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Abstract 

With recent advances in artificial intelligence, machine learning (ML) approaches have 

become an attractive tool in petroleum engineering, particularly for reservoir characterizations. A 

key reservoir property is hydrocarbon recovery factor (RF) whose accurate estimation would 

provide decisive insights to drilling and production strategies. Therefore, this study aims to 

estimate the hydrocarbon RF from various reservoir characteristics, such as porosity, permeability, 

pressure, and water saturation via the ML. We applied three regression-based models including 

the extreme gradient boosting (XGBoost), support vector machine (SVM), and stepwise multiple 

linear regression (MLR) and various combinations of three databases to construct ML models and 

estimate the oil and/or gas RF. Using two databases and the cross-validation method, we evaluated 

the performance of the ML models.  In each iteration 90 and 10% of the data were respectively 

used to train and test the models. The third independent database was then used to further assess 

the constructed models. For both oil and gas RFs, we found that the XGBoost model estimated the 

RF for the train and test datasets more accurately than the SVM and MLR models. However, the 

performance of all the models were unsatisfactory for the independent databases. Results 

demonstrated that the ML algorithms were highly dependent and sensitive to the databases based 

on which they were trained. Results of statistical tests revealed that such unsatisfactory 

performances were because the distributions of input and output features in the train datasets were 

significantly different from those in the independent databases (p-value < 0.05).  
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Chapter 1 - Introduction 

Successful exploration and production of a hydrocarbon reservoir have always been 

challenging in petroleum engineering. Because of high fluctuations in oil and gas prices, it is 

necessary to determine, if a field is economically feasible to be invested or not. A conventional 

reservoir goes through different stages during its lifetime, namely exploration, appraisal, 

development, production, and lastly abandonment. Once a reservoir is discovered (exploration 

stage), the main challenge is to determine whether it has high potential to produce substantial 

amount of hydrocarbon and subsequently yield enough profit. Even for a currently producing 

reservoir, one still needs to analyze its performance and production rate to assure profits above 

economical margins.  

 The performance of a reservoir influences its economic feasibility and is a function of 

reservoir quality. Reservoir performance may be quantified by the initial production rate of a 

reservoir and the decline in its production rate. Another indicator is the amount of recovered 

hydrocarbon from the initial volume of hydrocarbon in a reservoir (Beaumont et al. 2019), also 

known as recovery factor (RF). The RF, ranging between 0 and 1, is a quantity to evaluate the fate 

of a reservoir. It is a function of displacement mechanisms, such as water drive, gas cap, rock 

compaction drive, solution gas, and gravity drainage (Schlumberger 2020a). Its value may be 

determined at different stages of a reservoir lifetime. However, in this study we refer to ultimate 

recovery factor by RF.  

There exist different methods to determine the RF during the lifetime of a reservoir. When 

a field is in its appraisal phase and no production data are available, analogs and empirical 

formulas, e.g., history matching and volumetric reserve estimation, are commonly used. Such 

methods, however, generally come with substantial uncertainties due to the lack of adequate 



2 

analogs (Aliyuda & Howell 2019). During the production phase, dynamic properties of a field vary 

with production and time and, thus, the RF determination is influenced by enhanced and improved 

recovery methods as well as more data being collected from a field. Once approaching the 

abandonment phase, the emphasis should be more on economical margin, and how close the field 

production is to such a margin. At the plateau production phase, the RF is typically determined by 

simulations and dynamic reservoir modeling. However, at late stages of production and when the 

plateau production is no longer in place, the decline curve analysis should be analyzed. Various 

methods used at different field life stages may lead to different RF determinations and uncertainties 

(Aliyuda & Howell 2019). In addition to the decline curve analysis, one may apply the material 

balance method to determine the reserve and, accordingly, the recovery factor (Maselugbo et al., 

2017; Omoniyi & Adeolu, 2014). Both the material balance and production decline curve analysis 

methods calculate reserves and recovery factor from the performance of a field (Omoniyi & 

Adeolu 2014).  

The aforementioned methods are time consuming, and their results may have a wide range 

of uncertainties (Ling et al. 2013; Parish et al. 1993; Muskat & Woods 1944). Moreover, the RF 

is a function of multiple variables e.g., permeability, temperature, and gas oil ratio (GOR), which 

may not be necessarily incorporated in such methods. In addition, those methods are not cost 

efficient. With recent advances in artificial intelligence and data analytics, one may construct a 

machine learning-based model to estimate the RF from other available reservoir characteristics. 

Such models may provide a cost efficient and accurate platform as well as better insights into 

reservoir characterization and hydrocarbon production, if implemented appropriately.  

Machine learning (ML) techniques have been previously used to estimate the RF (Aliyuda 

et al. 2020; Alpak et al. 2019; Chen et al. 2019; Sharma et al. 2010). For example, Lee & Lake 
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(2015) applied various methods including multiple linear regression (MLR), MLR with sequential 

feature selection, artificial neural networks (ANN), and Bayesian network to estimate both oil and 

gas RFs. In their study, the ANN and MLR with sequential feature selection showed better 

performance than the other two methods. Aliyuda & Howell (2019) applied the MLR and support 

vector machine (SVM) with Gaussian kernel on 93 reservoirs from the Norwegian Continental 

Shelf. 75 reservoirs were from the Norwegian Sea, the Norwegian North Sea, and the Barents Sea, 

and the remaining 18 reservoirs from the Viking Graben in the UK sector of the North Sea. Aliyuda 

& Howell (2019) found that the SVM model outperformed the MLR model.  

In another study, Chen et al. (2019) applied the ANN approach to develop predictive oil 

RF models with different sets of input data using the database TORIS and identified 19 principal 

features (out of 70) in the construction of their ML model. Tewari et al. (2019) used six different 

approaches, i.e., random tree, random forest, SVM, bagging, radial basis function, and multilayer 

perceptron and compared them with their proposed ensemble estimator (E2) model. Ensemble 

methods are classifier algorithms that develop multiple classifiers and make inferencing using the 

weighted vote of multiple estimations that they have made (Dietterich 2000). Tewari et al. (2019) 

showed that their E2-based model outperformed the other six methods.  

In the literature, most ML studies divide a database into train and test splits. Although the 

performance of ML models is evaluated using the test dataset, an independent database with no 

data overlap is not used to further assess the accuracy and reliability of ML models constructed. 

Therefore, the main objectives of this study are to: (1) apply the extreme gradient boosting 

(XGBoost) approach to develop an ML-based model, (2) compare its performance with that of 

multiple linear regression (MLR) and support vector machine (SVM) in the estimation of oil and 
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gas RFs using reservoirs from around the world, and (3) address the database dependence of 

accuracy and uncertainty in ML-based models. 

Three main hypothesis were devised for this project and they were: (1) An efficient machine 

learning model proposed for estimating the RF should identify reservoir drive mechanism 

attributes (e.g., pressure and temperature production rate) and reservoir quality factors (e.g., 

porosity and permeability) as important features. (2) The chosen algorithm should create the model 

based on reservoir drive mechanism attributes and reservoir quality factors, such as porosity, 

permeability, initial reserves, reservoir pressure and temperature, and (3) the models constructed 

should have a satisfactory and relatively accurate estimations on new and unseen data 
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Chapter 2 - Materials and Methods 

 2.1. Databases 

 2.1.1. Commercial database 

The commercial database analyzed in this study is the same one that Lee & Lake (2015) 

used. This database contains more than 1200 samples including reservoirs with different geologic 

formations from around the world. The oil RF values were reported for more than 600 samples, 

while the gas RF values only available for more than 300 cases. For each sample representing a 

reservoir, there exist more than 200 numerical and categorical features, such as porosity, 

permeability, reservoir fractures, and recovery factor. 

 2.1.2. Bureau of Ocean Energy Management (BOEM) Atlas of Gulf of Mexico 

This database contains the oil and gas reserves of the outer continental shelf region of Gulf 

of Mexico (Burgess et al. 2019). There exist more than 13000 samples and more than 80 features 

for each sample. This is the most complete database with only a few missing values. It includes 

samples with both oil and gas recovery factor values. 

 2.1.3. Tertiary Oil Recovery Information System (TORIS) database 

TORIS is a suite of databases gathered by the National Petroleum Council and used by the 

US Department of Energy to identify and characterize US oil resources and further strategize their 

plans. It consists of more than 1300 reservoirs (samples) and more than 60 categorical and 

numerical features for each sample. TORIS is an old database strictly compiled for oil reservoirs 

and was used in combination with other databases to estimate the oil RF only.  
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 2.1.4. Gas Information System (GasIS) database 

GasIS is a merged database, a combination of multiple pre-existing datasets. It is the first 

national public database containing information on multiple reservoir properties and ultimate 

reservoir recovery for gas reservoirs.  Created by the Department of Energy (Hugman et al., 2000), 

GasIS consists of gas reservoirs with more than 19000 samples and 186 categorical and numerical 

features. The database, however, has many missing values. After cleaning up by omitting the 

samples with missing RF values, only 8524 samples were remained.  

The Commercial and Atlas databases contain both oil and gas RF data, while the GasIS 

and TORIS databases only the gas and oil RF data, respectively. To avoid data overlap among the 

databases used in this study, we assured samples were presented in only one database and not 

repeated in other databases. Figure 2.1 presents the oil and gas RFs versus the permeability 

(millidarcy) and porosity (ft3/ft3) for the databases used in this study. This figure shows the range 

of each variable and the trend between the RF and permeability as well as porosity within each 

database. As can be seen, the plots are scattered, and there is no strong correlation between the RF 

and permeability or porosity. 
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Figure 2.1.  Oil and gas recovery factors against permeability (millidarcy) and porosity 

(ft3/ft3) for different databases used in this study. 

To construct the ML-based models and address their database-dependent accuracy and 

reliability in the estimation of the oil and gas RFs, the databases collected in this study were merged 

using different combinations. For example, for the oil RF we combined the TORIS and 

Commercial databases (named TC), TORIS and Atlas databases (named TA), Commercial and 

Atlas databases (named CA), and all the three databases (named TCA). Similar approach was used 

for the gas RF; CA represents Commercial combined with Atlas, GC denotes GasIS combined 

with Commercial, GA is GasIS combined with Atlas, and GCA represents GasIS combined with 

commercial and Atlas. Whenever two databases were merged, the third one was used as an 

independent database for further evaluation of the constructed ML models.  
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 2.2. Data preparation 

We first selected those features that were common in all the oil or gas databases e.g., 

porosity, permeability, pressure, reservoir thickness, temperature, and reserves. All the features 

that had reservoir information after the exploration phase e.g., production rate and cumulative 

production were removed simply because we aimed to propose a model estimating the RF from 

data collected at early stages of a reservoir’s life. To ensure that the selected features were not 

highly correlated with each other, Spearman’s rank correlation coefficient (also known as 

Spearman’s Rho test) was used to determine the correlation between any two features. Table 2.1 

lists those features used in the ML algorithms and their limits in both oil and gas databases. 

Reserves in the GasIS and Atlas databases indicate the amount of hydrocarbon remaining in 

reservoirs that are commercially recoverable. Although it is not clear what reserves represent in 

the Commercial and TORIS databases, we assumed the same definition as in GasIS and Atlas. 

After the feature selection, we sorted the data based on the target feature (i.e., RF) and 

omitted samples with missing RF values followed by removing outliers. To do that, each feature 

was capped from a lower to an upper limit depending on each feature nature and its histogram. 

Finally, we removed any samples that had more than 55% of its values missing.  
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Table 2.1.  Features selected to construct the machine learning-based models and numerical 

intervals for each feature used in oil and gas databases. 

Oil Oil databases Gas Gas databases 

 

API Gravity 

Bo (RB/STB) 

GOR* (MSCF/RB) 

Water saturation 

Temperature (℉) 

Pressure (psi) 

Thickness (ft) 

Reserves (STB) 

Permeability (mD) 

Porosity (ft3/ft3) 

Area (acre) 

Oil RF 

 

 

1 ≤  Bo  ≤ 3 

0 ≤ GOR ≤ 60  

0 ≤𝑆𝑤 ≤ 1 

0 ≤ Reserves ≤ 5×1011 

0 ≤ ϕ ≤ 1 

0 ≤ Oil RF ≤ 1 

 

GOR (MSCF/RB) 

Water saturation 

Temperature (F) 

Pressure (psi) 

Thickness (ft) 

Reserves (MMSCF) 

Permeability (mD) 

Porosity (ft3/ft3) 

Area (acre) 

Gas RF 

 

0 ≤ GOR ≤ 109 

0 ≤ Sw ≤ 1 

0 ≤ Reserves ≤ 4×108 

0 ≤  ≤ 1 

0 ≤ Gas RF ≤ 1 

API: American Petroleum Institute, Bo: oil formation volume factor (which depends on 

temperature and pressure), GOR: Gas Oil Ratio, MSCF/RB: Thousands Standard Cubic feet per 

Reservoir Barrel, STB: Stock Tank Barrel, 𝑆𝑤: water saturation, 𝜙: porosity, MMSCF: Million 

Standard Cubic Feet, RF: recovery factor. 

 

 Missing value imputation is a common strategy employed to tackle incomplete datasets 

(Lin & Tsai 2020). An oversimplified imputation method is to replace missing values of a feature 

with its mean, which typically results in rough approximations. In this study, however, we first 

sorted all the samples based on their RF values ascendingly, then divided each feature into smaller 

subsamples (SS) of 10 entries and assured that the ratio (R) of the missing values (MS) to the total 

size of the sub-sample (TSS) was less than 10%. We next replaced the missing values with the 

mode of each subsample. The logic behind this imputation method is to better estimate the missing 
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values for one feature based on similarities in the RF values. The workflow of the proposed 

imputation method is summarized in Figure 2.2. 

We used the Gaussian rank transformation to convert the distribution of each feature to 

approximately Gaussian. This method ranks each value of a feature based on its magnitude from 

lowest to highest (larger values of higher ranks). To remove bias and minimize uncertainties, one 

should have dimensionless input and output features with similar ranges and magnitude variations 

between 0 and 1 (Sola & Sevilla 1997). For this purpose, using the minimum and maximum values 

of each feature, the input and output data were scaled using the equation XSTD = 

(x-xmin) (xmax-xmin)⁄  followed by Xscaled = XSTD × (max - min ) + min (Pedregosa et al. 2011) in 

which min and max are, respectively, desired lower and upper limit values.  In this study, the limits 

were chosen to be 0 (min) and 1 (max).  

To construct the ML models, the data were randomly divided into two splits; 90% to train 

the model and 10% to test it. The 90%-10% split was selected so that the ML algorithms have as 

many samples as possible for training. Jaiswal et al. (2020) also used the same train and test split 

ratio in their study. For cross validation and optimizing the model parameters, the train dataset was 

used to create smaller datasets (called folds). All the preprocessing steps carried out on the test 

datasets and the independent databases were performed using the same parameters used for the 

train datasets (Kapoor & Narayanan 2021). This means that the imputation performed on the train 

and test datasets were performed separately using the mode of each feature specifically in each 

database. However, no imputation was applied to the independent databases. Instead, any sample 

with missing value was removed. This is because the goal of further evaluating the proposed ML 

models using the independent databases was to critically assess them based on real data not 
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imputed ones. As stated earlier, samples within the independent databases were not available in 

either the train or test datasets (repeated samples were removed to avoid data overlap). 

 

Figure 2.2.  Imputation steps used to replace missing values in all the databases used to 

construct machine learning models.  
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 2.3. Machine learning algorithms 

In this study, we used the Python programming and applied extreme gradient boosting 

(XGBoost), support vector machine (SVM), and multiple linear regression (MLR) each of which 

is briefly described in the following. Although there are various ML algorithms, we selected these 

three because the XGBoost is among the latest ML algorithms developed. It is open access and 

has a user-friendly platform. The SVM is widely used in the petroleum industry for ML purposes 

(Tan et al. 2021; Chawshin et al. 2021; Olukoga & Feng 2021; Maiti et al. 2021; Xu et al. 2020). 

The MLR is simple and among the basic ML models. It is to compare with the other two more 

complicated ML algorithms. 

 2.3.1. XGBoost 

The XGBoost is a decision tree based ensemble machine learning algorithm based on a 

gradient boosting (Chen et al. 2016). It is a supervised algorithm and can be used for both 

regression and classification tasks (Osman et al. 2021). The XGBoost is based on a gradient 

boosting framework that convert weak learners to strong ones in a sequential manner (Tang et al. 

2021). In each iteration, gradient boosting machines (GBM) identify weak learners and try to 

empower them using higher weights and eventually convert them to strong learners, which 

improves the performance. Compared to the GBM, the XGBoost is an improvised version that 

yields more accurate results with less amount of computing resources. Some of those optimizations 

are parallelized implementation and L1 and L2 regularization to avoid overfitting (Chen et al. 

2016). 
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 2.3.2. Support Vector Machine 

The SVM is a supervised algorithm that aims to construct a model to predict the category 

of unseen data using many different classes found in a set of training samples based on the 

generalized portrait algorithm (Zhou et al. 2016; Smola & Scholkopf 2004). In the support vector 

regression (Vapnik 1995), hyperplanes would be constructed, which acts as decision boundaries 

and make estimations of an output. Such hyperplanes are created through kernels, functions that 

convert input information into desired type for a support vector hyperplane. Hyperplanes are 

constrained by boundary lines that are epsilon (ε) units away around the hyperplane to construct a 

border among samples. The SVM regression is carried out by finding the best fit hyperplane that 

houses most number of data and are within the ε value rather than minimizing the error between 

measured and estimated values.  

 2.3.3. Forward selection stepwise multiple linear regression 

 The stepwise MLR is a simple and basic machine learning model in which those input 

variables significantly contributing to outputs are detected via the t-test and then used to establish 

a linear-based relationship (Smith 2018). In each iteration, a feature is added to the model until 

there is no statistically significant parameter left (forward stepwise). The performance of the model 

is optimized through this process of feature addition (Jahns 1966). 

 2.4. Learning curves 

In the ML, over- and/or under-fitting may happen because of insufficient or excessive 

number of training samples. To avoid it, we investigated learning curves for each algorithm by 

constructing a basic model using the first sample in the train dataset. Predictions were then carried 

out for the same sample in the train dataset as well as the first sample in the test dataset. Next, a 

similar basic model was constructed based on the first two samples in the train dataset and used to 
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estimates the RF values for the first two samples in the train and test datasets. This process was 

iterated until all the samples in the train dataset were included in the basic model. The effect of 

adding samples was quantified by calculating the RMSE value. Figure 2.3 shows different 

schematic learning curves and over- or under-fitting interpretations. The closer the train and test 

learning curves are, the less the over-fitting or under-fitting would be. Note that the test learning 

curve far below and above the train learning curve, respectively, indicate substantial under- and 

over-fitting. 

 

Figure 2.3.  The scheme of different possible learning curves and their over/underfitting 

interpretations due to sample size. 

 

 2.5. Hyperparameter tuning 

 For the XGBoost, the hyperparameters tuning was implemented using an in-house code. 

At each step, two hyperparameters were optimized and cross validated using 10 folds. For the 

database TC, however, we used 3 folds due to the limited number of samples in this database. The 

hyperparameters tuning process was iterated until all the parameters were tuned.  
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For the SVM, the hyperparameters were optimized through a grid search using the 10-fold 

cross-validation pipeline except for the database TC for which we used 3 folds. Tables 2.2 and 2.3 

present the name and value of the optimized parameters, respectively, for the XGBoost and SVM 

models and the CA database. 

Table 2.2.  Optimized hyperparameters of the XGBoost models developed for the oil and gas 

RFs obtained on the CA (Commercial combined with Atlas) database. 

Parameters Oil RF Gas RF 

Max depth 4 4 

Minimum child weight 6 3 

Learning rate 0.05 0.1 

Subsample 0.9 0.9 

Column sample by tree 1 1 

Objective reg:squarederror reg:squarederror 

Evaluation metric rmse rmse 

Alpha 0.3 0.8 

Lambda 0.04 0.08 

Column sample by level 1 0.9 

Gamma 0.01 0.01 

Max delta step 0.1 0.1 

Number of boosting rounds 999 999 

 

Table 2.3.  Optimized hyperparameters of the SVM models developed for the oil and gas RFs 

obtained on the CA (Commercial combined with Atlas) database. 

Parameters Oil RF Gas RF 

C 10 100 

Epsilon 0.1 0.01 

Gamma 1 1 

Kernel rbf rbf 
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 2.6. Feature importance 

The feature importance was carried out using the SHapley Additive exPlanations (SHAP) 

for the XGBoost and SVM models. SHAP describes how input features contribute to the estimation 

of a target variable (Lundberg & Lee 2017). Based on the theory proposed by Shapley (1953), it 

determines the output of a game according to each player’s contribution. 

The feature importance for the MLR models was performed by investigating the regression 

coefficient of the input features (Male et al. 2020). This is because both the input and output 

variables were scaled between 0 and 1, and, thus, the greater the coefficient would be, the more 

important the feature is. 

 2.7. Workflow of the constructed models  

 Figure 2.4 shows the workflow including the data processing and model development. All 

models were constructed using the same procedure but different ML algorithms (i.e., XGBoost, 

SVM, and MLR) and combinations of databases. After each model was constructed, it was used 

to estimate the oil and/or gas RFs for the train and test datasets as well as the independent database. 

A total of 24 models were developed using the three algorithms. Each model was evaluated 

statistically using the RMSE, R2, and r values and visually using the scatterplots and the spread of 

data points around the 1:1 line. 
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Figure 2.4.  The workflow used here to develop the ML-based models and evaluate them. 

Normalization means converting the distribution of a feature to become approximately 

Gaussian, while standardization means scaling data between 0 and 1. 

 

 2.8. Model evaluation criteria 

 To evaluate the accuracy and reliability of the developed ML-based models, the root mean 

square error (RMSE), Pearson’s correlation coefficient (r), and coefficient of determination (R2) 

were calculated as follows 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑒−𝑥𝑚)2𝑁
𝑖=1

𝑁
         (1) 

𝑟 =
𝐶𝑜𝑣(𝑥𝑒,𝑥𝑚)

𝜎𝑥𝑚𝜎𝑥𝑒
           (2) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
           (3) 

where xe is the estimated value, xm is the measured value, N is the number of samples, Cov(xm, xe) 

is the covariance of variables xm and xe, σxm and σxe are the standard deviations of measured and 

estimated values, respectively, SSres is the residual sum of squares, and SStot is the total sum of 

squares. One should note that based on the definition of R2 given in Eq. (3), its value could be 

positive or negative depending on the ratio SSres/SStot (Edwards 1976).  
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Chapter 3 - Results 

 3.1. Learning curves 

Figure 3.1 shows the learning curves for the XGBoost models developed for estimating the 

oil and gas RFs using the CA database. At lower training sample sizes (< 3000), the test learning 

curves are far above the training learning curves indicating over-fitting for both oil and gas RFs. 

However, at greater training sample sizes, both training and test learning curves converge to some 

constant value close to each other. Results presented in Figure 5 indicate that the size of the train 

dataset was large enough. Furthermore, the RMSE value of the train dataset near the RMSE value 

of the test dataset demonstrates that the constructed models were not over- or under-fitted when 

the entire train dataset was used. Similar results were obtained for the other algorithms and 

databases.  
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Figure 3.1.  Learning curves of the XGBoost models developed for the (top) oil and 

(bottom) gas RFs using the CA (Commercial combined with Atlas) database. 

 

 3.2. Oil RF estimations 

 The RMSE, R2, and r values for the XGBoost, SVM, and MLR models and different 

combinations of the oil RF databases are summarized in Table 3.1. Comparing the RMSE, R2, and 

r values reported for the train datasets and different models shows that the XGBoost approach 

estimated the oil RF more accurately than the SVM and MLR models. Such values for the test 

datasets indicate that both the XGBoost and SVM models estimated the oil RF with similar 

accuracy but better than the MLR model. Results including the RMSE, R2, and r values for the 
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independent databases, however, demonstrate that the accuracy of all the three models was almost 

similar (Table 3.1). Recall that the TCA database contains all the data from the TORIS, 

Commercial, and Atlas databases. Therefore, the independent database results are not available for 

this combination. The negative R2 values obtained for the independent databases indicate that the 

constructed models could not accurately estimate the RF for new data from a different database. 

R2 < 0 means that the estimations are worse than those based on the average value of the measured 

data. From Eq. (3), one should expect R2 < 0 when the SSres value is greater than the SStot value. 

The small Pearson’s correlation coefficient values (r < 0.30) also indicate that the estimated RFs 

were weakly correlated to the measured values in the independent databases. 

Figure 3.2 shows the results of the oil RF estimated via the XGBoost method against the 

measured value for the train and test datasets as well as the independent databases. As can be seen, 

the estimations are around the 1:1 line for the train and test datasets. Generally speaking, the value 

of RMSE decreases from top to bottom; RMSE = 0.120 (train) and 0.134 (test) for the TC database, 

while 0.035 (train) and 0.111 (test) for the TCA database. The TCA database is the combination 

of three databases with the largest number of samples. Results imply that the performance of the 

XGBoost model increased as the number of samples in the train dataset increased. Figure 3.2 also 

shows the results for the independent databases and the combinations TC, TA, and CA. Substantial 

greater RMSE values reported for the independent databases compared to those for the train and 

test datasets presented in Table 3.1 and Figure 3.2 clearly demonstrate that the ML models depend 

on the databases used to construct them. This means although all the models provided reasonable 

estimates of the oil RF for the test datasets, they failed to accurately estimate the RF for the 

independent databases. We address the database-dependent accuracy and reliability of the 

proposed models in further detail in the Discussion section. 
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Table 3.1.  Calculated RMSE, R2 and r values for the three algorithms XGBoost, SVM, and 

MLR used to estimate the oil RF. The train datasets of TC, TA, CA, and TCA databases 

consisted of 1502, 4779, 4654, and 5461 number of samples, respectively. 

Algorithm XGBoost Regressor 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

TC 0.120 0.45 0.70 0.134 0.31 0.57 0.174 -0.14 0.17 

TA 0.071 0.81 0.91 0.112 0.53 0.73 0.204 -0.65 0.18 

CA 0.065 0.84 0.93 0.100 0.61 0.78 0.260 -1.50 -0.04 

TCA 0.035 0.96 0.98 0.111 0.56 0.75 - - - 

Algorithm Support Vector Machine Regressor 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

TC 0.135 0.30 0.55 0.135 0.29 0.55 0.169 -0.08 0.29 

TA 0.101 0.63 0.80 0.113 0.53 0.74 0.256 -1.62 0.09 

CA 0.100 0.61 0.78 0.100 0.61 0.78 0.285 -1.97 0.02 

TCA 0.110 0.57 0.75 0.130 0.41 0.65 - - - 

Algorithm Stepwise Multiple Linear Regression 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

TC 0.146 0.19 0.43 0.148 0.15 0.40 0.169 -0.08 0.30 

TA 0.125 0.46 0.65 0.122 0.42 0.66 0.205 -0.68 0.19 

CA 0.123 0.44 0.66 0.117 0.46 0.68 0.261 -1.50 0.02 

TCA 0.129 0.38 0.62 0.134 0.37 0.61 - - - 
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Figure 3.2.  The estimated oil RF by the XGBoost algorithm versus that measured for the 

train and test datasets as well as the independent database. CA represents Commercial 

combined with Atlas, TC denotes TORIS combined with Commercial, TA is TORIS 

combined with Atlas. 
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For the combination TC shown in Figure 3.2, the independent database is Atlas for which 

the estimated oil RFs are mainly restricted between 0.2 and 0.6, while the measured values mostly 

vary from 0 to 0.75. The reason for such a trend in the oil RF estimations is not clear yet. This, 

however, could be because the constructed model using the TC database estimates the oil RF for 

the train and test datasets mainly in the range of 0.2 and 0.6 (Figure 3.2). 

Generally speaking, the XGBoost algorithm tends to overestimate at the lower oil RFs, 

while underestimate at the higher RF values for the train and test datasets, as depicted in Figure 

3.2. Similar results were reported by Talluru & Wu (2017) and Lee & Lake (2015). Such a trend 

may be attributed to the fact that the databases used in this study contained samples with similar 

oil RFs, while their input features were substantially different. Such a complexity in data would 

decrease the efficiency of ML algorithms to adequately find and learn patterns among input 

features and target variables. Table 3.2 lists two samples with different oil RFs but similar input 

values and two other samples with similar oil RFs but different input features.  

Table 3.2.  Two samples with similar input features but different oil RFs (top two) and two 

samples with different input features but similar oil RFs (bottom two). 

API 

gravity 

Bo 

(RB/STB) 

GOR 

(MSCF/RB) 

𝑆𝑤 

(-) 

T 

(℉) 

P  

(psi) 

Thickness 

(ft) 

Reserves 

(STB) 

k 

(mD) 

𝜙 

(ft3/ft3) 

Area 

(acre) 

Oil 

RF 

35 1.5 0.75 0.56 212 3823 141.1 2.46 × 109 200 0.23 20501 0.59 

37 1.1 0.7 0.25 226 4357 141 2.56 × 109 25 0.14 20501 0.15 

30 1.3 0.54 0.33 171 2404 673 1.54 × 1010 1 0.09 73885 0.3 

42 2 0.95 0.35 281 5163 10 2.4 × 106 62 0.16 742 0.3 

API: American Petroleum Institute, Bo: oil formation volume factor, GOR: gas oil ratio, 𝑆𝑤: water 

saturation, T: temperature, P: pressure, k: permeability, 𝜙: porosity, RF: recovery factor. 
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 3.3. Gas RF estimations 

 The RMSE, R2, and r values for different combinations of the databases used to estimate 

the gas RF were calculated and presented in Table 3.3. Comparing the RMSE, R2, and r values 

reported for the three ML algorithms indicates that, in general, the XGBoost model estimated the 

gas RF more accurately than the SVM and MLR models for the train datasets, similar to the oil 

results. For the XGBoost, we found that as the train dataset became larger, the RMSE decreased 

from 0.190 for the smallest database (i.e., GC) to 0.054 for the largest database (i.e., GCA). For 

the SVM and MLR, however, the RMSE value for the GCA database was greater than those for 

the GA and CA databases.  

For the test datasets, we found that the accuracy of both XGBoost and SVM models were 

similar. Although the SVM model estimated the gas RF more accurately than the XGBoost for the 

GC and GA databases, the XGBoost outperformed the SVM model for the GCA database. Both 

models provided similar results for the CA database. We also found that the MLR model 

estimations were not as accurate as the XGBoost and SVM predictions.  

Similar to the results of oil RF, the performance of all the algorithms for the independent 

databases was not satisfactory. As listed in Table 3.3, the RMSE values for the independent 

databases are substantially greater than those for the train and test datasets. Recall that the database 

GCA was the combination of the GasIS, Commercial, and Atlas databases, and, thus, there was no 

independent database for further evaluations. Based on the RMSE values reported in Table 3.3, 

the XGBoost model generally estimated the gas RF for the independent databases more accurately 

than the SVM and MLR models. Only for the GC database, the MLR model had a slightly better 

performance than the XGBoost and SVM models. In the assessment of the ML models using the 
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independent databases, we also found R2 < 0, similar to the oil RF results (Table 4), which indicate 

unsatisfactory estimations, confirmed by small r values. 

The substantially smaller RMSE, R2, and r values for the independent databases compared 

to those for the train and test datasets demonstrate the database dependence of the ML 

performances. We address this in further detail in the Discussion section.  
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Table 3.3.  Calculated RMSE, R2 and r values for the three algorithms XGBoost, SVM, and 

MLR used to estimate the gas RF. The train datasets of GC, GA, CA, and GCA databases 

consisted of 5838, 10040, 10251, and 15878 number of samples, respectively. 

Algorithm XGBoost Regressor 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

GC 0.190 0.36 0.62 0.217 0.18 0.43 0.331 -1.30 0.20 

GA 0.057 0.93 0.97 0.093 0.82 0.90 0.694 -18.70 -0.1 

CA 0.064 0.92 0.96 0.094 0.82 0.91 0.553 -5.60 -0.05 

GCA 0.054 0.95 0.98 0.158 0.58 0.76 - - - 

Algorithm Support Vector Machine Regressor 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

GC 0.221 0.19 0.44 0.212 0.14 0.38 0.356 -1.70 0.12 

GA 0.079 0.87 0.93 0.079 0.86 0.93 0.825 -26.90 0.03 

CA 0.083 0.86 0.93 0.094 0.82 0.91 1.342 -37.70 0.12 

GCA 0.160 0.56 0.75 0.165 0.54 0.74 - - - 

Algorithm Stepwise Multiple Linear Regression 

       Dataset 

 

Database 

Train Test Independent 

RMSE R2 r RMSE R2 r RMSE R2 r 

GC 0.220 0.14 0.37 0.228 0.10 0.32 0.316 -1.10 0.34 

GA 0.128 0.66 0.81 0.130 0.64 0.80 1.070 -45.90 -0.02 

CA 0.137 0.61 0.78 0.132 0.64 0.80 0.862 -14.97 -0.15 

GCA 0.191 0.38 0.61 0.184 0.43 0.66 - - - 

  



27 

 

Figure 3.3.  The estimated oil RF by the XGBoost algorithm versus that measured for the 

train and test datasets as well as the independent database. GC denotes GasIS combined 

with Commercial, GA is GasIS combined with Atlas, CA represents Commercial combined 

with Atlas 
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As shown in Figure 3.3, we found that the constructed XGBoost models tend to 

overestimate the gas RF at smaller RF values, while underestimate at higher RF values regardless 

of the data combination set. As stated earlier, this could be explained by the fact that some samples 

in the train dataset had similar input features, while their gas RFs were different or vice versa. 

Table 3.4 lists two samples with similar input features but different gas RF values as well as two 

other samples with different input features but similar gas RFs. 

Table 3.4.  Two samples with similar features but different gas RF (top two) and two samples 

with different features but similar gas RF (bottom two). 

GOR 

(MSCF/RB) 

𝑆𝑤 

(-) 

T 

(℉) 

P 

(psi) 

Thickness 

(ft) 

Reserves 

(MMSCF) 

k 

(mD) 

𝜙 

(ft3/ft3) 

Area 

(acres) 

Gas 

RF 

0 0.10 160 3486 75 1×106 2 0.08 25946 0.74 

0 0.20 223 4394 69 7.1×105 2 0.05 25946 0.86 

0 0.30 230 5318 1299 1.41×109 70 0.15 1150027 0.78 

0 0.08 268 1967 299 2.12×106 200 0.23 11120 0.74 

GOR: gas oil ratio, 𝑆𝑤: water saturation, T: temperature, P: pressure, k: permeability, 𝜙: porosity, 

RF: recovery factor. 

 

 3.4. Feature importance 

To investigate the significance of input variables, we performed the feature importance 

analysis. For the XGBoost, we used SHAP that determines which features have more impact on 

the constructed model and how the magnitude of features affect model predictions. Figure 3.4 

shows the results of SHAP for the oil and gas RF and the CA (Commercial combined with Atlas) 

database. Interestingly, the constructed models used influential features in petroleum industry 

(e.g., porosity, Bo, and GOR) to estimate the RF. They also shed light on features traditionally not 

considered to be influential, such as permeability and temperature. Comparing the oil and gas RF 

graphs shown in Figure 3.4 implies the similarities in the feature importance selection, which 

further demonstrates how the pattern recognition in the oil and gas models were similar indicating 
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both models used similar protocols to select important features. This means the workflow used to 

construct the ML models is logical with no data leakage (Kapoor & Narayanan 2021). Similar 

feature importance results were obtained for other combinations of databases. For the oil RF and 

the XGBoost algorithm, the top 4 features selected in the databases TA, CA, and TCA were similar. 

The feature importance, however, was different in the TC database, which could be due to its 

limited number of samples. For the gas RF, the top 3 features (i.e., reserves, area, and thickness) 

were similar in the databases GA, CA, and TCA. Similar to the oil RF results, the GC database 

had a different feature importance selection. This may be because of the small size of this database 

compared to the other ones. 

Results of SHAP showed that the SVM prioritized features very similar to the XGBoost. 

The top 4 features for oil (i.e., reserves, area, thickness, and GOR) and the top 3 features for gas 

(i.e., reserves, area, and thickness) were exactly the same variables selected by SHAP and the 

XGBoost model. This further supports the workflow proposed to construct the ML models.  

For the MLR, we investigated the feature importance based on the coefficient of input 

features, the greater the coefficient the higher the impact on the model. Results showed that the 

variable reserves was the top feature selected by the MLR algorithm for both oil and gas RFs 

models except for the TC and GC databases. We found that each MLR model had a different order 

of feature importance. However, temperature and GOR for gas and temperature and API oil gravity 

for oil were the commonly-used influential features. 
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Figure 3.4.  Feature importance of the XGBoost model in the estimation of oil RF (top) and 

gas RF (bottom) models for the databases CA (with oil RF as target variable) and CA (with 

gas RF as target variable). Since the data were scaled between 0 and 1, the blue color 

denotes the smaller values close to 0, while the red color represents greater values near 1. 

The positive SHAP values indicate positive influence on the model construction and more 

accurate prediction. However, the negative SHAP values show the negative impact on the 

model. 
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Chapter 4 - Discussion 

As stated earlier, the RF is a function of reservoir’s displacement (also known as reservoir 

drive mechanism or natural drive). Reservoir drive mechanisms are natural forces within a 

reservoir that move hydrocarbons through it (Schlumberger 2020b). In the order of efficiency, 

reservoir drive mechanisms are water drive (bottom or edge), gas cap, solution gas, gravity 

drainage, and rock or compaction drive. A reservoir may have one or a combination of several 

drive mechanisms. Drive mechanisms are themselves functions of reservoir qualities, which are 

capacities of a reservoir to store and transmit oil or gas. The quality of a reservoir is controlled by 

pore throat size distribution and pore geometry (including natural fractures), pore volume, 

permeabilities to hydrocarbon, water saturation (hydrocarbon pore volume), lateral continuity, 

number, position of flow units and containers, reservoir pressure, and drive mechanism (Beaumont 

et al. 2019). Accordingly, an efficient and reliable ML model should identify reservoir drive 

mechanism attributes (e.g., pressure and temperature) as well as reservoir quality factors (e.g., 

porosity and permeability) as the most important features (as shown in Figure 8) to accurately 

estimate the RF. We should note that the reservoir drive mechanisms were not available for all the 

databases in this study. However, features attributing to the drive mechanisms and reservoir quality 

e.g., porosity, thickness, permeability, and water saturation were available.  

ML models are developed mainly for prediction purposes. Therefore, they are expected to 

provide reasonable estimations, if evaluated using a new database including data not used to train 

and test such models. In the literature, most ML models were not assessed via an independent 

database. Schaap & Leij (1998) are among the pioneers who addressed the database dependence 

of ML models and their results. Those authors applied neural networks to train and test models for 

estimating capillary pressure curve and permeability in soils. Schaap & Leij (1998) found that their 
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ML models were optimal for databases based on which models were trained. However, the 

accuracy and reliability of ML models dropped down when evaluated using other independent 

databases.  Schaap & Leij (1998) concluded that the performance of ML models may substantially 

depend on data used to train and evaluate them. The train-test split is a process through which one 

would expose a model to unseen data and evaluate the performance of the model. The problem 

with that is train and test data are still derived from the same database. No matter how randomly a 

database is split, train and test data would still be similar to some extent.  

ML models produce reliable results, if and only if, test and train data are similar both 

experimentally (e.g., measurement methods and timing of the measurements) and statistically 

(feature distributions). One should expect the reliability of estimations for test data to drop 

significantly, if important features were measured at different stages of exploration or even 

production rather than one single stage. For instance, the feature pressure may vary over time at 

different stages of a field life. Accordingly, one should consistently use feature values measured 

at similar life stages of a field using similar methods across all reservoirs. Otherwise, such 

differences would impact the accuracy of an ML model. For example, for the databases used in 

this study, it is not clear whether porosity was measured on core samples or determined using sonic 

or density logs across all the databases. Such differences in measurements may substantially affect 

the ML results.  

As can be deduced from Tables 4 and 6, the performance of the constructed ML models, 

were unsatisfactory for the independent datasets. Using the t-test method, we statistically analyzed 

the similarity in the data. More specifically, we compared the features in the train datasets with 

those in the test datasets as well as those in the independent databases. Results presented for the 

oil and gas RFs in Table 4.1 showed no significant differences between the train and test datasets 
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at the 0.05 significance level (p-value > 0.05). However, we found p-values ≪ 0.05 when the oil 

and gas RFs in the train datasets were compared to those in the independent databases (Table 4.1). 

This means although the train and test datasets statistically showed similar RF values, the train 

datasets had significantly different RFs than the independent databases for both oil and gas. Similar 

results were obtained for the input features.  

Table 4.1.  p-values determined using the t-test by comparing the RF values in the train 

datasets with those in the test datasets as well as those in the independent databases for both 

oil and gas at the significance level of 0.05 (confidence level of 0.95). The p-values were 

calculated using the paired t-test and unequal variances. 

 

Database 

p–value  

train and test 

RFs 

Similar data? 

p–value  

train and 

independent RFs 

Similar 

data? 

Oil TC 0.18 Yes 2.65×10-33 No 

TA 0.31 Yes 2.82×10-13 No 

CA 0.42 Yes 1.18×10-12 No 

TCA 0.12 Yes - - 

Gas GC 0.27 Yes 0 No 

GA 0.51 Yes 1.00 × 10-45 No 

CA 0.65 Yes 3.95 ×10-3 No 

GCA 0.87 Yes - - 

 

The similarities in the train and test data (Table 4.1) might be because they come from the 

same combined database. However, the data in the independent databases are not necessarily 

similar to those in the train datasets. The dissimilarities in the train and independent data (Table 

4.1) are probably the main reason why performances of the ML models evaluated using the 

independent datasets were unsatisfactory.  

In addition to similarity in the data, we also investigated the similarity in the distributions 

of top three important input features (i.e., reserves, area, and thickness) as well as the RF. More 
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specifically, using the two-sample Kolmogorov-Smirnov test we determined whether two samples 

are from the same distribution at the significance level of 0.05. Table 4.2 presents the results for 

both oil and gas and the CA database. The statistic values less than the critical value (D) and p-

values greater than the significance level indicate that features in the train and test datasets come 

from the same distribution for both oil and gas. However, we found the statistic values greater than 

the critical value (D) and p-values substantially less than the significance level for the features in 

the train datasets and independent databases meaning that they should be from different 

distributions. Similar results were obtained for other database combinations.
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Table 4.2.  Results of the Kolmogorov-Smirnov test for the top three input features and RFs in the CA database and the 

corresponding independent databases TORIS (for oil) and GasIS (for gas). The significance level is 0.05. 

 

D
atab

ase 

 

F
eatu

re 

 D 

train 

and test 

datasets 

Statistic 

train 

and test 

datasets 

p-value 

train 

and test 

datasets 

Samples 

from same 

distributions

? 

D 

train dataset 

and 

independent 

database 

Statistic 

train dataset 

and 

independent 

database 

p-value  

train dataset 

and 

independent 

database 

Samples 

from same 

distributions

? 

CA 

(oil RF) 

RF 

0.063 

0.001 1.00 Yes 

0.060 

0.90 0.0 No 

Reserves 0.024 0.95 Yes 0.81 0.0 No 

Area 0.027 0.88 Yes 0.47 4.59×10-104 No 

Thickness 0.039 0.48 Yes 0.32 2.04×10-46 No 

CA 

(gas RF) 

RF 

0.042 

0.001 1.00 Yes 

0.017 

0.92 3.33×10-10 No 

Reserves 0.028 0.40 Yes 0.55 0.0 No 

Area 0.016 0.96 Yes 0.38 0.0 No 

Thickness 0.035 0.15 Yes 0.25 0.0 No 

D: Critical Value for the Two-sample Kolmogorov-Smirnov test (2-sided)
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We recommend that before one uses the constructed ML models to estimate the oil or gas 

RF, statistical tests should be conducted to investigate whether the distributions of input features 

in our train datasets are statistically similar to those in a new database for which the oil or gas RF 

estimations are desired. If the RF estimation is required for one sample (or reservoir), then the 

values of important features should be close to the values of means in the train dataset studied here. 
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Chapter 5 - Conclusion 

In this study, we used a total of 4 databases (Commercial, TORIS, Atlas, and GasIS) to 

construct machine learning models for the estimation of oil and gas recovery factors at the reservoir 

scale. For this purpose, we applied different combinations of the databases and three algorithms 

i.e., XGBoost, SVM, and MLR. Generally speaking, the XGBoost model estimated both oil and 

gas RFs more accurately than the SVM and MLR models for the train and test datasets. However, 

the performances of the three models were unsatisfactory when evaluated using the independent 

databases. Results showed that the constructed ML models and their performances depend on the 

databases used to train them. The statistical tests disclosed that the unsatisfactory accuracies of the 

ML models were because the input and output features in the train datasets were significantly 

different from those in the independent databases. We recommend evaluating similarities in the 

input features and their distributions before applying the constructed ML models to estimate the 

oil or gas RF.  
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