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Abstract 

Climate change has been anticipated to affect agriculture, with most profound 

effects in regions where low input agriculture is being practiced. Understanding of how 

plants evolved in adaptation to diverse climatic conditions in the presence of local 

stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to 

ensure food security. Great genetic diversity exists for agroclimatic adaptation in 

sorghum (Sorghum bicolor L. Moench) but much of it has not been characterized. Thus, 

limiting its utilization in crop improvement. The application of next-generation 

sequencing has opened the plant genome for analysis to identify patterns of genome-wide 

nucleotide variations underlying agroclimatic adaptation.  

To understand the genetic basis of adaptive traits in sorghum, the genetic 

architecture of sorghum inflorescence traits was characterized in the first study. 

Phenotypic data were obtained from multi-environment experiments and used to perform 

joint linkage and genome-wide association mapping. Mapping results identified 

previously mapped and novel genetic loci underlying inflorescence morphology in 

sorghum. Inflorescence traits were found to be under the control of a few large and many 

moderate and minor effect loci. To demonstrate how our understanding of the genetic 

basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction 

analysis was performed with results showing high prediction accuracies for inflorescence 

traits.  

In the second study, the sorghum-nested association mapping (NAM) population 

was used to characterize the genetic architecture of leaf erectness, leaf width, and stem 

diameter. About 2200 recombinant inbred lines were phenotyped in multiple 

environments. The obtained phenotypic data was used to perform joint linkage mapping 

using ~93,000 markers. The proportion of phenotypic variation explained by QTL and 

their allele frequencies were estimated. Common and moderate effects QTL were found 

to underlie marker-trait associations. Furthermore, identified QTL co-localized with 

genes involved in both vegetative and inflorescence development. Our results provide 

insights into the genetic basis of leaf erectness and stem diameter in sorghum. The 



 

 

identified QTL will also facilitate the development of genomic-enable breeding tools for 

crop improvement and molecular characterization of the underlying genes 

Finally, in a third study, 607 Nigerian accessions were genotyped and the 

resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was 

used for downstream analysis. Genome-wide scans of selection and genome-wide 

association studies (GWAS) were performed and alongside estimates of levels of genetic 

differentiation and genetic diversity. Results showed that phenotypic variation in the 

diverse germplasm had been shaped by local adaptation across climatic gradient and can 

provide plant genetic resources for crop improvement.  
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Abstract 

Climate change has been anticipated to affect agriculture, with most the profound 

effect in regions where low input agriculture is being practiced. Understanding of how 

plants evolved in adaptation to diverse climatic conditions in the presence of local 

stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to 

ensure food security. Great genetic diversity exists for agroclimatic adaptation in 

sorghum (Sorghum bicolor L. Moench) but much of it has not been characterized. Thus, 

limiting its utilization in crop improvement. The application of next-generation 

sequencing has opened the plant genome for analysis to identify patterns of genome-wide 

nucleotide variations underlying agroclimatic adaptation.  

To understand the genetic basis of adaptive traits in sorghum, the genetic 

architecture of sorghum inflorescence traits was characterized in the first study. 

Phenotypic data were obtained from multi-environment experiments and used to perform 

joint linkage and genome-wide association mapping. Mapping results identified 

previously mapped and novel genetic loci underlying inflorescence morphology in 

sorghum. Inflorescence traits were found to be under the control of a few large and many 

moderate and minor effect loci. To demonstrate how our understanding of the genetic 

basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction 

analysis was performed with results showing high prediction accuracies for inflorescence 

traits.  

In the second study, the sorghum-nested association mapping (NAM) population 

was used to characterize the genetic architecture of leaf erectness, leaf width, and stem 

diameter. About 2200 recombinant inbred lines were phenotyped in multiple 

environments. The obtained phenotypic data was used to perform joint linkage mapping 

using ~93,000 markers. The proportion of phenotypic variation explained by QTL and 

their allele frequencies were estimated. Common and moderate effects QTL were found 

to underlie marker-trait associations. Furthermore, identified QTL co-localized with 

genes involved in both vegetative and inflorescence development. Our results provide 

insights into the genetic basis of leaf erectness and stem diameter in sorghum. The 



 

 

identified QTL will also facilitate the development of genomic-enable breeding tools for 

crop improvement and molecular characterization of the underlying genes 

Finally, in a third study, 607 Nigerian accessions were genotyped and the 

resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was 

used for downstream analysis. Genome-wide scans of selection and genome-wide 

association studies (GWAS) were performed and alongside estimates of levels of genetic 

differentiation and genetic diversity. Results showed that phenotypic variation in the 

diverse germplasm had been shaped by local adaptation across climatic gradient and can 

provide plant genetic resources for crop improvement. 
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Chapter 1 – Agroclimatic adaptation in crops species 

Climatic adaptation 

Organisms have adapted to a wide range of ecological and geographic 

environments. Adaptation of a particular specie is dependent on the movement of its 

population towards a optimal phenotype, which best suits that specific environment (Orr, 

2005). Adaptation to diverse environments results in intraspecific variation of 

morphological and physiological traits. The major climatic factors influencing trait 

adaptation in biological systems are ultraviolet (UV) radiation, photoperiodicity, 

temperature, and precipitation. These factors shape the organismal response to UV 

intensity, disease, heat, cold and drought. Climatic adaptation has been reported in both 

model and non-model systems (Table 1.1).  

Agroclimatic adaptation in crop species 

Climate adaptation has been observed in crop species (Harlan, 1992). For 

instance, latitudinal flowering time adaptation in maize (Camus-Kulandaivelu et al., 

2006; Buckler et al., 2009; Romero Navarro et al., 2017) and inflorescence variation due 

to agroclimatic adaptation in sorghum (de Wet & Huckabay, 1967; Harlan, 1992) are 

classic examples. In crop species, extensive genetic diversity exists for adaptive 

phenotypes that have been subjected to not only a natural, but also artificial (human) 

selection in response to local climatic conditions across diverse environments (Lasky et 

al., 2015). Landraces (traditional varieties) (Zeven, 1998) are typically adapted to local 

stress (biotic and abiotic) and are valuable plant genetic resources for crop improvement 

(Lasky et al., 2015). The resulting phenotypic divergence of traits in response to local 

adaptation across climatic zones is regarded as agroclimatic trait variation (Figure 1.1). 

Agroclimatic adaptive traits are often confounded with population structure (Camus-

Kulandaivelu et al., 2006; Valdar et al., 2009; Samis et al., 2012; Morris et al., 2013; 

Bouchet et al., 2017), therefore it can be difficult to characterize their genetic 

architecture. 
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Genetic architecture of agroclimatic traits 

A neo-Darwinian perspective of adaptation was given by Fisher stating that an 

allelic variant either from novel mutation or standing variation will increase in frequency 

and become fixed as an adaptive response to environmental changes (Hughes, 2012). 

Adaptive evolution is mostly dependent on polygenic characters (Lande & 

Barrowclough, 1996). The Fisher-Orr model of adaptation (Orr, 1998, 2005) describes 

the changing genetic architecture of complex adaptive traits using a geometric model 

(Orr, 1999, 2005). The model describes a pattern of diminishing returns, as few large 

effect loci are fixed first, followed by numerous small effect loci. One consequence of the 

model is that for a trait that is close to its fitness optimum, only small effect loci can 

bring it closer to the optimum (Orr, 2005). The genetic architecture entails the number of 

quantitative trait loci (QTL), allele frequency, the effect size of the QTL, identity of the 

genes and gene actions associated with a particular trait (Mackay, 2001). It is important 

for response to selection and can provide insight about its evolutionary history (Brown et 

al., 2011). Large effect loci have been found to underlie adaptive traits in Sorghum 

bicolor (Lin et al., 1995; Bouchet et al., 2017), while small effect loci were found to 

underlie adaptive traits in maize (Zea mays) (Buckler et al., 2009; Peiffer et al., 2014). 

For instance, small effect size loci (with an effect size of  < 1 day) associated with 

flowering time have been identified in maize and sorghum (Buckler et al., 2009; Bouchet 

et al., 2017).  

Furthermore, the expression of any complex trait resulting from developmental or 

chemical pathways is often comprised of a network of loci interacting at both genetic and 

molecular levels (Mackay, 2001). These genotype-by-genotype interactions are known as 

epistasis. In classical quantitative genetics, epistasis describes non-additivity of effects at 

multiple loci and exhibits various levels of complexity of interactions depending on the 

numbers of loci being considered (Lynch & Walsh, 1998). In a two loci model, there will 

be three levels of interactions: additive-by-additive, additive by dominance and 

dominance-by-dominance forms of interactions. However, in experiments using 

recombinant inbred lines (RILs) only the additive-by-additive interaction will be 

observed since there are only two homozygous classes of alleles. Epistatic interactions of 
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loci have been associated with flowering time in Arabidopsis (Juenger et al., 2005) and 

maize (Buckler et al., 2009). 

Quantitative genomic dissection of agroclimatic adaptation 

Quantitative trait dissection is the mapping of genetic regions responsible for a 

trait through marker-phenotype association (Lander & Schork, 1994). Most of the QTL 

identified in trait mapping in crops has been based on bi-parental mapping populations, 

either F2 individuals or recombinant inbred lines (RILs) generated from the cross 

between two parents contrasting for the trait of interest (Mackay et al., 2009). However, 

only QTL associated with the phenotypic variation generated from the controlled cross 

between the two parents can be identified. Thus, only a small fraction of the genetic 

diversity available for a particular species are captured (Myles et al., 2009). Additionally, 

due to small population sizes (< 250), the effect sizes of identified QTL are usually 

inflated (known as the Beavis effect) (Utz et al., 2000; Juenger et al., 2005). Also due to 

limited recombination, the QTL regions are usually large (Myles et al., 2009). 

Conversely, genome-wide association mapping, also known as linkage disequilibrium 

(LD) mapping exploits, LD between genotyped markers and functional 

variants/polymorphisms associated with phenotypic differences caused by the 

polymorphism (Ehrenreich & Purugganan, 2006). Association mapping populations (or 

diversity panels) offers increased mapping resolution and diversity for mapping due to 

historical recombination. The level of resolution with which a trait can be mapped 

depends on the extent of LD in a given genome region (Myles et al., 2009). However, 

population structure in the population leads to spurious associations, thereby limiting 

mapping power.  

Population structure reflects genome-wide non-random association of alleles and 

correlation between allele frequencies and phenotypic variation (Myles et al., 2009). 

Population structure may lead to correlations between phenotypic variation and genetic 

relatedness. This results in spurious genotype-phenotype covariance, which makes 

genome-wide markers appear to be associated with the trait. This has been demonstrated 

by fitting a naive model (which does not account for population structure) to perform 

genome-wide association mapping of adaptive traits (Huang et al., 2010; Morris et al., 



 

 

4 

2013). Models accounting for population structure have been established and resulted in 

the identification of true associations (Yu et al., 2006; Zhang et al., 2010; Korte et al., 

2012; Segura et al., 2012). However, for adaptive traits, the model accounting for 

structure can be biased against true variants associated with population structure, leading 

to false negatives (Myles et al. 2009; Lipka et al. 2015). This bias limits the 

characterization of genetic architecture underlying agroclimatic traits.  

Multi-parental populations were designed to overcome the challenge associated 

with historical population structure. Examples include Multi-Advanced Generation 

Intercross (MAGIC) and Nested Association Mapping populations (NAM). The NAM 

design involves a cross between a common founder and a set of diverse founders, 

followed by selfing of the F1 for several generations to generate RILs (Paterson, 2013). 

NAM populations have been used to characterize the genetic architecture of adaptive 

traits in maize and sorghum (Buckler et al., 2009; Brown et al., 2011; Peiffer et al., 2014; 

Bouchet et al., 2017). In NAM populations, increased LD within families facilitates 

haplotype imputation for missing data when using low coverage genomic data (Brachi et 

al., 2011).  

Population genomic analysis of agroclimatic adaptation 

The availability of next-generation sequencing technologies has made possible 

genome-wide analysis of patterns of selection using population genomics in plants. The 

effects of selection on the pattern of genome-wide nucleotide variation vary. These are 

the extent of linkage disequilibrium around regions under selection, amount and structure 

of polymorphism, the degree of population differentiation, and the rate and percentage of 

nonsynonymous substitution (Siol et al., 2010). The methods used to explore patterns of 

nucleotide variation have been categorized into two categories: first, those that identify 

fingerprints of selection on linked neutral loci and second, those that deduce the action of 

selection on the loci (Siol et al., 2010). These approaches have been applied to genomic 

data of plants sampled across diverse climatic regions, both for biological model species 

and agricultural crop species. Genome scans have been used to identify molecular targets 

of selection (Olsen et al., 2006; Gore et al., 2009; Ishii et al., 2013; Yoder et al., 2014; 

Gouesnard et al., 2017). In addition, climatic variables have been used as proxies for 
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unknown traits underlying agroclimatic adaptation in GWAS (Hancock et al., 2011; 

Fournier-Level et al., 2011; Horton et al., 2012; Yoder et al., 2014; Lasky et al., 2015). 

Some studies have integrated quantitative genomic approaches with population genomic 

approaches to dissect the genetic basis of climatic adaptation (Morris et al., 2013; Yoder 

et al., 2014; Lasky et al., 2015; Gouesnard et al., 2017). 

Conclusion 

Quantitative trait genomics, population genomics, and integrative genomic 

approaches can improve our understanding of crop adaptation and facilitate conservation 

and utilization of crop germplasm (Morris et al., 2013; Hu et al., 2015; Lasky et al., 

2015). This will result in an increase in the amount of genetic diversity utilized in crop 

improvement (Morris et al., 2013), facilitate the characterization of the genetic 

architecture of adaptive traits and identification of underlying genes for genomic-enabled 

breeding applications. These will be helpful in low input agricultural systems of the 

world where the impact of climate change is expected to be greatest. 
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Tables and Figures 
Table 1.1: Selected list of traits responsible for clinal adaptation 

Species Adaptation Literature 

Arabidopsis thaliana Flowering time Samis et al. 2012 
Arabidopsis thaliana Seed dormancy Kronholm et al. 2012 

Arabidopsis thaliana Freezing tolerance Zhen et al. 2008 
Drosophila melanogaster Ultraviolet intensity Bastide et al. 2016 

Mus domesticus Cold tolerance Lynch 1992 
Engraulis encrasicolus Thermal adaptation Harlan 1992 

 

 
Figure 1.1: Climatic variation in plant architecture. 

Plants of the same species in (A) humid climate and (B) arid climate with different architecture due to 
adaptation to different climatic conditions over a long period of time. Both plants maintain their natural 
architecture when planted in a common garden (C) sub-humid climate. 
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Chapter 2 – The Genetic Architecture of Inflorescence Morphology in Sorghum 

Abstract 

The morphology of sorghum inflorescence enables agroclimatic adaptation due to 

variations in its compactness across arid to sub-humid climates. In this study, the genetic 

basis of sorghum inflorescence traits including lower branch length (LBL), upper branch 

length (UBL), rachis length (RL), and rachis diameter (RD) were characterized using a 

nested association mapping (NAM) population. Phenotypic data were obtained from 

multi-environment experiments and used to perform joint linkage and genome-wide 

association mapping. Mapping results identified previously identified and novel loci 

underlying inflorescence traits in sorghum. Inflorescence traits were found to be under 

the control of mainly minor effect loci. Quantitative trait loci (QTL) co-localized with 

homologs of rice and maize inflorescence genes including ramosa2, sparse 

inflorescence1, and YUCCA5. Lack of colocalization between the lower and upper 

inflorescence branch QTL suggest they are under independent genetic control. Some of 

the associations that were regarded as false negatives in GWAS models for mapping 

lower branch length were identified as true associations in the joint linkage mapping 

result. Finally, cross-validation results showed high prediction accuracies for LBL, UBL, 

RL, and RD. This study provided an understanding of the genetic architecture of sorghum 

inflorescence and prospects for genomic-enabled breeding. 
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Introduction 

Adaptive evolution has shaped the genetic architecture of complex traits. 

Adaptive traits with phenotypic divergence across climatic zones (Morris et al., 2013) 

can be referred to as agroclimatic traits. However, agroclimatic divergence often results 

in genetic differentiation and population structure that hinders effective characterization 

of trait genetic architecture and reduce genomic prediction accuracy. The genetic 

architecture of a trait is defined by the number, effect size, allele frequency, and gene 

action of the loci controlling it (Bouchet et al., 2017). The Fisher-Orr model hypothesized 

that only loci of small effects can bring an organism close to its fitness optimum. A 

situation where few large effect loci are fixed first followed by numerous small effect 

loci. Different effect sized loci have been identified to be associated with adaptive traits 

in organisms. Large effect sized variants were implicated in loss of body armor in 

Alaskan threespine stickleback populations (Cresko et al., 2004); large effect loci 

underlie cuticle melanin variation in African Drosophila melanogaster (Bastide et al., 

2016); and inflorescence architecture in maize and rice are under the control of large and 

small effect loci (Brown et al., 2011; Crowell et al., 2016). Flowering time is controlled 

by numerous small effect loci in maize, an outcrosser, in contrast to large effect loci in 

selfing species like Arabidopsis, sorghum, and rice. Thus, genetic architecture is also 

influenced by reproductive biology (Buckler et al., 2009; Brown et al., 2011). The 

characterization of genetic architecture is dependent on the efficiency and power of trait 

genetic dissection. 

Earlier mapping approaches utilized bi-parental populations. However, the 

efficiency of these populations for mapping is hindered by limited genetic diversity and 

small sample sizes that causes inflation of effect sizes. Genome-wide association studies 

(GWAS) offer a higher mapping resolution through historical recombination and higher 

genetic variation and resolution for mapping complex traits (Myles et al., 2009). 

However, because agroclimatic traits are often confounded by population structure, 

GWAS can be limited in power to find true associations (Myles et al., 2009; Huang et al., 

2010; Morris et al., 2013). Multi-parental populations such as Multiple Advanced 

Generation Intercross (MAGIC) and Nested Association Mapping (NAM) (Rakshit et al., 

2012; Paterson, 2013; Wallace et al., 2014) exhibit increased genetic diversity and 



 

 

13 

mapping resolution than bi-parental populations (Bouchet et al., 2017). In addition, they 

reduce the confounding of phenotypic variation with ancestral population structure and 

have more balanced allele frequencies for increased statistical power for mapping. NAM 

has been used to dissect quantitative traits such as for flowering time (Buckler et al., 

2009), inflorescence morphology (Brown et al., 2011; Wu et al., 2016), and height 

(Peiffer et al., 2014)in maize and barley for flowering time (Maurer et al., 2015). 

Recently, a sorghum NAM was developed and shown to be effective for dissection of the 

genetic architecture underlying agroclimatic complex traits (Paterson, 2013; Bouchet et 

al., 2017).  

Sorghum is a source of food, feed, and bioenergy in many parts of the world, 

especially in the semi-arid regions where maize and rice cannot thrive. In developing 

countries, sorghum is predominantly cultivated by smallholder farmers (National 

Research Council, 1996). The cultivated sorghum varieties are in most cases the locally 

preferred and adapted types. Sorghum has diffused to different agroclimatic zones with 

variations in traits such as height, leaf architecture, and inflorescence architecture through 

balancing selection. In particular, sorghum inflorescence varies in compactness across 

agroclimatic zones and play functional roles in yield components (Brown et al., 2006; 

Witt Hmon et al., 2013). In humid climates, the open inflorescence allows air movement 

among seeds to prevent grain damage. In the sub-Saharan African region (SSA), breeding 

programs are usually made up of germplasm of varied racial origins and inflorescence 

types. Furthermore, the application of genomic-enabled breeding methodologies in 

sorghum in the SSA is not well established either due to infrastructure or inadequate 

knowledge of the genetic basis of traits. Therefore, it is essential to characterize the 

genetic basis of sorghum inflorescence in order to utilize marker-assisted selection 

(MAS) approach for crop improvement. In addition, understanding the genetic basis of 

sorghum inflorescence can provide information about associated genes thus serving as a 

basis for further molecular characterization. 

Until now, the genetic architecture of sorghum inflorescence morphology is 

poorly understood, and no genes have been characterized (Brown et al., 2006; Witt Hmon 

et al., 2013). However, as grass inflorescences share a close homology, studies 



 

 

14 

employing mutation and other cloning approaches have identified numerous genes 

controlling inflorescence morphology in maize, rice and barley. Many of these genes 

share homology across different grass species and are involved in regulatory functions, 

hormone metabolism, and transport (Kellogg, 2007; Tanaka et al., 2013). Some of the 

genes that have been characterized are maize Sparse inflorescence1 [Spi1; (Gallavotti et 

al., 2008)], rice liguless1 [OsLg1; (Ishii et al., 2013)], rice sped1-D (Jiang et al., 2014), 

maize branch angle defective1 (BAD1) (Bai et al., 2012) maize branched silkless1 (bd1) 

(Chuck et al., 2002), and maize ramosa genes (ra1, ra2, ra3) (Satoh-Nagasawa et al., 

2006). Conserved functions of inflorescence genes have been shown among many grass 

species (Huang et al., 2017). The objective of this study was to characterize the genetic 

basis of inflorescence traits in sorghum in terms of numbers of QTL, their effect size, 

allele frequencies and genes underlying them. Genomic dissection was performed on the 

sorghum NAM population derived from a cross between an elite common parent 

(RTx430) and 10 diverse founders (Table 2.1). These founders originated from different 

agroclimatic zones, thereby capturing a wide genetic and morphological diversity. 

Materials and Methods 

Plant Materials and Phenotyping 

The sorghum NAM population is comprised of ten diverse parents (Table 2.1) and 

one common parent, RTx430, which is an elite breeding line. Each diverse parent and its 

RILs represent a family of 250 RILs making a total of 2500 RILs in the whole 

population. The NAM RILs were phenotyped at F6:7 and F6:8 generations for upper 

primary branch length (UBL), lower primary branch length (LBL), and rachis length 

(RL). All traits were phenotyped in semi-arid (Hays, Kansas) and humid continental 

(Manhattan, Kansas) environments for two years (2014 and 2015). A single location/site 

by year was regarded as one environment (Table 2.2). In the second year (2015), NAM 

RILs were randomized within maturity blocks of families in a row-column design based 

on data from the first year flowering data. Each row (corresponding to a plot) was 3 m 

long with 1 m alleys between ranges. Three sorghum panicles were harvested after 

physiological maturity per row (RIL) and subsequently used for phenotyping. 

Inflorescence morphology traits were measured using barcode rulers (1 millimeter 
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precision) and barcode readers (Motorola Symbol CS3000 Series Scanner, Chicago IL, 

USA). Rachis length (RL) was measured on three randomly harvested panicles from a 

plot as the distance from apex of the panicle to the point of attachment of the lowest 

rachis lower primary branch (Brown et al., 2006; Pann et al., 2014). Rachis diameter 

(RD) was measured with a digital vernier caliper as the diameter of the peduncle at the 

point of attachment of the bottommost rachis lower primary branch. For UBL and LBL, 

six primary branches were randomly selected and carefully detached from the upper 

(UBL) and lower (LBL) regions of two panicles. The measured traits are illustrated in 

Figure 2.1A. 

Genomic Data Analysis 

Previously generated NAM population genomic data (Bouchet et al. 2017) were 

combined with a global sorghum panel to develop a large SNP data set of 14,440 total 

accessions. Sequence reads were aligned to the BTx623 reference genome version 3 

using Burrow Wheeler Aligner 4.0 and TASSEL 5.0 (Glaubitz et al., 2014) was used for 

SNP calling. Missing data imputation was done in two stages. The sorghum NAM 

population and the sorghum association mapping population (SAP) GBS data were first 

extracted from the build. This data was first filtered to remove triallelic SNPs, followed 

by filtering to remove markers missing in more than 80% of the individuals, and filtering 

to keep markers with > 3% minor allele frequency prior to imputation. The NAM 

population and SAP were each imputed separately using Beagle 4 (Browning & 

Browning, 2013). After imputation, the two GBS datasets (NAM and SAP) were filtered 

at MAF of 0.05 and RILs with more than 10 percent heterozygosity were dropped from 

the NAM data. The effect of SNP variants were inferred by SnpEFF program (Cingolani 

et al., 2012) for the imputed NAM genomic data. Linkage disequilibrium (LD) decay was 

estimated using (BGI-shenzhen, 2017) and plotted in R. 

Phenotype and Heritability Analysis 

Phenotypic data analysis was carried out using R programming language and SAS 

(SAS Institute Inc., Cary, NC, USA). All traits were tested for normality and the only 

trait with skewed distribution (UBL) was log transformed. Analysis of variance was 

performed for each trait and the Pearson pairwise correlation between traits was also 
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performed using R. The best linear unbiased prediction (BLUP, for data from five 

environments) of each trait was estimated using lmer function in LME4 package in R 

(Bates et al., 2017) with genotype, environment, and genotype-environment interactions 

fitted as random effects (Wu et al., 2016). A linear model was fitted with traits’ BLUPs 

and family effect and the residuals were used for pairwise correlations between traits. The 

variance components used for broad sense heritability estimation were analyzed using the 

maximum likelihood method by PROC VARCOMP of the SAS software (SAS Institute 

Inc., Cary, NC, USA) by fitting RILs nested within families, RIL nested within families 

by environments interaction as random effects (Equation 1). The resulting variance 

components were used to estimate the broad sense heritability following equation (3) in 

(Hung et al., 2012). The broad sense heritability on line mean basis were estimated as:  

𝐻! =
 !!"#(!"#$%&)!
!

 !!"#(!"#$%&)!
! ! 

!!"#∗!"#(!"#$%&)!
!

!!"#$!
! !!!

!!"#$!

               [1] 

where 𝜎!"#(!"#$%&)!
!  is the variance component of RIL nested within family p, 𝑛!"#$! is 

the harmonic mean of the number of environments in which each RIL was observed, and 

𝑛!"#$! the harmonic mean of the total number of plots in which each RIL. Also, Pearson 

pairwise correlation between traits was estimated using the residuals derived from fitting 

a linear model for family and trait phenotypic means; 

y = 𝜇 + γ! + ε!"                           [2] 

where y is the vector of phenotypic data, γ! is the term for the NAM families, and ε!" is 

the residual term. 

Joint Linkage Mapping 

Joint linkage analysis was performed using 92,391 markers and 2220 RILs. This 

approach is based on forward inclusion and backward elimination stepwise regression 

approaches implemented in TASSEL 5.0 (Glaubitz et al., 2014) stepwise plugin and the 

family effect was accounted for as a co-factor in the analysis. First, a nested joint linkage 

(NJL) model was fitted where markers were nested within families, due to the fact that it 

has been found to be effective for estimating QTL effects within families (Poland et al., 
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2011; Würschum et al., 2011). In addition, a non-nested joint linkage model (JL) where 

markers were not nested within families was used for analysis due to its higher predictive 

power than NJL (Würschum et al., 2011). Entry and exit Ftest values were set to 0.001 and 

based on 100 permutations, the P-value threshold was set to 1.84 E-6. One important 

advantage of joint linkage mapping is that it enables effective mapping of small effect 

and low frequency QTL that may be missed in GWAS. The JL model was specified as; 

𝑦 =  𝑏! +  𝛼!𝑢! +  𝑥!𝑏!!
!!! +  𝑒!                            [3] 

where b0 is the intercept, 𝑢! is the effect of the family of founder f obtained in the cross 

with the common parent (RTx430), 𝛼! is the coefficient matrix relating 𝑢! to y, 𝑏! is the 

effect of the ith identified locus in the model, 𝑥! is the incidence vector that relates 𝑏! to y 

and k is the number of significant QTL in the final model (Yu et al., 2008). 

Genome-wide Association Studies 

Genome-wide association study (GWAS) was performed for all traits using 

92,391 markers and 2220 RILs; first, for single environment and second, using BLUP 

adjusted by environments. The multi-locus-mixed model (MLMM) approach (Segura et 

al., 2012) implemented in R was used for GWAS. The MLMM approach performs 

stepwise regression involving both forward and backward regressions, accounts for major 

loci and reduces the effect of allelic heterogeneity. The family effect was fitted as a co-

factor and a random polygenic term (kinship relationship matrix) was also accounted for 

in the MLMM model. A total of 92,391 SNPs were used in the GWAS analysis and 

coded as 2 and 0 for homozygous SNPs and 1 for heterozygous SNPs. Bonferroni 

correction of E - 07 (α/total number of markers [5.4 E-07]; where α = 0.05) was used to 

determine the cut-off threshold for each trait association. Furthermore, GWAS was also 

performed on sorghum association diversity panel (SAP, consisting of about 334 

accessions (Casa et al., 2008)) using Generalized Linear Model (GLM) and Compressed 

Mixed Linear Model (CMLM) using GAPIT package in R (Lipka et al., 2012). The GLM 

(naive model) did not account for population structure and was specified as; 

𝐲 = 𝐒𝛂+  𝐞                                           [4] 
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where y is the vector of phenotypes, 𝛂 is a vector of SNP effects, and 𝐞 is the vector of 

residual effects. And S is the incident matrix of 1s and 0s relating y to 𝛂. The CMLM 

model (full model) accounted for population structure and polygenic background effects 

(kinship) was specified as; 

𝐲 = 𝐗𝛃+ 𝐐𝐯+ 𝐙𝐮+  𝐞                      [5] 

where y is the vector of phenotypic information, 𝛃 is a vector of fixed effects other than 

SNP or population structure effects, 𝐯 is a vector of fixed effects for population structure, 

𝑢 is an unknown vector of random additive genetic effects from multiple background 

QTL for RILs. X, Q, and Z are incident matrices of 1s and 0s relating y to 𝛃 and 𝐮 (Yu et 

al., 2006). The phenotypic data used for GWAS in the SAP had been previously 

described and published (Brown et al., 2008; Morris et al., 2013). 

Effect Size and Allele Frequency Estimation 

Allele frequencies of the SNPs for both JL and GWAS were estimated using 

snpStats package in R (Clayton 2015). The proportion of phenotypic and genotypic 

variation explained by the JL and GWAS QTL were estimated using equations 6 and 7 

(Utz et al., 2000). The QTL additive effect sizes within and across families were both 

estimated as the difference between the mean of the two homozygous classes for each 

QTL divided by two. The additive effect size of each QTL identified in all models was 

estimated relative to RTx430 (Tian et al., 2011). The proportion of phenotypic variation 

explained by each QTL was estimated by fitting a regression model with family and QTL 

as fixed terms; 

yijk = 𝜇 + γ! + Φ!+ ε!"#                              [6] 

where yijk is the phenotype, γ! is the term for the NAM families, Φ! is the term for QTL, 

and ε!"# is the residual term. The sum of squares of QTLs divided by sum of squares total 

gave the proportion of variance explained by the detected QTL. In order to evaluate the 

within family variation explained by each QTL, a regression model was fit with terms for 

family and QTL nested within family as fixed effects (Würschum et al. 2011);  

yijkl = 𝜇 + 𝛾! + 𝜔!"+ 𝜀!"#$                          [7] 



 

 

19 

where yijkl is the phenotype, γ! is the term for the NAM families, ω!"is the term for QTL 

nested within family, and ε!"#$ is the residual term. The sum of squares of QTLs (Family) 

divided by sum of squares total gave the within-family variance explained by the detected 

QTL (Würschum et al., 2011). 

Grass homologs search around identified loci 

A set of a priori candidate genes (n = 39) associated with inflorescence 

morphology development were compiled from literature consisting of 24 maize genes, 10 

rice genes, three sorghum genes, one foxtail millet gene, and one barley gene 

(supplementary files). Based on this candidate gene set, 297 sorghum homologs were 

found using Phytozome (Goodstein et al., 2012). A custom R script was used to search 

for homologs within 150kb window both upstream and downstream of each association.  

Cross-validation of NAM by Family  

Cross-validation was performed using the ridge regression best linear unbiased 

prediction (rrBLUP) package in R (Endelman, 2011). First, the “leave-one-family-out” 

prediction approach was performed. This involves the removal of a family’s genotypic 

and phenotypic data out of the whole NAM population and using remaining nine families 

to predict that particular family (NAM population minus family1 to predict family1). At 

each step of the analysis, a subagging approach that randomly samples data without 

replacement was used to sample 80% of each family. This step was repeated for all the 10 

families in the NAM population for LBL and RL. The second type of analysis involved a 

five-fold cross-validation analysis for LBL, UBL, RL, and RD for 100 runs. The last 

approach was to perform family-by-family prediction similar to pairwise prediction 

between NAM families for LBL and RL. Prediction accuracy was estimated in each cycle 

as a correlation between predicted and observed phenotypic trait’s value. Lastly, kinship 

relatedness between pairwise families and between the NAM and each family following 

the “leave-one-family-out” approach was estimated. 
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Results 

Genome-wide polymorphism in the NAM population 

A total of 116,405 SNPs were obtained after SNP calling, imputation, and 

filtering. SNP effect variant analysis identified a transition-transversion rate of 1. 

Missense, nonsense, and silent functional variants accounted for 71%, 6%, and 23% 

respectively, with a missense-silent variation ratio of 3.0. In addition, 2% exon variants, 

15% intergenic variants, 65% intron variants, and 0.002% intragenic variants were 

identified. After filtering for 0.96 inbreeding coefficient, a total of 92,391 markers and 

2220 RILs were identified. The number of RILs in each family range between 202 in 

Segaolane to 233 in SC265.  

Variation in inflorescence morphology in the NAM population 

Phenotypic variation distribution for the traits for each family showed that the 

mean trait value/performance of the RILs is greater than the performance of both parents 

in some families (Figures 2.1D). Significant genotypic differences were observed for 

traits (Table 2.3). The broad sense heritability estimates for the traits were high, ranging 

from 0.59 to 0.92. Based on trait-by-trait phenotypic correlations, RL and LBL had the 

highest correlation of 0.71 (P-value < 0.01). UBL and LBL both had a low positive 

correlation of 0.19 (P-value < 0.01) while RL had no correlation with UBL and RD 

(Figure 2.2). 

QTL for inflorescence morphology 

Significant QTL associations were observed for all traits (Figure 2.3 (A-D)). The 

within family and across NAM population effect of each QTL for both NJL and JL 

models were estimated relative to RTx430. Overall, JL identified more QTL than NJL. 

The within family additive effects of QTL in both models (NJL and JL) for all traits are 

listed in Table 2.4. The additive effects and proportion of phenotypic variation explained 

(PPVE) by JL QTL were greater than PPVE by NJL QTL (Table 2.5).  

Comparison of NAM JL and diversity panel CMLM and GLM model results 

The comparison of extent of LD decay in the SAP and NAM showed that LD 

decay rate was different between the SAP and NAM with faster decay in SAP compared 
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to NAM (Figure 2.4A). Association mapping on the SAP for inflorescence lower branch 

length identified some of the genomic regions previously identified using the same data 

(Figures 2.3B). Most of the markers in the genome were associated with both LBL and 

RL in the naive GWAS model for SAP panel. However, in the CMLM model, only three 

associations were identified for LBL and no association for RL. The results of the SAP 

GLM and CMLM model were both plotted with the NAM LBL and RL JL results to see 

if there are co-localized associations between the mapping populations. Most of the 

significant associations (with P-values above permuted threshold) in the NAM were 

found at low significance levels below Bonferroni correction threshold in the SAP. 

Genome-wide prediction of inflorescence morphology 

For the leave-one-family-out approach, the mean prediction accuracy across all 

cycles for each trait was estimated and observed to range from 0.27 for SC1103 to 0.52 

for SC971 for RL. For LBL, accuracy ranged from 0.21 in SC283 to 0.61 for SC1345. 

Relatively high prediction accuracies were observed for all the traits using the five-fold 

cross-validation approach. Prediction accuracies of 0.70, 0.65, 0.75, and 0.83 were 

observed for LBL, UBL, RL, and RD, respectively (Figures 2.5A, 2.5C, 2.10A, and 

2.10B). Prediction accuracies were positively related to trait h2 values (r = 0.44). For the 

family-by-family pairwise prediction accuracy, there was a positive relationship between 

pairwise family prediction and mean pairwise kinship relatedness for both LBL (r = 0.19 

P-value < 0.05) and RL (r = 0.1 P-value < 0.05). In the “leave-one-family-out” approach, 

there was a non-significant positive relationship between prediction accuracy and kinship 

relatedness for RL (r = 0.47) and none for LBL (r = 0.002).  

Discussion 

Genetic basis of sorghum inflorescence morphology 

This study using the NAM population provides insight about the genetic 

architecture of sorghum inflorescence morphology. Inflorescence morphology is 

controlled by numerous loci of minor effects (Table 2.5). Few major and many minor 

effect loci were also found to underlie rice and maize inflorescence traits (Crowell et al., 

2016; Wu et al., 2016). Additionally, the variable effect sizes of the underlying loci 

suggest multiple gene changes may be required to produce adaptive phenotypic change in 
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sorghum inflorescence (Lauter & Doebley, 2001). QTL detected in the whole NAM 

population using JL showed contrasting allele substitution effects within families. Some 

families had positive effects while others had negative effects for the same QTL (Figures 

2.6–9). This differing effects direction can be attributed to possible epistatic interactions 

of the QTL with other loci within families. 

Based on comparison with earlier mapping studies in sorghum, some QTL 

identified in this study were previously known while others are novel. Among the 

previously known QTL is a pleiotropic QTL, qSbRL7.59, associated with both LBL and 

RL, centered on the intragenic region of a YUCCA5 homolog (flavin monooxygenase 

gene) and 69.9 kb away from the sorghum height gene (Dw3, a phosphoglycoprotein 

gene, Sobic.007G163800) (Figure 2.3A and 2.3C). Previous linkage mapping studies 

identified association around this same Dw3 region for a QTL that increased rachis length 

and primary branch length (Brown et al., 2006; Shehzad & Okuno, 2015) and YUCCA5 

was proposed as a candidate for the gene underlying branch length variation (Brown et 

al., 2008). Some of the QTL in this study were found to be novel associations when 

compared to associations from reanalyzed data from a previously published GWAS 

(Morris et al., 2013) in sorghum using GLM (naive model) and CMLM (full model) 

(Figure 2.4B). This could be due to the power of the NAM in reducing the effects of 

ancestral population structure on mapping. 

About 46% (58 of 127) of the inflorescence QTL identified in this study co-

localized with sorghum homologs of maize and rice inflorescence genes within a 150kb 

window (Table 2.6). A QTL (SbInf_03.4750) for UBL was found about 38 kb from the 

sorghum ortholog (Sobic.003G052900) of maize ramosa2 (ra2) (Figure 2.3B). For LBL, 

a QTL (qSbLBL9.49) was found in the intragenic region of Sobic.009G142200 (No 

Apical Meristem gene) involved in floral organ identity and development. For RL, a QTL 

(qSbRL3.57) was found outside the 150kb window, about 160 kb from the sorghum 

ortholog (Sobic.003G236900) of the maize YUCCA2 gene (spi1) (Figure 2.3C). 

Mutations in YUCCA gene(s) led to drastic reduction in inflorescence rachis length and 

branch length in maize and rice and general deformity in Arabidopsis inflorescence 

(Cheng et al., 2006; Yamamoto et al., 2007; Kim et al., 2007; Gallavotti et al., 2008). In 
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general, there was no colocalization between QTL for LBL and UBL except 

qSbUBL3.44 and qSbUBL3.47 which were ~300 kb from each other falling outside the 

LD range (150 kb) in this population. This suggests that LBL and UBL are under 

different genetic control. The fact that some QTL are far from a priori candidate genes 

may in part reflect lower mapping resolution in the NAM population compared to the 

SAP due to slower LD decay in the NAM population (Figure 2.4A).  

Genomic enabled breeding of inflorescence morphology 

 The inflorescence traits evaluated in this study had high heritability, which signify 

the presence high genetic variation for increased selection gain. Given the high prediction 

accuracies observed for the traits (from r = 0.65 to r = 0.83; Figures 2.5A and 2.5C); 

thus, genomic prediction is possible for inflorescence morphology in sorghum. As this 

study was based on RTx430-derived NAM families, prediction in related or breeding 

populations of similar pedigree (e.g., from Texas A&M breeding lines) will also be 

beneficial for high accuracy genome-wide predictions in sorghum. The variation in 

prediction accuracies obtained in the “leave-one-family-out” approach can be a reflection 

of the differences in the genetic diversity captured by the NAM for each of the five 

sorghum botanical races. Between family predictions in the maize NAM also showed 

varied prediction accuracies (Peiffer et al., 2014). Only four of the five racial groups 

were represented in the NAM population with disproportionate number of families 

representing each race. Increasing the number of NAM founders with sufficient racial 

representation will be beneficial in capturing more genetic diversity underlying sorghum 

inflorescence for higher predictive power. However, prediction accuracies using family-

to-family pairwise prediction approaches did not show a strong positive relationship (r < 

0.2) with kinship relatedness for RL and LBL. 

Sorghum breeding programs often must cross parental lines with contrasting 

panicle morphologies, especially to transfer traits from donor to recipient genetic 

backgrounds. Unfortunately, recovering recipient panicle morphology by backcross 

and/or intercross is slow, because phenotypic selection for inflorescence morphology can 

only be done close to harvest time, well after the window for pollination. Therefore, QTL 

markers from this study can be employed to facilitate recovery of desired inflorescence 
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morphology via marker-assisted recurrent selection. The pleiotropy of qSbRL7.59 with 

both LBL and RL and their high phenotypic correlation (r = 0.71, P-value < 0.01) can be 

beneficial for simultaneous selection of both traits, for example, in the recovery of large 

panicle from a cross between small and large panicle sorghum lines. 

Conclusions 

Sorghum NAM demonstrated its power in dissecting population structured 

adaptive traits in this study by validation of previously reported QTL and identification of 

novel ones. Sorghum inflorescence is controlled by loci of minor effects. Some, but not 

all, of the a priori candidate genes were associated with variation in inflorescence 

morphology. Most of the inflorescence a priori genes were identified in mutation studies; 

thus variants identified by such approach may not be reflective of natural populations, 

where deleterious large-effect variants will be purged by natural selection. There is also 

likely more genetic diversity in inflorescence morphology to be discovered, since the 11 

NAM founder parents only captured about 70% of the U.S. sorghum association panel 

(Bouchet et al., 2017). Therefore, increasing the number of the founders in the NAM 

population (i.e. adding new families) will be beneficial for both increased recombination 

and diversity. Although this may increase phenotyping burden, the use of high-

throughput phenotyping platforms could overcome this challenge (Crowell et al., 2016). 

Furthermore, since the NAM founders originated from diverse agroclimatic zones, QTL 

identified in this study should be transferable for MAS across breeding programs in 

various climatic zones. In breeding programs targeting smallholder-farming systems, my 

QTL offers an opportunity to recover farmer-preferred inflorescence traits. This will be 

possible by using them as markers to recover locally preferred inflorescence morphology 

when introgressing traits into local genetic backgrounds. 
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Tables and Figures 
Table 2.1: The sorghum NAM founders, their origin and number of RILs used for 
analysis from each diverse founder derived family. 

Founder Origin Founder Type RILs 

RTX430 Texas A & M University Common Parent - 

P898012 Purdue University Diverse Founder 213 
Ajabsido Sudan Diverse Founder 214 

Macia ICRISAT Diverse Founder 231 
SC1103 Nigeria Diverse Founder 231 

SC1345 Mali Diverse Founder 231 
SC265 Burkina Faso Diverse Founder 232 

SC283 Tanzania Diverse Founder 223 
SC35 Ethiopia Diverse Founder 208 

SC971 Puerto Rico, United States Diverse Founder 233 
Segaolane Botswana Diverse Founder 204 
 

Table 2.2: Location, climate, year, precipitation (rainfall October of previous year to 

October of current year) and environmental code information of field experiments for the 

nested association mapping population. 

Location Climate Year Precipitation 
(mm) 
Oct – Oct* 

Environment 
Code 

Manhattan, KS Humid 
Continental 

2014 698 MN14 

Hays, KS Semi-Arid 2014 
(Upland) 

639 HA14 

Manhattan, KS Humid 
Continental 

2015 998 MN15 

Hays, KS Semi-Arid 2015 
(Bottomland) 

513 HI15 

Hays, KS Semi-Arid 2015 
(Upland) 

513 HD15 

* National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  
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Table 2.3: Mean, range, and broad sense heritability (H2) for lower branch length (LBL), 

upper branch length (UBL), rachis length (RL), and rachis diameter (RD). 

Trait Mean (mm) Range (mm) H2 
LBL*** 82 267 – 176 0.86 
UBL* 48 7 – 170 0.85 
RL*** 274 111 – 465 0.92 
RD*** 8.3 3.8 - 13.5 0.59 

*, **, *** Significant genotypic differences at 0.05, 0.01 and 0.001 respectively. 

Table 2.4: Within family additive effect size (AES) for QTL identified using joint linkage 

mapping with marker nested within family (NJL) and joint linkage with no nesting (JL). 

Trait Model Nos. of QTL Range of AES 
(mm) 

LBL NJL 14 -30 to16  
LBL JL 21 -26 to 19  

UBL NJL 1 - 28.0 to 0  
UBL JL 17 -33 to 5  

RL NJL 16 -44 to 51.9  
RL JL 22 -49.5 to 51.9  

RD NJL 9 -2.0 to 0.9  
RD JL 21 -2.4 to 0.6  
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Table 2.5: Across population (whole NAM) additive effect size (AES) and proportion of 

phenotypic variation explained for QTL identified using joint linkage mapping with 

marker nested within family (NJL) and joint linkage with no nesting (JL). 

Trait Model Range of AES (mm) Range of PPVE (%) 

LBL NJL -4 to 2  0.1 to 2.0 

LBL JL -12 to 8  0.6 to 5.0  
UBL NJL -4  3.0 

UBL JL -11 to 2  0.6 to 4.0 
RL NJL -10 to 12  0.1 to 3.0 

RL JL -20 to 20  0.6 to 3.0 
RD NJL -0.4 to 0.2  0.1 to 1.0 

RD JL -0.9 to 1.5  0.2 to 1.0 
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Figure 2.1: Phenotypic description and distribution of sorghum inflorescence 

morphology. 

(A) Diagram of sorghum inflorescence traits evaluated. (B) Open inflorescence 

morphology represented by SC1103 parent. (C) Compact inflorescence morphology 

represented by Ajabsido parent. (D) Semi-compact inflorescence morphology as 

represented by RTx430 the common parent. (E) Phenotypic distribution of line means for 

inflorescence traits. The blue lines are the trait value for the common parent (RTx430), 

the green lines are the mean trait values for each of the other parent, and the red line is 

the trait mean within each family. 
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Figure 2.2: Pairwise correlation between traits. 

Pearson correlation between lower branch length (LBL), upper branch length (UBL), 

rachis length (RL), and rachis diameter (RD) significant at 0.05, 0.01 and 0.001 (*, **, 

and ***).  
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Figure 2.3: QTL mapping for inflorescence morphology using joint linkage model. 

Genomic location of associations with (A) lower branch length, (B) upper branch length, 

(C) rachis length, and (D) rachis diameter. The dashed red lines are the Bonferroni 

significance threshold (P-value < 0.05) estimated from 100 permutations. A priori 

candidate genes that colocalize with QTL within 150 kb are noted as follows. Black text 

indicates putative sorghum orthologs of a priori candidate genes while red text indicates 

paralogs. (E-F) Density plots showing the distribution of QTL allele frequency and 

phenotypic variation explained for each trait. (G) Plot showing the relationship between 

QTL allele frequency and phenotypic variation explained.   
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Figure 2.4: Comparison of sorghum diversity/association panel (SAP) and nested 

association mapping (NAM) populations based on linkage disequilibrium decay and 

genome-wide association mapping. 

(A) Linkage disequilibrium decay curve color coded for sorghum association panel 

(SAP) and nested association mapping (NAM) populations and (B) Manhattan plot for 

the comparison of genome-wide association approaches for lower branch length in using 

generalized liner model (GLM) in shades of gray, compressed mixed linear model 

(CMLM) in shades of green, and NAM joint linkage (JL) model in red and orange. 
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Figure 2.5: Prediction accuracies for five-fold cross-validation and leave-one-family-

out subagging approaches for lower branch length and rachis length. 

(A) The prediction accuracy as correlation between observed phenotypic values and 

predicted phenotypic values for lower branch length cross-validation. The color intensity 

shows the density of data points in each region (from blue to red means few data points to 

highly dense data points). (B) Prediction accuracies using leave-one-out approach for 

each family for lower branch length. (C) The prediction accuracy as correlation between 

observed phenotypic values and predicted phenotypic values for rachis length cross-

validation. The color intensity shows the density of data points in each region (from blue 

to red means few data points to highly dense data points). (D) Prediction accuracies using 

leave-one-out approach for each family for rachis length.   
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Figure 2.6: Joint linkage and nested joint linkage (NJL) additive effects heatmap for 

lower branch length (LBL). 

The red boxes indicate families where the additive effects of the QTL are negative. While 

the blue boxes indicate families where the additive effects of the QTL are positive.   
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Figure 2.7: Joint linkage and nested joint linkage (NJL) additive effects heatmap for 

upper branch length (UBL). 

The red boxes indicate families where the additive effects of the QTL are negative. While 

the blue boxes indicate families where the additive effects of the QTL are positive.   
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Figure 2.8: Joint linkage and nested joint linkage (NJL) additive effects heatmap for 

rachis length (RL). 

The red boxes indicate families where the additive effects of the QTL are negative. While 

the blue boxes indicate families where the additive effects of the QTL are positive.   
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Figure 2.9: Joint linkage and nested joint linkage (NJL) additive effects heatmap for 

rachis diameter (RD). 

The red boxes indicate families where the additive effects of the QTL are negative. While 

the blue boxes indicate families where the additive effects of the QTL are positive.   
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Figure 2.10: Prediction accuracies for five-fold cross-validation. 

Prediction accuracy plots showing correlation between observed phenotypic values and 

predicted phenotypic values for (A) upper branch length and (B) rachis diameter. The 

color intensity shows the density of data points in each region (from blue to red means 

few data points to highly dense data points). 
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Chapter 3 - Joint Linkage Mapping of Vegetative Traits in Sorghum 

Abstract 

Crop improvement strategies for increased yield often involve modification of 

plant morphology. In sorghum, the genetic basis of plant height has been well described, 

but traits such as stem diameter, leaf erectness, and leaf width are not well understood. In 

this study, the sorghum-nested association mapping (NAM) population was used to 

characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. 

About 2200 recombinant inbred lines were phenotyped in multiple environments. The 

obtained phenotypic data were used to perform joint linkage mapping using ~93,000 

markers. Minor effects quantitative traits loci (QTL) were found to underlie marker-trait 

associations as the explained very small proportion of the phenotypic variation (< 10 %). 

A pleiotropic QTL was found to be associated with plant height, stem diameter, and leaf 

erectness. Furthermore, identified QTL co-localized with sorghum homologs of 

developmental genes in other grasses. Our results provide insights into the genetic basis 

of leaf erectness and stem diameter in sorghum. The QTL identified could facilitate 

molecular characterization of the genes underlying vegetative growth and development, 

and genomic-enabled breeding for improved plant architecture.  
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Introduction 

Modification of plant morphology for crop improvement has contributed to global 

agricultural productivity during the last century (Khush, 2001; Duvick, 2005). This 

approach known as ideotype breeding involves the creation of a model plant with 

characteristics that facilitate efficient photosynthesis, growth, and yield (grain and 

biomass) (Donald, 1968; Hammer et al., 2009). Ideotype breeding also contributed to 

increased yield potential in maize, rice, and wheat during the “Green Revolution” 

(Khush, 2001). The Green Revolution ideotype in cereals includes reduced height, erect 

leaves, thick stalks, large and semi-compact inflorescence (ear, panicle, or head). Leaf 

erectness is defined the angle between the soil level and the leaf midrib, where more erect 

leaves have greater angle (Tian et al., 2011). Erect leaves are thought to have contributed 

directly or indirectly to increased grain yield in U.S maize through adaptation of hybrids 

to high planting densities (Duvick, 2005; Hammer et al., 2009). In sorghum, increase leaf 

erectness was shown to improve photosynthetic efficiency and thermal stress reduction 

by dispersing solar radiation from upper to lower parts of the canopy (Truong et al., 

2015). Wide leaves may also facilitate efficient solar radiation capture for plant 

productivity. Thick stems may increase stalk strength and improve standability (lodging 

resistance) for combine harvesting (Kashiwagi et al., 2008). A wide genetic variation 

exists for these ideotype traits in cereals that can be further utilized in crop improvement 

(Khush, 2001). However, the genetic basis of these agronomically important traits is not 

well characterized in sorghum.  

Characterization of trait genetic architecture is made possible by quantitative trait 

loci (QTL) mapping (Morrell et al., 2011). Previous and current crop trait dissection 

involved the use of bi-parental populations for mapping. But the power and reliability of 

dissection using biparental mapping are often undermined by small population size, 

reduced genetic diversity, and non-transferability of QTL to other backgrounds.  

Association mapping panels exploit wide genetic diversity and provide high mapping 

resolution for genetic dissection of traits. However, the effectiveness of association 

mapping is limited by population structure that causes spurious and synthetic associations 

(Myles et al., 2009; Korte & Farlow, 2013). Multi-parental mapping like the nested 

association mapping (NAM) and multiple advanced generation intercrosses (MAGIC) 
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reduce the confounding effect of historical population structure and phenotypic variation 

through crosses between founder lines and common founder in NAM and among founder 

lines in MAGIC (Myles et al., 2009; Korte & Farlow, 2013). The balanced allele 

frequencies in the NAM population also contribute to its high mapping power. Thus, it is 

an efficient approach for characterizing the genetic basis of complex agronomic traits 

(Bouchet et al., 2017).  

Given that agronomic traits have shaped by selection, considering the 

evolutionary history of selection provides insights on genetic architecture of agronomic 

traits. Evidences of the impact of selection on the evolution history of genetic architecture 

have been shown in fish (Cresko et al., 2004), dogs (Boyko et al., 2010), chicken 

(Carlborg et al., 2006), maize (Doebley, 2004; Brown et al., 2011), and rice (McCouch et 

al., 2004; Ishii et al., 2013). Traits that have undergone recent selection have been found 

to be under the control of large effect loci in maize (Brown et al., 2011), rice (Ishii et al., 

2013), and sorghum (Bouchet et al., 2017).  

Sorghum is an important staple food crop in semi-arid and arid regions due to its 

resilience to harsh environmental conditions. Its cultivation in temperate climate during 

the last century was made possible by the conversion of tall photoperiod-sensitive 

tropical lines to dwarf photoperiod-insensitive high yielding lines with reduced height. 

This improved sorghum ideotype for temperate climates made sorghum commercial 

cultivation successful in the United States (Klein et al., 2008). Selection for reduced 

height led to indirect selection for increased erectness of sorghum leaves and stem 

diameter that made high-density cultivation more feasible. Genetic architecture of 

flowering time and height has been characterized in sorghum to a great extent unlike leaf 

morphology and stem diameter. The major genes underlying height in sorghum are Dw1, 

Dw2, and Dw3. Dw3 has been shown to have a pleiotropic effect on leaf erectness and 

inflorescence in the lower primary branch in sorghum (Brown et al., 2008). Flowering 

time in sorghum is under the control of maturity gene loci (ma1-ma6). In maize, the 

genetic architecture of leaf erectness and leaf width has been well characterized and 

found to be controlled by small effect loci (Tian et al., 2011; Strable et al., 2017).  
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In cereals, the shoot apical meristem (SAM) determines the above ground 

architecture of the plant by maintaining pluripotent cells and forming lateral organs and 

stems which both determine the various plant architectures observed in nature (Wang & 

Li, 2008). Genes such as LA1 (LAZY), TAC1 (Tillering Angle Control 1) (Wang and Li 

2008), Narrow leaf1 (Qi et al., 2008), LC1 (LEAF INCLINATION1) (Zhao et al., 2013), 

lg1 (liguless1), lg2 (liguless2), lg3 (liguless3), and lg4 (liguless4), and YABBY (Tian et 

al., 2011; Li et al., 2015; Strable et al., 2017) play essential roles in lateral organ 

branching, leaf formation, tiller angle, and leaf angle regulation. In addition, growth-

promoting compounds as gibberellins and brassinosteroids also regulate plant 

architecture (Wang & Li, 2008).  Currently, the genetic basis of leaf morphology and 

stem diameter in sorghum is poorly understood. In this study, the genetic basis of 

sorghum leaf erectness, leaf width, and stem diameter was characterized using the 

sorghum NAM population. This population comprised of approximately 2200 RILs, 

generated from a cross between 10 diverse founder lines with the common parent. The 

study objectives were (i) to characterize the genetic architecture (number, effect size, and 

allele frequencies of the underlying QTL) and (ii) to identify genes underlying QTL 

associated with the above-mentioned traits. 

Materials and Methods 

Plant materials and phenotypic evaluations 

The sorghum NAM population was previously described (Paterson, 2013; 

Bouchet et al., 2017). It consists of 2500 recombinant inbred lines (RILs) derived from a 

cross between a common founder RTx430 and 10 other diverse founders (Table 2.1). 

This population was phenotyped in multiple environments (Table 2.2) for leaf erectness, 

leaf width, stem diameter, flowering time and height. The leaf erectness was measured as 

the angle between the soil surface (0°) and the pre-flag leaf midrib using a barcode reader 

and barcode protractor (Figure 2.1).  Leaf erectness was measured from 3 plants per plot. 

The leaf width was measured as the width of the leaf at the widest point on both pre-flag 

leaf and the fourth leaf from the flag leaf on three plants per plot (Figure 2.1). 

Measurements were taken using a barcode ruler. Stem diameter was measured as the 

diameter of the stem at the second Internode above the ground surface on three plants per 
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plot in millimeters using a digital caliper and a barcode reader. Flowering time was 

scored as the number of days from planting to the day in which 50% of the individuals in 

a plot are in anthesis. 

Phenotypic data analysis 

Analysis of phenotypic data collected was performed using R and SAS (SAS 

Institute Inc., Cary, NC, USA). The phenotypic mean of each RIL across environments 

was estimated. The proportion of phenotypic variance explained by genetic variation in 

the NAM for each trait was estimated by fitting terms for the vector of phenotypic data 

and the matrix of kinship genetic relatedness (estimated from the genomic data) using the 

heritability package in R (Kruijer et al., 2015). Also, Pearson pairwise correlation 

between traits was estimated using the residuals derived from fitting a linear model for 

family and trait phenotypic means; 

    yij = 𝜇 + γ! + ε!"                           [1]  

where yij is the phenotype, γ! is the term for the NAM families and ε!" is the residual 

term. The BLUP for each phenotype was estimated by fitting RIL, environment, and RIL 

by environment interaction terms as random using LME4 R package (Bates et al., 2017). 

Joint linkage mapping 

To characterize the genetic architecture of these traits (STM, LET, PFLW, VLW, 

HGT, and FLT), joint linkage mapping was performed using trait BLUPs and genomic 

data using the stepwise regression approach implemented in TASSEL 5.0 (Glaubitz et al., 

2014). The approach is based on forward inclusion and backward elimination stepwise 

methods. The entry and exit limit of the forward and backward stepwise regressions were 

set at 0.001. Also, the threshold cutoff was set at 1.8 E-6 based on 100 permutations. The 

genotypic data used for this analysis have been previously described (Bouchet et al., 

2017). The JL model was specified as; 

𝐲 =  𝑏! +  α!u! +  𝐱𝐢b!!
!!! +  e!   [2] 

where b0 is the intercept, 𝑢! is the effect of the family of founder f obtained in the cross 

with the common parent (RTx430), α! is the coefficient matrix relating u! to y, 𝑏! is the 
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effect of the ith identified locus in the model, 𝐱! is the incidence vector that relates 𝑏! to y 

and k is the number of significant QTL in the final model . 

Estimation of QTL effect size and allele frequency  

The snpStats package in R (Clayton, 2015) was used to estimate the allele 

frequency of the QTL. While the proportion of phenotypic variation (PV) explained by 

each QTL were estimated by fitting a linear model with family and QTL as fixed terms; 

yijk = 𝜇 + γ! + Φ!+ ε!"#                              [3] 

where yijk is the phenotype, γ! is the term for the NAM families, Φ! is the term for QTL, 

and ε!"# is the residual term. The sum of squares of QTLs divided by sum of squares total 

gave the proportion of variance explained by the detected QTL. The additive effect size 

of the QTL in the population was estimated as the average of the difference between the 

mean phenotypic values associated with the two-allele class of the QTL. The additive 

effect size of each QTL was estimated relative to RTx430 (Tian et al., 2011).  

Comparison of QTL regions with a priori genes  

A list of a priori genes was developed for leaf morphology, stem diameter, plant 

height, and flowering time based on homology with genes underlying these traits in other 

cereals. This list contained about 146 sorghum homologs in total with 130 of them 

associated with leaf and stem development, while 16 are known height and flowering 

time genes in sorghum. A custom R script was used to search for a priori genes within 

150 kb window around the QTL associations identified in this study. 

Results 

Phenotypic variation for traits 

Significant differences were observed for all traits and the proportion of 

phenotypic variation explained by genetic variation in the NAM for the traits are 0.56 for 

HGT, 0.67 for FLT, 0.60 for STM, 0.17 for PFLW, 0.16 for VLW, and 0.50 for LET. 

Pairwise phenotypic correlations were observed between traits (figure 2.2) with LET 

having a negative correlation of -0.12 (P-value < 0.001) with height, -0.05 (P-value < 

0.05) with VLW and positive correlation of 0.10 (P-value < 0.001) with STM. HGT and 
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FLT were positively correlated (r = 0.13, P-value < 0.001), while STM had correlations 

of 0.23 (P-value < 0.001) with PFLW, -0.09 (P-value < 0.001) with HGT and 0.10 (P-

value < 0.001) with LET. 

Identified QTL and their effect sizes  

The joint linkage analysis identified 13 QTL for STM, 17 QTL for LET, two QTL 

each for VLW and PFLW, 17 QTL for HGT, and 13 QTL for FLT. About 6 out of the 25 

FLT QTL had an additive effect size of 2 days or more (qSbFLT10.78, qSb7.25, 

qSbFLT3.71, qSbFLT6.57, qSbFLT3.62 and qSbFLT6.79). For HGT, qSbHGT9.570 

explained the largest proportion of variation (12%) followed by qSbHGT9.576 (6%). All 

leaf traits, and stem diameter QTL explained less than 3% of the phenotypic variation. 

Table 3.3 describes the summary of QTL effect sizes. 

Plant and inflorescence morphology genes underlie identified QTL 

QTL identified in this study were observed in the proximity of genes known to be 

associated with inflorescence and plant morphology. For STM, a QTL (qSbSTM7.59) 

was found about 34-35 kb to the Dw3 and YUCCA5 genes. Also, for LET, qSbLET7.63 

was found at about 12kb from the sorghum ortholog of rice OsSPL14 (Ideal Plant 

Architecture1), qSbLET10.60 found at about 1.8 kb from the sorghum ortholog of maize 

Thick Tassel Dwarf1 (CLAVATA1), qSbLET7.59 was found at about 136 kb from 

YUCCA5, and qSbLET2.63 was found at about 28 kb from a sorghum paralog of maize 

Fasciated ear 4 (Fea4). Two HGT QTL (qSbHGT7.59 and qSbHGT7.59) were found 

about 35 kb and 139 kb from YUCCA5. Two STM QTL qSbSTM7.51 and qSbSTM3.63 

were located at 33 kb and 77 kb from the sorghum paralogs of maize ROUGH SHEATH2 

and BAD1. One of LET QTL (qSbLET7.59) was found about 300 kb from Dw3 and 230 

kb from YUCCA5. qSbFLT6.79 was found about 99 kb from Ma6 (Sobic.006G004400), 

qSbFLT.3_6271 about 30 kb from SbCN12 (FLOWERING LOCUS T, Sb03g034580), 

and qSbFLT10.12 about 158 kb from SbCO. Likewise, a flowering time QTL 

qSbFLT6.51 was found at about 107 kb from the sorghum ortholog (Sb06g023770) of the 

maize leaf morphology gene yab1/drl1. The three major sorghum height genes, Dw1 

(Sobic.009G229800), Dw2 (Sobic.006G067700) and Dw3 (Sobic.007G163800), were 

found at about 24 kb, 4.7 kb, and 34 kb from qSbHGT9.57, qSbHGT6.42, and 
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qSbHGT7.59, respectively. QTL qSbHGT7.59 was also found 35 kb from YUCCA5, the 

flavin monooxygenase gene. Also SbCN4 (Sobic.006G068300) a flowering time gene 

was found at about 117 kb from qSbHGT6.42 height QTL on chromosome 6.  

Discussion 

Genetic variation associated with sorghum vegetative traits in the NAM 

Genetic variation is essential for breeding. Substantial genetic variation was 

identified for some of the plant morphology traits evaluated. Four of six traits evaluated 

in this study (HGT, FLT, STM, and LET) exhibited a high level of heritability genetic 

variation (Table 3.3). However, the two leaf width traits (PFLW and VLW) showed 

notably low heritability estimates. Leaf morphology exhibited high heritability in the 

maize NAM (Cook et al., 2012) and sorghum association panel (Zhao et al., 2016). It is 

not clear what could have led to the low heritability observed for VLW and PFLW in this 

study. Phenotyping error is a possible explanation. In this case, automated high-

throughput phenotyping on multiple plants would be beneficial to reduce error that may 

result from manual measurements.  

The inverse correlation between PHT and LET showed that a short plant would 

have more erect leaves. This correlated effect may facilitate adaptation for better light 

interception under high-density planting. The positive relationship between FLT, and 

STM, FLT, and HGT is consistent with the expectation that late-flowering plants should 

have increased stem width and height, and accumulate more biomass (Ashworth et al., 

2016).  

Few moderate and many small effect size loci associated with sorghum vegetative 
traits 

This study revealed that few loci explaining moderate proportion of phenotypic 

variation underlie vegetative traits in sorghum. Most of the associated loci, explained less 

than 5% of the phenotypic variation. Only a single large effect locus was found to be 

associated with HGT (qSbHGT9.57, Dw1 QTL explaining 12% of PV). All QTL 

associated with leaf traits were of small effect explaining less than 3% of phenotypic 

variation. In the maize NAM population, small effect loci were found to be associated 

with both leaf erectness and width (Tian et al., 2011). Earlier QTL mapping for leaf 
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erectness in sorghum using biparental population identified the average of four QTL per 

population with most QTL having an effect size of about 15% (Truong et al., 2015). 

However, the estimated effect size of these loci could have been inflated due to the 

Beavis effect (small population) (Xu, 2003). The estimated effects in this study are 

expected to be more accurate due to the large number of RILs in the NAM population 

(2200 RILs). A positive relationship was observed between heritability and the number of 

associated QTL since only the two low heritable leaf width traits were the ones with the 

least QTL number. This showed that the presence of high genetic variation is essential for 

QTL mapping. 

Vegetative traits were associated with genes underlying plant and inflorescence 
development 

QTL identified in this study were found to be in proximity of genes controlling 

plant morphology and inflorescence morphology. One important QTL (qSbHGT7.59) 

identified in this study was found to be pleiotropic with HGT, STM, and LET. The QTL 

was found at about 34 kb from Dw3 and YUCCA5 genes. Though there is limited 

knowledge about the genetic basis of leaf erectness in sorghum, associations underlying it 

have been found in the qSbHGT7.59 region (Hart et al., 2001; Truong et al., 2015; Zhao 

et al., 2016). Dw3 is an auxin transporter gene whose mutation led to dwarf plants in 

sorghum (Multani et al., 2003). The pleiotropic effect of Dw3 on leaf erectness was 

recently described (Truong et al., 2015). Dwarf lines carrying dw3 duplication to be more 

erect, while tall Dw3 revertants (those that changed from dwarf to tall stature) were less 

erect. YUCCA5 is a flavin monooxygenase gene involved auxin biosynthesis (Dai et al. 

2013). YUCCA5 homologs have been found to control inflorescence morphology in 

maize (Gallavotti et al., 2008) and rice (Yamamoto et al., 2007), and have been proposed 

as candidates for inflorescence morphology in sorghum (Brown et al., 2008). In addition, 

a moderate effect loci underlying LET, OsSPL14 (Ideal Plant Architecture1, IPA1) was 

found about 12 kb from a LET QTL (qSbLET7.63). IPA1 has been found to play a 

critical role in both plant architecture and inflorescence morphology in rice (Si et al., 

2016). Similarly, prior to this study, little is also known about the underlying genetic 

basis of stem diameter in sorghum (Mantilla Perez et al., 2014). But sorghum paralogs of 
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maize ROUGH SHEATH2 and BAD1 were found to underlie some of the STM QTL 

identified in this study. 

Conclusion 

This study provided insights into the genetic basis of plant architecture in sorghum. Leaf 

erectness and stem diameter were under the control of common moderate effect loci. A 

pleiotropic QTL (qSbHGT7.59) that co-localizes with YUCCA5 and Dw3 regions was 

found to be associated with HGT, STM, and LET. The colocalization and/or pleiotropy of 

these QTL and correlation relationships between the three traits showed that selection for 

dwarf height in sorghum might have led to an indirect selection for increased leaf 

erectness and increased stem diameter. These QTL can be used to develop molecular 

markers to facilitate simultaneous selection and improvement of vegetative morphology. 

The limited number of QTL and low heritability estimates found to be associated with 

leaf width traits in this study calls for a thorough investigation of the traits with more 

accurate high-throughput phenotyping methods. Interestingly, some of the QTL 

underlying vegetative traits in this study were found near candidate genes for 

inflorescence morphology. This suggest possible pleiotropy of these genes in both 

vegetative and inflorescence development biology for example liguless gene in rice 

OsLG1 (Ishii et al., 2013). QTL identified in this study can help facilitate marker 

development for ideotypic breeding and further the study of the underlying genes. 
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Tables and Figures 
Table 3.1: Sorghum nested association mapping population founders, their countries of 
origin and number of recombinant inbred lines (RILs) present in each family. 

Founder Origin Founder Type RILs 

RTX430 Texas A & M 
University Common Parent - 

P898012 Purdue University Diverse Founder 213 
Ajabsido Sudan Diverse Founder 214 
Macia ICRISAT Diverse Founder 231 
SC1103 Nigeria Diverse Founder 231 
SC1345 Mali Diverse Founder 231 
SC265 Burkina Faso Diverse Founder 232 
SC283 Tanzania Diverse Founder 223 
SC35 Ethiopia Diverse Founder 208 

SC971 Puerto Rico, United 
States Diverse Founder 233 

Segaolane Botswana Diverse Founder 204 
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Table 3.2: Multi-environmental phenotypic evaluation of sorghum nested association-

mapping population. Phenotypic traits evaluated are Leaf erectness (LET), pre-flag leaf 

width (PFLW), vegetative leaf width (VLW), stem diameter (STM), height (HGT), and 

flowering time (FLT). 

Location Climate Year Precipitation 
(mm) 

Oct – Oct* 

Environment 
Code 

Traits 
measured 

Manhattan, 
KS 

Humid 
Continental 

2014 698 MN14 LET, 
PFLW,  
VLW, 
STM, FLT 

Hays, KS Semi-Arid 2014 
(Upland) 

639 HA14 STM, 
HGT 

Manhattan, 
KS 

Humid 
Continental 

2015 998 MN15 LET, 
VLW, 
FLT 

Hays, KS Semi-Arid 2015 
(Bottomland) 

513 HI15 LET, 
VLW,  

PFLW, 
HGT 

Hays, KS Semi-Arid 2015 
(Upland) 

513 HD15 VLW 

* National Oceanic and Atmospheric Administration, U.S. Department of Commerce. 
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Table 3.3: Narrow sense heritability, additive effect size (AES) and proportion of 
phenotypic variation explained by QTL. 

Trait h2 Range of PPVE (%) Range of AES 

HGT 0.54 0.2 to 12 -12 to 7 (cm) 

FLT 0.71 0.1 to 6 -1 to 4 (days) 

STM 0.60 0.3 to 1 -1 to 3 (mm) 

LET 0.50 0.3 to 3 -7 to 4 (degree) 

PFLW 0.17 0.8 to 1.8 -5 to -3 (mm) 

VLW 0.16 0.6 to 0.9 -1 to 13 (mm) 
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Figure 3.1: Phenotypic variation in vegetative morphology.  

(A) Leaf erectness and leaf width measurements. A barcode protractor and barcode ruler 

were both used for the measurements of these traits to ensure accurate and fast data 

acquisition. (B) Pairwise correlations among traits after accounting for family effect 

(Correlation of residuals of a linear model with a fixed family term). The correlation 

values shown are significant at P-value < 0.01. Blue lines indicate positive relationships 

while red lines indicate negative relationships. 
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Figure 3.2: QTL mapping for vegetative morphology using joint linkage model.  

Genomic location of associations with (A) plant height, (B) leaf erectness, and (C) stem 

diameter. The dashed red lines are the Bonferroni significance threshold (P-value < 0.05) 

estimated from 100 permutations. A priori candidate genes that colocalize with QTL 

within 150 kb are noted as follows. Black text indicates putative sorghum orthologs of a 

priori candidate genes while red text indicates paralogs. 
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Figure 3.3: Distribution of QTL effects and allele frequencies. 

 (A) Density plots summarizing the distribution of QTL effect sizes for each trait. Percent 

variance explained of the QTL was estimated from linear models with a fixed main effect 

of family and fixed main effect of QTL.  (B) Density plots summarizing the distribution 

of QTL allele frequencies for each trait. FLT: Flowering time, HGT: Plant height, LET: 

Leaf erectness, STM: Stem diameter. 
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Chapter 4 - Population and Quantitative Genomic Analysis of Clinal Adaptation in 

Nigerian Sorghum 

Abstract 

Sorghum landraces have adapted to different environments, providing genetic 

diversity useful for crop improvement. Nigeria harbors abundant sorghum diversity, 

however, inadequate understanding of genetic diversity, population structure, and 

adaptive loci limits germplasm utilization. In this study, 607 Nigerian sorghum 

accessions were characterized at > 400,000 SNPs and compared regional West African 

germplasm and a global reference germplasm. Nigerian germplasm has a substantial level 

of genetic diversity (π) compared to global (~ 98%) and West African (~ 92%) 

germplasm. Discriminant analysis of principal components identified three distinct 

genetic groups that are moderately genetically differentiated from each other. Linkage 

disequilibrium in the Nigerian germplasm was slightly slower than that of the global 

germplasm, which indicated possible lower mapping resolution in the Nigerian 

germplasm. A genome scan for signatures of adaptation and genome-wide association 

studies identified signals in the proximity of candidate genes underlying flowering time, 

height, and inflorescence architecture. Results suggest that the genomic diversity in 

Nigerian landraces was shaped by clinal adaptation across a climatic gradient and can 

provide genetic resources for crop improvement. 
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Introduction 

Intraspecific phenotypic variation exists for adaptive traits across a climatic 

gradient in natural populations. Latitudinal variations have been observed for seed 

dormancy, cold tolerance, height, and flowering time in Arabidopsis (Kronholm et al., 

2012; Samis et al., 2012; Debieu et al., 2013). Likewise, in cultivated crop species, 

geographical distribution from tropical to cold temperate conditions became possible 

through adaptation of flowering time to local conditions (Camus-Kulandaivelu et al., 

2006; Ducrocq et al., 2008; Buckler et al., 2009). Furthermore, local adaptation of 

traditional varieties has played essential roles in ensuring marginal yield under adverse 

climatic conditions in smallholder farmers’ fields and low input agricultural systems 

(Mercer et al., 2012; Feitosa Vasconcelos et al., 2013). These locally adapted varieties 

possess alleles that can be beneficial for the development of better-adapted lines in crop 

improvement to ensure food security (Zeven, 1998; Soler et al., 2013; Lasky et al., 2015). 

Therefore, we need to improve our understanding of adaptive genetic diversity in crop 

species for efficient utilization in crop improvement. 

Characterization of genetic diversity and population structure of natural crop 

species populations is important for (Djè et al., 2000; Manzelli et al., 2007; Samis et al., 

2012; Soler et al., 2013; Yoder et al., 2014). The genetics of local and clinal adaptation 

has been widely studied using population genomic approaches (Umina et al., 2005; Zhen 

& Ungerer, 2008; Samis et al., 2012; Yoder et al., 2014). Some of the approaches involve 

genome scans for fingerprints of selection at linked neutral loci (Siol et al., 2010). 

Another widely used approach is genome-wide associations between genomic variants 

and climatic factors (Hancock et al., 2011; Yoder et al., 2014). Population genomic tools 

have helped improve our understanding of phenotypic evolution in crop species like 

maize (Ducrocq et al., 2008; Hufford et al., 2012; van Heerwaarden et al., 2012), rice 

(Olsen et al., 2006), and sorghum (Morris et al., 2013; Lasky et al., 2015; Zhang et al., 

2015) 

Sorghum bicolor is an essential staple cereal crop in dryland regions of the world 

and it has adapted to a wide range of climatic environments with intraspecific phenotypic 

variation across clines for flowering time, plant architecture and inflorescence 
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architecture (Thurber et al., 2013; Morris et al., 2013; Lasky et al., 2015; Zhang et al., 

2015). For instance, in West Africa there is a strong north-south climatic gradient, from 

semiarid grasslands bordering the Sahara desert in the north (Sahelian zone), through 

subhumid savannah (Sudanian zone), to humid rainforest in the south (Guinean zone). 

Sorghum phenotypic variation varies along this climatic gradient. Open panicle sorghum 

types are predominant in the humid regions, while semi-compact to compact panicle 

types are predominant in the semi-arid and arid regions (Harlan, 1992). The diversity of 

climatic zones often varies from country to country in the region. The Nigerian 

geographical landscape is divided into about eight agroclimatic zones based on 

precipitation patterns (Oyenuga, 1967; Sowunmi & Akintola, 2010). Sorghum is a major 

cereal in the northern (Sudano-Sahelian) regions of Nigeria, which are characterized by 

prolonged dry seasons and hot weather. Nigeria is the second largest sorghum producer 

globally, with 5-10 million tons (Mg) of production per year (WSP, 2017).  

The Nigerian population stands at about 190 million and is expected to be larger 

than the US population by 2050 (CNN, 2017), which raises concerns for food security. In 

addition, increasing temperature and erratic rainfall due to climate change also threaten 

agricultural food production. Therefore, it is important to develop better-adapted and high 

yielding sorghum varieties for farmers. However, the genetic diversity of sorghum in 

Nigeria is still not characterized compared to other West African germplasm (Ezeaku et 

al., 1999; Ezeaku & Gupta, 2004; Deu et al., 2008; Tesso et al., 2008; Bezançon et al., 

2009; Vigouroux et al., 2011). Characterizing Nigerian sorghum germplasm diversity can 

facilitate the identification of potential sources of adaptive traits and genetic diversity 

relevant to crop improvement.  The objectives of this study were thus: (1) to evaluate the 

genetic diversity of the Nigerian germplasm in relation to West African and global 

sorghum, (2) to examine whether traits have been shaped by local adaptation in response 

to climatic factors in Nigeria, and (3) to identify the genomic regions responsible for 

local adaptation. To understand the genetic diversity of Nigerian germplasm, 607 

Nigerian accessions were sequenced using GBS. Sequence data were combined with 

previous sequencing data from 1785 georeferenced global accessions (Lasky et al., 2015) 

to perform population and quantitative genomics analysis. 
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Materials and Methods 

Plant materials 

A set of 553 Nigerian accessions was obtained from the USDA National Plant 

Germplasm System (NPGS) (https://www.ars-grin.gov/). From another set of 1943 

georeferenced global accessions previously sequenced (Lasky et al., 2015), sequence 

information from 158 Nigerian accessions was obtained and combined with the Nigerian 

NPGS set. Duplicated accessions and those with the US sorghum conversion (SC) 

program identity number in the NPGS database were removed from the Nigerian 

germplasm. Thus, only 607 Nigerian accessions (of which only 443 were georeferenced) 

and 1785 georeferenced global accessions were used for downstream analysis. 

Precipitation maps were generated using Nigerian average annual precipitation data (from 

1960 to 1990) obtained from WorldClim 1.4 with Raster package in R (Hijmans 2016). 

The distribution of georeferenced Nigerian accessions across precipitation zones was 

plotted using the raster package in R (Hijmans, 2016). The 553 NPGS accessions were 

raised in the greenhouse for two weeks and about 50 mg of fresh leaf tissue was collected 

from each accession into 96 well plates. A control well was left empty on each plate. Leaf 

tissue was lyophilized (Labconco Freeze Dryer, Kansas City, MO USA) for two days and 

then ground using 96-well plate plant tissue grinder (Retsch Mixer Mill, Haan, 

Germany). Genomic DNA was extracted using BioSprint 96 DNA Plant Kit (QIAGEN, 

Valencia CA, USA), quantified using Quant-iTTM PicoGreen® dsDNA Assay Kit 

(ThermoFisher Scientific, Waltham MA, USA) followed by normalization to 10ng/ul. 

Genotyping-By-Sequencing Pipeline 

The GBS approach described by (Elshire et al., 2011) was used for GBS of 553 

Nigerian accession. Individual DNA samples were digested using ApeKI restriction 

enzyme (NEB R0643L) followed by ligation of barcode and common adapters ligation 

using T4 DNA ligase (NEB M0202L). The ligated libraries were pooled (96-plex 

libraries) and purified with the QIAquick PCR purification kit (QIAGEN, Valencia CA, 

USA). Library size distribution was obtained using a Bioanalyzer (Agilent Technologies 

2100, Santa Clara CA, USA). The 384-plex library was obtained by pooling four 96-plex 

libraries. Libraries were sequenced using single end 100-cycle sequencing using Illumina 
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HiSeq2500 (Illumina, San Diego CA, USA) at the University of Kansas Medical Center, 

Kansas City MO, USA. Raw reads for Nigerian germplasm were combined with raw 

reads obtained for 1943 accessions (Lasky et al., 2015) and tags were aligned to the 

sorghum reference genome v3.0 obtained from (Goodstein et al., 2012) using Burrow 

Wheeler Alignment algorithm (Li & Durbin, 2009). SNP calling was performed using 

TASSEL 5.0 (Glaubitz et al., 2014). Monomorphic markers and singletons were removed 

prior to the imputation of missing data using BEAGLE 4.0 (Browning & Browning, 

2013).  

Linkage disequilibrium, neighbor-joining, and principal component analysis 

Linkage disequilibrium decay for the genomic data for Nigerian and global 

germplasm was estimated by PopLDdecay (BGI-shenzhen, 2017), with minor allele 

frequency parameter set at 0.05, and smoothing was done by the spline function in R. 

Phylogenetic analysis for neighbor-joining tree was performed using TASSEL 5.0 and 

APE (Analyses of Phylogenetics and Evolution) package in R (Paradis et al., 2004). Only 

two accessions from the global data did not have country information. The phylogenetic 

tree was constructed using 311,786 SNPs from the West African data after filtering for 

monomorphic and singleton markers. Likewise, monomorphic and singletons were 

removed from Nigerian germplasm remaining 268,326 SNPs. For the discriminant 

analysis of principal components (DAPC) analysis, the find clusters function in Adegenet 

package in R (Jombart et al., 2010) was first used to infer the possible number of groups 

or clusters in the 607 Nigerian accessions. 

Genetic diversity and population differentiation 

The estimate of nucleotide divergence was used as a measure of genetic diversity 

using --site-pi and –window-pi options in VCF tools (Danecek et al., 2011). This was 

performed for the Nigerian germplasm, West African germplasm (made up of Benin, 

Togo, Ghana, Senegal, Gambia, Burkina Faso, Sierra Leone, Niger, and Cameroon a 

border country to Nigeria on the east). Furthermore, the extent of population 

differentiation between Nigeria and the global germplasm and West African germplasm 

was estimated using --weir-fst-pop parameter (Weir and Cockerham’s FST) in VCF tools 

(Danecek et al., 2011). 
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Genome scans for signature of adaptation 

Genomic signatures of adaptation in the Nigerian germplasm were identified 

using PCAdapt R package (Luu et al., 2017), with Nigerian accessions (601) and global 

reference accessions (1941) analyzed separately. An optimal cluster number of 11 and 17 

was identified through the scree plot for the Nigerian and global reference sets, 

respectively. Outliers SNPs (putatively under selection) were identified using the 

PCAdapt function (Luu et al., 2017) with parameters for optimal cluster groups and 

minor allele frequency of 0.01 for both Nigerian and global reference data sets. An a 

priori candidate gene list of sorghum orthologs was compiled based on the literature 

search for genes underlying flowering time, inflorescence, and plant architecture in 

cereals.  

Genome-wide association mapping for environmental and phenotypic data 

Climate data (annual mean temperature, mean temperature wettest quarter, mean 

temperature driest quarter, mean temperature warmest quarter, mean temperature coldest 

quarter, annual precipitation, precipitation wettest quarter, and precipitation driest quarter 

from 1960 to 1990) were obtained from WorldClim 1.4 (Worldclim.org) using the Raster 

package in R (Hijmans, 2016)based on the coordinate (latitude and longitude) 

information for each of the 438 georeferenced Nigerian accessions. Passport data for 

flowering time, plant height, and panicle length for the Nigerian accessions were obtained 

from the USDA National Plant Germplasm System (NPGS) (https://www.ars-grin.gov/) 

database. Correlations between three adaptive traits (flowering time, panicle length, and 

plant height) and climatic factors (temperature and precipitation) were estimated. 

Genome-wide association mapping (GWAS) was performed using the climate data as the 

phenotypic data. Mixed linear model (GAPIT MLM; (Lipka et al., 2012)) and multi-

locus mixed linear model (MLMM; (Segura et al., 2012)) that both accounted for 

population structure (Q, fixed effects) and a random polygenic term (K, representing 

kinship relationship matrix) were used to perform GWAS. The MLMM approach 

performs stepwise regression involving both forward and backward regressions. A total 

189,750 were used in the GWAS analysis and coded as 2 and 0 for homozygous SNPs 
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and 1 for heterozygous SNPs. Bonferroni correction of 2.6e-07 (α/total number of 

markers; where α = 0.05) was used to determine the cut-off threshold for the associations. 

Results 

Nigerian and global germplasm 

A total of 431,698 SNPs were obtained for the total set of 2542 worldwide 

accessions. In the Nigerian genomic data, after removing monomorphic markers, 

singletons, and doubletons 189,750 SNPs were retained. This corresponds to an average 

of 1 SNP per 4 kb. In addition, a West African subset (325 accessions) of the genomic 

data was also created having about 311,786 SNPs after removing monomorphic markers 

and singletons. SNP density was found to be high around sub-telomeric regions, while 

reduced in sub-centromeric regions (Figure 4.2). About 51% of the Nigerian genomic 

data is composed of SNPs with minor allele frequencies (MAF) < 0.01. By contrast, 46% 

of the West African SNPs have MAF < 0.01, 36% of the global reference SNPs have 

MAF < 0.01, and 37% of the whole population SNPs have MAF < 0.01% (Figure 4.3A). 

Inbreeding coefficients of global (0.83) and west African accessions (0.82) were higher 

than that of Nigerian accessions (0.80) (P-value < 0.001 and P-value < 0.01, 

respectively). LD decayed to half its initial value at 12 kb and to background level (r2 < 

0.1) at 180 kb in the Nigerian germplasm (Figure 4.3B). The West African germplasm 

had the slowest LD decay rate compared to the Nigerian and global germplasm (Figure 

4.3B). 

Germplasm genetic diversity and relatedness 

The average nucleotide diversity across 1 kb windows for global germplasm 

(without Nigeria), West African germplasm, and Nigerian germplasm are 0.00046, 

0.00049 and 0.00045 respectively. The Nigerian germplasm had a negative Tajima’s D 

value of -0.2 while the global and West African accessions had Tajima’s D values of 0.1 

and 0.2, respectively (using 1 kb windows). Neighbor-joining analysis showed that 

Nigerian accessions grouped together with West African accessions in the global 

germplasm (Figure 4.4A). Clustering by botanical race was also observed in the Nigerian 

germplasm neighbor-joining tree (Figure 4.4C). DAPC analysis identified 3 distinct 

genetic groups across geographical zones (Figure 4.5A–C). The DAPC groups were 
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genetically differentiated (FST) from each other as follows: group 1 versus group 2 (FST 

of 0.21), group 1 versus group 3 (FST of 0.18), group, and 2 versus group 3 (FST of 0.22). 

Relationships between adaptive traits and climatic factors 

Significant correlations were observed for flowering time with an annual 

temperature (-0.14, P-value < 0.01) (Figure 4.6), mean temperature wettest quarter (-0.15, 

P-value <0.01), mean temperature warmest quarter  (-0.15, P-value < 0.01), mean 

temperature coldest quarter (-0.11, P-value < 0.01). Plant height had correlation values of 

0.28 (P-value < 0.001), 0.24 (P-value < 0.001), 0.29 (P-value < 0.001), 0.18 (P-value < 

0.01), and 0.20 (P-value < 0.01) with a mean temperature driest quarter, mean 

temperature coldest quarter, annual precipitation (Figure 4.6), precipitation in the wettest 

quarter and precipitation in the driest quarter respectively. Panicle length had correlations 

of 0.12 (P-value < 0.05), 0.24 (P-value < 0.001), 0.24 (P-value < 0.001) with mean 

temperature coldest quarter, annual precipitation (Figure 4.6), and precipitation in the 

warmest quarter respectively. Latitude had significant negative relationships with plant 

height and panicle length (-0.33 and -0.21 P-value < 0.001) respectively (Figure 4.7). 

However, there was no relationship between latitude and flowering time. Redundancy 

analysis showed that climatic factors and space (latitude and longitude) both explained 

only 5% of the genetic variation in the Nigerian germplasm. However, when phenotypic 

information with no missing data (209 accessions) was later included in the model, 

climatic factors, space, and phenotypes explained 9% of the SNP variation (Figure 4.8). 

Genome scans for selection, GWAS, and allele distributions 

Two major selective sweeps were observed on chromosome 6 as well as other 

outliers distributed across the genome (Figure 4.9A). For the GWAS result, significant 

association signals were found for panicle length on chromosome 3 (Figure 4.9B). 

Association signal was found on chromosome 3 for plant height and chromosome 2 for 

panicle length (figure 4.9C). For flowering time, significant associations were found on 

chromosomes 3, 4, 6, 8, and 10 (Figure 4.9D). Among the climatic variables analyzed by 

GWAS, significant associations were only observed for annual precipitation and mean 

precipitation in the driest quarter (Figures 4.9E–F). Alleles of NAM inflorescence QTL 

had a distinct agroclimatic pattern of distribution (Figures 4.10A–B). 
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Discussion 

Genetic diversity in Nigerian sorghum germplasm 

The evaluation and comparison of the genetic diversity of Nigerian sorghum 

germplasm with West African and global germplasm in this study provided an 

informative description of the potentials of the Nigerian germplasm as a source of plant 

genetic resources for crop improvement. The extent of genetic diversity inherent in the 

Nigerian germplasm (π = 4.5 x 10-4 per 1 kb windows) was found to be slightly lower 

than that of the global germplasm (π = 4.6 x 10-4 [per 1 kb windows], P-value < 0.001) 

and West Africa (π = 4.9 x 10-4 [per 1 kb windows] P-value < 0.001). This level of 

genetic diversity observed in the Nigerian germplasm can be considered substantial 

relative to that of the global germplasm that has a larger number of accessions. A similar 

estimate of genetic diversity was found in the Nigerien germplasm (country: Niger, π = 

4.6 x 10-4 (per 1 kb windows), (Maina et al. 2017, in review)). The level of genetic 

differentiation between the Nigerian germplasm and West African germplasm (FST = 

0.007) is 10 times lower than the level of genetic differentiation between the Nigerian 

germplasm and global germplasm (FST = 0.07). Neighbor-joining tree analysis also 

showed that majority of the Nigerian accessions clustered together with accessions from 

West Africa (Figure 2B) while the Nigerian germplasm showed distinct clusters based on 

botanical races (Figure 2C). The genetic relatedness of the Nigerian germplasm to the rest 

of the West African germplasm can facilitate efficient exchange of genetic materials 

between Nigerian breeding programs and other West African national breeding programs. 

Discriminant analysis of principal components grouped the Nigerian accessions 

into three major genetic groups (figure 4) with group 2 (mostly represented by Guinea 

and Guinea derivatives) found to be more prevalent in the middle-belt and humid 

southern part of Nigeria while groups 1 and 3 (Caudatum, Durra, and their derivatives) 

were found to be more prevalent in the northeastern and northwestern parts of Nigeria. 

These groups were found to be moderately genetically distant from each other (FST 0.18–

0.22), which might suggest an agroclimatic and a racial pattern of distribution and 

differentiation within the Nigerian germplasm. This is consistent with prior studies where 
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sorghum germplasm was structured according to botanical race and geography (de 

Oliveira et al., 1996; Barnaud et al., 2007). 

Differences in linkage disequilibrium decay were observed between the West 

African and Nigerian germplasm with the faster LD decay in the Nigerian germplasm. 

This difference may be attributed the effect of population structure which is higher in the 

West African germplasm. Genome-wide, LD decay rate in Nigerian germplasm was 

slower than the previous findings using global germplasm ((Hamblin et al., 2005)[r2 

below 0.1 at 15–20 kb]; (Bouchet et al., 2012) [r2 = 0.18 (within 0–10 kb interval) and r2 

= 0.03 (within 100 kb – 1 Mb interval)]; (Morris et al., 2013) [half of its initial value by 1 

kb and to background levels (r2 < 0.1) within 150 kb]), which were on more diverse 

panels. The LD decay rate, coupled with the rich genetic diversity present in the Nigerian 

germplasm, makes it a potential resource for trait mapping. 

Sorghum phenotypic variation in Nigeria has been shaped by climatic factors 

Intraspecific variations are often associated with phenotypes conferring adaptation 

across agroclimatic regions. In this study, significant relationships were found between 

adaptive traits and climatic factors and latitude. The negative relationship between plant 

height and panicle length and positive relationship of plant height with annual 

precipitation (0.29 and 0.24, P-values < 0.001) indicate that sorghum plants originating 

from lower latitudes in Nigeria are taller and have longer panicles than sorghum plants 

originating from higher latitudes. This is plausible since lower latitudes are associated 

with higher annual precipitation (r2 = –0.87, P-value < 0.001 between latitude and annual 

precipitation), and humid climates can support more vigorous vegetative growth. 

Similarly, the negative relationship between flowering time and annual mean temperature 

suggests that sorghum plants in hot (dry) weather (correlation between annual 

temperature and annual precipitation is –0.18, P-value < 0.001) will tend to flower early 

to avoid prolonged drought and high temperature on the field as an escape mechanism 

(Tuinstra et al., 1997).  

Redundancy analysis indicated that phenotypic variation explained more of the 

SNP variation than either of space and climatic factors. The small proportion of SNP 
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variation explained by space, climatic factors, and phenotypic information in this study 

could be due to the limited number of accessions evaluated (< 210 for SNP-Phenotype-

Space-Climate model and < 450 for SNP-Space-Climate model). A distinct geographical 

pattern of distribution was found for the alleles of NAM QTL (qSbUBL3.47 and 

qSbLBL2.63) associated with inflorescence genes ramosa2 and Sobic.002G247800 

(sorghum paralog of OsSPL14) underlying branch length and panicle length, respectively. 

The minor allele (qSbUBL3.47 - G) associated with short upper branches was found at 

high frequency in the guinea (80%) and caudatum (78%) accessions (figure 6A). The 

major allele (qSbLBL2.63 - A) associated with long lower branches was found at high 

frequency (69%) in the Guinea accessions and at low frequency (19%) in the Caudatum 

accession (Figure 6B). Guinea sorghum types are known to have very long lower 

branches and short upper branches. This suggests that these QTL can facilitate marker-

assisted selection for long lower branches and short upper branches in Nigerian Guinea 

types. 

Genes associated with adaptive traits underlie GWAS 

Evidence of genomic footprints of clinal adaptation was found in the genome of 

Nigerian sorghum germplasm. A major selective sweep was observed on chromosome six 

while other signals of selection (outliers) were found on all chromosomes (figure 3.6A). 

The genome-wide average negative Tajima’s D observed in this study for the Nigerian 

compared to the positive Tajima’s D observed in the global and West African germplasm 

suggests the possible action of positive selection that could have purged deleterious 

alleles from the Nigerian germplasm. GWAS QTL for panicle length did not colocalize 

with NAM QTL for panicle length (Thesis chapter 2). This could be due to reduced 

power as a result of small sample size and population structure since panicle morphology 

is highly structured in sorghum (Brown et al., 2011). However, for flowering time, 

GWAS QTL co-localized with known sorghum flowering time genes Ma1 and Ma6 

(S6_40491020 about 174 kb from Ma1 and S6_799609 about 99 kb from Ma6). In 

addition, significant associations were only found for annual precipitation and mean 

precipitation in the driest quarter. One of the SNPs associated with precipitation in the 

driest quarter (S1_2374316) was found in the intragenic region of a No Apical Meristem 
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gene (Cheng et al., 2012). Since there is a spatial correlation between climatic factors and 

population structure in the data set, the small number of SNP-environment association 

may be due to the GWAS model, which accounted for population structure (Günther & 

Coop, 2013; Yoder et al., 2014).  

Conclusion 

In this study, a representative sample of the Nigerian sorghum germplasm was genotyped 

to characterize its genetic diversity, and population structure and to identify genomic 

signatures of selection present in its genome. This study provides an assessment of the 

Nigerian germplasm genetic diversity. The absence of genetic differentiation between the 

Nigerian and West African germplasm suggests possible gene flow between Nigerian and 

other West African countries probably due to the previous exchange of genetic materials. 

In addition, this can also foster germplasm exchange between national breeding 

programs. Results further showed that some phenotypic traits have been shaped by local 

adaptation across the Nigerian agroclimatic gradient. In addition, the genome-wide 

pattern of nucleotide variation showed signals of footprints of selection and association 

signals underlying adaptive traits. However, few association signals identified suggest the 

reduced power of the GWAS due to population structure associated with the adaptive 

traits. The sorghum nested association mapping (NAM) population has demonstrated 

higher power for mapping such adaptive traits (Bouchet et al., 2017). 
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Figures 

 
Figure 4.1: Distribution of sorghum accessions across precipitation zones in Nigeria. 

Accessions are coded by botanical race, with number of accessions given in parentheses. 

Only accessions with known botanical race information are represented on this plot. 
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Figure 4.2: Genome wide single nucleotide polymorphisms (SNPs) density. 

SNPs distribution across the genome (200 kb window) with high density in telomeric and 
sub-telomeric regions and reduced density in centromeric regions. 
  



 

 

75 

 
Figure 4.3: Minor allele frequencies and linkage disequilibrium decay. 

(A) Minor allele frequency distribution of global reference (orange), Nigerian (green), 

and West Africa (WA) (medium blue). (B) Linkage disequilibrium curves for global 

reference (orange), Nigerian (green), and WA (medium blue). 
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Figure 4.4: Genetic relatedness among in global, West African, and Nigerian 
accessions.  
 

Neighbor joining analysis of (A) global germplasm (color-coded by panel), (B) West 

African germplasm (color-coded by country of origin), and (C) Nigerian germplasm 

(color-coded by botanical race). 
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Figure 4.5: Discriminant analysis of principal components (DAPC) of the Nigerian 
germplasm. 

(A) Discriminant analysis of principal component (DAPC) genetic groups, (B) neighbor 

joining tree color-coded based on DAPC groups, and distribution of georeferenced 

accessions across Nigerian geographical space. Groups are color-coded and shapes 

represent the sorghum races.  
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Figure 4.6: Pairwise correlation between traits and climatic variables. 

Pearson correlation between flowering time (FLOWERING), plant height (PLANTHGT), 

panicle length (PANICLELGT), annual temperature (Temp), and annual precipitation 

(Prec) significant at 0.05, 0.01 and 0.001 (*, **, and ***) 
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Figure 4.7: Pairwise correlation between geographical factor and traits. 

Pearson correlation between latitude (Latitude), flowering time (FLOWERING), plant 

height (PLANTHGT), and panicle length (PANICLELGT) significant at 0.05, 0.01 and 

0.001 (*, **, and ***). 
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Figure 4.8: Proportion of SNP variation explained by climatic factors, space and 
phenotypes.  

Multivariate redundancy analysis showing the proportion (0.0 to 1.0) of genotypic 

variation explained by climatic factors (temperature and precipitation), space (latitude 

and longitude), and phenotypes (flowering time, plant height, and panicle length). 
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Figure 4.9: Genome-wide association studies of phenotype and climate in Nigerian 
germplasm.  

Manhattan plot for (A) signatures of selection, showing outliers around a priori candidate 

genes.  Broken lines shows the position of genes, text in red is the gene acronym for a 

paralog while texts in black are acronyms for gene orthologs in sorghum  (B) panicle 

length, (C) plant height, (D) flowering time, (E) annual precipitation, and (F) 

precipitation in the driest quarter. 
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Figure 4.10: Geographic distribution of inflorescence QTL alleles. 

(A) Geographic distribution of alleles of inflorescence upper branch length QTL 

(qSbUBL3.47 [S3_4750709]) associated with Ramosa2 (Sobic.003G052900). (B) 

Geographic distribution of alleles of inflorescence lower branch length QTL 

(qSbLBL2.63 [S2_63576699]) associated with OsSPL14 (Sobic.002G247800). Navy 

blue codes for ‘C’ allele, red codes for ‘G’ allele and Green codes for ‘A’ allele.  
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Appendix A - NAM Inflorescence QTL 

Marker QTL Trait Gene Name Relationship Similarity Sorghum Gene 
ID 

S7_59751994 SbLBL7.59 LBL_GWAS sparse inflorescence1 (spi1) Paralog 55.1 Sobic.007G163200 

S7_59751994 qSbLBL7.59 LBL_GWAS Dwarf3(Dw3) Ortholog NA Sobic.007G163800 

S2_63576699 qSbLBL2.63 LBL_JL OsSPL14 Paralog 47.2 Sobic.002G247800 

S3_4450819 qSbLBL3.44 LBL_JL Barren Inflorescence 2 
(bif2) Paralog 43.9 Sobic.003G048700 

S1_21494247 qSbLBL1.21 LBL_JL Fasciated ear 2 (Fea2) Paralog 37 Sobic.001G224000 

S2_63576699 qSbLBL2.63 LBL_JL Fasciated ear4 (Fea4) Paralog 48.4 Sobic.002G247300 

S3_8666433 qSbLBL3.86 LBL_JL BARRENSTALK1 (BA1) Paralog 21.5 Sobic.003G099000 

S1_6775611 qSbLBL1.67 LBL_JL LEAFY HULL STERILE1 
(LHS1)/OsMADS1 Paralog 59.5 Sobic.001G086400 

S1_6775611 qSbLBL1.67 LBL_JL Panicle Phytomer2 (PAP2) Ortholog 90.2 Sobic.001G086400 

S1_6775611 qSbLBL1.67 LBL_JL Panicle Phytomer2 (PAP2) Paralog 69.1 
Sobic.001G086400 

 

S1_6775611 qSbLBL1.67 LBL_JL Sepetalla Paralog 68.4 Sobic.001G086400 

S10_51874918 qSbLBL10.51 LBL_JL BARREN 
INFLORESCENCE 1 Paralog 22.9 Sobic.010G180600 

S2_63475769 qSbLBL2.63 LBL_NJL Fasciated ear4 (Fea4) Paralog 48.4 
Sobic.002G247300 

 

S7_57067166 qSbLBL7.57 LBL_NJL Fasciated ear 2 (Fea2) Paralog 34.4 Sobic.007G141700 

S10_51414143 qSbLBL10.51 LBL_NJL Fasciated ear 2 (Fea2) Paralog 36.7 Sobic.010G177300 

S10_51414143 qSbLBL10.51 LBL_NJL THICK TASSEL 
DWARF1/CLAVATA1 Paralog 49.2 Sobic.010G177300 

S2_63475769 qSbLBL2.63 LBL_NJL OsSPL14 Paralog 47.2 Sobic.010G177300 

S7_59953003 qSbLBL7.59 LBL_NJL Dwarf3(Dw3) Ortholog NA  

S1_63043663 qSbLBL1.63 LBL_NJL DENSE AND ERECT 
PANICLE (DEP1) Paralog 10.1 Sobic.001G341700 

S2_60856616 qSbRD2.60 RD_JL DENSE AND ERECT 
PANICLE (DEP1) Paralog 15 Sobic.002G216600 

S3_73412473 qSbRD3.73 RD_JL Fasciated ear 2 (Fea2) Paralog 35.2 Sobic.003G432000 

S1_4131827 qSbRD1.41 RD_JL BARREN 
INFLORESCENCE 1 Paralog 21.4 Sobic.001G056100 

S1_4131827 qSbRD1.41 RD_JL BARREN 
INFLORESCENCE 4 Paralog 27.4 Sobic.001G056100 

S9_57369245 qSbRD9.57 RD_JL WUSCHEL-related 
homeobox 1A Paralog 13.8 Sobic.009G233000 

S1_58623035 qSbRD1.58 RD_JL Ramosa3 (ra3) Paralog 55.5 
Sobic.001G303900 

 

S6_57581969 qSbRD6.57 RD_NJL Fasciated ear4 (Fea4) Paralog 42.4 Sobic.006G233500 

S7_57230541 qSbRD7.57 RD_NJL Fasciated ear 2 (Fea2) Paralog 34.4 Sobic.007G141700 

S3_61838244 qSbRD3.61 RD_NJL sparse inflorescence1 (spi1) Paralog 70.8 Sobic.003G286500 

S7_59751994 qSbRL7.59 RL_GWAS sparse inflorescence1 (spi1) Paralog 55.1 Sobic.007G163200 

S7_59751994 qSbRL7.59 RL_GWAS Dwarf3(Dw3) Ortholog NA Sobic.007G163800 
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S7_59751994 qSbRL7.59 RL_JL sparse inflorescence1 (spi1) Paralog 55.1 Sobic.007G163200 

S1_78453360 qSbRL1.78 RL_JL BARRENSTALK1 (BA1) Paralog 23.7 Sobic.001G518900 

S7_59751994 qSbRL7.59 RL_JL Dwarf3(Dw3) Ortholog NA Sobic.007G163800 

S8_58771392 qSbRL8.58 RL_JL BARRENSTALK1 (BA1) Paralog NA  

S8_58771392 qSbRL8.58 RL_JL BARRENSTALK1 (BA1) Paralog NA Sobic.008G154100 

S4_58277149 qSbRL4.58 RL_JL Ramosa3 (ra3) Paralog 58.5 Sobic.004G232900 

S1_63011488 qSbRL1.63 RL_JL DENSE AND ERECT 
PANICLE (DEP1) Paralog 10.1 Sobic.001G341700 

S1_75419531 qSbRL1.75 RL_JL Branched silkless1 (bd1) Paralog 14 Sobic.001G481400 

S1_21565786 qSbRL1.21 RL_JL Fasciated ear 2 (Fea2) Paralog 37 Sobic.001G224000 

S8_58771392 qSbRL8.58 RL_JL BARRENSTALK1 (BA1) Paralog 17.4 Sobic.008G154000 

S8_58771392 qSbRL8.58 RL_JL BARRENSTALK1 (BA1) Paralog NA Sobic.008G153900 

S8_58771392 qSbRL8.58 RL_JL BARREN 
INFLORESCENCE 1 Paralog 26.2 Sobic.008G153900 

S8_58771392 qSbRL8.58 RL_JL BARREN 
INFLORESCENCE 4 Paralog 27.8 Sobic.008G153900 

S7_56004399 qSbRL7.56 RL_NJL Tunicate1 Paralog 42 Sobic.007G135301 

S3_69363350 qSbRL3.69 RL_NJL LEAFY HULL STERILE1 
(LHS1)/OsMADS1 Paralog 49.8 Sobic.003G381100 

S3_69363350 qSbRL3.69 RL_NJL OsMADS58 Paralog 54.2 Sobic.003G381100 

S3_69363350 qSbRL3.69 RL_NJL Sepetalla Paralog 52 Sobic.003G381100 

S7_59953003 qSbRL7.59 RL_NJL Dwarf3(Dw3) Ortholog NA Sobic.007G163800 

S3_4750709 qSbUBL3.47 UBL_GWAS Ramosa2 (ra2) Ortholog 82.8 Sobic.003G052900 

S3_4750709 qSbUBL3.47 UBL_GWAS Fasciated ear 2 (Fea2) Paralog 36.2 Sobic.003G052100 

S3_69496539 qSbUBL3.69 UBL_JL LEAFY HULL STERILE1 
(LHS1)/OsMADS1 Paralog 49.8 Sobic.003G381100 

S3_69496539 qSbUBL3.69 UBL_JL OsMADS58 Paralog 54.2  

S3_69496539 qSbUBL3.69 UBL_JL Sepetalla Paralog 52 Sobic.003G381100 

S3_4750709 qSbUBL3.47 UBL_JL Ramosa2 (ra2) Ortholog 82.8 Sobic.003G052900 

S3_4750709 qSbUBL3.47 UBL_JL Fasciated ear 2 (Fea2) Paralog 36.2 Sobic.003G052100 

S3_73583203 qSbUBL3.73 UBL_JL Fasciated ear 2 (Fea2) Paralog 35.2 Sobic.003G432000 

S3_4757321 qSbUBL3.47 UBL_NJL Ramosa2 (ra2) Ortholog 82.8 Sobic.003G052900 

S3_4757321 qSbUBL3.47 UBL_NJL Fasciated ear 2 (Fea2) Paralog 36.2 Sobic.003G052100 
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Appendix B - NAM Vegetative QTL 

Marker QTL Trait Gene.Name Relationship Similarity Sorghum Gene ID 

S6_51325786 qSbHGT6.51 HGT BAD1 Paralog 11.6 Sobic.006G154000 

S7_59611315 qSbHGT7.59 HGT Sparse inflorescence1 (Spi1) Paralog 55.1 Sobic.007G163200 

S9_57215490 qSbHGT9.57 HGT narrow sheath1 Paralog 14.1 Sobic.009G233000 

S7_59787744 qSbHGT7.59 HGT Dwarf3 (Dw3) Ortholog NA Sobic.007G163800 

S7_59787744 qSbHGT7.59 HGT sparse inflorescence1 (spi1) Paralog 55.1 Sobic.007G163200 

S6_42798327 qSbHGT6.42 HGT Dwarf2 (Dw2) Ortholog NA Sobic.006G067700 

S6_42798327 qSbHGT6.42 HGT SbCN4 Ortholog NA Sobic.006G068300 

S9_57065264 qSbHGT9.57 HGT Dwarf1 (Dw1) Ortholog NA Sobic.009G229800 

S3_71464034 qSbFLT3.71 FLT BAD1 Paralog 17.4 Sobic.003G408400 

S6_799602 qSbFLT6.79 FLT Ma6 Ortholog NA Sobic.006G004400 

S3_62717707 qSbFLT3.62 FLT SbCN12 Ortholog NA Sobic.003G295300 

S6_799654 qSbFLT6.79 FLT Ma6 Ortholog NA Sobic.006G004400 

S7_5137535 qSbSTM7.51 STM ROUGH SHEATH2 Paralog 11.4 Sobic.007G050400 

S3_63584041 qSbSTM3.63 STM BAD1 Paralog 17.4 Sobic.003G305000 

S3_63584041 qSbSTM3.63 STM BLADE-ON-PETIOLE1/2 Paralog 39 Sobic.003G308700 

S6_51419656 qSbLET6.51 LET BAD1 Paralog 11.6 Sobic.006G154000 

S2_3403756 qSbLET2.34 LET BAD1 Paralog 18.5 Sobic.002G035500 

 


