A GKS VIRTUAL DEVICE INTERFACE META FILE SYSTEM

by
STEVEN W. TRACESEL

B. S., The OHIO STATE University, 197¢

A MASTER'S REPORT
submitted in parital fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Maphattan, Kansas

1984

Approved by:

all

Majo of essor

T;naua bbbBU4S5

CONTENTS

1’ ‘Introduction...l-.O.I....'.-.I'l....l......'lII.I.IC

2. The Hetafile Systm In GKS.'..-.u--..u.-.-c--..c.l-l

3. The Design of The ImplementatioNessececserecscsccnns

3.1

3.2

Details of the Desigheeecceresccsecsssccnnenens
3.1.1 The Output Metafile Driver 8
3.1.2 The Input Metafile Driver 8
Net Results of the Implementation Effort.......

}, Current State Of The Metafile standardS.ccccecececescs

u.1

A Comparison of The CORE Metafile system to

The GKS Metafile systemMecececvecccercesassnases

4.1.1 The Suitability of Storing Bound Images
with Segment Storage 12

4,1.2 Metafile Formats 13

5. General Analysis of The GKS Virtual Device

mtafile-......II........'..-'I."..I'I.'I"l.'l..'l

5.1

5.2
5.3

The General Usefulness of The GKS Virtual
Device Metafil€eeecescescosonercscssscssocnsnas
GKS in an Interactive Enviroment.eccccceccevees
The Virtual Device Interface and a Metafile

&stw.'.......ll.'l....l..l'-ll.l.l".l.llll'.

6. CondusiOHSCU'.lIci'.coal..'o'orv-tcoooool.n'-"----

T. Possible additions to the Graphics Kernel System

standard......"D..l'.".ll..-.'.'.lﬂ'.'l.--.".'l.l

Figure 1

List of Figures

Mapping of KSU primitives to GKS standard...

v W

11

1

14

16
16

17
17

19

9

1. Introduction

A graphics metafile is a format for stcring the
representation of graphics data on a physical media. The
contents of a metafile is a 1list of commands which are used
to generate a picture. Metafiles are useful in that they
allow the results of graphics output to be stored in a
format that is device independent, can be transmitted
between different sites, and are not concerned with
differences in hardware. The metafile also allows complex
pictures to be reproduced without having to regenerate the

picture from the orginal set of inputs.

The Virtual Device Metafile[1,2] is a paticular metafile
first proposed within the the Graphics Kernel System[1]. A
complete specification of the Virtual Device Metafile is
def ined in Annex E of the CKS specification. This
specification is not a formal part of GKS, but is included
as a suggestion for a metafile. The Virtual Device Metafile
has since been proposed as an ANSI standard for

metafiles[2].

The Virtual Device Interface (VDI)[3] is the proposed
standard for the interface between a graphics package and
physical devices, including metafiles. The objective of the
VDI is to isolate the physical differences of different

hardware devices and metafiles from higher 1level software

= B

packages, by providing a consistent encoding scheme. This
is an excellent idea. The current definition of what the
valid VDI codes are, and what types of data should be

represented in VDI, is still being developed.

The Graphics Kernel System is a specification for a two
dimensional graphics package, that provides a decentralized
control of each workstation. GKS provides the ability to
delay the effect of an operation on any specific workstation
by providing selective control over the current state of
that individual workstation. This ability to delay the
results on an individual GKS workstations also extends the
concept of decentralized control[8,9,10]. The GKS
specification does not include a capability for 3
dimensional work, nor does it contain a =sorhisticated

segment definition and reference system.

The Metafile system described in this report functions as a
workstation in the Graphics Kernel System (GKS)[1,7]. The
scope of this report includes a description of an
implementation of a part of the Metafile System within the
Graphics Kernel System[1,2], as well as a comparison of the
GEKS Metafile System with the CORE Metafile Proposal [4], and
the ANSI Metafile system. 1In section 2 the Virtual Device
Metafile is defined as it relate to the Graphics Kernel
System. Section 3 covers the design and implementation of a

VDM subset. Section 4 compares the VDM with the metafile

system defined in the CORE standard[4]. In sections 4 GKS
is analyzed, where both the strengths and weaknesses of GKS
are discussed in the context of the Virtual Device Metafile.
Section 5 contains the conclusions generated from this
project. Section 6 is included as 1list of possible

additions which could strengthen the Graphics Kernel System.

2. The Metafile System In GKS

In the GKS specification, the virtual device interface
is between the central portion (or kernel) of the graphics
package and any workstations or graphical devices. The
intent of the metafile system is that any indivicdual
workstation could in reality be an online storage medium,
which at some later date could be transmitted to ancther
site, or re-used as input to the graphics system. The
information that is stored is a device independent
representation of a picture or series of pictures at the
Virtual Deviece interface Level. This stored data could then
be used to reproduce the graphical pictures. A1l that 1is
required is that the person has access to a graphics package
that understands VDI commands and can read standardized
metafile formats. This storage of absolute data values in a

VDI format is then called a Virtual Device Metafile(VIDM).

There are many reasons for the development of the GKS

metafile system. The major function of the metafile is to

provide a facility to transfer information between locations

in an orderly way. The user must also be able to use, or

preview the transferred data,

There are four major types of elements that are contained in

the GKS Virtual Device Metafile:

1.

Descriptive Elements-= The descriptive elements define
and describe the contents of the metafile. This could

be compared to a table of contents in a written paper.

Formating Elements- The formating elements define
which of the varicus format choices were used in the
creation of this metafile. This data is then used to
translate the physical metafile representation of the
graphical and application element types inte the

virtual device interface formats.

Graphical Elements- The graphical elements are the

actual VDI primitive representations.

Application Elements- The Application elements are
user specific information which is not in a VDI
standard format. In many cases this data may be of a
format specific to a particular graphics package
implementation, and as such would be un-useable to
many of the "standard" implementations of the metafile

system.

The GKS specification of the metafile allows for the off-
line storage of VDI command types, but alsoc includes a
slightly different view of the metafile. The basic premise
seems changed such that the metafile will be used for the
off-line storage of segments and internal graphical states,
~as well as VDI command types. The unrestricted mixing of
the two drastically different basic types of graphical data
(internal graphical states and segments vs. bound VDI
attributes) present some unsettling issues for both the
implementors and users of metafiles, These issue are

discussed in detail in later sections.

3. The Design of The Implementation

The portion of the Graphics Kernel System Annex E
metafile definition [3] that has been implemented, directly
corresponds to the intersection of the GKS Annex E
definition and the CORE proposal for Metafiles[4,5] (see
section 3.1). The portion of the Definition that deals
with the offline storage of segments and the corresponding

state information has not been included.

In the implementation that accompanies this report(Appendix
3), the portion of the GKS metafile system that deals with
bound VDI commands was implemented. What follows is a high
level discussion of the design and philosophy that governed

the implementation. A portion of the structure charts that

were used to develop the design are inecluded in Appendix 1.
These diagrams represent at a high 1level the logical
structure of the Virtual Device Metafile system in the
K.S.U, PASCAL implementation of the Graphics Kernel System.
Appendix 2 contains a break down of a sample metafile which
was generated using the implemented metafile system. This
file contains all of the required definition information,
plus a short listing of VDI c¢ommands in the VDM format,
followed by the trailer item. Appendix 3 contains a listing
of the PASCAL source code which makes up the Virtual Device

Metafile subsystem.

In order to fulfill the GKS specifications the user must be
able to perform operations on metafiles files in the same
manner as other workstations. All GKS workstation states
would have the same effect on the metafile workstation as on
any other user controlled workstation. Delayed output of
graphical primitives would also be delayed in being output
to the metafile in a manner identical to the methods used to
delay output to user controlled workstations. The only
restriction on the metafiles verses any other type of
workstation is that a metafile can not be copen for reading
and writing at the same time. However the metafile c¢an be
repeatedly written to, closed and opened for reading and
then closed and opened for writing again, giving the user a

sense of a read-write metafile, with the exception that no

updates or deletions may made, only additions. The sense of
updates and deletes can be transferred to the user in that
the metafile which was totally rewritten would have the data

that was transformed in an update or delete operation.

The specification of intermal graphical states, segments,
and table indices were excluded as being outside the realm
of a VDI level metafile system. The GKS metafile
specification also includes the capability for a user to
include non-standard VDI data in a standard format. There
is the question (created by the CORE system precedent for
metafiles) of whether the metafile system is the correct
place for the storing of this type of information., This

question is addressed in greater detail in section 3.1.

3.1 Details of the Design

The metafile subsystem can be divided intc two major
portions, the input metafile driver(See Appendix 1 page 25),
and the output metafile driver(See Appendix 1 page 26). Both
drivers have multiple entry points which allow the graphics
package to perform cperations such as: opening a metafile,
closing a metafile, activating a metafile workstation,
deactivating a metafile workstation, adding items to a
metafile, and reading items from the input metafile{Routines
in Appendix 3 on pages 31 - 33, 38&39, 40, 42-846, and 47-

51).

3.1.1 Ihe Output Metafile Driver The output metafile

driver is a reentrant driver, in that the metafile that is
targeted for the operation is inecluded as one of the
parameters to the driver{The mofile parameter of type text
in the metaout routine in Appendix 3, page 47). Using this
design, the metafile subsystem can support an unlimited
number of workstations configured as output metafiles, The
data which is entered into the metafile, is transmitted to
the output metafile driver in the form of VDI commands(The
metaout routine in Appendix 3 on page 47). These VDI
commands are then translated into VDM format and written to

the ocutput medium,

3.1.2 The Input Metafile Driver The input metafile driver

requires that a format definition table be available for
each metafile that is open for input(of tyre metafilehdr,
Appendix 3, page 28). The current implementation allows for
only one such definition table, thus restricting the
graphics system to having only one metafile opened for
input. A simple addition to the system would be to create
the definition table for each metafile workstation when it
is opened, and then pass the definition table as an argument
This would be done in the initmetain routine(Appendix 3,
page U0). The input metafile driver would then ©be
reentrant, and able to support an unlimited number of

workstations configured as input metafiles.

3.2 Net Results of the Implementation Effort

The source files for the implemented metafile system
total some 864 lines of PASCAL source code. All of the VDI
commands that are supported by the K.S5.U. Graphics Kernel
System have been included in the metafile system(see figure

1).

Mapping of K.S.U. primitives to GKS standard

K.S.U. primitive GSX primtive GSM primitive
name number humber
vdiclose: (* gsx #2 , gsm #0 #)
vdielear: (* gsx #3 s gsm #1 ¥)
vdimsg: (* no gsx , gsm #5 %)
vdiline: (% gsx #6 , 83m #11 #)
vdimark: (®* gsx #7 , gsm #12 ¥)
vditext: (# gsx #8 s g3m #13 #)
vdiarea: (® gsx #9 , Esm #1Y4 %)
vdigdp: (¥ gsx #11 s 28m #16 ¥)
vdilinetyrpe: (# gsx #15 , gsm #22 ¥)
vdilinescale: (® gsx #16 s gsm #23 #)
vdilinecolor: (® gsx #17 y 2sm #24 ¥)
vdimarktype: (® gsx 18 s ESm #26 #¥)
vdimarkscale: (* gsx #19 s gsm #27 #)
vdimarkecolor: (# gsx #20 y g3m #28 #)
vdi textfont: (# gsx #21 s £3m #30 ¥)

vditextprec: (¥ no gsx ,gsm #30,now 29%)

vditextecolor: (* gsx #22 , gsm #33 #)

vdichscale: (# gsx #12 s gsm #31 #)

vdievector: (# skip gsx , gsm #34 #)

vditextspace: (*# no gsx , gsm #32 %)

vditextpath: (# no gsx , gsm #35 ¥)

vditextalign: (* no gsx s gsm #36 ¥)
Figure 1

This metafile file system has also adopted the definition of
the VDI 1level interface definition that has been developed

at K.S.U. This could lead to problems in the future when a

- 10 -

standardized VDI is approved, since the standard will surely
be different from previously published VDI specifications.
Since standardization problems and format changes will
occur, the metafile system has been designed to localize the
impact of these change to metafile system itself. This has
been done by isolating the areas of the metafile system that
deal with the individual elements of the VDM format(The
rdmdata and metaout routines in Appendix 3 on pages 42, and
47). This then provides a single location of change when
scme element of the Virtual Device Metafile format changes.
The K.S.U, metafile system can then be used as a translator
between sites wusing a new VDI standard and the 1local

graphics package.

The current implementation will create metafile output as an
active workstation. Multiple metafiles may be defined by
the graphics package as being opened for output. The input
portion of the metafile system may have one metafile open
for input at a time. Both portions of the metafile, input
and output, have been tested and shown to work with the
version of the K,S.U, graphics package that was running at

the time of implementation.

- 1] =

4, Current State Of The Metafile standards

In this section an analysis of the GKS metafile standard
is presented. The major focus will include pointing out
some inconsistencies in the standard, some possible
drawbacks owing to the details of the specification, and a
short description of how the users view of a graphics system

might be impacted by the metafile system.

4.1 A Comparison of The CORE Metafile system to The GKS

Metafile system

In the CORE system GSPC metafile proposal [4], the

metafile system is defined to have the following functions:
1. Be used to transfer "pictures" between two sites.
2., Act as an audit trail of picture development.

3., Make hard-copies of pictures designed in interactive

sessions.
4., Act as an archive.
5. Be a tool for picture verification.
6. Serve as an interface standard.

Also in the picture is a ANSI versiocon of GKS virtual device
Metafile definition[2]. This proposal maps very neatly in

concept to the GKS Annex E proposal, only differing in minor

- 12 =

syntactical areas. For the purpose of this paper the ANSI
version of GKS and the formal GKS proposal will be
considered to encompass the same goals and principals.
However some of the differemce between the CORE retafile
proposal and the GKS metafile proposal are due to the
different philosophical base on which they founded. In the
CORE proposal the metafile iﬁself is the device standard,
while in GKS the VDI is the standard, with the Virtual
Device Metafile only being a standardized method of storing

VDI commands.

In the CORE metafile system the idea of having any segment
data is strictly forbidden. The CORE metafile is only to
serve as a semi-permanent storage of deviece and graphics
package independent information. Under the GKS
specification the metafile system is designed to perform the
6 functions that were listed in the CORE systems GSPC
metafile proposal. In addition the «concept of segment

information being stored in the metafile is introduced.

4.1.1 TIhe Suitability of Storing Bound Images with Segment
Storage In GES the idea of putting the segment information
into the metafile system comes from the concept of not
having an explicit method of storing any segments, or
general status information from workstation session to
another, In order to come up with a reasonably portable

method with-in GES type enviromments the metafile system was

-]2 -

chosen,

The concept of having an implementation independent segment
store in GKS 1is highly desirable. However it seems a bit
unwieldy to combine that concept with the virtual device
independent data that is stored in the Mtraditional"
metafile system. By combining the two, the graphics package
transparency that was present in the CORE GSPC proposal is
lost. The user is now limited in the scope of where they
can transfer information. For example, no longer can the
user send a picture to a system that does not have a
graphics package, but which understands VDI, without risking
the occurrence of segment defining attributes being in the
metafile. The security of the segment storage is also
compromised under the GKS proposal. In many instances a
finished picture may be the only data that the user wants to
transfer. The individual components that comprise the
picture many be of separate value, and need to be
safeguarded. Since the CGKS metafile combines the two
elements in one storage medium, the user may have to go to
unreasonable lengths to separate the two into separate

metafiles.

4,1.2 Metafile Formats In the standard definition of the
Virtual Device Metafile there exists a multitude cof
different formats that may be wused to specify the same

information. The implementor of a metafile system in a

- 14 -

graphics package has virtwally a free hand in how the data
is to be represented. The formats vary from different
binary permutations, to partial binary and ASCII

representations, to all ASCII (or EBCDIC) representations.

While this extreme variability of formats may at first seem
to be a boon to the user community, it places an
unreasonable expense on the development of a graphics
package, when a smaller subset could represent the same
information without 1losing any flexibility or site
independence. Multiple formats increase the size and
complexity of a graphics package, a price the user
eventually bhas to pay. When a language such as PASCAL is
used an additional burden is placed on the graphiecs system,
in that the package itself must be overly concerned with the
external representation of the data in order to aveid type
checking errors. It would be ideal for the metafile to be
configured such that the matural processing facilities of
the language being used could handle the necessary
conversions. This proliferation of formats is the major

short coming of the GKS Virtual Device Metafile System.

5. Geperal Analysis of The GES Virtual Device Metafile

The GKS Virtual Device Metafile System presents a
complete package of passive online storage facilities to the

user. The ability to add data in a device independent

- 15 =

format in a timely fashion, as well as the ability to
display portions of a metafile on command, are powerful
tools. These powerful tools present the implementor of a
graphics package with some interesting problems that must be
solved in a reasonable manner in order for a device
independent metafile to be a significant adyantage for the

user.

The specification of the definition of a metafile contains
Jjust about every conceivable combination of formats and data
types imaginable. There has been an effort to provide
enough general data types to please everyone involved in the
specification work. While this generality provides a very
versatile tool, it also greatly increases the complexity and
expense of the software which implements the metafile
system. This expense of variability contradiects the
standard ideal, in that no generalized subset exists that
provides the necessary functionmality. Instead the result
has been that all formats have been provided for within a

specific framework,

The final factor one must consider when evaluating the GKS
virtual device metafile system, is the gquestion of whether
the metafile can do what it was intended to. In this
respect one can only conclude that the metafile system is a
success, and a significant step towards the definition and

acceptance of a graphic standard.

- 16 =

5.1 The General Usefulness of The GKS Virtual Device

Metafile

The usefulness of having a capability for transferring
images between different locations has been proven by
graphics systems that have come before GKS[6,11]. The major
concern of the user in the GKS virtual device metafile
system is for the provision of a tool which can be wused as
an active tool in the creative process of computer generated
graphics, as well as a means for storing final results. In
this context the metafile itself seems to have exceeded the

capabilities of the Graphics Kernel System itself,
5.2 GES in an Interactive Enviromment

Perhaps the major short coming in the GKS metafile
proposal, is the non-support of the interactive
enwiroment{13,14,15,16]. The metafile makes no distinction
between the users responses to solicited input that does not
directly map to the normalized data which is eventually
displayed on the screen. A good example would be the data
representation of an image generated by a light pen, or
other similar device. The resulting stream of point
definitions is not weasily represented in a metafile.
Another major problem is the inability to edit the metafile.
As a user interacts with a system mistakes are made and

corrected. It is usually not the wish of the user for the

w T -

mistake to remain as a part of the permanent record of the

graphics session.

5.3 The Virtual Device Interface and a Metafile System

The VDI specification determines what level of
abstraction is used in the Virtual Device Metafile. That
level has been determined to be the point at which hardware
dependent levels lie directly below the current level. For
the metafile file this creates the opportunity to devise a
system that can be independent from the display devices
which will be used, but that can also be independent froam

the graphics system which was used to create the image.

6. Conclusions

The Virtual Device Metafile, when viewed in the context
of the Graphics Kernel system, provides a working set of
good features. The Virtual Device Metafile follows as a
logical extension of the VDI specification. The Virtual
Device Metafile needs to make a clear distinction between
VDI type commands, and the abstract relations of segnents,
and other workstation independent information. An entirely
different form of metafile, possibly with the same physical
structure, should be defined to store segment data. The
Virtual Device Metafile specification should be adopted with

2 exceptions. The multiple variations in formats should be

- 18 -

restricted to a reasonable subset that implements the
features needed but removes duplication. The other
restriction is to insure that the idea of using a metafile
for segment storage is not present in a GKS VDM

specification.

The VDI specification solves the current problem of the
proliferation of different types of graphics hardware. A
standardized interface now would greatly reduce the
difficulty of implementing a standard metafile. The Virtual
Device Interface definition fills the immediate need in this

area, and provides a firm base for future development.

The utility of the Virtual Device Metafile system under the
Graphics Eernel System is closely tied to the
characteristics of workstations in the Graphics Kernel
System, Since a metafile is considered a workstation under
the functional description of GKS, all of the benefits and
restrictions of the workstation concept in GKS apply to the
Virtual Device Metafile. To complete a standard in a
reasonable time period GKS is designed to function in only 2
dimensions. This restriction reduces the utility of GEKS.
GKS is written in a way which reguires every user to have
detailed knowledge of the internals of the system. It 1is
very difficult for a user to maintain only high level
knowledge of the system and still be able to utilize most of

the functionality of Virtual Device Metafile[12]. This fact

- 19 -

becomes even more apparent when the metafile from GKS is
compared to¢ the CORE GSPC metafile proposal. In the GSPC
proposal the user 1is isolated by a layered software
approach, which removes the requirement that the user know

the details of the lower levels of the software.

7. Possible additions to the Graphics Kernel Systea

Standard

What follows are a few ideas that in my opinion would
greatly increase the utility of GKS, and the metafile
system, and remove many of the possible obstacles that may

slow their acceptance as the graphies standard.

GEKS peeds to have the concept of 3 dimension returned to it.
This is essential because of the growing use and
sophistication of computer generated images. It also needs
to clean up the interface to the user, providing a higher
level of abstraction to the user, and reducing the amount of
needless detail that user must concern themselves with. The
new user interface should be concerned with both the
productivity increases that business is currently demanding,
as well as with the concerns of user groups which have to
use with systems on a day to day basis. A great improvement
would be to include features that are designed to increase
the users power over segments. This would enhance the

utility of GKS in interactive emviromments, such as CAD/CAM,

- 20 -

and animation.

& 91 =

[1] Graphiecs Kernel System (GKS) Funetional Desecription,

Draft International Standard ISO/DIS 7942, Nov. 14, 1982.

[2] Draft Proposed American National Standard for the

Virtual Device Metafile, Aug. 13, 1982.

[3] Proposal for an ANSI X3 Standards Project for the

Computer Graphics Virtual Device Interface, Aug. 27, 1982.

[4] "The GSPC Metafile Proposal",Status Report of the
Graphic Standards Planning Committee, Computer Graphics,

Volume 13, Number 3, August 1976.

[5] "A Response to the 1977 GSPC Core Graphics System",
Deborah u. Cahn, te. al., Computer Graphics, Vol. 13, Neo. 2,

Aug., 1979, pp. 57-62.

[6] PGPGS A Device-Independent General Purpose Graphic
System for Stand-alone and Satellite Graphies",L. C.

Caruthers, et. al., pp. 112-119.

[7] "The GKS Impact on Graphics Standardization", Peter R.
Bono, Computer Graphics World, Vol. 5, No. 9, Sept., 1982,

p. 47.

(8] Principles of Interactive Computer Graphics Robert F.

Sproull, 2nd Ed., 1979, McGraw-Eill, Inc., New York. Chap

= 98 o

27: Device-Independent Graphics Systems

[9] Fundamentals of Interactive Computer Graphics Andries

Van Dam, 1982, Addison-Wesley Publishing Co., Reading, liass.

[10] "The Workstation Concept of GKS and the Resulting
Conceptional Differences to the GSPC Core System", J.
Encarnacao, et. al., Proceedings of SIGGRAPH'80 in Computer

Graphics, Vol. 14, No. 2, July 1980, pp. 226-230.

[11] "A Metafile for Efficient Sequential and Random Display
of Graphics", Theodore N. Reed, Froceedings of SIGGRAPH'82

in Computer Graphies, Vol. 16, No. 3, July, 1982, pp. 39-43.

[12] "Some Criticisms of the Graphics Kernel System (GKS)",
P, Buttuls, Computer Graphiecs, Vol. 15, No. U, Dec., 1981,

pp. 302-305,

[13] "Device Independent and Decentralized Graphic System",
Weliss Guttmann, Computer Graphics, Vol. 13, No. 4, Feb.,

1980, pp. 288=-302.

[14] "The Graphical Kernel System (GKS). The Standard for
Computer Graphics Proposed by the German Institute for

Standardization (DIN)".

[15] "Implementing Standard Device-Independent Graphies",
James R. Warner and Nikolaus J. Kiefhaber, Mini-Micro

Systems, July, 1982, pp. 201=208.

< 93 =

[16] "Implementation of the Core Graphics System GKS in a
Distributed Graphics Enviromment", Peter Wisskirchen, et.
al., Proceedings of the International Conference on

Interactive Techniques in Computer Aided Design, 1978, pp.

249-254,

- 24 -

Appendix 1
| File ! Data | { Data | End of !
File := | Header| Item] .eeeeenne eese) Item! File |
| Item | Data !
Data Item := | Header | Fields |
I | Identification | Length of !
Item Header := {GKSM | Number ! Data Fields |

Format of a Metafile

This figure specifies the logical layout of the GKS Virtual
Device Metafile. The complete specification of all of the
data types can be found on pages 259-268 of the GKS
Specification Annex E[1]. The metafile is decomposed into
the header, a repeating field which is the data item, and
the end of file marker. The header is defined in Appendix 3
on page 29 as the PASCAL type metafilehdr.

The data item consists of the item header and then variable
fields which are determined by the item header. The item
header is read in the rdmtype routine(Appendix 3, page 41).
The rdmdata routine reads in the data items(Appendix 3 page
42). 1In the vdimsg case the length of the message is read
in. Using this value the contents of the message is read
into the vdiparm record to be returned to the user.

- B

- e - — —— = - - -

- ———— — ———— -

........ / N i i
/ \
|Read] ICycle on I
| Header | i User Request|
I \==e 7] \mmm—————
I \ / \
| cmemmemmmm—me mmmmmme——ee e
| |Generate i |Read Item| |Read |
] | Code Table] | Header | | Item|
1
R i Sy
| -/ T \
! ————fmm eeceamecmceaa-
I IMatch! Decode)
\ | GKSM| | Item Header|
\ T W P
\ H /
\ i /
5«
] 1 1
|Decode | IDecode | iDecode |
| Integer| ! Real | | Text |

Structure Chart for the Meta-in Driver

- 26 =

-------- / R
/ | \
IWrite ! ICyele on | Write !
| Headers| | Vdi. omdl | Trailer !
! -—=/ \m——w
i / \
! sEscEsssEeRs | eeresesessa
i |Encode Item| |Encode Data|
! | Header | | Header H
! ———m—m——m———e meeeee———————
| | \ / \
t ! \ / L p——
| | \ / \
| mmm—————— \ I meemmee-
| |Encode | \ | {Encode |
i ! Text | \ H ! Real |
H ———————— \ i eeem——
\ o
A o
-------------- P
A
|Encode !
| Integer|

Structure Chart for Meta-out Driver

byte |

address|

0000000

0000054
0000064
0000100
0000106
0000120

0000132
0000141

goooz12
0000221

0000275
0000301

00600320

= BT =

Appendix 2
Character dump of a Metafile

Character values

/% header information &/
GKSMESU_GKS_GRAPHICS_PACKAGE META FILE

yy/ mm/dd /% date information &/
010202000306 /% file representation #/
010200 /#* definitions &/
0000000000

0000032000

GEKO5041 /¥ message item, lenz41 &/
hello™ there™meta~file™~~~~~"" E Saintatatatate 4~
GKO5041 /* message item, len=41 #/
hello™ there meta~file™~~~=""~ K St 4~
GK11 /% polyline primitive %/
002001002003005 /% point definitions &/
GKOO /% end of file item ®/

- 28 -

Appendix 3
(#
]
)
£
' METAFILE SUBSYSTEM constant definitions
3
& Written by Steve Trachsel,
& Summer 1983.
#
#
#
)

jconst cversion 1
;gksmdef 'GKSM!
smheadercont = 'KSU GKS GRAPHICS PACKAGE META FILE
;jmdatacont = 'yy/mm/dd’
jmversion = '01°
jmgklen = '02*

jvmgklen = 2
jmitlen = '02°
;jvitlen = 2
;smdatlen = '00°
;vdatlen = 0
;smintlen = 03!
;vintlen = 3
jmrealen = '06°
;vrealen = 6
smintype = '01°
svintype = 1
;mrtype = '02!
;vrtype = 2
;mzero = '00000000000¢
ivzero = 0

;mone = '00000032000!

;vone = 32000

;headcont

= '"GKSMESU GKS GRAPHICS PACKAGE META FILE yy/mm/dd’
jheadeont1 = '01020200030601020000000000000000032000?

itype

metafilehdr =

record

gksstr : array [1..4] of char

; strcomment : array [1..40] of char
date : array [1..8] of char
version : integer
lengksm : integer
lopcode : integer
lenbytesfld : integer
lenint : integer

we Wa ME we W we

- 29 -

lenreal : integer
decrbin : integer
roiforreal : integer
zero : integer

one : integer

end (¥ record metafilehdr #¥)

we we we e e

;jwsname = 1,.30

e Ws we we

= 30 =

METAFILE SUBSYSTEM Variable definitions

Written by Steve Trachsel,
Summer 1983.

metahdr : metafilehdr
opcode : vdicmdtype
linbytes : integer
in_init : boolean

-~ 3T =

(lIl!l!iI!lIlllliii!**i****iilliEi**ﬂiiiiiﬁiﬁiﬂiiiiiﬁiiﬁiiﬁﬂ-ﬁii
#
]]
i METAFILE SCURCE CODE &
& WRITTEN BY STEVEN W. TRACHSEL &
FOR MASTERS PRGJECT IMPLEMENTATION &
* SUMMER SESSION 1983 #
] #
#
] 1
8 #
l!ll!lllll!lliilllllilill'll*'li'lil-iiilii‘u!iiiiiiiiiiiiiiiiii%ii*)
(l
&

#

*

® METAFILE SUBSYSTEM procedure : initmetaout
¥

* Written by Steve Trachsel,

® Summer 1983.

]

#

%

§)

; procedure initmetaout (var ifile : text)
jvar hdr :array [1..52] of char
;hdr1 :array [1..38] of char
;X @ integer
;begin
hdr := headcont
; for x:=1 to 52
do :
writechar(ifile, hdr[x])
; hdr1 := headconti
; for x:=1 to 38
do
writechar(ifile,hdri1[x]1)
end

2

METAFILE SUBSYSTEM procedure : closemetaout

Written by Steve Trachsel,
Summer 1983.

WM M M o Me sk sk ik

¥)
;jprocedure closemetacut(var ifile :text)
jvar x:integer

;echr :array [1..4] of char
;begin

chr := 'GKOO'

; for x:=1 to 4 do

writechar(ifile, chr[x])

end

=33 =

(#

&

&

&

* METAFILE SUBSYSTEM procedure : closemetain
]

* Written by Steve Trachsel,

& Summer 1983.

]

#

%)
;procedure closemetain(var ifile :text)
;begin
in init := FALSE
end

- 3l -

(#

H

2

#

L METAFILE SUBSYSTEM procedure : fwrite
2

% Written by Steve Trachsel,
* Summer 1983.

®

#

3

')

;procedure fwrite(var ifile: text; value : integer;
format : integer)
;var str: array[1..11] of char
;jcount, temp : integer
;temvalue : integer
sbegin
temvalue := value
;for count := 11 downto (12-format)
do begin
strlcount] := chr{(temvalue mod 10)
+ ord('0'"))
; temvalue := temvalue div 10
end
stemp := 12 - format
;for count := temp to 11
do begin
writechar(ifile, strlcount])
end
end

- 35 =

(#

#

#

#

¥ METAFILE SUBSYSTEM procedure : int_real
B

. Written by Steve Trachsel,

" Summer 1983.

#

®

»)
;procedure int real(intvalue:integer; var result :real;
zero:integer; one :integer)
jvar inr : real
; Zr: real
;onr :real
;begin
inr := conv(intvalue)
;zr := conv(zero)
;onr := conv(one)
jresult := (inr - zr) / onr
end

= 36 =

(2

&

-

#

& METAFILE SUBSYSTEM procedure : real_int
#

¥ Written by Steve Trachsel,
& Summer 1983.

#

-

#

£)

;jprocedure real_int(var int:integer; result :real;
zero:integer; one :integer)
;var tem : real
; 2r: real
;onr :real

;begin
zr := conv(zero)
jonr := conv(one)
stem := (result * onr) + zr
;int := trunc(tem)

end

B oo o o M M W ak ik o

%)

— BT =

METAFILE SUBSYSTEM procedure : fread

Written by Steve Trachsel,
Summer 1983.

;procedure fread(var ifile : text; var value: integer;

;var

;begin

end

format : integer; var h_errcode : boclean)

count : integer
;power : integer
;atring : array [1..11] of char

value:= 0
;power:= 1
;b_errcode:= FALSE

;if (format <> 0) and (i _init = TRUE) then
begin
sfor count:= 1 to format
do
if not eof(ifile) then
begin
readchar(ifile,
string[count])
end
;for count := format downto 1
do begin
value := value +
(ord(string[count])-
ord('0')) # power
;power := power ¥1(0
end
end

= 38 =

METAFILE SUBSYSTEM procedure : vdiread

Written by Steve Trachsel,
Summer 1983.

WO W o ok N W W K

#)
iprocedure vdiread(var ifile : text; var value: vdicmdtype;
format : integer; var b_errcode : boolean)
jvar temp :integer
;jpower : integer
sstring : array [1..11] of char
;begin
temp:= 0
;power:= 1
;b_errcode:= FALSE
;fread (ifile, temp, format, h_errcode)
;jcase temp of

0: begin

value := vdiclose

end(® gsx #2 , gsm #0 #)
;5: begin

value := vdimsg

end(® no gsx, gsm #5 #)
;11: begin

value := vdiline

end(® gsx #6, gsm #11 #)
312: begin

value := vdimark

end(® gsx #7, gsm #12 %)
313: begin

value := vditext

end(® gsx #8, gsm #13 ®)
;16 : begin

value :=vdigdp

end(® gsx #11, gsm #16 ¥)
;22: begin

value :=vdilinetype

end(® gsx #15, gsm #22 %)
;23: begin

value :=vdilinescale

end(®* gsx #16, gsm #23 ¥)
;24: begin

value :=vdilinecolor

end(® gsx #17, gsm #24 &)

- 39 -

;26: begin

value :=vdimarktype

end(® gsx #18, zsm #26 #)
327: begin

value :=vdimarkscale

end(* gsx #19, gsm #27 #)
;28: begin

value :=vdimarkcolor

end(¥ gsx #20, gsm #28 #)
;29: begin

value :=vditextfont

end(*gsx #21,gsm for now 29%)
330: begin

value :=vditextprec

end(*no gsx , gsm 30 #)
;33: begin

value :=vditextcolor

end(* gsx #22, gsm #33 #)
;31: begin

value :=vdichscale

end(* gsx #12, gsm #31 #)
:34: begin

value :=vdicvector

end(® skip gsx, gsm #34 #)
;32: begin

value :=vditextspace

end(®* no gsx , gsm #32 ¥)
335: begin

value :=vditextpath

end(* no gsx , gsm #35 %)
;36: begin

value :=vditextalign

end(*no gsx, gsm #36 *)
selse: begin

end
end
end

- 4o -

(%
H
#
#
¥ METAFILE SUBSYSTEM procedure : initmetain
L]
& Written by Steve Trachsel,
L Summer 1983.
#
]
]
®)
; procedure initmetain

; var

count : integer

; b_errcode : boolean
; begin (¥ initmetain #)

in init := true

sWwith metahdr do
begin (* read commands and issue gks calls #)

gksstr :

; for count := 1 to 4

do
readchar(mifile, gksstr[count])

; for count := 1 to 40

do
readchar(mifile, strecomment[count])

;for count := 1 to 8

count
fread
fread
fread
fread
fread
fread
fread
fread
count
fread
; fread
end (* with ¥)

9 e We WE WE WE WMe We Me Wa We we

end

de

readchar(mifile, datel[count])
:=2
(mifile, version, count,b_errcode)
(mifile, lengksm, count, b_errcode)
(mifile, lopcode, count, b_errcode)
(mifile, lenbytesfld, count, b _errcode)
(mifile, lenint, count, h_errcode)
(mifile, lenreal, count, b_errccde)
(mifile, decrbin, count, b_errcode)
(mifile, roiforreal, count, b _errcode)
=11
(mifile,zero, count,h_errcode)
{(mifile, one, count, b_errcode)

- 41 -

(#

)

#

)

¥ METAFILE SUBSYSTEM procedure : rdmtype
]

& Written by Steve Trachsel,
Summer 1983.

]

#

&

*)

: procedure rdmtype (wid : wsname; var kind : vdicmdtype)
;var count : integer
; b_errcode :boolean
;begin
h_errcode := false
;with metahdr do
begin (* read vdiemd type commands ¥)
gksstr := ! !
;1f lengksm <> 0 then
for count := 1 to lengksm
do if not eof(mifile) then
begin
readchar(mifile, gksstr[count])
end
; vdiread (mifile, kind,lopcode, b _errcode)
(¥ assign it to global var now #)
; opcode := kind
end
end

e s W0 ol M M M N ok e it ok

)

; procedure rdmdata (wid

;var ncoord : integer
;b_errcode
scount : integer
stemp : integer

;begin
h_errcode := false
swith metahdr do
begin

METAFILE SUBSYSTEM procedure

: Wsname; var rec

: boolean

- 42 -

¢ rdmdata

Written by Steve Trachsel,
Summer 1983.

: vdiparm)

if lenbytesfld <> 0 then
fread (mifile, linbytes,

jcase opcode of

lenby tesfld, b_errcode)

vdiclose:begin

;jvdiclear:

;vdimsg:

;vdiline:

rec. cmdeode ;= vdiclose
end(# gsx #2 , gsm #0 #¥)
begin
rec. cmdcode := vdiclear
end(® gsx #3, gsm #1 #)
begin
rec, cmdcode := vdimsg
;fread(mifile,
ncoord, lenint, h_errcode)
jfor count :=1 to ncoord
do
readchar{mifile,
rec.msglcount])
end(® no gsx, gsm #5 ¥)
begin
rec.cmdcode := vdiline
; fread (mifile, ncoord,
lenint, b _errcode)
srec. npts := ncoord
;3 for count := 1 to ncoord
do
begin (* read coords #)
; fread (mifile, temp,
lenint, b _errcode)
; rec.ptslcount].ix :=

= i3 =

temp
; fread (mifile, temp,
lenint, b _errcode)
jrec.ptslcount].iy:=temp
end (* read coords #)
end(® gsx #6, gsm #11 #)
yvdimark: begin
rec. cmdcode := vdimark
; fread (mifile, ncoord,
lenint, b_errcode)
srec.npts := ncoord
; for count := 1 to ncoord
do
begin(*read coords¥)
; fread (mifile, temp,
lenint, b_errcode)
;rec.ptslcount].ix:=temp
; fread (mifile, temp,
lenint, b _errcode)
;jrec.ptslcount]. iy :=temp
end (¥ read coords #)
end(# gsx #7, gsm #12 %)
;jvditext: begin
rec. cmdcode := vditext
; fread (mifile, temp,
lenint, b _errcode)
; rec.textpos.ix := temp
; fread (mifile, temp,
lenint, h_errcode)
; rec.textpos.iy := temp
; fread (mifile, temp,
lenint, h_errcode)
; rec.numchar := temp
;for count := 1 to temp
do
readchar(mifile,
rec. stringlcount])
end(® gsx #8, gsm #13 #)
;vdiarea: begin
rec, cmdcode := vdiarea
; fread (mifile, ncoord,
lenint, b_errcode)
;jrec,. npts := ncoord
; for count := 1 to ncoord
do
begin (# read coords #)
; fread (mifile,
temp, lenint, b_errcode)
; rec.ptslcount].ix := temp
; fread (mifile, temp,
lenint, b_errcode)

- 44 -

;vdigdp:

svdilinetype:

;vdilinescale:

sjvdilinecolor:

;vdimarktype:

;vdimarkscale:

: reec.ptslcount].iy := temp
end (* read coords ¥)
end(® gsx #9, gsm #14 #)
begin
rec. cmdcode := vdigdp
; fread (mifile, ncoord,
lenint, b_errcode)
jrec. gdpemd := ncoord
; fread (mifile, temp,
lenint, h_errcode)
; rec,numgdppts = temp
; for count := 1 to temp
do
begin (* read coords #)
; fread (mifile, temp,lenint,
b_errcode)
srec. gdppts[count].ix:=temp
; fread (mifile, temp,lenint,
b_errcode)
;rec, gdpptslcount].iy:=temp
end (* read coords #)
end(* gsx #11, gsm #16 #)
begin
rec. cmdeode := vdilinetype
; fread (mifile, temp,lenint
s b_errcode)
srec.kind := temp
end(* gsx #15, gsm #22 ¥)
begin
rec. cmdecode := vdilinescale
: fread (mifile, temp,lenint
,b_errcode)
jrec. scale := temp
end(* gsx #16, gsm #23 #)
begin
rec. cmdeode := vdilinecolor
; fread (mifile, temp,lenint
s b_errcode)
jrec.color := temp
end(® gsx #17, gsm #24 #)
begin
rec.cmdcode := vdimarktype
; fread (mifile, temp,lenint
y b_errcode)
srec.kind := temp
end(¥* gsx #18, gsm #26 #)
begin
rec. cmdecode := vdimarkscale
; fread (mifile, temp,lenint
,b_errcode)
irec.scale := temp

svdimarkecolor:

;vditextfont:

;vditextprec:

;vditextcolor:

;jvdichscale:

;jvdicvector:

svditextspace:

- U5

end(¥ gsx #19, gsm #27 #)
begin
rec. cmdeode := vdimarkeolor
; fread (mifile, temp,lenint
, b_errcode)
jrec.color := temp
end(® gsx #20, gsm #28 %)
begin
rec. cmdeode := vditextfont
; fread (mifile, temp, lenint
,b_errcode)
;rec.kind := temp
end(#® gsx #21, gsm #30 #)
begin
rec.cmdeode := vditextprec
3 fread (mifile, temp,lenint
, b_errcode)
;jrec.prec := temp
end(*no gsx,gsm #30,now 29%)
begin
rec. ecmdcode := vditextcolor
; fread (mifile, temp,lenint
, b_errcode)
jrec.color := temp
end(® gsx #22, gsm #33 ¥)
begin
rec, cmdcode := vdichscale
; fread (mifile, temp,lenint
, b_errcode)
jrec.scale := temp
end(® gsx #12, gsm #31 #)
begin
rec. cmdcode := vdicvector
; fread (mifile, temp, lenint
, b_errcode)
rec. htvec,ix := temp
fread (mifile, temp, lenint
,b_errcode)
; rec. htvec. iy := temp
; fread (mifile, temp,lenint
, b_errcode)
; rec.wdvec, ix := temp
; fread (mifile, temp,lenint
, b_errcode)
; rec.wdvec, iy := temp
end(* skip gsx, gsm #34 #)
begin
rec. cmdcode := vditextspace
; fread (mifile, temp,lenint
, b_errcode)
; rec.space := temp

-y we

end

end

- 46 -

;jvditextpath:

ivditextalign:

jelse:
end (¥ case #)

end(® no gsx , gsm #32 %)
begin
rec. cmdcode := vditextpath
; fread (mifile, temp,lenint
s b_errcode)

; rec.path := temp
end(* no gsx , gsm #35 #)
begin

rec.cmdcode := vditextalign
; fread (mifile, temp,lenint
,b_errcode)

; rec.h := temp

fread (mifile, temp,lenint
,b_errcode)

; rec, v := temp

end(®* no gsx , gsm #36 #)

begin end

-

- 47 -

(®

*

#

#

i METAFILE SUBSYSTEM procedure : metaout
2

& Written by Steve Trachsel,
& Summer 1983.

2

¥

]

¥)
jprocedure metaout(var mofile: text;

vdicommand: vdiemdtype;rec:vdiparm)
jvar count : integer
;temp : integer
;jncoord :integer
;buf: array[1..4] of char
;begin
buf := gksmdef
jtemp :=
;y for count :=1 to temp
do
writechar(mofile, buf{count])
sjcase vdicommand of
vdiclose:begin
temp := 0
;fwrite(mofile, temp,vitlen)
end(® gax #2 , gsm #0 #)
;vdiclear: begin
temp :=
; fwrite{mofile, temp, vitlen)
end(¥ gsx #3, gsm #1 ¥)
svdimsg: begin
temp := 5
; fwrite(mofile, temp, vitlen)
jtemp := maxstring
;fwrite(mofile, temp, vintlen)
;for count :=1 to temp
do
writechar(mofile,
rec.msg{count])
end(® no gsx, gsm #5 %)
;vdiline: begin
temp := 11
; fwrite(mofile, temp, vitlen)
sneoord := rec.npts
; fwrite (mofile, ncoord,vintlen)
; for count := 1 to necoord
do
begin (% read coords %)

svdimark:

svditext:

jvdiarea:

;vdigdp:

- BB =

;temp:=rec.pts[ecount].ix
; furite (mofile, temp
svintlen)
;temp:=rec. pts[count].iy
; fwrite (mofile, temp
svintlen)
end (¥ read coords ¥)
end(¥® gsx #6, gsm #11 ¥)
begin
temp :=12
; furite(mofile, temp, vitlen)
jnecoord := ree,npts
; fwrite (mofile, ncoord,vintlen)
; for count := 1 to ncoord
do
begin (* read coords #)
stemp 1= rec.ptslcount].ix
;sfwrite(mofile, temp, vintlen)
stemp := rec.ptsf[count].iy
;fwrite(mofile, temp, vintlen)
end
end(¥® gsx #7, gsm #12 %)
begin
temp :=13
; fwrite(mofile, temp, vitlen)
stemp := rec.textpos.ix
; fwrite (mofile, temp,vintlen)
;jtemp := rec. textpos. iy
; fwrite (mofile, temp,vintlen)
; temp := rec,numchar
;for count:= 1 to temp
do
writechar(mofile,
rec. string[count])
end(®* gsx #8, gsm #13 #)
begin
temp :=14
; fwrite(mofile, temp, vitlen)
;jncoord := rec.npts
s furite (mofile, ncoord,vintlen)
; for count := 1 to necoord
do
begin (¥ read coords ¥)
;temp := rec.pts[count].ix
;fwrite(mofile, temp, vintlen)
jtemp := rec.pts[count].iy
;fwrite(mofile, temp, vintlen)
end
end(* gsx #9, gsm #14 #)
begin
temp :=16

svdilinetype:

- 49 -

sfwrite(mofile, temp, vitlen)

sneoord := rec.gdpomd

;fwrite(mofile, ncoord, vintlen)

jtemp := rec.numgdppts

;fwrite (mofile, temp,vintlen)

;for count := 1 to temp

do
begin (* read coords #)
;temp:=rec. gdpptslcount].ix
;furite (mofile,temp,vintlen)
;temp:=rec.gdpptslcount].iy
sfwrite (mofile, temp,vintlen)
end (¥ read coords #)

end(® gsx #11, gsm #16 #)
begin

temp := 22

; fwrite(mofile, temp, vitlen)

; temp := rec.kind

ifwrite (mofile, temp, vintlen)

end(® gsx #15, gsm #22 ¥)

jvdilinescale: begin

temp := 23

; furite(mofile, temp, vitlen)
; temp := rec.scale

;furite (mofile, temp, vintlen)
end(® gsx #16, gsm #23 #)

;vdilinecolor: begin

;vdimarktype:

temp := 24

; fwrite(mofile, temp, vitlen)

; temp := rec.color

;fwrite (mofile, temp, vintlen)

end(® gsx #17, gsm #24 #)
begin

temp := 26

; furite(mofile, temp, vitlen)

; temp := rec.kind

;fwrite (mofile, temp, vintlen)

end(® gsx #18, gsm #26 #)

;vdimarkscale: begin

temp := 27

; fwrite(mofile, temp, vitlen)
; temp := rec.scale

;fwrite (mofile, temp, vintlen)
end(® gsx #19, gsm #27 &)

jvdimarkecolor: begin

jvditextfont:

temp := 28

; fwrite{mofile, temp, vitlen)

; temp := rec.color

;furite (mofile, temp, vintlen)

end(® gsx #20, gsm #28 ¥)
begin

= B =

temp := 29

; fwrite(mofile, temp, vitlen)

; temp := rec.kind

;fwrite (mofile, temp, vintlen)

end(®*gsx #21,gsm #30,fornow 29%)
;vditextprec: begin

temp :=30

; fwrite(mofile, temp, vitlen)

; temp := rec.prec

;fwrite (mofile, temp, vintlen)

end(® no gsx , gsm #30 #)
svditextcolor: begin

temp := 33

; fwrite(mofile, temp, vitlen)

; temp := rec.color

;fwrite (mofile, temp, vintlen)

end(¥ gsx #22, gsm #33 #)
;vdichscale: begin

temp := 31

; fwrite(mofile, temp, vitlen)

; temp := rec.scale

;fwrite(mofile, temp, vintlen)

end(* gsx #12, gsm #31 #)
;jvdicvector: begin

temp := 34

; furite(mofile, temp, vitlen)

; temp := rec.htvec.ix

; furite (mofile, temp,vintlen)

; temp := rec.htvec. iy

; furite (mofile, temp,vintlen)

; temp := rec.wdvec, ix

; fwrite (mofile, temp,vintlen)

; temp := rec.wdvec.iy

; fwrite (mofile, temp,vintlen)

end(® skip gsx, gsm #34 #)
;vditextspace: begin

temp := 32

; fwrite(mofile, temp, vitlen)

jtemp := rec.space

;fwrite(mofile, temp, vintlen)

end(* no gsx , gsm #32 #)
;vditextpath: begin

temp := 35

; furite(mofile, temp, vitlen)

;jtemp := rec.path

;fwrite(mofile, temp, vintlen)

end(* no gsx , gsm #35 #)
;vditextalign: begin

temp := 36

;fwrite(mofile, temp, vitlen)

;temp := rec.h

.

;fwrite(mofile, temp, vintlen)
jtemp := rec.v
;furite(mofile, temp, vintlen)
end(® no gsx , gsm #36 ¥)
jelse: begin end
end
end

A GKS VIRTUAL DEVICE INTERFACE META FILE SYSTEM

by

STEVEN W. TRACHSEL

B. S., The Ohio State University, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in parital fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

ABETRACT

This report presents a PASCAL implementation of a subset
of the meta-in and the meta-out portions of the Metafile
System described in the Graphics Kernal Standard Annex E.
During the course of implementing the Metafile System a
number of unresolved issues became evident: how the
concept of the meta file is related to GKS as a whole,

how it relates to the CORE graphics standard meta file
system, and how it fulfills the needs of users working

in an interactive graphics enviromment.

