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Abstract

The aim of this dissertation is to develop constraint-based methods that extend and

improve on current deep learning neural networks such as transformers and sequence-to-

sequence (seq2seq) models, for the problem of question generation based on the analysis of

the text of legal agreements, particularly privacy policies.

A privacy policy is a legally binding agreement between a customer and service provider.

This dissertation focuses on analyzing a privacy policy document to generate questions

that capture entities and the relationships between them. Another area of focus is the

generation of constraints based on domain knowledge and their application to the deep

learning network during the question generation process. A possible use case of this research

is development of test corpus for question answering systems in the privacy domain because

the shortage of sufficiently large corpora poses a key challenge in the development of question

answering and question generation systems.

Question generation is the task of generating an interrogative sentence based on some

text. Current approaches to question generation use sequence-to-sequence models with ad-

ditional information like answers, positions of the answers, part-of-speech details, named

entity tags among others. The idea behind such approaches is that these models can benefit

from additional information about the text (i.e., sentence or paragraph).

Recently, transformer-based approaches that offer the benefit of attention mechanism

have also been used for generating questions. Transformers have achieved state-of-the-art

results in many natural language processing tasks including text classification, machine trans-

lation, language understanding, co-reference resolution, and summarization.

However, the contribution of transformers towards a task like question generation has

not been as significant.



This research tries to find ways of improving existing approaches by injecting domain

knowledge, modeled as a combination of logical and linguistic constraints, into these deep

learning models during the training and validation phases. This work also explores design

and implementation of different kind of constraints that can better direct the deep learning

model towards the expected output, which in this case refers to syntactically and semantically

correct and relevant questions. Another contribution of this research is the creation of custom

labels for named entities in the privacy policy domain. Results show that adding some form

of domain specific constraints improves the performance of the aforementioned models as

compared to the performance of state-of-the-art models on the test bed used in this work.

For the given test bed, constrained seq-to-seq approaches perform better than the constrained

transformer-based approach.
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Chapter 1

Introduction

You cannot answer a question you cannot ask, and you cannot ask a question

that you have no words for.

— Judea Pearl, The Book of Why: The New Science of Cause and Effect

The task of question generation (QG) is defined as generating an interrogative sentence

from a given paragraph or sentence (which is referred to as the context). It is considered

the inverse problem of question answering (QA), where given a question and context, the

task is to generate an answer. Question generation is not as well researched as question

answering, but in recent years, the task has caught on with the research community. The

task of question generation is also considered an important sub-task for question answering

systems because to extract appropriate answers from a given context, one must ask the right

question. In this work, I focus on the task of generating questions in a legal area: privacy

policy understanding.

In this chapter, I provide some background on the task of question generation, followed

by a formal definition of the problem statement and the purpose of my dissertation. This is

followed by the primary research questions that I will answer in my work. This chapter will

also detail the assumptions on which my research is based, the limitations, and the scope of

my work. Thereafter, I will present key task definitions.
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1.1 Background

The task of question generation is defined “as the automatic generation of questions (Factual

questions, Yes/No questions, Why-questions, etc.) from inputs such as text, raw data, and

knowledge bases”2. The rationale behind the task of question generation is to automatically

generate grammatically and syntactically correct questions based on an understanding of the

context.

Some popular use cases of question generation include the following:

• creating intelligent tutoring systems in education3;4.

• enhancing human-machine interactions in dialogue systems like chat bots5.

• improving the performance of question answering systems by reducing human labor

needed to generate large-scale data sets6–8.

Kurdi et al. (2020)4 claim that the main purpose of question generation is assessment

in the field of education. They also list tutoring or self-assisted learning systems and exper-

imental settings as other applications of question generation.

1.2 Motivation

In this research, I focus on the problem of automatically generating questions from privacy

policies of various companies. A privacy policy document is a legal document that explicitly

discloses the data gathering, handling and processing policies of an organization, in other

words, how an organization or website collects, processes, and handles customer/visitor/user

data. This privacy policy document also indicates whether the confidentiality of gathered

customer data is maintained or whether it is shared with or sold to third parties. The gath-

ered data can include personal identifying characteristics like name, age, gender, address,

phone number, email, nationality, religion, or race, among others. Websites and other appli-

cations can also gather data such as the internet protocol address (IP address) of the user,

operating system specifications, browser information, cookies, activity logs, etc. Businesses
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are required by law to share their privacy policies with the users of their services. Users

must read these policies to protect their privacy. Unfortunately, many users agree to privacy

policies without reading them. The main reason for this is the perception that privacy policy

documents are long, extremely verbose, and hard to understand, and therefore reading them

is too time consuming.

Many studies and surveys have been conducted over the years to see why people accept

privacy policies without reading them. Obar and Oeldorf-Hirsch (2018)9 conducted an em-

pirical investigation of student reading behavior for privacy policy statements and terms of

service (TOS) policy documents. The authors asked people to join a fictitious social net-

working service called NameDrop. This study demonstrates how organizations or individuals

with malicious intent can gather and exploit user data without users ever knowing about it.

The privacy policy document used in the study included a clause that stated, “By agreeing

to the TOS, participants would give up their first-born child to NameDrop.” However, even

that clause did not deter the participants from agreeing to the terms of service. Results

revealed that almost all participants exhibited two kinds of behavior: they either ignored

the policy document altogether or paid insufficient attention to the policies. Many other

studies in the past have revealed similar user behavior10–14.

A frequently asked question (FAQ) section in privacy policy documents can help alleviate

the problem by revealing some important topics mentioned in privacy policies. However, not

all services offer an FAQ section and even when present, it may not contain many relevant

questions. Thus, a question answering system is necessary, making it easier for users to

understand privacy policy documents by helping them obtain answers to specific questions

without spending the time needed to read the entire document. Considering this, I will be

developing an automatic question generation system as a first step towards building a full-

fledged question answering system. By generating a better class of questions, the question

generation system can improve the quality of any question answering system for privacy

policy documents, which in turn can help end users better absorb the privacy policies and

make well-informed decisions.
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1.3 Problem Statement

I aim to create a system for question generation that takes as input a paragraph of text, and

outputs a question based on the text. The system should perform this task without using

answer sequence as input to the model.

We formally define the problem of question generation as the following: Given a passage

(or context from a policy document), Xp = (x1, x2, ..., xn) as input, the model aims to

generate a question, Y = (y1, y2, ..., yT ). The goal is to find the best Ȳ :

Ȳ = argmax
x

P (Y |Xp)

where P (Y |Xp) is the conditional log-likelihood of the predicted question sequence y, given

the input x.

1.4 Purpose of Study

The novel contributions of this study include the following:

1. Studying the privacy policy domain for building a question generation sys-

tem:

A literature review suggested that research in this area has focused on extracting knowl-

edge using rule-based systems, topic modeling-based systems, and question answering

systems. To date, no effort has been made to generate questions in this domain.

2. Creating custom named entities for the privacy policy domain:

A study of the data in the domain suggested that standard named entity recognition

(NER) tools fail to provide labels for more than half the data set being used, entirely

due to the nature of privacy policy documents. This work also focuses on using the

custom named entities to improve the question generation model.

3. Using constraints to inject domain knowledge into deep learning models for

the task of question generation:

4



To date, constraints have not yet been used for the question generation task. The key

idea is to use constraints to inject domain specific knowledge into the deep learning

model. The focus will be on creating constraints that can be generalized to other

domains.

4. Evaluating the generated questions with standard, automatic evaluation

metrics and studying the effectiveness of these evaluation metrics:

The idea of this analysis is to gauge the need for a better evaluation scheme for gen-

erated text when there is no gold standard for comparison.

1.5 Primary Research Questions

The primary research questions that this work aims to answer are listed below:

• How can existing state-of-the-art question generation models be enriched by including

domain knowledge to better produce syntactically and semantically correct questions

that are more diverse?

• What kind of constraints can better inject prior-knowledge into the model?

• Does transfer learning alone help improve the performance of question generation sys-

tems using a small data set?

1.6 Assumptions and Limitations

Question generation systems, like the one discussed in this document, assume that each

paragraph of the source text contains a question-worthy concept and can be used to generate

at least one question.

The system falls into the category of “answer-unaware” question generation systems

because it does not consider the answer position or text. Such systems suffer from random

question generation; given a source text, several questions can be inferred depending on the
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perspective. For example, for the given text: “Josh, who is a salesman is traveling to New

York City”, the following questions can be generated:

• Who is travelling to New York City?

• Where is Josh going?

• Who is Josh?

• Which salesman is traveling to New York City?

Making the system “answer-unaware” is necessary because of the privacy policy data set

used for this research. Some questions in the data set could not be directly answered from

the given text. For example, the following paragraph comes from the privacy policy of TGI

Fridays, with the answer marked in bold in the source text:

Source: “The information that you provide is collected by TGI Fridays. In the case of

links to our gift card and guest recognition sites, the information you voluntarily provide at

those sites will only be shared with those service vendors who help TGI Fridays administer

those websites or mobile application and the services they provide. In any case, TGI Fridays

is the lawful ”owner” of the information and each of these vendors may use the information

only for the purpose of administering the digital or mobile application and its services for

TGI Fridays, and will take all necessary precautions to protect the information. Ownership

of any information you provide us will be held solely by TGI Fridays. We will not sell

ownership of this data to any other company or organization.”

Question: Does the third party follow the privacy practice?

Answer: will not

It is evident that the question is not explicitly answered by the source text. The answer

can only be inferred by a human. The data consists of such question-answer pairs, that

cannot be discarded due to the small size of the data set. Consequently, answers have not

been considered for the question generation task.
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1.7 Key Definitions

The following are key terms and definitions that will be used in this dissertation:

• Question Generation is defined as the task of automatically generating questions, given

a paragraph/source text and/or answers.

• Source Text refers to a paragraph taken from the privacy policy document that is used

to generate a question.

• Answer Phrase refers to a span of words in the source text that contains the answer

to the question.

• Reference Question refers to the question generated by human annotators given a

specific source text.

• Candidate Question refers to the predicted questions that are generated by the machine

learning model.

1.8 Overview

This dissertation presents a review of the background literature in question generation in

Chapter 2. The chapter briefly covers rule-based question generation and focuses on neural

question generation in detail. This is followed by a background on methodology used for

incorporating domain or prior knowledge in machine learning models in Chapter 3. The

results of my research are presented in Chapters 4 and 5.

Chapter 4 presents the results of applying existing sequence-to-sequence and transformer-

based models to the privacy policy data set, where the context input has been augmented

with named entity labels that I created for this data set. The results presented in this chapter

establish a baseline for Chapter 5, which focuses on using logical and numerical constraints

for the question generation task in the privacy policy domain. This chapter presents the

contributions of this research to the state of the field, as well as, towards the legal domain:
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understanding privacy policy documents. The results presented in this chapter pave the

way for future research presented in Chapter 6, which also presents a summary of the main

contributions of this work.
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Chapter 2

Related Work on Question Generation

In this chapter, I present relevant literature on question generation. Methods used for the

task of question generation can be broadly classified into two major categories: (a) rule-based

approaches; and (b) deep learning-based approaches. Traditional rule-based approaches

require deep linguistic knowledge to generate hand-crafted rules to transform a declarative

sentence into an interrogative sentence. These systems require intensive manual labor to

create rules, and those rules may not generalize to other domains. On the other hand, deep

learning-based approaches provide an end-to-end solution that is driven by data as opposed

to hand crafted rules.

2.1 Rule-based Question Generation

A typical rule-based system transforms the input sentence into its syntactic representation,

which is then used to generate a question. Rule-based systems offer some benefits over neural

network-based models: they are easier to interpret, they allow developers greater control over

model behavior, and they typically require less data to achieve a comparable performance.

Mitkov and Ha (2003)15 used a set of general transformational rules to generate multiple-

choice tests. Gates (2008)16 used tree manipulation rules to generate fact-based reading

comprehension questions. Khullar et al. (2018)17 used a syntax-based system that ran on
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dependency parse information of the input sentence. Heilman and Smith (2009)3;18 also

included a statistical component for scoring questions to generate a ranked set of questions

about text. Chali and Hasan (2015)19 focused on the task of topic-based question generation,

where given a body of text pertaining to a topic, they used rules based on named entity

information and semantic role labels.

A recent work by Dhole and Manning (2020)20 pointed out the lack of variety in questions

generated by previous rule-based approaches, which have used simple syntactic transforma-

tions to create questions using declarative sentences. These two authors also discussed the

lack of syntactic fluency in questions generated by neural question generation models. Their

work used syntactic rules that leveraged universal dependencies, lexical information, shallow

semantic parsing, and custom rules to transform declarative sentences into question/answer

pairs.

2.2 Neural Network-based Question Generation

2.2.1 Sequence-to-Sequence Framework

Sequence-to-sequence framework uses an encoder to read the input text and uses a decoder to

generate the question. Most existing neural question generation systems use a sequence-to-

sequence framework (Sutskever et al., 201421) in conjunction with the attention mechanism

(Bahdanau et al., 2014)22. The attention mechanism helps the decoder pinpoint the most

relevant part of the input text while generating the question. Neural question generation

models can be broadly classified as answer-aware and answer-unaware models23. Answer-

aware models take the context and the answer and/or the answer position as input for the

encoder. This allows the system to generate targeted questions. Answer-unaware models,

On the other hand, tend to generate questions without a specific target. Pan et al. (2019)24

presented recent advances in neural question generation.

The earliest work on using neural networks for question generation is credited to Du et al.

(2017)25, who used a sequence-to-sequence model with an attention mechanism to achieve
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better performance than rule-based systems. Their model used the context-question pair

for training and did not use the answer. Another prominent work by Du et al. (2017)26

was their answer-unaware model that divided the question generation task into two steps:

(1) identifying question-worthy sentences; (2) using those sentences as input for generating

questions using their earlier sequence-to-sequence model with attention. The task of sentence

selection was performed using a neural sequence tagging model.

An example of answer-aware model was presented by Zhou et al. (2017)27 who used

the answer positions along with additional features generated from named entity recognition

and part-of-speech tags. Their work also used the same attention mechanism as Du et al.

(2017)25. However, these types of answer-aware models included words from the answer as

part of the generated question, resulting in useless questions. Kim et al. (2019)28 replaced the

answer with a special token in the paragraph to prevent the predicted question from including

answer words. Song et al. (2018)29 followed a similar path, separately encoding passage

(source text) and answer, and using the multi-perspective context matching algorithm30

between the two encodings as additional input to the decoder. Both these efforts used

recurrent neural network to encode the answer feature separately.

The input to sequence-to-sequence models has also been augmented with additional in-

formation to produce better questions. Hu et al. (2018)31 provided the topic of question as

additional information to the model. Their work focused on topic-specific question gener-

ation using sequence-to-sequence learning framework, which use three components: a topic

encoder, an answer encoder, and a decoder. Experimental results indicated that the model

performed better than conventional baseline models because of additional information on

the topic of the question. Cao et al. (2020)23 defined the question generation task as a

one-to-many mapping problem and incorporated auxiliary information from data to train an

attentive sequence-to-sequence model with a copying mechanism (Gulcehre et al., 2016)32.

Another prominent direction in neural question generation research has been question

word generation. In sequence-to-sequence models, the decoder performs the twin task of

generating the interrogative word and the remaining text of the question. A few researchers

have separated these twin tasks and improved the performance of the question generation
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model. Sun et al. (2018)33 proposed a question generation model that first generated an

interrogative word using the answer type and then generated the remaining text of the

question using the relative distance between context words and the answer. Similarly, Kang

et al. (2019)34 used a pipe-line system consisting of two modules: first an interrogative word

classifier and second a question generator that used the interrogative word from the first

step. This approach ensured that the decoder could focus entirely on the remaining question

text and not on the interrogative word.

Ma et al. (2020)35 proposed an attention-based sequence-to-sequence model, which much

like the one proposed by Zhou et al. (2017)27, took the named entity labels (Sang and De

Meulder, 200336), part of speech tags (Brill, 199237), alphabetic case, and answer position

features as input. They also used a pointer-generator network32 and copy mechanism38 to

better exploit the answer position-aware features. Harrison and Walker (2018)39 also used

linguistic features like named entity recognition, word case, and entity co-reference resolution

to build a sequence-to-sequence model with two encoders: one for token level embedding,

and the other for sentence level embedding. This enabled the decoder to capture word level

and sentence level meanings.

In question generation using sequence-to-sequence models, the focus remained on the

ability to augment the input with additional information to generate targeted and more

focused questions. In my work, I also aim to extend this approach by augmenting the basic

sequence-to-sequence models with additional background information specific to the privacy

policy domain. Besides the research described above, some research in question generation

has made use of reinforcement learning, some has made use of knowledge-graphs, and some

work has also been done on visual question generation. In the following paragraphs, I provide

a brief overview of such research works.

Question-specific Rewards Yuan et al. (2017)40 used a sequence-to-sequence approach

conditioned on context and answer and then used REINFORCE algorithm41 to maximize

the model’s expected reward. Yao et al. (2018)42 modeled the question generation task as

a one-to-many problem, where given a context and answer, multiple valid questions could

be generated. They used the GAN43 framework for the task. Chen et al. (2019)44 pro-
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posed a reinforcement learning-based graph-to-sequence (Graph2Seq) model with a novel

Bidirectional Gated Graph Neural Network-based encoder. Xie et al. (2020)45 designed

three different reinforcement learning rewards for each of the following metrics associated

with the generated questions: (1) fluency (whether the question is grammatical and follows

the correct logic), (2) relevance (whether the question is relevant to the document), and

(3) answerability (whether the question is answerable given the document). Wang et al.

(2020)46 focused on the task of deep question generation47 with reinforcement learning and

an answer-driven encoder-decoder model.

Question Generation from Knowledge Graphs uses knowledge graphs for gener-

ating questions. Elsahar et al. (2018)48 produced one of the earliest prominent works in

this space when they proposed a neural model that generated questions from knowledge

base triples (predicates, subject, object) in a Zero Shot49;50 setting. Hu et al. (2019)51

used knowledge base (KB) triples and textual corpus for creating a unified framework that

combines question answering and question generation with the aim of improving question

answering systems. Kumar et al. (2019)52 used a sub-graph and an answer as input to

a transformer-based model to generate questions. Bi et al. (2020)53 used a sub-graph

augmented by auxiliary information acting as input to an encoder and used a constrained

decoder to generate questions.

Visual question generation is an emerging topic that takes images as input to au-

tomatically generate questions. Prominent work in this direction includes the following:

Mostafazadeh et al. (2016)5 introduced the task of Visual Question Generation and created

three data sets with a total of 75,000 questions; Zhang et al. (2016)54 generated captions for

images and generated corresponding questions conditioned on question type and a caption;

Jain et al. (2017)55 used a combination of variational auto-encoders and long-short-term-

memory cells to generate a diverse set of questions for a given input image; Krishna et al.

(2019)56 used a variational auto-encoder to generate questions aimed at expecting a specific

response type; and Shukla et al. (2019)57 focused on the task of goal-oriented visual dialogue

that combines information gain with reinforcement learning.
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2.2.2 Transformer-based Question Generation

In recent years, some research has been conducted on generating questions using transformer-

based58 approaches. Some of the research in question generation that has used transformers

includes the following: Matsumori et al. (2021)59 proposed a Unified Questioner Transformer

(UniQer) for visual question generation; Scialom et al. (2019)60, used transformer for answer-

agnostic question generation on SQuAD data set61; and Chan and Fan (2019)62 used pre-

trained BERT model63 to generate more semantically fluent and coherent questions. BERT-

based models use the input context and target answers to generate questions. This allowed

the models to improve the state-of-the-art results significantly on the benchmark Stanford

Question Answering Data set or SQuAD data set. Varanasi et al. (2020)64 extended BERT-

based models with copy mechanisms.

This work uses the “Text-To-Text Transfer Transformer”(T5) proposed by Raffel et al.

(2020)65 and described in section 2.3.2.

2.3 State-of-the-art

The best performing models on SQuAD data set discussed in the literature25;66 use sequence-

to-sequence models at their core. The sequence-to-sequence models have been improved using

extra mechanisms, and/or extra input features. Very recently, Transformers58;67 have been

used to generate questions. This section provides an overview of these two networks. These

approaches encode the input source text and then decode the embedded information into an

output question.

2.3.1 Sequence-to-Sequence Models

The most common sequence-to-sequence models are encoder-decoder models, which use a re-

current neural network68. The recurrent neural network is trained to map an input sequence

to an output sequence, which may or may not be of the same length. Cho et. al (2014b)69

provided the simplest recurrent neural network architecture for such mapping. Sutskever
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et al. (2014)21 used this architecture for language translation and obtained state-of-the-art

results. This section gives a brief overview of the encoder and decoder models. Sutskever et

al. (2014)21 used an encoder-decoder architecture where a reversed input sequence is read in

its entirety and encoded to a fixed-length internal representation. This internal representa-

tion was used as input to the decoder that output words until the end of token was reached.

Long short term memory networks70 were used for both the encoder and decoder.

Figure 2.1: Sequence-to-Sequence Model (Sutskever et al., 2014)21

Encoder

An encoder is a stack of several recurrent units (LSTM70 or GRU71 cells for better perfor-

mance) where each unit accepts a single element of the input sequence, collects information

for that element, and propagates it forward. In question generation, the input sequence is

a collection of all words from the context. Each word is represented as xt, where t is the

timestamp of that word. The hidden state at time t, ht, is computed using the formula given

below:

ht = f(W hhht−1 +W hxxt) (2.1)

where ht−1 represents the previous hidden state, and W represents the weight matrices.

A GRU encoder calculates the hidden state ht as follows71;72:

zt = σ(Wxzxt + Uhzht−1) (2.2)

rt = σ(Wxrxt + Uhrht−1) (2.3)
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h̃t = tanh(Wxhxt + Urh(rt ⊗ ht−1)) (2.4)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t (2.5)

where σ is the sigmoid function, ⊗ is an element-wise multiplication operator, xt is the

input vector, zt is the update gate, rt is the reset gate, h̃t candidate activation, and W and

U are the weight matrices.

Decoder

A decoder is a stack of several recurrent units where each unit accepts the hidden state from

the previous unit to predict output yt at time step t as well as its own hidden state. In

question generation, the output sequence is a collection of all words from the question. Each

word is represented as yt, where t is the position of that word in the sequence. The output

yt at time step t is computed using the formula given below:

yt = f(W sht) (2.6)

Attention Mechanism

The standard encoder-decoder architecture performs poorly on long input sequences because

the decoder only uses the last hidden state of the encoder. Bahdanau et al. (2014)22 extended

the simple encoder-decoder structure by allowing a model to automatically search for relevant

parts of a source sentence essential for predicting a target word correctly. This approach does

not convert all the source text information into a fixed length vector, but rather encodes the

source sentence into a sequence of vectors, and the model chooses a subset of these vectors

for decoding.

Conditional probability for each:

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci) (2.7)
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Figure 2.2: Bahdanau Attention Mechanism (Bahdanau et al., 2014)22

where si is an recurrent neural network hidden state for time i, computed as

si = f(si−1, yi−1, ci) (2.8)

Context vector, ci, is computed as

ci =
Tx∑
j=1

αijhj (2.9)

The weight αij of each annotation hj is computed as follows:

αij =
exp(eij)

Tx∑
k=1

exp(eik)

(2.10)

where

eij = a(si−1, hj) (2.11)
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2.3.2 Transformer-based Models

Vaswani et al. (2017)58 proposed the Transformer model, an architecture that relies entirely

on an attention mechanism to draw global dependencies between input and output. The

Transformer model consists of an encoder-decoder architecture and is designed for sequence-

to-sequence tasks. The architecture of this model is shown in Figure 2.3. The transformer

uses stacked self-attention and point-wise, fully connected layers for both the encoder and

decoder. The idea behind this model is to completely handle long-range dependencies be-

tween input and output with attention and recurrence. The left side of the image (see 2.3)

shows the encoder, which has one layer of multi-head attention followed by a feed forward

layer. The right side shows the decoder, which is similar to encoder, but with an additional

masked multi-head attention layer. The encoder and decoder blocks are actually multiple

identical encoders and decoders with the same number of units stacked on top of each other.

The model uses self-attention to focus on the relevant parts of the input sequence. It

performs multiple independent computations in parallel and therefore is referred to as multi-

head attention. The multiple outputs are then concatenated and linearly transformed.

Encoder for Transformer

The encoder in a transformer58 consists of a stack of six identical layers where each layer has

two sub-layers: a multi-head self-attention mechanism and a position wise, fully connected,

feed-forward network. The output of each sub-layer is given by the following equation:

outputsubLayer = LayerNorm(x+ Sublayer(x)) (2.12)

where Sublayer(x) is the function implemented by the sub-layer.

Decoder for Transformer

The decoder, just like the encoder, consists of a stack of six identical layers. However, unlike

the encoder, it has three sub-layers, where the additional layer performs multi-head attention
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Figure 2.3: Architecture of the Transformer model (Vaswani et al., 2017)58

over the output of the encoder stack. The self-attention sub-layer in the decoder is modified

from the encoder version to prevent positions from attending to succeeding positions.

Scaled Dot-Product Attention: The input consists of three things: queries, keys with

dimension dk, and values with dimension dv. The attention is computed for a set of queries

using Equation 2.13:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.13)
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where Q is a matrix consisting of a set of queries, K is a matrix of keys, and V is a matrix

of values.

Multi-Head Attention: Transformers use multi-head attention that allows them to

jointly attend to information at different positions. Multi-head attention is computed using

Equation 2.14:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.14)

where headi = Attention(QWi
Q, KWi

K , V Wi
V )

2.3.3 Text-to-Text Transfer Transformer (T5)

The T5 model was proposed by Raffel et al. (2020)65 with an architecture closely following

the Transformer form proposed by Vaswani et al. (2017)58. The T5 model is pre-trained on a

data set called colossal clean crawled corpus (C4) introduced by Raffel et al. (2020)65. T5 ex-

pects the natural language processing task to be re-framed into a unified text-to-text-format

where the input and output are always text strings. This text-to-text framework makes

the model flexible enough to be used for many natural language processing tasks includ-

ing machine translation, question answering, summarizing, and natural language processing

classification tasks such as sentiment analysis. The architecture of T5 is similar to that of the

original Transformer model by Vaswani et al. (2017)58 with a few exceptions: LayerNorm

of Vaswani et al. (2017)58 is simplified, dropout is added to the feed-forward network, and

encoding is changed to relative position encoding instead of sine-based encoding.

In this research, I have fine-tuned the T5 model for question generation. To date, this

model has not been used for question generation in the privacy policy domain.

2.3.4 Other Transformer Models

There are some other transformer models, which are briefly summarized here. Some of these

models will be used in future work for question generation in privacy policy domain.
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Devlin et al. (2019)63 presented a transformer approach called BERT, a self-supervised

approach for pre-training a transformer encoder, which can then be fine tuned for any nat-

ural language processing task. Chan and Fan (2019)62 used BERT for question generation,

demonstrating that using BERT out of the box does not yield remarkable results for ques-

tion generation. They proposed two models that restructure BERT and show significant

improvements in results over sequence-to-sequence baselines. Tay et al. (2020)73 provided a

comprehensive overview of existing transformer models used across multiple domains.

BERT uses masking for inputs, which causes the model to neglect dependencies between

the masked words. Yang et al. (2019)74 presented XLNet as a solution to the problems with

BERT in text classification. Liu et al. (2019b)75 studied BERT and evaluated the effects

of training data size and hyper-parameter tuning. Their study found that BERT is con-

siderably under-trained, proposed some improvements to BERT, and renamed it RoBERTa.

RoBERTa modifications include: (1) longer model training with larger data set; (2) removing

next sentence prediction; (3) increasing sequence size; and (4) changing masking patterns

dynamically.

Lewis et al. (2019)76 proposed BART, which architecturally is a generalization of many

other transformers. BART is a denoising autoencoder for pre-training sequence-to-sequence

models. Joshi et al. (2019)77 proposed another transformer model, named SpanBERT, which

extends BERT by: masking contiguous random spans of text, and using the span boundary

representations for training. Their work demonstrated how a good pre-training task could

have a remarkable impact on the performance of the model.

2.4 Corpora for Question Generation

Question generation is regarded as a sub-task of question answering, so any question answer-

ing data set can be used to generate questions. Stanford Question Answering Data set or

SQuAD (Rajpurkar et al., 2016)61 is the most popular data set for neural question genera-

tion and has been very widely used in existing literature. It consists of over 100,000 factoid

questions based on Wikipedia articles with answers as a span of text. A few other data sets
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that have been used in literature include: MS MARCO (Nguyen et al., 2016)78, NewsQA

(Trischler et al., 2017)79, and LearningQ (Chen et al., 2018)80.

2.5 Summary

This chapter presented a survey of question generation literature, along with state-of-the-

art deep learning models used for the task. This chapter also presented the classification

of question generation methods into two broad categories: rule-based and neural question

generation. Neural question generation methods include two kinds of models: sequence-

to-sequence and transformer-based. This work uses sequence-to-sequence and transformer-

based T5 model for neural question generation in the privacy policy domain. Literature

review in neural question generation suggests that to get better performance, auxiliary in-

formation needs to be provided to the system. In my research, I focus on providing domain

knowledge to the models during training by expressing the knowledge as constraints. The

next chapter discusses existing methods in literature for incorporating domain knowledge as

part of machine learning models.
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Chapter 3

Methodology

3.1 Domain Knowledge in Machine Learning Models

Linear machine learning models have used constrained conditional models to inject domain

specific knowledge as part of training or evaluation. However, in the past few years, some re-

search has included domain knowledge as part of deep learning models. This chapter presents

constrained conditional models, relevant research and its application to question answering

systems, followed by a discussion of ways to incorporate domain knowledge into deep learning

models. This chapter further explores ways to express different kinds of constraints81.

3.2 Constrained Conditional Models

Natural language processing problems can be formulated as integer linear programming, also

known as constrained conditional models82, a learning and inference framework that uses

declarative constraints to augment the learning of conditional models. This framework allows

us to frame problems as constrained optimization problems, where the objective function

comprises learned models subject to problem or domain specific constraints. Injecting prior

knowledge about the domain into the learning process in the form of constraints helps models

make coherent decisions. Constraints can be written as first order logic expressions.
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Formally, a constrained conditional model can be represented using two weight vectors:

λ and ρ. The objective function is defined below:

argmax
y∈Yvalid

λ · F (x, y)−
K∑
i=1

ρidCi(x)(x, y) (3.1)

where, λ is the weight vector for the learning model, and F (x, y) is a collection of classifiers.

The term to the left of the minus operator is a standard linear model, and the term to the

right models prior knowledge in the form of constraints. ρi is the penalty term for violating

the constraints, and d is the function that measures the degree to which the constraint Ci is

violated in a pair (x, y). The degree of violation can be measured in several ways. Note that

Equation 3.1 allows both “hard constraints” and “soft constraints”. This objective function

can be solved using integer linear programming. Integer linear programming is intractable

in limit but has been successfully used; constraints are, after all, sparse. Beam search has

also been used as an alternative to find an approximate solution.

3.2.1 Existing Work on Constrained Conditional Models

Chang et al. (2008, 2012)82;83 formalized and generalized the approach introduced by Roth

and Yih (2004, 2007)84;85 to develop a framework known as constrained conditional mod-

els. These models allow declarative constraints to be directly injected into the model while

maintaining its simplicity and ease of understanding. The constraints are prior knowledge

injected into the model to make it more expressive. The authors used constrained conditional

models for sequence labeling task in a supervised and semi-supervised setting.

Kundu et al. (2011)86 surveyed constrained conditional models and used them in an

information fusion system. Their work also outlined the advantages of using constrained

conditional models: (1) they allow encoding of prior knowledge; (2) constraints are more

expressive than features; and (3) the models provide a framework to combine simple models

with a small set of constraints to boost model performance.

Ning et al. (2018)87 proposed a joint framework called Temporal and Causal Reasoning
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that uses constrained conditional models and integer linear programming to extract temporal

and causal relations between events.

3.2.2 Applying Constrained Models to Question Answering

Contractor et al. (2021)88 labelled the questions from a tourism forum to identify the

informative parts of a question. Their work used constrained conditional models with neural

networks to form a query that can be used to retrieve the answer from a knowledge base.

Aghaebrahimian and Jurc̆́ıc̆ek (2016)89 used constrained conditional models for simple open-

domain question answering. Their work was based on the research of Bordes et al. (2015)90

who had stated that the answer to a simple question can be obtained only by knowing

one entity and one property. Their work used a knowledge graph; the metadata from the

knowledge graph was used as part of their proposed framework, which used a constrained

conditional model.

3.3 Domain Knowledge in Deep Neural Networks

Incorporating domain knowledge into deep neural models is a way to emulate human rea-

soning and understanding. This knowledge can be expressed in terms of constraints that

can be designed by experts and then integrated into a deep learning model to make it gen-

eralize better. Dash et al. (2021)81 categorized the representation of domain knowledge

for deep neural networks as (1) logical constraints and (2) numerical constraints. A recent

survey for injecting domain knowledge in neural networks has been presented by Borghesi et

al. (2020)91. According to their survey, domain knowledge can be represented by algebraic

equations: (1) linear and non-linear equations; (2) equality and inequality constraints; (3)

logic formulas. Additionally, domain knowledge can also be expressed in the form of graphs,

such as knowledge graphs. Borghesi et al. (2020)91 also provided a classification of ways

in which the constraint-expressed domain knowledge can be integrated in the deep learning

network: (1) feature space; (2) hypothesis space; (3) data augmentation; (4) regularization
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schemes; (5) constraint learning.

3.3.1 Logical constraints

Logical constraints can be expressed using: (1) propositional logic and (2) first-order logic.

Domain knowledge can be encoded as rules in propositional logic to constrain the deep neural

network.

Propositional Logic

A proposition in propositional logic is defined as a declarative sentence that is either true or

false, but not both. Propositional logic can be used to represent non-Boolean features with

Boolean-valued propositions. Domain experts generate domain-specific features expressed

in propositional logic to constrain the parameters or structure of a neural model. Using

propositional logic to specify constraints to a neural network is not new; it has been around

since the early 90s.

Towell et al. (1990)92 presented the oldest research on this topic, proposing a knowledge-

based artificial neural network that included domain knowledge in neural networks. Their

research used propositional rules to determine a fixed topological structure for an artificial

neural network. Fu (1993)93 presented similar research, proposing a knowledge-based neural

network that used semantic constraints. These approaches were popular at the time, but

these neural networks could not learn new rules. Xu et al. (2018)94 presented more recent

research using propositional rules as well as a semantic loss function that measures the

difference between neural network output and constraints represented as propositional rules.

First-order logic

First-order logic provides more flexibility and representational power than propositional logic.

First-order logic makes use of quantifiers and/or relations for generating expressions. Li and

Srikumar (2019)95 introduced a new framework that integrates first-order logic rules into

a neural network by converting the rules into differentiable components of the neural net-
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work without altering the network architecture completely and without the burden of extra

learnable parameters. Their research also revealed three major difficulties encountered while

trying to infuse rules into neural networks. These difficulties include mapping predicates in

rules to actual nodes in the network. They also found that the network requires encoding

that can be differentiated, even though logic can not be differentiated. Moreover, logical

rules may introduce cyclic dependencies between the nodes of the computational graph.

Yao et al. (2021)96 proposed an approach to refine a BERT-based language model with

human-provided compositional explanations represented as logic rules. Recently, Silvestri et

al. (2021)97 have studied the effects of adding domain and empirical knowledge to a deep

learning network using a combination of semantics-based regularization98 and constraint

programming99. Their work has showed that adding domain knowledge at the time of

training can significantly improve the output of a deep learning model. Semantic-based

regularization builds a multi-layer architecture consisting of kernel machines at the input

layer, with the output of the input layer fed to higher layers, thus implementing constraints

formed from a fuzzy translation of first-order logic formulas.

Sikka et al. (2020)100 proposed a framework for automating the generation of deep neural

networks. Their framework incorporates user-provided domain knowledge for training the

model. They used first-order logic to represent declarative knowledge. Giunchiglia and

Lukasiewicz (2021)101 imposed hard constraints expressed as normal logic rules for the task

of hierarchical multi-label classification. Their work proposed a constraint layer on top of a

multi-class classification neural network to convey the predictions made on classes lower in

the hierarchy to upper classes. Additionally, they proposed a novel loss function to impose

the constraints.

3.3.2 Numerical Constraints

Numerical constraints can be expressed using (1) loss function; (2) constraints on weight;

and (3) regularisation.
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Loss Function

Loss Function has been used in existing work to impose constraints on a neural network

by augmenting the loss function with additional penalty terms. Aghaebrahimian (2017)102,

for instance, proposed a constrained deep neural network for a question answering system

to select sentences containing the answer. The model selects a subset of sentences that can

contain the potential answer to a question, thereby reducing search space. The research

accomplished this by defining a loss function that enforces the number of shared patterns

between questions and sentences as a hard constraint.

Weight-based constraints

Weight-based constraints have also been used to add constraint-based knowledge to neural

networks. Hu et al. (2016)103 developed an iterative distillation method that transfers the

structured information of logic rules into the weights of neural networks. Another way to

incorporate numerical constraints in deep neural networks is to add weight constraints by

encoding the domain knowledge as a ‘prior’ term in the Bayes equation of the Bayesian

framework. The priors specify the expectations from the neural networks before they receive

any input data. These priors can correspond to penalty terms added to the objective function

or any regularization term. Jiang et al. (2020)104 proposed a different flavor of recurrent

neural network that they dubbed as FA-RNN, which combines regular expressions with

neural networks. This network is constructed using weighted finite state automata.

Regularization

Regularization is a another way to add numerical constraints to a neural network. It is a

technique that limits the model capacity by adding a penalty term in the objective function,

like inclusion of L1 and L2 norms. The consequence of including these norms in the objective

function is a less complex model105.
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3.4 Summary

This chapter presented a survey of existing methodology that uses domain knowledge and/or

empirical knowledge in machine learning models during training or evaluation. First, this

chapter provided an overview of constrained conditional models and their application to

question answering systems. Then, it provided a survey of approaches that have been used

for incorporating knowledge in deep neural networks. This chapter also discussed related

work and background for the work presented in Chapter 5 of this dissertation. My research

expresses domain and empirical knowledge as logical constraints using first-order logic. Ad-

ditionally, my work also uses loss function to impose the constraints in deep learning models.
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Chapter 4

Neural Question Generation using

Transformers and

Sequence-to-Sequence Models

4.1 Introduction

The research described in this chapter 1 focuses on using existing sequence-to-sequence mod-

els and a transformer-based approach to generate questions in the privacy policy domain.

To date, no effort has been made in this domain to generate questions. This chapter dis-

cusses the creation of custom named entity labels for the domain and their use as auxiliary

information for sequence-to-sequence and transformer models. It also presents the results,

which indicate that adding labels as input improves the performance of the aforementioned

models.

1A significant portion of this chapter has been accepted in IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT) 2021.
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4.1.1 Motivation and Challenges

The goal of the research in this chapter is to enhance existing sequence-to-sequence and

transformer-based T5 models to develop an automatic question generation system, which

can serve as a sub-task in the development of a full-fledged question answering system in

the privacy policy domain. As previously mentioned, such a system can be used to generate

frequently asked questions and responses, thereby enabling users to read and grasp privacy

policies instead of ignoring them entirely because of their length and perceived complexity.

Developing such a system has its challenges, one of which is obtaining a large, well annotated

data set because annotating policy documents requires domain experts.

To date, only two data sets have been created in this domain that can be used for question

answering (QA) and question generation (QG) tasks. Ahmad et al. (2020)1 and Ravichander

et al. (2019)106 have published data sets created from privacy policy statements. Table 4.1

presents the details of the two data sets. This work uses the PolicyQA data set from Ahmad

et al. (2020)1, which is comparatively larger than the one by Ravichander et al. (2019)106;

further, Ahmad et al.’s (2020)1 data set has been annotated by domain experts.

Table 4.1: Question-Answer Data Sets in Privacy Policy Domain

Author Data Set No. of Policies No. of Examples

Ahmad et al. (2020)1 PolicyQA 115 websites 25017

Ravichander et al. (2019)106 PrivacyQA 35 mobile applications 3500

4.1.2 Privacy Policies

Wikipedia defines a privacy policy as “a statement or legal document that states how a com-

pany or website collects, handles and processes its customer or visitor data.” The document

is a well structured legally binding agreement between the user and the service provider that

explicitly states the data gathering, data handling, and data processing practices of an orga-
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nization. This means that a privacy policy document indicates if and how user data will be

shared with others, and whether or not it will be sold to other third party service providers.

Hence, to protect their privacy, it is imperative that end-users read and understand these

documents prior to agreeing to the terms of service. However, research shows that users

generally avoid reading these documents because of the seemingly excessive length of the

documents9 11 13, the perceived complexity of the used language10 13, and an unwillingness to

spend time reading the policies in detail9.

Some savvy users try to get some idea of the policies by checking the frequently asked

questions (FAQ) section. Unfortunately, not all services offer an FAQ section; and even if

they do, the FAQ section may not contain many of the expected clarifying question-answer

sets. As a result, most users accept the policies without realizing that they are giving away

the rights to their personal data, which could include sensitive personal information such as

name, age, gender, address, phone number, email address, nationality, religion, race, credit

card details, social security or similar national identity number, among other things. With

data breaches becoming increasingly common, some users end up suffering when a breach

occurs at the organization holding their data. Only after being affected by a breach do they

realize the kind of personal information that was being gathered by the service provider.

4.1.3 Limitations of Existing Work

Du et al. (2017)25 were the first to automatically generate questions using sequence-to-

sequence models. Prior to their work, sequence-to-sequence models were used for language

translation21. Since their work in 2017, most research in the field of question generation has

used sequence-to-sequence models with modifications to the architecture and inputs. In the

past couple of years, some work has been done on transformer-based question generation59;60.

The performance of the existing basic sequence-to-sequence and transformer-based mod-

els on the benchmark SQuAD61 data set, which is a general purpose data set consisting

of Wikipedia articles, is quite different from their performance on PolicyQA,1, the data set

used in this work. The comparison is presented later in this chapter in Table 4.5. The results
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indicate that the existing models do not perform well in the privacy policy domain.

This degradation in performance of deep learning models in the privacy policy domain

may be due to their unsuitability to deal with a privacy domain specific data set like Pol-

icyQA. It might also be due to the size of the PolicyQA data set. PolicyQA consists of

just 25,017 examples, while SQuAD consists of over a 100,000 examples. It could be due

to a combination of the two or even other unexplored factors. Whatever may be the case,

the existing models are inefficient, in their current state, to work in the privacy policy do-

main and this research tries to address this issue. This research focuses on automatically

generating questions in the privacy policy domain with minimum human involvement using

sequence-to-sequence and transformer-based approaches.

4.1.4 Objectives and Significance

This chapter asserts that augmenting the input contextual information with custom named

entities defined for privacy policy statements gives promising results that lay the foundation

for this research. The results suggest that adding further domain-specific information to the

deep learning models should boost the question generation performance of the models, as

measured by evaluation metrics covered in section 4.5.4. The work presented in this chapter

will act as a baseline for the work presented in Chapter 5 of this dissertation.

The novel contributions described in this chapter include (1) generating questions from

privacy policy documents in an effort to further encourage development of better question

answering systems in the domain; and (2) generating named entities for the privacy policy

domain because existing named entity recognition tools fail to label most data in this domain.

Augmenting data with these named entities improves the results and can act as a baseline for

further research in question generation for privacy policy documents. Existing work in the

privacy policy domain has focused on extracting knowledge using either a rule-based system,

topic modeling-based systems, or question answering systems. However, question generation

has remained completely absent. The contributions of this chapter are summarized below:

• Existing sequence-to-sequence and transformer-based models have not been used for
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question generation for privacy policy documents. In fact, question generation in the

privacy policy domain has never been done, altogether. This research is the first to do

so.

• Existing named entity recognition tools fail to label privacy policy documents due to

their complex nature. This research involves the creation of custom labels for named

entities in this domain.

• Augmenting input to basic sequence-to-sequence models with these named entity tags

helps the models outperform the base models. This is in line with Zhou et al. (2017)27.

Additionally, the augmented data is also provided as input to the transformer-based

model (Raffel et al. (2020)107), which improves results over the base model. This is the

first time that transformer-based T5 model has been provided with input augmented

with named entity tags.

4.2 Background and Related Work

4.2.1 Related Work

Rule-based systems require deep linguistic knowledge to create hand-crafted rules to generate

questions. Mitkov and Ha (2003)15 used a set of general transformational rules to create

multiple-choice tests. Gates (2008)16 used tree manipulation rules to generate fact-based

reading comprehension questions.

Khullar et al. (2018)17 used a syntax-based system that runs on dependency parse

information of the input sentence. Heilman and Smith (2009)3;18 also included a statistical

component to score questions in generating a ranked set of questions about the text. Chali

and Hasan (2015)19 focused on topic-based question generation, using rules based on named

entity information and semantic role labels. Recently, Dhole and Manning (2020)20 used

syntactic rules that leverage universal dependencies, lexical information, shallow semantic

parsing and custom rules to generate questions.
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Rule-based systems are easier to interpret, allow developers greater control over model

behavior, and typically require less data to achieve a performance comparable to neural-

based models. However, building such systems not only requires deep linguistic knowledge,

but is also labor intensive. Moreover, the created rules may be domain specific and thus

cannot be generalized.

Deep learning-based approaches, on the other hand, provide an end-to-end solution that is

driven by data and not handcrafted rules. Most existing neural question generation systems

use a sequence-to-sequence framework (Sutskever et al., 201421) with an attention mechanism

(Bahdanau et al., 2014)22. They also use context and other auxiliary information as input

to the model. Pan et al. (2019)24 conducted a comprehensive survey of recent advances in

question generation.

Du et al.(2017)25 conducted the earliest research on using neural networks for question

generation. Zhou et al. (2017)27 used the position of the answer along with additional

features generated from named entity and part of speech tags. However, these types of

answer-aware models have a tendency to include words from answers in the generated ques-

tions, resulting in questions of poor quality. Kim et al. (2019) replaced the answer with a

special token in the paragraph to prevent answer words from being included in the predicted

question.

Another approach in question generation has been to encode answer feature separately

using a recurrent neural network (RNN)28;29. Song et al. (2018)29 separately encoded the

passage (source text) and answer. Similar to the work of Zhou et al. (2017)27, Ma et al.

(2020)35 proposed an attention-based sequence-to-sequence model that accepts named entity

features (Sang and De Meulder, 200336), part of speech tags (Brill, 199237), case, and answer

position features as input. Additionally, they used a pointer-generator network32 and copy

mechanism38 to better exploit the answer position-aware features. Harrison and Walker

(2018)39 also used linguistic features like named entity recognition, word case, and entity

co-reference resolution to build a sequence-to-sequence model with two encoders, one for

token level embedding, and the other for sentence level embedding. The research presented

in this chapter follows the work of Du et al.(2017)25 and Zhou et al. (2017)27 and uses
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sequence-to-sequence models for privacy policy domain. However, unlike the work of Zhou

et al. (2017)27, this research does not use the answer or its position, or part of speech tags.

This work also creates named entity labels for the privacy policy domain and uses them as

auxiliary information for sequence-to-sequence models.

In recent years, some work has been done on question generation using transformer-based

approaches. Some of the research in question generation that has used transformers includes:

Matsumori et al. (2021)59 proposed a Unified Questioner Transformer (UniQer) for visual

question generation; Scialom et al. (2019)60 used transformer for answer-agnostic question

generation on SQuAD data set; and Chan and Fan (2019)108 used BERT. This research uses

“Text-To-Text Transfer Transformer”(T5) proposed by Raffel et al. (2020)107 and it also

uses named entity tags as auxiliary information for T5.

4.2.2 Sequence-to-Sequence Models

Sutskever et al. (2014)21 proposed sequence-to-sequence models as a domain independent

method that could map sequences to sequences. Their work used long short-term memory

architecture70 for converting the input sequence into a fixed-length vector and another LSTM

for converting the vector back to a sequence. Sutskever et al. (2014) used this approach

for language translation models, but in 2017, Du. et al. (2017)25 used these models to

generate questions. The most common sequence-to-sequence models are encoder-decoder

models, which use a bi-directional recurrent neural network68. For any given sequence of

inputs, represented by (x1, x2, ..., xN), a standard recurrent neural network uses the following

equations to compute a sequence of outputs, represented by (y1, y2, ..., yN):

ht = σ(W hxxt +W hhht−1) (4.1)

yt = W yhht (4.2)

The standard recurrent neural network is unable to handle long term dependencies.
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Hochreiter and Schmidhuber (1997)70 used LSTMs to solve this problem. Sutskever et

al. (2014)21 used an encoder-decoder architecture, where an encoder is a stack of several

recurrent units (LSTM units); each stack accepts a single element of an input sequence at

each timestamp and propagates forward the information collected from its representation.

At each timestamp, a hidden state is calculated using Equation 4.1. Similarly, a decoder is

a stack of several recurrent units where each unit accepts the hidden state from the encoder

to predict an output at each time stamp using Equation 4.2.

4.2.3 Transformer Model: T5

The original transformer58 comprised an encoder-decoder architecture using self-attention109.

Self-attention is an attention mechanism that relates different positions of a single sequence

to compute a representation of the given sequence, while focusing on the relevant words. T5

is architecturally similar to the original transformer model58 with a few exceptions: (1) it

does not have the Layer Norm bias; (2) the layer normalization is placed outside the residual

path; and (3) it uses a different position embedding scheme.

4.3 Methodology

This work uses the paragraph as input to the model and does not use answer sequence

because some answers provided in the data set are implied by the context. Table 4.2 shows

two examples where the answers provided in the data set can be inferred from the context.

There are many other examples of answers that do not occur in the passage verbatim. In

such a situation, the existing sequence-to-sequence models do not work well because these

models use answers or hard code answer positions. As a result, all models in this work are

trained in an answer-unaware setting. However, not being answer-aware, makes the models

less likely to generate targeted questions.

In this chapter, the performance of basic RNN encoder-decoder models is compared to

that of T5 transformer model in the privacy policy domain to see whether domain specific
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Table 4.2: Examples from Data Set showing Context-Question-Answer tuple with NER tags
in bold

Website: TGI Fridays

Context: The information that you provide is collected by TGI Fridays. In the case of
links to our gift card and guest recognition sites, the information you voluntarily provide
at those sites will only be shared with those service vendors who help TGI Fridays
administer those websites or mobile application and the services they provide. In any
case, TGI Fridays is the lawful “owner” of the information and each of these vendors
may use the information only for the purpose of administering the digital or mobile
application and its services for TGI Fridays, and will take all necessary precautions
to protect the information. Ownership of any information you provide us will be held
solely by TGI Fridays. We will not sell ownership of this data to any other company
or organization.

Question: Does the third party follow the privacy practice?

Answer: will not

Website: Kaleida Health

Context: Kaleida Health may disclose your health information to authorized public
health officials (or a foreign government agency collaborating with such officials) so they
may carry out their public health activities. For example, we may share your health
information with government officials who are responsible for controlling disease, injury
or disability. Kaleida Health may also disclose your health information to a person
who may have been exposed to a communicable disease or be at risk for contracting or
spreading the disease if a law permits us to do so. And finally, Kaleida Health may
release some health information about you to your employer if your employer hires us to
provide you with a physical exam and we discover that you have a work-related injury or
disease that your employer must know about in order to comply with employment laws.

Question: Do my shared data leak my identity?

Answer: Health information
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named entity recognition tags improve the results. The results of these experiments establish

the baseline for the research presented in Chapter 5 which focuses on generating constraint-

based questions using sequence-to-sequence and transformer-based models.

4.3.1 Deep Learning Models

This section describes the models used in this research. First, the encoder and decoder of

sequence-to-sequence models are described, followed by attention mechanism, and the T5

model used in this work.

Encoder + NER Labels

This work uses Gated Recurrent Unit71 to build the encoder. This follows the work of Zhou

et al. (2017)27 and concatenates the word embedding vector with the label embedding vector

to form the input for the encoder. However, a major distinction between the two is that this

work does not use answer position or part of speech tags as lexical features. The encoder is

unidirectional, reading input embeddings to produce a hidden vector that serves as input to

the decoder. Equation 4.3 is used to compute the output of the update gate, zt, and sigmoid

activation function is used to map the output values between 0 and 1. The update gate

determines how useful past information is to the current state. Values closer to 1 indicate

more past information is incorporated in the network, while values closer to 0 indicate that

only recent information is retained.

zt = σ(Wzxt + Uzht−1 + bz) (4.3)

where Wz is the weight matrix applied to input xt, Uz is the weight matrix applied to the

hidden vector ht−1, and bz is the bias vector. The next Equation 4.4 shows the output of

the reset gate, which allows the model to ignore past information that might be irrelevant

in future time-steps.

rt = σ(Wrxt + Urht−1 + br) (4.4)
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where Wr is the weight matrix for input xt, ur is the weight matrix for hidden state ht−1, and

br is the bias vector for the reset gate. The next step is computing the output of candidate

hidden state, which combines the information from the previous hidden state with the input.

The output is given by Equation 4.5.

h̃ = tanh(Whxi + rt ∗ Uhht−1 + bh) (4.5)

where Wh is the weight matrix for input xi, rt is the output of reset gate, Uh is the weight

matrix for hidden state ht−1, and bh is the bias vector. The resulting values are mapped

between -1 and 1 using the tanh activation function. The encoder GRU hidden state ht is

computed by Equation 4.6.

ht = (1− zt) ∗ ht−1 + zt ∗ h̃ (4.6)

Decoder

This work uses a GRU decoder to decode the context and label information to generate the

questions. In question generation, the output sequence is a collection of words that form a

question. The GRU decoder uses the previous hidden state ht−1 to compute the output yt,

as well as its own -idden state ht. Any hidden state ht is computed using Equation 4.7.

ht = f(W hhht−1) (4.7)

The output yt at time step t is computed using Equation 4.8:

yt = softmax(W sht) (4.8)

Attention-Based Decoder

This work uses an attention-based22 GRU decoder to decode the context and label infor-

mation to generate the questions. Attention mechanism has been discussed in Chapter 2:

Section 2.3.1.
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Transformer + NER Labels

Vaswani et al. (2017)58 proposed the Transformer model with an architecture that relies

entirely on an attention mechanism to draw global dependencies between input and output.

This work uses the T5 small model107 available from the Hugging Face library110. The NER

labels are concatenated to the context and provided as input to the T5 model. Transformers

has been discussed in Chapter 2: Section 2.3.1.

4.4 Problem Statement for the Task

In this section the question generation task is formally defined, followed by a brief overview

of the neural models used for the task. This section further discusses the custom named

entities generated for the privacy policy domain using the lookup method.

4.4.1 Problem Statement

The problem of question generation is defined as following:

Given a passage (or context from a policy document), Xp = (x1, x2, ..., xn) as input, the

model generates a question, Y = (y1, y2, ..., yT ). The goal is to find the best Ȳ :

Ȳ = argmax
x

P (Y |Xp) (4.9)

where P (Y |Xp) is the conditional log-likelihood of the predicted question sequence y,

given the input x. Neither the answer sequence nor its position is used as input to the deep

learning models.

4.4.2 Named Entities

The proposed model will be a sequence-to-sequence model at its core, with named entities

that are custom generated for the privacy policy data set. A description of the named entities

41



is presented later in Table 4.3. The main idea is that given a sentence of the form: “John,

who is an engineer, is travelling to Manhattan” with no answer provided, a human could

generate the following questions:

• Who is travelling to Manhattan?

• Where is John travelling?

• Who is John?

As a human, we tend to focus on the person and location in the given example. Standard

named entity recognizers like the Stanford NER parser111 can recognize up to 7 classes: loca-

tion, person, organization, money, percent, date, and time. Privacy policies are not amenable

to using standard parsing tools because they do not include data that can be labeled; they

do not include names of people, rarely mention any location, and most organizations listed in

the data can not be marked by the Stanford NER parser. This indicates the need to analyze

the data to identify key entities as the foci of the privacy document. After the labelling step,

applying constraints should force the system to focus on key entities during training. The

constraints are set out in the next chapter.

Existing NER tools do not work well for privacy policy documents because they lean

towards a more general domain, which renders them useless for labeling legal documents.

Existing legal NER tools are application specific: court cases112 113, or court cases in Ger-

man114. This research define five entity types to extract key information from the privacy

policy documents. These labels are presented in Table 4.3 and a more descriptive version is

presented in Appendix A.

The lookup method has been used for named entity recognition because of the shortage

of training data and human annotators. This method consists of creating a list of names

comprising of entities; for example, “data” is marked as CONTENT. Once the list has been

created, all mentions of the elements in the list are marked as entities. The lookup method

has certain advantages: it is simple to implement, easy to maintain, and does not require

any training data. However, it does suffer from false positives, and so it requires special
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Table 4.3: Labels for Privacy Policy Domain

Label Description

LEGAL Terms that refer to policies or agreements

CONTENT Information and its collection source like browser, website, cookies, and
apps

ORG Names of organizations for whom the policy is written or terms like third
party or vendors

PERSON Common nouns like customers, visitors, etc. that represent people to
whom the service is being provided

URL Web page for the organization or service provider

effort to ensure a very comprehensive list.

4.5 Experimental Design

4.5.1 Data Set Description

Ahmad et al. (2020)1, created the PolicyQA data set containing 25,017 reading comprehen-

sion style examples, from an existing corpus called OPP-115115. PolicyQA consists of 115

website privacy policy statements and 714 human-annotated questions. Ahmad et al. (2020)

also presented a comparison of their data set with PrivacyQA106. One significant difference

between the two is the nature of answers: PolicyQA contains a short text span from the

policy document as the answer, which reduces the user burden in searching for the required

information in a given sentence(s); while PrivacyQA contains answers as a list of sentences,

so the user has to interpret the answer based on the retrieved sentences.

Another key difference between the two is that the questions and answers of PolicyQA
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were annotated by law students, whereas Amazon Mechanical Turkers annotated PrivacyQA.

This seems to contribute to the overall better quality of the PolicyQA data set, and hence it

has been used in this research work. PolicyQA is split into training (80%), validation (10%)

and test (10%) sets at the paragraph level. Table 4.4 shows the distribution of the data into

train/validation/test sets.

Table 4.4: Number of Context-Question-Answer Tuples after random shuffling

Item Number of Items

Train Set 20013

Validation Set 2502

Test Set 2502

4.5.2 Implementation Details

All machine learning models in this research have been implemented using PyTorch version

1.7.1. and trained on Nvidia Tesla v100. The hyper-parameters of the baseline models

are tuned on the validation set. Before conducting experiments on the data, the following

pre-processing tasks were performed:

• Each word in a sequence was converted to lower case.

• SOS (start of sequence) and EOS (end of sequence) tokens were added to all questions.

• Spelling inconsistencies were fixed. For example, the word “parties” was often mis-

spelled as “parities” in the data set. Errors of this nature were corrected throughout

the data set. Also, some shortened words like “info” were expanded to their full length

(“information” in the case of “info”) to ensure consistency.

The NER tag information was concatenated to the context before it was fed to the GRU

encoder as input. The GRU hidden sizes of both the encoder and decoder alternated between

256, 500, 1000, and 2000. During decoding, greedy search and beam search with beam width
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of 3 were used. For optimization during training, stochastic gradient descent optimizer116

was used with a learning rate of 0.001. Teacher forcing117 was used for training, and the best

model was selected using lowest model perplexity on the validation set. All hyper-parameters

were also selected on the validation set.

4.5.3 Baseline Models

The following baseline question generation models have been selected for comparison with

the proposed approach:

• Seq2Seq21 is a vanilla sequence-to-sequence framework that uses encoder-decoder ar-

chitecture. The context input was not reversed for the experiments.

• Seq2Seq + attention22 is an encoder-decoder architecture with Bahdanau attention

mechanism.

• NQG (2017)25 is the first model that uses neural networks for question generation.

It uses a global attention-based LSTM encoder-decoder model to map a passage to a

question. The best results were achieved using GloVe118 pre-trained embedding with

paragraph level encoder.

• Transformer-based model (T5) is a Text-To-Text Transfer Transformer from Raffel

et al. (2020)107. The T5 model is pre-trained on Colossal Clean Crawled Corpus (or

C4 for short)107. T5-small model, which consists of 60 million parameters, is fine-tuned

for question generation in the privacy-policy domain, given a textual context as input.

4.5.4 Evaluation Metrics

All question generation models are evaluated using the following three metrics: Bilingual

Evaluation Understudy or BLEU-n (Papineni et al., 2002)119; Metric for Evaluation of

Translation with Explicit ORdering or METEOR (Lavie & Denkowski, 2009)120; and Recall-

Oriented Understudy for Gisting Evaluation or ROUGE-L (Lin, 2004)121. This work uses
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the evaluation package released by Chen et al. (2015)122 and nlg-eval123 with the transformer

model.

• BLEU-n measures the n-gram of the candidate question with n-gram of the reference

question to count the number of matches at the corpus level. The value of n ranges

from 1 ≤ n ≤ 4.

• METEOR is based on matching uni-grams between reference and candidate questions

taking into account the synonyms, stemming, and paraphrases.

• ROUGE-L measures the longest common sub-sequence of words between reference

and candidate questions.

A higher score for these metrics denotes better quality in generated questions.

4.6 Results and Discussion

The performance comparison of the models on PolicyQA and the benchmark SQuAD are

presented in Table 4.5. The results show that NQG25 performs better on SQuAD than

it does on PolicyQA. Similarly, the transformer-based model, T5 performs better in terms

of BLEU-4, METEOR and ROUGE-L on SQuAD data set. However, vanilla sequence-to-

sequence model does better on PolicyQA in terms of BLEU-4 and METEOR, while giving

Table 4.5: Evaluation Results (in percentage) for SQuAD vs PolicyQA

Model
PolicyQA SQuAD

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

Seq2Seq 5.12 14.23 30.16 4.26 9.88 29.75

NQG (2017)25 9.94 15.54 30.63 12.28 16.62 39.75

T5-small107 8.53 18.29 31.02 18.59 24.99 40.19
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Table 4.6: Evaluation Results (in percentage) for Baseline Models with Greedy Search

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Seq2Seq 27.22 15.52 8.63 5.12 14.23 30.16

Seq2Seq+attn 28.09 16.00 9.86 6.30 14.96 31.84

NQG (2017)25 32.66 18.27 12.73 9.94 15.54 30.63

T5-small107 31.32 17.14 11.51 8.53 18.29 31.02

Table 4.7: Evaluation Results (in percentage) for Baseline Models with Beam Search

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Seq2Seq 25.18 13.92 7.79 3.86 16.16 30.86

Seq2Seq+attn 28.29 15.97 9.72 6.36 16.15 30.02

NQG (2017)25 26.34 13.76 8.17 5.16 17.79 35.25

T5-small107 28.19 14.77 9.51 6.59 18.16 28.85

a comparable ROUGE-L score. The unsatisfactory performance of existing methods on

PolicyQA underpins the motivation behind this research.

Tables 4.6 and 4.7 present a comparison of all baseline models using greedy and beam

search, respectively. The performance of sequence-to-sequence and transformer-based (T5)

models varies when greedy and beam searches are used for decoding. When greedy search is

used for decoding (see 4.6), T5-small model gives the best METEOR score, but the ROUGE-

L score is lower than that of attention-based sequence-to-sequence model. When using beam

search, METEOR appears to be higher for all sequence-to-sequence models as compared to

greedy search. However, BLEU-n and ROUGE-L on average are higher for models when

using greedy search for decoding.

Sequence-to-sequence with attention gives slightly better results than vanilla sequence-

to-sequence. NQG (2017)25 performs better than both vanilla sequence-to-sequence and

sequence-to-sequence model with attention because it uses GloVe pre-trained embedding.
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The results of greedy search decoding show a smooth trend in the METEOR score. ROUGE-

L is comparable for vanilla sequence-to-sequence and NQG models. However, the Rouge-L

scores for these fall short of T5 and sequence-to-sequence with attention.

As per table 4.7, T5 performs better in terms of BLEU-4 and METEOR as compared to

all sequence-to-sequence models. NQG (2017)25 performs better than T5 and the sequence-

to-sequence models, showing a 15.08% increase as compared to its ROUGE-L value for greedy

search in Table 4.6. Overall, greedy search produces better METEOR and BLEU-4 scores

than beam search.

Table 4.8 presents the results after the context input has been augmented with named en-

tity labels generated for the privacy documents. The results improve over the corresponding

baselines: T5-small model with named entity labels shows an increase of 2.46% in METEOR

and 3.67% increase in ROUGE-L over the baseline T5 model without custom labels. Vanilla

sequence-to-sequence shows a 4.9% improvement in METEOR and 9.6% improvement in

ROUGE-L over the baseline. Similarly, sequence-to-sequence models with attention decoder

also show a 5.6% improvement in METEOR and a comparable performance in terms of

ROUGE-L when named entity labels are added. Additionally, sequence-to-sequence with

attention almost shows a 1% point improvement over vanilla sequence-to-sequence for ME-

Table 4.8: Evaluation Results (in percentage) for Models with data augmented with custom
labels using Greedy Search

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Seq2Seq 27.22 15.52 8.63 5.12 14.23 30.16

Seq2Seq+attn 28.09 16.00 9.86 6.30 14.96 31.84

T5-small107 31.32 17.14 11.51 8.53 18.29 31.02

Seq2Seq+NER 24.66 14.33 8.96 5.80 14.93 33.07

Seq2Seq+attn+NER 28.68 16.24 9.95 6.87 15.81 31.51

T5-small + NER 32.98 18.22 11.89 8.49 18.74 32.16
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TEOR with named entity labels. This improvement can also be noticed for BLEU. Overall,

the addition of named entity labels as auxiliary information improves the performance of all

models.

4.7 Summary

This chapter presented experimental results and performance comparison of sequence-to-

sequence models and transformer-based T5 model, using both greedy and beam decoding

mechanisms. The results recorded in the chapter show that augmenting the input to the deep

learning models with custom named entity labels generated for the privacy policy domain

provides a boost to the BLEU-n, METEOR, and ROUGE-L scores, as compared to the

baselines established in Chapter 4. This indicates that adding additional domain information

produces better results, thereby bolstering the motivation behind the work discussed in the

next chapter, which covers the use of these entity labels to add constraints to the deep

learning models during training. The results presented in this chapter will serve as the

baseline for the experiments presented in the following chapter, which is the core of this

dissertation.
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Chapter 5

Constrained Question Generation

using Sequence-to-Sequence and

Transformer-based models

5.1 Introduction

The focus of the work presented in this chapter is on using constraints with existing sequence-

to-sequence models and a transformer-based (T5) approach to generate appropriate questions

from privacy policy documents. This research is the first to apply constraints to question

generation. The motivation behind the use of constraints is to further enhance the results

presented in the preceding chapter by creating an approach that could be generalized to any

domain.

The success of deep learning models is based on their capability of learning from huge

amounts of data. However, deep learning models may produce less than satisfactory results

when the size of data set is small or when the nature of data is complex. Since the data

set used in this research possesses these qualities, constraints are used to encode domain

knowledge in a bid to improve the performance of the deep learning models. Moreover,

the use of logical and numerical constraints helps in making the results of the deep learning
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models more interpretable. The baselines discussed in the preceding chapter were considered

while designing constraints that help encode domain knowledge. Results indicate that adding

constraints to deep learning models during training improves the performance, as measured

by the evaluation metrics, for all the models used in this study.

The novel contributions of this chapter are outlined below:

• The work discussed in this chapter is the first to use constraint-based learning to

generate questions. It analyzes the effects of logical constraints, empirically derived

linguistic constraints, and a combination of the two to steer deep learning models

towards generating questions that are more relevant to the input text.

• This work has resulted in providing a significant boost to the performance of the

models. The results show consistent improvement in the BLEU-n, METEOR, and

ROUGE-L scores for all models over the baseline results presented in Chapter 4.

• To the best of my knowledge, this is the first research to perform question generation

in the privacy policy domain.

5.1.1 Limitations of Existing Work

Deep learning models have produced state-of-the-art results in several tasks across different

domains. These models are capable of learning features on their own and tend to perform

well with large data sets. However, in the legal space, there are domains like privacy policies

where annotated data is scarce. As a result, there is a chance that the size of data set

may be inadequate to learn useful patterns, and consequently, the performance of a deep

learning models may be sub-optimal. One solution to this problem is to exploit prior domain

knowledge and pass it as input to the deep learning model to improve its performance.

In the preceding chapter, the PolicyQA data set was used with existing sequence-to-

sequence and T5 models. The performance of the models on PolicyQA was compared to

their performance on the benchmark SQuAD data set. The results clearly demonstrated

that the performance of the existing models does not translate well to PolicyQA. This lack
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of performance could be attributed to either the small size of the PolicyQA data set or

its complex nature. The work presented in this chapter focuses on finding ways to include

additional knowledge in deep learning models to counteract the effects of a small data set.

Exploiting domain knowledge refers to extracting problem specific information from the data

that can be provided to the model during the training process to guide it towards learning

the correct patterns. This chapter makes use of logical constraints, the formulation of which

does not require domain experts. In addition to logical constraints, the baseline results of

Chapter 4 were used to design linguistic and empirical constraints to improve the results of

the deep learning model.

5.1.2 Objectives and Significance

This dissertation proposes to incorporate domain-based knowledge represented as constraints

in deep learning models to improve their performance. This work asserts that even without

the need of linguistic or domain experts, logical and empirical constraints can be designed

to represent knowledge that can force the neural network to generate relevant questions.

Existing literature is full of noteworthy work showing that providing additional information

to deep learning models can boost performance. The preliminary results from Chapter 4

corroborated this finding. Adding named entity tags alone was able to improve the perfor-

mance of the deep learning models. The next part of this research focuses on providing a

deep learning network with sufficient information in an answer-unaware setting.

This chapter reports the following novel contributions to the state of the field. First, it

extends the work in Chapter 4 by adding constraints to the sequence-to-sequence and T5

transformer models. Second, the research creates penalty and reward terms to alter the

learning objective for the neural network. Third, the results provide direction for future

research, as discussed in Chapter 6. They encourage future research in question generation

in the privacy domain as well as constraint-based question generation, in general.
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5.1.3 Proposed Constraints

The first constraint that was generated for this research is a logical constraint based on

human knowledge, expressed using first-order logic. The constraint uses named entity tags,

discussed in Chapter 4, to force the deep learning model to include an entity term during

training. The idea is to focus on entities given in context to formulate questions. The

constraint is expressed as Equation 5.1. It checks if the generated question consists of a

named entity term. In the absence of such a term the value of the constraint becomes 1,

otherwise it becomes 0. This constraint will be referred to as Constraint 1 in this chapter

for brevity.

Logical Constraint

Let W be a set of all named entities and Y be a set of all words in a generated question,

such that Y = (y1, y2, ..., yn).

The constraint f(c1) can be defined as follows:

f(c1) =


0 if ∃ t ∈ [1, n], such that yt ∈ W

1 if ∀ t ∈ [1, n], yt /∈ W
(5.1)

The next constraint is designed based on empirical results, where models that under-

perform tend to output the same word, consecutively, more than once. For instance, the

generated question could be - “Do you you share share my data?”. This constraint checks if

two consecutive terms are the same, and if so, it becomes 1, zero otherwise. This constraint

will be referred to as Constraint 2 throughout this chapter.

Empirical Constraint

Let Y be a set of all words in a generated question, such that Y = (y1, y2, ..., yn).
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The constraint f(c2) can be defined as follows:

f(c2) =


1 if ∃ t ∈ [2, n], such that yt−1 = yt

0 if ∀ t ∈ [2, n], yt−1 6= yt

(5.2)

Domain Constraint

Domain constraints are learned from the context data itself by using the Apriori algo-

rithm124to mine frequent-item sets. The used confidence and support values are determined

empirically. A key difference between a domain constraint and the aforementioned con-

straints is that a domain constraint rewards the objective function, instead of imposing a

violation penalty.

For any given frequent item set of size n, let Z be the set of all words in the item set. A

domain constraint f(c3) can then be defined as follows:

f(c3) =
1

n
[λ1x1 + λ2x2 + ...+ λnxn] (5.3)

where f(c3) ∈ [0, 1]; λi is an empirical term that assigns weight to the ith term in the item

set; and xi is a binary variable that indicates the presence of the ith word from set Z in a

predicted question.

In simple words, this constraint says that if all words occurring in set Z also occur in a

question then the objective function should be given maximum reward. However, if no word

from set Z appears in the question then no penalty should applied. For this research, only

1 frequent item set was converted to a domain constraint and applied. This constraint will

be referred to as Constraint 3 in this chapter.
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5.2 Related Work

Borghesi et al. (2020)91 were the first to survey approaches that integrate constraint-based

domain knowledge into deep neural networks. Chapter 3 of this dissertation provided an

overview of the literature on the inclusion of domain knowledge in deep learning models

across different domains and for a variety of deep learning models. This section briefly

presents the taxonomy provided by Rueden et al. (2019)125 to classify knowledge, different

forms of representing knowledge, and ways in which it is integrated with the machine learning

system.

Rueden et al. (2019)125 provided three categories for knowledge type: (1) scientific

knowledge (formalized and validated via experiments); (2) world knowledge (intuitive and

validated by human reasoning); and (3) expert knowledge (knowledge provided by domain

experts). This chapter uses scientific and world knowledge to enhance the deep learning

models.

Knowledge representation has also been categorized as follows: (1) algebraic equations

(as equality or inequality relations); (2) differential equations (describing relationships be-

tween functions and their derivatives) ; (3) simulation results (the numerical outcome of a

computer simulation); (4) spatial in-variances (properties that do not change under mathe-

matical transformations); (5) logic rules (set of boolean expressions that are combined with

logical connectives); (6) knowledge graphs (with vertices usually representing concepts and

edges representing relations between nodes); (7) probabilistic relationships (conditional in-

dependence or correlation structure); and (8) human feedback (technologies that transform

knowledge between users and machines). In this chapter, logical rules represent prior knowl-

edge.

For injecting data into a machine learning system, i.e., for knowledge integration, Rueden

et al. (2019)125 suggest the following ways: (1) inclusion in the form of training data; (2)

inclusion as part of deep learning architecture; (3) inclusion as part of learning algorithm via

loss function augmented by additional terms to account for the additional domain knowledge;

and (4) rejection of the outcomes that do not satisfy the given set of constraints during the
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final prediction phase.

The work in this chapter includes knowledge represented as logical rules, as part of the

learning algorithm via a loss function augmented by additional penalty terms and a reward

term (in case of Constraint 3).

5.3 Deep Learning Models

5.3.1 Sequence-to-sequence Models with Constraints

This section revisits some of the concepts about encoder and decoder previously discussed

in Chapter 4. For further details, refer to Chapter 4: Section 4.3.1.

Encoder + NER Labels

This work uses Gated Recurrent Unit71 to build the encoder. This follows the work of

Zhou et al. (2017)27 and concatenates the word embedding vector with the label embedding

vector to form the input for the encoder. However, unlike the model proposed by Zhou et

al. (2017)27, the answer position or part of speech tags are not used as lexical features. The

encoder is unidirectional, reading input embeddings to produce a hidden vector that serves

as input for the decoder.

Decoder

This work uses a GRU decoder to decode the context and label information to generate the

questions. In question generation, the output sequence is a collection of words that form a

question. The GRU decoder uses the previous hidden state ht−1 to compute the output yt,

as well as, its own hidden state ht.

Attention-Based Decoder

This work uses an attention-based GRU decoder to decode the context and label information

to generate the questions.
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5.3.2 T5 Model with Constraints

Vaswani et al. (2017)58 proposed the Transformer model, which has an architecture that

relies entirely on an attention mechanism to draw global dependencies between input and

output. This work uses the T5 small model107 available from the Hugging Face library110

and uses the context information to generate questions. The NER labels are added to the

context and provided as auxiliary input to the T5 model. Transformers have been discussed

in Chapter 2: Section 2.3.1.

5.4 Methodology

5.4.1 Problem Formulation

The task of question generation is defined as follows:

Given a passage (or context from a policy document), Xp = (x1, x2, ..., xn), as input,

the model generates a question, Y = (y1, y2, ..., yT ). The goal is to find the best Ȳ using

Equation 5.4:

Ȳ = argmax
x

P (Y |Xp) (5.4)

where P (Y |Xp) is the conditional log-likelihood of the predicted question sequence y,

given the input x. The answer sequence or its position is not used as input to the deep

learning models. The goal is to leverage domain knowledge to train a robust model that

produces relevant and semantically correct questions. For each constraint that the network

has to obey, a loss function, or in some cases a reward function, is defined. The purpose of

the loss function is to increase the total loss if the constraint is violated by the network. In

the case of a reward function, the purpose is to decrease the loss depending on the degree

to which the constraint has been satisfied. A knowledge-based loss term LossC can be

introduced for each applied constraint into the objective function as follows:
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loss = argmin
x

Loss(Y, Ȳ ) + λ1xLossC1(Ȳ ) + λ2yLossC2(Ȳ )− λ3zLossC3(Ȳ ) (5.5)

where, x and y are binary variables which are set to 1 when a constraint is not satisfied

and 0 otherwise. z denotes the function given by Equation 5.3. The λ terms are hyper-

parameters that denote the weight of x, y and z in the objective function.

5.4.2 Data Preparation

The data was shuffled to create three sets: training, development, and test. The following

pre-processing tasks were performed: (1) Each word in a sequence was converted to lowercase;

(2) Named entities having two words in their names were hyphenated to reduce the size of

the name to one word; (3) SOS (start of sequence) and EOS (end of sequence) tokens

were added to all questions; (4) Spelling inconsistencies were fixed. For instance, the word

“parties” was often misspelled as “parities” in the data set. Errors of this nature were

corrected throughout the data set. Also, some shortened words like “info” were expanded to

their full length (“information” in the case of “info”) to ensure consistency; and (5) A space

was introduced between the last letter in the question and the question mark. For example,

“data?” was changed to “data ?”.

5.4.3 Baselines

The baselines for constraint-based question generation models have already been presented

in Chapter 4. They are listed below:

Seq2Seq

This is a vanilla sequence-to-sequence framework21 that uses encoder-decoder architecture.

The context input was not reversed for the experiments.
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Seq2Seq + attention

This is an encoder-decoder architecture with Bahdanau attention mechanism22.

NQG (2017)

NQG25 uses a global attention-based LSTM encoder-decoder model to map a passage to

a question. The best results were achieved using GloVe118 pre-trained embedding with

paragraph level encoder.

Transformer-based model (T5)

T5-small model107 consists of 60 million parameters, and is fine-tuned for question generation

in the privacy policy domain, given a textual context with named entities as input.

5.4.4 Experimental Setup

All machine learning models in this research have been implemented using PyTorch version

1.7.1. and trained on Nvidia Tesla v100. The hyper-parameters of the baseline models have

been tuned on the development set. The GRU hidden sizes of both the encoder and decoder

were alternated between 256, 500, 1000, and 2000. During decoding, greedy search was

used because results in Chapter 4 showed that greedy search produces better results for this

problem. For optimization during training, stochastic gradient descent optimizer was used

with a learning rate of 0.001. Teacher forcing117 was used for training and the best model

was selected using lowest model perplexity on the validation set. All hyper-parameters were

also selected on the validation set.

5.4.5 Evaluation Metrics

All question generation models are evaluated using the following three metrics: Bilingual

Evaluation Understudy or BLEU-n (Papineni et al., 2002)119, Metric for Evaluation of

Translation with Explicit ORdering or METEOR (Lavie & Denkowski, 2009)120, and Recall-
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Oriented Understudy for Gisting Evaluation or ROUGE-L (Lin, 2004)121. This work uses

the evaluation package released by Chen et al. (2015)122. BLEU-n measures the n-gram of

the candidate question with n-gram of the reference question to count the number of matches

at the corpus level. The value of n ranges from 1 ≤ n ≤ 4. METEOR is based on match-

ing uni-grams between reference and candidate questions taking into account the synonyms,

stemming, and paraphrases. ROUGE-L measures the longest common sub-sequence of

words between reference and candidate questions. Ideally, a high score for these metrics

denotes better quality in generated questions.

Table 5.1: Evaluation Results (in percentage) for all models with Greedy Search

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

NQG (2017)25 32.66 18.27 12.73 9.94 15.54 30.63

Seq2Seq 27.22 15.52 8.63 5.12 14.23 30.16

Seq2Seq + NER 24.66 14.33 8.96 5.80 14.93 33.07

Seq2Seq+NER+C1 28.41 16.38 9.67 7.04 16.22 35.85

Seq2Seq+NER+C2 31.08 18.67 11.68 8.53 17.79 35.18

Seq2Seq+NER+Both 31.11 18.66 11.63 8.49 17.80 35.13

Seq2Seq+att 28.09 16.00 9.86 6.30 14.96 31.84

Seq2Seq+att+NER 28.68 16.24 9.95 6.87 15.81 31.51

Seq2Seq+att+NER+C1 31.11 18.66 11.62 8.48 17.80 35.15

Seq2Seq+att+NER+C2 28.40 16.38 9.67 7.04 16.22 35.85

Seq2Seq+att+NER+All 31.10 18.66 11.63 8.49 17.80 35.12

T5-small107 31.32 17.14 11.51 8.53 18.29 31.02

T5-small+NER107 32.98 18.22 11.89 8.49 18.74 32.16

T5-small+NER+All107 31.99 18.10 11.92 8.42 18.56 32.85

60



5.5 Results & Discussion

The baseline results are presented in Table 4.8 of Chapter 4. Table 5.1 gives the results from

the application of constraints (see 5.1.3) to sequence-to-sequence and T5 models. The first

section of the table gives the results of neural question generation (NQG)25 from Chapter

4. The second section of the table presents the results of vanilla sequence-to-sequence model

baselines, followed by sequence-to-sequence with named entity tags, and finally, the effects

of constraints on the model.

The results of applying constraint 1 shows improved results across all BLEU-n, ME-

TEOR, and ROUGE-L scores. ROUGE-L shows an increase of 8.4% in the results for

Constraint 1 over the results for sequence-to-sequence models augmented with named entity

tags and an 18.9% increase over the results from the absolute baseline model. The best

METEOR score is obtained when both constraints: 1 and 2 are applied to the models. An

improvement of 25.1% is observed over the results from the baseline sequence-to-sequence

model. A similar improvement is also observed in results across all BLEU-n scores for both

constraints: 1 and 2, as well as for a combination of the constraints. The effect of apply-

ing either constraint to the model is evident: the model not only outperforms the vanilla

sequence-to-sequence model, but also outperforms the NQG (2017)25 model.

The third section of the table presents the results of sequence-to-sequence with attention

mechanism. These results show a similar trend as in the case of vanilla sequence-to-sequence

models. All three categories of constraints give improved results, with the the second con-

straint producing the highest ROUGE-L score and Constraint 1, as well as, a combination

of both constraints resulting in the best METEOR score. Similarly, BLEU scores improve

over the scores of both, the baseline sequence-to-sequence model with attention, and the

model augmented with named entity tags. The impact of constraints is apparent: the vanilla

sequence-to-sequence model produced results comparable to the sequence-to-sequence model

with attention.

The final section of the table presents the results for transformer-based T5 model. The

positive effect of applying a combination of all three constraints is evident on the scores.
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Table 5.2: Questions predicted using Transformer Model

Ground Truth: How does this website inform users about their policy change?

Predicted Question: Does the website inform users about policy changes?

Ground Truth: What is the choice scope for users with regards to first-party data
collection?

Predicted Question: Do you collect data about users implicitly?

Ground Truth: Does you collect my information to enhance or personalize my
experience?

Predicted Question: Does the company use user’s information for customized
services?

Ground Truth: Do you use my information for research?

Predicted Question: Do you collect or use my information? If yes, then what
type?

Ground Truth: Do you share my information with others?

Predicted Question: Does the company share user’s information with a third-
party?
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However, these scores are lower than the scores produced by sequence-to-sequence models.

To further investigate the results of T5 model, a random selection of some of the generated

questions is analyzed. These questions are presented in 5.2 along with the actual ground

truth questions.

The questions generated by T5 are semantically and syntactically correct and complete.

The generated questions are relevant and similar in meaning to the ground truth, for example,

the last ground truth question in the table inquires whether the company shares data with

others, where “others” refers to any third-party service provider. In fact, the predicted

question is more clear and precise in asking whether the company shares data with a third-

party. The predicted question in this case is an improvement over the over-simplified version

in ground truth. If these two questions were to be evaluated using automatic evaluation

metrics used in this study, then BLEU 3 and 4 would come out to be 0.000177% and 5.3077E-

7%, respectively. The METEOR is 30% and ROUGE-L is 45.35%. Another predicted

question in the table asks whether the company collects user data, and if they do then

what type of data is collected. However, the ground truth just asks if user data is used

for research. These are some of the examples that suggest that existing evaluation metrics

are unable to capture nuances of question generation. In the future, this work would also

consider incorporating human evaluation for generated questions.

5.6 Conclusion

This chapter presented the core results of this dissertation. The experimental results dis-

cussed in this chapter are encouraging and show that constraint-based approach is suitable

for future research in question generation. The performance of sequence-to-sequence mod-

els was compared with a T5 model using greedy decoding mechanism. The custom named

entity labels discussed and used in Chapter 4, were again used in this chapter to add con-

straints to deep learning models during training. Incorporating the constraints during model

training significantly improved the BLEU-n, METEOR, and ROUGE-L scores, thus, paving

the way for exploration of more expressive constraints and investigation of different ways of

63



representing the constraints. The next chapter discusses future directions for this work.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Results

This research used vanilla sequence-to-sequence, sequence-to-sequence with attention mecha-

nism, and a pre-trained T5 model to generate questions. Chapter 4 established the baselines

used in this research and also presented the five categories of named entity tags generated

for the task of question generation in the privacy policy domain. The BLEU-n, METEOR,

and ROUGE-L scores presented in Chapter 4 show a considerable improvement in the per-

formance of both sequence-to-sequence models when they are augmented with named entity

tags. The results also indicate an improvement in the transfer-based T5 model. The T5

model produces the best METEOR score, followed by sequence-to-sequence with attention

mechanism. The vanilla sequence-to-sequence model earns the lowest METEOR score.

Chan and Fan (2019)108 had observed that fine-tuning pre-trained language models for

text generation and using them to generate questions does not yield satisfactory results. This

research corroborates their observations: fine-tuning the pre-trained T5 model for generating

questions did not yield satisfactory results. To address this shortcoming, in future research,

I will explore the possibility of re-designing the architecture of T5 to better suit question

generation.

Chapter 5 discussed the major contributions of this research, describing logical domain-
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based constraints and empirical constraints for sequence-to-sequence models. The constraints

are implemented by augmenting the loss term to include penalty (and/or reward) terms when

the constraints are violated (or satisfied). This creates a modified learning objective for the

neural network. Results show an increase in scores over the established baselines of Chapter

4, as well as, an improvement over baseline models augmented with named entity tags. This

improvement is seen across all three models used in this work. Thus, these results encourage

further exploration of more expressive constraints that enable the neural network to generate

diverse, fluent, relevant and semantically correct questions (i.e., improve the overall quality

of the questions being generated).

6.2 Summary of Contributions

This dissertation asserts the following three novel research contributions:

1. To date, this is the first work on question generation in the privacy policy domain.

2. This research involves generating custom named entity tags for the privacy policy

domain. Augmenting the input to the neural models used in this research with these

tags improved results over the baseline models. A list of tags is presented in Appendix

A of this work.

3. This research presents a constraint-based approach to question generation. It uses

a combination of logical and empirically derived constraints to inject knowledge into

deep learning models by altering the learning objective. An additional loss term is

added as constraint penalty for each constraint used. In some cases, the term may be

a reward term that decreases the loss, based on the degree to which a constraint has

been satisfied. For all the neural network models used in this work, results show a

significant increase in evaluation scores over the baseline results presented in Chapter

4.

4. This work provides an analysis of the effectiveness of the metrics used to evaluate
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generated questions.

6.3 Future Work

This research opens up several avenues in question generation for future work. The first

possibility is to re-design the T5 architecture for question generation. The current T5 model

is pre-trained on a general English corpus called English Colossal Clean Crawled Corpus

(C4)65. However, training T5 from scratch using a data set derived from privacy policy

documents may help explain the effects of training and its impact on the performance of the

model through a comparison of the newly trained model’s results with the results presented

in this dissertation (obtained by fine-tuning a pre-trained model).

Exploring other ways of representing domain specific and empirical knowledge as con-

straints is the next research possibility. Experimenting with additional ways of learning

constraints from the data itself also intrigues me. Moreover, since this work does not uti-

lize answer details while generating questions, I would also like to look at answer-aware

constraints.

Extending constrained conditional models for the question generation task using deep

learning models is yet another possible avenue of research. Since constrained conditional

models have already been successfully used in linear models, extending them into sequence-

to-sequence models may bring about further improvement.

Finally, a larger data set in the privacy policy domain is needed. To date, only two data

sets suitable for the question generation task have been found. The PolicyQA1 data set used

in this work is the larger of the two. However, it has just 25,013 examples. Due to the small

size of data sets for most supervised learning tasks in natural language processing, machine

translation being an exception, deep learning networks have not been able to improve results

in natural language processing tasks by a magnitude similar to that seen in the field of

computer vision. Creating a larger data set might help address the issue.
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Short Term Goals

In the near future, I will analyze the ROUGE-L scores from the T5 model in more detail

and will attempt to make architectural modifications to the model to further improve the

evaluation scores. Additionally, I will compare the performance of T5 with other transformer

models for the task of question generation. In recent years, language translation has bene-

fited highly from using pre-trained language models like BERT63. Those models have also

performed well on tasks such as question answering63. However, using them out-of-the-box

has not yielded good results in question generation. Pre-training language models on a legal

corpus, particularly privacy law, may be worth the effort. Testing the robustness of the

approach using a corpus from another domain is another area of immediate focus.
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Maleshkova, Tassilo Pellegrini, Harald Sack, and York Sure-Vetter, editors, Seman-

tic Systems. The Power of AI and Knowledge Graphs, pages 272–287, Cham, 2019.

Springer International Publishing. ISBN 978-3-030-33220-4.

[115] Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain

Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zimmeck, Kan-

thashree Mysore Sathyendra, N. Cameron Russell, Thomas B. Norton, Eduard Hovy,

Joel Reidenberg, and Norman Sadeh. The creation and analysis of a website privacy

policy corpus. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 1330–1340, Berlin, Germany,

83

https://www.aclweb.org/anthology/2020.emnlp-demos.6


August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1126.

URL https://www.aclweb.org/anthology/P16-1126.

[116] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[117] Ronald J Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[118] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In Empirical Methods in Natural Language Process-

ing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/anthology/

D14-1162.

[119] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual meeting

of the Association for Computational Linguistics, pages 311–318, 2002.

[120] Alon Lavie and Michael J Denkowski. The meteor metric for automatic evaluation of

machine translation. Machine translation, 23(2-3):105–115, 2009.

[121] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out, pages 74–81, 2004.

[122] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Pi-

otr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and

evaluation server. arXiv preprint arXiv:1504.00325, 2015.

[123] Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of unsu-

pervised metrics in task-oriented dialogue for evaluating natural language generation.

CoRR, abs/1706.09799, 2017. URL http://arxiv.org/abs/1706.09799.

[124] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association

84

https://www.aclweb.org/anthology/P16-1126
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1706.09799


rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–

499. Citeseer, 1994.

[125] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Gies-

selbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ra-

mamurthy, et al. Informed machine learning–a taxonomy and survey of integrating

knowledge into learning systems. arXiv preprint arXiv:1903.12394, 2019.

85



Appendix A

Named Entity Recognition for

Privacy Policy Domain

Table A.1: Labels with entities for Privacy Policy Domain

Label Description

LEGAL policy, agreement, privacy-policy, privacy-statement,
privacy-control, privacy-setting

CONTENT information, data, website, cookie, social-media, mobile-
app, mobile-application, social-network, browser, pro-
file, account, username, password, online-activity, ip-
address, device-id, survey, location, health, dnt, service,
opt-out

ORG Names of organizations for whom the policy is written
or terms like third party or vendors. A comprehensive
list is presented on the next page.

PERSON user, subscriber, customer, citizen, person, children, res-
ident, audience, visitor

URL Web page for the organization or service provider
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Table A.2: Labels with entities for Privacy Policy Domain

Label Description

ORG third-party, first-party, company, youtube, tgi-fridays,
reddit, motley-fool, fool, rockstar-games, military,
sidearmsports, dairyqueen, allstate, google, lynda,
tgifridays, enthusiastnetwork, pbs, disinfo, washington-
post, citizen, foxsports, taylorswift, coffeereview, dc-
ccd, barnesandnoble, www, solarviews, voxmedia, the-
hill, chasepaymentech, abcnews, everydayhealth, sports-
reference, bankofamerica, liquor, nytimes, stlouisfed,
geocaching, meredith, gamestop, esquire, restaurant-
news, wsmv, dailynews, lids, earthkam, foodallergy, mi-
aminewtimes, boardgamegeek, sheknows, tangeroutlet,
usa, instagram, vikings, imdb, ifsa-butler, uh, ocregis-
ter, latinpost, playstation, minecraft, jibjab, random-
house, ironhorsevineyards, aol, austincc, wnep, thefree-
dictionary, sltrib, freep, steampowered, lodgemfg, upto-
date, fortune, msn, redorbit, cincymuseum, tulsaworld,
fredericknewspost, timeinc, newsbusters, abita, ticket-
master, theatlantic, sci-news, yahoo, style, adweek, cari-
boucoffee, kaleidahealth, buffalowildwings, post-gazette,
internetbrands, mlb, eatchicken, ted, naturalnews, cb-
sinteractive, washingtonian, dogbreedinfo, walmart,
neworleansonline, mohegansun, honda, communitycof-
fee, nbcuniversal, sciencemag, education, kraftrecipes,
rockstargames, acbj, opensecrets, amazon, archives,
gawker, reference, si, dailyillini, gwdocs, highgearmedia,
zacks
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