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THE LIND LEHMER CONSTANT FOR Zn
p

DILUM DESILVA AND CHRISTOPHER PINNER

(Communicated by Matthew A. Papanikolas)

Abstract. We determine the Lind Lehmer constant for groups of the form
Zn
p .

1. Introduction

Let G be a compact abelian group with normalized Haar measure μ and dual
group of multiplicative characters Ĝ. For f in Z[Ĝ], the ring of integral combina-
tions of characters, Lind [6] defines a logarithmic Mahler measure of f over G,

m(f) = mG(f) =

∫
G

log |f |dμ,

and an associated Lehmer constant for G,

λ(G) = inf
{
mG(f) : f ∈ Z[Ĝ], mG(f) > 0

}
.

The usual Mahler measure and Lehmer Problem thus correspond to taking G =
R/Z.

Here we shall be concerned with finite abelian groups. We shall write Zn for the
cyclic groups Z/nZ. In [6] Lind shows that for odd n,

λ(Zn) =
1

n
log 2,

that

λ(Z2) =
1

2
log 3, λ(Z2

2) =
1

4
log 3,

and conjectures from numerical evidence that for all n ≥ 2,

(1.1) λ(Zn
2 ) =

1

2n
log(2n − 1).

Further values of λ(Zn), for example when 420 � n, are obtained in [2]. Here we
determine the value of λ(Zn

p ) for any prime p. In particular we verify Lind’s p = 2
conjecture (1.1).

Theorem 1.1. For n ≥ 2,

λ(Zn
2 ) =

1

2n
log(2n − 1).
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For all n ≥ 1,

λ(Zn
3 ) =

1

3n
log(3n − 1),

and for any prime p ≥ 5,

λ(Zn
p ) =

1

pn
logMn,

with
Mn = min{apn−1

mod pn : 2 ≤ a ≤ p− 2},
where the ap

n−1

mod pn in the definition of Mn indicates the least positive residue.

Note that the case p = 3 can be combined with p ≥ 5 if one takes 2 ≤ a ≤ p− 1

in the definition of Mn. It is not hard to see that the ap
n−1

mod pn, 1 ≤ a ≤ p− 1,
are exactly the p− 1 solutions to

(1.2) xp−1 ≡ 1 mod pn.

Thus Mn can be equivalently defined as the smallest non-trivial positive integer
solution to (1.2). In particular we have λ(Z2

p) = 1
p2 log 2 if and only if p is a

Wieferich prime.

2. Lemmas

If G = Zm1
× · · · × Zmn

, then the characters on G take the form

χr1,...,rn(u1, ..., un) = exp(2πir1u1/m1) · · · exp(2πirnun/mn)

with 0 ≤ r1 ≤ m1 − 1,..., 0 ≤ rn ≤ mn − 1. For an

f(u1, ..., un) =
∑

0≤r1≤m1−1

· · ·
∑

0≤rn≤mn−1

a(r1, ..., rn)χr1,...,rn(u1, ..., un)

in Z[Ĝ] we have

mG(f) =
1

m1 · · ·mn
log |M(F )|,

where

F (x1, ..., xn) =
∑

0≤r1≤m1−1

· · ·
∑

0≤rn≤mn−1

a(r1, ..., rn)x
r1
1 · · ·xrn

n ∈ Z[x1, ..., xn]

and

M(F )=

m1−1∏
j1=0

· · ·
mn−1∏
jn=0

F
(
wj1

1 , ..., wjn
n

)
, w1=exp(2πi/m1), ..., wn = exp(2πi/mn).

Thus if G = Zn
p , writing

w = exp(2πi/p),

we just need to consider the values of

Mn(F ) =

p−1∏
j1=0

· · ·
p−1∏
jn=0

F
(
wj1 , ..., wjn

)
,

for F (x1, ..., xn) ∈ Z[x1, ..., xn].
Note that one can write

(2.1) Mn(F ) = F (1, ..., 1)

I∏
i=1

Ni, I =
pn − 1

p− 1
,
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where the integers N1, ..., NI are norms of the type

(2.2) N(F (wj1 , ..., wjn)) =

p−1∏
l=1

F (wj1l, ..., wjnl)

for a suitable choice of I values �j = (j1, ..., jn) (for example, one could take all �j of
the form (1, j2, . . . , jn), (0, 1, j3, . . . , jn),. . . ,(0, . . . , 0, 1) with 0 ≤ j2, . . . , jn < p).

When n = 1 the measure can be expressed as a resultant,

M1(F ) = Res(xp − 1, F ) = F (1)Res(Φ(x), F ),

where

Φ(x) = 1 + x+ · · ·+ xp−1

is the pth cyclotomic polynomial. Lemma 5.4(ii) of Kaiblinger [3] then gives the
congruence restriction

M1(F ) ≡ F (1) mod p.

The following lemma generalizes this to arbitrary n.

Lemma 2.1. For F ∈ Z[x1, ..., xn],

Mn(F ) ≡ F (1, ..., 1)p
n−1

mod pn.

Proof. We use induction on the dimension n.
For n = 1, writing π = 1− w we have F (wj) ≡ F (1) mod π and

M1(F ) =

p−1∏
j=0

F (wj) ≡ F (1)p mod π.

Hence, since M1(F ) and F (1)p are in Z and |π|p = p−
1

p−1 < 1, where | |p denotes
the extension of the usual p-adic absolute value to Q(w), we have

M1(F ) ≡ F (1)p ≡ F (1) mod p.

Setting

G(x1, ..., xn) =

p−1∏
i1=0

· · ·
p−1∏
in=0

F
(
xi1
1 , ..., xin

n

)

≡
∑

0≤l1<p

· · ·
∑

0≤ln<p

a(l1, ..., ln)x
l1
1 · · ·xln

n mod 〈xp
1 − 1, ..., xp

n − 1〉 ,

for some a(l1, ..., ln) in Z, we consider

S =

p−1∑
j1=0

· · ·
p−1∑
jn=0

G
(
wj1 , ..., wjn

)

=
∑

0≤l1<p

· · ·
∑

0≤ln<p

a(l1, ..., ln)

p−1∑
j1=0

· · ·
p−1∑
jn=0

wj1l1 · · ·wjnln .

Observing that
∑p−1

j=0 w
lj equals 0 if 0 < l < p and equals p if l = 0, we see that

S = pna(0, ..., 0) ≡ 0 mod pn.

Now if j1 �= 0, ..., jn �= 0 we have

G
(
wj1 , ..., wjn

)
= Mn(F ).
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If exactly L of the ji = 0 for some 1 ≤ L < n, say j1 = · · · = jL = 0, jL+1 �=
0, ..., jn �= 0, we have

G(1, ..., 1, wjL+1 , ..., wjn) = Mn−L(F (1, ..., 1, xL+1, ..., xn))
pL

.

By the induction hypothesis,

Mn−L(F (1, ..., 1, xL+1, ..., xn)) = F (1, ..., 1)p
n−L−1

+ kpn−L

for some integer k, and so

G(1, ..., 1, wjL+1 , ..., wjn) = (F (1, ..., 1)p
n−L−1

+ kpn−L)p
L

≡ F (1, ..., 1)p
n−1

mod pn.

If j1 = · · · = jn = 0, we have by Euler’s Theorem,

G(1, ..., 1) = F (1, ..., 1)p
n ≡ F (1, ..., 1)p

n−1

mod pn.

Thus

0 ≡ S ≡ (p− 1)nMn(F ) + (pn − (p− 1)n)F (1, ..., 1)p
n−1

mod pn

and Mn(F ) ≡ F (1, ..., 1)p
n−1

mod pn. �

Thus the only values achievable as Mn(F ) are the pn−1th powers mod pn. It
remains to show in the following lemma that all integers of this type that are
coprime to p can be achieved as measures. For n = 1 the resultant M1(F ) will be a
circulant determinant (see for example [2]) and the result of the lemma follows from
a core result on integer circulant determinants obtained independently by Laquer
[5, Theorem 4] and Newman [7, Theorem 1].

Lemma 2.2. For any integers k and a with p � a, a > 0, there exists a polynomial
F (x1, ..., xn) in Z[x1, ..., xn] with

Mn(F ) = ap
n−1 − kpn.

Proof. The proof is entirely constructive. Suppose that p is odd. We begin by
generating a sequence H1(x), ..., Hn−1(x) in Z[x] satisfying

(1 + x+ · · ·+ xa−1)p
l ≡ ap

l−1

+ plHl(x) mod xp − 1,

l = 1, ..., n− 1. First noting that

(1 + x+ · · ·+ xa−1)p ≡ 1 + xp + · · ·+ xp(a−1) mod p,

we have

(1 + x+ · · ·+ xa−1)p = 1 + xp + · · ·+ xp(a−1) + pH1(x) ≡ a+ pH1(x) mod xp − 1

for some polynomial H1(x) in Z[x]. Raising to pth powers we obtain an H2(x) in
Z[x]:

(1 + x+ · · ·+ xa−1)p
2 ≡ (a+ pH1(x))

p

≡ ap + p2H2(x) mod xp − 1

and successively the remaining Hi(x) in Z[x]:

(1 + x+ · · ·+ xa−1)p
j+1 ≡ (ap

j−1

+ pjHj(x))
p

≡ ap
j

+ pj+1Hj+1(x) mod xp − 1.
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Thus

(2.3) ap
l−1

+ plHl(1) = ap
l

,

and for a primitive pth root of unity w1,

(2.4) ap
l−1

+ plHl(w1) = (1 + w1 + · · ·+ wa−1
1 )p

l

.

Set

F (x1, ..., xn) = (1 + x1 + · · ·+ xa−1
1 ) +

n−1∑
j=1

Hj(xj+1)

j∏
i=1

Φ(xi)− k

n∏
i=1

Φ(xi),

where Φ(x) is the pth cyclotomic polynomial. Now if w1 is a primitive pth root of
unity, then

F (w1, x2, ..., xn) = 1 + w1 + · · ·+ wa−1
1

for any choice of x2, ..., xn, while if x1 = · · · = xl = 1 but xl+1 = w1, then by (2.3)
and (2.4) we have

F (1, ..., 1, w1, ...) = a+ pH1(1) + · · ·+ pl−1Hl−1(1) + plHl(w1) = ap
l−1

+ plHl(w1)

= (1 + w1 + · · ·+ wa−1
1 )p

l

.

Finally, by (2.3),

F (1, ..., 1) = a+ pH1(1) + · · ·+ pn−1Hn−1(1)− kpn = ap
n−1 − kpn.

Observing that 1+w1+· · ·+wa−1
1 is a unit of norm 1 for p � a (the norms of 1−w1 and

1−wa
1 are plainly equal), we see from (2.1) that Mn(F ) = F (1, ..., 1) = ap

n−1 −kpn

as required.

For p = 2 and a odd we have a2
n−1 ≡ 1 mod 2n, and plainly any value of the

form 1− 2nk can be achieved with 1− k
∏n

i=1(1 + xi). �

3. Proof of Theorem 1.1

Since the

F (wj1i, ..., wjni) ≡ F (1, ..., 1) mod π,

we observe that

N(F (wj1 , ..., wjn)) ≡ F (1, ..., 1)p−1 mod p.

Hence if p | Mn(F ) we must have p | F (1, ..., 1) and p | Ni for each of the

(pn − 1)/(p− 1) norms in (2.1), and so p
pn−1
p−1 +1 | Mn(F ). Thus from Lemmas 2.1

and 2.2 when p ≥ 3 the spectrum of values of |Mn(F )| less than p
pn−1
p−1 +1 will be

exactly the positive integers that are congruent mod pn to some pn−1th power ap
n−1

with p � a. Thus for p ≥ 5 the smallest value greater than 1 will be Mn as claimed.

For p = 3 we see that the a3
n−1 ≡ ±1 mod 3n for 3 � a and the values between 1 and

3(3
n+1)/2 are exactly the 3nk ± 1, k in N; in particular, λ(Zn

3 ) = 3−n log(3n − 1).

Similarly, when p = 2 we have a2
n−1 ≡ 1 mod 2n for 2 � a, and the |Mn(F )| between

1 and 22
n

are exactly those of the form 2nk + 1, 2nk − 1, k in N; in particular,
λ(Zn

2 ) = 2−n log(2n − 1).

Licensed to Kansas St Univ. Prepared on Wed Feb 11 16:20:08 EST 2015 for download from IP 129.130.37.179.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1940 DILUM DESILVA AND CHRISTOPHER PINNER

4. Sample Mn values for small p and n

We give the smallest non-trivial positive solution to xp−1 ≡ 1 mod pn, for p < 100
and n ≤ 6.

n = 2 n = 3 n = 4 n = 5 n = 6

p = 3 8 26 80 242 728
p = 5 7 57 182 1068 1068
p = 7 18 18 1047 1353 34967
p = 11 3 124 1963 27216 284995
p = 13 19 239 239 109193 861642
p = 17 38 158 4260 15541 390112
p = 19 28 333 2819 133140 333257
p = 23 28 42 19214 495081 2818778
p = 29 14 1215 2463 1115402 42137700
p = 31 115 513 15714 2754849 8078311
p = 37 18 691 51344 1353359 33518159
p = 41 51 1172 20677 649828 92331463
p = 43 19 3038 3038 3228564 21583010
p = 47 53 295 224444 2359835 138173066
p = 53 338 1468 189323 4694824 8202731
p = 59 53 2511 11550 7044514 390421192
p = 61 264 15458 397575 28538377 1006953931
p = 67 143 3859 201305 1111415 77622331
p = 71 11 6372 15384 77588426 270657300
p = 73 306 923 840838 16178110 5915704483
p = 79 31 1523 1372873 2553319 522911165
p = 83 99 5436 1576656 9571390 2507851273
p = 89 184 1148 278454 158485540 1329885769
p = 97 53 412 1721322 18664438 2789067613

See [4] for extensive data on small values of Mn (a table of the M2 < 100 for
p < 106 can be found in [1]). The only cases of M2 = 2 with p < 1.25 × 1015 are
p = 1093 and p = 3511.
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