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THE CUMULATIVE RANK SUM TEST:
Theory and Applications

INTRODUCTION

Process control has long been a source of problems in
quality control. For the purposes of this paper, process
control will refer to the means of insuring that a given
procedure, device, or process, is producing within a desired
set of limits. If the limits are exceeded, we want to be
able to detect this as soon as possib;e. It is also desir-
able to be able to determine what, if any, minor changes
have occured and when they occured - this is useful informa-
tion; for example, a new technique might improve/worsen the
process. Therefore, process control implies two functions;
1) to insure that an acceptable level of quality is main-
tained, and 2) to provide a history of the process so that
the effects of minor changes may be analyzed. A series of
solutions to the problem of process control have been proposed
over the years. These include the Shewhart chart, the
sequential probability ratio test and the cumulative sum
control chart.

The first of the control charts, the Shewhart chart

(named for its originator Dr. Walter A. Shewhart), has



become one of the most widely accepted charts in industry

and has served as the model for most of the later proce-
dures. The Shewhart chart, despite being quite simple to
use, has been shown to be a very reliable test (Page, 1961;
Duncan, 1965). The actual chart is just a plot of the sample
meansl. The basic premise of the Shewhart chart is that

even if a process is under control there will be some random
variation in its output. Assuming normality, it is expected
that at least 99% of the observations should lie within three
standard deviations of the process mean (also called the
target value, goal value, or reference value). Since these
variations are plotted on a chart, any systematic wvariation
will gquickly become visible.

As originally introduced, the Shewhart chart was a
simple affair. Two action lines at 3 standard deviations
above and below the process mean line were drawn. The action
lines were so named because if a sample point crossed the
lines the process was to be stopped and the appropriate
action taken (i.e., return the process to within the limits).
The resulting chart was then watched as the sample points
varied about the process mean line (Page, 1961; Duncan, 1965).

Later improvements further enhanced the performance of

the Shewhart chart. Since it is often costly to wait until a

lxij = the jth cbservation from the ith sample, where
i=1,2,3, ..., 3=1, 2, 3, ... n. The chart is just the

plot of (i, ii) .



process is out of control before any action is taken (Page,
1961; Gibra, 1975), warning lines were added to the chart,
usually at the two standard deviation levels. The rules for
interrupting the process were then; if either a point crosses
the action lines or, 1if ny points cross the warning lines

within n., samples then stop. Obviocusly, the location of the

2
warning and action lines as well as the choice of n. and n,

1
would determine the characteristics of this procedure.

The success of the Shewhart chart can be seen in the
number of related charts and tests that have appeared. For
example, (i) for the fraction defective there is a p-chart
(with fixed or variable n) and its associated chi-squared
test. (ii) for the number of défects per unit there is the
c-chart and u-chart with their associated tests. (iii)
there is an Xchart for variatiohs in the sample variances.
(iv) and an R-chart for variations in the ranges of the samples
(In short, if there is an interest in a parameter there is
probably a Shewhart style chart for monitoring it.) {(Page,
1961; Duncan, 1965; Gibra, 1975).

While it might seem that a solution to the problem had
been found, all was not well. A Shewhart chart requires a
relatively large number of samples and is slow to detect
pérsistant changes (particularly i1f they are small). There
are also problems if the changes were infrequent (Page, 1961;
Duncan, 1965; Gibra, 1975; Lucas, 1976). Two further
approaches to this problem of process control were developed

in the late 1940's and the 1950's, the sequential probability



ratio test (Wald, 1947) and the cumulaﬁive sum procedure
(Page, 1954).

It can be seen in the later modifications of the Shew-
hart chart that previous samples began to contribute to the

decision process, e.g., when n sample points cross the

1
warning lines within n samples a corrective action is

2
taken. The next logical step would be to make better use of
previous information in the decision rule. Page (1954) pro-
posed just such a procedure with his first version of the
cumulative sum test. His procedure makes use of not only
the present sample but alsoc looks at the difference bhetween
the present and past samples to see what changes might have
occured. It is interesting to note that his argument expands
the Shewhart chart but also makes use of the work on sequen-
tial probability ratio tests by Wald.

The first procedure proposed by Page was based on the
differences of the sums of all the observations and the
smallest sum of the previous observations (min Sn) .

Let X be the ith observation,

1
then for

we reject the hypothesis of no shift if S -« min 5. > h .
l<i<n
This procedure was converted to a one-sided procedure by

defining:

s ' = max(Si' + xi' o) (1 > 1) ,



and modifying the rejection rule as:
take action if Sn' > h .

This procedure was later modified by Page (1955) to
record the cumulative sums of the deviations of the cbser-

vations from the expected process mean. Thus,

= =

- (Xi - k) , 8, =0

0

"

i=1

and we take action when
S - m%n 8; ? h ,
1sisn
where k 1is the expected process mean.

If the reference value (k) 1s chosen so that it is
slightly larger than the expected level then the cumulative
sum will have a negative trend under the null condition.

Page (1955) suggested that when Sn goes below (0 set

Sn = 0 , thereby producing a one-sided test. Setting the
reference value smaller than the expected level and making

h negative with the corresponding change in the decision

rule will result in a CUSUM test for a decrease in the process
mean. Page attempted to make a two-sided test out of his
procedure by combining a test for a decrease in the process
mean (lower tail test) with a test for an increase in the
process mean (upper tail test). His attempt did not work

out éince he could not find a suitable method for determining

the average run length.



It should be noted that as with any new procedure, new
terms are generated. The Wald sequential probability ratio
test has its A.S.N. (average sample number) and the cumula=-
tive sum charts (CUSUM charts) have their A.R.L. (average run
length). For the purposes of this paper, A.R.L. will be de-
fined as the average number of samples taken before rejection
occurs.

Computing the A.R.L. for a CUSUM procedure initially
caused problems, particularly for the two-sided case (Page,
1961). However, Ewan and Kemp (1960) presented both tables and
a nomogram for calculating an A.R.L. based on the solutions of
integral equations that came out of the Wald test. Their
method of calculating an A.R.L. depends on selecting an appro-
priate A.R.L.(LO) under the null hypothesis and an A.R.L.(Ll)
under the alternate hypothesis. If a reference value is chosen
appropriately close to g (where g 1is the average of the
expected process mean and an unacceptable process mean) then the
A.R.L. for the null hypothesis is near its maximum for a given

L This empirical approximation derived by Ewan and Kemp

L
could also be used to chose the defining characteristics of

a one-sided CUSUM schemez. Another method for approximating
the A.R.L. was derived by Reynolds (1975). This approximation
was derived both from the similarity between the sequential
probability ratio test and CUSUM and by using a Brownian
motion approximation to the CUSUM. An interesting side note

is that the Brownian motion approximation does not reguire

the usual normality assumption.



In a later review paper by Ewan (1963), a method for
computing the A.R.L. (L) was proposed. This method consisted
of summing the A.R.L. (Ll) for a upper level test and the
AsRaLs (Lz) for a lower level test; i.e., L = Ll + L2 :
Two years before Kemp presented his version of the CUSUM
test, Barnard (1959) introduced his modifications to the
CUSUM. Barnard is generally given credit for introducing
the V-mask to the CUSUM. The V-mask is a V shaped rejection
region which is placed over the CUSUM. In application, the
V-mask is a cutout that is physically placed over the graph.
The vertex of the mask is placed a distance d from the
last point. If any of the previous CUSUM points are covered
by the mask, the procedure is considered out of control.
Obviously, the angle of the mask and the distance 4 are
the factors that determine the A.R.L. for this procedure.
Barnard suggested that the choice of d and the angle (28)
should be determined by intelligent "cut and try". He went
on to suggest finding a value, ¢ , which would immediately
signal that the process was out of contreol and using this

term to assist in choosing d and 6 ;

¢ = p(d + a)tan 9§

2Ll =1 + h/(ul - k) , where h is the maximum distance

the CUSUM should be above its minimum, is the unaccept-

H
1
able process mean, and k is the reference value. Thus for

Uy given, Ll h and k can be defined.



where a 1s the horizontal distance between succesive points
and p 1s the scale for converting vertical distance on the
chart to x-units (CUSUMS).

Until the early 1960's, most of the work on the CUSUM
procedures, including the V-mask, had been done in England.
At that time, the CUSUM technique was a popular procedure in
industry primarily because of the advantages it had over the
Shewhart procedure., However, there was a minor problem with
the CUSUM which was its dependence on the assumption of nor-
mality3. Johnson and Leone (1962) published a series of
papers on the CUSUM in the United States. The major impor-
tance of their work was the relationship shown between the
Wald sequential probability ratio test and the CUSUM procedure.
In particular, they developed a series of CUSUM tests for non-
normal cases. The CUSUM V-mask procedures they developed
include a procedure for Poisson variables as well as one for
binomial variables. They also suggested some procedures for
monitoring process variability (based on the sample variance
and range).

The V-mask CUSUM test was not limited to just watching
for small sudden changes in the process mean. Both Lucas
(1973) and Barnard (1959) mention modifying the V-mask so it
becomes more responsive to large changes. The modification

was to make the shape of the V-mask parabeclic at its vertex

3Ewan and Kemp (1962) also developed a CUSUM procedure
for a Poisson variable.



since this would allow a large change to be detected more
guickly. Barnard also brought forth the idea of using the
CUSUM procedure to estimate parameters of the process. While
he did suggest this concept, it did not seem to catch on.

By the late 1960's the CUSUM procedure was widely used
and little new work was being decne. Texts on industrial
statistics, such as Duncan (1965), covered the subject thor-
oughly. Van dobken de Bruyn {1968} wrote a very comprehen~
sive monograph on the CUSUM, which includes thecretical as
well as applied derivations. The CUSUM had developed from
its early stages in 1954 to a rather sophisticated procedure
by the middle 1960's. It incorporated the best features of
its predecessor, the Shewhart chart. Such features as a
physical mask that allowed for testing by people not explicitly
trained in process control4 and an accesible history of the
process made both the Shewhart chart and the CUSUM test very
popular. A good review of the various control procedures is
contained in a paper by Gibra (1975). Numerous tables and
nomograms are available for choosing the parameters of the
V-mask with a desired A.R.L. (Duncan, 1965; Beyer, 19€66). It
seemed that the CUSUM procedure had been develcped to its

fullest potential.

4It can be argued that the action limits and warning lines
of the Shewhart chart are identical in function to the V-mask
of the CUSUM test with respect to the ease of training people
in their proper use. '
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In addition to the CUSUM test, the sequential probability
ratio test, and the Shewhart chart, other procedures have been
proposed. For instance, Sen and Srivastava (1975) proposed a
one-sided test for the change in the process mean. Their
method used a Bayesian test statistic that seemed to perform
as well, if not better, than a more conventional test based
on the maximum likelihood estimator. A more innovative and
practical approach to the problem has been the introduction
of nonparametrics. Rhodes (1960) developed two nonparametric
tests corresponding to the sequential probability ratioc test.
As a nonparametric procedure, his was not encumbered by
potentially unrealistic assumptions and under real world
conditions performed more economically than its parametric
counterpart.

Bakir and Reynolds (1979) proposed a nonparametric test
that could be used for process control that was based on
within-group ranking. A CUSUM type decision rule was used
and like its parametric counterpart, their test could be
related to an earlier sequential test (in this case Rhodes'
procedure). When used in the proper conditions (i.e., the
observations must be taken in groups) this test performs well
but these same conditions are its shortcoming. An interesting
nonparametric CUSUM test was brought forth by McGilchrist and
Woodyer (1975}. While their procedure did not readily lend
itself to monitoring an ongoing process, it does deserve
mention. They used the same basic idea of summing the devia-

tions from their expected value. In their case, the estimate
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of the expected value was the sample median. This forces the
test to be used in a more postmortem fashion.

In his review paper, Gibra brought up some areas in
process control that need further work. One of the points
he made was the unrealistic distributional assumptions that
are made in order to use scome procedures. He also mentioned
that there ought to be a simple technique that can be admin-
istered with ease. The nonparametric test that is introduced
here is a simple procedure that is similar in form to the
V-mask CUSUM. It will be shown to have similar qualities
without some of the more restrictive assumptions of its

parametric parent.



NOTATIONS AND ASSUMPTIONS

Throughout this paper the following notations and
definitions will be used.
Let xi dencte the ith observation from some continuous

distribution. Define Sn to be the sum of these observations,

Xl, Xy, X3, LT Xn' i.e.,
n
Sp = ) Xy
In addition, Sr will denote a partial sum of the Xi
(from 1 to r), where 1 < r < n . The difference, Sn = Sn—r P
is then
n
Spn T Sp-r T n—§+l Ry

The following definitions describe the parameters associated
with the V-mask CUSUM procedures.

s wioa ) The sample size.

K.....The reference value. Traditionally, the value of
k 1is chosen either slightly larger or smaller than the pro-
cess mean. This will result in the CUSUM having, respectively,
a negative or positive trend when no change in distribution
has occurred,

< The distance from the last CUSUM coordinate plotted
and the vertex of the V-mask.

B o v e The angle made by the upper (or lower) limb of the
V-mask with the horizontal. Therefore 26 is the full angle

of the V-mask (see figure 1).

12
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We assume that each Xy has a distribution function
Fi(X) = F(X - ui) for some continuous distribution function
F( ) . The null hypothesis is that all My are equal. We
propose the CUSUM test of HO against the alternate hypo-

thesis of a distributional shift of the form;
(1) ul = u2 = p3 = L iiesees = U< Hotl < swswm e e <y
or

(idi) Hy = Hy = Mg T ceenenee = U > Hosl Pt i . > u

for scme unknown ¢ > 1 .
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FIGURE 1. A CUSUM CHART WITH V-MASK

A (n, Sn) B (n - r, Sn)
C (n - r, Sn - r) 0 (n + 4, Sn)
BA = r A0 = d
h=4d¢tansg
C
B 8 0




THE CUMULATIVE RANK SUM TEST

The cumulative rank sum test (CURSUM test), which we
propose as the nonparametric equivalent of the CUSUM test,
uses the following notations and definitions:

Let Rij be the rank of Xi among (Xl, xz, X3, e Xj)

where 1 < j and each X, has a continuous distribution
. i

function F(X - ui) with F(0) = 1/2 . Under H0

Hy = My = Hy = ..oy the cumulative ranks Rjj are independent

with mean

E.(R.. = 1+ 1) /2
0! 33) (3 )/
and variance
Var.{(R..) = (j - 1 i + 1)Y/12 .
0( JJ) (7 ) (3 )/
Define Sn' to be the sum of the deviations of the Rjj from

their mean i.e.,

n

sp' =1 (Ry5/(3 + 1) - 1/2}.

under the null hypothesis,
] P
EO(Sn Yy =0
with variance
n

Var,(s_') ={n-27] (1/¢(j + 1))}/12n .

The random variables Rjj/(j + 1) are distributed as

independent discrete uniform variables on the points

14
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{1/ + 1) , 2/(3 + 1), ... 3/{3 + 1)} under H0 . In effect,

the standard CUSUM procedure based on the partial sums of

has been transformed so that Xi has a discrete uniform
(0,1) distribution on Jj points, with a reference value of
k=1/2 .
The V-mask rejection region will reject H if for some
n and r < n ,
n
Y AR,./(3 + 1) = 1/2} < =(xr + d)tan ®
n=rtl 3]
or
n
7 {R../(j + 1) = 1/2} > (r + d)tan® ,
n-r+l 13
where d 1is defined as with the CUSUM test. It should be
noted that the proposed test will fail to reject the null
hypothesis (regardless of the alternative hypothesis) if the

RAReVZI N

slope & used in the V-mask is greater than tan

Like its parametric counterpart, the A.R.L. is a measure
of the performance of the CURSUM. The A.R.L. is defined as
the average number of samples taken before the null hypothesis
is rejected. Unlike the CUSUM, which has three parameters,

the CURSUM test has only two parameters that affect the per-

formance (i.e., the A.R.L.) of the test.



SIMULATIONS

A series of simulations were run in order to determine
the performance characteristics of the CURSUM test. The
Average Run Lengths (A.R.L.s) were determined under the null
condition for a series of d 1lengths and selected & wvalues.
These A.R.L.,s are contained in Table 1 and were derived from
9005 replications of sequences of standard normal variables.
The A.R.L. and power for the CURSUM was also determined under

two types of alternative hypotheses:

(1) A shift of A (= 1, 2 standard deviations) at a point
c (= 10, 20, 30), i.e.,
0 i=l' 2" 3[ «=s C
Ui'—“

A i=C+l,C+2, . o -
Tables 2a-2e6 contain the A.R.L. and power for condition one
with selected values of d and §

(2) A persistent change of A (= .1) in the mean at a point

c (= 10, 20, 30), i.e.,

5The starred values were not derived from 900 replications
since computer time considerations made this impossible.

sAs the value of d was increased, changes of 1 standard
deviation and the larger 6 values were dropped from the
simulation due to the impractically large A.R.L.s and the
computer time required to generate them.

16
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0 i = lg 2p B, wew ©

{1 - c)aA i c+ 1, ¢+ 2, ... .

Tables 3 and 3a display the A.R.L.s and power for condition
two for selected values of 8§ and d

When operating under the alternative hypotheses, the
A.R.L. serves a different purpose than it does under the null
hypotheses. When a change has occured in the segquence, the
location of the change is usually desired. Furthermore, it
is preferable that the test reject quickly after the shift has
occured. We might note that some of the A.R.L.s are very
close or "sensitive" to the change point, while others are
less sensitive. It will be shown that the choice of theta
and d will determine the sensitivity of the A.R.L. to ¢ ,
though usually at the cost of power.

From Table 1 and 2 it ¢an be seen that as a given V-mask
is moved back from the last CURSUM coordinate (i.e., as d
is increased) the A.R.L. increases. Thus, if a large A.R.L.
is desired then a large value of © and/or d should be
selected. With d held constant (at 1) it can be seen that
as & increases the power improves though with some loss of
sensitivity for small changes and for changes early in the
sequence. The case of a & of .30 with a 2 standard
deviation change in the mean at the 30th sample has an A.R.L.
of 33.845 with power .9308 , while an equal change in the
mean with a 08 of .27 yeilds an insensitive A.R.L. of power

.6267 . Futhermore, with a 8 of .25 and below and a 4
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of 1 , the power is nearly zero with an A.R.L. egqual to the
A.R.L. under HO

As d is increased (Tables 2a-2e) the performance of
the smaller values of theta (.15 -.25) improves. While ©
cof .30 has power 1 whenever d > 1.5 its A.R.L. becomes
very insensitive to the change point (c). If you compare
various levels of d at a given 8 (say .20) for a set
change (¢ = 10, A = 2) there will be a slight increase in the
A.R.L. but a large increase in power as d goes from 1 to
2.5 , i.e., A.R.L. goes from 9.554 to 15.344 Dbut power
increases from .4667 to .967 .

Another interesting result of the simulations was the
detection of small changes (1 étandard deviation) anywhere in
the sequence. For values of 8 of .25 and above, there was
good power but very insensitive A.R.L.s which increased as d
was increased. When a small theta was used with a large d
value a test sensitive to those small changes was found. Large
changes early in the segquence could be picked up with a medium
8 (.25) and a low d (d < 1.5) or a small theta (8 < .25)
with a large 4 (4 > 2} .

It appears that for the first type of alternative (1)}
the following rules apply:

(i) When keeping ¢ and A constant for a given theta,
power increases as d increases.
(ii) As d increases the A.R.L. will increase (again all else

held constant) usually until the A.R.L. becomes so much larger

than the shift point as to be of little use.
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(iii) With d small (& < 1.5), a large value of theta
(8 » .25) 1is regquired to accurately detect large changes
(A = 2) in the sequence.
(iv) As d 1is increased, the smaller values of theta (8 < ,2¢C
become sensitive to small changes in the sequence.
(v) For small and large changes in the sequence and (¢ < 20),
the intermediate values of theta (.20 < 8 < ,25) gives the
best general performance.

When the alternative hypotheses is one of a persistent
change (2), the CURSUM test performs very well. From Table
3 and 3a it can be seen that when the change occurs late in
the sequence (¢ = 30} a large value of theta with small d
works the best. As d is increased theta must be decreased
to maintain power but there is some loss of sensitivity in the
A.R.L.. When the change starts early in the sequence a small
theta with a large d 1is required to adequately detect the
shift. Similarly as theta is increased, 4 must be decreased,
again with a loss of A.R.L. performance. If the shift occurs
at a more moderate location in the sequence (¢ = 20} a theta
in the middle range with a corresponding d performs nicely.
For instance, ©6 = .25 with a d = 1.5 has an A.R.L. of
22.205 and power of .9117 , while you must increase d £for
smaller values of theta (8 < .25} and decrease d for larger
values of theta (8 > .25) to get an equivalent performance of
the A.R.L..

It was mentioned earlier that estimating the shift point

(c) in the seguence would be desirable. While some cf the
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A.R.L.s in the simulations were close to the shift point, most
were not within five samples of the shift point. This is not
to suggest that the A.R.L. is meant to be an estimator, but
rather that it can serve in scme cases as a very good upper
bound. The method that seems to work the best is to use the
smallest value which exceeds the test critical value as your
estimate of ¢. This crossover point (cp) is n - r 1in the
partial sum;

n

8. - 8§ = ) X, .
n-r+1 =

-

Table 4 displays the frequency distribution of the crossover
points for 6 = .25 and d = 1 under the two types of alter-
natives considered.7 As can be seen from Table 4, the mode of
the crossover point distribution is c¢. This holds true for
all values of ¢, theta and d generated in this study. There
is a distinct relationship between the size of delta and the
percentage of cps for a given ¢. For A =1 , the percentage
of crossover points before ¢ is 14.77% . When A = 2 , the
percentage is 50% within one of c¢c. For a persistent change
the percentage is 50% within 2 samples; though this percentags
is larger for ¢ = 20 . 1In particular, for test statistics
with low power the estimate will, when it is in error, under-

estimate the shift point. The conditions of 4 = 1, 2 when

7'I‘his theta was chosen since it was representative of
the A.R.L.s and powers that were encountered in the simulations.
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¢ = 20 are examples of this. When power is in a more pre-~
ferred state (> .9), the distribution of the crossover points
tend to be more symmetrical, e.g., when 4 =1, 2 and c¢ = 10
are good examples. It should be noted that Leone and Johnson
(196l) also recommend using this method to estimate the
crossover or out~of-control point, while Lucas (1976) uses a

variant of the procedure.



APPLICATIONS AND EXAMPLES

The use of a CURSUM test is quite simple. The preferred
method is to make use of any knowledge there might be about
possible changes in the process. That is, if information on
the size of the shift and/or the location of the suspected
shift is available then this information may be useful in
selecting theta and 4 . However, if little is known about
the process then 8§ and d may be selectedon the basis of
the A.R.L. of the test under HO .

When selecting 6 and d with some information about
the process, the relative merits of A.R.L. and power must be
weighed. For instance, suppose there was reason to believe
that a shift might occur around the 20th sample and with a
2 standard deviation change in magnitude. If the process is
expensive to stop and/or some error is tolerable, then large
power is preferable to low A.R.L.. 1In this type of situation,
the selection of (g = .25, d = 2) or (§ = .20, 4 = 4) has
power and A.R.L. given respectively by (.9966, 67.063) and
(1.00, 26.04). However, 1f errors are expensive to make then
the A.R.L. becomes more important relative to power. In this
case, either of the selections of (8 = ,20, d = 2.5) or
(6 = .20, d = 3) yields good A.R.L. with reasonable power
(A.R.L.s are 22.01l1 and 22.94 with power of .86 and .90
respectively). These are by no means the only values of theta

and d to be considered for these cases, but rather, just

22
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examples of how theta and d might be selected under differ-
ent considerations of A.R.L. and power.

The first example uses data from a paper by Lucas (1980).
His paper compares the standard CUSUM procedure with an improv=-
ed method. The improvement he suggests is a "fast initial
response" (FIR) which is to simply start Sn at a value other
than zero. This would accelerate the CUSUM procedure. Table

5 shows the original data as well as the values of R, and

i3
Sm . The lower limb critical points were calculated from the

following formulas:

2y

{r*xtans) + Sn‘ - {{n + d4d)tang)
or

[ '
HU = - (r*«tand) + Sn + ((n + d)tand)

The data was shifted at the 1llth cobservation by a delta of 1
standard deviation.

The standard CUSUM with an A.R.L. of 22 rejected Hy
with a run length of 16 . The FIR-CUSUM had an A.R.L. of
16 and rejected HO at 13 . The CURSUM had an A.R.L. of
15.07 (4 = 1.5, 6 = .,20). The run length was 13 £for the
CURSUM test with the cp at 10, which was the last point before
the shift was started. Unfortunately neither the c¢p nor the

power of the two CUSUM tests were given so that a complete

comparison could not be made.



Table 5.
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Example of CURSUM test versus FIR and standard

CUSUM on data from Lucas (1980).

Table 5
Xi Rjj Sr HL

1 1.0 L 0 -2.5982
2 =, 1 -.1666 23355
3 0 2 -.16686 -2.1928
4 L 1 0.4666 -1.990
5 ~.8 1.5 -.71686 -1.7874
6 =1 2 L ~i.0737 -1.5847
7 1.5 7 -.6987 -1.3820
8 =8 4 -.7542 ~Lwd 793
9 1.0 7.5 -.5042 -.9766
10 ~% 9 2 -.8223 =, 7738%
il | Lo Il -.4056

12 w3 8 #2902
13 2.6 13 + LIB I
14 .7 8 1716

15 1ol 12 .4216

lé6 2.0 15 -3039% %

* &

* % %k

CURSUM crossover point

CUREUM and FIR run length

CUSUM run length




25

The second example uses real daté. The modified data
comes from Leone and Johnson (1962), the modification being
that .003 was subtracted from the last six observations.
The cobservations are the means (n = 5) of heights of fragmen-
tation bomb bases.

Table 6 displays the data with the CURSUM test. Only
the upper limb of the test is listed since the direction of
the change was known. The test statistic used (6 = .25, 4 = 1]
has an A.R.L. of 21.843 with power .9323 under the
alternative hypothesis of 1 stahdard deviation change at
¢ = 10 . The CUSUM had an A.R.L. of 23.2 for the same
alternative.

It can be seen that the CURSUM rejects at a run length
of 13 . It is interesting to note that even though both
procedures have the same ¢ps, the CURSUM has a run length of

13 while the CUSUM has a run length of 16



Table 6. CURSUM test (6 = .25, @ = 1) on data from Leone

and Johnson (1%62).

Table 6
Run Length
Xl 33 Sn HU
1 .8324 1 0 2.1600
2 .8706 1 -.1667 | 1.9047
3 .8262 1 -.4166 1.6493
4 .8326 4 -.1166 1.394
5 .8290 2 -.2833 L1386
6 .8316 4 0.2118 .8833
7 .8336 7 ool B3 1. .6279
8 .8310 4 0.2186 .3726
9 .8336 9 .1813 s L1T7T3*
10 .8306 3 -.0459 -.1380%
PP .8302 2 ] 92 &, 3933%
12 .B258 1 - BO23 -.6487
13 .8280 2 ~1.1594**
14 .8264 L -1.63528
15 .8292 6 =1 7779
16 .8228 1 ~2.,210%%%
¥ CURSUM crossover points

L CURSUM run length

*** CUSUM run length



CONCLUSION

The development of control chart procedures for process
control has centered on modifications of the rejection regions
and stopping rules for the normal distribution theory case.
Even though some work has been done on nonnormal distributions,
all previous CUSUM procedures assume that the underlying dis-
tribution of the observations are known.

Recently, work on procedures which are independent of
distributional assumptions have been reported. While these
nonparametric procedures perform well, they do not have the
same ease of application of the CUSUM tests. The cumulative
rank sum test proposed in this paper is shown to be a distri-
bution free procedure with the same type of V-mask rejection
region as the CUSUM.

Since the CURSUM procedure has fewer parameters it is
easler to implement than the CUSUM. In addition, the CURSUM
does not require an estimate of the process variance, there-
fore scaling factors for graphical displays are not needed.
This ease of operation, however, does not sacrifice the
ability of the CURSUM to closely monitor a process or to detect
a change in the process. The CURSUM procedure also provides
an accurate estimate of the location of the out-of-control
point.

As with the CUSUM, further development of the nonpara-
metric control chart needs to be continued. Several possible
areas of future work are;

27
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1) Development of a CURSUM procedure which varies values of
both theta and d as the samples are taken. This should
increase the sensitivity of the test to early shifts in the
process while providing both good power and A.R.L.s if the

shift should occur later in the process.

2) A distribution-free Shewhart type control chart for data
collected in groups could be developed. While it would use
a cumulative rank procedure the rejection region would differ

significantly from the CURSUM.

3) A CURSUM procedure for detecting shifts in vafiability
could be developed, though it should be noted that the CURSUM

can, in its present form, beused for such a test.
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Table 1. Average Run Length for the CURSUM test under H0 .
8 d A.R.L. 8 a A.R.L
0.10 1 3.691 0.20 1 11.292
L.5 4.366 1.5 20.213
2 5.013 2 32.480
2.5 6.670 245 64.894
3 4933 3 112,87
4 10.433 0.25 1 30.422

D 15 i 5.983 1«5 59.018
1:5 8.123 2 124.21
2 11.773 I 130,303
2.5 15.286 0.27 1 44,646
3 19.986 L.5 103 .31
4 35.316 0.30 1 110.15




Table 2. A.R.L. and power for CURSUM with d=1 and A=1,
] Cc A.R.L. power
0.20 10 10.354 0.4812

20 11.342 0.4756
10 9.554 0.4667
20 11.182 0.0433
0,25 10 21.843 0.9323
20 72.654 0.6423
10 14.164 0.9367
20 19.490 0.6300
0D.27 10 33.118 0.9856
20 30.134 0.8078
30 32.184 0.6232
10 15.651 B«9882
20 21.844 0.8045
30 28.205 0.6267
.30 lO‘ 106.,37* 1.00
20 12.71% 1.00
30 59.878 0.9339
10 61l.142 1.00
20 29,704 0.9772
30 33.945 0.9308

32
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Table 2a. A.R.L. and power for CURSUM with d=1.5 and 4=1, 2.

8 C A A.R.L. power
0.20 10 L 15.706 0.7834
20 1 17.48¢6 0.407
10 2 11.896 0.7834
20 2 16.433 0.4068
0.25 10 4 41.736 0.9519
20 1 36.010 0.9174
30 1 39.265 Q<7915
10 2 22.613 b. 9831
20 2 22.905 0.9091
30 2 30.524 0.7878
0.30 20 2 67.19%* 1.00
30 2 38.703 1.00




Table 2b. A.R.L. and power for CURSUM with d=2.0 and 4
e c A A.R.L power
0.20 10 1 23.45 0.93
20 1 22.856 0.667
30 1 26.243 0.445
10 2 13.547 0,923
20 2 19.743 0.668
30 2 24.856 0.446
0.25 10 1 63.06% 1.00
20 2 53 ,;325% 1.00
30 1 50.395% 1.00
10 2 31.23* 1.00
20 2 26.063 0.9966
30 2 35.83 0.9765
0.30 20 2 97 . 2% 1.00
30 2 66.04% 1.00

34
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Table 2¢. A.R.L. and power for CURSUM with d =2.5 and A=1, 2,

§ c A A.R.L. power
0.15 10 4 13.03 0.6565
20 1 14.87 0.29
10 2 10.893 0.666
20 2 14.423 0.31
0.20 10 1 32.73 0.965
20 1 28.806 0.851
30 il 32.773 0.7
10 2 15.344 0.967
20 2 22.016 0.86
30 2 29.213 0.71
0.25 10 2 76.11% 1.00
20 2 35.5 1.00
30 2 37.77 1.00




36

Table 2d. A.R.L. and power for CURSUM with d=3.0 and 4 =1, 2.

5] C A A.R.L. power
0.15 10 1 12,846 0.7767
20 1 17.64 0.4367
10 2 11.786 0.7676
20 2 16.623 0.4360
0.20 10 2 21,5% .98
20 2 22.94* .90
30 2 31.42% .84




Table 2e. A.R.L. and power for CURSUM with d=4.0 and A

) C A A.R.L power
0.5 10 1 22.096 0.93
20 1 22.98 0.66
30 i 27.073 0.51

10 2 13.643 0.927

20 2 20.066 0.6867

30 2 25.549 0.512
0.20 10 2 31.23% 1.00
20 2 26.04% 1.00
30 2 34. 6% 1.00

37
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Table 3. A.R.L. for CURSUM with d=1 and persistent change.

5] C A A.R.L.' power
0.20 10 0.1 9.975 0.6423
20 11,127 0.9377
0.25 10 0.1 15.475 0.9389
20 18.310 0.620

.027 10 0.1 18.382 0.990
20 21.416 0.8167
30 27892 0.5978

0.30 10 0.1 24.733 1.00
20 24.23 0.9778
30 31.8%1 0.9443




Table 3a.
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A.R.L. and power for CURSUM with selected 4 and

persistent change.

g C A.R.L. power 6 C A.R.L. power
.15 2.5 10 11.706 0.6534 .25 2 30 32.6866 0.9766
20 15.29 0.29 2.5 10 26.325 1.00
3 10 14.396 0.7767 20  25.435 0.99
20 16.583 0.4367 30 33.7933 1.00
4 10 15.183 0.93 3 10 29,345 1.00
20 19.903 0.6867 20 26.680 0.995
.20 1.5 10 13.150 0.7834 30 26.553 0.996
20 16.76 0.5533 4 10 34,21 1.00
2 1g  15.11 0.93 20 29.13 1.00
20 19.563 0.667 30 36.11 1.00
30 24.566 0.445 .30 1.5 10 33.513 1.00
2,5 10 16,756 0.9667 20 26.665 1.00
20 49.815 0.8537 30 33.890 1.00
30 49.474 0.71 2 10 39.486 1.00
3 10 18.45 0.9966 20 29.47 1.00
20 23.2266  0.9666 30 35.125 1.00
30 31.83 0.8966 2.5 10 43.1433 1.00
4 10  21.506 1.00 20 32.47 1.00
20 24.673 0.9966 30 36.64 1.00
30 33.603 0.9866 3 10 51.644 1.00
.25 1.5 10 19,028 0.9845 20 36.13 1.00
20 22.205. 0.9117 30 38.315 1.00
30 29.752 0.7856 4 10 51.644 1.00
2 10 22.577 1.00 20 42.885 1.00
20  23.967 0.98 30 42.075 1.00
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Table 4. Location of crossover points for theta of .25,

0 d; 2 s L L 2 3l
g 10 10 10 20 20 20
L. 4 1 1 1 1 1
2 ¥ 2 2 2 2 3
3 2 0 1 2 0 3
4 14 12 6 13 7 8
5 2 12 8 2 3 4
6 8 15 10 12 15 12
7 25 34 29 14 21 23
8 56 64 39 27 19 25
9 51 133 77 1s 23 15
10 118* 421%* 21.3% 21 28 25
1l 61 67 100 37 37 32

12 53 31 82 28 25 23

13 38 24 60 19 24 27

14 34 9 56 26 27 24

15 39 L5 47 32 36 36

16 28 7 35 21 30 33

17 34 10 43 27 41 50

18 25 3 21 40 62 66

A 25 7 16 70 121 L33

20 19 7 2k 147 % 324%* 322%

21 20 3 8 66 27 22

22 6 1 8 42 14 10

23 19 2 5 24 5 0

24 20 1 4 32 3 X

25 14 4 2 26 0 0

26 16 3 Q 19 0 0

27 11 A 0 10 2 0

28 6 2 2 8 1 0

29 7 3 1 17 0 0

30 13 2 1 8 0 0

3L 9 11

32 7 4

23 7 L0

34 8 3

35 7 4

36 4 3

37 5 9

38 4 4

39 2 3

40 4 1

41 5 3

42 2 0

43 5 1

44 3 3

45 2 2
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ABSTRACT

A distribution-free test is proposed for detecting
shifts in a location parameter in sequential procedures.
This Cumulative Rank Sum test (CURSUM) has wide applica-
tions as a process control procedure because it is compu-
tationally simpler than the standard Cumulative Sum test
(CUSUM) since it depends on fewer parameters. Empirically
derived Average Run Lengths are generated via simulations
for both the null hypothesis and selected alternatives,
This paper also includes a concise history of process con-
trol procedures including CUSUM tests as well as the

Shewart chart.



