INFORMAL VERIFICATION OF .CORRECTNESS. OF THE
SCANNER MODULE OF AN INTERPRETER PROGRAM

by
JAMES NOEL JONES

B, S., Oxklahoma State University, 1965

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1975

Approved by:

7/

Ma jor

rofesso



LD

Ao?

R4
1215

J67

Chapter 1

73 S
 Documend

TABLE OF CONTENTS

General
Furpose of the Report

General Baclground of the Interpreter
Frogram

Specifications and Data Formats
General
2.1.1 HEAP Storage Area Specifications
2,1.2 Global Assertions
Scanner Specifications
2.2.1 General
2.2.2 0Calls to the Scanner Module
(2,1) Input Assertions
(2.2) Cutput Assertions
2.2:3 Local Data S5tructures
(3.1) Character Table

- (3.,2) Keyword Table and Command
Language Table

(3.3) Line Stack

(3.,4) Symbol Stack

(3.5) Error Stack

(3.6) Symbol

(2.7) RVALUE
2,2,14 Required Calls

2.2.5 Terminal Communication to User



Charnter 3

341

Dl
33

2,2,6 Language Restrictions

#lobal Procedures

2,%.,1 General

2.%.2 Routine Specifications and

Assertions

(2.1) Routine GET
(2.2) Routine EXPAND
(2.3) Boutine SYNTAB
(2.4} Routine IRRPRT
{2.5) Boutine STAX
(2,6) Poutine GETCHR
(2,7) Routine FUTCHR

Assertion Refinement and High Level
Design

General

3.1.1 Assertion Refinement
3.,1.,2 DNotation

Global Assertion Refinement
Scanner Assertions

%3.%3,1 Input Assertions
3.%.2 Cutput Assertions

3.%3.3 Table, Counter, and Flag
Initialization and Variable
Definition

Global Procedure Assertion Refinement

Hich Level Design Language with
Assertions

3,5.,1 SUBROUTINE SCAN
3.5.,2 SUBROUTINE LNGCAN
3.5,% SUBROUTINE ['ORM

40
10
40
B
1l
4y
47

56
€0

61
67



3,5.4 SUREROUTINE TABLE
3455 SUBROUTINE NUMPAC
3.5,6 SUBROUTINE SERROR
%.5,7 SUERQUTINE LINFIN
Chapter 4 Module Verification
4,1 General
L.2 . Subroutine SCAN
4,3 Subroutine LNSCAN
4,4 Subroutine FORM
4.5 Subroutine TABLE
L4L.6 Subroutine NUMPAC
4.7 Subroutine SERROR
4.8 Subroutine LINFIN
Chapter 5 Conclusions
5.1 General
5.2 Verification
5.3 Application
5.4 Recommendations
Annex A - References
Annex B - Initialization Data for Data Structures

Annex C - FORTRAXN CODE with Assertions

77
79
81
83
66
86
86
92
96
10C
102
103
105
109
109
110
112
112

114

115
125



FIGURE
2-1
2-2
2-3
2-l
2-5

2-6
2-7
2-8
2=9
2-10
2-11
f=1
=2

4=7

C1-1

LIST OF FIGURES

Interpreter FProgram Hierarchical Chart
HEAP Storage Areca Contents

Format for Address Translation Table
Format for Procedure Table Block

Header Format for an Allocated Block
in HEAP

Format for Text Block

Format for Token Block

Character Table Format

Keyword Table Format

Command Language Table Format

SCANNER Module EHierarchical Chart
Subroutine SCAN State Transition Diagranm

Subroutine LNSCAN State Transition
Diagram

Subroutine FORM State Transition
Diagram

Subroutine TABLE State Transition
Diagram

Subroutine NUMPAC State Transition
M.agram

Subroutine SERROR State Transition

Diagram

Subroutine LINFIN State Transition
Diagram

Variable Translation Table

PAGE

10
11
13
1

18
20
21
23
2k
26

9
97
.TOI
104
106
108

126



Chapter 1
General

1.1 Purpose of the Revort

The purpose of this report is to provide a documented,
informal verification of correctness of the Scanner module of
an interpreter program, . The verification follows three levels
of program development: (1) that of English specifications
and assertions, (2) high level design language, and (3) FORTRAN
code, fAssertions are developed from the Scanner module's
specifications and are refined in parallel with program devel-
opment, Verification of correctness is presented for the pro-
gram based on the refined assertions, The scope of the verifi-
cation will include the Scanner subroutine, all subroutines
developed directly from the Scanner module, and all external
routines used by the Scanner,

1.2 General Background of the Interpreter'Program

The interpreter program of which the Scanner module is a
portion was designed and implemented by the students of CS
286-700, summer 1975 session. The program was divided into
the eleven following student groups:

(1) Interpreter Driver

(2) Scanner

(3) Text Editor

(4) Top Down Farser

(5) Bottom Up Farser

(6) Command Line Interpreter
(7) Operation Functions

(8) Heap Maintenance

(9) Stack Functions



(10) Symbol Tables
(11) File Maintenance

Each of the above areas were designed independently
using a modular zrogranning apprcach, Module interaction was
coordinated based on module specifications, and in some cases
including input and output assertions. The program was in-
tended to provide a language interpreter to facilitate a new
programming design language which closely resembles AFL, The
interpreter program was developed to use a standard FOETRAN
compiler to facilitate transvortability and maintenance,
Further documentation and background information can be
ocbtained from the reference "The Language and-Program Docu-
mentation of a Student Designed Interpreter", included in

Ennex A,



Chapter 2
Specifications and Data Formats

2,1 General

The modular construction of the interpreter progranm
is shown in figure 2~1, Conceptionally a source text being
entered into the language interpreter program can be either
command language instructions or a procedure to be processed,
After entry of the source text into the progran, the.Scanner
module is called to develop a token representation of the
text that can be more easily processed by the other modules
of the interpreter program. A common storage area called
HEAP is used to facilitate passage of data between modules,

2.1.1 HEAP Storage Area Specifications

The HEAP storage area, figure 2-2, 1s a series of con-
tiguous storage locations, Assignment of unique blocks of
storage space within the HEAP area for specific types of
data is made on a dynamic¢ basis, The dynamic characteris-
tic of the HEAP storage area is achieved by the use of
indirect addressing and index values which represent the
displacement of a block of storage locations from the start
of the HEAP area, An Address Translation Table, figure 2-3,
consisting of storage locations at the head of the HEAP area
is used to provide indirect addresses to specific data block
areas, These indirect address locations are referred to as
logical addresses throughout the remainder of this report,
The value stored in a logical address is an absolute address

that represents the displacement of a data block from the



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



ICYD T

TYITTT

ﬂ. PR

r

22THOIRIS T weJdodg JasjzaadIsijur

!

ADVLS

=2 8andtg

dVHIH

STIITIACE
AOLVIIJ0

—

|

111!t1il!l
GV QOHAQ
VL HAS

gV
, ZLIER WAS ADVLS
gV WAS aviH d7dH avde 0044 AVTISTO RENAK dANNVIS
¥
ALLHIdIIINT
ZDVABNVT JDTIM
JENNVES LIdE ANVIHCD VR Viova ¥o0i1dg

A ATET




(/,{} HEAP(1) is the first storage word in the HEAP

%

Address Translation Table

. Procedure
Table
Block

Token
Block

1

e gy R
o e D s mE mP WS v W =

Block !

-‘---.---"-L
L T

Tempory -
Block:

’

J
e e b e

CUEAP(n) is the last

storage word in
the HEAP

Figure 2-2 HEAP Storage Area Contents

10



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



11

ADTRAN = Address Translation Table
( sample length = 50 )

linked list_of_free logical_addresses

1718 1o 20¥

{/
Sak
=

Z =18 | =20=| <49 |-19 | T
/ N2> |
_ R I o
\\\h first_free ’w,/// \\
e i T 9-3- Q
logical address -
: for no
v -=1T-T1T751 N free blocks
o e St fr—a :
FRCTAB i Il I
4N
Procedure Table | %iio%%§%d Block i
Block | or TOKENS
or CODE
or some array object
in menory
ol I
GLETAB
Global Table 1 | space | 1
Block —
linked W
list of 1 ispace | !
free blocks L
.1 | space.i ~1

Figure 2-3 Format for Address Translation Table




12

start of the HEAP to the location prior to the beginning of
the indexed data block area, A Procedure Table data block,
figure 2-4, is established and contains individual Procedure
Tables for each source text that is translated by the inter-
preter program, The individual Procedure Tables are used to
store the values of the logical addresses of the specific
data blocks associated with that procedure,

The HEAP storage area and each common data structure
used by more than one module of the program has a common
header format and specific variable name offsets associated
with key positions of the format, figure 2-5, Additional
variable name offsets are associated with specific locations
of like type data blocks, For assigned data blocks within
the HEAP storage area, access to a unique formatted location
is made by adding the absolute address to the variable name
offset for the desired location, More detailed information
to include formats and variable name offsets will be given
in subsequent sections of this report, for each itype data
block area accessed by the Scanner module,

The FORTRAN initialization data for all HEAP storage
area offsets by type data block is at Annex B,

2.,1.2 Global Assertions

A number of assertions concerning particular data
structures are common to all modules of the language inter-
preter program. These assertions have been designated as
global and are necessary for development of specific input
and output assertions for each module and submodule of the

interpreter program, Further refinement of these assertions



15

PRCTAB = Procedure Table

HEAP(5)
’ ¢— location in Address Translation Table
Space_Used is(header+n PRCLEN)
\jL header f//‘-

v |5

PRCLEN = length of Procedure Table
( 8 words )

— A

PINDEX : f n

is * - { Frocedure
relative N - N A A A N Tables
index for ! ’ f /

any f

particular .

Length of name logical address
in characters of Code Elock

Procedure ‘
Table
PRONLN— . PreCoD

//
PRCNAM — /// _PRCSYM
name of the loglcal address of
procedure Synbol Table Block
PRCSTAT ™ PRCTOK
status field logical address of the

Token Block

 FECTXT
Jogical address of Text Block

eg: typical access to a specific Procedure Table by
HEAP(Absolute_Address + PINDEX + offset)

* Offset and length constants are underlined,

Mrure 2-4 Format for Procedure Table Block




1

HEAP (1) i is called the logical address
j | €< ————_location in the Address Translation

Table
| j is called the absolute address
HPTAG |
_~HPSPAC |
d these are called the header
-~ HPSIZ - E—
(:\"HPLAD |

&‘-wr Ny

tag | space | size | 1
Y

logical block i starts at HEAP
location Jj+1

't

HPLEN = length of header

; 5 : / ‘
space used by object

v .
B L r
4 ' 2 x
o i K

space allocated but not yet used

- . P

first_used_index = j+HPTAG - hlAsh 040X « Jepace

last_used _index = jtsize

* Offset constants are underlined,

- Fipgure 2-5 Header Format for an Allocated Block in HEAP




15
will be presented in conjunction with those assertions which
are unique to the Scanner module, “The following assertions
are considered global:

(2,1) That the HEAP storage area is established and conforms
to prescribed formats, figures 2-2 and 2-3,

(2.2) That the fifth storage location of the HEAP contains

the absolute address of the Procedure Table data block area,
(2.3) That all variable name offsets are initialized according
to format,

(2.4) That the Procedure Table data block area is established
and conforms to prescribed formats, figure 2-4,

{2,5) That PINDEX is an integer value that represents the
displacement from the start of the Procedure Table data block
to the location prior to the start of a sPecific Procedure
Table,

2,2 Scanner Specifications

2.201 General

The Scanner routine is a module of a language inter-
preter program that is called either by the program Driver
module or by the Command Language module, figure 2-1, The
Scanner module evaluates characters of a source text by line
of the text and constructs program symbols that consist of
identifiers, key or command words, numbers, operators, separ-
ators, strings, and undefined operators., A three word token
consisting of a symbol class, index or value, and a pointer
to the first character of the symbol in the line of text is
then assoclated with each recognized symbol, Tokens are

then stored in a designated area by line number which



16
corresponds to the source text line number., Iach source text
line that is scanned and found to be error free is annotated
as having been scanned in the approvriate text line header
word, Token storage information is updated in the appropriate
token storage header words after each text line is scanned
and stored.

Once called, the Scanner subroutine will not terminate
until each line of the source text has been scanned unless a
supervisor interrupt is received or there is insufficient stor-
age space available for the token data, A check is made for
a supervisor interrupt after each line has been scanned and
the tokens have been stored. If an interrupt-is received,
control is returned to the calling program with a distinctive
error return code, A test is made for adegquate token stor-
age space after each line has been scanned and the toxt words
and symbols identified, An error code indicating insufficiaent
storage sypace available is sent to the calling program if the
Scanner module is unable to store the token data,

If an error is detected in a line of text, a message
corresnonding to the type of error encountered is associated
with the text line, Token line header information is assigned,
but no tokens are generated for the symbols of the text line,
vlhen all lines of the source text have been scanned, error
messages are printed for each line that an error was found,
indicating the type of error and printing that portion of the
line where the error was encountered,

Control is then returned to the calling module with

an error code indicating either errors were or were not



' 17
encountered with the source text., For each error free line
of source text that was scanned, there exists a corresponding
line of. token representations, If no errors were encountered
in the source text, a complete token representation of the
source text is stored in the token storage area for the pro-
cess being interpreted,

2.2.2 Calls to the Scanner Module

Calls to the Scanner module include one input parameter,
a PINDEX to a specific Procedure Table, and one output para-
meter, an error indicator code, The invut parameter allows
the Scanner routine to gain access to the desired Frocedure
Table, and thus to the source text for the procedure being
interpreted,
(2,1) Input Assertions

For the Scanner module to function properly, certain
conditions must be in effect concerning specific variables
and data structures, These are considered input assertions
to the Scanner module and hold for all submodules developed
by the Scanner, |
(2,1,1) Global Assertions

| That the giobal assertions as stated in paragraph 2,1.2

are valid,
(2,1,2) PINDEX

That PINDEX is the displacement to the desired Procedure
Table which contains a logical address of a Text data block,
(2.1.3) Text Data Block

That the Text data block, figure 2-6, is established and

contains the desired source text,



18

) T HEAR(H).
S location in the

header Address Translation Table

nlin is lines of text all with
C&‘k the same format

top | bot | nlin

Baal Nt
(akTTO€r) Q;-TYTNLN

g?TXTLNU; is the line number

Inum | T1% | ik | tols | nst | sta variable 19nr

T 11 'T./“?’T-:
\\. /

__Lfl_?ii.'/ / \a_._ TEILIN |
. first word of
TXIBLK — source text
relative index PN
within the block Sl
Z e » characters in text
of the peA§ (f1k) Line
or previous (blk)
text line TXTSTA '
flk forwvard linlk status flag 4

hackﬁard link
TXTNST

t
D R EEE | weting 2eve

"-\\"'—-—L_‘_ |t o
\‘\

Hiw 45 be

bl
1k
bl

noH

TATTOK
flag indicates if line has been

scanned
O= line not scanned
1= line has been scanned(set by

scanner)

\ bot is relative index of last line entry in the
Text Block (may not be physically the last line)

top is the relative index of the first line entry
in the Text Block (may not be physically the first

line in the block)
* Offset constants are underlined,

Fipure 2-6 Format for Text Block




19

(2.1.4) Variable Offsets

That the variable offsets associated with the Procedure
Table data block, Text data block, and Token data block are
initialized,
(2,2) Output Assertions

The conditions which must be in effect on termination of
execution of the Scanner module are considered output asser=-
tions, These assertions hold in accordance with the Scanner
specifications for all program terminations of the module,
(2.2.1) Error Code | | |

That the error parameter for all normal terminations
indicates if there were syntax errors in the lines of source
text, That the error parameter will indicate if an abnormal
termination of the module's execution was caused by an user
interrupt or for lack of HEAP storage space,
(2,2.2) Token Data Block

That a Token data block, figure 2-7, is established and
contains token data as per the Scanner specifications, and
that the logical address to the data block is assigned to the
appropriate location of the Procedure Table referenced by the
PINDEX,
2.2¢3 Local Data Structures

The following data structures are initialized for use in
the Scanner module and are available to all submodules of the
Scanner,

(3,1) Character Table (255,3) array
This table is initialized in accordance with figure 2-8

to correspond to the character set selected for use with the



e

header

HEAP( j)
¢ location in the

N_MH“H%NM_*~"‘J Address Translation Table

4
&
L]
L]
*
t
L}
L}
]
¢
¢

top | bot | nlin

t
i

N

L —~TOKNLIN is total number of token lines
L~ TOKBOT is displacement next open word

—~ TOKTOP is displacement to first token
1line(may not be physically the
first line) o

L— POKLNUM is the line number
“-—TOKFLK is displacement to next line

It

4 v““\\ from start of block
Inum | f1k |} num TOKNUM is number of tokens in the line
Flass index} nfc
Wt TOken

::;//%?pfc is the character'number in the line of

text were the symbol startis,

> index is the index intb a table for classes

which refer to tables or it is a
value £8r symbols which are numbers
or strings. ' ~

class is code which indicates the type of

symbol,
1= keyword or command language word
2= identifier
= integer number
real number
string
operator
seperator -
undefined operator

H

Co~J O =
T TR TAR T

* Offset constants are underlined,

Fipure 2-7 Format for Token Block




21

Column 1 Column 2 Column 3

\fi* & & @& o & I\ pNDY

3]
\n

’ - /

/

Column 3- Column 3 contains the
external integer index
values for the separators
and operators based on
their sequence in the
machine code translation
table.

Column 2~ Column 2 contains integer values
0,1,2,3%,4,6,7 which designate the
character as:

O=blank

;ziﬁzggg integer value is used ag
3-$ a condition code for for-
L=t \ ming specific symbols
6=operator integer value is external
7=separator class code for these char-

acters.

Column 1~ Column 1 contains integer values 1,2,3
which designate the character as:

1=blank _ .
2=separator or 0pera»€§}_‘“a*ue is used

= as a condition
3=letter or number code

-» Row- The total number of rows is determinea oy the machine
code character translation table, A specific character
is represented in the table by the row that corresponds
to its decimal machine coda number,

*See Annex B for initialization data used with FORTRAN code
Figure 2-8 Character Table Format




28

interpreter program, Different character sets may be used
with the program based on initialization of this table and if
the character set does not exceed machine internal represen-
tation of 255 decimal,

(3.2) Keyword Table (10,7) array and Command Language Table
(10,7) array

These arrays are initialized in accordance with figures
2=9 and 2-15 with the designated Keywords and Command Language
words of the design language, Table initilization is made
based on the first four characters of each ﬁord. Words are
placed in table columns according to the total number of
characters in each word, Table searches for comparison with
a symbol is made only against the column which represents the
corresponding number of characters in the symbol,

(3.3) Line Stack (64) array

This array is initialized to zero and then used to hold
the characters of a line of source text for each line of text
while being processed by the Scanner module,

(3.4) Symbol Stack (15,3) array

This array is initialized to zero and then used to tem=-
porarily hold the generated tokens fo. the symbols of a line
of source text for each line of source tgxt processed by the
Scanner module prior to placement of the tokens in the Token
data block.

(3.5) Error Stack (64,3) array

This array is initialized to zero and then used to hold

error information associated with those lines of source text

where syntax errors were encountered. Each row of the array



23

Column I
- S '

Row 1 2 3 I 5 6 7 B

1 DO IIND CASE HNGIN ACCESS | BGPROC | ENDWRITE

2. | IF ouT ELSE FALSE EXTORT 0 EXTERNAL
3 IN 0 EXIT WHILE GLOBAIL 0 0]
L FI 0 GOTO WRITE RETURN 0 0]
5 | 0 o | PRrOC 0 0 0 0
6 0 0 READ 0 0] 0 0
7 0 0 THEN 0 0 0 0
8 0 0 TRUE 0 0 0 O
9 0 0 QUIT 0 0 C 0
10 0 0 CALL 0 0 0 i O

!l(

/_

(> Column- Keywords were placed in columas
based on the total number of
characters in the word, Limitat=-
ion was placed on the languarge
in that a keyword may not exceed
eight but must have a minimun of
two characters.

Row- The total number of rows of the table was
dependent on the largest number of keywords
with thw same number of characters.

Index- The index value of a keyword is determired by mul-
tiplying the column number by 10 and adding the
row number to that total,

* See Annex B for initialization data for the FORTRAN code,

** The FORTRAN initialization stores only the first four
letters of each word.

Figure 2-9 Keyword Table Format




28
o
=

O o

>

Column

L

6

24

—————tN TN
2

-'\3

1 ON [ FNS | CHAR] CLEAR| DIGITS | BREARKFT 1 0
2 NO | LIB| COFY | ERASE | RESUME | NOTRACE 0
3 O | OFF | DROP| HENCE | VALUES | SUSPEND 0
i O | POP| EDIT| LINES | CLRSTK 0 0
5 0O | RUN| HELP| PARSE 0 0 0
6 O | VAR| LIST| STACK 0 ] 0
7 9 0 LOAD | TRACE O 0 0]
8 0 0 SAVE| WIDTH §] 0 QO
9 0| O | VARS 0 0 0 0
10 0 0 WSID 0O 0 0 0
 — L

e

e

|
|

a C:;9 Column~ Command language words were

placea in columns based on the

word,

total number of characters in the
Limitation was placed on
the language in that a command
language word could not exceed
elght but must have a minimum of
two characters,

Row- The total number of rows of the table was
dependent on the largest number of command
language words with the same number of

characters,

Index~ The index value of a command language word is deter-
mined by multiplying the column number by 10 and add=-
ing the row number to that total,

* See Annex B for initialization data for the FORTRAN code

¥* The FORTRAN initialization stores only the first four letters

of the word,

Figure 2-10 Command Language Table Format:




25
would contain the line number, code for the type of error,
and a pointer to where the error was detected in the source
line,

(3.6) Symbol (2) array

This array is initialized to zero and then is used to
rack and hold characters as a symbol is being formed by the
Scanner module,
(3.7) RVALUE (15) array

This array is used to hold the value of real numbers
formed by the Scanner module,

242,44 Required Calls

This section is for reference only to provide full
specification documentation of the Scanner module, Complete
specifications of each of the subroutines referenced below
'is provided in other sections of this report.

(4.1) Calls to other Modules
(4,1.1) HEAP Module - to subroutines GET and EXPAND

(4,1,2) Driver Module - to subroutines ERRPRT, STAX, GETCHR,
and PUTCHR,

(4,2) Calls to Submodules {figure 2-11)

2.2.,5 Terminal Communication to User

Communication to the user through the terminal is pro-
vided by the ERRPRT Subroutine, For each line of source text
that a syntax error is found, an error message is printed to
the user indicating the line number of the error, type of
error, and by printing that portion of the text line where
the error was encountered,

2.2,6 Language Restrictions




26

1TeYH TROTUDIBISTH STNPON MINNVIS Ll-2 @Indig.

*oTNPOW YWMNNVIS oYl IO SeuTqnodgqns TeUJslXe 03 STTeD sausgsadas ouIT yseg -
I CHVIRE XYIS TIJEET JVIHAS AVHOIID - ¥VHIIAd
[} 1 ¥ i ' o8 |
LA SN ; R i
! } ) |
/ A | !
/ e i ; _
/ e ! i OVARNN |
/ / : ="
J / “ .
/ e | - ETEvy RSIOF
! s H . _ r
\ .\J\ e ~
! /s = -
/ -
\ / A . e
f JOUHAS NTJANTT Tvad NVOSNT

/ | ] | )

. EE SN e gemm aed WP pas  mee s sk g M S T e AT MO s e

|
HINNVDS




ey

The im?lementation of the Scanner module imposed some
restrictions on the syntax of the language developed for use
with the interpreter program, These restrictions are con-
sidered internal assertioﬁs for the recognition of classes of
symbols and error conditions within the source text, The
language restrictions are as follows:
(6.1) Symbol Length

All classes of symbols except strings are limited to a
length of eight characters.
(6,2) Keywords

Keywords are restricted to those words identified and
listed in the Keyword Table. Vords may be added to the table,
but only by modification of the initialization data of the
progran, |
(6.3) Command Language Words

Command language words are restricted to those words
identified and listed in the Command Language Table, Words
may be added to the table, but only by modification of the
initialization déta of the progran, |
(6,4) Command Language Lines

The first character of all command language lines of
text must be a clocing parenthesis, Command lines are pro-
cessed in the same manner as program lines of a source text,
Ho special designation is made by the Scanner module to
specifically identify command lines to the routine initi-
ating the call to the Scanner,
(6,5) Operators

Operators must be cone of those characters identified as



28

an operator in the initialization data for the program, or
if previously undefined, any character or series of up to
seven characters preceeded by a §,
(6.6) Strings

All strings must be precceeded by and terminated by a
double quote mark, Strings may be of any length and may con-
tain any combination of characters except a double quote mark
that does not exceed beyond the limits of one line of source
text.,
(6.7) Line Continuation

There are no provisions within the Scanner module to
allow for continuations of symbols or strings btetween lines
of source text,
(6.8) Real Values

All real values nust contain a dscimal point and the first
character must be a digit,
(6.9) Line Length

A single line of source text may not contain more than
a total of 64 characters without modification of the Scanner
module,
(6.10) Separations

All identifiers, keywords, command language words, values,
or strings must be separated by either an operator, separator,
or blank, |
(6.11) Characters

Characters are limited to those of the character code
table used to initialize the character table of the Scanner

module, Character codes may be changed by modification of the



29
initialization data of the Scanner character table,

2.5 Global Procedures

2.3.1 General

A number of subroutines exist within the‘overall con=-
finds of the interpreter program that perform specific func-
tions for more than one module, or are used to pass specific
data information between modules. These subroutines are
designated as global routines and may be called by any level
of the interpreter program,
2.3.2 Routine Specifications and Assertions

(2,1) GET

Routine GET is a subroutine of the HEAP storage area
module, It provides interaction between other modules of the
interpreter program and the HEAP module for allocation of
storage space.

(2.1.,1) Specification

When called, routine GET will search the HEAP storage
area for a block of contiguous locations that will meet the
size requirements of the calling module, If unable to find
a block of locations of the required size, the routine will
generate a compaction of data in the HEAP sﬁorage area, If
an area is still not available to meet the calling module's
requirements, an error code will be generated., 'hen an area
has been found that will meet the required size, the first
word of the block is assigned a code based on the type of data
to be stored, the second word is assigned the value of the
total number of words allocated in the storage block, and the

forth word is assigned the value of the logical address



30
location that contains the index value to the allocated stor-
age block. The value that represents the displacement fron
the first location of the HEAP storage area to the requested
storage block is then aséigned to the logical address loca-
tion,

(2.1,2) Assertions

The assertions for this routine are based on the para-
reters in the calling statement for the subroutine., These
parameters are:

SIZE - the number of words of storage area required,

TYPE - the type of information to be stored,

"LADDR - the logical addresé which contains the index to the
data block .assigned,

ERROR = error code indicating if the requiréd area is or 1is
not available,

(2.1.2.1) Input Assertions

That the parameter SIZE is an integer value that is
greater than zero,

‘That the parameter TYPE is an integer value,

That the global assertions are initialized and correct,
(2.1,2.2) Output Assertions

That the HEAP storage area was scrutinized for an area
to meet the required size,

That if an area was found to meet the required size that
the header information was assigned according to format and
the displacement pointer value was assigned to a logical
address,

That the parameter LADDR is an integer and is the value



of the logical address that contains the value of the dis-
placement index to the requested storage area,

That the parameter ERROR is an integer and of the value
zero if no error was encountecred or positive if the required
storage area is not available,

(2.2) EXPAND

Routine EXPAND is a subroutine of the HEAP storage area
module, It provides interaction between other modules of
the interpreter program and the HEAF module for expanding the
anount of allocated storage space to the calling module in
the HEAP storage area,

(2,2.1) Specifications

Wthen called, routine EXPAID will determine if sufficient
free words exist adjacent to thé oreviously aliocated stor-
age areca to satisfy the additional request for space. If
not, the routine initiates a commaction of the storage area
and then checks to see if sufficient space is available, If
the additional space is allocated, the return error code is
zeré, but 1f insufficient space is available, an error code
is returned, The offset to the new allocated storage area is
asgigned to the logical address location, All data previously
stored in the allocated storagé space is transferred to the
new area.

(2.2,2) Assertions

The assertions for this routine are based on the para-
meters in the calling statement for the subroutine, These
parameters are:

SIZE - the number of additional words of storage sﬁace required,



32

LADDR - the logical address location that contains the dis-
placement to the storage space that is to be
expanded,

ERROR - error code if required space is not available,
(2,2.2.1) Input Assertions |

That the parameter SIZE is an integer value that is
greater than zero,

That the parameter LADDR is an integer value that is the
logical address for the area to be expanded, |

That the global assertions are initialized and correct,
(2.2.,2.2) Output Assertions

That the HEAP storage area was scrutinized for an area
to meet the additional space requirements of the calling |
routine, |

That if an area was found to meet the new size require=-
ments all previously storéd data was transferred to the new
location. |

That the value in the logical address was changed to
reflect the displacement to the new storage area,

That the parameter ERROR is an integer value, either
zero or positive, If zero, area was available, and if positive
was not available,

(2,3) SYMTAB -

Routine SYMTAB provides interaction between other modules
of the interpreter program and the Symbol Table block which
indexeé all identifiers by individual procedure,

(2.3.1) Specifications

When called, subroutine SYMTAB associates an identifier



33

formed by the Scanner module with a specific procedure. The
subroutine then inspects the symbol table for that procedure
to see if the identifier was previously indexed, If the iden-
tifier is indexed, that value is returned to the calling module,
If the identifier is not in the symbol table, it is added and
the new index is returned to the calling module, An error
code is returned if the identifier cannot be stored, |
(2.3,2) Assertions

The assertions for this routine are based on the para;
meters in the calling statement for the subroutine, These
parameters are:

PINDEX - the displacement from the start of the Procedure
Table block area to the specific Procedure Table -
desired,

SYML, - the length of the identifier in number of characters in
the identifier,

SYM -« a two word array that contains the symbol with charac-
ters packed four per word,

INDEX ~ the wvalue which represents the index of the identifier
in the Symbol Table for the procedure,

ERROR ~ a value which indicates if an error occurred during
the execution of the routine that prevented the
identifier from being found or stored,

(2.3,2.1) Input Assertions .

That the parameter PINDEX is an integer value that is the
displacement index from the start of the Procedure Table data
block area to the Procedure Table desired,

That the parameter SYML is an integer value greater than
zero but equal to or less than eight, |

That the parameter SY¥M'is a two word afray that contains



Bl
the characters of the identifier in question, with the char-
acters packed four per word,

That the global assertions are initialized and correct,
(2,3.,2.2) Output Assertions

That the parameter INDEX is an integer value that voints
to the identifier being processed in the symbol table for the
rrocedure being scrutinized,

That the parameter ERROR is an integer value either zero
or one, If zero, the identifier has been placed in the syn-
bol table for the procedure identified bty the FINDEX at a
location represented by the value of INDEX, If one, an error
was encountered during execution of the routine and the iden-
tifier was not processed,

(2.4) ERRPRT

Routine FRRFRT is a subroutine of the Driver module, It
provides a common error nrint routine for 2ll modules of the
interpreter prograﬁ.

(2.4.1) Specifications

Vhen called, subfoutine ERRPRT will print a message on
the terminal indicating the procedure in which the error was
found, the line number, an error message as to type of error,
and identify the portion of the line with the symbol wvhere
the error was detected, The routine returns a code tolthe
calling module indicating if the error »rint sequence was or
was not éompléted.

(24ke2) Assertions
The assertions for this routine are based on the para=-

meter in the calling statement of the subroutine, These



35

parameters are:

PINDEX - the displacement from the start of the Procedure
Table data block area to the desired Procedure
Tabl €,

LINE - the line number in the program source text where the
error was detected,

CHAR = the number of the characters in the line of text at
which the error was detected,

N -« the number of characters in the error message to bhe
printed,

STRING -« a string containing the message to be printed,

RETCOD - a code indicating if the message was or was not
printed,

(2.4.2.1) Input Assertions

That the parameter PINDEX is an integer Value‘that is
the displacement from the start of the Procedure Table block
area to the specific Procédure Table desired,

That the parameter LINE is an integer value greater than
zero and is an element of the set cbmposed'of the line numbers
of the progran,

That the parameter CHAR is an integer value greater than
zero and is‘an element of the set comﬁosed of the number of
characters in the line of text,

That the parameter N is an integer value representing the
total characters in the error message to be printed,

That the parameter STRING is an one dimensional array of
which éontains the ¢ha;acters of the error message to be
printed with characters packed four per word,

That the global assertions are initialized and correct,



36

(2.4.2,2) Output Assertion

That the parameter RETCOD is an integer value with zero
representing no error was encountered while printing the error
message, or positive indicating that the message could not be
printed,
(2.5) STAX

Routine STAX is a subroutine of the Driver module, It
provides interaction between the interpreter program user and.
all modules of the program by allowing for user interrupts,
Calls to this routine are placed in modules to allow for user
interrupts after logical completion of key steps of module
operations,
(2,5,1) Specifications

When called, subroutine STAX allows the program user to
interrupt the operation of the module which initiated the call,
Interrupts are indicated by assignment of values to the two
parameters in the calling statement, When a value is assigned
to the parameter indicating an user interrupt, the calling
module assigns a distinctive code to its error output para-
meter and returns control to the Driver module,
(2.5.2) Assertions

The assertions for this routine are based on the para-
meters in the calling statement of the subroutine, These
parameters are: |

SWITCH - the change in value of this parameter indicates if
an interrupt was received,

DELAY - the value of this parameter is the time in milliseconds,
required for the interrupt analysis,



37

(2,5.2.1) Input Assertions

That the value of parameter SWITCH is integer zero,

" That the value of parameter DELAY is integer 150.

(2.5.,2.2) Output Assertion

That if the Value‘of parameter SWITCH is greater than
zero, an user interrupt was received, If the value of para-
meter SWITCH remains zero, no interrupt was received,
(2,6) GEICHR

Routine GETCHR is a subroutine of the‘Driver module, It
allows modules of the interpreter program to extract an indivi-‘
dual character from strings which are-packed with four charac-
ters ‘per word.
(2.6.1) Specifications

When called, routine GETCHR takes one character from a
string based on the number of the character as specified in
the call statement., The character extracted from the packed
word is then returned to the calling program as an outoput
parameter, If the value of the character number exceeds a
value of four, the routine will then select the next sequen-
tial word and extract the characters of that word,
(2,6,2) Assertions

The assertions for this routine are based on the péra-
meters in the calling statement of the subroutine, These
paraneters are:
STRG - the string in which the packed characters are contained;

CHARNUM - the sequential number of the character to be extrac-
ted,

ARG3 - the éharacter that was extracted from the packed word,



(2,6.,2.1) Input Assertions

That the parameter STRG contains packed characters.

That the parameter CHARNUM is an integer value greater
than zero,

That sequential words to the storage string listed in the
call statement contain packed characters,
(2.6,2.,2) Output Assertion

That the parameter ARG3 contains the character extracted
from the string, right adjusted as an integer,
(2.7) PUICHR

Routine PUICHR is a subroutine of the Driver module, It
allows modules of the interpreter program to pack characters
into a string, one character at a time,
(2,7.1) Specification

When called, routine FUTCHR packs a character in a string
of vacked characters, The position in the string that the
character is packed is based on the character number as spec=
ified in the call statement,
(2,7.2) Assertions

The assertions for this routine are based on the para-
meters in the célling statement of the subroutine, Theée
paraneters are:

SYM - an array that is used to pack characters, The Scanner
module uses a two word array while other modules may
use larger arrays,

K - a counter that indicates the sequential number of the

character and the position it is to be packed in the
two word array SYM,

CHAR - the characters to be packed, right adjusted,



39
(2.7.2.1) Input Assertions

That the parameter K is an integer value and for the
Scanner module is of the set 1 to 8.

That the parameter CHAR contains a character to be packed,
and it is left adjusted in a four byte word,
(2.7.2.2.) Output Assertion

That the two word array SYM is packed with the charac-

ter in the position indicated by the input parameter K,



40

Chapter 3
Assertion Refinement and High Level Design

3,1 QGeneral

3e1e1 Assertion Refinement

The assertions listed in this chapter represent the
refinement of those assertions stated in Chapter 2 of this
report, Assertion refinement is necessary in order to fur-
ther restrict and qualify common data structures and para-
meter conditions required for program develbpment. Refine-~
ment is made to approximately the same level of abstraction
as the high level design language representation of the
Scanner module, The assertion refinement also is used to
define and qualify specific variables used in the high level
design language répresentation. The assertions listed are
common in all Scanner module routines and hold under all‘
conditions.

3,1.2 _Notation

The notation used throughout this chapter is defined
below.

(2,1) Absolute Address

Any variable name followed by a "&@" character is defined
as the absolute address of that variable in the HEAP storage
area,

(2,2) Variable Names

Each variable name developed in the assertion refinement

15 defined in terms of a predicate, The variable name predi-

cate is illustrated by use of all capital letters and multiple



41
word names being joined by a "_ ", The variable value of the
predicate is represented by only the first letter of each
word being capitalized,

(2.3) Definitions

The symbol used to indicate the definition of a term is
a W&,

A period separating two predicates is used to indicate
the block area to which the predicate being defined belongs.

A variable enclosed by parentheses indicates the value
of the variable,

The word "is" is used to associate a variable with a
- particular predicate,

The word "means" is used to define a predicate, The
rredicate may consist of several separate conditions which
are linked together by the word "and" or the predicate may
be conditional which is designated by the word "or",

3,2 Global Assertion Refinement

The refined global assertions listed below provide the
bases for all other assertions and are used to construct and
qualify data structures, parameters, and variables used in

the Scenner module,

3.2.,1 HEAP Storage Area

_ HEAP means HEAP is a liniar array of 1 to n length,
available for dynamic assignment into block areas, as in
figure 2-2,

3.2.,2 Variable Name Offsets

For the HEAP Storage Block starting at absolute

address 1i:



HEAP , HPTAG £ HEAP(i+1)

HEAP . HPSPAC 2 HEAP(4i+2)

HEAP , HPSIZ £ HEAP(i+3)
HEAP , HPLAD # HEAP(1+4)
HEAP ., HPOBJ 2

and

HEAP(i-5)

I is HEAP , LOG_ADD means

5 & I & HEAP(IPSIZ)

and

1@ is Absolute_ Address means

j is Log_Add and I@ % HFAP(j)
and HEAP(HPSIZ) < I2 <n

3.2+3 Procedure Table Block Address

HEAP(HPO:J) # HEAP(5) and
PROC_TAB_BLOCK@ 2 HEAP(HPOBJ)

3.2.4 _Procedure Table Block

Proc_Tab_Block is HEAP . PROC_TAB_BLOCK means

Proc_Tab_Block is a List of procedure tables as

shown in figure 2;4.
and
PROC_TAB BLOCK®2 ,
PROC_TAB_BLOCKE ,
PROC_TAB_BLOCK@ ,
PROC_TAB_BLOCKZ ,

and

HPTAG 2 HEAP(Proc_Tab_Block@ + 1)

HPSPAC # HEAP(Proc_Tab_Block@ + 2)

HPSIZ =

HPLAD

A

"

HEAP(Proc_Tab_Block@ + 3)
HEAP(Proc_Tab_Block@ * 4)

HEAP( Proc_Tab_Block@ + HPSPAC) £ Allocated Spacd

and

Allocated_Space is ALLOCATED SPACE means the



L3
the value of Allocated Space is the number of stor=-
age words allocated to a block area by the EEAP module,

and
HEAP(Proc_Tab_Block@ + HPSIZ) £ Space_Used
and
Space_Used 1s SPACE_USED means
4 € Space_Used < Allocated_Space
an .
PINDEX is PROC_TAB_BLOCK , PINDEX means

PINDEX € §4,12,20,28,...,(EEAP(Proc_Tab_Block®
HPSIZ - 8))%

and
3 a Procedure Table as shown in figure 2-4, starting
at HEAP(Proc_Tab_Block@ = PINDEX + 1)
3.2.5 Procedure Table Address

Proc_Tab_Add@ is HEAP , PROC_TAB_ADD2 means
HEAP(Proc_Tab_Block@ *+ PINDEX) * Proc_Tab_Add@
3.2.6 Procedure Table

Proc_Tab is PROC_TAB_BLOCX . PROC_TAB means
Proc_Tab is eight words as per figure 2-4
and
PROC_TAB , PRCNLEN # HEAR(Proc_Tab_Add@ + 1)
PROC_TAB ., PRCNAM £ HEAP(Proc_Tab_Add@ + 2)
PROC_TAB , PRCSTAT £ HEAP(Proc_Tab_Add@ - 4)

e

PROC_TAB , PRCTXT & HEAP(Proc_Tab_Add@ + 5)

Hp

FROC_TAB , PRCTOK = HEAP(Proc_Tab_Add@ * 6)

PROC_TAB , PRCSYM = HEAP(Proc_Tab_Add@ + 7)

il

PROC_TAB , PRCCOD £ HEAP(Proc_Tab_Add@ + 8)



Lk

+

HEAP(Proc_Tab_Add@ + PRCNLEN) # not used by Scanner .
HEAP(Proc_Tab_Add@ + PRCNAM) £ not used by Scanner
gEAP(Proc_Tab_Add@ + PRCSTAT) € not used by Scanner
HEAP(Proc_Tab_Add@ + PRCTXT) £ Txt_Log_Add or nulltxt
and
Txt_Log_Add is TXT_LOG_ADD means
2 a Txt_Log_Add as per para., 3.3.1
and
Null txt means Source Text does not exisf.
HEAP(Proc_Tab_Add@ + PRCTOK) # Tok Log Add or null tok
and
Tok_Log_Add is TOK_LOG_ADD means
2 a Tok_Log_Add as per para, 3.3.2.2
and
Null tok means Token data block does not exist,

HEAP(Proc_Tab_Add@ + PRCSYM) % not used by Scanner

T

HEAP(Proc_Tab_Add@ + PRCCOD) £ not used by Scanner

3,3 Scanner Assertions

The Scanner module input assertions are developed in the
same manner as'tﬁe global assertions and are considered valid
when the Scanner module is called either by the Driver module
or the Comnand Language module, These assertions comﬁined
with all initialized tables, flags, and counters provide the
necessary bases for development of the Scanner cutput asser-
tions, |

3.,3.,1 Input Assertions

(1.1) Global assertions are valid.



(1.2) Text Logical Address
31 341 is TXT_LOG_ADD
Txt_Log_Add is TXT_LOG_ADD means
Txt_Log_Add is a HEAP , LOG_ADD
and
HEAP(Proc_Tab_Add2 + PROTXT) £ Txt_Log_Add
and
HEAP(Txt_Log_Add) £ Txt_Add@
and [
Txt_Add® is a TXT_ADD@
(1.3) Text Absolute Address
Txt_Add@ is TXT_ADD2 means
HEAP(HPSIZ) < Txt_Add@ <1
and

9 a text block as per figure 2=4, starting at
HEAP(Txt_Add@ + 1)

(1.4) Text Block
Txt_Block is HEAP , TXT_BLOCK means

Txt_Block is a lLinked_list as shown in figures 2-4
and 2-5,

and
TXT_BLOCK . HPTAG % HEAP(Txt_Add@ + 1)
TXT _BLOCK ., HPSPAC £ HEAP(Txt_Add@ + 2)
TXT_BLOCK . HPSIZ # HEAP(Txt_Add@ + 3)
TXT_BLOCK , HPLAD £ HEAP(Txt_Add@ - 4)
TXT_BLOCK . TXTTOP £ HEAP(Txt_Add@ = 5)
TXT_BLOCK . TXTBOT & NEAP(T#t_Add@ + 6)

!

TXT_BLOCK . TXTNLIN ¢ HEAP(Txt_Add@ + 7)



and
HEAP(Txt_Add@
HEAP(Txt_Add@
HEAP(Txt_Add®
HEAP(Txt_Add@
HEAP(Txt_Add2

apd

+ L+ + +

+

HPSPAC) % Allocated_Space

HPS1Z) £ Space_Used
HPLAD) £ Txt_Log_Add
TXTTOP) % 1st Txt_Ln Disp
TXTBOT) & Lagt Txt_ILn_Disp

Txt_InDisp is TXT_LN_DISP means

7 < Txt_Ln_Disp < HEAP(Txt_Add2 + HPSIZ)

HEAP(Txt_Add@ + TXTNLIN) % Txt_Total_Ln

and

Txt_Total In is TXT TOTAL LN means

46

Txt_Total_Ln ¥ Total number of text lines in the

(1.5) Text Line

Txt_Ln is TXT_BLOCK , TXT_LN means

a text line and HEAP(Txt_Add@ + Txt_Ln_Disp) is

source text.

word prior to the start of figure 2-7,.

and

TXT LN ., TXTLNUM £ HEAP(Txt_Add@ + Txt_Ln_Disp + 1)

TXT_LN . TXTFLK
TXT LN , TXTBLK
TXT_LN o TXTTOK

TXT_LN , TXTNST

TXT LN , TXTSTAT £ HEAP(Txt_Add@ + Txt_Ln_Disp = 6)

s

{1

Y

&

i

HEAP(Txt_Add@
HEAP( Txt_Add@
HEAP(Txt_Add@

HEAF(Txt_Add@

+

Txt_Ln_Disp + 2)
Txt_Ln_Disp + 3)
Tzt_Ln_Disp + 4)

Txt_Ln_Disp + 5)



47
TXT LN , TXTLLEN € HEAP(Txt_Add® + Txt_In_Disp *+ 7)
TXT_LN . TXTLIN £ HEAP(Txt_Add@ + Txt_Ln_Disp + 8)
and |
HEAP(Txt_Add@ - Txt_Ln_Disp + TXTLNUM) £ Txt_Ln_Num
and
Txt_In Num is TXT_LN_NUM means
1 £ Txt_Ln Num ¢ HEAP(Txt_Add@ + TXTBOT - TXTLNUM)
HEAP(Txt Add@ + Txt Ln Disp + TXTFIK) £ Next Txt_Ln Disp’
HEAP(Txt_Add@ + Txt_ILn_Disp + TXTBLK) # Lagt Txt_Ln_Disp
HEAP(Txt_Add@ + Txt_Ln_Disp + TXTTOX) % i
and
i €40,18

. o u
i = 0 means line not scanned -

ne

: 1 means line scanned

HEAP(Txt_Add@ v Txt In Disp - TXTNST) not used by
Scanner module

HEAP(Txt_Add@ + Txt_Ln_ Disp + TXTSTAT) not used by
Scanner nodule

HEAP(Txt Add@ + Txt_Ln_Disp + TXTLLEN) £ Total_Char
and
Total Char is TOTAL_CHAR means
64 2 Total Char= number of characters in source
line
and
CHAR means
CHAR €51,...,255%

and

7 fl,.,.,255} corresponds to the machine
Character Translation Table

3.3,2 Output Assertions




48
(2.1) ERROR
1 is ERROR means
€ §0,1,555,900%

0 means no errors

1
I
I £ 1 means syntax errors in some Txt_Ln's
&

2 555 means insufficient Allocated_Space for Tokens
of source text, incomplete scan

-3

I = 900 means user interrupt source text, incomplete scan
(2,2) Token Logical Address
31 9 i is TOXK_LOG_ADD
Tok_Log_Add is TOK _LOG_ADD means
Tok_Log_Add is a HEAP . LOG_ADD
HEAP(Proc_Tab_Add@ - PRCTOK) 2 Tok_Log Add
and
HEAP(Tok_Log_Add) £ Tok_Add@
and
Tolk Add@ is a TOK_ADD@
(2,3) Token Absolute “Address
Tolk_Add2 is TOK_ADD@ means
HEAP(HPSIZ) < Tok_Add2 <n
and

3 a token block as per figure 2«7 starting at
HEAP(Tolc_Add@ 5 1)

(2.4) Tolken Block
Tok_Block is HEAP . TOK_BLOCK means

Tok_Block is a Linked_List as shown in figures 2-7
and 2-8



49
and
TOK_BLOCK . HPTAG £ HEAP(Tok_Add@ + 1)
TOK_BLOCK . HPSPAC £ HEAP(Tok_Add@ - 2)
TOK_BLOCK . HPSIZ £ HEAP(Tok_Add@ + 3)
HEAP(Tok_Add@ + 4)
TOK_BLOCK ., TOKTOP £ HEAP(Tok Add2 - 5)

“Hl-

TOKX_BLOCK . HFLAD

TOK_BLOCK , TOKBOT £ HEAF(Tok Add@ + 6)
TOK_BLOCK . TOKNLIN £ HEAP(Tok_Add@ + 7)

and

HEAP( Tok_Add@ + HPSPAC) % Allocated_Space

e

HEAP(Tok_Add@ - HPSIZ) = Space_Used

ta

HEAP{Tok_Add2@ ~ HPLAD) 2 Tok_Log_Add

HEAP(Tok_Add2 - TOKTOP) £ 1st Tok Ln_Disp
and

Tok_Ln_Disp is TOX_LN_DISP megans
7 £ Tok _In Disp £ HEAP(Tok_Add2 -~ HPSIZ)
HEAP(Tok_Add@ -~ TOKBOT) % HEAP(Tok_Add@ + HPSIZ) + 1
HEAP(Tok_Add2 - TOKNLIN) £ Tok_Total_Ln |

and

Tok_Total_Ln is TOK_TOTAL_LN means

Tok_Total_Ln £ total number of token lines

(2.5) Token Line
Tok_Ln is TOK_LN means
3 a token line and HEAP(Tok_Add2 + Tok_Ln_Disp)

is word prior to the start of a token line as per

figure 2-8,



50
and

TOK_LN , TOKLNUM € HEAP(Tok_Add@ + Tok_Ln_Disp + 1)
TOK_LN , TOKFLK % HEAP(Tok_Add@ + Tok_Ln Disp * 2)
TOK_LN ., TOKNUM ¢ HEAP(Tok_Add@ - Tok_Ln_Disp * 3)

and

s

HEAP(Tok_Add@ - Tok_Ln_Disp + TOKLNUM) = Tok_ Ln_Num
and
Tok ILn_Num is TOK_LN_NUM means ' ‘

1 £ Tok_Ln_Num < HEAP(Txt_Add2

4

THTBOT + TXTLNUM)

e

HEAP(Tok_Add2 -~ Tok_ILn_Disp - TOKFLK)
Next Tok_In_Disp

.Total_Tokens

"

HEAP(Tok_Add@ +~ Tok_Ln_Disp + TOKNUM)
and
Total_Tokens is TOTAL TOXENS means
Total_Tokens 20 or number of tokens triples
in- the tokén line as per

figure 2-9,

If

Total_Tokens ‘0 means
Syntax error in Txt_In and no tokens

were generated,

and
Class
Token % |Index or Value

Num_#irst_Char
3.%3.35 Table, Counter, Flag Initialization and Variable
Definition

The designated tables, counters, flags and variables



5
shown as being initialized in the Scanner module are common
to all submodules of the Scanner., Definition of state changes
are also given where appreciable,
(3.1) Table Initialization
(3.1.1) CTAB is CHARACTER TABLE means
CTAB(1, j) array
1is € %1,...,255¢
jis € §1,2,3%

and

-

CTAB(4i, j) is initialized as per figure 2-9
(3.1.2) KWPAB is KEYWORD TABLE means
KWTAB(4i, j) array
118 € §1,.004,108
Jis € 15004478
and
KWTAB(i, j) is initialized as per figure 2-10
(3.1.3) CLTAB is COMMAND LANGUAGE TABLE means
CLTAB(i, j) array
118 € 1,004,108
Jis € $1,000,7%
o G
CLTAB(4, j) is initialized as per figure 2-11
(3.1.4) LINST is LINE STACK means
LINST(i) array
1 38€ §1,000,64%
and

LINST(i) is initialized to zero



52

state change

For each Txt_Ln processed that is to be scanned,
LINST(i) £ CHAR
118 € F1,0eee,(Txt_Ln(TXTLLN)?
(3.1.5) SYM is SYMBOL means
SYHM(i) array
iis €{1,2}
and

S5YM(1) is initialized to zero

state change

Array SYHM is used to pack up to the maximum of
eight characters of each formed symbol that
requires additional processing to produce token
data, Classes of symbols requiring the use of
arréy SYH are:

identifiers

keywords

command language words
numbers

(3.1,6) SYMST ig SYMBOL STACK means
SYMST(1, j) array
118 € {150000,153
jis €41,2,38
and
SYMST(i, j) is initialized to zero

state chanre

For all symbols formed in a Txt_Ln being scanned.

SYMST(1) £ 1 thru SYMCT



55

and
SYMCT is SYMBOL COUNT means
SYMCT 2 total number of symbols formed
and
SYMST(j) £is the Token Data for the symbol
(3.1,7) ERRST is ERROR STACK means
ERRST(1, j) array
118 € $1,44.,64%
j§£i€ é’rar}}
and
ERRST(i, j) is initialized to zero

state change

Txt_Ln is scanned and an error was found
ERRST(i) % 1 thru ERRCT
and
ERRCT is ERROR_COUNT means
ERRCT £ total Scanned Txt_Ln with errors

Txt_In_Num
ERCODE

ERRST(j) %
" {Num_First_Char

(3.2) Counter Initialization
(3.2.1) SYMCT is SYMBOL_COUNT means for each Txt_In
0 <€ SYMCT € 15
and
for each Symbol formed SYMCT is incremented by 1
(3.,2,2) ERRCT is ERROR_COUNT means for each Txt_Block
0 <€ ERRCT £ Total_Txt_Ln

and



(Bade3d

(30204)

(3.3)
(3.3.1)

(3.3.2)

(343.3)

(3.3.4)

(3.4)
(3.4.1)

54

for each Txt_Ln with syntax error,
ERRCT is incremented by one,

SYML is SYMBOL LENGTH means for each Symbol

1 £ st £ 8 |
CHARNU ig CHARACTER_NUMBER means for each CHAR in
a Symbol

CHARNU is incremented by one.

Flag Initialization

RESCAN = TRUE means
Tok_Block exists prior to call of Scanner

RESCAN = FALSE means
Tok_Block does not exist prior to call of Scanner

CLFLAG is Command Language Flag initialized FALSE

CLFLAG = TRUE means
first CHAR of Txt_In is ')

ERRFLG is ERROR_FLAG initialized FALSE

ERRFLG = TRUE if ERRCT 1

TYPE TOK is TYPE TOKEN initialized "ITOK'"means Token

tag code for HEAP area,

Variable Definitions

ERCODE is FRROR_CODE means Syntax_Lrror,

ERCODE € {1,2,3§
and
ERCODE = | means Syntax Error,
SYML > 8 for any symbol except a string
and
ERCODE = 2 means Syntax_FError,

no closing quote mark on string

and



ERCODE € 3 means Syntax_ Error,

55

CHAR 2 in machine character translation table

or

CHAR is illegal in a specific class of symbol

(3.4.2) SIZE is Requested Allocated_Space for Tok_Block neans

(3e443)

(Beltolt)

SIZE % Txt_Total_Ln * 15 * 3

and

15 is maximum number of symbols ﬁer Txt_Ln

and

3 is number of storage words per .token

SYMCODE is SYMBOL CODE means
SYMCODE € $1,2,3%
and
SYMCODE £ 1 means
identifier or
Symbol is jkeyword or
command language word
and
SYMCODE £ 2 means
identifier Or
Symbol is undefined operator
aﬁd
SYMCODE £ 3 means
keyword or
command language word
Symbol is number or
string
CLASS is SYMBOL_CLASS means

cLass € §1,2,3,4,5,6,7,83

and



[H Y

CLASS

1y

CLASS

A1

CLASS

1

CLASS

tHi-

CLASS

-

CLASS

M-

CLASS
CLASS =

1 means

word

2 means
3 means
L means
5 means
6 means
7 means

8 means

Symbol

Symbol
Symbol
Symbol
Symbol
Symbol
Syrbol
Symbol

I
6]

o A P N O O

(3.,4,5) INDEX is SYMBOL_INDEX means
3elta D is i reans

INDEX >1 or £ VALUE

and

)]

INDEX

Synbol

INDEX £

Symbol

€

and

> 1 means

keyword

identifier
operator

separator
undefined operator

VALUE means

(" integer number
real number

string

56

keyword or command language

identifier
integer number
real number'
string
operator
separator

undefined operator

VALUE £ numeric value or character length of string

(3.4.6) Num_First_Char is NUM _FIRST CHAR means

Num_First_Char € {T....,Total_ChapE

and

Num_First_Char

Hb

number of the first character of

a symbol in a Txt_Ln

3,4 Global Procedure Assertion Refinement




3elie 1 Subroutine GET(SIZE, TYPE, LADDR, FRROR)

(1,1) Input Assertions
Global Assertions are valid
I ig SIZE means I > 0
I is TYPE means I is integer type code for
[ Proc_Tab_Block
Txt_Block
Tok_Block

Code_Block (Undefined for SCanner Proof)

|_Temp_Block (Undefined for Scanner Proof)
(1.2) OQutput Assertions
I is ERROR nmeans
I€ 30,555¢
and
ERROR £ O neans
LADDR £ HEAP , Log Add
and
HEAP( (HEAP(Log_Add)) + HPTAG) £ TYPE
HEAP( (KEAP(Log_Add)) + HPSPAC) 2 new_SIZE
HEAP((HEAP(Log_Add)) + HPLAD) £ LADDR
or
ERROR £ 555
and

LADDR 2 Null
3.L,2 Subroutine EXPAND(SIZE,LADDR,ERROR)

(2,1) Input Assertions

SIZE

o7



58

Global assertions are valid

I is SIZE means I > 0

LADDR £ HEAP , Log_Add
(2,2) Output Assertions

I is ERROR means

I€40,555¢
and

ERROR = 0O

means

HEAP( (HEAP(Log_Add)) + HPSPAC) =
0ld_HEAP((HEAP(Log_Add)) +HPSPAC) + SIZE

or
ERROR £ 555
and

HEAP( (KEAP(Log_Add)) -~ HPSPAC) %
old_HEAP((HEAP(Log Add)) + HPSPAC)

3.4e3 Subroutine SYMTAB( PINDEYX, SYML, SYH, INDEX, ERROR
(3.1) Input Assertions '
Gldbal assertions are valid
I is SYML means SYML as defined in para, 3.3.3%.2.3
SYM £ two words
and _
SYML % CHAR in SYM
(3.2) Output Assertions
ERROR means
"ERROR € {0,1}
and

ERROR =~ O



59

I is INDEX means I >0 ;
and

HEAP , SYM _TAB (INDEX) % Symbol @

*(HEAP , SYM TAB is undefined in this report,
but takes the form as a Block area).

or
ERROR £>0
I is INDEX means I # Null

Jelte 4  Subroutine ER?PRT (PINDEX, LIM7", CHAR, N, STRING, RETCOD)

(4,1) Input Assertions
Global assertions and Scanner input assertions are valid

I is LINE means 1 2 Txt_Ln_Num

i

-«

I is CHAR means I * Num_First_Char of Syntax_Lrror
I is N reans I £ n length of STRING

STRING % Syntax_Error_ Message
(4,2) Output Assertions

I is RETCOD means

I1€ 40,13
and
RETCOD = O,message was printed
or
RETCOD = 1, message was not printed

3.445 Subroutine STAX (SWITCH,DELAY)

(5.1) Input Assertions
I.is SWITCH means I £ 0
I is DELAY means I 2 150
(5.2) Output Assertions
I is SWITCH means



60

1€ 70,1

and
SWITCH = O means no interrupt

or | '
SWITCH = 1 means user interrupt

3,4.6 Subroutine GETCHR(STRG,J,ARG3)

(6,1) Input Assertions
Global assertions and Scanner input assertions are valid
I is WORD pmeans
I ¢ Txt_Add@ + Txt_Ln Disp - TXTLIN
I is J means |
1€ $1y.00,T0tal Char¥
(6.2) Output Assertions
I is ARG3 means I = CHAR
and
CHAR is (J)
3.4.7 Subroutine PUTCHR(SYM,K,CHAR)

(7.1) Input Assertions
SYM 2 two words
I is K means
I€ §1,00.48¢
I is CHAR means
I &4§1,000,255%
(7.2) Output Assertions
A

SYM(2) = contains K number of CHAR

3.5 High Level Design Language with Assertions

The High Level Design Language representation of the

Scanner module is developed from the Scanner specificatlons



61
and refined assertions, Assertions are referenced by para-
graph number and are enclosed in brackets at the point in
the program where they are valid, Assertions are numbered

sequentially in each routine,

3.5.1 SUBROUTINE SCANNER (PINDEX,ERROR)

{1. Input Assertions (see para. 3.2 and 3.5.1)3

INITIALIZE {2, see para, 3.3.3 §

RESCAN <—FALSE

ERRFLG < FALSE

CLFLG <—FALSE

TYPE_TOK <!'ITOK"

SYMCT < 0

ERRCT < 0

CHARNU <0

CTAB <—to figure 2-9

KWTAB <to figure 2-10

CLTAB < to figure 2-11

LINST <0

SYM <0

SYMST <=0

ERRST < 0
Froc_Tab_Block@ < HEAP(5) 3. see para, 3.2.35%
Txt_Log_Add <~ HEAP(Proc_Tab_Block® - FINDEX + PRCTXT)

{ﬁw see para, 5.5.1.2}
Tok_Log_Add < [IEAP(Proc_Tab_Block?2 + PINDEX - PRCTOK)

Txt_ADD2 <~ HEAP(Txt_Log_Add) (5. see para. 3.2.6 “2
%6, see para., 8.3.1.
Txt Total Lns < HEAP(Txt Add@ - TXTNLIN) * f 2
— — - and pal":’l. 3-_)-1'&'

CASE 1 IF Tok Log_Add = 0



62
THEN {ih-see para, 3.2,6 no Token data block exists}

SIZE%—-Txt_Total_Lns = 15 * 3
CALL  GET (SIZE, TYPE TOK,Tok_Log_ Add,ERROR)
-[8. see para, 3.4.1}
rCASE 2 IF ERROR > 0
THEN éﬁ9. Token data block not available}
RETURN

~END CASE 2

 HEAP(Proc_Tok_Block® + PINDEX + PRCTOK) < Tok_Log Add
{10. see para, 3.2.6}

ELSE (11, see para. 3,2.6 Token data block does exist
and some lines of source text have been
Scanned, see para, 3.,3.3.3

RESCAN <-TRUE

~END CASE 1 (12, A Token data block exists and header conforms
to figure 2-7, see para., 3.3.2..4

Tok_Add@ <—HEAF(Tok_Log_Add)

Txt_Add@ < HEAP(Txt_Log_Add)

13, Absolute addresses of block areas may have changed due
to reorganization of HEAP and Add2 were reassigned,

Txt_Ln_Disp < HEAP(Txt_Add@ + TXTTOP)
Next Txt_Ln_Disp <—~HEAP(Txt_Add@ + Txt_Ln Disp * TXTFLK)
i}h. see para, 3.3.1.9}
Tok_Ln_Disp <HEAP(Tok_Add@ + TOKTOP)
{?5. see para, 3.3.2.&}
pCASE 3 IF Tok_Ln_Disp <7
g&g@i{}G. Token data block contains no Token Lineé%
Tok_Ln_Disp<—7

\ HEAP(Tok_Add@ + TOKTOP) < Tok_Ln_Disp



63
[ HEAP(Tok_Add@ + HPSIZ) < Tok.Ln_Disp
END CASE 3
Y?. A1l Add@, First Txt_Ln Disp, Next Txt_ﬂn_Disp, and}

First Tok_ILn_Disp are correct

rLOCP 1 iteration 1 thru Txt_Total Ln

18, Each LAST Txt_Ln, para. 3%.3.1.5, has been SCANNED,

Tok_Ln, para. 3.3.2.5, for each Txt_Ln, para. 3.3.1.5,
that has been SCANNED

For each error-free Txt_Ln, the corresponding Tok_Ln
contains tokens for each text symbol as formatted in
figure 2-8, see para., 3.3.2.5.

For each Txt_In that contains Syntax error, the
Tok_Ln , TOKNUM equals zero, see para. 3.3.2.5, and
ERRST contains error data, see para., 3.3.3.1.7. s

(CASE Iy IF Tok_Ln_Num < Txt_Ln_Num AND RESCAN = TRUE
THEN {19. A line of text has been deleted. §
DELETE Tok_Ln UNTIL Tok_Ln Num 2 Txt_Ln_MNum
(CASE 5 IF Txt_Ln_Num > LAST Tok_Ln_Num

THEN (20, Txt_Ln is addition to end of
source text that has been
scanned,

RESCAN = FALSE
21, see para, 3.3.3.3.1%

‘END CASE 5

LEND CASE 4
§22, Tok_Ln_Num 2 Txt_Ln_Num or RESCAN = FALSE }

(CASE 6 IF HEAP(Txt_Add@ + Txt_Ln Disp + TXTTOK) = O
THEN \23. Text line has not been SCANNED,-sei?
para. 3.3.1.4

CALL LNSCAN (ERRFLG,Ln_Space_Used, Txt_Ln_Disp,
SYMCT)




64
ELSE GOTO End Loop 1
END CASE 6

24, Txt_Ln has been SCANNED and state changes for SYMST, see

L

PaArd. Fe3e3s146; SYMCT as para. 3.3.3.2.1; and
Ln_Space_Used is storage words required for Tok Ln; or
Syntax_FError in Txt_Ln and state change for ERRST, see
para. 3%.3.3.1.7; ERRCT as per para. 3.3.5.2.2; and
ERRFLAG = TRUE,

Tok_Space_Used - HEAP(Tok_Add@ - HPSI1Z)
{25' see para, 3.5.2.4}

ACASE 7 IF Tok_Space_Used + Ln_Space_Used > HEAP(Tok_Add@

+ HPSPAC)

THEN {%6. Token data block is not large enough t?}
hold all token lines,
SIZE~ (Txt_Total_In - Loop 1 iteration)x15x3
CALL EXPAND (SIZE,TOK_LOQ_Add,ERROR)
127. sec para. 3.4.2%
‘CASE 8 IF ERROR » 0

THEN €28, Additional space not availablif
for Token data block,

RETURN

ELSE {29. Additional space is available,}
Tok_Add@ < HEAP(Tok_Log_Add)
Txt_Add@ <- HEAP(Txt_Log_Add)
{30. Absolute address may have changed§

END CASE 8

END CASE 7

HEAP(Tok_Add2@ + Tok_Ln_Disp + TOKLNUM) <€
HEAP(Txt_Add@ + Txt_Ln_Disp + TXTLNUM)

{310 gee para, 3050205}



65
‘CASE g IF RESCAN = TRUE

THEN CALL LINFIN (Txt_Ln_Disp,RESCAN,Tok ILn_Disp)

32, Tok_Ln header has been assigned fcllowing the
Last Tok_Ln, Tok Ln , TOKFLK in prior Tok_Ln,
and this Tok_ILn points to the correct lines,
OR RESCAN = FALSE, see para, 3.3.3.3.1,

ELSE HEAP(Tok_Add2 + Tok_Ln_Disp * TOKFLK) <~
HEAP(Tok_Add@ + HPSIZ) + Ln_Space_Used

\ 55, Tok_Ln header as per para, 3,3.2.,5 has beei?
assipgned following the Last Tok_In,

LEND CASE 9

'CASE 10 IF ERRFLG = TRUE

THEN (34, An error was found in the line of text,’
5E€ PAras. 3e3¢2¢5 j

HEAP(Tok_Add@ + Tok Ln_Disp - TOKNUM)< O
ELSE {35, Text line was error free,$ |
HEAP(Tok_Add@ - Tok_Ln_Disp + TOKNUM) < SYNCT
LOOP 2 iteration 1 thru SYMCT
Token <—SYMST
END 1LOOP 2

{?6. Symbol token data has been stored as per
figure 2-8, see para. 3.3.2.5.

l-END CASE 10

37, Tok_Ln corresponding to This Txt_ILn has been stored,
in Tok_Block,

HEAP(Tok_Add® + HPSIZ) < Tok_Space_Used + Ln_Space_Used
HEAP(Tok_Add2 + TOKBOT) <-Tok_sSpace_Used + Ln_Space_Used
HEAP(Tok_Add@ ~ TOKNLIN) < HEAP('.ok_Add® + TOKNLIN) + 1
{58, Tok_Block header has been updated, see para, 3.3.2.4}
SWITCH <0



66
DELAY €« 150
CALL STAX (SWITCH,DELAY) $39, see para. 3.4.5 §
(CASE 11 I¥ SEITCH> O
THEN {40. User has caused an interrupt. §
ERROR 4~ 900 ¢ 41, see para. 3.3.2,1F
RETURN

LEND CASE 11

{qa. No user interrupt has occurred.}

~CASE 12 IF HEAP(Txt_Add@ + Txt_Ln_Disp + TXTLNUM) =
HEAP(Tok_Add2 - Tok_ILn_Disp + TOKLNUM)

THEN Txt_Ln_Disp < HEAP(Txt_Add2 + Txt_Ln_Disp +
| ' TXTFLK)

Tok_Ln_Disp < HEAP(Tolk_Add@ + Tok_Ln_Disp -
. TOKFLK) ‘
%?5. Text and Token displacement indexes now reflecif
the next lines to be processed,
ELSE ERROR =1
{44. Error has occurred in storing token dataﬂ}

RETURN

END CASE 12

*END LOOP 1

45. A1l lines of source text have been SCANNED, and token
data stored in the Token data block as per figures 2-7
and 2-8, see para, 3.3.2.4 and 3.3.2.5.

(CASE 13 IF ERRFLG = TRUE
THEN {46, see para. LN BN
CALL SERROR

47, Error messages were printed for each line that
contained an error,

ERROR =1 {48. see para, 5.3.2.!}



67
RETURN

ELSE (49, All lines of source text were error free andj?
ERROR = 0, see para, 3.3.2.1

RETURN

LEND CASE 13

-{56. Output assertions, see para, 5.2.2:;
END SUBROUTINE SCANNER

3.5,2 SUBROUTINE LNSCAN (ERRFLG,Ln Space Used,Txt_Ln_Disp,
SYMCT) o

1. Input Assertions - Scanner Input Assertions -~ Scanner
Tables + Scanner Flags + Scanner Counters + Scanner
Variables and Txt_In Disp = First unscanned Txt_In

INITIALIZE

SYNCT <0
ERCODE<-0
CLFLAG < FALSE
-{2. Counters and Flags reset for this line, §
Txt_Add@ < HEAP(Txt_iog_Add)
Txt_Ln_Total_ Disp < Txt_Add@ + Txt_Ln_Disp
Total Char < HEAP(Txt_In_Total_Disp + TXTLLEN)
§3. see para, 3.3.1.3 and 3.3.1.5§
rLOOP 1 diteration 1 thru Total Char

4, After esach iteration a character has been taken from a
packed word in the text line and placed in a single
location corresponding to the iteration number in array
LINST,

CALL GETCHR (HEAP(Txt_Ln_Total Disp - TXTLIN), Loop 1
iteration, ARG3)

{5. see para. 3.4.6 f
LINST(iteration) < ARG3




68
{6. see state change para, 3.3.3.1.4}
END LOOP 1

7. Character representations stored in array LINST are the
numeric machine translations for the characters corres-
ponding to table CTAB; see para. 3.3.3.1.1 and 3.3.3.1.4

W,

rCASE 1 IF LINST(1) =)

THEN (8. Txt_Ln is a command language line; see para.’
330352 ¢

CLFLAG « TRUE

LEND CASE 1

{?. Distinction has been made if Txﬁ_Ln is or is not command
language line,

yLOOP 2 diteration 1 thru Total Char

10, After each iteration a symbol has been recognized and
token data placed in array SYMST, OR an error has been
detected in the line of text and control RETURNLD to
Subroutine SCAN,

jCASE 2 IF CHARNU  iteration

THEN \11, This character is part of a recognized
symbol, .

GOTO End Loop 2

LEND CASE 2

12, Gharacter‘represented by LINST(iteration) is a blank, a,
symbol, or the first character of a symbol,

CHAR < LINST(iteration)
Pointer <~ CTAB(CHAR, 1)

{13, Pointer identifies the character as per column 1,
figure 2=10,

CONDITION 1 IF Pointer = 1

THEN i?u. Character is a blank.}

GOTO End Loop 2



69
[END CONDITION 1

rCONDITION 2 1F Pointer = 2

THEN 515. Character is an operator or separator{}
SYMCT < SYMCT + 1
SYMST(SYMCT, 1) < CTAB(CHAR,2)
SYMST(SYMCT,2) < CTAB(CHAR,3)
SYMST(SYMCT, 3) <- iteration

16, Token data stored in array SYMST, figure
2-10, state change para. 3.3.3.1.6 and
Z‘ para. 3.,3.3.2.1

GOTO End Loop 2
‘END CONDITION 2

rCONDITION 3 IF Pointer = 3

THEN (17, Character is an identifier, keyword, com=-
mand language word, string, number, or
undefined operator,

Num_First_Char =<-iteration {)8. gee para, 3.5.2.5}
CHARNU < jiteration {]9. See para. 3.3.3.2.4 €

CALL FORM (CHARNU,SYML,Total_ Char,ERCODE, INDEX,
- CLASS, SYMCODE, Num_First_Char)

(20, Symbol has been formed and is stored in
array SYM or error was found in line;
S€e PAra, 3.3.3%.1.5

CASE 3 IF ERCODE > O

THEN (21, Text line contained a syntax’
error at this symbol,

ERRCT «—~ERRCT + 1

ERRST(ERRCT, 1) <= HEAP(Txt_Ln_Total_Discp
+ TXTLNUM)

ERRST{ERRCT,2) < Num_First_Char
ERRST ( ERRCT, 3) <~ ERCODE




70

ERRFLG <—-TRUE

SYMCT = O

RETURN

22, If an error was in the line,

error data has been stored in
array EERST; see state change
para, 3e¢3.341.7

LEND CASE 3

{23. No error was found in the line{}
-CASE 4 IF SYMCODE = 1

THEN (24, Symbol is an identifier, keyword,
or command language word; see
para. 3e3.3.443

CALL TABLE(SYML,CLASS,INDEX)

LEND CASE &

25, If symbol was a keyword or command lansuage
word, SYMCODE = 3; ELSE symbol is an iden=-
tifier and CLASS = 2,

rCASE 5 IF SYMCODE = 2 OR CLASS = 2

THEN (26. Symbol is an identifier or unde-
fined operator; see para. 3.3.3.4.3

CALL SYMTAB (PINDEX,SYML,SYM,INDEX,
ERROR)

‘CASE 6 IF ERROR > 0

THEN (27, INDEX could not be
assigned,

RETURYN

JEND CASE 6

§28., INDEX has been assigned, §
SYHCT ~—SYMCT + 1

SYMST(SYMCT, 1) =- CLASS



71
SYMST( SYMCT,2) <~ INDEX
SYMST(SYMCT, 3) «— Num_First_Char

29, Token data stored in array SYMST; see
state change, para. 3.3.3.1.6 and
Para. 3.3+3.2.1

' JEND CASE 5

CASE 7 IF SYMCODE = 3

THEN (30, Symbol is a keyword, command
language word, number, or
string.

SYMCT o~ SYMCT + 1
SYMST(SYMCT, 1) <—CLASS
SYMST({SYMCT,2)<—INDEX

SYMST(SYMCT, 3) <— Num_First_Char

-

51; Token data stored in array SYMST;
| see state change, para. 3.3.3.1.6
and para.s 5.5:5:241

END CASE 7

END CONDITION 3

END LOOP 2

In_Space_Used «—(SYMCT + 1) x 3
RETURN
32, Output Assertions

That all symbols in the Txt_Ln have been formed, Token
data for each symbol has been placed in array SYMST,
SYMCT equals the number of symbols in the Txt_Ln, and
Ln_Space_Used equals the number of storage words required
to store the Tok _Ln, OR an error was found in the Txt_In,
error data has been stored in the array ERRST, ERRCT
equals the total number of lines that errors have been
found, SYMCT equals zero, and Ln_Space_Used equals three.



72
IND SUBROUTINE LNSCAN

3.5.3 SUBROUTINE FORM (CHARNU, SYML,Total Char,ERCODE, INDEX,
CLASS, SYMCODE, Num_First_Char)

1. Input Assertions - Scanner Input Assertions + Scanner
Tables + Scanner Flags = Scanner Counters * Scanner
Variables

Total_Char = HEAP(TXt_Add@ + Txt_Ln_Disp + TXTLLEN)
CHARNU = Num_First_Char
LINST = state change; see para, 3+3.3.1.4

Num_First_Char = Number of the first CHAR of the Symbol
' in the Txt_Ln

INITIALIZE

SYMCODE~<—0
CLASS <0
SY M=)
INDEX <=0
VALUE <=0
K=-0
CHAR <~ LINST{CHARNDU)
I <Num_First_Char < 1 ,
f‘é. All internal variables initialized + Scanner variab%jz

i~ reset

Pointer <—CTAB(CHAR,2)

3., Pointer identifies the character as a letter, number,
double quote mark, or a dollar sign,

«CONDITION 1 Pointer = 1

THEN 4, Symbol is an identifier, keyword, or command
' language word, '

SYMCODE <=1 §'5. see para., 3.3.3.4.3 ¢
"Loop 1 iteration I thru Total_Char



73
{%u Last character was part of symbol;}

CHAR <~ LINST(iteration)
'CASE 1 IF CTAB(CHAR,2) = 1

THEN 7. Symbol is formed, and SYML =
Length of Symbol,

CASE 2 IF SYML > 8

THEN (8, Syntax error symbol 1s£?
too long.

ERCODE <~1 (9, see para.;}
2e3434ha1
RETURN
ELSE {10, Symbol is error free.§

#wLOOP 2 iteration
' Num_First_Char thru
CHARNU

.11. Prior character was j;
packed in SYM,

CHAR <~ LINST(iteration)

K< K + 1

CALL PUTCHR(SYM,K,CHAR)
{12. see para, 3.4.?}

WEND LOOP 2

13, Symbol is packed four
characters per word
into array SYM; see
state change, para,

563434145
RETURN

LEND CASE 2

ELSE{?%&. Symbol may contain more charactersﬁ?

SYML <~ SYML + 1



7h
CHARNU < CHARNU + 1

[END CASE 1

END LOOP 1

~END CONDITION 1

 CONDITION 2 Pointer = 2

THEN {15. Symbol is a number; see Para. 3.3¢3.4ek4 and}
pari. 30303-403

CLASS < 3

SYMCODE <—3

LOOP 3 iteration 1 thru Total_Char

{16. Last CHAR was part of symbol.}

CHAR LINST(iteration)

vCASE 5 IF CTAB(CHAR,2) = 2 OR Period
THEN {??. Symbol is formedi}

CALL NUMPAC(Num_First_Char, SYML,
VALUE, ERCODE)

INDEX «~ VALUE

RETURN {18. Token data complete for}
nunber,

ELSE (19, Symbol may contain more characj}
ters.

CASE 4 IF CTAB(CHAR,2) = Period

THEN {20. Symbol is a real}
L:imher,

CLASS < |

f21. see para. 3.3.3.4.4%
END CASE &4

SYML «+— SYML + 1

CHARNU <« CHARNU ~+ 1




75
LEnD casE 3

HD LOOP 3

«END CONDITION 2

pCONDITION 3 Pointer = 3

{22. Symbol is an undefined operator. §
CLASS <8 {?3. see para. 3.3.3.4.4 %
. SYMCODE <2 {24._ see para. 3.3.3.4.3%
'LOOP 4 iteration I thru Total_Char
{25. Last character was part of symbol.}
CHAR <~ LINST(I) |
CASE 5 IF CTAB(I,2) =1 0OR2

THEN {26. Symbol is formed and SYML = Length of
Symbol

CASE 6 IF SYML > 8

THEN 727, Symbol is syntax error.}

ERCODE <1 (28. see para,
3e3e3e401
RETURN

ELSE {29. Symbol is error free{}

LOOP 5 iteration Num_First_Char
thru CHARNU

CHAR <~ LINST(iteration)
K K + 1
CALL PUTCHR(SYM,K, CHAR)

30, Symbol is packed four
characters per word
into array SYM; see
state change, para,

5e3054145

wEND LOOP 5




76
l RETURN
END CASE 6

ELSE {32. Symbol may contain more characters.}
SYML <= SYML + 1}
CHARNU < CHARNU + 1

-END CASE 5

~END LOOP 4

~END CONDITION 3%

- CONDITION 4 Pointer = 4

THEN §33. Symbol is a string.t

CLASS %5 34, see para. 3.3.3.4.43

SYMCODE <3 §35, see para. 3.3.3.4.3%

SYML<— SYML -+ 1

CHARNU - CHARNU + 1

rLOOP 5 iteration I + 1 thru Total_Char

{36. Last character was part of symbol.}

CHAR* LINST(iteration)

SYML <~ SYML =+ 1

CHARNU < CHARNU + 1

CASE 7 IF CTAB(CHAR,2) = QUOTE

THEN {37, Symbol is formed.§

INDEX <~ SYML 538. see para. 3.3.3.4.5§
RETURN |

END CASE 7

{L;O. Symbol may contain more characters, §

END LOOP 5

ERCODE <« 2 ilﬂ. Syntax error; see para, 3.3.3.4.1_}'
RETURN




l 77
"LEND CONDITION 4

42, Output Assertions
Symbol is FORMED OR ERCODE is € {1,2}
FORMED means CLASS is€ §0,3,4,5,8%
INDEX is € §0,VALUE,INDEX §

CHARNU is iteration of last character of
symbol

SYMCODE is € §1,2,3}
ERCODE is O
END SURRQUTINE FORM

3.5.4 SUBROUTINE TABLE (SYML,CLASS,INDEX)

"1, Input Assertions . f~\\

SYML, = the number of characters in the symbol; see para,

303634243

Scanner Tables conform to format [figures 2-10 and 2-11:
see para. 3,3.3.1.2 and 3,3,3.1,3

CLFLAG see para. 3.3%.3.2

SYM(2) contaiﬁs the characters of the symbol packed

four characters per word; see state change,
para. 3.3.3.1.5

SYMCODE = 1, see para. 3.3¢3.4.3
INDEX <0

Column < SYML - 1

Zé. Variables initialized and set to initial valueﬂ}
rCASE 1 IF Column = O
THEN {3. Symbol. has only one character and is not a
keyword or comnand language word,

RETURN

END CASE 1




78

4, Symbol has more than one character, and variable Column
' represents the column in both the Keyword and Command
Language Tables that contain words of the same length,

CASE 2 IF CLFLAG = TRUE .

THEN irﬁ. Text is a command language 1ine.}

LOOP 1 iteration 1 thru 10

CASE 3 1IF CLTAB(iteration,Column) = SYM(1)

THEN )6, Symbol is a command 1anguage}
word.
INDEX @ i teration x 10 + Column

7. L¥DEX is to word where match
was found; see figure 2-11,

CLASSe-1 {8, see para, 3.3.2.5%
SYNCODE<~3 §9. see para, 3.3.3.4.3F
RETURN ‘

END CASE 3

END LOOP 1

%{10. A match could not be found; symbol not commanﬁz
language word,

RETURN |

ELSE {11. Text is not a command language line;} '

LOOP 2 iteration 1 thru 10

CASE I IF KWTAB(iteration,Column) = SYM(1)
THEN §12, Symbol is a keyword. §
INDEX<—iteration x 10 = Column
{13. INDEX is to word where matc}}
was found; see figure 2-11,
CLASS <=1 §14. see para, 3.3.2.5f
RETURN

LD CASE 4




79
Lewp roop 2

{15. A match could not be found; symbol not a
keyword,

RETURK

sEND CASE 2 -

16. Oufput Assertions
cLAss € 0,1 ¢

16,1 and CLASS = 0 no match was found

I

16,2 and CLASS = 1 match was found

!

and INDEX assigned; see figures 2-10 and 2-11,

END SUBROQUTINE TABLE

3.5.5 SUBROUTINE NUMPAC (Num_First_ Char,SYML,VALUE, ERCODE)

1. Input Assertions. '
Scanner Tables + Sdanner Variables
Symbol 1is number
SYML, see para, 3.3.3.2.3

Num First_Char = number of the CHAR in Txt_Ln
where the symbol starts

INITIALIZE

NUM < 0O

VALUE <« O

Real_Num <« 0,0

Next Last_Char < Num_First_Char + SYML - 1
Table NUMBER /1,2,3,4,5,6,7,8,9,0/
Num_Code< O

Decinal Count=< O

ERCODE< O

2, All internal variables are initialized - external}%
variables reset,



80
‘CASE 1 IF SYML > 8

THEN ( 3, Syntax error; too many characters in the
symbol, see para, 3.3.3.4.1

ERCODE =~ 3
RETURN

END CASE 1

{ 4. Symbol is of legal length, §
luLOOP 1 iteration Num_First Char thru Next_Last_Char

5. After each iteration a CHAR has been converted to a
numeric value, :

LOOP 2 iteration 1 thru 10
yCASE 2 IF LINST(Loop 1 iteration) = NUMBER (Loop 2
iteration)
THEN {6. Character is a digit.}
" CASE 3 IF Num Code = 1

THEN {7. A period has been encoun-}
tered,

Decimal _Count < Decimal_Count + 1

ELSE {8. A digit has beeh added to}
the symbol,

NUM <—LINST(Loop 1 iteration)
END CASE 3

GOTO End Loop 1
END CASE 2

{9. Loop until CHAR = NUMBER OR iteration = 10}
END LOOP 2

{10. Character is a period or error.}

CASE 4 IF LINST(Loop 1 iteration) = Period and
Num_Code = O

THEN {11. Number is real.}



81
Num_Code <1
Decimal Counter<—1
ELSE Z12. Error illegal characterf
~ ERCODE <3
RETURN

END CASE &4

END LOOP 1

{13. Diglits have been packed into a single word{} .
CASE 5 IF Num_Code = 1
THEN {14. Number 1is real.%
VALUE <" Real_Num
ELSE {15, Number is integer.}
VALUE <— NUM
END CASE 5

{16. VALUE assigned numeric value of symbol,}
RETURN
(‘1?. Qutput Assertions

ERcoDE € 0,1}

and ERCODE = 0 no error was encountered

VALUE = numeric value of symbol
ggg ERCODE = 1 symbol exceeded 8 characters
or ERCODE = 3 illegal character in symbol
VALUE + Null

END SUBROUTINE NUMPAC

3.5.6 ~SUBROUTINE SERROR

(1, Input Assertions - Jcanner Input Assertions - Scanner

Tables + Scanner Variable
ERRCT 21 see para. 3.¢3¢3.2.2
ERRST see state change, para. 3+.%.3.1.7



82
INITIALIZE

String_Too_Many Char/Sym has too many characters/
String_No__Close_l_Quote/I‘Io closing quote mark/
String_Illeg:1_Char/Illegal character/
RETCOD «—Q

{\2; Error messages and Error return code are initialized.}

LOOP 1 iteration 1 thru ERRCT

e e B

%5. After each iteration an error message has been printed}
to the user,
Line_Num < ERRST(iteration,1)
CHAR = ERRST(iteration,2)
ERRCODE «— ERRST(iteration,3)
{4. Variables are-sey to Error_Data for the line of text{}

-CONDITION 1 IRRCODE = 1

gfL Error was too many characters in the symbol.}

THEN N=<—21 6, N = number of characters in
message

CALL ERRPRT (PINDEX,Line Num,CHAR,N,String_
Too_Many_Char,RETCOD)

{7. see para, 3.4.4§
| END CONDITION 1

-CONDITION 2 ERRCODE = 2

{B‘ Error was no closing quote mark on a stringtf

THEN N<-26 (9, N = number of characters in
mnessage

CALL ERRPRT (PINDEX,line Num,CHAR,N,String_
Illegal_Char,RETCOD)

{IO. see para, 3.4.4}
| END CONDITION 2




83

CONDITION 3 ERRCODE = 3

{31. Error was illegal character{}

THEN N=<17 (12, N = number of characters in
’ message

CALL ERRPRT (PINDEX,Line_Num,CHAR,N,String_
Illegal_Char,RETCOD)

{33. see para, 3.#.#;
END CONDITION 3

CASE 1 IF RETCOD P O
THEN {jq. Error message cannot be printed{}
RETURN

END CASE 1

END L.OOP 1

{35. Txt_ILn with syntax error message has heen printed;}

RETURN

16, Output Assertions

Txt_Ln with syntax error that RETICODE = O
a message was printed to user,

END SUBROUTINE SERROR

3.5,7 SUBROUTINE LINFIN (Txt Ln_Disp, RESCAN,Tok_Ln_Disp)

1. Input Assertions = Scanner Input Assertions + Scanner
Flags * Scanner Variables

RESCAN = TRUE gee para. 3.3%¢3.3.1

Txt_Ln_Disp = displacement to current sequential
Txt_Im
Tok_Ln_Disp = displacement to current sequential
Tok_In
INITIALIZE

Tok_Last_Ln_Num -0
Last_Ln_Disp <3



« 8l
-[2. Internal variables are initialized.‘l}

Txt_Add@ < HEAP(Txt_Log_Add) {3. see para. 5.3.1@5}

Tok_Add® “~HEAP(Tok_Log_Add) {4. see para. 3.3.2.3 £

Tok_Total_Ln< HEAP(Tok_Add@ + TOKNLIN) §5, see para, 3.3.2.4§

Ln_Disp <= HEAP(Tok_Add@ + TOKTOP) {f. see para, 3.3.2.4}

Txt_Ln_Num<—HEAP(Txt_Add@ + Txt_Ln Disp + TXTLNUM)
{ 7. see para, Bl F

LOOP 1 iteration 1 thru Tok Total_Ln

CASE 1 IF Txt_Ln Num > Tok Last_Ln_Num AND Txt_Ln_Num £
Tok_Ln_Num

THEN ‘8. Relative position of text line is found
in token lines.

CASE 2 IF Txt Ln Num = Tok_Ln_Num

THEN . Token line is a rescan of a text
line that has been scanned before
and a token line header for this
text line exists.

HEAP(Tok_Add@ + Tok Ln_Disp + TOKFLK)&— -
HEAP(Tok_Add@ + Ln_Disp - TOKFLK)

10. Sets forward link to the next
token line in the new token
line header for this text line.

HEAP(Tok_Add@ + Last_Ln_Disp + TOKFLK )4~
Tok_Ln_Disp

11, Sets forward token line link
in the token prior line to the
line displacement to the new
token line for this text line.

ELSE (12, This is a new text line that has
been added between existing lines
of text and no token line exists,




85

_ L- HEAP(Tok_Add@.+ Tok_Ln_Disp + TOKFLK)<-
In_Disp
HEAP(Tok_Add@ + Last_Ln_Disp + TOKFLK)<—
- , Tok_Ln_Disp

13, New token line has been linked
in its position with existing
token lines,

END CASE 2

RETURN

ELSE {14. Relative position of text line has not}
been found, .
Last_ILn_Disp <« Ln_Disp
Ln_Disp < HEAP(Tok_Add@ + Last_Ln_Disp * TOKFLK)
Tok_Last_Ln_Num <-Tok Ln_Num
Tolk_Ln_Num < HEAP(Tok_Add@ + Ln_Disp + TOKFNUM)

_{15. Data for next line number comparison is?
set,

$END CASE 1

END LOOP 1

16, Text line number is greater than last token line number,
Source text lines are an addition to those lines that
had been scanned prior and all additional lines to be
scanned can be treated as no prior scan of source text,

RESCAN~&—FALSE
RETURN
17, Output Assertions

Tok_In corresponds to Txt_Ln in source text thru the
present Txt_In |

and RESCAN £ TRUE if Txt_Ln_Num » Last Tok_Ln_Num
END_SURROUTINE LINFIN




36

Chapter &4
Module Verification

4,1 General
The informal verification of the Scanner module will

follow the sequential statements of each subroutine as it is
called, OQutput assertions of each subroutine célled will be
considered.valid for the subroutine being verified, Verifi-
cation will consist of explanations, tracing the state tran-
sition of the module, and verifying loop invariants to insure
each routine meets its output assertions and terminates. A
subroutine is considered verified if the specifications and
output assertions are met through the routine's state tran-
sition,

4,2 Subroutine SCAN

See figure 4~1 for State Traunsition Diagram,

L.2.1 Assertions 1 through 6 follow sequentially,

4.2.2 At assertion 12 either:
A new Token Block was established (Path 7,8,10,12),
A Token Block already exists (Path 11,12),

Both Pathg at assertion 12, a Token Block exists and the

Token Logical Address is stored in the Procedure Table,
4,2,35 Assertion 13 through 15 follow sequentially,
4,2, At assertion 17 either:

The First Token Line Displacement is set to 7 for newly
established Token Blocks (Fath 15,16,17),

The First Token Line Displacement is already set for

previously existing Token Blocks (Path 15,17).



87
SUBROUTINE SCAN

{1'.?

{2'.3

§2.1%

{af.a‘f

Ej.s:.E

¢

9.3

s g
(Jfoken Block already \\ iﬁ-?

exists, 2 i“/r‘~Tokén Block must be created,
27.§ |

531;} {é;§fa-§2:}

{}O_g“*\uicrmination
% space not available

i e e o
o

—

> I : for Token Block,
- f12.%
. |
i1l5.§
{1|1+.§
(;Pointer to First 5151%
Tok_Ln already Pointer to First Tok Ln
set for previous must be set for newly
existing Toke {16 K created Token Blocks.
Blocks. . I * '
{1,?5
$17.1F A1l address pointers are
N'e _ | set to scan initial loop
517.25/1 iteration,
_“_"_/
Continued

Figure 4-1 Subroutine SCAN State Transition Diagram




A Txt ILn has been
deleted from previ

/ scanned” ...
‘/. o

-

A

{ ;
‘Space is

adequate to
store Tok Ln,

(%or Txt Block
not previously
scanned.

Figurg 4-1 (Continued)

. 1183

Sy
P

~—Txt ILn has not been
deleted from previous

\ \( P
ous /
& i

88

scanned 1 / scanned Txt Block or
_ Txt Block } 9 3 ¥ Tok Block is newly
e e Rk e ¥ created,
- 4 /
A {_ 12045 > " STk in's have been
B e deleted to correspond
ﬁ,,/’ipz 5 to deleted Txt Ln's,
CAll previous scanted
Txt Ln's had been 4
deleted from source $223
text, . ¢ . b
s ~ Txt Ln needs to be
. 12348 / scanned,
\-Txt Ln has 5213 > M
already been _—& ~ Termination
: path
sifffffj,,—’/ $25.3 identifier could not
A Txt Ln.has been 2% 17 be stored by SYMTAB, [

L ™ Allocated space not
S A{”/f sufficient to store
E“I'E Tok Ln,

32745
> {28.3
$29.% YMmTerminatian
oy .J space not available
d {3?,3 to expand Tok Block,
£30,13
531.§
\\ 52§ -For previously
%, scanned Txt Block,
$33.%
el
Continued




89

A ‘Path to load 1} ~Txt Ln had a syntax
token data in 133 /f— error no token data
Tok Block, generated,
iss } .
o
A .’> Ly v
\/ {(‘_ 6.2 \ A4
S : < iy
/N 53‘?'} "
£38.5
B .
I—-yj\- 3405~ 1 4§ v
. — gha,} Termination user
“Tok Ln corr95§oﬁazﬂr interrupt. .
ing to this Txt Ln Shiy, - N
has been stored _ “KSFA § - :\'?i
in Tok Block and B3 . . e
A Token Heade; has 23§ ZLermipation path
error in sLorage !
been‘u%fiffgj "“’5;3 T address in Tok Block., | Y
/‘;r ' |
{43 3¢
434 Address pointers have
€ h,wéf/w et to scan the next
o WV loop iteratlon Txt Ln.l
.‘—/WW‘ . SR e — . "-:.
“All Txt Lns have been 7
scanned and a
corresponding Tok Ln 143e$ Y
. exists for each
line of text, ~ {49'f
CSyntax errors were e .
encountered in the  $46.% Tevmxnatton no synt?x in
aomene. Lewk. | source ext and token
- $47, ¢ data is complete for
SError messages wé;zﬁ-“‘j; eac% text line.
printed if terminal e <

Tu,8.¢

was available,

Figure 4-1 (Continued)

ermination for source text
with syntax errors and
storage address error.




90
Both Paths at assertion 17, the Token Block Header is

correct, 7
4,2.,5 At assertion 18; loop invariant:

Initially all address pointers are set prior to entering
the loop and for each subsequent iteration, pointers are set
prior to the end of the loop (Path 1 through 17 and Path 43
through 43.4),

After each iteration, a Token Line has been stored in
the Token Block for the preceeding Text Line (Fath 33%.1 to
43).

h,2,6 At assertion 22 either:

A Text Line has been deleted from a previously scanned
Text Block and the corresponding Token Lines have been deleted
from the Token Block (Path 18,19,20,21,22),

All remaining text 1ines in a Text Bluck that has been
previously scanned have been added and no corresponding Token
Lines exist, RESCAN is set to FALSE (Path 18,19,20,21,22),

The Token Block is newly established, or a Text Line has
been added, or the Token Line number corresponds to the cur-
rent Text Line number (Path 18,22),

All Paths af assertion 22, the Text Line number is équal
to or greater than the current Token Line number or the Token
Block is newly established,

4.2.7 At assertion 23, the Text line requires scanning,
Le2.8 At assertion 24, the Text Line has been scanned and
either:

Token Data is in array SYMST,

Error Data is in array ERRST,



91

Storage Error was encountered and control is sent to
assertion 48,
4o2,9 At assertion 30 either:

Sufficient space was available in the Token Block to
store the current Token Line (Path 25,1,30),

Sufficient space was not available in the Token Block
to store the current Token Line and additional space was
allocated (Path 25,1,26,27,29,30).

Both Paths at assertion 30, sufficient storage space

exists in the Token Block to store the current Token Line,
4e2,10 Assertion 30 through 32 follow sequentially.
4,2,11 At assertion 33,1 either: |
The Token Line links have been changed to include the
revised Token Line of a previously scanned Téxt Block {Path -
32,33,33.1)
The Token Block is newly established (Path 32,33.1).
Both Paths at assertion 33,1, Token lLine is ready to

be stored in the Token Block,
4.2,12 At assertion 38 either:

The Text Line contained a syntax error and no Token
Data was generated (Path 33.1,35,36,37,38).

The Token Data for the symbols of the Text Line have
been stored in the Token Block (Path 33.1,34,37,38).

Both Paths, the Token Line has been stored and the

Token Block Header has been updated,
4L,2,1%3 At assertion 42, no user interrupt was received.
L,2,14 At assertion 43, no storage error occurred,

L,2.15 At assertion 43.4, all line pointers for both the



92
| Token and Text Blocks have been set for the next loop iter-
ation,

4,2,16 At assertion 45, all text lines in the Text Block
have been scanned and corresponding Token Lines exist in the
Token Block,

4e2,17 At assertion 48 either:

The Text Block contained syntax errors and error mes-
sages were printed if the terminal was available (Path 46,
47,48). | |

Storage errors occurred in the Token Block (Path 44,48),

Storage errors occurred in SYMTAB module (Path 24,48),

All Paths at assertion 48, termination, Token Block does
not contain complete Token Data for the source text,

4,2.18 At assertion 49, terminétion, Token Block contains
an error free token representation of the source text.
L,2.19 Assertion 50 Output

Termination at:

Assertion 9, space not available for Token Block.

Assertion 28, additional space not available to expand
allocated Token Block.

Assertion 41, user interrupt occurred,

Assertion 48, syntax error in source text or storage
error,

Assertion 49, error free token representation exists,

4,3 Subroutine LNSCAN

See figure 4-2 for State Transition Diagram,
4,%.,1 Assertions 1 through 3> follow sequentially,

4,3,2 At assertion 6; loop invariant:



93

The sequential character in a Text Line has been placed
in the correqunding sequential storage location of array
LINSE, .

4,3,3 At assertion, array LINST contains the complete list
of characters of the Text Line,
4,3.,4 At assertion 9 either:
The Text Line is a command language line (Path 7,8,9).
The Text Line is a program line (Path 7,9),

Both Paths Command language flag is set for this line,

4.3.5 At assertion 10; loop invariant:
Initially the character is a symbol or the first char-
acter of a symbol,
After each iteration: .
The character was part of a symbol already formed
(Path 10,11).
The character was a blank (Path 10,12,13,14),
The character was a separator or operator and Token
Data is stored in array SYMST (Path 10,12,13,15,16),
The character was the first character of one of the
following symbols and Token Data is stored in array
syMs?,
A number or string (Path 10,12,13,17,20,23,29,30,31).,
A key or command word (Path 10,12,13,17,20,23,24,29,
30,31).
An identifier (Path 10,12,13,17,20,23,24,25,26,28,29,
30,31).
An undefined operator (Path 10,12,13,17,20,23,26,28,
29,30,31),



o

SUBROUTINE LNSCAN

{1' of
328

o
z‘}l 3

‘A character has been ‘&
rlaced in array LINST
from the Txt Ln,

A f6E )
P

)

/ | /7
it
B3

T

Ty

¢ X —
“Txt Im is a program A
Jline,

‘$<
{?i?kﬂrray LINST contains the

complete list of characters
of the text line,

ig;{\“Txt Ln is a Comnand Line,

5?-3

Character is a blank,

" CONTINUED

{514;§(Eﬁaracter is a
\ seperator or an
operator,
Y “Symbol is
N, stored in
array SYMST, -
N W g

> > [ > >

103

Character is already

part of a symbol,

“ / "
A < a3 = } Character is a blank,a
J12,% symbol,or the first _
y character of a symbol, V

313.2

Character is identifier,
key or command language
word,number,string,or
undefined operator,

15.¢

$17:¢ ,Termination
path,syntax VY
error,

formed,

Firure 4«2 Subroutine LNSCAN State Transition Diagram




95

/ 23.}
,Tomen data is
/ complete, Symbol is an
\kﬁv,,f"::>¥,/1“ undefined: operator,
i
1 %
— $24.3 |
Vi ‘ Symbol is an N4
Y Qldentifler.
L 4258 > {26.8
f .
] ;)Symbol is a key
’ or command word,
4 ' ,
N {27.% J
j\ v — Termination
storage error
Vv 528 g in SYMTAB, _
. - Y
v , Identifier has been
indexed by SYMTAB,
W/ .
¢ {2;9«} ' \
N {30 5 T
-Symbol token data has been ,
1 {31<§5 stored in array SYLST, 4
= — <

A

Txt Ln have been R

‘11 symbols of Ehe s, % 1085 %
L
formed and token 8.

Error data for the Txt Ln

data is stored in 4
array SYMST, {324} %%%S%?en stored in array

Termination

T«xt Ln has been scanned and
storage space for the Tok Ln
has been calculated,

Figure -2 (Continued)




96

4.3.,6 At assertion 32 either:

The Text Line contained a syntax error and error data
is stored in array ERRST (Path 20,22,32),

All symbols of the Text Line have been formed and Token
Data is stored in array SYMST (Path loop completion,32).
4o3,7 Terminations either:

At assertion 32, Text Line has been scanned,

At assertion 27, storage error in Subroutine SYMTAB,

Loy Subroutine FORM

See figure L-3 for State Transition Diagram,
h.he1 Assertions 1 thrdugh 3 follow sequentially,
Lel,2 At assertion 15, symbol is a number, |
(2.1) At assertion 16; loop invariant:

Initially first character is part of the symbol, After
gach iteration; last character was part of the symbol and
the symbol value is: |

The number is integer {Path 16,19,19,1),

The number is real (Path 16,19,20,21,29.1),

(2.2) At assertion 18 either: o

There are more characters in the Text Line (Path 16,17,
18). | | |

The last charactér in the Text Line'is part of the symbol
(Path loop completion,17,1,18).

Both Paths termination, number is formed and Token Data

developed,
L.he3 At assertion 33, symbol is a string:
(3.1) Assertion 33 through 35 follow sequentially,

(3,2) Assertion 36; loop invariant:



SUBROUTINE FORM

97

Figure 4-3% Subroutine FORM State Transition Diagram

i'1|.3
i'ai..?
ial.ti
{a|.2§
33,8 /~The type of symbol has been
< determined from the first
///,rm_%_h‘ﬁ\ ‘kqtbyaracter.
Coymbol 1 a in?‘ Symbol is a undefined
number, : operator,
Symbol is a key
»Symbol is 315.% ~._or command word,
(;formed « i { " cusor identifier,
'e /1 ' / k
1 : $16.% Symbol is a ‘
~ P {1?3_3(/ string, 1 oty
' 19
S{izgl ‘ A9 }L“Symbol Y
rem&ins : 520;§ class is
: changed /
p integer . 5213 to real
[ This char \
is pari of V
: < £19.1§ 8y ymbo i v
. "~*Last char in Ln
\ 17 1§iS part of symbol, .
4.. > R 2315‘}
e b
Erro.x' path, 57'g 3 {34 2 \
\ {Termination Next char‘ls£§53, y
Number is formed and parg gf the | §
token data developed. RO O I :
" A ‘
Symbol is ] £36.5 o
t \ form d. ; . '
{y Termination e oS < £37 35— ‘
—— Syntax error, {33‘5 ' {49,} P
-9 < <
B T3 :
- Trrmination
String is formed “Termination i
; ﬁzd ;Okeg data is Syntax Orror,
VOLapads CONTINUED



/

Symbol is a key or
command word,or an

{22 2 oymbol is undefined

operator,

identifier, «1'21/3.3
2L}
. \ . Symbol is formed,
33 ? =
| IR XN
- f':}-} " Character is SRR 526 .3--““
N part of the 532% X
A {6 '} \ symbol, J < *.; T
' (Symbol is P
Je T"“‘{?.'—J formed, C 526.13
L T F- —Last char in line
{j#.f \ was part of symbol,
u..__.__(_ o il e T s

I—-—-_é ,,,,,,
(::}glhif —~Last char in llne
#“’ was part of symbol,

"
s

\

¢Error path, \\\\Wﬁ

ma{

zh | T

(" s mE )
Termlnatlon 4 T i

\f

yntax error. {] 2‘253 2

= 4
it

5133 '@%mhol has been packed
into array SYM,
Termination

T e Bl s PRy
Symbol is formed and
characters packed in

array SYil,

Figure 4-3 (Continued)



99

The character corresponding to the loop iteration is part
of the string.
(3.,3) At assertion 39; termination, string is formed and Token
Data developed,
Lo, 4 At assertion 41 either:

Syntax error, illegal character in the number (Path from
assertion 15 to assertion 41),

Syntax error, no closing quote mark on string (Path from
assertion 33 to assertion 41),
4o4.5 At assertion 4, symbol is a keyword, command word, or
an identifier.
(5.1) Assertion 4 through 5 follow sequentially,
(5,2) At assertion 6; loop invariant:

Initially character is part of symbol,

For each iteration:

Character is part of symbol (Path 6,14),

Character is a separator, operator, or blank (Path

6,7).
(5.,3) At assertion 14.1 either:

Text Line contains more symbols (Path 6,7,14.1).

The last character in the Text Line is part-of this

symbol (Path loop completion,li.1),

Both Paths symbol is formed,

74.4.6 At assertion 22, symbol is an undefined operator,
(6.1) Assertion 22 through 24 follow sequentially,
(6.,2) At assertion 25; loop invariant:

Initially character is part of symbol,

For each iteration:



100

Character is part of symbol (Path 25,32),

Character is a separator, operator, or blank (Path
25,26),

(6.3) At assertion 26,1 either:

Text Line contains more symbols (Path 25,26,26,1).

The last character in the Text Line is part of this
symbol (Path loop completion,26.1),

L.4,7 At assertion 13 either:

Symbol is a keyword, command word, or an identifier, and
the characters of the symbol are packed into array SYM (Path
assertion 4 path to 10,13),

Symbol is an undefined operator and the characters of the
symbol are packed into. array SYM (Path assertion 22 path, 29,
13). |

Both Paths termination, symbol is formed and packed in

array SYM,
44,8 At assertion 42, termination;
Syntax error, too many characters in symbol (Path asser-

tion 4 path to 1b,8,9,42 or assertion 22 path to 29,27,9,42).

" 4,5 Subroutine TABLE

See figure L4-4 for State Transition Diagram,
4.5.1 Assertions 1 through 2 follow sequentially.
4.5.,2 At assertion 3, termination, éymbol is an one letter
identifier,
Lo,5.,3 At assertion 17.2 either:

Text Line is a program line and symbol is a keyword
(Path 4,11,12,13),

Text Line is a command line and symbol is a command word

(Path 4,;5,6,15)



SUBROUTINE TABLE

51'.3‘
52,2
‘ 5.3

Termination

101

Symbol is an one

a

letter idantifier,

Text Line.is a '
program line, .5 Text Line ig"a "~

Command- line,

>\

m’.?"é'

f\Symbol is a
Keyword,

.
~

«X;l-i12 E—i;—u7»—-7

Symbol is a
(\ngjiFd Word

5.8

M .<
Symbol is not Symbol‘ngﬁgfndpﬁ
$16,% a Keyword, J v 2 Command word.£103
/  §17,1% ST 7.8
— Termination R L Termination
Symbol is an _ Bymbol is an
identifier, 513.2 identifier
| .
1154.%
i L
~~Ternination

All token data for
this symbol has
been assigned.

Figure 4 =4 Subroutine TABLE State Transition Diagram



102

Both Paths termination, symbol was matched in tables and

Token Data has been assigned,
LeS.4 -At assertion 17.1 either:

Text ILine is a program line and symbol is not a keyword
(Path 4,11,16,17.1).

Text Line is a command line and symbol is not a command
language word (Path 4,5,10,17.1).

Both Paths termination, symbol is an identifier,

L.6 Subroutine NUMPAC

See figure 4-5 for State Transition Diagram,
4,6.1 Assertions 1 through 2,1 follow sequentially,
4.,6.,2 At assertion 4:

&he symhol is within allowable character length,
46,3 At assertion 5; loop invariant: '

Initially first character is a digit.

After each iteration:

Character was a digit.

Character was the first period encountered,
4,6,4 At assertion 9; loop invariant:

After each iteration; character is either:

A digit an& the digit > the last loop iteration,

Not a digit.
4.6,5 At assertion 8; The character was a digit and the
digit has been added to the symbol, and either:

A period has been encountered in a previous loop
iteration and the decimal counter has been increased (Path
9:6,7,8)4

A period has not been encountered in a previous loop

iteration (Path 9,6,8),



103

L4L,6,6 At assertion 11: The character is the first period
encountered in the symbol, the decimal counter is assigned
the value one, and the number code is changed to indicate a
real value, |
46,7 At assertion 13: All characters of the symbol have
been placed in order in a single storage word.

4,6.,8 At assertion 16 either:

The value of the symbol is real and the real value of
the symbol has been stored in array RVALUE and variable VALUE
has been assigned the index into array RVALUE (Path 14,14.1,
14e2, 10,3, 1holy 14.5,16).

The value of the symbol is integer and the integer value
of the symbol has been assigned to variable VALUE (Path 15,16).

Both Paths terminatioﬁ, the value of the symbol has been

developed for the Token Data,
L.6.9 At assertion 17; COutput Assertions;
Termination at:
Assertion 3, syntax error, too many characters in the
symbol, ‘
Assertion 12, syntax error, illegal character, either:
More than one period in the symbol or character was not
a digit or a period,
Assertion 16, symbol value has been determined for Token
Data,
L.,7 Subroutine SERROR

See figure 4=-6 for State Transition Diagran,
4.7.1 Assertions 1 through 2 follow sequentially,.

L,7.2 At assertion 3; loop invariant:



104
SUBROUTINE NUMPAC

{1IJ
{2‘--}
32,1
3348
Cg,_gpg—f— £ legal -1 “Termination
1gﬁ gh LT B S {gﬁf syntax error, to many -
Boile . ¥ characters in symbol,
—— > N A /

I .
. iié géfharactcr is a digit.

| g )

/ (Character is not a £10.§ \\
digit, £12 53— __[ —Character is first
(ﬁ-ﬂ_\::_::,/’ reriod encountered
Termination $11.5 in the symbol,
Syntax error, PSS .
illegal character, < period has iés J“ﬁgilggeias J
ered in prior 75y gncou?qere
iteration, 40 PraiIr
1 iteration,

Y Digit has been added to

the symbol,
.y

P
A T

A ~

= San
“Symbol is packed with 313,§

all digits, J_j:é;i;//-u—5ymbol is real.
(Symbol is {153 ; {14.}->-{11+’.1j

integer,
14,23

{1 1{.3}
{1 4'.4}
. ——— 14,5

- ‘k‘q
16,8 Termination Symbol value has
been determined: for Token data,

Figure k-5 Subroutine NUMPAC State Transition Diagram




105

After each iteration, an error message was printed to
the user,
(2.,1) Assertions 3 through 4 follow sequentially,
(2.2) At assertion 14 either:

Error message too many characters in symbol (Path 8,9,
10,14),

Error message no closing quote on a string (Path §,9,
10,14).

Error message illegal character (Path 11,12,13,14),

All Patﬁs error message has been printed to user,
4.,7.3 At assertion 16 either:

All error messages have been printed for text lines that
contained syntax errors (Path loop completion,15,16).

Terminal was not available to print error message (FPath
14,16).

Both Paths termination, error messages were printed for

all text lines that contained syntax errors, one line at a
time, as long as a terminal was available,

4,8 Subroutine LINFIN

See figure 4=7 for State Transition Diagram,
bl Assertions 1 through 7 follow seguentially,
4,8,2 Loop Termination either:

Relative position of the Text Line is found in the Token
Block (Path 8). |

Text Line has been added to total lines of the Text
Block (Path loop completion),
4,8.,3 At assertion 17 either:

Termination, all subsequent Token Lines are added to the



SUBROUTINE SERROR

51;
32,8
= s i: «$>w5“~—-w~¢~ e ey
28
Too many characters{| (f 1legal character,
in symbol, S e s \
No closing quotQQH\\\
AN Y P trlng. _J/)
= ﬁa) f?' -
5?-3 {§-§ i1r.§
{?3 59.¢ ﬂg&
{
| 27.8 103 £133
A L SR, SN PRP. |
“Brror mossage has\)
been printed, \w 5]43
N ~ i) J-~Term1nal not avaalable
\All o — 515 2 to print error message,
have been printed -
for Txt In's that ~c—
contained syntax 5163

errors.

(\—Termination
A error meosage was printed
for each Txt Ln with a syntax
error or terminal was not
available to print message.

Fisure h-6 Subroutine SERROR State Transition Diagram




107
end of the Token Block, RESCAN set to FALSE, (Path loop
completion,16,17),

Text Line replaces a previously scanned Text Line (Path
8,12,13,17),

Text Line has been added within previously scanned Text
Block (Path 8,9,10,11,17),

All Paths termination, Token Line position has been

established with respect to block line linkage.



108

SUBROUTINE LINFIN

S

Q:?-l-}

23%1.'}

{u}.}

§ 5{.3‘

56! N
$7.% <::?elative position of the

now Txt Ln has been found
4 in the Token Block,
N

PN

514?

315 or-line pointers have been
3| set for the next llna 4
comparsion,

—‘(- S e

v
Y

1, -

h ]

%ﬁm\a Txt Ln has been added to
$16.2 the end of a previously
‘i scanned Text Block,
5173 14
Termination

Remainder of Text Block to be
scanned as an initial Text
Block scan,

(;;;r;; has been added 5 i/ ~Txt Ln replaces a

to previously scanned $9.f 312, previously scanned
Text Block, + I Txt Ln,

530.5 13, }I/Tokpn ILine links

CE;;;;_;;;;i;;;;;\‘“»\\jj1,} / have been set to

replace old Token
" have been changed

Line,
to include added
Token_Line.

$17.3

Termination

Token line header has
been established for
the new token line,

Fipure 4-7 Subroutine LINFIN State Transt tion Hagram



109

Chapter 5
Conclusions

5.1 General

The conclusions stated in this chapter are based on the
revision and refinement of a previously developed Scanner
program by use of assertions. Although the primary purpose
of this report was the verification of the Scanner module,
consideration was given to the feasibility of using this
technique for program design with respect to time, amount of
documentation required, and the validity of the final pro=-
duct, It was necessary for purposes of this report to re-
fine global and input gssertions, and global procedures to
the same degree as thaﬁ of the Scanner module, This docu-
mentation would be required for all modules of the inter-
preter program and should not be considered unique to this
report,

Personal involvement with the development of the ori-
ginal version of the Scanner module undoubtedly was a signi=-
ficant asset in the verification process, However, this
involvement was of little consequence to the procedure used
to define global, input, and output assertions from the Eng-
lish specifications which were accomplished independently of
the exiéting program, Specific procedures, such as address
accessing and precise format definitions of data structures
developed by assertion :refinement could be used in all modules
of the interpreter program to verify these particular opera-

tions independently of individual programmers.



110
5.2 Verification

All subroutines of the Scanner module were verified in
Chapter 4 by tracing the state transition of each routine
along its assertion paths, This method insured for all rou-
tines called that: |

The input assertions were meet,

That all loops would terminate,

That each routine would only terminate at specific
points which would meet the established output asser-
tions,

The original version of the Scanner module did execute
correctly using standard test data developed for all modules
of the interpreter program, This data, howevér, did not
verify all paths or termination points of the module., Four
points were found during the verification process where the
program could produce erroneous data, No signirficant reduc-
tion of program lines was accomplished; however, some modi-
fication of the module was made to eliminate repetitious
operations or tb facilitate sequential flow, The verified
FORTRAN code contained in Annex C can be used with high
assurance that it will function correctly,

‘ It is feasible that a formal proof could be aﬁcomplished
from the presented documantatién by development of additional
assertions., A formal proof, however, would not in itself
necessarily improve the readability of this large of a pro-
gram, “'he graphic portrayal of the module depicted by the
gtate transition diagrams while only providing an informal
verification of the module is less time consuming and does

trace all program paths through developed assertions,



11
The following observations are provided concerning the
verification of the module,

5.2.1 .Documentation

Approximately 40 pages of documentation, which included
20 pages of verifications, was necessary for the 375 lines of
FORTRAN code of the Scanner module,

5.2.2 Assertion Refinement

The majority of variables used in the Scanner module
were developed and given precise definitions during the asser-
tion refinement, The assertion refinement also provided for
the modular development of specific operations that were re-
quired in the Scanner routines, Assertion refinement in both
cases insured predictable results when these operations and
variables were incorporated into progran code,

5.2.3 Input Assertions

The use of input assertions effectively limited the
scope of module and established the required data structure
contents at the outset of the Scanner modular development.

5.2,4 Output Assortions

The development of precise output assertions based on
the program speéifications provides the reguired termination
conditions of the program prior to coding. This basically
established termination bench marks for the development of
the code rather than the termination points being developed
during coding, This in itself reduced the total number of
code lines used in the module when compared to versions that
were developed without using the assertion method, This

procedure also eliminated the need for modification of



112
developed program code to meet input requiremen” s of global
or submodular procedures that were developed simultaneously
with the Scanner module,

5.3 Application

Some areas where advantages could he derived by adoption
of this method of program verification are coordination of
program efforts, documentation, development of test data, and
debugging,

Refined input and output assertions provide an effective
method for coordination of programming efforts beiween indivi-
duals or teams, The precise definition of parameters and data
structures can eliminate misunderstandings and insure compati-
bility of efforts. |

By including assertions as part of the ﬁrogram documen-
tation, modification and maintenance can be facilitated. Modi~-
fication of a program can be accomplished by first making
necessary changes to the output assertions and then either
corracting existing terminafion points or adding additional
termination paths; The effect a specific change will have on
other levels of a program can also be more easily determined,

Test data that will exercise all paths of a program can
be developed from refined assertions with predictable results,
This has a direct application to program debugging, A great
deal of program debugging can also be accomplished during the .
verification process, thus reducing the number of actual com-
puter runs necessary for this process,

5.4 Recommendations

An established shorthand-type notation greatly assists



113

in the assertion refinement process, The notation selected
should be both readable and easily converted to codable pro-
cedures and variable names,

Asscrtions should be refined in as much detail as possi=-
ble prior to development of the program. The refined asser-
tions can effectively define procedures and operations needed
in the program and establish the exact termination conditions
for the routine, The program can then be develoved to speci-
fically meet the required termination points,

Detailed specifications are necessarf in order to develop'
the precise output assertions of a program, However, output
assertions can also be very useful in validating the designer's

understanding of the specifications of the program.



114

Annex A: Teferences

Allen, .C., "The Application of Formal Logic to Programs and

Progreuming," J B M Syst Join, 1971,

Hankley, W.,, and P, PFisher. "Top-Down Refinement of lfgsser-

tions, "3rd Texas Conf on Computing Systems, 1974,

Linden, T. "A Summary of Progress Toward Proving FProgram
Correctness," FJICC, 1972,

Manna, 72, Mathematical Theory of Comvutation, 1974,

Mitrione, M, "The Language and Program Documentation of a

Student Pesigned Interpreter,” Masters lrvort Hansas

State University, 1975.

Wirth, N, "Program Development by & vwise Pefinement,"

Com ACM, April, 1971,



1i5

Annex B: Initialization Data for Data Structures

B.1 Global Data Structures
B.1,1 General |

The initialization data listed in this section is for
the offset variable names of the global data structures of
'the interpreter program that are described in Chapter 2 of
this report. The offsets associated with each data struc-
ture are presented in accordance with their format, The
initialization of the offsets and maintenance of the glo~
bal data structures in accordance with their formats are
considered global assertions for the FORTRAN implementation
of the Scanner,

B.,1,2 Data Structure Formats

(2,1) HEAP Storage Area (figures 2-2, 2-3, 2-5)

The HEAP storage area consists of all memory space
associated with the interpreter program for the purpose of
manipulation of the source program, The offsets and their
values presentedlfor the HEAP data area are also used by

allocated data blocks,

Memory Words Type Data Stored Offset Variable
1 Data Area Code HPTAG = 1
s Allocated Space HPSPAC = 2
3 Space Used | HPS1Z = 3
N Logical Address of Data Area HPLAD = 4
5 Index to the Procedure Symbol

Table data block, value rep:e-

sents the displacement from NONE
the start of the HEAP area to

the location prior to the start

of the Procedure Symbol Table

data block,



116
(2.2) Procedure Table Block (figure 2-3)

The Procedure Table data block consists of a four word
block header and the individual Procedure Tables which con-
sist of eight contiguous storage locations, A PINDEX repre-
sents the displacement of a specific Procedure Table from the
start of the Procedure Table Block area, Access to a speci-
fic process's Procedure Table is made by adding the value of
HEAP location 5 and the value of PINDEX,

Procedure Table:

Memory Word Tyne Data Stored Offset Variable

1 Number of characters in PRCNLEN = 1
Procedure name

2 First four characters of PRCNAM = 2
Procedure nane

3 Last four characters of NONE
Procedure name

L Procedure Status PRCSTAT = 4

5 Logical Address for Text PRCTXT = 5
Location

6 Logical Address for Token PRCTOK = 6
Location

7 Logical Address for Symbol PRCSYM = 7
Table Location
Logical Address for Code PRCCOD = 8
Location

(2,3) Text Block (figures 2-5, 2-6)

The text storage block assuciated with a procedure con-
tains text header information followed by the lines of text.
Each line of text has line header information followed by the
character of the line, packed four characters per storage
location,

(2.3,1) Text Header

There are seven memory words associated with the header



information of each Text Block,

Memory Word

1
2

~N O\ \n + W

Type Data Stored

Text code representation value

Allocated storage space for
text

Used storage space

Logical Address to Text
storage block

Pointer to first line of text
Pointer to last line of text

Total lines of text in storage
area

(2.3,2) Text Line Header

117

Of fset Variable

HPTAG = 1
HPSPAC = 2

HPSIZ
HPFLAD

3
A

TXTTOP
TXTBEOT
TXTNLIN = 7

5
6

1]

There are seven memory words associated with the header

information for each line of source text stored in the Text.

Block,

Memory Word

1
2

(oA RN 5|

Tyne Data Stored

Text line number

Index from the first memory
word of the text storage area
to the next line of text

Index from the first memory
word of the Text storage area
to the previous line of text

Value either O if line has not
been scanned or 1 if line has
been scanned

Nesting level
Iine status

Value representing the number
of characters in the line of
text

(2.4) Token Block (figures 2-5, 2-7)

Offset Variable

TXTLNUM = 1
TXTFIK = 2
TXTBLK = 3
TXTTOK = 4
TXTNST = 5
TXTSTAT = 6
TXTLLE = 7

The token storage block associated with a procedure con-

tains token header information followed by lines of tokens

which correspond to the line numbers of the procedure text



118
lines, The first three memory words of each line contain line
header information, The header information is then followed
by the line tokens, Xach token requires three memory words.
(2.4,1) Token Header

There are seven memory words associated with the header

information of each Token Block.'

Memory Word Type Data Stored Offset Variable

1 Token code representation HPTAG = 1

2 ‘Allocated storage space HPSPAC = 2

3 Used storage space HPSIZ = 3

4 Logical Address to token HPLAD = &
storage area

5 Pointer to first line of TOKTOP = 5
tokens . '

6 Pointer to last line of TOKBOT = 6
tokens - _

7 Total lines of tokens in TOKNLIN = 7

storage area
(2.4.2) Token Line Header
There are three memory words associated with the header

information for each line of tokens in the Token Block,

Memory Word . Type Data Stored Of fset Variable
] Line number TOKLNUM = 1
2 Index from the first memory TOKFLK = 2

word of the Token storage area
to the next line of tokens

3 Total number of tokens in line TOKNUM = 3
(2.4,3) Token

There are three memory words associated with each token,

Memory Word Type Data Stored
1 Class identifier (ste a below)
2 Index or Value {(see b below)
3 Number of the first character of the symbol

in the line of source text



119
(2.403.1) Class Identifiers
The below listed integer values are representative of
the type of symbols identified by the Scanner,

Integer Value Tyre Symbol

Keyword or Command Language Word
Identifier

Integer number

Real number

String

Operator

Separator

Undefined Operator

O3 O\ F W -

(2.4.3.,2) Index or Value
The second memory word of a token contains either an
index that can be associated with:

1) Keywords

2) Command Language Words
3) Identifiers

4) Operators

5) Separators

6) Undefined Operators

or the memory word will contain a numeric value that can be
associated with:

1) Integer number
2) Real number , .
3) The length by number of characters of a string.

B.,2 Local Data Structures

B,2.1 General

This section contains the initialization data for the
local data structures used in the Scanner module, The initiali-
zation data used in these structures may be changed or added

to as the language interpreter program is expanded, modified,



120
or transported to different environments., The initializa-
tion data represented below is that which was used with the
module during the FORTRAN execution of the Scanner program
for this report. EBCDIC graphics and controls were selected
for program implementation,

B,2,2 Character Table (255,3%) Array

This table is initialized according to the machine code
character translation table selected for use with the inter-
preter program, The size of the array was determined by the
machine decimal representation of characters as between deci-
mal 1 and 255, Entry into the table is based on the machine
decimal representation of the character being scanned,

{(2,1) Column one - designates the character as a letter or

number, a separator or operator, or a blank.

it

one blank
two separator or operator
three = letter or number

14

(2,2) Column two - designates the character as a letter, num-
ber, #, ", operator, or separator.

zero = blank

one = letter

two = number
three = §

four = "

six = operator
seven = separator

(2.3) Column three - designates the index number for separa-
tors and operators for use by other modules of the interpreter
program, Separators and operators are numbered consecutively

as they are encountered by type in row order of the character



121
translation table,
(2,4) Character Table initialization data

Column
BRCDIC Characters Decimal Location

blank 1 - 73

- 89

JH.\J*%&.-E@ -u..-'.f-\A‘ﬁ
2
oz
el

We ~e N
gj
WO
Co
]
[®]
\n

W= O

- 120

/Umw
P

B
i
Py -

bt R (S )
E—
n
3
O\

lank 128

f—
i)

=
o
o

- 14

vk et etk ek () ek b ot b 2k et =k O OV VOIS O OVOVONOWSI O NN NI AN O OV VI ONO

o
L AN AN AN =2 AN A AN AN AR AN = A O IO U RO U O = DU O M = OO NN = U VO PO Y~ f—
OOO0OOCOOOO0OO0COOQOUOO =t =t D 00O =t = ot = NOW CO~I\NF CVOMN OV ANV = s O fn

OBHPPARLOPDSMRHROLOLOTH T
N
o



122

Colunn
2

1

Decimal Location

EBCDIC Characters

~ e o N oV | o <
00000000000000100000000001.01.O.IO000000000100000000002

1110011]111110? 11111 e OV OWO I rrr e e OV O e o= e e = = OO

MMM = O MY RN Y IO MY e O MYV BN O O 1 O 1 0 1 (R MYV MY N N MY Y 0o (O 1 MY N MY Y RO RN = 0

O C™ [ [3Y} Yy
~— — OJ 0 ol
1 1 { § 1
121/.&-1.25..4567009022)-456?89012456?890125:456?8:456?890123.&.6
555566666566679999999900OO00000111111111222222335333
T g P e g g g e e e e e e 0NN I Y A O O aloygojododadnd
= e = ;
& o 8 a3 8 o
g K Lo <3 g
PoLal NP P EX RN CWSMOARRGE 4O OR E™Mo M I = O MM O SNEHD > =N T



123

_ ' Column
EBCDOC Characters Decimal Location 1 2 3
blank | 237 - 239 1 o 0
0 - 240 3 2 0
1 241 5 2 0
2 242 3 2 0
3 243 3 2 0
It 24l 3 2 0
2 245 5 2 0
6 246 3 2 0
Z 247 > 2 @
8 248 3 2 0
9 249 3 ol 0
) 250 2 6 21
blank 251 - 255 1 0 O

B.2.% Keyword Table (10,7) Array

This table is initialized with the designated key words
of the language to be interpreted. Vords are placed in table
columns based on the number of letters in each word. Only-
the first four letters of any word are placed in the table,
Comparisons against the table are made by subtracting one
from the total number of letters in the identifier to be scru--
tinized in order to select the proper table .olumn, The
first four letters of the identifier are then compared against
all entries in the column selected, Index numbers are based
on column number followed by row number of matched comparison.

Keyword Table Initialization Data

Column 1 2 2 4 5 6 i
Row 1 DO END  CASE BEGI ACCE ENDP  ENDW
2 IF OUT  ELSE FALS EXPO O EXTE
3 IN 0 EXIT WHILE GLOB O 0
4. FIL 0 GOTO WRITE RETU O 0
5 0 0 PROC O 0 0 0
6 0 0 READ O 0 0 0
7 0 0 THEN O 0 0 0
8 0 0 TRUE O 0 0 0



124

Column 1 2 3 Y 5 . 6
Row 9 O 0 QUIT 0 0 0 0
10 0O 0 - CALL O 0 0 0

B,2,4 Command Language Table (10,7) Array

This table is initialized with the designated command
language words of the language to be interpreted. Words are
placed in table columns based on the number of letters in
each word, Only fthe first four letters of any word are placed
in the table, Comparisons against the table are made by sub-
tracting one from the total number of letters in the identi-
fier to be scrutinized in order to select the proper table
column., The first four letters of the identifier are then
compared against all entries in the column selected, Index
numbers are based on the column number followed by the row
nunber of matched comparison,

Command Language Table Initialization Data

Column 1 2 3 Iy 5 6 7
Row 1 ON FNS  CHAR CLEA DIGI BREA O
2 NO LIB  COPY ©ERAS RESV . NOTR O
3 0 OFF  DROP HENC VALU SUSP O
L O POP  EDIT LINE CLRS O O
5 0 RUN  HELP PARS O 0 0
6 0 VAR  LIST STAC O 0 0
7 0 0 LOAD TRAC O 0 0
8 0 0 SAVE WIDT O - 0 0
9 0 0 VARS 0O 0 0 0
10 0 0 WSID O 0 0 0

B.2.5 Other Data Structures

A1l other local data structures used in the Scanner
module are initialized to zero or are restricted to a single

submodule,



125
Annex C FORTRAN Code with Assertions
Cel General
This annex contains the FORTRAN code of the Scanner

Module which consists of eight subroutines as shown in figure
2-11, Assertions, as numbered in the High Level Design
Language representation in section 3.5, are also included,
Only the assertion number is used where no additional
refinement is necessary and the FORTRAN Code follows the -
same pattern as the High Lével Design Language, VWhere fur-
ther refinement was necessary or there was deviation due to
FORTRAN language restiriction, the High Level Design lLanguage
assertion was subdivided and more detailed qualification of
the assertion was stated, A variable translation table for
conversion of those names which changed from the assertion

refinement and High Level Design Language to the FORTRAN Code
is at Table C1-1,



126

9Tqe], UoTiBISURBIL OTqeTI2p |-} U.MH.aE

*SQUAWS1ELS QIOD TEUOTITPUOD U3 T4 pasn Jejutod
*yaaNId Jegauwexed gndur
*1X97 JO 2UTY ® UT Honaww e JO J93%eJzyd 3SJITY 92Uy JO Jaquny

*ToqumLs Joqunu ® Ul pala
=-1Uncous useq sey poTJsed ' JIT 923BOTPUT ©3 pesn 8pod Jegquny

*ToqUAS J9quNU B UT J930BIBYD 3981 oYl 03 3XoN
*anyay Ledde J0I J93unc)
*SUSNOL JO QUTIT ' 9I048 03 LIesgoodsu gpaom a98elolg

*NTINT SUTINOIqhs UT ¥00Tg UaX0l IO 4oJess ouIT Aq oulr
® UT pesp CeuTT Us3Of IUSIIND 9Y3 04 juewederdsTp ouUTT

*pIcK 98eJ031S HIOTH USNOg oujl
ut jusmwederd 03 JoTad eleg Us¥OI PIOY Aftiexcdwel 03 pash

*NIANT SUTInOoIqng UuT 3O0O0Tg UdxOj oYl JO YOJIeds
auUTT £q auUIT ® UT PO °*BUT] UdNogZ snoTasad 03 juzmedwTdsig

*Jequnu TeaX ¥ uT sadetd Tewldssp JO Jaqunu 84e2TPUT 03 pas)
Youywm Jojeuweed andang

*891qR®], PICH
edendueT puUeNwWO) PUB pIomiey UOIERAY OF posn Jaqunu uumTon

*y00Tq ¥ 03 PojedsoTTe soeds JO junowy

£Id
dXIANT

QN

Ll
dOLS
LXIN

JISANIT

dSIANT

avol

NTLSVI
bI
HgIXE

102
JoVdsS

nmvﬂao&
XIGNId
JTey) 38ITL uny

apoy umy
Jeyy aseT 3xey
pesn ecedg uy

deswq uT

dstq uT ase]
J93unoy) [ewIvsq

qouaH

wanTon

ooedg Pe3EOOTTY

Sutueay

NVaIa0d

adendue
ugtseq ToA9T USTH



12

°ggaJappe TesTIOT UL
‘qusEa2eTdsS TP AUTT USHOJ

*}20TQ Ua¥03} 98Uyl JO YoIeas
2UTT £q SUTT ® UT posSn SUTT uUay03l gncTasad JO Jequnu auUTT

*5UTT 2X¥03 ® UT SI530BIRYD TE 10

*007g USNOZ, 9Y3 JO ISoIppe 93NToSqy

*300Td Ud¥z 89U} UT SsaJdppe 9Inyosqy

*OVAHAN 9UTIU0IqNG UT THAS JIO0F pasp

*3uTa3e v UuT .8a030eleyd Auvw 003 X0 a9egsem Joade Xejulg

. *JuTaas
m:oxumﬁmwoswmnﬂmOﬁoozho«mmﬁwmmahonnmxmpmmm

*J9308IeyD TRSeTTT 07 afessam J0IIe xequly
*J00Tg UeNOJ 9yl Ut pesn eozds PojRIOTITE IO JuUncuUy
*sonTeA JoqUnU Tead PTOL 04 pesn Lealy

*stsoyjuaxed JUTSOTH

*JYO0Tg USIOJ, UT 2A0QE SUTIT 03 wpﬂﬁom‘

YOO0Tg 2TQL], SINPLI0Ig

SuTtuesy

(PoNUTIUCDY -1 O 14y

Qv TAOL
TIAHOL

NTTIOL

HVHOL
avsioL
aavicn
HIDNY'T
DALELS

toNgIs
DITHLS
AISONL
INTVAS

Navd
AGVIId

NVILI0H

PRV J07 3Oof
dsg ug ¥og

umyuT 3SeT 3oj,
JTeyy” 1e3of
£300Tg 0g,

®PPY NOF

THAS
JEYD

“Ruey 005, SUTILG

sjony

TesoTp ON SuTIag

- — J'yp
- Te8sITI JuTI3S

pesp ededg

ug1ssq 19491 YITH



128

(PONUTIUOD) -t O o14ael

*epoy uSog JOL AT,

*Y00Tg 3IX8] UT S9UTT 3X93 Te3ol  NIIIOL SSUTT Te30L 3XIL
*ssoqpPE TedTSOT X85  QVIIXD PPY 807 3XL
*juswaorTdSTP oUTT 3X03 3Xey INGIXEL — dsTg uT 3XI 3IXeN
*Iequnu OUTT 3X8L  NITIXL Wl 3Xg

*3uemsdeTdSTP SUTT 3XOJ TIALY, dsTg wl 3%,

*Y00Tg 3XeJ JO SsSaoIppe 93n{osqy  QVSIXL E300Td 3XJ
*OUTT 3X8J © JO SSaJpy 23N{osqy ISTIXL BUT XTI
*Y00Tg 3XeJ UT SS8Jppy 93InIosqy  advIXI PPV 32X
*N00Tg UWel0] UT Susio] IO SSUTT Te30] N'TLIOL seuTT 183101 HOL
_ ogengue] .

Jutueay NVHI804 udTseq tese] USTH



129

SUBRQUTINE SCAHN(TINDEXP 1 XERR)

_{1.

COMMON /HEAR /NHEAP JHEARP( 4CC)
COMMENZPACOFF/PRCNLN, PHLmlN,PxLTxT,PRCTGK,PRC“YM PRCCOUD,
I PRCSTA ,PRCLEA

COMMON JHPOFF JHP TAG 4HPSPAC yHPSIZFPLAG,HECBY
COMMOCN/TUKOFFZTORTOP  TOKRUT 3 TOCKNLN 3 TCKLNC,,TCKF LK TCKNUN
COMMON/TXTOFF/TATTOP TXTBET o TXTNLN g TXTLNOy TXTFLKy TXTBLK,
FTXTTOK g T XTINS Ty TXTLLEN TXTLINSTXTSTA

COMMON/SCANER JCTABL 2555 3) oKW TABLLC 7)) »CLTAB(LO,7) 4 LINST (54 ),
ASYMST (IS 2 9 CRASTLEAY 2] SYMUZ Yy TXTLADy TUKLAD yPINDE X ERACH,
SCLFLAG yPRCBAS yERACT ¢RVALUELLS )y NEXT

SYMCT = C

ERRCT=C

ERRCR=0

RESCAN= LFALSE.,

CLFLAG= L,FALSE.

7oK NITOLM

2e
NEXT= 1
PTLABV= 3
2,1 NEXT is a counter for array RVALUE used to hold

values of real numbers., FPTLABV is a back link
for Token Line displacement,

PINDEX= [NDEXF
EXERR= C
2.2 Initializes PINDEX and EXERR, Substitute input
parameters were used so that PINDEX and ERROR
could be passed in the Common Statement.

PRCPAS= FEAPL{E)
13:§

TXTLAD= HEKP{PINUEX+PRCBAS+PRCTXT)
bk

TOKLAD= HEAP{PINDEX+PRCBAS+PRCYCK)

-5

TXTSAD
TOTLIN

16.§

IFIHEAP{ TOKLADG) «GT. C) GC TC 1

{7.%

HEAP(TXTLAD)
HEAP{TXTSAD+TXTNLN)

oy



SIZE= TUTLIAN®*192%3
CALL CET(STZE TCKyTCKLAC,£KECR)

{84

IF(FRACR EQ. 0) GOTO 3
EXERR = ERROR
9.%

RETURN:

HEAP[PIMNDEX+PRCPAS+PRCTCK)= TLKLAL

f103

GC _1C 2
1.3

fie3

TXTSAD= HEAP(TXTLAD)
TOKSAL= FEAP({TUOKLAD)

$13.3

TXTCTL=HZAP (TATSAD#TXTTCRY
TATENL=REAPITATSACHTXTLTL+TXTFLE)

.}

TOKCTL=FEAP [ JOKSAL+TOKTUP)

{15.¢

IF(TGKLTL .CE. 7} CGLTIL &

{163

TOKDTL = 7

HEAP{TCLKSAD+TOKTCP)=TLKDTL
HEAP( TOK SAD+HPSIZ) = TOKDTL

{17.3

TCKTLM = HEAF(TCKSADHTOKNEN)

{17.1 see para. 4.3.2.4 §

TATADR = TXTSADHHEAP[TXTSALFIXTTLR)

TOCADD = TUKSADHHEAP(TOKSADHTURICFE)

{17.2 see para, L4.3.1.4 & #.3.2.1-;}

130



131

DO 1C I= 1,TCILIN

$18.¢ "

IFMHEAPL{TIKAOD+TCKLANCD) LCEe FEAP(TXTACODHTXTLNGO)} L0R.

% MOT. RESCANY GOTE 11

719:¢

B 2¢C K= [L,TOKTLN
[IFIFEAP {TOKADD+TOKLHAGY +GE. HEAP{TXTADD+TXTLNC)) GCT
TCKACC=TCKSAC+REAP(TCKSALAPTLABY +TOKFLK)
HEAP{ TCESAD+PTLAEVATCKFLE J=HEAFP{TCKACC+TCKFLK)
HEAP{ TOKSAD+TOKALN)Y = NEAP(ITCKSADFTCKNLN) - 1

$20.¢

COGNTIANLE
{213

RECSCAN= JFALSE.

J22.%

IF(HEAP(TXTACCH+TXTICK) k€. 1} COTC 12

{23.3

CALL LNSCAMICRRFLG LINUSE,TXTITL,SYMCT, &300)
§2u.3 |
THUSED=FEAP(TCKSAN+HFS1Z)

fo5.3
spncs:wsnptrcxsat+r?$énc) |
{2_5.1 Space = Allocated Space is para, l+.3.2.43-
TFATKUSEC+LINUSE oLE. SPACE) GO, TO 14

126.%

S12E= (TOTLIN-1) * 4%
CALL EXPANTD(SIZEZTOKLAL,ERFCR)

J27.%

IF(ERRCR .EQ. 0) : GOTO - 14

{28.%

EXERR = ERROR



132

RETURN

£25.3

TCKSAD = HEAP{TOKLALD)
TXTSAL = FEAPITXTLAD)

f30.3

TOKDIL = HEAP(TOKSAD+HFESLZ)
30,1 Displacement is to the first open storage
word in Token Block, see para., L.3.2.4

HEAP{ TOKSAD+ TCKDTL+TCKLAC) = HEAP{TXTSACAHTXTOTLATXTILDY

3

IF{RtS;C%.GN) CALL LINFIN(TXTOTL,RESCAN,TOKDTL,& 15)
32, _
FEAP (TOKSAD+TUKDTL4TGKELK ) = HEAPITOKSAD+HP SIZ) + LIMUSE

133.3

TOKALD = TOK SAD#TOKDTL+ TOKNUM

{33.1 see para. 4.3.2.5?

IF (. NOT, ERRFLG)Y &C TU 1¢

134.3

HCAP(TORADDY= €
co 10 L7

335.2 -

FEEF{TCKACL)= SYMCT
DO 3C M= 1,SYMCT
EC 40 N= 143
LGCAC= SYMST (M, M)
TCKALND= TCKACD+ 1
TF{SYMSTIM,1) oEGe 5 JANCe N oJE€e 2) CALL REAL(HEAP({
TOKACC),RVALUE(LOCAD)Y & 4C) '
HEAF(T(KALD )= LCLAL

CONTINLL

336%

CONTINLUE

2



17

12

133

HEAR (TCKSAC+HPSTIZ)=TKUSEC4LINUSE
HEAP{ TOK SAD+ TCRKBOT =TCKLTL
FEAPITOK SAD4TURKNLINY =HEAP{TOGKEACH+TCKNLNY +1

738.¢

SWITCH = C

CELAY = 150

CALL STAX{SHWITCH.LEL2Y)
{39.}

1F{SYITCH .G, C ) GO 10 12

1405

EXERR = S(C
4.8

RETLRN
{h2.3

IF (HEAP(TLHSAC+TCKNT L4TLKLNCY AE. FEAP(TXTSAD+TYTDTL +
TXTLRO))  GOTD SCC {qq,}

{43 3

TXTACC = TXTSAC+TXTUNL

{f&.l see para. 1;.5,1.4}

TXTETL
TXTLAL

TXTODNL
FEAP(TXTSACATXTOTL+UXTRLK)

{43.2 See para. ‘4.3.1.4_}

FTLAEV = TCKOTL

{43.3 Used as back link for last Token L:Lne.}

TLKALL = FEAPITOKSAL4TOKETLHTOKFLK)

{43-4 gee para, 14-.3.2.1;}



10

cCC

CONT INUE

{u5.%

[F{ NOT. ERRPLG) RETURN {49.}

{46.3

CALL SERRCR

$ur. ¢

EXERR= 1

{48.%

RETHRH

3508

EN

134



1C

135

SUBRCUTINE LNSCANITERRFLG,L INUSE, TXTRDTL » SYMC T, *)
11.}
IMPLICIT INTECGER{A-Z)
REAL ®VALUE
LCSICAL CLFLAGZERRFLG,RESCAN,FLAG
COMMON/SCANERJCTAEBL29%, 3 )+ KWTAB(LC 71 ,CLTABIL10 1), LINST (64,
®SYNMSTALS3) yERAST loh e 3 )y SYMIZ )y TXTLAD s TOKLAD o PINDE Xy FRRER

FOLFLAG yPRCBASJERRCTJAVALLEILD ) oNEXT
COMMON /HEAP/NHEAP,HEAP(4CC0)

CONMON/ FHECFF/FPTAGe HPSPAC, FPS 12,y E2LAD, HPOB )

CCMNON/PRCCFE/PRCONLN, PRONAN yPRCT AT, PRCTUK,PRCSYM,,PRCCOD,

1 ' PACSTA HPRCLEN
COMMOCN/TOKOFF/TDKTOP y TUKBO T o TCKNLN g TOGKLNC ¢ TCKF LK, TCKNLN
COMMON/TXTCFF/TXTTOPy TXTECGT » TXTNLNy TXTLHNO TATELK y TXTRLK

FIXTTCK g TXTINET o THATLLEN g TATLIN,TXTSTA
DATA PARY /n)ny
CHARNU=0
ERCEDE = O
SYMCT = C
CLFLAC = JFALSE,

{2.}

FXTSAD= BEAPCTIXTLAD)
TXTLST= TXTSAL + TxTLTL
TCHAR=HEAP(TXTLST+TXTALN]

{33
CC 10 [I= 1,7CFAR -
The §
CALL GETC%H (FEAP{TXTLSTHTATL IN) s I 4ARG3)
{5.3
LINST(I)= AR(3
16.5
CONT INUE
$7.3

IF [LINSTILl) .EG. PARN) CLFLAG = .TRUE,

{8.%
198



136

DC 2C 4= 1, TCHAR

$10.3

IF{J JLE. CHARAG) GC TC 20 {11.}

f12.¢

CHEiR= LINST (J)
PT= CTAB(CHAR,L)

313.%
GC TC (2043C44C) ,PT
$*14, PT = 1, CHAR is a blank, GO T0 20§

2L SYMCT = SYNMITH]
SYMSTOSYNCT,1)
SYMSTISYMUT,2)
SYMST{SYN¥CT+3)

315.%
| {j;j;

40 NFC= J {J?{}
§18.%

CHARNU=J

$19.3

CALL FURMICHARNUy SYML, ICHARJERCCDE» THNEXLCLASS,,SYNCLDE,
* NFCeE 55)

§203

CTAB(CHAR,2)
CTAB(CHAR,2)
J

u nou

GoT0 (70,80,90), SYMCODE

T3¢



¢C

SGC

1CC¢

157

CALL TARLE(SYNML,CLASS,INCEX&90)

{243

CLASS=2

£25.3

«EC.

SYMLT =
SYFSTUSYRCTH1)
SYMSTLSYNC T.2)
SYMST{SYMCT,2)

§31.3
CONT INUE

GC TC 1CG

1)} RETURN 1

SYVLIT+1

SYMTAB {PINDEX»SYNML,SYNMIADEX, ERRCR)

Z.a?.}

g 29, & 30,%
CLASS

= TNDEX
= NFC

ERRCT= CRRCT+ 1§21, & RETURN From SUBROUTINE FORM.}

TXTSAL=

FEAR{TXTLAC)

ERRST{ERRCT 1) =HEAPITXTSACHTXTETL+#TXTLNG)

ERRSTY (ERHCT, 2)=
ERRSTHERRLT y 3 )=,

MFC
ERCOCE

ERRFLG= L TR
SYMCT = C
3 22.¢
LINUSE = (SYRCT+1)%3
RETURN

3 32.5

END



138

SUBRUUTIRE'FORM {CHEARNU, SYML s TCHARSERCODE pINDEXSCLASS,

CODE, NFC, *)
{18

IMPLICIT INTEGER(RA-Z)
REAL RVALLUE
LOGIC AL CLFLAG, ERRFLG,RESCAN,FLAG

COMNON/SCANER/CTRAE(255y3 )y KwTAEL 1O, 7)o CLTABL1Gy 7, LINSTI44),
FSYMETOLS 93) JERRST(GEG 3], SYM(2 )2 TXTLAD,TOKLAD,, PINDEX, FRRLR,

#CLFLAG,PRCBAS ERRCTyAVALLE{LD) oNEXT
COMMON JHEAF/NFEAP, HEAP(4ACC)
CCoE=C
CLass = €
SYML=1
INCEX =0
VALLE=0

K=C
SyM({L)=C
SYMI(2)=0

CHAR=LINSTICHARNY)

J=CHARNL +1

2.5

DATA PERIDD/* '/ BLANK/Y '/

{2.1 Initialization of variables to indicate Perio

and Blank,
IF({JeGTa TCHAR) J=TCHAR

g

{2.2 Text for last character is LINS_T for this line._}Z

PT= CT2E{CHAR2)

133

GC TC (20+30454045C) »PT

coof = 1 {4._}
5.5

DO 2% 1=4,TCHAR

6§



M
n

iny
191

eC

139

CHAR=LINST(I)
TF{CTAP(CHAR, 1).LT 3 LCRa CTARICHFAR,2).GT42) GCTO 10.{?£}

f18.1

SYML=5LYML +1
CHRERMLU=CHARNG+L

CONT INUE

{34¢1 Last character in line was part of Symbol{}
GO TO 1C

CLASS=3 ~{}5.}

CoDE=1
LC 25 I=J,TCHAR
16,3
CHAR=LINST (1)
LFICTAR(CHAR,2) WHE. 7 .CR. CHA? JNE. 7E21C0) GOTOuGO§i7;}
$19.}
IF(CHAR .EC. PERICD) CLASS= 4 {élé}
{03
SYNL=SYML+]
CHARNU=CFARNU+1
{}9.1 Counters are increased.}
CONTINUE ' '
{_1?.1 Last character in Line was part of Symbol.}
CALL NUMPAC{HFCy SYML,VALLE,EXRCLDE ,£50)
INCEX=VALUE

$18.3

RETURM



140

t¢(  CLASS=E {22.}
{23.

CODE =

{au.}.

DO 45 1=4,TCHAR
325.%
CHAR=LINET(I)
FFICTARICHFARS 1) LTe 2 LGRS CTABICHARZ) oGT. ,Ut§ 10
26
{32} R
SYML=SYML + )

CEARNL=CHARNU+]

45 CONT IRUE
{26,1 Last character in Line was part of Symbol.}

0 TG IC
EC CLASS=5 {33.}
34,3

CCDE=13

54

SYML=SYNL#]
CHARIL= CHARNL+ 1
J=d+1l

CC 55 I=J.TCH2R

{36.}

CHAR=LINSTI(I)
SYML=SYML+L

CHARMU=CHANL+]
IF (CTAR(CFAR,2) LEG.4) GO 1O ¢ {}?{E

fi0

£g CONT TNUE



1C

£C

ERCULCE=2

Q4 }

RETURN 1

INCEX=SYML

§38.%

RETURN

IF{SYML .GT.E) GO TO RO ‘{8. & 27.} :

£o3

J10.} §29.3

DC 1 L=NFCyEHARMNU

g

CHAR=LINST(L)

K=¥+1

CoLL PUTCHAR

{12.} 330.%

CONT IHUE

§13.%

RETLRA

ERCCLE=1

RETURN 1

{2k

END

1945

{SYM(1),K,CHAR)

141



142

SUBROLTIANE TABLE(SYML,CLASS,TNOEX %)

013

INPLICIT IRTECER(A-2)

REAL RVALUE
LOGICAL CLFLAG,ERRFLG,RESCANSFLAG :
COMPON/SCANER/CTAB{255, 3 4KuwTABLLIC, ) ,CLTAR(LICs N 4LINST(H4),

BEYNMST LS 3 )2 ERRST (64,3 ),SYMI2)TXTLADyTOKLADSPINDEXy THRUR,
FCLFLAG)PRCBAS yERRCT 4 AVALLE(LD Vo NEXT

COMMON /HEAP/NFEAP,HEAP(ACC)

INCEX=0
CCL=SYNL=-1

{2.%

IF{CCLLEGLU) RETURN {3}

1u3

IF{CLFLAC) CO TO 10 {53

A

LO 20 I=1,1¢C
TFIKWTARIL,CCL)«EQ.SYMIL}) CU TO 40 {12.}

2C CONTINUE

316.¢

 RETURN 17,1  Symbol is an identifier,
1C oc 30 I=t,10  §5.¢
[F(CLTAP(L,CCL)LEESYMILD) cC TC 40 6.4

24 CONT TNUE

§10.3



40

“ETLan  {17:1  Symbol is an identifier,§

THDEX=(T*10) + CUL

3.3

CLASS=1
1.3

RETURN |
{j?.Z Control returned to lable 90 in LNSCAN{}

ENC

145



144

SUBROUTINE NUMPAL (NFC,LENGTH,VALUE,ERCUDE,*)

1.3

IMPLICIT INTEGER{A-Z)

REAL RNUM,RVALUE

LOGICAL CLFLAG,ERRFLGyRESCANs FLAG
COMMON/SCANER/CTAB(Z255,3) yKWTABILO,7),CLTAB(LO,7),LINST(64),
*SYMST(1593) yERAST( 649 3) s SYM(2) s TXTLAD» TOKLAD »PINDEX s ERRCR
*CLFLAG,PRCBASYERRCT yRVALUE (L5),NEXT

COMMON /HEAP/NHEAPL.HEAP{400)

DIMENSION NUMBER{(1Q)

NUM=0

VALUE=0

ANUM= 0.0

STOP= NFCH+LENGTH-1

OATA NUMBER/2404+241426292434244y245,246424T749248,249/

NT= 0 : :

ERCODE = O

32.5
1Q= 0
DATA PERIDD/ .1/

f2,1¢%
IF {LENGTH .LE. 8} GOTO 5

§3.%

ERCODE = 1
RETURN 1
b §

5 DO 10 I = NFC,STOP

$5.58

DO 20 J= 1,10 .
IF{LINST(I) .EQ. NUMRER(J)) GG TO 1 "B

i9.%

20 CONTINUE
IF (LINSTI{I) o.NE. PERIUD .0R. IQ .GT. 0) GOTO 40

511.%



10

- 40

NT = 1
Ie =1

Garo 10
IF(NT .EQ. 1) IQ

INUM= j-1
NUM= NUM*QO0+INUM

{8.%
CONT INUE

$13.3
IF{NT.EQ.LY GCTO 30

215.¢

VALUE = NUM

RETURN
516.5
RNUM = NUM

314,15

RNUM = RMUM=% 1*%]Q
ol u.a‘fq’

RVALUE{NEXT)= RNUM

$14,3 ¢
VALUE= NEXT

T14.4%

NEXT= NEXT+1

S14.5%

RETURN

216.5

ERCUDE = 3

112, ¢

RETURN 1

END

1Q+1

AL

57.%

145



146

SUBROLTINE SERROR

IMPLICIT INTEGER{A-2)
REAL RVALUE
LOGICAL CLFLAC, ERRFLGyRESCAN, FLAG

COMMON JHEAF/DMHEAP L HERP(400)
COMMON/SCANER JCTAR{ 255,3) JKwTAB(YLC7) 4CLTABILC 7Y, LINST A4},
HSYMSTULS5,3) ERRST{ 64y 3) s SYNM{2)Yy TXTLAD » TOKLAN 3 PINDE X 4 ERRCR

HCLFLAC,PRCBAS +ERRCT yRVALUE (15 ) s NEXT

CIMENSIGN STRTMULLT)y STRNCGLZE) s STRILCELT)

CATA STRTIWEC/VSY QIY T LN 0 4 ST 0 0 000, 0 o it a0, 1y
HICH G VHY G tAY L0007 JSTANCG/INY 4 00y 14" Cr 'L ,10%,"5, !
CI I O Eol P T I SR Ik L F D It e O I B LR R R
ESTRILC/ Y [0y Lty 0Ly vE N VO WA, 9,0 1 101, a2 A, 1

WTET IR/ :

128
DG 1C I= 1,£RRCY
13.¢

LINE= FRA%I(I,l}
CHAR= ER2 L,2)
PT= F{HST(Iyui

{43

GO TA{2C,30,4C)4PT

20 N-{?} 5.5

CALL ERRFPRINT (PINDEX, LIHF CRARYNySTRIMC,RETCHN Y}

{7.%

G0 TU 99
»  N=26 8.4

53

'
1%, 'N?
1



147
CALL ERAPRINT (PINDEXSLINE yCHAR, Ny STRNCGQHRETCGD)

fio}

co 10 99

40  N= 17 {j;;}
12,8

C2LL FRRBHEINT [PINCEX L INE,CHARZNeSTRILCKRETCOD)

238

99  IF{RETCCC.CT.C) RETURN

$14.3

10 CONT IAUE

$15.2

. RETURN

$16.%

END



143

SUBROLTUNE LINFINI TXTOTL o 23FSCANTCKDT L o%)

§1.3

IMPLICIT TNTEGER{A-2)

REAL RAVALUE

LCGICAL CLEFLAC,ERRFLGyRESCAN, FLAG

COMMON FHEAF/ZDMEAP,HEAPLAGO)
COMMONZSCANSRZCTIALL 255, 3) JRWTABILC 7)) »CLTAB(L O, 7)LINST(BG)Y,
FOYMSTULSe 3 p ERRST{E4y 3D SYM{Z) o TXTLAD » TUKLAD +PINDE X+ ERIACR,
MOLFLACPACRAS yERRCT ZRVALUE{LIS )¢ NEXT

COMEDN FAHPOFFE JHR TAG JHPSPAC ,HPST1 2 ,FBLAD,HFELRI
COMMONZTOKGFF/TOKIOP , TOKBUT 3 TCENLN y TCKLAC, TOKF LK s TCKNUNM
COMMON/TRTOFF/ZTATTOP  TXTROT o TXTHLN s TATLNDy TXTFLK , TXTPLK
FTATICK p TXTNST o TXTLLEN TXTLIN,TXTSTA

COMVON/PUCUFF /PRACNLN yPRCNANMGPACTXT yPRCTCK4PRCSYF,PRCCLE,

1 PRCSTA 4 PRCLEN '

(=)

TOKLLN -
LASTLA

2.8

TXTSAL=HEAP(TATLAL)

13§

TOKSAL= FEAP(TOKLAD)

Le$

FOKTLN=+EAP (TL A SAD+TOKALN)

1§

LACISP=HEAP (TCKSAC+TOKTUP)

36.%

TAXTLIN=FEAPITXTSADHTXTLTLATATLND)

1743

LD 10 I=1,TOKTLN

O |
(T8

IFCTXTLIN GToTCKLLN ANCLTXTLIN oLE. FEAP (TGKSADHLNDISP+
+ TOKLND ) GLTO 20 3 848

214§



1C

isd
(o]

149

TOKLLN = HEAP(TOKSADHLNCISP+TEKLNC)
LASTLN = LwnLISP
LACISP = FEAP{TOKSADCLASTLN+TUOKFLK)
$15.2
CONT INUE

316, ¢

RETURN 317.¢

TF{TXTLIN JEG. HEAP(TOKSAD#LADISP+TCRKLNCY))  GLIC 30{?{%
212.¢

HEAP(TCKSAD+ TCKO TL+ TOKFLK )=FEAP(TCKéﬁD+LﬂSTLN+TGKFLK)

FEAP(TOKSADHTUKOTLATOKFLE )Y = +EAP(TOKSAD4LASTLN+TUXF LK)

HEADPITCKSADHLASTUNRATOKFLKY = TCORDIL

FEAP(TCKSACHTOKNLN) =HEAP{ TUKSAD+TOKNLN) +1

213.%
RETURN L 317.€

HEAD { TOK SAD+ TCKC TL+ TCKF LX) =sHEAP(TCKSAC+HLADISP+TCKFLK)

210.§

HEAP{ TCKSAD+ LASTLN+TCKFLK)

£i1.7
RETLRN 1 517,73

i

TCKETL

ENC



150
SUBROUTINE REAL (X,Y,*)

REAL X,Y
X =Y
RETURN 1
END



INFORMAL. VERIFICATION OF CORRECTNESS OF THE
- SCANNER MODULE OF AN INTERPRETER PROGRAM

by

JAMES NOEL JONES

B, S,, Oklahoma State University, 1965

A MASTER'S REPORT

submitted in partial fulfillmant of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1975



Abstract

This report provides a documented informal verification
of the correctness of the Scuanner module of an interpreter
program designed and implemented by the students of CS
286-700, summer 1975 session. The purpose of the report
was to show that a large multi-program can be verified by
the refinement of assertions developed from the program
specification,

Verification of the Scanner module was accomplished
by parallel refinement of assertions with three levels of
program development: (1) that of English specifications,
(2) high level design language, and (3) FORTRAN code,

Score of the module proof included the Scannér routine,

all subroutines developed directly from the Scanner module,
and all external routines used by the Scanner, Verifica-
tion of the correctness is based on the refined assertions
and tracing the state transition of each routine of the
Scanner module, A routine is considered verified if all
termination points comply with the output assertions devel-

oped from the specifications for the routine,



