered} 41.1 \\ 8495.3 \\ .2222 \\ .2521 \end{gathered}$ | . 07 | $\begin{gathered} 41.1 \\ 11560.8 \\ .3039 \\ .3631 \end{gathered}$ | . 07 | $\begin{gathered} 41.1 \\ 11635.2 \\ .304 \\ .3632 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{t}_{60} \\ & \% \text { of error } \end{aligned}$ |  | $\begin{aligned} & 1.99 \\ & 0.05 \% \end{aligned}$ |  |  |  |  |  |

AUDTTORIUFI ST/GE MCUSE





| 12. | Stage Floor Pine | 324 | . 1 | 32.4 | . 1 | 32.4 | . 03 | 25.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13. | Door E Casing | 88 | . 07 | 6.1 | . 07 | 6.1 | . 07 | 6.1 |
| 14. | Floor Linolcum | 960 | . 02 | 19.2 | . 03 | 28.8 | . 04 | 38.4 |
| 15. | Wall Plaster, Sand Finish | 1236 | . 04 | 49.4 | . 06 | 64.1 | . 04 | 49.4 |
| 16. | Ceiling Plaster on Metal | 1574 | . 04 | 62.9 | . 06 | 94.4 | . 06 | 94.4 |
| 17. | Brack Wall Danish Acoustical Materials STFI | 480 | . 13 | 62.5 | . 15 | 72.1 | . 09 | 43.2 |
| 18. | Total Act. Abs. Area |  |  | 497.5 |  | 662.9 |  | 672.4 |
| 19. | Check Absorption |  |  |  |  |  |  |  |
|  |  |  | . 107 |  | . 141 |  | . 145 |  |
|  |  |  | . 112 |  | . 153 |  | . 157 |  |
|  |  |  | 1.72 |  | 1.26 |  | 1.23 |  |
| 20. | Try Error \% |  | $\begin{gathered} (1.77-1.72) / 1.77 \\ \times 100 \% \\ =0.78 \% \end{gathered}$ |  | $\begin{gathered} (1.25-1.26) / 1.25 \\ \times 100 \% \\ =0.00 \% \end{gathered}$ |  | $\begin{aligned} (1.25 & =1.23) / 1.25 \\ & \times 100 \% \\ & =.16 \% \end{aligned}$ |  |
|  |  |  | All The Errors | fre Allowable. |  |

$\frac{\text { BAND REHEARSAL }}{120 \text { Persons }}$


| 13. | ```Ceiling Plaster, Sand Finish on Metal``` | 1318 | . 04 | 56.7 | . 06 | 84 | . 04 | 56.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14. | Wall Plaster | 1871 | . 04 | 74.8 | . 06 | 112.2 | . 04 | 74.8 |
| 15. | Floor Carpet | 1094 | . 04 | 43.7 | . 04 | 43.7 | . 04 | 43.7 |
| 16. | Chairs Unoccupied $120 \times 1 / 3=40$ |  | 2 | 80 | 3 | 120 | 3 | 120 |
| 17. | $\begin{gathered} \text { Persons With Chair } \\ 120 \times 2 / 3=80 \end{gathered}$ |  | 2 | 160 | 3 | 240 | 3.5 | 280 |
| 18. | Total Act. Area |  |  | 428.3 |  | 633.0 |  | 602.9 |
| 19. | Check $\begin{aligned} & \text { l } \\ & \\ & \overline{\bar{\alpha}}=\mathrm{S} \% / \mathrm{S} \\ & \mathrm{x}= \\ & \mathrm{t}_{60}= \\ & \text { Errors } \%\end{aligned}$ |  |  |  |  |  | . |  |
|  |  |  | . 0945 |  | . 139 |  | . 1321 |  |
|  |  |  | . 099 |  | . 15 |  | . 1415 |  |
|  |  |  | 1.764 |  | 1.16 |  | 1.232 |  |
|  |  |  | $\begin{gathered} (1.77-1.764) / 1.77 \\ \times 100 \% \\ =0.33 \% \end{gathered}$ |  | $\begin{gathered} (1.23-1.16) / 1.23 \\ \times 100 \% \\ =5.7 \% \end{gathered}$ |  | $\begin{gathered} 1.23-1.267) / 1.23 \\ \times 100 \% \\ =0.16 \% \end{gathered}$ |  |

REHEARSAL RGOA
Education Center



| $\%$ Error | $\frac{(2.02-1.05)}{2.02}$ | $\frac{(1.11-1.103)}{1.41}$ | $\frac{(1.41-1.37)}{1.41}$ |
| :---: | :---: | :---: | :---: |
| $2.05 \%$ |  |  |  |

LITTLE THEATRE

| 1. | Floor |  |  |  |  |  | 3780 sq. ft. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | Wall |  |  |  |  |  | 4816 sq. ft. |  |
| 3. | Ceiling |  |  |  |  |  | 4449 sq. ft. |  |
| 4. | Surface (1)+(2)+(3) |  |  |  |  |  | $12945 \mathrm{sq} . \mathrm{ft}$. |  |
| 5. | Volume | (V) |  |  |  |  | $85268 \mathrm{cu} . \mathrm{ft}$. |  |
|  |  |  |  | 128 | 512 |  | 2048 |  |
| 6. | Opt. Reverb. Time | $\mathrm{t}_{60}$ |  | $\begin{aligned} & x 1.42 \\ & 2.01 \end{aligned}$ | 1.42 |  | 1.42 |  |
| 7. | $x=-2.3 \log _{10}(1-\bar{\infty}$ |  |  | 160 | . 227 |  | . 227 |  |
| 8. | ๔ |  |  | 147 | . 202 |  | . 202 |  |
| 9. | Total Abs. Area Req. | $S^{\bar{\alpha}}$ | 1905 |  | 2670 |  | 2670 |  |
|  | Materials |  | Abs. Coef. | $\begin{aligned} & \hline \hline \text { Abs. } \\ & \text { Area } \end{aligned}$ | Abs. Coef. | $\begin{aligned} & \overline{\overline{\text { Absea }}} \\ & \text { Are } \end{aligned}$ | Abs. Cocf. | Abs. Area |
| 10. | Unupholstered Chair $540 \times 1 / 3=180$ |  | . 3 | 54 | . 3 | 54 | . 3 | 54 |
| 11. | Auditors in Unupholstered Chair $540 \times 2 / 3=360$ |  | 2.9 | 104.8 | 4.2 | 1520 | 4.6 | 1656 |
| 12. | Proscenium Opening | 1332 | . 3 | 390.6 | . 4 | 532.8 | . 5 | 666 |


LITTLE THEATRE
Stage Ilouse


| 8. | Ceiling <br> Cement Unpainted 1962 | . 01 | 19.6 | . 01 | 19.6 | . 02 | 39.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \%. | Wall Concrete Unpainted 3086 | . 01 | 30.8 | . 01 | 30.8 | . 02 | 61.7 |
| 20. | Back Wall Plaster 2510 | . 04 | 100.4 | . 06 | 150.2 | . 04 | 100.4 |
| 11. | Draperies Two Sets $\quad 900 \mathrm{yd}$ | 0.14 | 126 | 0.55 | 495 | 0.70 | 630 |
| 12. | Total Act. Areas |  | 794.1 |  | 1328.4 |  | 1544.8 |
| 13. | Additional Req. <br> Use Flintkote Acoustical Tile $1^{1 / 4^{\prime \prime}}$ Perforated, Painted |  | 925.9 |  | 1000.1/3 |  | 784.2 |
|  |  | $\left(\begin{array}{c}0.62 \\ \left(\begin{array}{l}\text { a }\end{array}\right. \\ 0.0 .1\end{array}\right.$ | 92.9 .9 $=1615$ | $\begin{array}{r} \binom{0.63}{-0.1} \\ =0.62 \end{array}$ | 1000.3 $=162$ $=1610$ | $\begin{array}{cc} 0.4+ & \frac{784.2}{0.45} \\ (0 . \mathrm{r}+-0.2) & 1670 \\ =0.45 & \end{array}$ |  |
|  |  | $1615$ | $\frac{1610+1670}{3}$ |  |  |  |  |
|  | Use 1632 sq. ft. After Addt'l Abs. Area |  | $\begin{gathered} 990 \\ 1784.1 \end{gathered}$ |  | $\begin{aligned} & 1010 \\ & 2338.4 \end{aligned}$ |  | $\begin{gathered} 735 \\ 2279.8 \end{gathered}$ |
| 15. | Check |  |  |  |  |  |  |
|  | $\alpha=$ |  | 04 |  | . 2681 | . 262 |  |
|  | $\mathrm{x}=$ |  | 28 |  | . 3112 | . 304 |  |
|  | $\mathrm{t}_{60}=$ |  | 95 |  | 1.422 | 1.45 |  |


| Error = | $\begin{aligned} & \frac{2.01-1.05}{2.05} \\ & \times 1000 \\ & \times+2.208 \% \end{aligned}$ | $\begin{aligned} & \frac{1.42-1.122}{1.122} \\ & \times 10092 \\ & =-0.119 \end{aligned}$ | $\begin{aligned} & \frac{1.42-1.15}{1.192} \\ & \times 1.002 \\ & =-2.11 \% \end{aligned}$ |
| :---: | :---: | :---: | :---: |

$$
\begin{aligned}
& \text { A CULTURAL CENTER } \\
& \text { KANSAS STATE UNIVERSITY, MANHATTAN,KANS. } \\
& \text { MICHAEL TUNG-KEN YU DESIGNER } \\
& \text { SUBMITTED IN PARTIAL FULFILLMENT } \\
& \text { OF THE REQUIREMENT FOR THE DEGREE } \\
& \text { MASTER OF ARCHITECTURE } \\
& \text { KANSAS STATE UNIVERSITY }
\end{aligned}
$$







캉

sechow c-C





KANSAS STATE UNIV] MCHAEL MO

CUITE THAL CENERER K.SU.U. MOWE WU


## CONCLUSION

Tiis thesis is the study of a university cultural center. The goal of the project is to provile for the best advantage of good sound effects throngh the use of good acoustics which Nill be beneficial for cultural and recreational purposes of university professors, stuhents as well as peonle from the nearby counties.

The designer has used his ability to understand the natural advantares of the acoustics, the characteristics of the academic susten and its needs, and created his own ideas and imayination in seeking a solntion that will provide a pleasing architectural and acoustical environment.

## ACKNON LRDGERENT

The author wishes to take this opportunity to express his deepest appreciation and acknowledgement to Professor Theodore A. Chadwic's of the Department of Architecture, for his encouragomeat in the supervision of this work.

## RRFPRENCE

Books:
Mode, raul.
Kinos
Veriag geurg. D. $\begin{gathered}\text {. Callwey, Munchen, } 1957 . ~\end{gathered}$
Burris-'eyer, Harold \& Cole, Edward C. Theater and Iuditorium. Reinhold, New York, 1949.

Burris-Meyer and Goodfriend. Acoustic for Arciatect. Reinhold, New York, 1958.

Groupius, Walter. Scope of Total Architecture. New York, IIarper, 1955.

Knudsen, Verno and Marris, Cyril M. Acoustical Designing in Architecture. New York: John "iley and sons Inc. 1962.

Papalaki, Stamo
Oscar iemeyar Work in Progress. New York: Meinhold rublishing Corp. 105 o.

Papadaki, Stamo
LeCorbusier - Architect, Painter, Kriter. New York: Neintiold Publishing Corp, 1550 .
larkin, Acoustic, noi e and building, 1958 .
Theil, Mans, W.
Gaalbau
Verlar, George, D. H. Callwey, München. 1959
Wright, Frant liloyd.
An American Mrehitecture. New York: Morizon Tress, 1053.
\%evi, Bruno irchitecture as Space. New York; Morizon Press, 1957.

Magazines:

```
Architocture Forum
            97. 103-11 April 1952.
            07. 116-19 nct. 1952
            07. 114-15 Dec. 1952
            108. 124-7 April 1958
            }03. 11 July 1958
            109. 104-9 0ct. 1958
            112. 86-107 June 1960
```

Architecture Record
123. 177-20 Feb. 1058
125. 157-72 'far. 1959
126. 108-20 0ct. 1959
129. 107-22 Feb. 1061

Arciitecture Progressive
National Cultural Control 40:108 Sept. 1959. School March, 1960.
A.I.A. Journal Aur. 1001

J 33 74-5 Jan. 1900
J 35 70-1 April 1901
Royal Architectural Institute of Canada Joarnal U. 37:11 The C'Kecfe Center for the Performing Arts, Toronto.

Unqublished "aterials:
Lu, Paul C.K.
A Lake Union and University "ark Design for Y.S.U., A Thesis, T.S.U., 1962.
$\mathrm{Ru}, \mathrm{J} . \mathrm{C}$.
Civic Center, K.C. Mo., 1980, A Thesis, K.S.U. 1961.

```
            \thereforeCULTUYF CRNTEN DESIGN
                                    POR KAN*SIS STATE UNIVFRSITY
                        MEANITAmTAN, RANSAS
                    by
                    MICYIADL TUNG-KEN YU
                    B. Arcl., Chenğ-Kung University
                            Taiwan, China, 1958
```


## AN ABSTMACT OF A THESIS

```
submitted in partial fulfillment of the
reguirements for the defree
MASTER OF ARCIFTECTURD
Department of Architecture
KANSAS STATE UNIVERSITY Manhattan, Kansas
```

The proposed cultural center design is primarily an exercise of space relation. The space arrancement of the physical structure must satisfy not only the functions of the buildings, but also must create an atmosphere of the containment. Arranaing this building group is an imarinative exercise of the greatest complexity. There are numerons factors to control, both practical and aesthetic, which are:

1. The establishment of a functinnal relationship throughout the corposition, in addition to maintaining a simple and effective means of communcation.
2. The reconnition of acoustical requirements in the architectural design.
3. The study of unity and harmony of the group as a whole and of continnity between its varied parts.
4. Academic requirements combined with public usare.

The planning of the larger area recuires a uniform concept to hold together the individual parts and to make ther function as architectire. The zeneral concept and individual details demanded ecual attention. The demancs of acoustics and use influenced the design. All of these fundamental considerations are part of the designer's obligation. It is throurh the recoñnition of this obligation and careful exercise of design principles that he will control the desifn of the cultural center.

The education center is a three story building. This Y-shaped building was derived from acoustical considerations such as diffnsion, diffraction, and sound isolation and insula-
tion. The main entrance, lobby and three rehearsal roms are located on the first floor. The sceond floor contains the offices, class rooms, the library and the shop, with exits to the auditorium and the little, theater, and the loading dock. Most of the practice rooms and studios are located on the third floor. The elevator core and stair-case are in the center of the plan to assurc concentration and efficient locations of the vertical transportation. The poured in place fold-plate roof provides both a center of interest and cood diffusion in rooms below.

The a ulitoriun envelope is circular in form. The shape of the auditorim, however, was dictated by acoustical requirements. It is zurronded by the intermission and transition area acting as a sound barrier, where the lobby, longes, refreshment area anll rest rooms are locatef. The proscenium starge is the core of the presentation area, and related to the freen rooa, dressing roons, and stage house. The hollow blocks on the ontside walls are used as sun-screen and also as horizontal balance of huge stage honse.

The little thenter is designed for experimental mse. The stage and seiting can be changed for different performances. Tie circular-shaped plan and thin shell roof provide balance for the coupositinn.

The viev and circulation of people in the whole center is al $=0$ a major consideration in the site development. Circulation around the sunlien garden provides a landscape clement that ties
all the bnildings together and adds to the cultural atmosphere of the center.

In sumary, the desi foner has used his ability to understand, and to analyze the acnustical needs and the characteristics of the peonle and their cultural needs; the consideration of the aesthetic, by creatiny imaginative, functional forms in secking a solution that will provide a pleasing architectural and acoustical environment.

