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ASYMPTOTIC STABILITY OF SOLUTIONS TO ABSTRACT
DIFFERENTIAL EQUATIONS

A. G. RAMM*
Kansas State University, Department of Mathematics,
Manhattan, KS 66506-2602, USA

(Communicated by Irena Lasiecka)

Abstract. An evolution problem for abstract differential equations is studied. The typical problem
is:

du
=— *

o )
Here A(t) is a linear bounded operator in a Hilbert space H, and F is a nonlinear operator, ||F (z,u)|| <
collu||”, p > 1, co,p = const > 0. It is assumed that Re(A(t)u,u) < —y(t)||u||* Yu € H, where
y(t) > 0, and the case when lim,_... ¥(¢) = 0 is also considered. An estimate of the rate of decay
of solutions to problem (*) is given. The derivation of this estimate uses a nonlinear differential
inequality.

u=At)u+F(t,u), t>0;u(0)=uy; u
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1 Introduction

Let

ult) =At)u+F(t,u), t>0; ulr) ::”:E’ (1.1)

u(0) = u, (1.2)

where u € H, H is a Hilbert space, A(¢) is a bounded linear operator in H, F(t,u) is a nonlinear
operator,
[F (@ u)|| <collull”, p>1, (1.3)

co and p are positive constants, and ug € H.
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One says that A(r) € B(p,N) if every solution to the equation
v(t) =A(t)v (1.4)

satisfies the estimate
[v(t)| < NP |v(s)l|,  t>s>0, (1.5)

where N > 0 and p are real numbers. This definition is discussed in [1] and goes back to P. Bohl
(see the historical remarks in [1]). If U(z,s) is an operator that solves the problem

Ult,s) =AU (1s), 125 Uls,s) =1, (1.6)

where [ is the identity operator, then (1.5) is equivalent (by the Banach-Steinhaus theorem) to the
estimate
|U(t,5)|| < NePU™),  t>5>0. (1.7)

Let us define, following [1], the notion of upper general exponent k for the solutions to (1.4):

— In||U(¢
K:ﬁmmﬁmnngfxﬂH, 15> 0. (1.8)
If & < 0, then ||[v(7)|| = O(e™IXI") as t — oo, 5 being fixed.
The following result is obtained in [1], Theorem 3.1, Chapter 7.

Proposition 1.1. If k < 0 and assumption (1.3) holds, then the zero solution to equation (1.1) is
asymptotically stable.

Recall that the zero solution to equation (1.1) is called Lyapunov stable if for every € > 0, one
can find a 0 = &(€) > 0, such that if |ug|| < 8, then the solution to problem (1.1)—(1.2) satisfies
the estimate sup,~ ||u(7)|| < €. If, in addition, lim,_... ||u(¢)|| = O, then the zero solution to equation
(1.1) is called asgmptotically stable in the Lyapunov sense.

As one can see from our proof of Theorem 1.2, the condition of smallness of the initial data
||luo|| < & can be replaced by a different condition: if ||ug|| is arbitrary fixed, then one still derives
the relation lim,_ ||u(7)|| = 0 from (2.8) (see below), provided that ¢y is sufficiently small.

In Proposition 1.1, the exponent k < 0 is a constant. For example, if A(z) = A*(¢) is a selfadjoint
compact operator, and A;() are its eigenvalues, A;(t) < A,,(t) < 0if j >m, j=1,2,3,..., then
M) <x<O.

Our goal is to derive an analog of Proposition 1.1 such that lim, . A; (¢) = 0 is allowed, that is,
we do not assume that the spectrum o (A(¢)) of A() lies in a half-plane Re z < k, where k < 0 is a
fixed constant independent of 7.

It is known (see, e.g., [1]) that if A is a bounded linear operator in H with the spectrum 6 (A),
which lies in the half-plane Re z < —|x|, || > 0, then there is a positive-definite operator W such
that ReWA = —V, where V is an arbitrary given positive-definite operator in H. In other words, if
m=const >0, 0(A) C{z:Rez< —|k| <0}and V =V* >m > 0, thatis, (Vu,u) > m(u,u) Yu € H,
then the operator equation A*W + WA = —2V is solvable for W. In fact, there is an explicit formula
forW: W =2 e 1Ver'dt (see [1]). By ReA one understands the operator defined by the formula
ReA := Ag := (A+A*)/2, and A = Ag + iA;, where Ag and A; are selfadjoint operators that are
called the real and imaginary parts of A. If Ag < —a, a = const > 0, then 6(A) lies in the half-plane
Re z < —a. The notation A < —a means (Au,u) < —a(u,u) Vu € H.

The converse is not true: it is not true that if the spectrum of a linear bounded operator A
lies in the half-plane Re z < —a, then the inequality Ag < —a holds. A simple counterexample is
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given by the following 2 x 2 matrix A in R?, A = ( _Oa _bl > . The eigenvalues of this matrix are

—0.5+ivab—0.25, and if ab > 0.25, then the spectrum o (A) of A lies in the half-plane Rez < —0.5.
On the other hand, if, for example, a =1 and b =5, u; = up, = 0.5, then (Agu,u) > 0.

Inequality Re(Au,u) < 0 means that the operator A(¢) is dissipative. Such operators often arise
in applications (see, e.g., [9]). The dissipativity property, defined by the above inequality, usually
means that the energy in the system is dissipating, that is, the system is passive. In [7] a wide class
of passive nonlinear networks is studied, see also [8], Chapter 3.

Our basic results on the stability of the solutions to problem (1.1)-(1.2) with dissipative operator
A(t) are formulated in Theorems 1.2 and 1.4. Theorem 1.2 contains an auxiliary result used in the
proofs of Theorems 1.2 and 1.4. This result is of interest by itself and useful in applications.

Theorem 1.2. Assume that Re(Au,u) < —|x|||u||? for every u € H and inequality (1.3) holds. Then
the solution to problem (1.1)—(1.2) satisfies an estimate ||u(t)| = O(e~XI=8)}) as t — oo. Here
0 < & < || can be chosen arbitrarily small if ||ug|| is sufficiently small.

This theorem implies asymptotic stability in the sense of Lyapunov of the zero solution to equa-
tion (1.1). Our proof of Theorem 1.2 is new and very short.

We first prove Theorem 1.2 and Theorem 1.4 in Section 2, because the ideas of our proofs of
these theorems are quite similar. Theorem 1.4 contains a new result, and it is not assumed in the
formulation of this theorem that the spectrum of A(7) lies in a half-plane Rez < —|x| with |k| > 0
being a constant independent of .

Then we prove Theorem 1.3. The result of this theorem is used in the proofs of Theorems
1.2 and 1.4, and is of general interest. It gives a bound on solutions to a nonlinear differential
inequality. Results of this type, but considerably less general, were used extensively in [6], where the
Dynamical Systems Method (DSM) for solving operator equations, especially nonlinear equations,
was developed.

The ideas of our proofs are quite different from these in [1].

Theorem 1.3. Let g(t) > 0 be defined on an interval [0,T), T > 0, and have a bounded derivative

glr+s)—g(1)

from the right at every point of this interval, ¢(t) := lim,_, 1o . Assume that g(t) satisfies

the following inequality

8(1) < —v(0)g(t) + a(t,g(t)) +B(1), 1€[0,T); g(0)= go, (1.9)

where B(t) > 0 and y(t) > 0 are continuous functions, defined on [0,0), and o/(t,v) > 0 is defined
on [0,00) x [0,00), a(t,v) is non-decreasing as a function of v, locally Lipschitz with respect to v,
and continuous with respect to t on Ry := [0, o).

If there exists a function | > 0, continuously differentiable on R, such that

| | (o)
() B0 < s (y(z) - M) . wezo, (1.10)
and
g(O) < ,u(l()), (1.11)

then g(t) exists for all t > 0, that is, g(t) can be extended from [0,T) to [0,c0), and g(t) satisfies the
following inequality:
1
0§g(t)<7, vt > 0. (1.12)
Ifg(0) < ﬁ then 0 < g(r) < ﬁ, vt > 0.
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Inequality (1.12) was formulated in [5] under some different assumptions, but not proved there.
We sketch its proof at the end of this paper.

In [4] inequality (1.9) is studied in the case that includes (¢, g) = cog”, where p > 1 and ¢y > 0
are constants, as a particular case: the coefficient ¢y in [4] was a function of time.

Our second stability result is the following theorem.

Theorem 1.4. Assume that inequality (1.3) holds,

Re(A()u,u) < —y(0)||lul?>,  V&>0, (1.13)
and c
J— 1 . R
y(t) = T30 q<1; c1,9=const>0. (1.14)

Suppose that € € (0,c¢1) is an arbitrary fixed number, A = (%)1/@—1)’ (p—1)(c1 —€)>gq, and
lu(O)]] < 1.

Then the unique solution to (1.1)—(1.2) exists on all of R, and

1

0<lu(@)| < W

(1.15)

Remark 1. One may change the formulation of Theorem 1.4 as follows: if for some positive
constants A and v > 0 inequalities (2.12) and (2.7) (see below) hold, then inequality |lu(z)|| <
/1(171+z)v holds for all t > 0 for the solution to problem (1.1)—(1.2), as follows from the proof of
Theorem 1.4, given in Section 3.

The rate of decay of the solution u(t) as t — o, obtained in Theorem 1.4, is not necessarily the
best possible. The result in Theorem 1.4 is novel and interesting because no assumption of the type
y(t) > 1 > 0, where }p is a constant, is made. This allows one to study, for instance, evolution
problems with elliptic operators A(z) the ellipticity constant A(z) of which may tend to zero as
t — oo. Here A(t) is the smallest eigenvalue of the matrix a;;(¢) of the elliptic operator A(r). An
example is given in Remark 2, at the end of the paper.

We have assumed above that A(7) is a bounded linear operator, since this assumption is basic in
the book [1], and in the Introduction to our paper a comparison was made with the results in [1].
However, boundedness of A(¢) was not used in our arguments. If A(7) is a bounded linear operator
satisfying the assumptions of Theorems 1.2 or 1.4, then one can guarantee the global existence of
the solution to evolution problem (1.1)—(1.2). If A(¢) is an unbounded linear operator for which the
global existence of u(¢) holds, then our arguments, which lead to estimate (1.15), remain valid. In
the example given in Remark 2, the operator A(¢) = y(¢)(A—1I), where A is a selfadjoint realization
of the Laplacian in H = L?>(R?), and I is the identity operator in H. For this A(¢) one knows that the
solution u(#) to problem (1.1)—(1.2) exists globally, so Theorem 1.4 is applicable.

In Section 2 proofs are given.

2 Proofs

Proof. (Proof of Theorem 1.2).
Multiply (1.1) by u, denote g = g(¢) := ||u(t)||, take the real part, and use the assumption (1.13)
with y(r) = || = const > 0, to get

8¢ < —|klg* +cog”™,  p>1. 2.1
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If g(¢) > O then the derivative ¢ does exist, as one can easily check. If g(r) = 0 on an open subset of
R, then the derivative ¢ does exist on this subset and g(¢) = 0 on this subset. If g(z) = 0 but in any
neighborhood (f — 8,7+ ) there are points at which g does not vanish, then by ¢ we understand the
derivative from the right, that is,

t —glt t
o(t) = tim SUFS) =80 _ i U
s—+0 S s—+0 s

This limit does exist and is equal to ||z(¢)||. Indeed, the function u(z) is continuously differentiable,
" Jur+5)]
. lu(t+s . . .
gim PEEI i o) + o(1)| = (o)

The assumption about the existence of the bounded derivative ¢(¢) from the right in Theorem 1.3
was made because the function ||u(z)|| does not have, in general, a derivative in the usual sense at
the points 7 at which ||u(7)|| = 0, no matter how smooth the function u(¢) is at the point 7. However,
as we have proved above, the derivative g() from the right does exist always, if u(t) is continuously
differentiable at the point ¢.

Since g > 0, the inequality (2.1) yields inequality (1.9) with y(r) = |k| = const > 0, B(t) =0,
and a(t,g) = cog”. Inequality (1.10) takes the form

<o fr(z)
— | |x|— > vt > 0. (2.2)
(@) = ul) ( u(r)
Let
w(t) =Ae”, A,b = const >0, (2.3)
and choose the constants A and b later. Then inequality (2.2) takes the form
CO
_ < >
Py o b Ix], vt > 0. 2.4)
This inequality holds if
= 1—|—b<\1<\ (2.9
Let € > 0 be an arbitrary small fixed number. Choose b = |k| — € > 0. Then (2.5) holds if
1
A= (2) 2.6)
Condition (1.11) holds if
1
ol = £(0) < - 2.7)
From (2.6), (2.7) and (1.12) one gets
e~ (K=&}
0<g()=u()| < =——5—,  Vi=0. 2.8)
Theorem 1.2 is proved. ]

Proof. (Proof of Theorem 1.4.)
We start with inequality (2.2), let

u@)=A(1+n", A,V = const >0, (2.9)
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and choose the constants A and v later. Inequality (2.2) holds if

o \4 C1
< vt > 0. 2.10
Ap—1(1+[)(p*1)v+1+t ~ (1407’ = (2.10)
If
then inequality (2.10) holds if
o
F‘FVSCL (212)
Let € > 0 be an arbitrary small number. Choose
V=c—E. (2.13)

Then (2.12) holds if (2.6) holds. Inequality (1.11) holds if (2.7) holds. Combining (2.6), (2.7) and
(1.12), one obtains

0 < )| = &06) < 5 : Vi >0, (2.14)

14r)a—¢’
1
Choose A = (%) p=1_ Then inequality (2.12) holds because of (2.13). Inequality (1.11) holds be-
cause we have assumed in Theorem 1.4 that ||u(0)|| < 4. Thus, the desired inequality (1.15) holds
by Theorem 1.3.

Theorem 1.4 is proved. ]
Proof. (Proof of Theorem 1.3.)
Define
v(t) :=g(t)a(t), a(t):= eho YO8 n() = @. (2.15)
’ ’ (1)
Then inequality (1.9) takes the form
wwsmwm(a§2)+ﬁML v(0) = £(0) = go. 2.16)
e 0 A
, alt L(t
= —= ——Z]. 2.17
1) = Sy~ ) @17)
From inequalities (1.11) and (1.10) one gets
1
v(0) < ——==7(0), ¥(0)<7(0). (2.18)

1(0)
Thus, v(t) < 1n(¢) on some interval [0, 7]. Inequalities (2.16), (2.17), and (1.10) imply

W(1) <n(r), 1€0,7T). (2.19)
It follows from inequalities (2.18) and (2.19) that
v(t) <n(), vt > 0. (2.20)

From inequalities (2.20) and (2.15) one obtains

a(t)g(t) =v(t) <n(t) = ok vt > 0. (2.21)
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Since a(r) > 0, inequality (2.21) is equivalent to inequality (1.12). This essentially completes the
major part of the proof of inequality (1.12). The last conclusion of Theorem 1.3 can be obtained by
a standard limiting procedure.

Let us explain in detail why inequality (2.21) holds for all # > 0. The right-hand side of inequal-
ity (2.21) is defined for all # > 0. The function g(z), a solution to inequality (1.9), exists on every
interval on which v(z) exists, and v(¢), the solution to inequality (2.16), exists on every interval on
which the solution w(z) to the problem

, w(t

w(t) = a(r)]alt, a((t)) +B()], w(0) =v(0) (2.22)
exists. It follows from inequality (2.16) and equation (2.22) that v(r) < w(r) on every interval [0,7)
on which w exists. We have already proved that the solution to problem (2.22) (which also is a
solution to problem (2.16)) satisfies the estimate

0<w(r) < alt) (2.23)

u(z)
on every interval on which w exists. We claim that estimate (2.23) implies that w exists for all # > 0,
in other words, that 7 = co. Indeed, according to the known result (see, e.g., [2], Theorem 3.1 in
Chapter 2), if the maximal interval [0,7") of the existence of the solution to problem (2.22) is finite,
that is 7 < oo, then lim, ,7_ow(t) = e. This, however, cannot happen because of the inequality
(2.23), since the function % is bounded for every ¢ > 0.
Theorem 1.3 is proved. O

Remark 2. Let H = L*(R%), A(t) = y(t)A, where A = A* is a selfadjoint operator in H which
is the closure of a symmetric operator A — I with the domain of definition CJ’(R®). Here A is
the Laplacian. Let y(¢) be defined in (1.14) with ¢; =1, ¢ = 0.5. let € =0.01, p =3, ¢p =
1, A =10, v=0.99. Assume that |jup|| < (0.99)"!. Theorem 1.4 yields the following estimate
lu(t)|| < 0.1(141)~%% for the solution u(t) to problem (1.1)—(1.2) with the defined above A(t)
and a nonlinearity satisfying condition (1.3).
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