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IKTRODUO T

Frequently there are mathematical systems which appear to

be quite different and yet if the central theory of each system

if examined, common properties may be found. The observer may

try to bring such diverse systems under a single he o dinp by

extracting all properties common to there syrtems and listing-

there ^s postulates for nn otherwise unrestricted system.

It should be mentioned that by a postulate is not meant

a, self-evident truth or ',eraent which cannot be proven, but

rather an assumed property. The postulates F a.ppsarinr In a

set | art asFurapticne made about the elements of f. The system

r itrelf consists of elements and operations, assumptions about

both and finally consenuences or theorems derived from the at*

sumptions, whenever a system C is found to satis fv the postulates

F then the theorems of B e~n be applied to C. It should be

noted that different approaches to a particular system can be

made. In one approach a property may be assumed while in an-

other approach this eaaa prcpertv nay be theorem derive.-? from

other assumed properties.

Often in various parts of mathematics one i r confronted

with a. set in which it is me~ninp-ful and interns ting to teal

with "linear combinations" of the <=.lementr of a set, les

of such linear ccmbinaticnr "re found in the calculus and the

familiar three-dimensional Euclidean space. In this report a

mathematical system which is useful obstruction of the type

mentioned above will be defined and resulting1 properties examined.



The abstract nature of the material presented enables one

tc apply the properties of a. "vector epaoe" tc any ret of elements

which atlify the definition. Exoapt for the lact section on

"inner productp", no restriction ir made pp to the field over

which a vector space If defined.

VEC

Definition j_. A vector p *ce coneiptr of the fcllowi:

1 ) a field F of toalarfl ;

t) a ret V of vectors;

3} an operatic: Ballad addition, indicated by +, which ir

a binary composition in V such that

') addition if closed, c*' , ft ec tained in V irapller

o^+ ft ir rcntsined in V,

b) addition ir ccnnutative , ©< + p = ^ + ©<

,

c) addition is associative, ( *v +
f>

) + T = °^ ( (& + T ),

d) there e unique vector <D, such th<

<x + to = Q +o<= Q< 9 for -11 « ir v,

e) for each c< in V there exists a unique inverse - o(

ruch that ©c + ( - o< ) = G>;

4) an operation called, scalar Multiplication such that for

every o<
, ^ in V and a, b, in F

a) scalar multiplication ii closed, c* in V and a in F

lies i o< Is in V,

b) •( <* fl») « a o< a $ ,

c) (a +b) o< b i o< 4 o<.
,

d) (ab) «* k a(fe QC },



e) 1 <* B c* , where 1 if the Identity element in F.

If in «ny pprticulnr discussion, nc confusion cnn prise,

the vector ipaoa will be denoted by V. However, if the field

hae net been previously specified, then it will be eeid thpt V

ir ever F, where F is the field over which the vector apaea lr

defined.

Theorem U For in the field F «nd any °< in the vector

space V, «tf = iD.

Proof, From the property of the additive identity of the

field F, (a + 0) = pnd from (4c) of Definition 1,

(n-t-o) <V » a o<+0 o(. Hence I o< « a o< o< "nd since

the edditive identity of the vector cp."ee ir unique, C «K = (D.

In the definition of * vector sppce the vectors -1°C and -<v

pre both considered. The distinction between these vectors

should be noted. While -1 <=* is " sc o l*r multiple, - o< is not.

The following theorem rives the expet relation between the two.

Theorem 2, For «< pnd -ex in V and -Hn 7
, -1 o( = - °( .

Proof. <*+ (-1 ) c* - 1 °f (-1 ) ck - (t+(*1 ))«<•#)'.Of =:©,

Hence -1 °< is the pdditlve inverse of ©c ^nd thus -1« = - o< .

le. Consider the n-tuple apaca, v*_(F), where F is any

field and let V be the set of all n-tupler, o< m (a.. p_, ..,, a ),
1 2 n

of rr-i^rr where a* is in F. If (3 = (bji bg, ..., br ) with bj

In F, then the sum is defined by

c< + (S = (aj+bj, n^+bp, ..., r
r
+bn ).

The scalar product is defined by

c ©< = (e*j, oa2 | ..., c^
n )

To show th"t r vector sppce hai been defined, one must show



th*t "11 of the propertier of (?) and (4) of the definition held.

For (?a), take ©< + ^ = (a,+b.,, -".,+b^, ..., *_&_)< ' inee

the field ie eloped under addition a^ b. 0, where c^ le In

F. Then °< + (* b (e., e2 i • ••» cn ). Hence the set ir clceed

under addition*

To shew that (3b) li satisfied take

c* + (i
( Bl «b| t a^+hp, ..., an+hn )

= (h.+a , Do^*9i •••» *> +*1 ) = (^ + °< » fince the eclair in

F are eommutable.

For (*^c) t"ke

o< + ( p + T) b tftfi b^i ...» "n ) (bj+oji ?2+cP» •••• hn+
'

= {a, + (bj+Cj), i? + (b?40? ), ..., i + (bn+cn ))

= ((a^+bj) 61t (< ) + C? , .... (fta+Bg) + c
n )

= ( « (* ) f ,

since the aalari of F are associative.

To verify (3d) take « + ©, where 2) = (0, 0, 0)

and lr the additive Identity of F. Then <* « ©

= (a lt a~, •••» *»} + ^°» °» •• °^ =
(

r,

i
+0

» . •••! Pn+°) °f •

(3e) li verified by taking - « (-at, -a , -an )

where «fe| tl the additive Inverse of ft. in F, n «, + (- o<
)

= (** -••• -°^ •»- a„ -O = ©•li e n n

It is obvious that if 1 li taken ae the identity of multi-

plication in f, that 1 o( - o< . Tbit tbowt that property

(Ae) holds.

To show that (4a) holds, t.-»ke c o< r (ea., aa^, .,., *a },

fince F le eloped under multiplication oaj = d, , with d^ in F,

Hence c ©C = {& 9 d
? , ..,, d ) and the set ir closed under scalar
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multiplication.

In showing (4b) take

p ( «* + p ) = (• («1 «b 1 )i (a ?+b? ) a ( ftn+bn^
= (aa^-feb^, rv^+rb^, . .., ^'\.,+abn )

= (aa|| aap, . .., aan ) + (ab^, "b~, . .., "bn )

= a o< a (£ .

Now tnke

(• +b)«x ((a +b) P 1t (« +b) -
, •••» ^ n + b ) n

r^

= (aa.j+ba^, aag+bagi . .., r""n
+bf>n^

= o «< + b o< .

This shows that (4c) hold .

To show (4<3) simply taka (nb)«x = (aba
t , abftgi • ••» "k^)

= (bs^, ba , ..., b*-) or (b «< ).

Cince it hae been shown that the set of all n-tuples

irfier the definition, it constitutes a vector space.

Definition ?, Let V be a vector space ever a field F.

ubsp^ce of V li defined an • subset W of V which lr &lM a

vector space.

With this definition the following theorem bob be etnted.

Theorem j$« A nonempty rubset V of V lr | rubepace of V If,

and only if, W is closed under addition and loalar multi >liaation«

That is, if «
, (i are in W and c is in F, then c °< @ is

in W.

Proof: If w is a nonempty subset of V end. closed under

addition and eo^lnr multiplication then (4a) and (3a) ir< sat-

isfied. The subset W hae at least one vector °< such that

-1 <=* + «c = - o\ + o^ = (D is i 'V f since it is closed under



cellar multiplication, Alto if •< is in H and c la in F,

o <x = c « + a> io in W, in particular -« = -1°< If in .

In if **
,

p» ^re in I then (4b), (Ac), (4d), and (4e) held

in W since they held in V and ¥ is over the same field F,

Converselv, if * is rubspace of V, then by definition,

W lr closed under addition and scalar raulti plication.

Theorem 4. If 8 nnd T are sub? then those vectors

belonging to both E and T form subepace of V, That la

in a subspace of V, where BO? * 7 represents the inter-

section of 8 and T,

Proof: If oc
,

(I pre contained in W, then c «* + (^ is

in £ and also in T by Theorem 3, and hence In '

. If c •< + ^

is in w then W is a subs pace by Theorem 3»

Definition 3_. A vector @ is a linear combinaticn of the

vectors <=*.,, <k ?) . *,, °<
n » lf there exirt scalare

C 1# c
2 » ...» c,-.» in F such that

p = c , «<t eg -<-+... + c
n

o<
n

c i °* 1*
1=1

Taki Tlxed set of vector" &<
, , ©< , ..., o< ,
1 n

ever a field F, it can be easily shown from Theorem 3 that the

set of ?11 linear combination*, a. o<
1

+ 0„ o<^ + . . . + cn °< ,

constitutes a vector epace. The set of all linear ccmblnaticns

of ©f . , ot
'

t ,.., o< will be denoted by

r °<
j » »<»...» °<

ni

The vector apt f^O' «*f » •••» °< -1 1? the smallest



subset containing nil of the vectors °< . 'lore general?

' rting with an arbitrary set of vectors, the of all linear

combinations of all finite subsets la the smallest subs;

which contains the oririnal set. If this teehnicue is applied

to find the inalleet eubspace containing two etibepa* id T,

it li seen that a linear combination of elements of 8 end

reduces to an element °< + p> , with oC in G and P In T, Thir

proves Theorem 4,

Theorem £. If B and T -es of V then the set of

all ruv.r, ex 4
ft

, with o< in B and (8> in T, is a subspace

called the linear sum of B and T nnd written E +T»

The lineal rum clearly contains E" nnd T and is contained

in any other subepace P containing E and T. Properties of the

linear rum may be statec cllcwr

:

1 ) B $ 8 *« I $ B + T

°) f <
: and T < P la + t < , •

1 18 < waju

thnt I is contained in the subs pace

flnltlen 4. A set of vectorr <-*/ , ©< , . . . , o< is

Id to be linearly dependent if there exi r

c^, c~, . .., cn in F, net all zero, such tlr

(5) c
1

o^
1

+ c
?

cy A + ... + cn o< n = J).

A eet which Is not linearly dependent is called linear:

independent.

In other words, for <=<,, o<
t ..., «< to be linearly

1 n

Independent all of the 9*** must be equal to sere in order for

(5) to hold.

Definition 5, If E li the rabepaee consisting of *11



linear combinations of °< , o< , #tM ©< , then B ir called

the eoacr ned (rener^ted) by the vectorr °< , ^ » • » • i °< »

' n

Ipulatlon ir mad* that °<
, ©< , . .., °< *

linearly independent in order to epan a rp^ce. This cnse will

bo taken up ehortly.

Before this, however, • relation between independence -°nd

linear combinations c n n be stated.

: ieorera 6. The nonzero vectors <=><
, <=*„, ..., °<

m
in

a vector space V are linearly dependent if and only if one of

the vectors is a linear combination of the o the re*

Proof: If « le a linear combination of

ot
1

, <x~, ..., t=^
i _ 1

» ^j^i* •*•• ** a then

o^ *«!.<*1 + ... + e4. 1
©<!., o

1 + 1

<*
1 + 1

+ ... 9n «V ,

Thur

e
1 ^ + c o<. ^ ... + Cl-1 o<f

i _ 1
+ cu1 o<

l + 1
+ ...

+ cm
o<

ra
- o< n (D. Hence at least one c

A
ie nonzero, namely

-1, thur: satisfying the definition of llne~ ^ndence.

Conversely, i e the set of °^4's ir 13 enoent.

Then c
1
^

.,
+ cp

c^
?

+ ...+c
1
^j + . . . + c^ <=<

M
= S>,

where c
A ^ for seme 1. Thus

-«i
0<l»«| 0<

1
4 *»»* H.1 °^l-1 + c i+1 °<1*1 + ••« + cn <*m>

and

C « Co C, «

= d
1

cv
1

+ a^ ^ + ... + d^ o<
ra

.

°<i.i



Hence <=< ie a linear combination cf the reft cf the veetorr.
i

Thie proves the theory .

Definition 6. The on of e vector apnea V ir tl

number of linearly independent veetorr in V 'ill be

denoted by d ^v] .

Definition J« I baela of a vector I I ret cf

linearly independent vectore which apana

Cne cannot conclude from the above definition that a vector

epace V has one and only one ba.ei.at For example, consider V^(

where R ie the reol field. The vectorc (1, 0, 0), (0, 1, 0),

and (0, :, 1) will generate V,(R), but t'hli ^ce cm be

g-enerrted by the veetorr- (1, 0, 0), (0, 1, 0), end (0, 0, ").

It can eeeily be shown that e^ch set consist? of linearly inde-

pendent veetorr and hence forms a batata for V,(R).

Special note 1? made of the veetorr (1, 0, D), (0, 1,0),

and (0, 0, 1). These vectc called the unit vector? cf

V,(?)» In genera! the unit vectcrr cf V ("•') are

u, * (1, 0, 0, ..., 0)

u (0, 1, 0, ...,

u
r

= (0, 0, g ..., 1),

where 1 ie the identity element of F, The Deletion u. will be

reserved for the unit vectcrr. lb If eesily seen that there

vector? form a basis for V (F).
n

Theorem 7. If <*

.

, <=<<%« »*«i o< form a beali fcr
' n

vector space V, then every vector in V can be expressed uniquely

linen combination of ^^ » °<^» ..., ^p*
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Proof. Every vector in V lc a linear combination of

<=><-,» ^» ...» <=* n since the °< ^ ^ tpeJB V. r uppcF.e there

two representations of a vector (3 . Then

P 9 ft. <=»<
1

+ a
?

»<
2 ««« 4 a,, «* n

= b
1

«<
1

+ b« o<
g

+ . ., + bn ex ,. . (a
1

- b
1

)
o<

1

(a2 - b2 )
o<2 •• (^n - hn ) ^n = ® iB* (

r
i

" 'i^ " °

for all 1 I ince the o< , ' indc nt, Thur a^ m b* nnd

the uniqueness ir blithe .

Theorem £. The number of vectors in a bppip of a vector

space V ir ecu?l to the dimension of V,

Proof. Let o< 1f o< , ..., o< ifMua the vector V

which hai dimension n r»nd let r equal th '-mam number c^

linearly Independent vector? in o<., ©<~» ...» o< . c-,

renumber!nr if necessary, let c^, ©< » ...» o< be the

linenrly independent vectors: from the generating ret. Obviously

.en r <: r. . ©< , , ©< 9 % . . • , <=*,.» o< + J » J
~«

i *

1, '"', ..., T - r, 11 8 linearly dependent set, expressed

*. o<
1

« a- o< „ ... + a
r

c*
r + ay^j <* r+ j

= *• rnere

a , ^ 0, for _.« would imply the dependence of
r+ j

~+ J

o< , » o< -» ...» ©< • Thus ©< $i a linear combination of

o,/ , ex . , ..,, ex* ,so that if the elements of V arc

re^rerente'7 at linear combinations of °^
t , °< -» ...» <=>< ,

m

a term involv' °< -,.*.«*• J >0 »
cr"n be " •" linear

combination of °<
1

» °<~» «... <=*
r » Thur

©<
j

, ck' , . . . , ex" r
' eneratinr ret for V.

To show thnt n ^ r and hence r = n, it must be shown tlv

any set of more than r linear combinations of
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c* . » o< > • ••» °< r
is linearly dependent. To do thir let

p T £ gi • ... (8
be p ret of vector? iri which err.h (3

1

If a liner r combination of ** , ex
, .... °< r > r.

Then

(6)
1

= ^- »lj -V J — i P • > «

existence of r iat (3f toalara c
1

» Op i • « • i
e . not «11
l

zero such that

•

ft . {D will phew the :ndence of the
1=1

x

0>>
, It li sufficient to choose the e^'s to atIffy the

line ar system.
f"

(7)
1=1 1J *, = o, j . 1

> » • • •

»

r,

rince these expressions will be the dicierits of the °< "r

•/her:

r

In ^ Q

1=1
1 ^ lf aaeh (^ la rapl bv lte v^lue In

(6) p.nd the terms alt collected. non-trivir•1 roluticn of (7)

alwaya exists since the number of unknowns, r, -coeds the

number of •qua ticns, r. Hence the c^'e exist the set

e> ,. $-, . •. e>.
!• dependent, Thus n $ r and from pbove

r < n, hence r = n.

Since the dimension of riven vector ce V doer not

uog«i n n inmecinte ccnreouence of Theor< is the fcllowl

corcllpry.

Corollary 1. All 1tmtaa of a vector s. 1 V include pre-

elsely the enme number (3f vectors.

Using the results of Corollary 1 another obvious result of
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Theorem 7 la

Corollary ?. Every basis of V, whara d [v] = n, ccrr.

exactly n vector" .

It hfti been Ehcwn that the bar is cf i voctcr apata is not

unique. The variety of b which can exiet is illustrated by

the following theory .

Th; _. Any lit of linearly independent vectors,

ex. , <=><., ex » In i vector spree V cf dimension n t§

rt of a I.

•

" "nd enn be extends' ' ' cf V.

Proof. Let (i , ft # ..., ft br for V. Then

the eet <* , ©<„, .... <* v P,, p g i ..., p n

and is linenrly dependent. 3y Theorem t, the number cf vectors

in the basis is equal to the dimension ^nd by definition, the

dimension is the maximum number of vectors which are linenrly

independent. Thus adding- one or mere vectors results in a

linenrly dependent set. rince these vectors are dependent, ftt

least one vector, which li n linear combination of the others,

enn be deleted and still leave a. eet of spanning vectors. By

cheesing only those vectors, which nre linear combinations of

those precedinr them, none of the o< . * r will be eliminated

since they are linenrly independent. 3y this process all of

the linenrly dependent vectors will be eliminated, leaving a

set of spanning vectors which are linenrly independent and

hence forme a baeis which will include ©< , <* ex .

1 8 m

This proves the theorem.

Theorem 10 . If a vector space V Is the linenr sum of two
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eubEpacep, B nnd T, where EOT = 3D, then the union of r>ny

basis of 8 with any baala of T lr a baala of V.

frocft Let ©<
^

, <=*.,., ..., o<
r

be p. baeip for f and

P>
1

» fi 2 t •••! ft be a bariF for T. Then there vector?

span V eince any vector in V can be expressed ae a linear com-

bination of then. There vectors are r.ecnpf-rily independent

r f

for if ^ a, c* 4 J>_ b, ft , = 0)

i=1 ' ,1=1
J J

r

then T * ^> n. ©< = -
v
^

,

1-1
J

Cne vector T If now represented ai I linear combination of the

o< , 'e tad pIfc the fi^'r and hence Boat lie in both £ and T,

Tince SOT = <D, T = ffl and hence s.± m o« 0. Therefore the

epanninr vectors cf V ere linearly independent nnd thus -ire a

bapis for V, Thli theorem en be extended to the casre of the

linear sum of a finite number of aubtpt

By using the result cf Theorem 6 a the following corcllnry

tc Theorem 10 can be ehown.

'crcll-'ry . If the vector space V If the linear pum cf two

subspacep, r tad T, where EOT = CD, then d [v] = d [] + d [t] .

roof* fince Theorem F. states that the dimension of a

vector aoa i r the number of vectorp in anj La, the proof

of Theorem 10 showp that when d fs] = r and d Tt"| = i then

d [v] = r + - .

If the restriction of EOT m (D If removed frc nd T

then a more general statement about a vector f; "cg V = r + T

can bo *ado«
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Theorem 11 . Let fl -nd T be any two subs pace actor

spnce V, Then

a H + d[] = d
I n 1

« d [ i t] .

Proof. Let y ]f T ? » - • •
» T t

form a b^rit for mT #

Then by Theorem *• Tf| • • •

»

Tt» °<,
i

» • • •

»

©< j-.
"nd

T
I

» • • • » T t* P 1' • • •

»

A form b^rer for ] T

respectively. The vectc rs

c* , • • • f o<
r' Pi'

• • •

»

K' T - » • • •

»

Tt obviously

span r + T. To ertablif h independence let

*

1*1
Oj T i

<

J=i
J ,J

k«1
P*'- a.

Then

r

J=1

a
J ^J -2 c

t Tt
k»1

Pii tl in T #

As a linear combination ^i » • • •

»

o< this vector ir alto^ r

in B , hence in

r

D » which mennr _ >̂
.

J=1
*J ^J i=i

d
i Tj,

when :e

1* t

(8)
J=1

J °v Si
T

}
= o

i

for icalara dj. The independence of the basis vectors of r

inplier all of the coefficients in (") are zero. Thui every

H = C, Hencr

t,

i=1
x Tl *

fc=i

a k? f , Now the

independence of the bnsi i vector? of T lies that nil c

rnd b^ vanish. The cone lusion follo-;s from d W + *M
= (t + r) + (t + e) = (t + r + p ) t -r d [ t]

,

[ifYfl .
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CHANGE OP BACIS

If the set &< ,
<=><

, ..., cV forme p. basis for a
• n

vector epace V, then of course way vector, ^ , In V can be

uniquely expressed in terras of that basis, namely by

^> = ft« °<
-J

+ aP ck ^ + . . . + an
«=<

n » It h"s been shown

that this vector (i c^n be uniquely expreesed in terras of

other bases of V. If the b- :ncwn, s->y <=>< . , . .., o< ^,

then the vector can be completely described by the sc^Its

a
1

, &2i •••» an # Thir leads to the following definition*

Definition 8, For any vector (i In a vector ipfcCMi V

described by s
1

<*
1

a?
+ ... + Rn

^
n the se^l^rr

[ I
i a , ..., n 1 are called the coordinates of (i relative

to the basis ^ « i ^o* •••» °* •

It is obvious that when vector is describee' by 1'

coordinates, these coordinates must be riven relative to a

definite basis.

A simple example would be the 3-tuple vector (A, F, 3),

The coordinates relative to the unit vectors would of course be

[ *i 8| 3 ], while relative to the basis (1, 0, 0), (0, 1, 0),

(0, 0, ') they would be [h t 8| 6 J»

The problem of expressing- a vector, o< , In terms of one

basis, B, if the coordinates of ©< are r-lven relative to

another bar- , now ariser.

However before this problem can be solved another problem

must be eliminated. This is the problem of ordering. If

°^ ~
l 1'

°
» •••» anl ~ 3> *1 ui* then n definite

1 = 1
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ordering of the bnsip vectors It determined since it ir e-rlly

seen which is the "first" vector in the bneis, which is the

"second" and so on. Here

u
i = ( 5 lt

i <S^ 6
ln
h i 1# a n,

where ^ is Krcnecker's delt- .

However, for any other b^sis, 3, such m ordering may not

be so natural end therefore it is necessary to impose such an

ordering so that the i
th coordinate of • vector may be determined.

The question is one of how to order I set f of n elementr.

More than one method can be used but the following will be

used here.

Definition <£, An ordering cf the set n eleven'

is a function f from the subset, M -
|1 , 2% , . . , n} cf the set

of positive integers onto the set £ such th

1) if p HOd 1 pre contained in K, p 4 1, then f(p) jl f(c)

"re contained in B«

2) if a is contained in S then f(p) m a hsi rolution p,

which is contained in 11 end is unique. The function f is

said to be a one-to-one correspondence.

From this fellows directly the definition of nn ordered

bails*

Definition 10 . An ordered basis of vector space V ir f

feftUlf together with a fixed crderinr of the element?-.

Thus a basis B, is en ordered bftiii if it is clearly under-

stock which vector of B is the i^b one.

The actual relation between the coordinated Tb
1

, bn , ..., bn ]
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of a vector °< relative tc baelf : i and the coordinates

i
. ..., nn

"] relative to a baele A can be plven by

[b lt b2, . .., bn] = P [a
t

, n ?i .,., J

where P le an invertnble matrix*

Isonorphiem

Now let B = p., P> 9 , ..., p> be an ordered bnrip

for a vector rppce V. Then for every \> in V, having coordinater

[ b 1t b i • ••» b
n ^ , there ll t unirue n-turle (b

1
, bo, • ••> b

n )

of ecslare such that ft m
_^>__ b^ (*>

^
. rince it hae been ehown

that every vector har a unicue exprereicr r combination

of any eet of basil vectors, this n-tuple is unirue.

Conpider now o< ^> pu rS , , then
i=1

n n n

«* • P> = 51 r
± § 1

- 2E b (> =S ( &1 * b
t ) P>

i; i=1 i=1
a X

1=1

po thnt the i***
1 coordinate of °^ + ^ in this ordered basic ie

fu + b1# Likewise the 1
th coordinate of c (!> ir cbj

,

It ic eneily noted th*t for every ret of coordinates for

actor tpaoa V, there corresponds a eet of n-tuplee from V (F),

n

For the vector S^* n. fo . there correeoonde the n-tuple
1=1 x N 1

(a.,, ? ?) ..., a
n ).

describe this type of relation between way two vector

the following definition la piven.

1

Kenneth Hoffman and Ray Kunre, Linear *lrebra . p.p. 4 r -
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Definition 1,1 . A function f on V to V», where both vector

space? tyre, over the e?>rae field F, la called en lroticrphiem

between V and V If

1

)

f If h cne-to-cne correspondence,

2) f If linear function, thi t ll f(p °< + b (b ) = »f(o< )

* bf<
f>

) for all p, b in F end <* , f>
In V.

The two vector es V and V' nre sold to be 1amorphic if

puch a correrpondence exists.

?ince It wn th*t the n-tuples wfcirh correspond to

the sump and re^lsr multiple r of vector? in a vector |P*ee V

pre preperved under the correspondence exhibited "hove and the

correppondence ic one-tc-one, the follorj.nr theorem la t
rove .

Theoro i 12 « * vector ppn.ee of dimension n over F If

isomorphic to _(?!'•

Theorem 13 « If V and V' are vector spaces of dimension n

over F, esch one-to-one correrpondence between n bneis for V

and p beaia for V' defines an isomorphism between V and V*. All

leOBOrphieaji en V to V ore obtainable in this way.

Proof. Let o< ©< ^ , ..., of^ and f> 1
, (i , ..., (i n

be baser for V and V* respectively and f he e-to-one corre-

spondence between them such th.^t f( ©< ) - Q t 1 * 1 f 2 9 ..., n.

Now extend f to a one-to-one correppondence of V to V' by definl

n n n

1=1 *
X

1 = 1

X
* 1 = 1

1 X S

By definition 11 thir is ^n ir oner; hi em.

Ccnverpely, if f ia an Ipomcrphlsm on V to V and

o<
1

, <=<,,, ..., o< is a baell for V, pet



f( <^
l
> * £ • i 1| 2| .... n. Bine*

ft, o<: , + ••• p <^ ^ * and f(0>) ID, then1^1 n n

fC*, ex
1

... + n
n oi n ) • ft, £> ,

4 ... 4 a
n ^ n

4 D.

Hence the ft ,
' r are linearly Independent. Row let

^ = p oi 4 . . . 4 r. o< be tat bectcr in V. Then

f( CK ) = ft = f(», 0< 4 ... 4 ft 0< )
> 11 n n

= r, f( <=>< ) 4 ... 4 n f( o< ) if a vector in V 1 corre-

sponding to °< In V. fines. ^> c^n "be nny vector in V* ftnd

ft » i ft 4 ... 4 " (\ and the ^> .
' r are linearly

independent, the ret ft , ft t ..., ft^ fcrmr basis for v '.

Fince f ie linear

n n_ n

fC> ft* <*)=,>_ ft r( c* ) *> m. ft ,

1=1
x

* 1=1* * 1=1
x 1

thur f is nn isomorphism of the type shove.

Cne might wonder at this point why some ordered bar is of

V if not selected and each vector described by itr corresponding

n-tuples of coordinate?, since the operation with n-tuples is

very convenient, Thle would defeat the purpose of working with

Abstract vector spaces for two rofttontg virrt the axiomatic

definition cf vector spaces indicates the attempt to le^rn to

reftron with vectors ap abetreot algebraic systems, -cond,

even in those situations In which coordinates °rc used, the

significant results follow from the ability to change the co-

ordinate system, i. e., to change the ordered basis.
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RCCUCT SPACES

In this section only vector spaces taken over subsets of

the complex field? will be considered. If thil '.riction is

racde then the ccnceptp of angle", *length", end *distance"

a on meaning. Taking the field to be the complex field will

remit in s unltrry vector sp^ce. The concept of angle will be

developed in order to discuss perpendicularity of two vectors.

The rerder can ensily eee the application of the theorems to

the special and frmiliir cnses of two r>nd three dimensional

Euclidean sp°ce.

The cor.cept and properties of ^n inner product will be

developed first *>nd then application of this inner product

will b i to vector epe.ee .

Peflnltlcn 1? . If F ir subfield of the field of complex

number- V ir vector spnoe over F, then the Inner product

en V if r function which ' as to an ordered pnir of vectcrr

g*> end (i in V, s scalar ( ^ I ^ ) in F in such that

I
t « (o< + p>|T; = (^lT) + ( PIT )

1,. (a o<
| fb ) = a( o< I p> )

ly (<=*!(*> ) = ( p i
o< ), -rhere (ex | (*> ) ir

the complex conjugate of ( <=><
\ (*> )

IA . ( <=* I c*
) > if ©< £ fl).

Condlticnr X., X* and I, imply

l
5
* ( °<

I
P

f>
T ) *< °<

1
(b ) ( <=* I T ).

Of course if F is the real field, the complex conjugates

are superfluous. If F ie the complex field, then the
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conjugates ccerr^ry because the obvious contradiction to I^»

( ©< I
o<

) > and (1 ©< I 1 « )=-l'*l« MO,
would exipt.

Definition 12. If °< I r any vector In the vector apace V,

with an inner product defined on V, then the lenp-th of o< If

defined to be the non-nepative square root

( ©< \ o< )4 =: \\-akW •

If the ltngth of a vector is unity then the vector is normal.

Definition 14 . The distance between two vector? ©< and (p

in a vector i T ll II °< - (i II .

Cne Important example of the inner product ip the inner

product of Vn (F), which ip called the standard inner product.

It If defined on <=>< - (".,, a? , ..., a
n ), (5 = (b 1t b , ..., bn )

by

(
o<

I (i ) = n, bj+ r
< . . . « aR bn .

This iE often called the dot-product.

Attention If now turned to introducir- e particular

Inner product to a vector space. Particular c - ir will be

placed on perpendicularity.

Definition 1

r

. An inner product epace is a real cr complex

vector space together with a epecified Inner produrt on that

epacc. An inner product space defined over the real field If

an Euclidean space while if defined over the complex field it

ir a unitary space,

he crem 1 A . if V is an inner product trnce, then for ^ny

two vectors o( and £> in V and scalar c in F



L,« lie cK l\ « Icl 11 « II

II o< II > If o( O
Ly K<* lf> ) I < l\ <* l\ V\^>i»

L., U<K + (Ml < II *U - ll (Ml .

roof: ftntementr L
1

Mid L« fellow directly from Definition

' ". The inequality L, ir obvious when o( = (D. Vhen ©< ^ CD rut

T . ft -
( fo 1

<*
) o< .

II* II

then

o < II T II
2

- ( p> - L&hLX *< I a - i^i^U <*
)

(^>ip>) - (5i°<) (<*ip>) - (^1^) ( (bi-o jjmj*t <* ic^)

U«XU" ||o<U2 UcKll*

= (?>ip>) - (fii^) ( r\o() - ( &i*) ( file*) (fii*r u<*»~
11*11° n©ur uo^n

(£>!£) - ( (M<* ) [r^T^T - ( £l*) ((*!*)"]

= (filft) - (ftl°<)
(ft

t<*) = ilftll" - OlsOfiiil.
n*u° u*ir

Hence l(*ip>)|
P
$ 11*11" II f> |T *nd

K *l(?Ol S ll.o, U 1 1 p>u .

Low urinr L, "nd denoting the re^l part of n complex

number x t by Pc(x), it If found th."t

W°< * p> II
?
~ = 11*11 " + 1*1 (*) + ( &'l°0 ll^U

'

= u*u~ a [( *i(i)] iif.il
r

.

rince Re(x) $ lFe{x)l < U\ nnd toy L3, \ ( o< \ (i ) i <- |l =*U \\(?>l\
,

then He [(*!(*)]* U*H "^U . t]

llo< + ^ ,|
° < ||o<H ^ + o || ex n u^n 4 Hfeii

2

= ( U *H1 « U(J>U f

.
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Thur \l °< + fell £ H^U + 1 1 p> U , which proven L^.

Remark, The inequality L^ le known ai the rnuchy- r ch".">rtz

inequality cr Jurt ai Behtturts'e inequality,

-.oc rem J_f_. In a unitary epace distance has the follow!

pro pert ic .

D,. H<* - ?> U Olf o(/
f>

D . U <*- (Ml = U
f>

- ckU

D • IW- f>U t .
It f> - Til * II <* - Til,

Proof, fince II o< -c*U = II © ll = II <X II = INU 0*

by L, *nd [\°f - p>ll > if <* ^
f>

by L
? , D

}
hcldr. The

equation

IM«
f>

11 = II -1
( ^ - o<) |l « 1.1.| lip> - of II = llf>- o<U

provr' . I i tly, 1\ follows from L-, eir.ce

IN. £11 Uf> - Til >, IU?P^-TH» IU -TIL

Orthorcnallty

It ic convenient when dip cue pin- the angle between two

vectors in the Euclidean plane, or using notation given earlier,

V2 (r), tc consider their cosines. If the notation L ( ©tlft)

denotee the angle between nonzero vector*- °* and (^ f then

applying the law of cosines gives

IN . (Ml 2 U^lT Up II

8
- 21V* H \l (Ml ^ < (*lft).

c
•

|I<H- (ill
8

- ll^l|
P

- II Pll ?

= ((o^,^)
i
[oc.pn - (°<i°<) -

( o>i (3)

= (o<-^\o<)-(o<_p
j ip)

)-(o<lo<).(p>l^)
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= (e*|©0 - ( (SKX) - (o<
| p») (^ |(i) - (<* Ic*) - ( @ \ p>)

= -2 (<* |(>>).

Then ccr < (©<!(»>) = ( ex, I ft) .

Also for V ) "chwartr's ineouality can be written in the fern

-1 < (oUft ) < 1.

The Interest in the«e two illttttration* lie? in the foot

that

LsiiflJ
\\o<\\ U(£U

corresponds, to one and only one cosine of an anfle between and

Tl . This suggests p. definition of perpendicularity of the two

vectorr c* and (b •

Definition J_6. Two vectorr °( and (b in a vector space V

are eaid to be orthogonal, °< J_ (b , (perpendicular) if their

inner product is zero. If I is set of nonzero vectorr in V,

£ if called an orthogonal ret provided any two distinct vectorr.

in B are orthogonal. An crthoncrmal ret has the .added restric-

tion thPt II o< l| = 1 for All o( ir ,

Definition 17 . Two vector spacer, V and V', pre Orthogonal

if every vector contained in V is orthogonal to every vector

contained in V

•

Orthogonality ie a symmetric relation since (o<l(^) =0

implies ((*> \oO = by I-. Next, if «*Jl fS , then a°< 1 bp>

for all ecalarc a and b. Moreover, if <=*_L (*> and o<J_ T then

c* _L(^> + T). The following theorem is an immediate consequence

of these facts

.



___£___ U_. If in e unitary space every member of the set

{ o< , o< _, . .., o<
J

li crtl 1 to every member of the

set {ft^ p> o ft c"l » thM the c P'" ce spanned by the

o< '| ii orthcronal to ipae* spanned by the P *•«

Theorem 17. If { ^ 1 * °< - 1 •••» <* n} iF an orthopon-1

eot of vector? then it 1b linearly independent.

rpofl If #- o<
1

+ np
o<

r
+ ... + a

n
«< n = {D then

( o<
1 I

r
i

©<
i

4 n„ e*
2 • »» *B

e* V* -nd

ft
f

(
o<

i
t

o< J + n^(o< ^l o< J + ... -
y

( * ,
I °^

n ) = 0.

I ince (o<
4
|rt ,) = when i £ J, then ij{^, I

e* ^ 0, How

g-ince ( o< \ o< ) > 0, = and hence the <=* 'e are

linearly independent.

Corollary 1. If (^ it a vector which ir linenr combi-

nation of an orthcronal set of vectorr | o<-
1

, o< .^, ..., o<
„, j> ,

then $ if the linear combination.

Proof. If p> = a
1

©<
1

4 .->., o< ^ + ... 4 «^ o<
ffi

then

((M^x,,.) = ftl ( ex
f

( o<, ) 4 p,( o< . | o<,
:

) 4 ... 4 «,,<©< j o<
k )

Cincc ll.o< ..|| = ( o<
fc

|o^
v
)i ,ond (.•<

&J <*.) » If i jl J«

then a,. = (fil°<..) (

II o<,,|r

Hence

Corollary ?« If {<=<
1

, o<
2 , ..., ©< 7 ii ^ n orthogonal
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ret in an inner product spnce V, then ra ^ d[v] .

This corollpry ' obviouc cor.requence cf the above

theorem and the definition of the dimension of t vector spsee*

Theorem '_ . ""very Inner product •] -r rn orthoncrmnl

ba I

.

Proof. Let V be an inner product apace ^nd

P> > P>
» •••» ft be p baeis for V. To obtain an orthog*.

onnl brrir i conctructior: cr.lled the Oram-Schmidt crthorcnel-

izptlon pre *e used.

First let ©^ - p> . Then pet

• ce ft j , fy | -re linearly independent, o< „ ^ aad since

(°<
2 l *,) =

II (S ,11
2

o,

Next let

i)o^
1
ir \i o<„ ii

5

Then c^ d IS, for if it were, ft , il I linear ccmbinnticn of

ft ,, and ft ; furthermore (o<Jo( ) = (o( |o^ ) =0, N

pore nonzero orthcponpl vectors ^w °<
P

^ ^ have

ow
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been constructed in euch a w*>y that ^ . If (j mlnue eor.e

line": combination of (2>
1

, (b ,,, ..., (^ ,
1

fcr 1 ^ J $ l

Lot

k

Then ( «M \
<*' ) - <&, lo< ) -2- ( ft^ l **

J
} <<*J

lo<
i>

+ 1
*

l +1 1 .1=1 He* ,11°

fines ( «* . \oCj_) = when i ^ J, by induction,

(o< jc* ) • (ft |<X ) - (pj |
o( )

'+1 i ' ic+1 '

i
v

+1 i

= 0, for 1 $ 1 $ ' .

Thue °<
,r 1

if orthcronnl to each of the vectors

o< o( nf ..., o< , fuppoee <* , = ID. Then ft. . ir

linear combination of °<
1

, °<~, . .., °< ^ °nd hence of

P>
<> ft » ...» (i v

. Thup °<, r+1 ®. Ultimately an

orthogonal set of n vectors °< , , °<-, ...» °<
R » ie obtained.

By Theorem 17, fchii eet if independent and hence a barie. To

obtnin *^n orthcncrmal baeie, replace °< by °* 1
1

[I o<3 \|
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Often in mathematics there are systems which appear to be

quite different and yet have properties which °re common to all.

In order to bring such systems under a single header, one must

extract all properties common to all the systems and llet these

as postulates for an otherwise unrestricted eystem.

In this report such a system has been defined. The postu-

lates appearing in the definition of the vector space are net

to be considered ae self-evident truths or statements which

cannot be proved, but rather as assumed properties. The vector

space V, consists of elements and operations, assumptions about

both, and finally consequences or theorems derived from the

assumptions, whenever a system satisfies the postulates given

in the definition, then the theorem? about elements of V can

be applied to this new system.

Linear combinations of elements are found frequently in

mathematics and are particularly useful in studying properties

of vector spaces. F'uch linear combinations are defined in this

report and from this results the discussions of linear dependence

and linear independence of vectors. This leads to the concept

of a basis for a vector space and the resulting properties of

bases, rioeely connected to the concept of a basis is the con-

cept of dimension of a vector space. These properties all have

application to subspacer of a vector space.

It is often desirable to change from one basis of a vector

epace to another. This involves describing a vector in terms of

ltp cccrdinntes re3 itive to a given basis. ' description of how

to describe these coordinates is given, but since the octu^l



calculation involve? the use of matrices, complete discussion

If not riven. A direct consequence of p change of basis is the

isomorphism between two vector spaces.

The last topic discussed If that of inner product epacee.

In this section, abstract concepts of length, distance and angle

are defined and <i cursed. The concept of angle is used only

to Introduce perpendicularity, or orthogonality, of two vector .

A special case of length is noted. This is the cpse of the normal

vector, thst is one which has length one. Applying both of the

properties of normality and orthogonality, it is found that it

le possible to construct an orthonormal baeis for any inner pro-

duct sp'-ce. The method of construction concludes the report.


