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Abstract 

Grasslands of the Flint Hills are often burned as a land management practice. Remote sensing 

can be used to help better manage prairie landscapes by providing useful information about the 

long-term trends in grassland vegetation greenness and helping to quantify regional differences 

in vegetation development. Using MODIS 16-day NDVI composite imagery between the years 

2001-10 for the entire Flint Hills ecoregion, BFAST was used to determine trend, seasonal, and 

noise components of the image time series.  To explain the trend, 4 factors were considered 

including hydrologic soil group, burn frequency, and precipitation deviation from the 30 year 

normal.  In addition, the time series data was processed using TIMESAT to extract eight 

different phenometrics:  Growing season length, start of season, end of season, middle of season, 

maximum value, small integral, left derivative, and right derivative.  Phenometrics were 

produced for each year of the study and an ANOVA was performed on the means of all eight 

phenometrics to assess if significant differences existed across the study area.  A K-means 

cluster analysis was also performed by aggregating pixel-level phenometrics at the county level 

to identify administrative divisions exhibiting similar vegetation development.  For the study 

period, the area of negatively and positively trending grassland were similar (41-43%).  Logistic 

regression showed that the log odds of a pixel experiencing a negative trend were higher in sites 

with clay soils and higher burning frequencies and lower for pixels having higher than normal 

precipitation and loam soils.  Significant differences existed for all phenometrics when 

considering the ecoregion as a whole.  On a phenometric-by-phenometric basis, unexpected 

groupings of counties often showed statistically similar values.  Similarly, when considering all 

phenometrics at the same time, counties clustered in surprising patterns. Results suggest that 

long-term trends in grassland conditions warrant further attention and may rival other sources of 

grassland change (e.g., conversion, transition to savannah) in importance.  Analyses of 

phenometrics indicates that factors other than natural gradients in temperature and precipitation 

play a significant role in the annual cycle of grassland vegetation development.  Unanticipated, 

and sometimes geographically disparate, groups of counties were shown to be similar in the 

context of specific phenology metrics and this may prove useful in future implementations of 

smoke management plans within the Flint Hills. 
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Chapter 1 - Introduction 

Grasslands have become one of the most changed biomes in the world due to agricultural 

pressure and woody encroachment.  Given that every year an area the size of Kansas is being 

converted, protecting existing intact grasslands has become a conservation priority (Plowprint 

Annual Report, 2016).  Time-series analysis of remotely sensed imagery may be able to inform 

grassland management through evaluation of trends over time. Use of vegetation indices from 

remote sensing satellites yields valuable information on vegetation life cycles and phenology.  

Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index 

(NDVI) images have been frequently used in such work due to its spectral, spatial, and temporal 

resolution, as well as being a cost-effective means to assess land surface phenology trends 

(Zhang et al., 2003). 

NDVI is frequently used in remote sensing research to measure the annual cycle of 

vegetation growth and development and is a suitable proxy measure of the amount of 

aboveground vegetation biomass.  It also often correlates well with other biophysical measures 

such as leaf area index and green vegetation cover (Tucker 1991; An 2009).  Despite the 

development of newer vegetation indices, such as the enhanced vegetation index (EVI), NDVI 

remains a popular choice among remote sensing researchers. 

Land surface phenology has become an important focus in ecological research and is 

used for both vegetation monitoring and examining vegetation responses to climate change.  

Phenology is the variation in seasonal patterns of natural phenomena on land surfaces affected by 

inter-annual and seasonal variation in soil characteristics and meteorological conditions (Cleland 

et al., 2007).  Seasonal characteristics of plant development, such as emergence (“green-up”) and 

senescence (“brown-down”), are driven by weather and climate.  Changes in phenological events 
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may signal important year-to-year climatic variations or even global environmental change 

(Reed 1994).  The phenology of land surfaces can be detected via remote sensing by examining 

spectral index values.  Changes in seasonal timing such as the start and end of season, duration 

of growing season, and maximum vegetation productivity can have an impact on a wide range of 

processes that are dependent on natural cycles of vegetation (Ganguly et al, 2010).   

Phenometrics can be extracted from time series datasets by combining techniques that 

first filter (or smooth) raw NDVI data and then extract relevant phenometric estimates using 

methods such as principal component analysis (Tan et al., 2010), Fourier analysis (Sakomoto et 

al., 2005), and pixel-above-threshold technique (Cleland et al., 2007).  The TIMESAT software 

program provides several filtering options to smooth raw time series vegetation data and extract 

phenometric data (Eklundh and Jonsson 2010), and has been used in a variety of studies to 

examine vegetation phenology (Eklundh and Jonsson 2003), assess satellite and climate data-

derived indices of fire risk (Verbesselt et al., 2006), and examine relationships between 

coniferous forest NDVI and models of conifer tree photosynthetic activity (Eklundh and Jonsson 

2010). 

Analyzing vegetation trends also requires time series datasets of remotely-sensed images 

and use of statistical methods (implemented in programs such as R).  Past research that analyzed 

trends in continuous vegetation time series data include quantifying gradual interannual 

vegetation change due to rainfall variability and drought (Jacquin et al., 2010), assessing 

temporal decomposition techniques relevant to the study of vegetation seasonality (Jonsson and 

Eklundh, 2002), and evaluation of abrupt vegetation change at the intraannual time scale caused 

by disturbances such as deforestation, disease and insect outbreaks, fire, and other activities 

(Verbesselt et al., 2010a).   
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Temporal decomposition of data involves separating an original time series dataset into 

three different components to study each related to vegetation greenness at different time scales 

(Cleveland and Delvin, 1988).  These include seasonal patterns, multi-annual linear or nonlinear 

trends (with or without breakpoints), and noise or the residual remaining after elimination of the 

seasonal and trend components. 

The Breaks For Additive Seasonal Trend (BFAST) program developed by Jan Verbesselt 

allows for extraction of seasonal and trend components of time series data to examine the 

greenness of vegetation.  The BFAST method was used because of its ability to account for 

seasonality and to detect gradual (interannual) and abrupt (intraannual) changes within the linear 

trend component for the entire time series duration (Verbesselt et al., 2010a).  Other methods 

such as Seasonal-Trend decomposition procedure (STL) based on a Locally wEighted regression 

Smoother (LOESS) were excluded from consideration due to its ability to detect only gradual 

changes in the trend component (Cleveland et al., 1990). 

This study investigates long-term trends and phenology of grasslands within the Flint 

Hills of Kansas and Oklahoma.  Its purpose is to analyze grassland vegetation trends and key 

phenometrics in the Flint Hills ecoregion for the period 2001-2015 and to provide insight as to 

the cause of observed trends in vegetation greenness and a better understanding of the spatial 

variation in grassland vegetation development within the region.  To achieve this, three studies 

were conducted.  The first study uses the BFAST program to estimate the direction and 

significance of grassland vegetation trends and the number of breaks in that trend (i.e., 

disturbances) detected over the study period.   

The second study uses the BFAST program to determine vegetation trends and number of 

disturbances over the 2001-2010 study period.  In addition, the study uses a subset of burn 
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frequency data developed by Mohler and Goodin (2012), cumulative differences between annual 

and normal (1982-2010) precipitation (precipitation deviation), and hydrological soil group data 

in a logistic regression form of generalized linear model to determine likely factors causing the 

negative trend of the Flint Hills ecoregion.  This study seeks to help land managers and other 

interested parties to determine if burning practices, as they currently stand, are beneficial to 

vegetation greenness as well as providing incentives to consider the impact of smoke on the air 

quality of nearby cities. 

The third study uses the TIMESAT program to examine the phenology of the Flint Hills 

ecoregion.  Using ANOVA and Tukey tests to determine the significance of phenometrics across 

the study area and a K-Means clustering method to spatially examine the Flint Hills study area as 

a homogenous region.   
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Chapter 2 - Literature Review 

 Grasslands 

Grasslands and savannas make up more than 40% of the earth’s surface and their rapid 

response to changes in land management and climate can have dramatic ecological and social 

consequences (Briggs et al., 2005).  Grasslands are among the most biodiverse and productive of 

all the earth’s terrestrial biomes but receive low levels of protection (Mark and McLennan, 

2005).  Since 2009, 53 million acres of grassland, roughly the area of Kansas, have been 

converted to cropland across the Great Plains alone (Plowprint Annual Report, 2016).  Tallgrass 

prairie has been reduced to ~4% of its historical extent making it one of the most altered 

ecosystems in North America (Ratajczak et al., 2016).  Temperate grasslands are important for 

both agronomic and ecological purposes and are a key resource for livestock production in North 

America and around the world (Briggs et al., 2005).  Grasslands provide services such as water 

storage and clean air (Plowprint Annual Print, 2016) and grassland vegetation reduces soil 

erosion due to it dense root systems and by shielding the soil surface from direct interception of 

rainfall (Ratajczak et al, 2016).  Grasslands also store and retain large amounts of soil carbon and 

are an important component of the global carbon cycle (Briggs et al., 2005).  The estimated 

values of these, and other, ecosystems services provided by native grasslands has been estimated 

to be in excess of $5,000 per hectare per year (Dodds et al., 2008). 

The conservation status of grasslands is being evaluated by groups including the 

Landscape Conservation Cooperatives which seeks to identify the greatest threats to grasslands 

and shrublands across the U.S. and Mexico, areas that are likely to be resilient to climate change 

and other threats, and areas with high potential for restoration (Glaser, 2014).  The state of North 

American prairies is also being addressed through a tri-national cooperative program involving 
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Mexico, the USA, and Canada which is attempting to address both sustainable management and 

conservation needs (Mark and McLennan, 2005).  The Flint Hills ecoregion in Kansas and 

Oklahoma remain one of the last great expanses of intact and native tallgrass prairie in the 

United States.  The creation of the Tallgrass Prairie National Preserve in 1996 allowed for more 

area of the Flint Hills to retain its native character. 

Grasslands have been under threat in the United States as well as throughout the world 

due to conversion to row-crop agriculture and changing land management coupled with other 

global change phenomena (Briggs et al., 2005).  A majority of the former area of the tallgrass 

prairie has been replaced with crops such as wheat, corn, and soybeans (Plowprint Annual Print, 

2016).  The remaining tallgrass prairies of North America are threatened by an increase over 

time in the abundance of native woody species, such as the red cedar (Juniperus virginiana) in 

the Flint Hills area (Hulbert, 2009).  These woody plants originate both from within the 

ecosystem and from neighboring ecosystems (Briggs et al., 2005), with encroachment altering 

the structure and function of temperate grassland ecosystems and resulting in a loss of 

biodiversity and grazing productivity (Ratajczak et al., 2016).  The likely drivers of this increase 

in woody plant abundance are numerous and include change in climate, atmospheric carbon 

dioxide concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g., the 

frequency and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in 

temperate climates are largely attributed to changes in fire management (Ratajczak et al., 2016).  

Comparisons of the area occupied by forest at the time of settlement, as recorded in the 1856 

Land Office, with that in the 1970’s showed that on frequently burned prairies woody plants 

occupied about the same area today as over a century ago.  However, on sites not burned for 20 

years or longer, forests had invaded on half or more of the unburned areas (Hulbert, 2009). 
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Fire is an integral component of prairie development and maintenance and for more than 

7000 years vegetation patterns have been influenced by anthropogenic burning practices (Towne 

and Kemp, 2003).  Fire has long been recognized as an important factor influencing the 

development and persistence of the tallgrass prairie ecosystem (Benson and Hartnett 2006).  Fire 

is both an inexpensive and effective way of controlling woody species and shrubs as well as 

maintaining high quality nutritious forge for grazers, but air pollution from the smoke can 

negatively impact cities downwind of the fires (Briggs et al., 2005).  Prairie fires were 

suppressed during European settlement with accidental or lightning-caused wildfires being the 

primary source of burning (Towne and Kemp, 2003).  An influx of cattle to the Flint Hills in the 

late 1800’s created an incentive for prairie burning and pastures were burned annually in 

February or March to improve livestock weight gains (Towne and Kemp, 2003).   

Annual or biennial burning, which is currently a common land management practice in 

tallgrass prairie, homogenizes the canopy over the long term by suppressing invasion by woody 

species while promoting a variety of C3 forbs amidst a matrix of C4 graminoids (Goodin and 

Henebry, 1998) (Benson and Hartnett 2006).  Warm season grasses have been shown to increase 

after burning has been conducted (Towne and Kemp, 2003) (Hulbert, 2009) and average peak-

season aboveground biomass on annually burned prairie is reported to be nearly twice that of 

infrequently burned prairie (Benson and Hartnett 2006).  Species diversity is lowest with annual 

late-spring burning and increases with increasing intervals between fires (Hulbert, 2009).   

At the Konza Prairie Biological Station, it has been observed that vegetation development 

starts earlier on plots burned in November than on those burned in March (Hulbert, 2009).  This 

is likely due to higher soil temperatures on burned areas, resulting from greater solar heating as a 

response to removal of the insulating layer of standing dead vegetation (Hulbert, 2009).  A 
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burning frequency of 3 to 4 years has been thought to be the historical fire frequency before 

extensive settlement by Europeans (Briggs et al., 2005).  Burning once every 4 years has been 

shown to increase the number of forb and annual species compared to that seen in annually 

burned sites (Collins et al., 1995).  A complete exclusion of fire in tallgrass prairie has been 

shown to significantly decrease the grass bud bank while increasing the forb bud bank (Dalgleish 

and Hartnett, 2008).  Prairie that is burned at an intermediate fire frequency showed greater year-

to-year variability in grass bud bank size and in the probability of emergence from the bud bank 

than annually burned prairie (Dalgleish and Hartnett, 2008). 

Cattle ranchers in the Flint Hills employ frequent spring burns to remove dead litter and 

enhance palatability, leading to greater and more consistent weight gain in cattle (Ratajczak et 

al., 2016).  These fires help to reduce species such as buckbrush (Ceanothus cuneatus) or 

coralberry (Symphoricarpos orbiculatus) (Hulbert, 2009).  Annual spring burning is beneficial in 

stopping woody encroachment but also can homogenize plant and avian communities (Collins et 

al., 1995) (Ratajczak et al., 2016).  In addition, it has been shown that annual burning does not 

eliminate shrubs and, over time, this buildup of shrubs can lead to areas where woody vegetation 

becomes established and later spreads (Towne and Kemp, 2003).  Fire alone does not stop the 

invasion of woody plants.  The combination of fire, climate, substrate, and topography are what 

makes the prairie (Hulbert, 2009). 

Depending on the definition used for the Flint Hills, the amount and frequency of burning 

varies on a yearly basis.  Mohler and Goodin (2012) showed that as much as 31% of the Flint 

Hills grasslands were burned in 2005 and the Nebraska Department of Environment and Quality 

puts the figure at 48% (NDEQ, 2016).  In 2007, roughly 10-14% of Flint Hills grasslands were 

burned.  About 8% of the grassland within the Flint Hills was burned once during the 2000-2010 
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time period while less than 1% were burned ten times during the same period (Mohler and 

Goodin, 2012).   

The Kansas Department of Health and Environment has developed the Flint Hills Smoke 

Management Plan to combat smoke conditions caused during the burning season.  Their website, 

www.ksfire.org, seeks to inform land managers conducting prescribed burns in the Flint Hills by 

providing information and access to tools to assist with burn decisions.  The Flint Hills Smoke 

Management Plan began in fall 2013 when air quality monitors in the Kansas City area recorded 

very high ozone readings on April 12 and April 13 (KDHE, 2010).  Three monitors in Kansas 

City, Missouri recorded readings that exceeded the federal 8-hour ozone standard and states as 

far away as Tennessee were impacted with poor air quality and high ozone concentrations 

(KDHE, 2010).  In Nebraska, the cities of Omaha and Lincoln have also been impacted by 

burning in the Flint Hills with several days of violating air quality standards (NDEQ, 2016).   

Because the Flint Hills Smoke Management Program is entirely voluntary, there is no 

way for the states of Kansas or Nebraska (or any other states) to exercise control over prescribed 

burning (NDEQ, 2016).  States that are downwind have no input into prescribed burning 

activities and only have the ability to react to air quality conditions that result from the Flint Hills 

fires and issue air quality advisories as conditions dictate.   

 Remote Sensing 

Even before the term “remote sensing” was first coined by Evelyn Pruitt, it has been an 

integral part of geography studies.  Remote sensing replaced the outdated term of “aerial 

photography” when it became apparent it no longer described the increasing number of new 

forms of imagery being collected (Campbell and Wynne, 2011).  The act of remote sensing 

measures the energy emitted by the earth’s surface with a sensor mounted on an aircraft or 

http://www.ksfire.org/
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spacecraft platform (Richards and Jia, 2006).  The energy being measured can be from the sun, 

the earth itself, or from an artificial energy source such as radar or lasers.  Remote sensing using 

artificial energy sources, radar or lasers, is known as active remote sensing while remote sensing 

using the energy produced by the sun or earth is known as passive remote sensing.  The data 

collected by these sensors is done without direct physical contact with the emitting or reflecting 

surfaces.   

Remote sensors record emitted or reflected electromagnetic radiation (EMR) and changes 

in the amount or properties of EMR can be analyzed to interpret important properties of 

vegetation (Kennedy et al., 2009).  Due to the physical and chemical properties of a material 

causing it to absorb, reflect, and emit energy differentially in various parts of the EMR spectrum, 

the energy measured in different spectral bands can be used to infer information about the 

character of the object being observed (Kennedy et al., 2009).  The data is readily available in 

digital format and can be processed using computers for machine-assisted information extraction 

or to enhance its visual qualities to make it more interpretable by a human analyst (Richards and 

Jia, 2006).  Remote sensing has become such a widely used technique in part due to its ability to 

examine large areal extents, varying degrees of temporal dynamics, and due to the large number 

of remote sensing platforms allowing for many different types of problems to utilize remote 

sensing systems (DeFries, 2008).   

Remote sensing can be applied to studies of ecological indicators at a variety of spatial 

and temporal scales (Willis, 2015).  Many of these remote sensing platforms are space-based and 

were specifically designed for environmental monitoring.  These include, but are not limited to, 

Landsat, AVHRR, MODIS, Spot, and MISR (Campbell and Wynne, 2011).  Not all of the 

previously mentioned satellites yield images appropriate for every problem.  Landsat and Spot 
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are high resolution with Landsat at 30m and Spot at 6m which are good for problems that require 

finer spatial resolutions.  Landsat and Spot, however, have a repeat image interval in the 16-day 

range, making them unsuitable for studying problems or processes at fine temporal resolutions.  

MODIS, AVHRR, and MISR produce much coarser spatial resolution images at 500m for 

MODIS, 1km for AVHRR, and up to 1.92km for MISR (Campbell and Wynne, 2011).  While 

these remote sensing systems may have coarser spatial resolution, they are able to collect data 

daily, making them well suited to study fast changing systems.  Remote sensing systems such as 

these allow for earth systems experiments to be conducted much more efficiently than ever 

before and are particularly good for examining vegetation processes (DeFries, 2008).  In 

addition, satellite-based remote sensing is particularly well-suited for the study of disturbed areas 

because remote sensing does not increase the amount of disturbances on the ground in sensitive 

areas (Willis, 2015). 

Satellite remote sensing has been used as a means of detecting and classifying changes in 

land surface conditions over time (Verbesselt et al., 2010a).  For a resource manager or land 

manager, satellite remote sensing technology is particularly attractive due to its ability to provide 

consistent and repeatable measurements of landscape condition, allowing detection of abrupt 

changes and slow trends over time (Kennedy et al., 2009).  These satellite observations are also 

acquired at spatial scales appropriate for capturing the effects of many processes that cause 

change, including natural (e.g. fires, insect attacks) and anthropogenic (e.g. deforestation, 

urbanization, farming) disturbances (Vervesselt et al., 2010a).   
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 Remote Sensing of Vegetation 

Remote sensing of the environment involves recording and interpreting images produced 

from a satellite.  Spectral reflectance curves can be created by examining the visible and near 

infrared regions of the electromagnetic spectrum (Jensen 1983).  These spectral signatures are 

not constant for a given feature and depend on interactions between the satellite sensor and 

atmospheric properties (Slater 1980).  Chlorophyll in plant tissue creates a distinct spectral 

reflectance curve as it absorbs visible energy for photosynthesis in the blue and red regions of the 

electromagnetic spectrum (An 2009).  The red region of the electromagnetic spectrum is highly 

chlorophyll absorptive and dependent on chlorophyll content (Figure 2.1) and can be seen in 

green, or active, vegetation (Wardlow 2005). 

Figure 2-1. The spectral reflectance curve for healthy, green vegetation at the 0.35 – 2.6 um 

wavelengths of the electromagnetic spectrum, as well as the dominant factors regulating 

leaf reflectance and absorption (Jensen 1983). 

 

The near-infrared (NIR) spectrum between 0.74 – 0.90 um is the optimal region for 

estimating vegetation biomass (Tucker 1979).  Healthy green vegetation reflecting NIR is 
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dependent on plant water content in mesophyll cells in vegetation (Jensen 1983).  Plant pigments 

do not absorb NIR, rather it passes through the plant and interacts with the mesophyll cells.  

Healthy plants with sufficient water will reflect more NIR than plants containing less water.   

Satellite remote sensing has been an invaluable asset for examining regional 

environmental change by post-classification analysis of land cover change to examine separate, 

abrupt anthropogenic impacts on the land surface, such as deforestation and urbanization.  

Accompanying satellite remote sensing is a variety of spectral vegetation indices, such as NDVI 

which can be calculated from satellite image data to quantify the spatial and temporal variation 

in vegetation growth and activity (Linderholm 2006).  NDVI and other indices have been used to 

successfully assess vegetation phenology (Wright et al., 2012).    

Remote sensing indices are mathematical combinations of surface reflectance at two or 

more wavelengths to emphasize vegetation properties.  Vegetation indices are based on the 

reflectance properties of plant foliage, such as leaves and other green materials which can vary 

greatly in composition.  Vegetation indices correlate with several biophysical parameters such as 

leaf area index (LAI), fraction of photosynthetically active radiation (FPAR), and green 

aboveground biomass (Wardlow 2005).  Components that have the most effect on leaf spectral 

response are pigments, water, carbon, and nitrogen (Zhang et al., 2007).  Vegetation indices 

provide insight into basic composition of leaves and how they change in different environmental 

conditions to determine the general greenness of vegetation, biomass, and land cover, to estimate 

net productivity (Tucker et al., 1991). 

Estimates of vegetation biomass are dependent on the ratio of soil surface-vegetation 

spectral reflectance making some wavelengths better to use than others (Colwell 1974).  The 

ideal vegetation index would be sensitive to vegetation, insensitive to background soils, and 
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minimally influenced by atmospheric path radiance (Lunetta el al., 2006).  Examples of 

frequently used vegetation indexes include the IR/red ratio (Colwell 1973), the perpendicular 

vegetation index (PVI) (Richardson and Weigand 1977), the soil-adjusted vegetation index 

(SAVI) (Guete 1988), the Kauth-Thomas transformation (tasseled cap or -T) (Kauth and Thomas 

1976), the enhanced vegetation index (EVI) (Zhang et al., 2007), and the normalized difference 

vegetation index (NDVI) (Lunetta et al., 2006).   

NDVI is calculated as the ratio of the difference between near-infrared and red over the 

sum of near-infrared and red (Lunetta et al., 2006) and varies between values of -1 to 1 (Equation 

2.1).  Red and near-infrared bands are related to chlorophyll content and cell structure and with 

the spectral response of these two bands, the change in NDVI value over time is a good way to 

measure the vegetation growth and development (Zhang et al., 2007).   

NDVI = (NIR – red) / (NIR + red)       Equation 2.1 

where: 

NDVI = normalized difference vegetation index 

NIR = reflectance in the near – infrared spectrum 

Red = reflectance in the red spectrum 

 NDVI correlates well with total primary production (An 2009) and the amount of 

photosynthetic biomass (Zhou et al., 2001), which dominates both photosynthesis and 

transpiration processes.  During a normal year, NDVI increases rapidly in the spring and then 

levels off until the end of August (Verbesselt et al., 2010).  Therefore, changes in NDVI suggest 

changes in vegetation that coincide with absorption of radiation (Sellers 1985).  Higher NDVI 

values are associated with healthier vegetation while degraded vegetation is associated with 

lower NDVI values. 

 NDVI has shown consistent correlation with vegetation biomass and dynamics in various 

ecosystems worldwide.  NDVI provides information about the spatial and temporal distribution 
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of vegetation communities, vegetation biomass, CO2 fluxes, vegetation quality for herbivores, 

and the extent of land degradation in various ecosystems (Pettorelli et al., 2005).  NDVI has been 

shown to report consistent negative correlations between fire probabilities and standardized 

NDVI levels (Pettorelli et al., 2005).  While NDVI has been proven to be a very useful 

application for vegetation production, there are some limitations.  The relationship between 

NDVI and vegetation can be biased in sparsely vegetated areas, such as arid to semiarid areas, 

and dense canopies, such as the Amazonian Rain Forest (Pettorelli et al., 2005).  Due to NDVI 

being ratio-based, non-linear, lower ratio values tend to be enhanced and higher ratio values 

condensed causing values to saturate over high biomass conditions (Carlson and Ripley 1997).  

This may cause areas with high biomass density to have larger NDVI values than areas with 

lower densities, even if the health conditions of the vegetation were identical.  NDVI is also 

unable to differentiate dominant species within forests due to assemblages of plant species 

producing similar NDVI values or similar NDVI temporal trends (Pettorelli et al., 2005).   

 The visible and NIR bands of the spectrum cannot penetrate cloud cover causing satellite 

images to suffer from cloud contamination and yield lower NDVI values that do not accurately 

reflect surface conditions unless preprocessing filtering and smoothing is applied to the raw data.  

The NIR band also include a strong water absorption region, which can reduce the reliability of 

NDVI calculations (Wardlow 2005).  Most vegetation indices are also limited by inter-satellite 

sensor differences, satellite drift, calibration uncertainties, and atmospheric pat radiance (Zhou et 

al., 2001).   

 Phenometrics 

 Phenology has become an important focus in ecological research for its use in vegetation 

monitoring and in examining issues related to climate change.  Phenology is the variation in 
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seasonal patterns of natural phenomena on land surfaces affected by inter-annual and seasonal 

variation in soil characteristics and meteorological conditions (Cleland et al., 2007).  Seasonal 

characteristics of plants, such as emergence and senescence, are closely related to climate and 

changes in phenological events may signal important year-to-year weather and climate variations 

or even global environmental change (Reed 1994).  The phenology of land surfaces can be 

detected using remote sensing by examining the spectral index values of the land surface.  

Changes in the seasonal timing such as the start and end of season, duration of growing season, 

and maximum productivity can have an impact on a wide range of processes that are dependent 

on natural cycles of vegetation (Ganguly et al, 2010).  However, changes in phenology are part 

of a complex system and can be influenced by outside forces other than long-term climate 

change, such as precipitation or fire (Willis, 2015).  In order to detect changes in phenology, 

remotely sensed datasets must have high temporal resolution to capture any sudden changes in 

the landscape.  MODIS-derived indices are ideal for monitoring phenology in vegetation because 

it support a wide variety of phenology-related data products (i.e., NDVI, EVI, Leaf Area Index 

(LAI, Albedo) and MODIS images are acquired on a daily basis and are also composited into 8 

and 16 day products (Willis, 2015). 

Most phenology research has ecosystem monitoring as it ultimate goal while the 

phenology of entire ecosystems has rarely been studied (Reed 1994).  Field-based ecological 

studies have demonstrated that vegetation phenology tends to follow relatively well-defined 

temporal patterns (Zhang et al., 2003).  When looking at deciduous vegetation and many crops, 

leaf emergence tends to be followed by a period of rapid growth, and then is followed by a stable 

period of maximum leaf area (Sakamoto et al., 2005).  At the regional and larger scales, 

variations in community composition, micro and regional climate models, soils, and land 
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management result in a complex spatio-temporal variation in the phenology of the vegetation 

(Zhang et al., 2003).  In some cases, some vegetation types exhibit multiple modes of growth 

within a single annual cycle.   A profile view of a single annual vegetation cycle (Figure 2.2) 

illustrates key measures, or phenometrics, often used in such studies, including the onset and end 

of greenness (start and end of season, respectively), maximum NDVI, the rate of green-up and 

senescence, growing season length, and accumulated NDVI. 

Figure 2-2.  An example of a vegetation phenology curve and associated phenometrics 

(from Reed et al., 1994). 

 

 Time Series Analysis and Decomposition 

A time series is an ordered sequence of variable values recorded at equally-spaced time 

intervals.  Time series analysis methods can be used to determine if data has internal structure 

such as trend, seasonal variation, or autocorrelation (Eklundh and Jonsson 2010).  In a remote 

sensing context, time series analysis consists of a series of satellite images which allow 

comparisons of the same scene, biophysical measure, or vegetation index over a long time period 

to reveal structure variables of interest.  When vegetation indices are used as the basis of the time 

series, shifts in vegetation properties and dynamics may be revealed (Heumann et al., 2007).  

Information extracted from time series vegetation index (VI) data has been shown to successfully 
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characterize vegetation phenology (Reed et al., 1994) and has been used to measure vegetation 

activity (Zhang et al., 2003).   

The MODIS sensor is carried onboard NASA’s Terra and Aqua satellites and acquires 

images at a global scale and at a high (daily) temporal resolution.  MODIS possesses seven 

spectral bands that are designed for land applications with spatial resolutions ranging from 250 m 

to 1 km (Zhang et al., 2003).  MODIS VI products are designed to provide consistent spatial and 

temporal comparisons of global vegetation conditions that can be used to monitor photosynthetic 

activity (Huete et al., 2002) and those acquired at the 250m resolution are well suited for 

application in the U.S. Central Great Plains (Wardlow and Egbert, 2008).   

A time series can be decomposed into three parts: Seasonal (systematic, calendar related 

movements), trend (long-term direction), and irregular (unsystematic, short term fluctuations) 

(Verbesselt et al., 2009).  The seasonal component shows the general vegetation phenology for 

an area and illustrates the timing and magnitude of the vegetation growing season.  Changes 

from year to year in the seasonal component of the time series suggest weather conditions were 

variable during that time or that there were changes in dominant land cover types (Verbesselt et 

al., 2009).  The trend component, which is often shown as a linear trend from the beginning to 

the end of the time series, shows the direction and magnitude of vegetation change, either 

positive or negative (Jacquin et al., 2009).  The irregular component is treated as signal noise or 

background static caused by external sources.   

Before raw data can be used, signal decomposition must be performed to identify the 

time series signal from the noise.  The raw data is first put through a series of filtering, 

compositing, smoothing, or screening procedures to isolate the signal from the noise.  The 
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preprocessing of raw data is based on a smoothing of distinct sequences of temporally adjacent 

data points (Jonsson and Eklundh 2004). 

Time series analysis techniques used to filter raw NDVI data and extraction of 

phenometrics can be accomplished using several methods such as principal component analysis 

(Tan et al., 2010), Fourier analysis (Sakomoto et al., 2005), and pixel-above-threshold technique 

(Cleland et al., 2007).  The TIMESAT software program also provides several filtering options 

to smooth raw time series vegetation data and extract phenometric data (Eklundh and Jonsson 

2010).  TIMESAT has been used in a variety of studies to examine vegetation phenology 

(Eklundh and Jonsson 2003), assess satellite and climate data-derived indices of fire risk 

(Verbesselt et al., 2006), and examine relationships between coniferous forest NDVI and models 

of conifer tree photosynthetic activity (Eklundh and Jonsson 2010). 
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Chapter 3 - Study Areas 

The study area for this project includes the 26 counties of Kansas and Oklahoma which 

comprise the Flint Hills ecological region of eastern Kansas and northern Oklahoma (Figure 3.1).  

The Flint Hills encompasses an area of 1.6 million hectares and contains the largest area of 

unplowed tallgrass prairie in North America (Hutchinson et al., 2015).  The World Wildlife 

Fund’s Terrestrial Ecoregions of the United States and Canada defines the Flint Hills as the area 

covering the Flint Hills of Kansas and the Osage Plains of northeastern Oklahoma.  The Flint 

Hills is the smallest grassland ecoregion in North America and can be distinguished from other 

Figure 3-1.  The Flint Hills study area showing the 26 counties comprising the ecological 

region in eastern Kansas and north-central Oklahoma. 
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grassland associations by the dominance of tallgrass species and from the Central Tall 

Grasslands to the north by its lack of biotic variety and a thin soil layer spread over distinct beds 

of limestone.  These flinty beds of limestone, from which the name of this ecoregion is derived, 

renders most of the area unsuitable for row-crop agriculture, resulting in an unplowed, though 

heavily grazed, remnant of the original tallgrass prairie (Madson 1993).  Unlike many other 

ecoregion classifications, which are based primarily on biophysical features such as climate and 

topography, World Wildlife Fund’s ecoregions include biogeographic knowledge and therefore 

reflect the historic events and processes that have shaped biodiversity distributions (McDonald et 

al., 2005).   

The definition for the Flint Hills that will be used in this study is provided by the U.S. 

Environmental Protection Agency (EPA) which defined ecoregions based on work from 

Omernik (1987) to serve as a spatial framework for environmental resource management.  The 

map of U.S. ecoregions was compiled based on the premise that ecological regions can be 

identified through an analysis of the patterns and the composition of biotic and abiotic 

phenomena that affect or reflect differences in ecosystem quality and integrity (Omernik, 1987).  

Such phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, 

and hydrology.  The relative importance of each characteristic varies from one ecological region 

to another regardless of the hierarchical level (Wilken 1986).  The EPA ecoregions use a Roman 

numeral classification scheme with level I being the coarsest level, dividing North America into 

15 ecological regions, level II divides the continent into 52 regions, and levels III and IV further 

breaking down the ecoregions.  The EPA definition of the Flint Hills is identical for level III and 

IV with Level III boundary used in this study. 
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Precipitation in the Flint Hills is highly variably from year to year.  Based on 30 year 

normal precipitation (1981-2010) (http://prism.oregonstate.edu (last accessed 02.15.17), the 

northern and southeastern portions of the Flint Hills receive 720 mm (28 in) and 1120 mm (44 

in) of precipitation annually.  Much of the precipitation falls during the growing season 

(approximately 75%), though this, too, varies from year to year (Hayden 1998).  Seasonal 

temperatures are typified by cool winters and hot summers.  The City of Manhattan, Kansas, in 

the northern section of the Flint Hills, averages -1.8 C in January and 26.5 C in July while the 

southern reaches of the study area experience an average temperature of 1.1 C in January and 

27.2 C in July. 

Prescribed burning is a common land management practice employed by ranchers within 

the ecological region (Wilgers and Horne, 2006).  Burning tallgrass prairie has been shown to 

increases plant productivity, decrease aboveground litter, and decrease woody vegetation (Briggs 

and Knapp, 1995).  The frequency of burning in the Flint Hills has changed in recent years.  

Beginning in the 1980’s, a switch in cattle grazing practices prompted land owners to apply 

controlled burns on an annual basis.  However, areas around populated areas often remain 

unburned for extended periods of time and these different fire regimes may be contributing to 

recent trends in vegetation, including the encroachment and expansion of woody vegetation 

(Robbins et al., 2002). 

 Within the Flint Hills, in addition to tallgrass prairie vegetation, there are several other 

land cover types. (See Figure 3-2).  Croplands are found in the flat floodplains along streams and 

rivers.  Gallery forests can also be found along the streams and rivers.  Trees can also be found in 

upland areas where fire and grazing have been suppressed.  Figure 3.3 shows the study area 

while emphasizing the grassland areas isolated for analysis.  The area of the moderate resolution 
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pixels identified here as grassland consisted of at least 80% grassland cover after rescaling the 

original higher spatial resolution data provided by the 2011 National Land Cover Database 

(NLCD) (Homer et al., 2015). 
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Figure 3-2. Land use/land cover within the counties comprising the Flint Hills ecoregion 

study area (NLCD 2011). 
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Figure 3-3. The Flint Hills ecoregion study area emphasizing grassland pixels.  Each pixel, 

which correspond to the spatial resolution of the MODIS MOD13Q1 product consists of a 

minimum of 80% grassland/herbaceous cover according to the 2011 National Land Cover 

Database. 

 

Prescribed burning preserves and sustains the tallgrass prairie ecosystem.  Burning is an 

effective land management practice for stopping woody vegetation from encroaching on 

grasslands.  Tallgrass prairies of North America are threatened by an increase in the abundance 

of native woody species, such as red cedar (Juniperus virginiana) in the Flints Hills area 

(Hulbert, 2009).  These woody plants originate both from within the ecosystem and from 
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neighboring ecosystems (Briggs et al., 2005).  This woody encroachment alters ecosystems 

structure and functions of temperate grasslands, resulting in a loss of biodiversity and grazing 

productivity (Ratajczak et al., 2016).  There are several likely drivers of the increase in woody 

plant abundance including change in climate, increasing atmospheric carbon dioxide 

concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g. the frequency 

and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in temperate 

climates are largely attributed to changes in fire management (Ratajczak et al., 2016). 

Annual spring burning is beneficial in stopping woody encroachment but also increases 

homogenization of plant and avian communities (Collins et al., 1995) (Ratajczak et al., 2016).  

Fire and grazing treatments that promote uniformity cannot maintain biodiversity in tallgrass 

ecosystems (Fuhlendorf et al. 2006).  In addition, it has been shown that annual burns do not 

eliminate shrub species and that a continued increase in shrubs may lead to areas where woody 

vegetation may gain a foothold and spread further (Towne and Kemp, 2003).  Another negative 

impact of burning is when large areas are burned, nearby towns and cities suffer from air quality 

issues related to the particulates released during burning (Dennis et al. 2002).  The frequency of 

burns in the Flint Hills for the period 2001-2010 is shown in Figure 3-4. 
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Figure 3-4.  The frequency of burning within the Flint Hills from 2001-2010.  The original 

data from Mohler and Goodin (2012) was subset to include only the 2001-2010 data. 
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Chapter 4 - Detection of Long-Term Vegetation Trends for the Flint 

Hills Ecoregion using BFAST and Moderate Resolution Satellite 

Imagery 
 

 Abstract 

Grasslands in the Flint Hills are often burned as a land management practice. Remote 

sensing can be used to help better manage prairie landscapes by providing useful information 

about the long-term trends in grassland vegetation greenness and help quantifying regional 

differences in vegetation development. Using MODIS 16-day NDVI composite imagery between 

the years 2001-15 for the entire Flint Hills ecoregion, BFAST was used to determine trend, 

seasonal, and noise components of the image time series.  For the study period, the area of 

negatively and positively trending grassland were 52% and 21%, respectfully.  38% of the study 

area experienced zero breaks during the study period and about 30% experienced only a single 

break.  However, BFAST-derived breaks in trend do not compare favorably with the burn 

frequency analysis of Mohler and Goodin (2012) and may not be a good proxy for identifying 

burned areas within the Flint Hills.  Results suggest that long-term trends in grassland conditions 

warrant further attention and may rival other sources of grassland change (e.g., conversion, 

transition to savannah) in importance. 

 Introduction 

Grasslands and savannas make up more than 40% of the earth’s surface and their rapid 

response to changes in land management and climate can have dramatic ecological and social 

consequences (Briggs et al., 2005).  Grasslands are among the most biodiverse and productive of 

all the earth’s terrestrial biomes but receive low levels of protection (Mark and McLennan, 

2005).  Since 2009, 53 million acres of grassland, roughly the area of Kansas, have been 
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converted to cropland across the Great Plains alone (Plowprint Annual Report, 2016).  Tallgrass 

prairie has been reduced to ~4% of its historical extent making it one of the most altered 

ecosystems in North America (Ratajczak et al., 2016).  Temperate grasslands are important for 

both agronomic and ecological purposes and are a key resource for livestock production in North 

America and around the world (Briggs et al., 2005).  Grasslands provide services such as water 

storage and clean air (Plowprint Annual Print, 2016) and grassland vegetation reduces soil 

erosion due to it dense root systems and by shielding the soil surface from direct interception of 

rainfall (Ratajczak et al, 2016).  Grasslands also store and retain large amounts of soil carbon and 

are an important component of the global carbon cycle (Briggs et al., 2005).  The estimated 

values of theses, and other, ecosystems services provided by native grasslands has been 

estimated to be in excess of $5,000 per hectare per year (Dodds et al., 2008).  

The conservation status of grasslands is being evaluated by groups including the 

Landscape Conservation Cooperatives which seeks to identify the greatest threats to grasslands 

and shrublands across the U.S. and Mexico, areas that are likely to be resilient to climate change 

and other threats, and areas with high potential for restoration (Glaser, 2014).  The state of North 

American prairies is also being addressed through a tri-national cooperative program involving 

Mexico, the USA, and Canada which is attempting to address both sustainable management and 

conservation needs (Mark and McLennan, 2005).  The Flint Hills ecoregion in Kansas and 

Oklahoma remain one of the last great expanses of intact and native tallgrass prairie in the 

United States.  The creation of the Tallgrass Prairie National Preserve in 1996 allowed for more 

area of the Flint Hills to retain its native character. 

Grasslands have been under threat in the United States as well as throughout the world 

due to conversion to row-crop agriculture and changing land management coupled with other 
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global change phenomena (Briggs et al., 2005).  A majority of the former area of the tallgrass 

prairie has been replaced with crops such as wheat, corn, and soybeans (Plowprint Annual Print, 

2016).  The remaining tallgrass prairies of North America are threatened by an increase over 

time in the abundance of native woody species, such as the red cedar (Juniperus virginiana) in 

the Flints Hills area (Hulbert, 2009).  These woody plants originate both from within the 

ecosystem and from neighboring ecosystems (Briggs et al., 2005), with encroachment altering 

the structure and function of temperate grassland ecosystems and resulting in a loss of 

biodiversity and grazing productivity (Ratajczak et al., 2016).  The likely drivers of this increase 

in woody plant abundance are numerous and include change in climate, atmospheric carbon 

dioxide concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g., the 

frequency and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in 

temperate climates are largely attributed to changes in fire management (Ratajczak et al., 2016).  

Comparisons of the area occupied by forest at the time of settlement, as recorded in the 1856 

Land Office, with that in the 1970’s showed that on frequently burned prairies woody plants 

occupied about the same area today as over a century ago.  However, on sites not burned for 20 

years or longer, forests had invaded on half or more of the unburned areas (Hulbert, 2009). 

Healthy vegetation in the Flint Hills is essential for cattle ranchers and the overall health 

of the Flint Hills ecoregion.  Degradation of vegetation health results from gradual or abrupt 

changes in the amount of vegetation activity over time which can be monitored by collecting and 

analyzing time-series Normalized Difference Vegetation Index (NDVI) data from medium or 

course spatial resolution satellites (Verbesselt et al., 2010a).  Time series datasets using NDVI 

products from the Moderate Resolution Imaging Spectrometer (MODIS) sensor have been used 

to successfully quantify vegetation activity and vegetation dynamics (Zhang et al., 2003). 



31 

Past methods used for analyzing trends in continuous vegetation time series data include 

gradual interannual vegetation change due to rainfall variability and drought (Jacquin et al., 

2010), temporal decomposition techniques which have been shown relevant to the study of 

vegetation seasonality (Jonsson and Eklundh, 2002), and abrupt vegetation change seen at the 

intraannual time scale caused by disturbances such as deforestation, disease and insect outbreaks, 

fire, and other activities (Verbesselt et al., 2010a).   

Temporal decomposition of data involves separating an original time series dataset into 

three different components in order to study each related to vegetation greenness at different time 

scales (Cleveland and Delvin, 1988).  These include seasonal, trend, and remainder, residual 

remaining after elimination of the trend and the seasonal components. 

Two categories of methods exist to extract the trend component from a time series.  In the 

first category, the trend component takes the shape of a known function and a regression model 

is fitted to the data using the least squares approach.  This method may result in a model that may 

not reflect reality as trends could exhibit changes over time (Slayback et al., 2003).  The second 

category of methods, the trend component is not assumed to follow a shape and cannot be 

modeled using a predefined function.  Instead, the trend component is obtained via local 

smoothing using different techniques (Hutchinson et al., 2015).  This approach is better adapted 

to data with one or more slope changes, or breaks, in the trend component over time.  After 

extracting the trend component from time series datasets, information can be derived that 

identifies and characterized changes in the trend, including the length of the time series, the 

magnitude of the slope value indicating amplitude of change, and the sign of the slope signifying 

the direction of change (Verbesselt et al., 2010a). 
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This study builds off previous work on the military training grounds of Fort Riley, 

Kansas where Breaks For Additive Seasonal and Trend (BFAST) was used to examine seasonal 

trends of vegetation (Hutchinson et al., 2015).  The BFAST method was used because of its 

ability to account for seasonality and to detect gradual (interannual) and abrupt (intraannual) 

changes within the trend component (Verbesselt et al., 2010a).  Other methods such as Seasonal-

Trend decomposition procedure (STL) based on a Locally wEighted regression Smoother 

(LOESS) were excluded from consideration due to its ability to detect only gradual changes in 

the trend component (Cleveland et al., 1990). 

This study investigates the use of BFAST and a MODIS NDVI image time series to 

examine gradual and abrupt changes in the Flint Hills ecoregion of Kansas and Oklahoma.  This 

work helps to extend the application of BFAST to the grassland ecosystem. 

 Study Area 

The study area for this project includes the 26 counties of Kansas and Oklahoma which 

comprise the Flint Hills ecological region of eastern Kansas and northern Oklahoma (Figure 4-

1).  The Flint Hills encompasses an area of 1.6 million hectares and contains the largest area of 

unplowed tallgrass prairie in North America (Hutchinson et al., 2015).  The World Wildlife 

Fund’s Terrestrial Ecoregions of the United States and Canada defines the Flint Hills as the area 

covering the Flint Hills of Kansas and the Osage Plains of northeastern Oklahoma.  The Flint 

Hills is the smallest grassland ecoregion in North America and can be distinguished from other 

grassland associations by the dominance of tallgrass species and from the Central Tall 

Grasslands to the north by its lack of biotic variety and a thin soil layer spread over distinct beds 

of limestone.  These flinty beds of limestone, from which the name of this ecoregion is derived, 
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renders most of the area unsuitable for row-crop agriculture, resulting in an unplowed, though 

heavily grazed, remnant of the original tallgrass prairie (Madson 1993).   

 Unlike many other ecoregion classifications, which are based primarily on biophysical 

features such as climate and topography, World Wildlife Fund’s ecoregions include 

biogeographic knowledge and therefore reflect the historic events and processes that have shaped 

biodiversity distributions (McDonald et al., 2005).   

The definition for the Flint Hills that will be used in this study is provided by the U.S. 

Environmental Protection Agency (EPA) which defined ecoregions based on work from 

Figure 4-1. The Flint Hills study area showing the 26 counties comprising the ecological 

region in eastern Kansas and north-central Oklahoma. 
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Omernik (1987) to serve as a spatial framework for environmental resource management.  The 

map of U.S. ecoregions was compiled based on the premise that ecological regions can be 

identified through an analysis of the patterns and the composition of biotic and abiotic 

phenomena that affect or reflect differences in ecosystem quality and integrity (Omernik, 1987).  

Such phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, 

and hydrology.  The relative importance of each characteristic varies from one ecological region 

to another regardless of the hierarchical level (Wilken 1986).  The EPA ecoregions use a Roman 

numeral classification scheme with level I being the coarsest level, dividing North America into 

15 ecological regions, level II divides the continent into 52 regions, and levels III and IV further 

breaking down the ecoregions.  The EPA definition of the Flint Hills is identical for level III and 

IV with Level III boundary used in this study. 

Precipitation in the Flint Hills is highly variably from year to year.  Based on 30 year 

normal precipitation (1981-2010) (http://prism.oregonstate.edu (last accessed 02.15.17), the 

northern and southeastern portions of the Flint Hills receive 720 mm (28 in) and 1120 mm (44 

in) of precipitation annually.  Much of the precipitation falls during the growing season 

(approximately 75%), though this, too, varies from year to year (Hayden 1998).  Seasonal 

temperatures are typified by cool winters and hot summers.  The City of Manhattan, Kansas, in 

the northern section of the Flint Hills, averages -1.8 C in January and 26.5 C in July while the 

southern reaches of the study area experience an average temperature of 1.1 C in January and 

27.2 C in July. 

Prescribed burning is a common land management practice employed by ranchers within 

the ecological region (Wilgers and Horne, 2006).  Burning tallgrass prairie has been shown to 

increases plant productivity, decrease aboveground litter, and decrease woody vegetation (Briggs 
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and Knapp, 1995).  The frequency of burning in the Flint Hills has changed in recent years.  

Beginning in the 1980’s, a switch in cattle grazing practices prompted land owners to apply 

controlled burns on an annual basis.  However, areas around populated areas often remain 

unburned for extended periods of time and these different fire regimes may be contributing to 

recent trends in vegetation, including the encroachment and expansion of woody vegetation 

(Robbins et al., 2002). 

In addition to tallgrass prairie vegetation, several other land cover types in the Flint Hills 

(See figure 4-2).  Croplands are found in the flat floodplains along streams and rivers.  Gallery 

forests can also be found along the streams and rivers.  Trees can also be found in upland areas 

where fire and grazing have been suppressed.  Figure 4-3 shows the study area while 

emphasizing the grassland areas isolated for analysis.  The area of the moderate resolution pixels  
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Figure 4-2.  Land use/land cover within the counties comprising the Flint Hills ecoregion 

study area (NLCD 2011).
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identified here as grassland consisted of at least 80% grassland cover after rescaling the original 

higher spatial resolution data provided by the 2011 National Land Cover Database (NLCD) 

(Homer et al., 2015). 

Prescribed burning preserves and sustains the tallgrass prairie ecosystem.  Burning is an 

effective land management practice for stopping woody vegetation from encroaching on 

grasslands.  Tallgrass prairies of North America are threatened by an increase in the abundance 

of native woody species, such as red cedar (Juniperus virginiana) in the Flints Hills area 

Figure 4-3.  The Flint Hills ecoregion study area emphasizing grassland pixels.  Each pixel 

corresponds to the spatial resolution of the MODIS MOD13Q1 product and consists of a 

minimum of 80% grassland/herbaceous cover. 
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(Hulbert, 2009).  These woody plants originate both from within the ecosystem and from 

neighboring ecosystems (Briggs et al., 2005).  This woody encroachment alters ecosystems 

structure and functions of temperate grasslands, resulting in a loss of biodiversity and grazing 

productivity (Ratajczak et al., 2016).  There are several likely drivers of the increase in woody 

plant abundance including change in climate, increasing atmospheric carbon dioxide 

concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g. the frequency 

and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in temperate 

climates are largely attributed to changes in fire management (Ratajczak et al., 2016). 

Annual spring burning is beneficial in stopping woody encroachment but also increases 

homogenization of plant and avian communities (Collins et al., 1995) (Ratajczak et al., 2016).  

Fire and grazing treatments that promote uniformity cannot maintain biodiversity in tallgrass 

ecosystems (Fuhlendorf et al. 2006).  In addition, it has been shown that annual burns do not 

eliminate shrub species and that a continued increase in shrubs may lead to areas where woody 

vegetation may gain a foothold and spread further (Towne and Kemp, 2003).  Another negative 

impact of burning is when large areas are burned, nearby towns and cities suffer from air quality 

issues related to the particulates released during burning (Dennis et al. 2002).  

 Data and Methods 

The remote sensing data used for analysis were MODIS MOD13Q1 16-day maximum 

composite NDVI value image products for the period 2001-2015.  A total of 23 composite 

images are produced each year, resulting in a total number of 345 images for the study period.  

MODIS MOD13Q1 images are a gridded level 3 product delivered in a sinusoidal projection and 

have a 250 meter spatial resolution.  The images acquired came in calibrated and geolocated 

form based on grid and angular data, masked from cloud, land/water, perceptible water and 
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aerosol products, incorporate spectral reflectance, and undergo quality assurance flags associated 

with atmospheric correction products (Huete et al., 2002).   

Images were downloaded from the Earth Observing System Data and Information System 

(EOSDIS) and saved as an 8-bit unsigned integer grid.  Due to the nature of the sensor and the 

curvature of the Earth, the MOD13Q1 spatial resolution for the study area was 231.656 meters.  

After download, all images were clipped to the spatial extent of the 26 county study area and 

reprojected into the UTM Zone 14N NAD 83 spatial reference (940 Columns, 1840 Rows).   

For this study, only grassland areas were analyzed.  Using the 2011 NLCD product, 

pixels of the “grassland/herbaceous” class were extracted from the original dataset which was 

produced using Landsat data and has a 30 meter spatial resolution.  This 30 meter resolution 

grassland data was then rescaled to match the spatial resolution of the MOD13Q1 image.  Only 

rescaled pixels comprised of a minimum of 80% of the original NLCD grassland/herbaceous 

class were retained for further analysis (see Figure 4-3).  Once the rescaled grassland “dominant” 

grid was constructed, the 8-bit NDVI values for the entire MOD13Q1 time series was extracted 

(Figure 4-4) and stored in a text (CSV) file, resulting in a matrix of values consisting of 

approximately 311,000 pixels by 345 (2001-2015) NDVI data points. 
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Figure 4-4.  Shows a point shapefile overlaid on MODIS NDVI values. 

 

The extracted NDVI data matrix for each of the study periods were then input into the R 

software package and analyzed using the Breaks for Additive Seasonal and Trend (BFAST) 

package using a custom script (Appendix B).  The temporal decomposition used by BFAST is 

based on a LOESS driven STL temporal decomposition developed by Verbesselt et al. (2010a).  

BFAST operates effectively with missing data within a time series to produce reliable 

estimations of seasonal and trend components, is flexible and easy to implement, and can 

efficiently process large volumes of data (Hutchinson et al. 2015).  BFAST also can model the 

trend component using either linear or nonlinear regression which permits detection of 

breakpoints, identify when a breakpoint occurs, and quantifying the magnitude of change 

associated with each abrupt change (Verbesselt et al., 2010a).   

The parameters defined for BFAST include the length of the time series represented by 

the total number of images available, the length of the season or the number of images 

encompassing the complete vegetation cycle, the season model, a value (h) corresponding to the 

minimum time interval between potential breakpoints in the seasonal trend components or the 
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number of images in one vegetation cycle divided by the total number of images in the time 

series, and the maximum number of breakpoints (Verbesselt et al., 2010a).  The h value chosen 

for this study was fixed at 0.1, meaning that one break point per year could be detected for a 

possible maximum of 15 breakpoints in the time series.  The complete BFAST script, including 

all parameters, used in the R implementation can be found in Appendix B. 

BFAST decomposed the original MOD13Q1 time series datasets into season, trend, and 

remainder components (Verbesselt et al., 2010a).  An example of BFAST graphical output is 

shown in Figure 4-5.  The unique contribution of BFAST to temporal decomposition is the 

ability to examine both long-term (interannual) linear trends and to detect abrupt intrannual 

changes each growing season (maximum of one significant break per season).  Additional tabular 

output from BFAST include output values for the linear trend, the magnitude and timing of 

significant breaks in the trend component, and the total number of breaks for each pixel during 

the study period. 

Figure 4-5.  Example BFAST graphical ouptut showing the seasonal, trend, and noise 

components from the decomposed time series data.  The trend component for image on the 

left shows a significant negative trend over time with three abrupt intrannual breaks in 

that trend.  The trend for the image on the right show a “null” trend with a slope not 

significantly different from 0. 
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Three indicators for each pixel were calculated from the BFAST trend component.  The 

first describes the gradual interannual vegetation greenness change and corresponds to the linear 

slope of the trend component across the fifteen-year study period.  A statistical analysis was 

performed on the slope of the linear trend to test its significance against a null slope using a 

Student’s t-test (Equation 1) where, for a given pixel, an is the slope of the trend, a0 is the slope of 

a null trend (equal to 0), n is the number of images into the time series, x represents the time 

series NDVI value, and 𝑥̅ is the mean NDVI value of the time series.  Based on the statistical 

significance (p-value <= 0.05) and sign of the slope, all pixels were placed into three classes to 

interpret gradual interannual change.  The remaining indicator characterizes abrupt intraannual 

changes as the number of significant breaks contained within the overall linear trend component. 

𝑡 =
𝑎𝑛− 𝑎0

√
1

𝑛−1
∑(𝑥− 𝑥̅)2

√𝑛−2

                                                                                                                 Equation 1                                                                                                              

 Results 

The gradual interannual vegetation change classes for 2001-2015 are shown in Figure 4-

6.  Areas with significant directional trends are shown in green (significant positive slope) and 

red (significant negative slope).  Areas without a significant trend (null slope) are shown in gray.  

Land managers looking at this picture would be able to assess the overall long-term direction of 

vegetation greenness across the Flint Hills region in a spatially explicit way.  Areas with a 

positive trend in greenness are interpreted here as having vegetation that experienced 

improvements in greenness, health, or amount as suggested by NDVI.  Conversely, those areas 

with negative trend declined in quality.  For the Flint Hills ecoregion as a whole, 52.47% of the 

area experienced a negative trend in vegetation activity and greenness during the 2001-2015 

period, 21.52% of the area saw increases in vegetation activity and greenness, and 26.01% 
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experienced no change or was stable during the same time (Table 4-1).  Table 4-2 shows the 

amount of interannual classes each counties experienced during the study period. 
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Figure 4-6.  Gradual interannual change classes for the Flint Hills study area derived 

from statistical analysis of the BFAST computed trend component for the period 2001-2015.
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Table 4-1.  Summary results for the gradual interannual trend classes for the period 2001-

2015 for the Flint Hills study area based on BFAST trend component analysis. 
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Vegetation Gradual Interannual Change Classes 

  

Negative Trend 
(Browning) 

 
Positive Trend 

(Greening) 
No Change 

(Stable) 

 No. Pixels 163,250 66,956 80,917 

 Area (ha) 876,075.71 359,317.15 434,238.40 

 % Total Area 52.47% 21.52% 26.01% 

 

Table 4-2.  Summary results for the gradual interannual trend classes for the period 2001-

2015 for the Flint Hills Counties based on BFAST trend component analysis.  Bold number 

in a trend category indicate a maximum value within the county. 

 

The number of significant breaks in the trend component can serve as an indicator of both 

the number and frequency of disturbances and might be related to fire regime.  Figure 4-7 shows 

NAME Stable Positive Negative Sum % Stable % Positive % Negative

Butler 10972 6594 15401 32967 33.28% 20.00% 46.72%

Chase 10792 3679 10025 24496 44.06% 15.02% 40.93%

Chautauqua 2205 3604 3124 8933 24.68% 40.34% 34.97%

Clay 642 2548 3390 6580 9.76% 38.72% 51.52%

Coffey 1212 712 3106 5030 24.10% 14.16% 61.75%

Cowley 6088 5004 9963 21055 28.91% 23.77% 47.32%

Dickinson 1187 2151 4408 7746 15.32% 27.77% 56.91%

Elk 2863 1818 7617 12298 23.28% 14.78% 61.94%

Geary 1660 2077 3127 6864 24.18% 30.26% 45.56%

Greenwood 7197 2007 17674 26878 26.78% 7.47% 65.76%

Harvey 357 1032 482 1871 19.08% 55.16% 25.76%

Jackson 75 126 1386 1587 4.73% 7.94% 87.33%

Kay 2664 2185 1656 6505 40.95% 33.59% 25.46%

Lyon 2869 1661 9778 14308 20.05% 11.61% 68.34%

Marion 3006 3303 4656 10965 27.41% 30.12% 42.46%

Marshall 250 1369 4187 5806 4.31% 23.58% 72.12%

McPherson 804 1576 3717 6097 13.19% 25.85% 60.96%

Morris 4340 3303 7426 15069 28.80% 21.92% 49.28%

Osage 13929 9807 9281 33017 42.19% 29.70% 28.11%

Pottawatomie 957 3193 9151 13301 7.19% 24.01% 68.80%

Riley 940 2425 5626 8991 10.45% 26.97% 62.57%

Shawnee 199 170 1434 1803 11.04% 9.43% 79.53%

Wabaunsee 2531 778 14607 17916 14.13% 4.34% 81.53%

Washington 503 2897 5020 8420 5.97% 34.41% 59.62%

Wilson 384 487 863 1734 22.15% 28.09% 49.77%

Woodson 1266 360 2493 4119 30.74% 8.74% 60.52%
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the Flint Hills region with the number of significant breaks for each of the pixels.  Each pixel 

could only have a maximum of one break for each year of the study period.  Within the 

ecoregion, 37.86% of the area experienced zero breaks during the study period and about 30% 

experienced only a single break.  The maximum number of breaks experienced by a pixel was 

seven but only 2 pixels of 311,000 had that many breaks.  Figure 4-7 shows the percentage of the 

study area that experienced the number of breaks in trend and figure 4-8 shows a map of the 

breaks. 

Figure 4-7.  The percentage of the Flint Hills study area that experienced a different 

number of significant breaks within the linear trend for the 2001-2015 study period. 
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Figure 4-8.  Shows the number of breaks for each pixel over the study period of 2001-

2015.  Each pixel could have one break for each year.
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 Discussion and Conclusions 
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Examining results from the BFAST procedure provides an interesting synoptic view of 

vegetation dynamics within the Flint Hills that should be of interest to land managers and land 

owners within the ecoregion.  For the study period 2001-2015, a majority of the Flint Hills (52%) 

experienced a significant decline in greenness.  The spatial distribution of this “browning” occurs 

throughout the region with no obvious spatial pattern.  Counties in the central part of the Flint 

Hills - Greenwood, Butler, Wabaunsee, and Chase – each contained over 10,000 negative 

trending pixels and accounted for 36% of all negative trend pixels in the study area.  Positive 

trending pixels comprised 22% of the study area, with Osage and Butler counties having 25% of 

all “greening” pixels.  These counties lie in the southern area of the Flint Hills.  The remaining 

26% of the study area were stable (i.e., no significant negative or positive trend) and were 

distributed throughout the area with Osage, Butler, and Chase counties having 45% of all stable 

pixels in the study area. 

That the majority of the Flint Hills experienced a negative trend is surprising given the 

burning frequencies and precipitation observed during the study period.  As burning is an 

important and common practice in the Flint Hills to combat woody encroachment and improve 

forage conditions, more frequent burning was expected to correlate with areas having a positive 

trend.  Comparing estimated trends to burn frequency data for the Flint Hills (Figure 3-4), no 

clear relationship appears with areas having higher burning frequencies experiencing both 

positive and negative trends in greenness. A closer examination of the effects of fire may be 

needed to explain the large percentage of the Flint Hills having a negative trend.  A detailed 

statistical approach could be applied to evaluate the relationship between fire frequency, 

precipitation, and other important factors such as soils. 
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Examining the number of significant breaks in trend shows that 38% of the Flint Hills 

experienced zero disturbances.  The remaining 62% of the study area had at least one break in 

trend during the study period.  A qualitative comparison of burn maps for the Flint Hills (Figure 

3-4) to BFAST-estimated breaks in trend reveals little agreement.  In other words, breaks in 

trend do not appear to be related to disturbances caused by prescribed burning.  This relationship, 

or lack thereof, should be explored quantitatively.  

One limitation related to the use of the MOD13Q1 product is the 16-day compositing 

period.  The timing of a fire combined with the selection of the maximum NDVI value within the 

16-day interval may not be sufficient to capture the burning disturbance.  If a disturbance is 

noted, the post-disturbance response could be manifested as both a short-term increase or 

decrease in trend (Hutchinson et al., 2015).  For example, within the timeframe of a 16-day 

composite image, the warm season grasses of the Flint Hills burned in spring have sufficient time 

to green up.  This would result in a detection of a significant positive break.  Other imagery, such 

as daily or 8-day NDVI composite images may observe and provide better results in these 

circumstances. 

Using MODIS images to create a vegetation index time series and utilizing BFAST with 

its ability to detect breaks and trend of vegetation greenness allows for consistent assessment of 

the grassland vegetation of the Flint Hills.  Grassland managers across the Flint Hills would 

benefit from knowing the current greenness of their grasslands and whether that greenness is 

improving or declining over time.  The BFAST trend analysis allows for an interesting method to 

characterize long-term vegetation trends as well as when and where significant breaks occur in 

detected trends.  However, exactly what is being detected as a break in trend remains unclear.   
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Chapter 5 - Drivers of Long-Term Vegetation Trends for the Flint 

Hills Ecoregion as Detected using BFAST and Moderate Resolution 

Satellite Imagery 
 

 Abstract 

Grasslands in the Flint Hills are often burned as a land management practice. Remote 

sensing can be used to help better manage prairie landscapes by providing useful information 

about the long-term trends in grassland vegetation greenness and help quantifying regional 

differences in vegetation development. Using MODIS 16-day NDVI composite imagery between 

the years 2001-10 for the entire Flint Hills ecoregion, BFAST was used to determine trend, 

seasonal, and noise components of the image time series.  To help explain the trend, four factors 

were considered including hydrologic soil group, burn frequency, and cumulative differences 

between annual and normal (1982-2010) precipitation (precipitation deviation).  For the study 

period, the area of negatively and positively trending grassland were similar (41-43%).  Logistic 

regression showed that the log odds of a pixel experiencing a negative trend were higher in sites 

with clay soils and higher burning frequencies and lower for pixels having higher than normal 

precipitation and loam soils.   

 Introduction 

Grasslands and savannas make up more than 40% of the earth’s surface and their rapid 

response to changes in land management and climate can have dramatic ecological and social 

consequences (Briggs et al., 2005).  Grasslands are among the most biodiverse and productive of 

all the earth’s terrestrial biomes but receive low levels of protection (Mark and McLennan, 

2005).  Since 2009, 53 million acres of grassland, roughly the area of Kansas, have been 

converted to cropland across the Great Plains alone (Plowprint Annual Report, 2016).  Tallgrass 
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prairie has been reduced to ~4% of its historical extent making it one of the most altered 

ecosystems in North America (Ratajczak et al., 2016).  Temperate grasslands are important for 

both agronomic and ecological purposes and are a key resource for livestock production in North 

America and around the world (Briggs et al., 2005).  Grasslands provide services such as water 

storage and clean air (Plowprint Annual Print, 2016) and grassland vegetation reduces soil 

erosion due to it dense root systems and by shielding the soil surface from direct interception of 

rainfall (Ratajczak et al, 2016).  Grasslands also store and retain large amounts of soil carbon and 

are an important component of the global carbon cycle (Briggs et al., 2005).  The estimated 

values of theses, and other, ecosystems services provided by native grasslands has been 

estimated to be in excess of $5,000 per hectare per year (Dodds et al., 2008).  

The conservation status of grasslands is being evaluated by groups including the 

Landscape Conservation Cooperatives which seeks to identify the greatest threats to grasslands 

and shrublands across the U.S. and Mexico, areas that are likely to be resilient to climate change 

and other threats, and areas with high potential for restoration (Glaser, 2014).  The state of North 

American prairies is also being addressed through a tri-national cooperative program involving 

Mexico, the USA, and Canada which is attempting to address both sustainable management and 

conservation needs (Mark and McLennan, 2005).  The Flint Hills ecoregion in Kansas and 

Oklahoma remain one of the last great expanses of intact and native tallgrass prairie in the 

United States.  The creation of the Tallgrass Prairie National Preserve in 1996 allowed for more 

area of the Flint Hills to retain its native character. 

Grasslands have been under threat in the United States as well as throughout the world 

due to conversion to row-crop agriculture and changing land management coupled with other 

global change phenomena (Briggs et al., 2005).  A majority of the former area of the tallgrass 
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prairie has been replaced with crops such as wheat, corn, and soybeans (Plowprint Annual Print, 

2016).  The remaining tallgrass prairies of North America are threatened by an increase over 

time in the abundance of native woody species, such as the red cedar (Juniperus virginiana) in 

the Flints Hills area (Hulbert, 2009).  These woody plants originate both from within the 

ecosystem and from neighboring ecosystems (Briggs et al., 2005), with encroachment altering 

the structure and function of temperate grassland ecosystems and resulting in a loss of 

biodiversity and grazing productivity (Ratajczak et al., 2016).  The likely drivers of this increase 

in woody plant abundance are numerous and include change in climate, atmospheric carbon 

dioxide concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g., the 

frequency and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in 

temperate climates are largely attributed to changes in fire management (Ratajczak et al., 2016).  

Comparisons of the area occupied by forest at the time of settlement, as recorded in the 1856 

Land Office, with that in the 1970’s showed that on frequently burned prairies woody plants 

occupied about the same area today as over a century ago.  However, on sites not burned for 20 

years or longer, forests had invaded on half or more of the unburned areas (Hulbert, 2009). 

Fire is an integral component of prairie development and maintenance and for more than 

7000 years vegetation patterns have been influenced by anthropogenic burning practices (Towne 

and Kemp, 2003).  Fire has long been recognized as an important factor influencing the 

development and persistence of the tallgrass prairie ecosystem (Benson and Hartnett 2006).  Fire 

is both an inexpensive and effective way of controlling woody species and shrubs as well as 

maintaining high quality nutritious forge for grazers, but air pollution from the smoke can 

negatively impact cities downwind of the fires (Briggs et al., 2005).  Prairie fires were 

suppressed during European settlement with accidental or lightning-caused wildfires being the 
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primary source of burning (Towne and Kemp, 2003).  An influx of cattle to the Flint Hills in the 

late 1800’s created an incentive for prairie burning and pastures were burned annually in 

February or March to improve livestock weight gains (Towne and Kemp, 2003).   

Annual or biennial burning, which is currently a common land management practice in 

tallgrass prairie, homogenizes the canopy over the long term by suppressing invasion by woody 

species while promoting a variety of C3 forbs amidst a matrix of C4 graminoids (Goodin and 

Henebry, 1998) (Benson and Hartnett 2006).  Warm season grasses have been shown to increase 

after burning has been conducted (Towne and Kemp, 2003) (Hulbert, 2009) and average peak-

season aboveground biomass on annually burned prairie is reported to be nearly twice that of 

infrequently burned prairie (Benson and Hartnett 2006).  Species diversity is lowest with annual 

late-spring burning and increases with increasing intervals between fires (Hulbert, 2009).   

At the Konza Prairie Biological Station, it has been observed that vegetation development 

starts earlier on plots burned in November than on those burned in March (Hulbert, 2009).  This 

is likely due to higher soil temperatures on burned areas, resulting from greater solar heating as a 

response to removal of the insulating layer of standing dead vegetation (Hulbert, 2009).  A 

burning frequency of 3 to 4 years has been thought to be the historical fire frequency before 

extensive settlement by Europeans (Briggs et al., 2005).  Burning once every 4 years has been 

shown to increase the number of forb and annual species compared to that seen in annually 

burned sites (Collins et al., 1995).  A complete exclusion of fire in tallgrass prairie has been 

shown to significantly decrease the grass bud bank while increasing the forb bud bank (Dalgleish 

and Hartnett, 2008).  Prairie that is burned at an intermediate fire frequency showed greater year-

to-year variability in grass bud bank size and in the probability of emergence from the bud bank 

than annually burned prairie (Dalgleish and Hartnett, 2008). 
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Cattle ranchers in the Flint Hills employ frequent spring burns to remove dead litter and 

enhance palatability, leading to greater and more consistent weight gain in cattle (Ratajczak et 

al., 2016).  These fires help to reduce species such as buckbrush (Ceanothus cuneatus) or 

coralberry (Symphoricarpos orbiculatus) (Hulbert, 2009).  Annual spring burning is beneficial in 

stopping woody encroachment but also can homogenize plant and avian communities (Collins et 

al., 1995) (Ratajczak et al., 2016).  In addition, it has been shown that annual burning does not 

eliminate shrubs and, over time, this buildup of shrubs can lead to areas where woody vegetation 

becomes established and later spreads (Towne and Kemp, 2003).  Fire alone does not stop the 

invasion of woody plants.  The combination of fire, climate, substrate, and topography are what 

makes the prairie (Hulbert, 2009). 

Depending on the definition used for the Flint Hills, the amount and frequency of burning 

varies on a yearly basis.  Mohler and Goodin (2012) showed that as much as 31% of the Flint 

Hills grasslands were burned in 2005 and the Nebraska Department of Environment and Quality 

puts the figure at 48%. (NDEQ, 2016).  In 2007, roughly 10-14% of Flint Hills grasslands were 

burned.  About 8% of the grassland within the Flint Hills was burned once during the 2000-2010 

time period while less than 1% were burned ten times during the same period (Mohler and 

Goodin, 2012).   

The Kansas Department of Health and Environment has developed the Flint Hills Smoke 

Management Plan to combat smoke conditions caused during the burning season.  Their website, 

www.ksfire.org, seeks to inform land managers conducting prescribed burns in the Flint Hills by 

providing information and access to tools to assist with burn decisions.  The Flint Hills Smoke 

Management Plan began in fall 2013when air quality monitors in the Kansas City area recorded 

very high ozone readings on April 12 and April 13 (KDHE, 2010).  Three monitors in Kansas 

http://www.ksfire.org/
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City, Missouri recorded readings that exceeded the federal 8-hour ozone standard and states as 

far away as Tennessee were impacted with poor air quality and high ozone concentrations 

(KDHE, 2010).  In Nebraska, the cities of Omaha and Lincoln have also been impacted by 

burning in the Flint Hills with several days of violating air quality standards (NDEQ, 2016).   

Because the Flint Hills Smoke Management Program is entirely voluntary, there is no 

way for the states of Kansas or Nebraska (or any other states) to exercise control over prescribed 

burning (NDEQ, 2016).  States that are downwind have no input into prescribed burning 

activities and only have the ability to react to air quality conditions that result from the Flint Hills 

fires and issue air quality advisories as conditions dictate.   

Healthy vegetation in the Flint Hills is essential for cattle ranchers and the overall health 

of the Flint Hills ecoregion.  Degradation of vegetation greenness results from gradual or abrupt 

changes in the amount of vegetation activity over time which can be monitored by collecting and 

analyzing time-series Normalized Difference Vegetation Index (NDVI) data from medium or 

course spatial resolution satellites (Verbesselt et al., 2010a).  Time series datasets using NDVI 

products from the Moderate Resolution Imaging Spectrometer (MODIS) sensor have been used 

to successfully quantify vegetation activity and vegetation dynamics (Zhang et al., 2003). 

Past methods used for analyzing trends in continuous vegetation time series data include 

gradual interannual vegetation change due to rainfall variability and drought (Jacquin et al., 

2010), temporal decomposition techniques which have been shown relevant to the study of 

vegetation seasonality (Jonsson and Eklundh, 2002), and abrupt vegetation change seen at the 

intraannual time scale caused by disturbances such as deforestation, disease and insect outbreaks, 

fire, and other activities (Verbesselt et al., 2010a).   
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Temporal decomposition of data involves separating an original time series dataset into 

three different components in order to study each related to vegetation greenness at different time 

scales (Cleveland and Delvin, 1988).  These include seasonal, trend, and remainder, residual 

remaining after elimination of the trend and the seasonal components. 

Two categories of methods exist to extract the trend component from a time series.  In the 

first category, the trend component takes the shape of a known function and a regression model 

is fitted to the data using the least squares approach.  This method may result in a model that may 

not reflect reality as trends cold exhibit changes over time (Slayback et al., 2003).  The second 

category of methods, the trend component is not assumed to follow a shape and cannot be 

modeled using a predefined function.  Instead, the trend component is obtained via local 

smoothing using different techniques (Hutchinson et al., 2015).  This approach is better adapted 

to data with one or more slope changes, or breaks, in the trend component over time.  After 

extracting the trend component from time series datasets, information can be derived that 

identifies and characterized changes in the trend, including the length of the time series, the 

magnitude of the slope value indicating amplitude of change, and the sign of the slope signifying 

the direction of change (Verbesselt et al., 2010a). 

This study builds from the previous success of studies done on military training ground at 

Fort Riley Kansas where Breaks For Additive Seasonal and Trend (BFAST) was used to 

examine seasonal trends of vegetation (Hutchinson et al., 2015).  The BFAST method was used 

because of its ability to account for seasonality and to detect gradual (interannual) and abrupt 

(intraannual) changes within the trend component (Verbesselt et al., 2010a).  Other methods such 

as Seasonal-Trend decomposition procedure (STL) based on a Locally wEighted regression 
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Smoother (LOESS) were excluded from consideration due to its ability to detect only gradual 

changes in the trend component (Cleveland et al., 1990). 

Tests for statistical significance have been performed to determine how multiple factors 

influence the trend of vegetation greenness.  Generalized linear models (GLM) have been used to 

explain trends by fire regime and stratification (Jacquin et al., 2016).  GLMs are a generalization 

of linear regression models, allowing various distributions for the response and error terms in 

models (Augustin et al., 2001).  A logistic regression form of GLM can be fitted to a model to 

determine the significance of different variables. 

This study investigates the use of BFAST and a MODIS NDVI image time series to 

examine gradual and abrupt changes in the Flint Hills ecoregion of Kansas and Oklahoma.  This 

work helps to extend the application of BFAST to the grassland ecosystem as well as seek to 

explain the trend patterns observed in the Flint Hills ecoregion using burn frequency, 

precipitation deviation, and hydrological groups. 

 Study Area 

The study area for this project is the 26 counties of Kansas and Oklahoma containing the 

Flint Hills eco-region of eastern Kansas and north Oklahoma (Figure 5-1).  The Flint Hills 

encompass an area of 1.6 million hectares and contain the largest area of unplowed tallgrass 

prairie in North America (Hutchinson et al., 2015).  The World Wildlife Fund’s Terrestrial 

Ecoregions of the United States and Canada defines the Flint Hills as the area covering the Flint 

Hills of Kansas and the Osage Plains of northeastern Oklahoma.  The Flint Hills is the smallest 

grassland ecoregion in North America and can be distinguished from other grassland associations 

by the dominance of tallgrass species and from the Central Tall Grasslands to the north by its 
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lack of variety of biota and a thin soil layer spread over distinct beds of limestone.  These Flinty 

beds of limestone, from which the name of this ecoregion is derived, rendered large area 

unsuitable for corn or wheat farming, resulting in an unplowed, though heavily grazed, remnant 

of the tallgrass prairie (Madson 1993).  Unlike many other ecoregion classifications, which are 

based primarily on biophysical features such as climate and topography, World Wildlife Fund’s 

ecoregions include biogeographic knowledge and therefore reflect the historic events and 

processes that have shaped biodiversity distribution (McDonald et al., 2005).   

Figure 5-1. The Flint Hills study area showing the 26 counties comprising the ecological 

region in eastern Kansas and north-central Oklahoma. 
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The definition for the Flint Hills that will be used in this study is provided by the U.S. 

Environmental Protection Agency (EPA) which defined ecoregions based on work derived from 

Omernik (1987) which seeks to serve as a spatial framework for environmental resource 

management.  The map of U.S. ecoregions was compile based on the premise that ecological 

regions can be identified through the analysis of the patterns and the composition of biotic and 

abiotic phenomena that affect or reflect difference in ecosystem quality and integrity (Omernik, 

1987).  Such phenomena include geology, physiography, vegetation, climate, soils, land use, 

wildlife, and hydrology.  The relative importance of each characteristic varies from one 

ecological region to another regardless of the hierarchical level (Wilken 1986).  The EPA 

ecoregions use a Roman numeral classification scheme with level I being the coarsest level, 

dividing North America into 15 ecological regions, level II divides the continent into 52 regions 

and level III and IV further breaking down the ecoregions.  The EPA definition of the Flint Hills 

is the same for level III and IV with Level III being used for the purposes of this study. 

Precipitation for the Flint Hills region is highly variably from year to year.  Based on 30 

year normal precipitation (1981-2010) (http://prism.oregonstate.edu), the northern parts of the 

Flint Hills receives 720 mm (28 in) of precipitation and the southeastern parts receive 1120 mm 

(44 in) of precipitation.  Much of the precipitation falls during the growing season 

(approximately 75%), though this varies from year to year (Hayden 1998).  Temperature varies 

within the region throughout the year with cool winters and hot summers.  The City of 

Manhattan, Kansas in the northern section of the Flint Hills, averages -1.8 C in January and 26.5 

C in July while the southern sections of the study area experience an average temperature of 1.1 

C in January and 27.2 C in July. 
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Ranching is commonly practiced within the Flint Hills and these ranchers will 

periodically burn there land in a land management method called prescribed burning (Wilgers 

and Horne, 2006).  Burning of the tallgrass prairie has been shown to increases plant 

productivity, decrease aboveground litter, and decrease woody vegetation (Briggs and Knapp, 

1995).  The frequency of burning in the Flint Hills has changed in recent years.  Beginning in the 

1980’s, a switch in cattle grazing practices caused the rangelands to be annually burned while 

areas around populated areas often remained unburned for extended periods of time (Robbins et 

al., 2002).  These different fire regimes may contribute to trends in vegetation. 

In addition to the tallgrass prairie, several other land cover types can be found in the Flint 

Hills (See figure 5-2).  Croplands are found in the flat floodplains along the streams and rivers.  

Gallery forests can also be found along the streams and rivers.  Trees can be found in the upland 

areas where fire and grazing have been suppressed.  Figure 5.3 shows the study area with only 

the grassland areas examined.  The pixels were determined to be grassland if they contained 

over80% grassland land cover based on the 2010 national land cover database. 
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Figure 5-2. Land use/land cover within the counties comprising the Flint Hills ecoregion 

study area (NLCD 2011). 
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Figure 5-3.  The Flint Hills ecoregion study area emphasizing grassland pixels.  Each pixel 

corresponds to the spatial resolution of the MODIS MOD13Q1 product and consists of a 

minimum of 80% grassland/herbaceous cover. 

 

Prescribed burning preserves and sustains the tallgrass prairie ecosystem.  Burning is an 

effective land management practice for stopping woody vegetation from encroaching on 

grasslands.  Tallgrass prairies of North America are threatened by an increase in the abundance 

of native woody species, such as the Red Ceder in the Flints Hills area (Hulbert, 2009).  These 

woody plants originate both from within the ecosystem and from neighboring ecosystems 

(Briggs et al., 2005).  This woody encroachment alters ecosystems structure and functions of 
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temperate grasslands, resulting in a loss of biodiversity and grazing productivity (Ratajczak et 

al., 2016).  The likely drives of the increase in woody plant abundance are numerous and include 

change in climate, atmospheric carbon dioxide concentration, nitrogen deposition, grazing 

pressure, and disturbance regimes (e.g. the frequency and intensity of fire) (Briggs et al., 2005).  

Transitions to shrub land and woodland in temperate climates are largely attributed to changes in 

fire management (Ratajczak et al., 2016). 

Annual spring burning is beneficial in stopping woody encroachment but also can 

homogenize plant and avian communities (Collins et al., 1995) (Ratajczak et al., 2016).  Fire and 

grazing treatments that promote uniformity cannot maintain biodiversity in tallgrass ecosystems 

(Fuhlendorf et al. 2006).  In addition, it has been shown that annual burns do not eliminate shrub 

species and a buildup of shrubs may lead to areas where woody vegetation may gain a foothold 

and spread (Towne and Kemp, 2003).  Another negative impact of burning is when large areas 

are burned, nearby towns and cities suffer air quality issues from particulates released during 

burning (Dennis et al. 2002). 
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Figure 5-4. The frequency of burning within the Flint Hills from 2001-2010.  The original 

data from Mohler and Goodin (2012) was subset to include only the 2001-2010 data.
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 Data and Methods 

The remote sensing data used for analysis were MODIS MOD13Q1 16-day maximum 

composite NDVI value image products for the period 2001-2015.  A total of 23 composite 

images produced each year, resulting in a total number of 345 images for the study period.  

MODIS MOD13Q1 images are a gridded level 3 product delivered in a sinusoidal projection and 

have a 250 meter spatial resolution.  The images acquired came in calibrated and geolocated 

form based on grid and angular data, masked from cloud, land/water, perceptible water and 

aerosol products, incorporate spectral reflectance, and undergo quality assurance flags associated 

with atmospheric correction products (Huete et al., 2002).   

Images were downloaded from the Earth Observing System Data and Information System 

(EOSDIS) and saved as an 8-bit unsigned integer grid.  Due to the nature of the sensor and the 

curvature of the Earth, the MOD13Q1 spatial resolution for the study area was 231.656 meters.  

After download, all images were clipped to the spatial extent of the 26 county study area and 

reprojected into the UTM Zone 14N NAD 83 spatial reference (940 Columns, 1840 Rows).   

For this study, only grassland areas were analyzed.  Using the 2011 NLCD product, 

pixels of the “grassland/herbaceous” class were extracted from the original dataset which was 

produced using Landsat data and has a 30 meter spatial resolution.  This 30 meter resolution 

grassland data was then rescaled to match the spatial resolution of the MOD13Q1 image.  Only 

rescaled pixels comprised of a minimum of 80% of the original NLCD grassland/herbaceous 

class were retained for further analysis (see Figure 5-3).  Once the rescaled grassland “dominant” 

grid was constructed, the 8-bit NDVI values for the entire MOD13Q1 time series was extracted 

(Figure 5-5) and stored in a text (CSV) file, resulting in a matrix of values consisting of 

approximately 311,000 pixels by 230 (2001-2010) NDVI data points. 
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Figure 5-5.  Shows a point shapefile overlaid on MODIS NDVI values. 

 

The extracted NDVI data matrix for each of the study periods were then input into the R 

software package and analyzed using the Breaks for Additive Seasonal and Trend (BFAST) 

package using a custom script (Appendix B).  The temporal decomposition used by BFAST is 

based on a LOESS driven STL temporal decomposition developed by Verbesselt et al. (2010a).  

BFAST operates effectively with missing data within a time series to produce reliable 

estimations of seasonal and trend components, is flexible and easy to implement, and can 

efficiently process large volumes of data (Hutchinson et al. 2015).  BFAST also can model the 

trend component using either linear or nonlinear regression which permits detection of 

breakpoints, identify when a breakpoint occurs, and quantifying the magnitude of change 

associated with each abrupt change (Verbesselt et al., 2010a).   

The parameters defined for BFAST include the length of the time series represented by 

the total number of images available, the length of the season or the number of images 

encompassing the complete vegetation cycle, the season model, a value (h) corresponding to the 

minimum time interval between potential breakpoints in the seasonal trend components or the 
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number of images in one vegetation cycle divided by the total number of images in the time 

series, and the maximum number of breakpoints (Verbesselt et al., 2010a).  The h value chosen 

for this study was fixed at 0.1, meaning that one break point per year could be detected for a 

possible maximum of 10 breakpoints in the time series.  The complete BFAST script, including 

all parameters, used in the R implementation can be found in Appendix B. 

BFAST decomposed the original MOD13Q1 time series datasets into season, trend, and 

remainder components (Verbesselt et al., 2010a).  An example of BFAST graphical output is 

shown in Figure 5-6.  The unique contribution of BFAST to temporal decomposition is the 

ability to examine both long-term (interannual) linear trends and to detect abrupt intrannual 

changes each growing season (maximum of one significant break per season).  Additional tabular 

output from BFAST include output values for the linear trend, the magnitude and timing of 

significant breaks in the trend component, and the total number of breaks for each pixel during 

the study period. 

Figure 5-6.  Example BFAST graphical output showing the seasonal, trend, and noise 

components from the decomposed time series data.  The trend component for image on the 

left shows a significant negative trend over time with three abrupt intrannual breaks in 

that trend.  The trend for the image on the right show a “null” trend with a slope not 

significantly different from 0. 
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Three indicators for each pixel were calculated from the BFAST trend component.  The 

first describes the gradual interannual vegetation greenness change and corresponds to the linear 

slope of the trend component across the fifteen-year study period.  A statistical analysis was 

performed on the slope of the linear trend to test its significance against a null slope using a 

Student’s t-test (Equation 1) where, for a given pixel, an is the slope of the trend, a0 is the slope 

of a null trend (equal to 0), n is the number of images into the time series, x represents the time 

series NDVI value, and x ̅ is the mean NDVI value of the time series.  .  Based on the statistical 

significance (p-value <= 0.05) and sign of the slope, all pixels were placed into three classes to 

interpret gradual interannual change.  The remaining indicator characterizes abrupt intraannual 

changes as the number of significant breaks contained within the overall linear trend component. 

𝑡 =
𝑎𝑛 −  𝑎0

√ 1
𝑛 − 1

∑(𝑥 −  𝑥̅)2

√𝑛 − 2

                                                                                                                                      Equation 1    

To help explain the trends in vegetation greenness over the study period, precipitation 

deviation, soil hydrologic group, and burn frequency were used as explanatory variables in a 

logistic regression model.   

Average annual precipitation for the most recent climate normal period (1981-2010) was 

obtained from the PRISM Climate Group (http://www.prism.oregonstate.edu ) (Figure 5-7).  

Annual precipitation for each individual year from 2001-2010 were also acquired from PRISM.  

Annual precipitation for each year was subtracted from the normal to calculate a measure of 

precipitation deviation from normal.  Annual deviations from normal were then summed to 

obtain a single precipitation deviation map for the Flint Hills study area over the study period 

(Figure 5-8). 
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Figure 5-7.  Annual normal precipitation for the Flint Hills study area for the period 

1981-2010 (PRISM Climate Group, http://www.prism.oregonstate.edu).
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Figure 5-8.  Cumulative differences between annual and normal (1981-2010) 

precipitation (precipitation deviation) for the 2001-2015 period.
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 Hydrologic soil group data was obtained from the U.S. Department of Agriculture 

(USDA) Natural Resources Conservation Service (NRCS) using the Digital General Soil Map of 

the United States, or STATSGO2, inventory of soils and non-soil areas that can be mapped at a 

scale of 1:250,000 (STATSGO2 metadata)  STATSGO2 was released in July 2006 and differs 

from the original STATSGO in that individual state legends were merged into a single national 

legend, line-join issues at state boundaries were resolved, and some attribute updates and area 

updates were made.   

 Hydrologic soil group classes are used to help compute surface water runoff using the 

NRCS Curve Number Method.  Soil classes (e.g., A, B, C, and D) are based on the minimum 

annual steady ponded infiltration rate for a bare ground surface (STATSGO2 metadata).  Figure 

5-9 shows the types of soils by texture comprising each class.  Dominant hydrologic soil groups 

within the Flint Hills are the C and D classes (Figure 5-10). 

Figure 5-9.  Soil types by texture comprising each hydrologic soil group. 
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Figure 5-10.  Hydrological groups for soils in the Flint Hills study area.

 

 Burn Data 

The burn frequency data was obtained from previous work done by Mohler and Goodin 

(2012) and shows the number of times a pixel has been burned during the study period (Figure 5-

11).  Mohler and Goodin (2012) used MODIS images acquired between March 1 and May 10 

each year from 2000 to 2010.  Images in which cloud cover obscured the entire study are were 

not used and a mask was used to only examine grassland pixels.  Burned pixels were classified 

using the red and near-infarred bands of 250m MODIS images using a minimum distance 



77 

classification technique.  The classification accuracy of burns was approximately 90% so long as 

the age of the burned area was two weeks old or less.   

Burn data was in the form of raster files for each year between 2000 and 2010.  In this 

study, only the 2001 through 2010 images were used.  Raster images of the burns for each year 

were summed to estimate total burn frequency for the 2001-2010 study period.   
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Figure 5-11.  Burn frequency for the Flint Hills study area for the period 2001-2010.  

Original data from Mohler and Goodin 2012.

 

 Logistic Regression Model 

Logistic regression, a form of generalized linear models (GLM), was used to assess the 

influence on trend by the independent variables burn frequency, precipitation deviation, and 

hydrological soil group.  The R software program was used to perform the analysis (see appendix 

B) at the pixel level using vegetation trends from 2001-2010 as a binary dependent variable.  A 
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negative trend was used as the reference and given a value of 0 while the stable and positive 

trend classes were coded as 1.  Hydrologic soil group was treated as a categorical variable with 

class A soils serving as the reference condition.  Input data were continuous for the variables 

precipitation deviation and burn frequency.  Model output included the coefficients for each 

independent variable which allowed the influence of each on trend to be assessed.  For this 

analysis, no interaction terms were included.  An analysis of deviance table was also constructed 

and a McFadden score was calculated to assess the overall model fit. 

 Results 

The gradual interannual vegetation change classes for 2001-2010 are shown in Figure 5-

12.  Areas with significant directional trends are shown in green (significant positive slope) and 

red (significant negative slope).  Areas without a significant trend (null slope) are shown in gray.  

Land managers looking at this picture would be able to assess the overall long-term direction of 

vegetation greenness across the Flint Hills region in a spatially explicit way.  Areas with a 

positive trend in greenness are interpreted here as having vegetation that experienced 

improvements in greenness, health, or amount as suggested by NDVI.  Conversely, those areas 

with negative trend declined in quality.  For the Flint Hills ecoregion as a whole, approximately 

41% of the area experienced a negative trend in vegetation activity and greenness during the 

2001-2010 period, 43% of the area saw increases in vegetation activity and greenness, and 16% 

experienced no change or was stable during the same time (Table 5-1). 

Table 5-1.  Summary results for the gradual interannual trend classes for the period 2001-

2010 for the Flint Hills study area based on BFAST trend component analysis. 

Vegetation Gradual Interannual Change Classes 

  

Negative Trend 
(Browning) 

 
Positive Trend 

(Greening) 
No Change 

(Stable) 

 No. Pixels 127,492 132,921 51,332 
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 Area (ha) 684,181.59 713,316.14 275,471.48 

 % Total Area 40.9% 42.6% 16.5% 

Table 5-2.  Summary results for the gradual interannual trend classes for the period 2001-

2010 for the Flint Hills Counties based on BFAST trend component analysis.  Bold number 

in a trend category indicate a maximum value within the county. 

 

NAME Stable Positive Negative Sum %Stable %Positive %Negative

Butler 8262 11773 12932 32967 25.06% 35.71% 39.23%

Chase 5823 5927 12746 24496 23.77% 24.20% 52.03%

Chautauqua 1593 2960 4380 8933 17.83% 33.14% 49.03%

Clay 327 3246 3007 6580 4.97% 49.33% 45.70%

Coffey 747 3492 791 5030 14.85% 69.42% 15.73%

Cowley 4175 6844 10036 21055 19.83% 32.51% 47.67%

Dickinson 649 3876 3221 7746 8.38% 50.04% 41.58%

Elk 2184 7411 2703 12298 17.76% 60.26% 21.98%

Geary 264 1967 4633 6864 3.85% 28.66% 67.50%

Greenwood 6278 15183 5417 26878 23.36% 56.49% 20.15%

Harvey 193 469 1209 1871 10.32% 25.07% 64.62%

Jackson 31 1241 315 1587 1.95% 78.20% 19.85%

Kay 1817 1468 3220 6505 27.93% 22.57% 49.50%

Lyon 1018 8279 5011 14308 7.11% 57.86% 35.02%

Marion 1337 4103 5525 10965 12.19% 37.42% 50.39%

Marshall 225 3940 1641 5806 3.88% 67.86% 28.26%

McPherson 335 3270 2492 6097 5.49% 53.63% 40.87%

Morris 1921 6092 7056 15069 12.75% 40.43% 46.82%

Osage 8983 6510 17524 33017 27.21% 19.72% 53.08%

Pottawatomie 423 7823 5055 13301 3.18% 58.82% 38.00%

Riley 306 4970 3715 8991 3.40% 55.28% 41.32%

Shawnee 53 1295 455 1803 2.94% 71.82% 25.24%

Wabaunsee 730 9591 7595 17916 4.07% 53.53% 42.39%

Washington 388 4849 3183 8420 4.61% 57.59% 37.80%

Wilson 383 831 520 1734 22.09% 47.92% 29.99%

Woodson 1505 2061 553 4119 36.54% 50.04% 13.43%



81 

Figure 5-12. Gradual interannual change classes for the Flint Hills study area derived 

from statistical analysis of the BFAST computed trend component for the period 2001-2010.



82 

 



83 

The number of significant breaks in the trend component can serve as an indicator for the 

intensity of disturbance and could be linked to fire regime.  Figure 5-14 shows the Flint Hills 

region with the number of significant breaks for each of the pixels.  Each pixel could only have a 

maximum of one break for each year of the study period.  Approximately 51% of the Flint Hills 

experienced zero breaks during the study period and about 27% experienced only a single break 

(Figure 5-13).  The maximum number of breaks experienced by a pixel was seven but only 3 

pixels of 311,000 had that many breaks.   

Figure 5-13.  The percentage of the Flint Hills study area that experienced a different 

number of significant breaks within the linear trend for the 2001-2010 study period. 
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Figure 5-14.  Shows the number of breaks for each pixel during the 2001-2010 study 

period.  Each pixel could only have one break per year.
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Results from the logistic regression model suggests each independent variable is 

statistically significant (see Figure 5-15) compared to the null model.  The positive coefficients 

for hydrologic soil groups C and D and for burn frequency indicate that, all other variables being 

equal, each increase the log odds of a negative trend.  In other words, negative trends for 

vegetation appear are more likely when a pixel has a higher burning frequency or for those areas 

having soils with higher clay contents.  Conversely, the log odds of having a negative vegetation 

trend are reduced at sites having loam soils and wetter than normal conditions over the study 

period. 

Figure 5-15.  Results from the logistic regression module based on negative trend as the 

dependent variable. 

 

An ANOVA function was run on the model to analyze the table of deviance, specifically 

the difference between the residual deviance between the null (intercept only) model and that for 

each independent variable (Figure 5-16).  The difference in residual deviance between the null 

and subsequent models is an indicator of model performance with larger difference suggesting 

improved performance.  The addition of each independent variable to the model results in a 

slightly larger difference between residual deviance and indicates that each new term, when 
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added sequentially, is explaining more overall variance.  This, coupled with the significance of 

all independent variables (p < 0.000) suggest each is important.  The McFadden R2, or pseudo 

R2, value of approximately 0.01, however, is slightly below what is normally considered to be 

very satisfactory (0.2-0.4) (Figure 5-16).   

Figure 5-16 Table of deviance for the logistic regression model and including the 

McFadden R2 value. 

 

 Discussion and Conclusions 

Examining results from the BFAST procedure provides an interesting synoptic view of 

vegetation dynamics within the Flint Hills that should be of interest to land managers and land 

owners within the ecoregion.    For the study period of 2001-2010, 41% of the Flint Hills 

experienced a significant decline in greenness.  The spatial distribution of this “browning” occurs 

throughout the region with no obvious spatial pattern.  Osage, Butler, Chase, and Cowley 

counties all contained over 10,000 negative trending pixels and accounted for 42.6% of all pixels 

having a negative trend.  These counties lie in the middle and southern sections of the study area.  

Approximately 43% of the Flint Hills had a positive trend in greenness during the study period, 

with Greenwood and Butler counties having 20.7% of all positive trending pixels.  These 

counties lie in the central area of the Flint Hills.  The remaining 16% of pixels were stable pixels 
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and were distributed throughout the area with Osage and Butler counties having 34.5% of all 

stable trending pixels in the study area. 

That such a large percentage of the Flint Hills ecoregion experienced a negative trend 

during the study period was surprising.  As burning is an important and common practice in the 

Flint Hills to combat woody encroachment and improve forage conditions, more frequent 

burning was expected to correlate with areas having a positive trend.   

A comparison of estimated trends in greenness (Figure 5-12) to burn frequency data 

(Figure 5-11) for the Flint Hills, suggests that areas with higher burn frequencies tend to also 

have negative trends in greenness.  This qualitative conclusion is supported by logistic regression 

results where a unit increase in burn frequency was shown to increase the log odds of a negative 

trend by 4.23.  Previous research has shown a burning frequency of burning once every 4 years 

yields more robust vegetation (Collins el al., 1995) and that perhaps a frequency of 

approximately one burn every two to three years is sufficient to maintain grasslands (Ratajczak 

et al., 2016).  The results here seem to support these conclusions. 

Also not surprising was the logistic regression result indicating that the likelihood of 

having a negative vegetation trend was reduced when conditions were wet (high positive 

deviation from normal precipitation).  However, this relationship was more difficult to visualize 

when comparing maps of these variables. 

Other findings from the logistic regression model included soils in group B, with 

significant silt and sand components, reduced the log odds of a negative trend by 2.60.  The 

positive coefficients of group C and D soils, dominated largely by larger fractions of clay and 

lower infiltration rates, increase the log odds of a negative trend by 1.96 and 1.78, respectively.  

This result makes some intuitive sense, as soils with lower infiltration rates might limit water 
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availability in the root zone to support plant growth.  It is also interesting that group D soils 

(minimum 55% clay content) increase the chances of a negative trend slightly less that soils in 

hydrologic group C (clay loam and silty clay loams soils) despite having a lower rate of 

infiltration.  One speculative reason for this might be that water that is able to enter the root zone 

in group D soils is more tightly held in the soil matrix with at least some available to plants over 

a longer time period than in C soils. 

Using MODIS images to create a vegetation index time series and utilizing BFAST with 

its ability to detect breaks and trend of vegetation greenness allows for consistent assessment of 

the grassland vegetation of the Flint Hills.  Grassland managers across the Flint Hills would 

benefit from knowing the greenness of their grassland and be able to develop better ways to 

preserve their land.  The BFAST trend analysis allows for an interesting method to characterize 

long-term vegetation trends as well as when and where significant breaks occur in detected 

trends.  With the statistical results from the GLM, it is possible to determine the impact of yearly 

burning as a negative impact on the vegetation of the Flint Hills ecoregion.  Certain soils are 

beneficial for vegetation while others are not and increasing the amount of precipitation allows 

for healthy vegetation, and therefore produces positive trending vegetation.   
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Chapter 6 - Time Series Analysis of Phenometrics for the Flint Hills 

Ecoregion using Moderate Resolution Satellite Imagery 
 

 Abstract 

Grasslands of the Flint Hills are often burned as a land management practice. Remote 

sensing can be used to help better manage prairie landscapes by providing useful information 

about the long-term trends in grassland vegetation greenness and help quantifying regional 

differences in vegetation development. Using MODIS 16-day NDVI composite imagery between 

the years 2001-15 for the entire Flint Hills ecoregion, TIMESAT was used to examine 

phenometrics of the image time series.  Specific phenometrics included:  Growing season length, 

start of season, end of season, middle of season, maximum value, small integral, left derivative, 

and right derivative.  Phenometrics were produced for each year of the study and an ANOVA 

was performed on the means of all eight phenometrics to assess if significant differences existed 

across the study area.  A K-means cluster analysis was also performed by aggregating pixel-level 

phenometrics at the county level to identify administrative divisions exhibiting similar vegetation 

development.  Significant differences existed for all phenometrics when considering the 

ecoregion as a whole.  Results suggest that factors other than natural gradients in temperature 

and precipitation play a significant role in the annual cycle of grassland vegetation development.  

Unanticipated, and sometimes geographically disparate, groups of counties were shown to be 

similar in the context of specific phenology metrics and this may prove useful in future 

implementations of smoke management plans within the Flint Hills. 
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 Introduction 

Grasslands and savannas make up more than 40% of the earth’s surface and their rapid 

response to changes in land management and climate can have dramatic ecological and social 

consequences (Briggs et al., 2005).  Grasslands are among the most biodiverse and productive of 

all the earth’s terrestrial biomes but receive low levels of protection (Mark and McLennan, 

2005).  Since 2009, 53 million acres of grassland, roughly the area of Kansas, have been 

converted to cropland across the Great Plains alone (Plowprint Annual Report, 2016).  Tallgrass 

prairie has been reduced to ~4% of its historical extent making it one of the most altered 

ecosystems in North America (Ratajczak et al., 2016).  Temperate grasslands are important for 

both agronomic and ecological purposes and are a key resource for livestock production in North 

America and around the world (Briggs et al., 2005).  Grasslands provide services such as water 

storage and clean air (Plowprint Annual Print, 2016) and grassland vegetation reduces soil 

erosion due to it dense root systems and by shielding the soil surface from direct interception of 

rainfall (Ratajczak et al, 2016).  Grasslands also store and retain large amounts of soil carbon and 

are an important component of the global carbon cycle (Briggs et al., 2005).  The estimated 

values of theses, and other, ecosystems services provided by native grasslands has been 

estimated to be in excess of $5,000 per hectare per year (Dodds et al., 2008). 

The conservation status of grasslands is being evaluated by groups including the 

Landscape Conservation Cooperatives which seeks to identify the greatest threats to grasslands 

and shrublands across the U.S. and Mexico, areas that are likely to be resilient to climate change 

and other threats, and areas with high potential for restoration (Glaser, 2014).  The state of North 

American prairies is also being addressed through a tri-national cooperative program involving 

Mexico, the USA, and Canada which is attempting to address both sustainable management and 
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conservation needs (Mark and McLennan, 2005).  The Flint Hills ecoregion in Kansas and 

Oklahoma remain one of the last great expanses of intact and native tallgrass prairie in the 

United States.  The creation of the Tallgrass Prairie National Preserve in 1996 allowed for more 

area of the Flint Hills to retain its native character. 

Grasslands have been under threat in the United States as well as throughout the world 

due to conversion to row-crop agriculture and changing land management coupled with other 

global change phenomena (Briggs et al., 2005).  A majority of the former area of the tallgrass 

prairie has been replaced with crops such as wheat, corn, and soybeans (Plowprint Annual Print, 

2016).  The remaining tallgrass prairies of North America are threatened by an increase over 

time in the abundance of native woody species, such as the red cedar (Juniperus virginiana) in 

the Flints Hills area (Hulbert, 2009).  These woody plants originate both from within the 

ecosystem and from neighboring ecosystems (Briggs et al., 2005), with encroachment altering 

the structure and function of temperate grassland ecosystems and resulting in a loss of 

biodiversity and grazing productivity (Ratajczak et al., 2016).  The likely drivers of this increase 

in woody plant abundance are numerous and include change in climate, atmospheric carbon 

dioxide concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g., the 

frequency and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in 

temperate climates are largely attributed to changes in fire management (Ratajczak et al., 2016).  

Comparisons of the area occupied by forest at the time of settlement, as recorded in the 1856 

Land Office, with that in the 1970’s showed that on frequently burned prairies woody plants 

occupied about the same area today as over a century ago.  However, on sites not burned for 20 

years or longer, forests had invaded on half or more of the unburned areas (Hulbert, 2009). 
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Fire is an integral component of prairie development and maintenance and for more than 

7000 years vegetation patterns have been influenced by anthropogenic burning practices (Towne 

and Kemp, 2003).  Fire has long been recognized as an important factor influencing the 

development and persistence of the tallgrass prairie ecosystem (Benson and Hartnett 2006).  Fire 

is both an inexpensive and effective way of controlling woody species and shrubs as well as 

maintaining high quality nutritious forge for grazers, but air pollution from the smoke can 

negatively impact cities downwind of the fires (Briggs et al., 2005).  Prairie fires were 

suppressed during European settlement with accidental or lightning-caused wildfires being the 

primary source of burning (Towne and Kemp, 2003).  An influx of cattle to the Flint Hills in the 

late 1800’s created an incentive for prairie burning and pastures were burned annually in 

February or March to improve livestock weight gains (Towne and Kemp, 2003).  

Annual or biennial burning, which is currently a common land management practice in 

tallgrass prairie, homogenizes the canopy over the long term by suppressing invasion by woody 

species while promoting a variety of C3 forbs amidst a matrix of C4 gramminoids (Goodin and 

Henebry, 1998) (Benson and Hartnett 2006).  Warm season grasses have been shown to increase 

after burning has been conducted (Towne and Kemp, 2003) (Hulbert, 2009) and average peak-

season aboveground biomass on annually burned prairie is reported to be nearly twice that of 

infrequently burned prairie (Benson and Hartnett 2006).  Species diversity is lowest with annual 

late-spring burning and increases with increasing intervals between fires (Hulbert, 2009).   

At the Konza Prairie Biological Station, it has been observed that vegetation development 

starts earlier on plots burned in November than on those burned in March (Hulbert, 2009).  This 

is likely due to higher soil temperatures on burned areas, resulting from greater solar heating as a 

response to removal of the insulating layer of standing dead vegetation (Hulbert, 2009).  A 
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burning frequency of 3 to 4 years has been thought to be the historical fire frequency before 

extensive settlement by Europeans (Briggs et al., 2005).  Burning once every 4 years has been 

shown to increase the number of forb and annual species compared to that seen in annually 

burned sites (Collins et al., 1995).  A complete exclusion of fire in tallgrass prairie has been 

shown to significantly decrease the grass bud bank while increasing the forb bud bank (Dalgleish 

and Hartnett, 2008).  Prairie that is burned at an intermediate fire frequency showed greater year-

to-year variability in grass bud bank size and in the probability of emergence from the bud bank 

than annually burned prairie (Dalgleish and Hartnett, 2008). 

Cattle ranchers in the Flint Hills employ frequent spring burns to remove dead litter and 

enhance palatability, leading to greater and more consistent weight gain in cattle (Ratajczak et 

al., 2016).  These fires help to reduce species such as buckbrush (Ceanothus cuneatus) or 

coralberry (Symphoricarpos orbiculatus) (Hulbert, 2009).  Annual spring burning is beneficial in 

stopping woody encroachment but also can homogenize plant and avian communities (Collins et 

al., 1995) (Ratajczak et al., 2016).  In addition, it has been shown that annual burning does not 

eliminate shrubs and, over time, this buildup of shrubs can lead to areas where woody vegetation 

becomes established and later spreads (Towne and Kemp, 2003).  Fire alone does not stop the 

invasion of woody plants.  The combination of fire, climate, substrate, and topography are what 

makes the prairie (Hulbert, 2009). 

Satellite remote sensing has been an invaluable asset for examining regional 

environmental change by post-classification analysis of land cover change to examine separate, 

abrupt anthropogenic impacts on the land surface, such as deforestation and urbanization.  

Accompanying satellite remote sensing is a variety of spectral vegetation indices, such as NDVI 

which can be calculated from satellite image data to quantify the spatial and temporal variation 
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in vegetation growth and activity (Linderholm 2006).  NDVI and other indices have been used to 

successfully assess vegetation phenology (Wright et al., 2012).    

Remote sensing indices are mathematical combinations of surface reflectance at two or 

more wavelengths to emphasize vegetation properties.  Vegetation indices are based on the 

reflectance properties of plant foliage, such as leaves and other green materials which can vary 

greatly in composition.  Vegetation indices correlate with several biophysical parameters such as 

leaf area index (LAI), fraction of photosynthetically active radiation (FPAR), and green 

aboveground biomass (Wardlow 2005).  Components that have the most effect on leaf spectral 

response are pigments, water, carbon, and nitrogen (Zhang et al., 2007).  Vegetation indices 

provide insight into basic composition of leaves and how they change in different environmental 

conditions to determine the general greeness of vegetation, biomass, and land cover, to estimate 

net productivity (Tucker et al., 1991). 

Estimates of vegetation biomass are dependent on the ratio of soil surface-vegetation 

spectral reflectance making some wavelengths better to use than others (Colwell 1974).  The 

ideal vegetation index would be sensitive to vegetation, insensitive to background soils, and 

minimally influenced by atmospheric path radiance (Lunetta el al., 2006).  Examples of 

frequently used vegetation indexes include the IR/red ratio (Colwell 1973), the perpendicular 

vegetation index (PVI) (Richardson and Weigand 1977), the soil-adjusted vegetation index 

(SAVI) (Guete 1988), the Kauth-Thomas transformation (tasseled cap or -T) (Kauth and Thomas 

1976), the enhanced vegetation index (EVI) (Zhang et al., 2007), and the normalized difference 

vegetation index (NDVI) (Lunetta et al., 2006).   

NDVI is calculated as the ratio of the difference between near-infrared and red over the 

sum of near-infrared and red (Lunetta et al., 2006) and varies between values of -1 to 1 (Equation 
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2.1).  Red and near-infrared bands are related to chlorophyll content and cell structure and with 

the spectral response of these two bands, the change in NDVI value over time is a good way to 

measure the vegetation growth and development (Zhang et al., 2007).   

NDVI = (NIR – red) / (NIR + red)       Equation 6.1 

where: 

NDVI = normalized difference vegetation index 

NIR = reflectance in the near – infrared spectrum 

Red = reflectance in the red spectrum 

 

 NDVI correlates well with total primary production (An 2009) and the amount of 

photosynthetic biomass (Zhou et al., 2001), which dominates both photosynthesis and 

transpiration processes.  During a normal year, NDVI increases rapidly in the spring and then 

levels off until the end of August (Verbesselt et al., 2010).  Therefore, changes in NDVI suggest 

changes in vegetation that coincide with absorption of radiation (Sellers 1985).  Higher NDVI 

values are associated with healthier vegetation while degraded vegetation is associated with 

lower NDVI values. 

 NDVI has shown consistent correlation with vegetation biomass and dynamics in various 

ecosystems worldwide.  NDVI provides information about the spatial and temporal distribution 

of vegetation communities, vegetation biomass, CO2 fluxes, vegetation quality for herbivores, 

and the extent of land degradation in various ecosystems (Pettorelli et al., 2005).  NDVI has been 

shown to report consistent negative correlations between fire probabilities and standardized 

NDVI levels (Pettorelli et al., 2005).  While NDVI has been proven to be a very useful 

application for vegetation production, there are some limitations.  The relationship between 

NDVI and vegetation can be biased in sparsely vegetated areas, such as arid to semiarid areas, 

and dense canopies, such as the Amazonian Rain Forest (Pettorelli et al., 2005).  Due to NDVI 

being ratio-based, non-linear, lower ratio values tend to be enhanced and higher ratio values 
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condensed causing values to saturate over high biomass conditions (Carlson and Ripley 1997).  

This may cause areas with high biomass density to have larger NDVI values than areas with 

lower densities, even if the health conditions of the vegetation were identical.  NDVI is also 

unable to differentiate dominant species within forests due to assemblages of plant species 

producing similar NDVI values or similar NDVI temporal trends (Pettorelli et al., 2005).   

The visible and NIR bands of the spectrum cannot penetrate cloud cover causing satellite 

images to suffer from cloud contamination and yield lower NDVI values that do not accurately 

reflect surface conditions unless preprocessing filtering and smoothing is applied to the raw data.  

The NIR band also include a strong water absorption region, which can reduce the reliability of 

NDVI calculations (Wardlow 2005).  Most vegetation indices are also limited by inter-satellite 

sensor differences, satellite drift, calibration uncertainties, and atmospheric pat radiance (Zhou et 

al., 2001).   

Phenology has become an important focus in ecological research for its use in vegetation 

monitoring and examining issues related to climate change.  Phenology is the variation in 

seasonal patterns of natural phenomena on land surfaces affected by inter-annual and seasonal 

variation in soil characteristics and meteorological conditions (Cleland et al., 2007).  Seasonal 

characteristics of plants, such as emergence and senescence, are closely related to climate and 

changes in phenological events may signal important year-to-year weather and climate variations 

or even global environmental change (Reed 1994).  The phenology of land surfaces can be 

detected using remote sensing by examining the spectral index values of the land surface.  

Changes in the seasonal timing such as the start and end of season, duration of growing season, 

and maximum productivity can have an impact on a wide range of processes that are dependent 

on natural cycles of vegetation (Ganguly et al, 2010).  However, changes in phenology are part 
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of a complex system and can be influenced by outside forces other than long-term climate 

change, such as precipitation or fire (Willis, 2015).  In order to detect changes in phenology, 

remotely sensed datasets must have high temporal resolution to capture any sudden changes in 

the landscape.  MODIS-derived indices are ideal for monitoring phenology in vegetation because 

it support a wide variety of phenology-related data products (i.e., NDVI, EVI, Leaf Area Index 

(LAI, Albedo) and MODIS images are acquired on a daily basis and are also composited into 8 

and 16 day products (Willis, 2015). 

Most phenology research has ecosystem monitoring as its ultimate goal while the 

phenology of entire ecosystems has rarely been studied (Reed 1994).  Field-based ecological 

studies have demonstrated that vegetation phenology tends to follow relatively well-defined 

temporal patterns (Zhang et al., 2003).  When looking at deciduous vegetation and many crops, 

leaf emergence tends to be followed by a period of rapid growth, and then is followed by a stable 

period of maximum leaf area (Sakamoto et al., 2005).  At the regional and larger scales, 

variations in community composition, micro and regional climate models, soils, and land 

management result in a complex spatio-temporal variation in the phenology of the vegetation 

(Zhang et al., 2003).  In some cases, some vegetation types exhibit multiple modes of growth 

within a single annual cycle.   A profile view of a single annual vegetation cycle (Figure 6-1) 

illustrates key measures, or phenometrics, often used in such studies, including the onset and end 

of greenness (start and end of season, respectively), maximum NDVI, the rate of green-up and 

senescence, growing season length, and accumulated NDVI. 
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Figure 6-1. An example of a vegetation phenology curve and associated phenometrics (Reed 

et al., 1994) 

 

A time series is an ordered sequence of variable values recorded at equally-spaced time 

intervals.  Time series analysis methods can be used to determine if data has internal structure 

such as trend, seasonal variation, or autocorrelation (Eklundh and Jonsson 2010).  In a remote 

sensing context, time series analysis consists of a series of satellite images which allow 

comparisons of the same scene, biophysical measure, or vegetation index over a long time period 

to reveal structure in variables of interest.  When vegetation indices are used as the basis of the 

time series, shifts in vegetation properties and dynamics may be revealed (Heumann et al., 2007).  

Information extracted from time series vegetation index (VI) data has been shown to successfully 

characterize vegetation phenology (Reed et al., 1994) and has been used to measure vegetation 

activity (Zhang et al., 2003).   

The MODIS sensor is carried onboard NASA’s Terra and Aqua satellites and acquires 

images at a global scale and at a high (daily) temporal resolution.  MODIS possesses seven 

spectral bands that are designed for land applications with spatial resolutions ranging from 250 m 

to 1 km (Zhang et al., 2003).  MODIS VI products are designed to provide consistent spatial and 

temporal comparisons of global vegetation conditions that can be used to monitor photosynthetic 
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activity (Huete et al., 2002) and those acquired at the 250m resolution are well suited for 

application in the U.S. Central Great Plains (Wardlow and Egbert, 2008).   

Before satellite data can be used to study land surface phenology, the raw image data is 

first put through a series of filtering, compositing, smoothing, or screening procedures to isolate 

the signal from the noise.  The preprocessing of raw data is based on a smoothing of distinct 

sequences of temporally adjacent data points (Jonsson and Eklundh 2004).  Phenometrics can be 

extracted from time series datasets by combining techniques that first filter (or smooth) raw 

NDVI data and then extract relevant phenometric estimates using methods such as principal 

component analysis (Tan et al., 2010), Fourier analysis (Sakomoto et al., 2005), and pixel-above-

threshold technique (Cleland et al., 2007).  The TIMESAT software program provides several 

filtering options to smooth raw time series vegetation data and extract phenometric data 

(Eklundh and Jonsson 2010), and has been used in a variety of studies to examine vegetation 

phenology (Eklundh and Jonsson 2003), assess satellite and climate data-derived indices of fire 

risk (Verbesselt et al., 2006), and examine relationships between coniferous forest NDVI and 

models of conifer tree photosynthetic activity (Eklundh and Jonsson 2010). 

For this study, TIMESAT is used to derive various phenometrics from across the entire 

Flint Hills ecoregion.  The ANOVA and Tukey tests are employed to determine the significance 

of phenometrics across the study area and a K-Means clustering method applied to spatially 

examine the Flint Hills study area as a homogenous region.   

Analysis of variance (ANOVA) can be used to analyze the differences among group 

means.  ANOVA provides a statistical test of whether the means of several groups are equal and 

are useful for comparing three or more means for statistical significance.  The Tukey’s Honestly 

Signficant Differences (HSD) test is often done in conjunction with ANOVA to find specific 
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groups that are significantly different from each other by comparing all possible pairs of groups 

means. 

K-means cluster analysis has been used in a variety of studies due to its ease of 

implementation, simplicity, efficiency, and empirical success (Jain 2009).  K-means clustering 

seeks to place all features into set classes in which each observation belongs to the cluster with 

the nearest mean.  To determine the optimum number of clusters, different values of K are run in 

an algorithm and the best value of K is then chosen based on a predefined criterion (Fiqueiredo 

and Jain, 2002).  An optimal number of clusters assumes that when dividing data into an optimal 

number of clusters, the resulting partition is most resilient to the random perturbations (Jain 

2009).   

 Study Area 

The study area for this project includes the 26 counties of Kansas and Oklahoma which 

comprise the Flint Hills ecological region of eastern Kansas and northern Oklahoma (Figure 6-

2).  The Flint Hills encompasses an area of 1.6 million hectares and contains the largest area of 

unplowed tallgrass prairie in North America (Hutchinson et al., 2015).  The World Wildlife 

Fund’s Terrestrial Ecoregions of the United States and Canada defines the Flint Hills as the area 

covering the Flint Hills of Kansas and the Osage Plains of northeastern Oklahoma.   

The Flint Hills is the smallest grassland ecoregion in North America and can be 

distinguished from other grassland associations by the dominance of tallgrass species and from 

the Central Tall Grasslands to the north by its lack of biotic variety and a thin soil layer spread 

over distinct beds of limestone.  These flinty beds of limestone, from which the name of this 

ecoregion is derived, renders most of the area unsuitable for row-crop agriculture, resulting in an 

unplowed, though heavily grazed, remnant of the original tallgrass prairie (Madson 1993).  
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Unlike many other ecoregion classifications, which are based primarily on biophysical features 

such as climate and topography, World Wildlife Fund’s ecoregions include biogeographic 

knowledge and therefore reflect the historic events and processes that have shaped biodiversity 

distributions (McDonald et al., 2005).   

The definition for the Flint Hills that will be used in this study is provided by the U.S. 

Environmental Protection Agency (EPA) which defined ecoregions based on work from 

Omernik (1987) to serve as a spatial framework for environmental resource management.  The 

map of U.S. ecoregions was compiled based on the premise that ecological regions can be 

Figure 6-2.  The Flint Hills study area showing the 26 counties comprising the ecological 

region in eastern Kansas and north-central Oklahoma. 
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identified through an analysis of the patterns and the composition of biotic and abiotic 

phenomena that affect or reflect differences in ecosystem quality and integrity (Omernik, 1987).  

Such phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, 

and hydrology.  The relative importance of each characteristic varies from one ecological region 

to another regardless of the hierarchical level (Wilken 1986).  The EPA ecoregions use a Roman 

numeral classification scheme with level I being the coarsest level, dividing North America into 

15 ecological regions, level II divides the continent into 52 regions, and levels III and IV further 

breaking down the ecoregions.  The EPA definition of the Flint Hills is identical for level III and 

IV with Level III boundary used in this study. 

Precipitation in the Flint Hills is highly variably from year to year.  Based on 30 year 

normal precipitation (1981-2010) (http://prism.oregonstate.edu, last accessed 02.15.17), the 

northern and southeastern portions of the Flint Hills receive 720 mm (28 in) and 1120 mm (44 

in) of precipitation annually.  Much of the precipitation falls during the growing season 

(approximately 75%), though this, too, varies from year to year (Hayden 1998).  Seasonal 

temperatures are typified by cool winters and hot summers.  The City of Manhattan, Kansas, in 

the northern section of the Flint Hills, averages -1.8 C in January and 26.5 C in July while the 

southern reaches of the study area experience an average temperature of 1.1 C in January and 

27.2 C in July. 

Prescribed burning is a common land management practice employed by ranchers within 

the ecological region (Wilgers and Horne, 2006).  Burning tallgrass prairie has been shown to 

increases plant productivity, decrease aboveground litter, and decrease woody vegetation (Briggs 

and Knapp, 1995).  The frequency of burning in the Flint Hills has changed in recent years.  

Beginning in the 1980’s, a switch in cattle grazing practices prompted land owners to apply 

http://prism.oregonstate.edu/
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controlled burns on an annual basis.  However, areas around populated areas often remain 

unburned for extended periods of time and these different fire regimes may be contributing to 

recent trends in vegetation, including the encroachment and expansion of woody vegetation 

(Robbins et al., 2002). 

In addition to tallgrass prairie vegetation, several other land cover types in the Flint Hills 

(See Figure 6-3).  Croplands are found in the flat floodplains along streams and rivers.  Gallery 

forests can also be found along the streams and rivers.  Trees can also be found in upland areas 

where fire and grazing have been suppressed.  Figure 6-4 shows the study area while 

emphasizing the grassland areas isolated for analysis.  The area of the moderate resolution pixels 

identified here as grassland consisted of at least 80% grassland cover after rescaling the original 

higher spatial resolution data provided by the 2011 National Land Cover Database 

(NLCD)(Homer et al., 2015). 
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Figure 6-3.  Land use/land cover within the counties comprising the Flint Hills 

ecoregion study area (NLCD 2011). 
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Figure 6-4.  The Flint Hills ecoregion study area emphasizing grassland pixels.  Each pixel 

corresponds to the spatial resolution of the MODIS MOD13Q1 product and consists of a 

minimum of 80% grassland/herbaceous cover. 

 

Prescribed burning preserves and sustains the tallgrass prairie ecosystem.  Burning is an 

effective land management practice for stopping woody vegetation from encroaching on 

grasslands.  Tallgrass prairies of North America are threatened by an increase in the abundance 

of native woody species, such as red cedar (Juniperus virginiana) in the Flints Hills area 

(Hulbert, 2009).  These woody plants originate both from within the ecosystem and from 

neighboring ecosystems (Briggs et al., 2005).  This woody encroachment alters ecosystems 
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structure and functions of temperate grasslands, resulting in a loss of biodiversity and grazing 

productivity (Ratajczak et al., 2016).  There are several likely drivers of the increase in woody 

plant abundance including change in climate, increasing atmospheric carbon dioxide 

concentration, nitrogen deposition, grazing pressure, and disturbance regimes (e.g. the frequency 

and intensity of fire) (Briggs et al., 2005).  Transitions to shrubland and woodland in temperate 

climates are largely attributed to changes in fire management (Ratajczak et al., 2016). 

Annual spring burning is beneficial in stopping woody encroachment but also increases 

homogenization of plant and avian communities (Collins et al., 1995) (Ratajczak et al., 2016).  

Fire and grazing treatments that promote uniformity cannot maintain biodiversity in tallgrass 

ecosystems (Fuhlendorf et al. 2006).  In addition, it has been shown that annual burns do not 

eliminate shrub species and that a continued increase in shrubs may lead to areas where woody 

vegetation may gain a foothold and spread further (Towne and Kemp, 2003).  Another negative 

impact of burning is when large areas are burned, nearby towns and cities suffer from air quality 

issues related to the particulates released during burning (Dennis et al. 2002).  The frequency of 

burns in the Flint Hills for the period 2001-2010 is shown in Figure 6-5. 
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Figure 6-5.  The frequency of burning within the Flint Hills from 2001-2010.  The original 

data from Mohler and Goodin (2012) was subset to include only the 2001-2010 data. 
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 Data and Methods 

 Data Acquisition 

The image data used for this analysis were MODIS MOD13Q1 product images.  These 

were 16 day maximum value NDVI composite images with a 250 meter spatial resolution.  

MODIS MOD13Q1 images are a gridded level 3 product delivered in a sinusoidal projection.  

The images calibrated and geolocated based on grid and angular data, masked from cloud, 

land/water, perceptible water and aerosol products, incorporate spectral reflectance, and undergo 

quality assurance flags associated with atmospheric correction products (Huete et al., 2002).   

Images were downloaded from the Earth Observing System Data and Information System 

and saved as an 8-bit unsigned integer grid.  Due to the nature of the sensor and the curvature of 

the Earth, the cell resolution for the study area was 231.656 meters.  Images were clipped to the 

study area of 26 counties (940 Columns, 1840 Rows).  Images were saved as .dat files to meet 

the TIMESAT input requirement of headerless binary files.  Saved images were placed in the 

same file directory for later processing in TIMESAT. 

Images were collect for the period of January 2001 through December 2015.  TIMESAT 

only analyzes for n -1 centermost season, the results of this study will be for 14 years and 

exclude the 2015 season.  Each calendar year include 23 MODIS images with this study using 

345 total images (23 x 15). 

 Data Processing in TIMESAT 

After image data collection and preprocessing was complete, a text file of all NDVI time 

series dataset was constructed for input into TIMESAT processing (Appendix A).  The first row 

of the input file indicated how many images were to be used in the study (n=345), while the 
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second and subsequent rows show the full path and filename of each MOD13Q1 image in the 

complete series. 

TIMESAT reads each image file in the time series, as well as any optional quality 

indicators, preprocesses the images using optional quality indicators, smooth’s the time series 

data using a number of possible filter types and user-defined parameter settings, and extracts 

seasonality parameters, known as phenometrics, to a file based on the selected smoothing 

function.  Pixel reliability for images can be used to weight each pixel in the time series.  A value 

of 0 (good data), had full weight (1.0), values 1-2 (marginal data, snow/ice) had half weight (0.5) 

and value 3 (cloudy) had low weight (0.1). 

The TIMESAT graphical user interface (GUI) displays the controls for selecting the 

smoothing function and parameter settings, and provides a graphical view of the raw and 

smoothed curves for one pixel as well as that pixels associated phenometrics (Figure 6-6).  The 

TIMESAT interface is composed of three sections, data plotting, common settings, and class-

specific settings.  Each of these sections allow for the selecting of a smoothing function and 

related parameter settings.  A discussion of each section follows. 
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Figure 6-6.  The TIMESAT graphical user interface showing the raw data of the MODIS 

image cell in blue and the fitted phenology curves in brown during the study period.  The 

start of season (left) and end of season (right) phenometrics can be seen as brown points on 

the curves. 

 

 

Data Plotting 

 TIMESAT ha three different filters, or smoothing functions, including Gaussian, 

Logistic, and Savitzky-Golay.  The Gaussian filter is an asymmetric function fitting method that 

determines the positon of the maximum or the minimum value in a time series while accounting 

for the independent time variable (Jonsson and Eklundh 2002).  The disadvantage with Gaussian 

filtering is in the difficulty associated with identifying a reasonable and consistent set of maxima 

and minima which determine the local functions used to fit to the raw data (Jonsson and Eklundh 

2002).  This could make it difficult to determine between the maxima and minima that could be 

due to seasonal variation, and that which is due to disturbances or noise (Jonsson and Eklundh 

2010).  The double logistic filter that is included with TIMESAT has been found to preserve 
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NDVI values but has shown no major difference with the Saviszky-Golay filter (Jonsson et al., 

2010).   

 The Savizky-Golay filter is a simplified least-squares-fit convolution for extracting 

derivatives and smoothing a spectrum of consecutive values (Jonsson and Eklundh, 2002).  It is a 

weighted moving average filter based on a polynomial where the polynomial order dictates the 

convolution.  When the weight coefficients are applied to a signal, a polynomial least squares fit 

will be applied to the filter window.  This procedure is done to maintain peak times within the 

data and reduce bias noise from the data (Chen et al., 2004).  It is also intended to preserve the 

area and mean position of a seasonal peak, but alters both the height and width.  The Savitzky-

Golay filter is sensitive to local variations in vegetation index values, which proves useful when 

comparing different regions (Jonsson et al., 2010).  The result is a smoothed curve adapted to the 

upper envelope, or peak values, of the value in a time-series.  

 Common Settings 

 The common settings section in TIMESAT affect all pixels in the image time series.  

Within the common settings, there are three different spike methods: STL original, STL replace, 

and median filter method.  The STL method, which stand for seasonal trend LOESS, performs 

seasonal smoothing and decomposes time series data by using a LOESS smoother (locally 

weighted regression smoother) based on a weight system (Verbesselt et al., 2009).  The STL 

decomposition take the full time-series and partitions it into a seasonal and trend component, and 

low weights are assigned to the values that do not fit these patterns (Cleveland et al., 1990). 

 For this project’s analysis, the median spike method was used because unlike the two 

STL options, the median spike method retains all raw data values.  Values in the time series that 
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are significantly different from neighboring values and from the median in a window are 

classified as outliers and are assigned a zero weight value (Eklundh and Jonsson 2010).   

 The median filter method also incorporates a spike value.  The spike value is used to 

determine significant differences in adjacent values in the time series.  Data values that differ 

from the median by more than the product of the spike value and standard deviation of the time-

series, and that are different from the values neighbors are removed (Eklundh and Jonsson 2010).  

A spike value of 2 was used in this analysis due to the TIMESAT manual suggesting that a spike 

value below 2 will remove more data value from an analysis. 

 Class-specific Settings 

 TIMESAT class-specific settings apply to individual land classes such as different 

landuse/landcover categories.  Eight different class–specific settings can be applied.  The 

seasonality parameter defines the number of growing season per year.  A value of 1 will force the 

program to treat all data as if there is one season per year.  This study uses a value of 1 as there is 

one season per year.  Areas that experience dual seasons should use a parameter value of 0. 

 The number of envelope iterations makes the function fit and approach the upper 

envelope of the time-series in an iterative procedure.  A value of 1, 2, or 3 can be set for this 

parameter.  Specifying 1 means there is only one fit to the data and no adaption to the envelope.  

Specifying 2 or 3 there are, respectively, one and two additional fits where the weights of the 

values below the fitted curve is decreased forcing the fitted function toward the upper envelope 

(Eklundh and Jonsson 2010).  A value of 2 was selected for this parameter as it has been 

determined to better fit the raw data values within the Flint Hills ecoregion (Pockrandt 2014). 

 The adaption strength parameter varies between 1 and 10.  It indicates the strength of the 

upper envelope adaption with 10 being the strongest adaption to the upper envelope and 1 being 
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no adaption.  Having too strong of an adaption may put too much emphasis on single high data 

values leading to poor results.  The adaption strength needs to be fine-tuned for given data, but a 

normal adaption value is around 2 or 3.  A value of 2 was used in this study. 

 Force minimum removes extremely low value in the time series and replaces them with 

the value entered.  This parameter is useful in eliminating low NDVI values that are recorded 

during winter when the snow covers the land surface.  By forcing the low values into something 

approaching the mean winter minima, it helps preserve the true seasonal curves generated by the 

fitted function.  The Flint Hills do experience extended winter periods with snow on the ground, 

so a value of 80 was set for this parameter. 

 The window size for Savitzky-Golay is the width, or half-window, of the moving window 

used by the Savizky-Golay filter during smoothing.  The width of the moving window helps to 

determine the amount of smoothing that takes place and impacts the ability to capture rapid 

change in the NDVI time-series.  A large value of the window gives a high degree of smoothing, 

but affects the possibility to follow a rapid change in data in the beginning of the growth season 

(Eklundh and Jonsson, 2010).  The TIMESAT manual suggests a starting window size value of 

floor (nptsperyear/4).  A window size of 4 was set as it was determined by previous work that it 

was the optimal setting for the data. 

 The start of season method parameter offers two choices: amplitude and absolute value.  

This parameter works with the season start and season stop values.  When using the amplitude 

method, the season start and stop value are entered as percentages of the growing season 

maximum value.  For example, a season start value of 0.25 will identify the time when 25% of 

the maximum growing season amplitude is reached.  Using the absolute method will find the 

time each season when that specific value is reached. 
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 As previously mentioned, the season start and season stop are parameters in TIMESAT 

that can either be set as amplitude or absolute values.  Using amplitude as the start of season 

method, values for season start and season stop will range between 0 and 1.  These values 

represent the proportion of the seasonal amplitude reached each season.  A season start value of 

0.25, for example, establishes the season start where the fitted curve reaches 25% of its 

maximum value each growing season.  Although season start and season stop are two separate 

settings, they are typically assigned the same values.  Selecting low value for the season start and 

season stop may place the values too early or late in the season in portions of the fitted curve 

dominated by atmospheric and calibration noise.  High values may incorrectly label as the season 

start and season stop date periods well inside the actual growing season instead of its true 

beginning and end. 

 Phenometric Extraction 

 In TIMESAT, a parameter settings file was created for phenometric extraction.  The 

parameters discussed in the previous section can be seen in Figure 6-7 with the values for each of 

the parameters filled in.  With a valid parameter file, the time-series data was processed using 

TIMESAT TSF_process (TIMESAT Fortran process) which applied a Savitzky-Golay filter to 

the raw NDVI data.  Seasonality data was extracted from the smoothed curves and output to a 

TPA file and processed by the TIMESAT TSM_printseasons to generate numerical phenometric 

data.  The TIMESAT seasonality files contain 11 total phenometrics for each pixel for a 

maximum of n-1 years in a time series. 

 Each MODIS NDVI image had 1847 rows and 940 columns of pixels which is more than 

1.7 Million data values per phenometric per season.  Most of these values were null values with 

only 311,000 data values examined.  Eight of the 11 phenometrics were examined in this study 
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including, start of season, end of season, middle of season, left derivative, right derivative, 

growing season length, maximum value, and small integral.  Table 6-1 shows a more complete 

list of phenometrics as well as providing a definition and explanation of biological significance.    

Figure 6-7.  Settings interface in TIMESAT with values filled in for the parameters 
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Table 6-1.  Phenometrics output in TIMESAT.  Grayed ones were examined in this thesis. 

Phenometric Definition Biological Significance 

Start of Season Time for which the left edge has 

increased to a user defined level 

measured from the left minimum level 

Time of initial vegetation 

green up 

End of Season Time for which the right edge has 

decreased to a user defined level 

measured from the right minimum 

level 

Time of initial vegetation 

senescence 

Season Length Time from the start to the end of the 

season 

Length of growing season 

from green up to senescence 

Base Level The average of the left and right 

minimum values 

Baseline for the seasonal 

phenology curve 

Middle of Season Mean value of the times for which the 

left edge has increased to the 80% 

level and the right edge has decreased 

to the 80% level 

Time of the middle of the 

growing season 

Maximum Value Largest data value for the fitted 

function during the season 

The highest NDVI value of 

the season 

Seasonal Amplitude Difference between the maximum 

value and the base level 

Used for referenced start and 

end of season thresholds 

Rate of Increase at 

Beginning of Season 

Ration of the difference between the 

left 20% and 80% levels and the 

corresponding time difference 

Rate of vegetation green up 

Rate of Decrease at 

the End of Season 

Absolute value of the ratio of the 

difference between the right 20% and 

80% levels and the corresponding time 

difference 

Rate of vegetation senescence 

Large Seasonal 

Integral 

Integral of the function describing the 

season from season start to season end 

Proxy for the relative amount 

of vegetation biomass without 

regarding minimum values 

Small Seasonal 

Integral 

Integral of the difference between the 

function describing the season and the 

base level from season start to season 

end 

Proxy for the relative amount 

of vegetation biomass while 

regarding minimum values 

 

Using the TSF_seas2img function in TIMESAT, each of the eight selected phenometrics 

were output to an image file for each available year in the study period (n=14).  Figure 6-8 shows 

a map of the “end of season” phenometric for the 2002 season as generated by TIMESAT.  The 

end of season, middle of season, and start of season phenometrics were given values, by 
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TIMESAT, which corresponded to their image number in the series.  For the first season, this 

value corresponded directly to day of year (DOY).  However, in subsequent seasons image 

numbers were converted to appropriate DOY values.  For example, the second MOD13Q1 image 

in year two and three would have image numbers of 25 and 48, respectively.  The individual 

phenometric images for each year were also used to calculate mean and standard deviation 

images for the 2001-2014 period. 

Figure 6-8.  The end of season phenometric for the Flint Hills ecoregion in 2002 as 

estimated by TIMESAT. 
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 ANOVA and Tukey HSD Analysis 

An ANOVA was performed in R (Appendix B) on the mean values for each pixel and 

each phenometric.  In addition, pixel-scale phenometrics were aggregated at the county level 

which later served as treatments in statistical analyses.  Each of the eight phenometrics was also 

subjected to a Tukey HSD to determine if significant differences between treatments (counties) 

were present and to identify groups of treatments with similar phenometric means.  Prior to 

running the ANOVA and Tukey HSD tests, the phenometric mean data values were evaluated 

for normality using histograms and measurements of skewness and kurtosis (Figure 6-9 and 

Appendix C). 

The Tukey’s HSD test is a single step multiple comparison procedure and statistical test 

often performed in conjunction with ANOVA to find means that are significantly different from 

each other.  The Tukey HSD test was performed on each of the eight phenometrics mean values, 

which were divided into the 26 counties of the study area.  This created a mean value of the 

phenometric mean values for each county, which can be seen in Figure 6-12 for the end of 

season. Each county has been assigned a group number, shown under the M column.  Counties 

with the same letter belong in the same group while counties that contain multiple letters share 

characteristics of additional counties but retains a unique identity.  The output of the Tukey HSD 

was incorporated into a GIS for mapping and visualization.  Figure 6-11 shows the ANVOA 

result for the end of season phenometric. 
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Figure 6-9.  Histogram for the end of season phenometric illustrating the approximate 

normality common to all phenometrics evaluated. 

 

Figure 6-10.  Data summary for end of season phenometric.  A good indication that a data 

set is normally distributed is when the mean and median values are similar. 

 

 

Figure 6-11.  ANOVA result for the end of season phenometric. 
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Figure 6-12.  Tukey HSD test results with a mean value calculated for the end of season 

phenometric.  Each county has been assigned a group number, shown under the M column.  

Counties with the same letter belong in the same group while counties that contain multiple 

letters share characteristics of additional counties but retain a unique identity.  

 

A K-Means clustering analysis was also performed using the R software package (see 

Appendix B for the script used in this study) to determine which groups of counties were similar.  

The K-Means clustering is a method of vector quantization that aims to partition the data in a set 

number of clusters in which each observation belongs to a cluster with the nearest mean.  The 

optimal number of clusters was determined to be 6 based on a range of clusters examined in R.  

Figure 6-13 shows the graph where the optimum number of clusters is at the “elbow” of the 

curve signifying that many clusters are sufficient to group the data.  The 6 clusters divided the 26 

counties based on their means for each phenometrics (Figure 6-14).   
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Figure 6-13.  Elbow curve graph indicating the optimum number of clusters is at the 

“elbow” of the curve, or a value of 6. 

 

Figure 6-14 Cluster means resulting from K-Means clustering.   
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 Results 

The ANOVA test performed on each of the eight phenometrics indicated all 

phenometrics exhibited significant differences across the Flint Hills study area.  The ANOVA 

test performed on the end of season phenometric showed that of the 26 Flint Hills counties, 25 

were highly significant with only Chase county being of little significance (see Figure 6-15).  

The ANOVA test shows that most counties differed from the intercept (Butler County) with only 

Chase being similar to Butler County.   

Figure 6-15.  ANOVA test for the end of season phenometric with all counties being highly 

significant (p > 0.99) except for Chase County (p = 0.95). 
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The Tukey HSD test results show the statistical means for each county as well as other 

statistical relevant information (Figure 6-16).  Based on these mean values, the Tukey test 

grouped the counties into classes (Figure 6-17) and provide a visual representation of the 

ANOVA analysis (Figure 6-18).  Butler and Chase counties are in the same group which 

represents the ANOVA result of those two counties not being significantly different from each 

other.  Similar results for each of the seven remaining phenometrics can be seen in Appendix D. 

Figure 6-16.  Tukey HSD test results for the end of season phenometric. 
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Figure 6-17.  Tukey HSD test groupings for the end of season phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure 6-18.  Map of Tukey HSD county-level groups for the end of season phenometric.   

 

The K-means cluster partitioned the 26 counties into 6 clusters based on the mean values 

for each county and contained all eight phenometrics (Figure 6-19).   
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Figure 6-19.  K-Means cluster analysis of the study area.

 

 Discussion and Conclusions 

The Tukey test resulted in counties being grouped together based on differences in their 

mean phenometric values.  For each of the Tukey test analyses, this grouping could be seen when 

looking at two counties that the ANOVA test showed where not significantly different than each 
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other.  Looking at the end of season phenometric from the results section confirms that Chase 

and Butler County were grouped together based on their similar mean values for the end of 

season phenometric.  Similar patterns can be seen in other phenometrics.  Counties with similar 

mean values were put into the same group or into a group that had one letter corresponding to 

each groups it was similar to. 

Each of the K-Means clusters differ based on an evaluation of all eight phenometrics 

extracted.  Cluster one contains the counties of Dickinson and McPherson (Figure 6-15).  These 

counties lie on the western edge of the study area and contained the lowest phenometric values 

for middle of season, right derivative, and start of season mean value.  With the lowest start of 

season value, vegetation within Dickinson and McPherson begin development earlier than any 

other county.  Cluster two contains the counties of Washington, Morris, Butler, Wilson, Cowley, 

and Osage.  These counties lie in the southern region of the study area except Washington and 

Morris counties are in the north and middle, respectfully.  Morris is odd as it is in the center of 

the study area and one would think it would share characteristics with Chase or Geary, both of 

which are in cluster four.   

Cluster three contains Clay, Marion, and Kay counties.  These counties lie on the western 

edge of the study area and appear to be in a straight line (North-South) with a county between 

each of them (See figure 6-15).  The maximum NDVI value is similar to cluster one which was 

also on the western edge.  Small integral is similar to cluster one as well.  Cluster four contains 

Marshall, Riley, Pottawatomie, and Geary in the North and Chase, Coffey, Greenwood, 

Woodson, Elk, and Chautauqua in the south.  This cluster is mostly south-north gradient with 

Morris separating them.  This cluster is second highest in all but start of season and middle of 

season.  It contains the highest phenometric value of start of season. 
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Cluster five contains only the county of Harvey on the western edge of the study area 

(See figure 6-15)  This cluster has the lowest end of season, growing season length, left 

derivative, maximum, and small integer.  After multiple iterations of clustering, Harvey County 

remained as a single cluster likely due to the small amount of grassland pixels located there.  

Cluster six contains Jackson, Shawnee, Wabaunsee, and Lyon counties (See figure 6-15).  These 

counties are all in one cluster on the eastern edge of the study area in a north-south distribution.  

This cluster has the highest in all phenometrics except start of season. 

Based on the ANOVA and Tukey’s test results, each of the eight phenometrics examined 

were significant.  Each of the eight phenometrics had multiple groupings where all 26 counties of 

the Flint Hills did not conform into one group.  This would suggest that the Flint Hills varies in 

terms of its phenometric values and is not a homogenous region.  The K-means clustering also 

did not group all study area counties into one cluster but put them into 6 as per the algorithms 

suggested optimal number of clusters to encapsulate all of the information.  Looking at the 

spatial distribution of clusters there is some semblance of a pattern.  Clusters one and six contain 

counties that are next to each other in small groups.  Cluster four and 2 contain counties in a 

north to south distribution.  This can be said about most of the clusters due to the nature of the 

study area, however it is important to note that the clusters rarely overlap with the north to south 

groups steadily moving from the west to the east across the study area.  It can be speculated that 

factors such as precipitation may cause the pattern observed due to the increasing amount of 

precipitation seen when traveling from the western section of the study area to the eastern 

sections.  Further tests must be done to determine what factors may be influencing the observed 

pattern. 
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Chapter 7 - Synthesis Conclusion 

Using MODIS images to create a vegetation index time series and utilizing BFAST with 

its ability to detect breaks and trend of vegetation greenness allows for consistent assessment of 

grassland vegetation in the Flint Hills.  Grassland managers across the Flint Hills would benefit 

from knowing the greenness of their grassland and would be able to develop better ways to 

preserve their land.  The BFAST trend analysis allows for an interesting method to characterize 

long-term vegetation trends as well as when and where significant breaks occur in detected 

trends.  In addition, TIMESAT allows for the extraction of phenometrics.  These phenometrics 

can tell us valuable information about the vegetation of an area. 

This thesis presents a BFAST analysis of the Flint Hills ecoregion for the time period of 

2001-2015.  This BFAST analysis showed the trending direction of grassland in the area as well 

as the number of disturbances during the period.  The BFAST analysis showed a majority (52%) 

of the Flint Hills experienced a browning of vegetation during the study period.  Only 22% of the 

Flint Hills experienced positive trending pixels.  The remaining 26% were stable pixels.  

Examining the number of breaks in trend show 38% of the Flint Hills experienced zero 

disturbances and the remaining 62% had at least one or more breaks in trend.  These breaks in 

vegetation greenness resulted in either an increase or decrease in vegetation greenness.  By 

utilizing BFAST, the location and trend of vegetation can be spatially presented for examination 

by land managers interested in preserving their land. 

To determine the cause of vegetation trend, a second study was performed using BFAST 

and logistic regression with burn frequency, precipitation deviation, and hydrological soil group 

data.  Due to the limited time frame of the burn frequency data of 2001-2010, the BFAST 

analysis was run on grassland pixels of the same time frame.  During the 2001-2010 study 
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period, 41% of the Flint Hills experienced browning and 43% experienced positive trend.  The 

remaining 16% of were stable during the study period.  Examining the number of breaks in trend 

show 52% of the Flint Hills experienced zero disturbances while the remaining 48% had at least 

one or more breaks in trend.  The logistic regression showed each of the variables examined in 

this study as being statistically significant.  The negative coefficients of the GLM suggest that 

precipitation deviation and hydrologic group B are less likely to result in a negative trend.  Soils 

of group B reduce the log odds of a negative trend by 2.60 and a unit increase in precipitation 

deviation, or an increase in the amount of precipitation vegetation receives, reduces the log odds 

of a negative trend by 2.28.  The soils of group C and D have positive coefficients which means 

they increase the log odds of a negative trend by 1.96 and 1.78, respectively.  For every increase 

in unit of burn frequency there is an increase in log odds of a negative trend by 4.23. 

It is no surprise that increasing the amount of precipitation will result in healthier 

vegetation.  However, in conjunction with precipitation, there needs to be soils capable of 

capturing this moisture.  Hydrologic group B contains loam, silt loam, and silt soils, all of which 

are able to retain soil moisture to be used by vegetation.  Hydrologic groups C and D result in 

negative trending vegetation because they contain clay and sandy soils which are unable to retain 

soil moisture.  The burn frequency shows burning every year will result in a negative trend in 

vegetation greenness.  Previous research has shown a burning frequency of once every 4 years is 

healthier for vegetation (Collins et al., 1995). 

The analysis of deviance table shows the residual deviance decreasing with each variable 

input but the individual deviance decreases and then increases with the final input.  The 

difference between the null deviance and the residual deviance shows how the model is doing 

against the null model, a model with only the intercept.  The wider the gap is, the better.  With 
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each variable input, the residual deviation decreased about one thousand.  Each of the variables 

was significant and helped to explain the model.  The McFadden R2 value represents how well 

the model fits the data.  With a McFadden value of 0.01, our model need more strong predictors 

in order to get an optimum value near 1. 

Lastly, this thesis examined the use of TIMESAT to extract important information about 

the phenology of the Flint Hills.  Eight phenometrics were extracted; start of season, end of 

season, end of season, maximum, left derivative, right derivative, season length, and middle of 

season.  These phenometrics can show us when and where vegetation is greening up and 

browning down for the year as well as show the amount of vegetation biomass.  These 

phenometrics were examined using ANOVA and the Tukey test to determine if there were 

significant differences in each phenometric across the entire study area and which subsets of 

county-level administrative divisions exhibited similarities.  The ANOVA test determined that 

each phenometric was significantly different.  The Tukey test groupings resulted in counties 

being grouped together based on how different their mean phenometric value was compared to 

other counties mean phenometric value.  For each of the Tukey test groupings, this grouping 

could be seen when looking at two counties that the ANOVA test showed where not significantly 

different than each other.  Looking at the end of season phenometric from the results section 

confirms that Chase and Butler County were grouped together based on their similar mean values 

for the end of season phenometric.  Similar patterns can be seen in other phenometrics.  Counties 

with similar mean values were put into the same group or into a group that had one letter 

corresponding to each group it was similar to. 

For the K-Means clusters, the clusters were based on the mean value of each 

phenometric.  There were six clusters distributed throughout the study area.  These clusters 
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would suggest that the Flint Hills varies in terms of its phenometric values and is not a 

homogenous region.  Looking at the spatial distribution of clusters there is some semblance of a 

pattern.  Clusters one and six contain counties that are next to each other in small groups.  

Cluster four and 2 contain counties in a north to south distribution.  This can be said about most 

of the clusters due to the nature of the study area, however it is important to note that the clusters 

rarely overlap with the north to south groups steadily moving from the west to the east across the 

study area.  It can be speculated that factors such as precipitation may cause the observed pattern 

due to the increasing amount of precipitation seen when traveling from the western section of the 

study area to the eastern sections.  Using either the k-means clusters of counties or the Tukey test 

groupings, it may be possible to inform burning practices to burn in different locations at 

different times to help mitigate excessive smoke. 

  



134 

References  

An, N. 2009. Estimating Annual Net Primary Productivity of the Tallgrass Prairie Ecosystem of 

 the Central Great Plains using AVHRR NDVI. University of Kansas. 

 

Augustin, N.H., Cummins, R.P., and French, D.D. 2001. Exploring spatial vegetation dynamics 

 using logistic regression and a multinomial logit model.  Journal of Applied Ecology 

 38(5):991-1006. 

 

Benson, E.J., and Hartnett, D.C. 2006. The role of seed and vegetative reproduction in plant 

 recruitment and demography in tallgrass prairie. Plant Ecology 187:163-177. 

 

Briggs, J.M. and Knapp, A.K. 1995. Interannual variability in primary production in tallgrass 

 prairie: climate, soil moisture, topographic position, and fire as determinants of above- 

 ground biomass. American Journal of Botany 82:1024-1030. 

 

Briggs, J.M., Knapp, A.K., Blair, J.M., Heisler, J.L., Hoch, G.A., Lett, M.S., and McCarron, J.K. 

 2005. An ecosystem in transition: Causes and consequences of the conversion of mesic 

 grassland to shrubland. BioScience 55:3. 

 

Campbell, J.B., and Randolph, H.W. 2011. Introduction to remote sensing. Guilford Press. 

 

Carlson, T.N., and David A.R. 1997. On the relation between NDVI, fractional vegetation 

 cover, and leaf area index. Remote Sensing of Environment 62 (3): 241-52. 

 

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L. 2004. A simple 

 method for reconstructing a high-quality NDVI time-series data set based on the 

 Savitzky–Golay filter. Remote Sensing of the Environment 91: 332–344. 

 

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H.A., and Schwartz, M.D. 2007. Shifting plant 

 phenology in response to global change. Trends in Ecology & Evolution 22: 357–365. 

 

Cleveland, W.S., and Devlin, S.J. 1988. Locally weighted regression: An approach to regression 

 analysis by local fitting. Journal of the American Statistical Association 83 (403): 596- 

 610. 

 

Cleveland, R.B., Cleveland, W.S., McRae, J.E., and Terpenning, I. 1990. STL: A SeasonalTrend 

 Decomposition Procedure Based on Loess. Journal of Official Statistics Vol. 6(1): 3-73. 

 

Collins, S.L., Gleen, S.M., and Gibson, D.J. 1995. Experimental analysis of intermediate 

 disturbance and initial floristic composition: Decoupling cause and effect. Ecology 

 76:486-492. 

 

Colwell, J.E. 1973. Bidirectional spectral reflectance of grass canopies for determination of 

 above ground standing biomass. University of Michigan, Ann Arbor, Michigan. 

 



135 

Colwell, J.E. 1974. Vegetation canopy reflectance. Remote Sensing of Environment. 3:175-183 

 

Dalgleish, H.J., and Hartnett, D.C. 2008. The effects of fire frequency and grazing on tallgrass 

 prairie productivity and plant composition are mediated through bud bank demography. 

 Journal of Plant Ecology 201:411-420. 

 

DeFries, Ruth. 2008. Terrestrial Vegetation in the Coupled Human-Earth System: Contributions 

 of Remote Sensing. Annual Review Environment and Resources 33:369-390. 

 

Dennis, A., Fraser, M., Anderson, S., and Allen, D. 2002. Air pollution emissions associated 

 with forest, grassland, and agricultural burning in Texas. Atmospheric Environment 

 36:3779-96. 

 

Dodds, W.K., K.C. Wilson, R.L. Rehmeier, G.L. Knight, S. Wiggam, J.A. Falke, H.J. Dalgleish, 

and K.N. Bertrand.  2008. Comparing ecosystem goods and services provided by restored 

and native lands.  BioScience 58(9):837-845. 

 

Eklundh, L., and Jönsson, P. 2010. Timesat 3.0 Software Manual. Lund University, Sweden. 

 

Figueiredo, M.A.T., and Jain, A.K. 2002. Unsupervised learning of finite mixture models. IEEE 

 Transactions on Pattern Analysis and Machine Intelligence 24 (3):381-396. 

 

Fuhlendorf, S.D., Harrell, W.C., Engle D.M., Hamilton R.G., Davis C.A., and Leslie, D.M. 2006. 

 Should heterogeneity be the basis for conservation? Grassland bird response to fire and 

 grazing. Ecological Applications 16 (5): 1706-16. 

 

Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., and Verma, M. 2010. Land surface phenology 

 from MODIS: Characterization of the collection 5 global land cover dynamics product. 

 Remote Sensing of Environment 114 (8):1805-1816. 

 

Glaser, A. 2014. America’s grasslands: The future of grasslands in a changing landscape. 

 Proceedings of the 2nd biennial conference on the conservation of America’s grasslands.  

 

Heumann, B.W., Seaquist, J. W., Eklundh, L., and Jönsson, P. 2007. AVHRR Derived 

 Phenological Change in the Sahel and Soudan, Africa, 1982 - 2005. Remote Sensing of 

 Environment 108: 385-392. 

 

Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., 

 Wickham, J.D., and Megown, K. 2015. Completion of the 2011 National Land Cover 

 Database for the conterminous United States-representing a decade of land cover change 

 information. Photogrammetric Engineering and Remote Sensing 81(5):345-354. 

 

Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of the Environment 

 25:295-309. 

 



136 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L.G. 2002. Overview of 

 the radiometric and biophysical performance of the MODIS vegetation indices. Remote 

 Sensing of Environment 83:195-213. 

 

Hulbert, L.C. 2009. Fire effects on tallgrass prairie. Proceedings of the Ninth North American 

 Prairie Conference 138. 

 

Hutchinson, J.M.S., Jacquin, A., Hutchinson, S.L., and Verbesselt, J. 2015. Monitoring 

 vegetation change and dynamics on U.S. Army training lands using satellite image time 

 series analysis. Journal of Environmental Management 150:355-366. 

 

Jacquin, A., Sheeren, D., and Lacombe, J.P. 2010. Vegetation cover degradation assessment in 

 Madagascar savanna based on trend analysis of MODIS NDVI time series. International 

 Journal of Applied Earth Observation Geoinformation 12S, S3-S10. 

 

Jacquin, A., Goulard, M., Hutchinson, J.M.S., Devienne, T. and Hutchinson, S.L. 2016. A 

 statistical approach for predicting grassland degradation in disturbance-driven 

 landscapes. Journal of Environmental Protection 7:912-925. 

 

Jain, A.K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 

 31(8):651-666. 

 

Jensen, A. R. 1983. Biophysical Remote Sensing. Annals of the Association of American 

 Geographers, 73(1): 111–132. 

 

Jonsson, P., and Eklundh, L. 2004. TIMESAT – A program for analyzing time-series of satellite 

 sensor data. Computers & Geosciences 30(8):833-845. 

 

Jönsson, P., and Eklundh, L. 2002. Seasonality extraction by function fitting to time-series of 

 satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing 40(8): 1824–

 1832. 

 

Jönsson, A.M., Eklundh, L., Hellström, M., Bärring, L., and Jönsson, P. 2010. Annual changes in 

 MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics 

 and tree phenology. Remote Sensing of Environment 114: 2719–2730. 

 

Kansas Department of Health and Environment. 2010. State of Kansas Flint Hills Smoke 

 Management Plan. 

 

Kauth, R.J., and Thomas, G.S. 1976. The Tasseled cap- graphic description of the spectral 

 temporal development of agricultural crops as seen by LANDSAT. Proceedings of the 

 Symposium Machine Processing of Remote Sensing Data. LARS, Purdue. 

 

 

 



137 

Kennedy, R.E., Townsent, P.A., Gross, J.E., Cohen, W.B., Bolstad, P., Wang, Y.Q., and Adams, 

 P. 2009. Remote sensing change detection tools for natural resource managers: 

 Understanding concepts and tradeoffs in the design of landscape monitoring projects. 

 Remote Sensing of Environment 113(7):1382-1396. 

 

Linderholm H.W. 2006. Growing season changes in the last century. Agricultural and Forest 

 Meteorology. 137:1-14 

 

Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., and Worthy, L.D. 2006. Land-Cover 

 change detection using multi-temporal MODIS NDIV data. Remote Sensing of 

 Environment 105:142-154. 

 

Mark, A.F., and McLennan, B. 2005. The conservation status of New Zealand’s indigenous 

 grasslands. New Zealand Journal of Botany 43(1):245-270. 

 

Mohler, R.L. and D.G. Goodin.  2012.  Mapping burned area in the Flint Hills of Kansas and 

 Oklahoma, 2000-2010.  Great Plains Research 22:  15-25 

 

Nebraska Department of Environment Quality. 2015. State of Nebraska Exceptional Event 

 Demonstration Package. 

 

McDonald, R., McKnight, M., Weiss, D., Selig, E., O’Connor, M., Violin, C., and Moody, A. 

 2005. Species compositional similarity and ecoregions: Do ecoregion boundaries 

 represent zones of high species turnover: Biological Conservation 126(1):24-40. 

 

Omernik, J.M. 1987. Ecoregions of the conterminous United States. Map (scale 1:7,500,000). 

 Annals of the Association of American Geographers 77(1):118-125. 

 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J., and Stenseth, N.C. 2005. 

 Using the satellite-derived NDVI to assess ecological response to environmental change. 

 Trends in Ecology and Evolution 20:9. 

 

Pockrandt, B. 2014. Amulti-year comparison of vegetation phenology between military training 

 lands and native tallgrass prairie using TIMESAT and moderate-resolution satellite 

 imagery. Unpublished Masters’ Thesis, Kansas State University. 

 

PRISM Climate Group, 2012. US 30 year normal. http://prism.oregonstate.edu (last accessed, 

 created 02.15.17). 

 

Ratajczak, Z., Briggs, J.M., Goodin, D.G., Luo, L., Mohler, R.L., Nippert, J.B., and Obermeyer, 

 B. 2016. Assessing the potential for transitions from tallgrass prairie to woodlands: Are 

 we operating beyond critical fire thresholds?. Rangeland Ecology & Management 69: 

 280- 287. 

 



138 

Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., and Ohlen, D. O. 

 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation 

 Science 5: 703-714. 

 

Richards, J.A., and Jia, X. 2006. Remote sensing digital image analysis. Springer-Verlag Berlin 

 Heidelberg. 

Richardson, A.J., and Wiegand, C.L. 1977. Distinguishing vegetation from soil background 

 information. Photogrammetric Engineering & Remote Sensing. 43:1541-1552. 

 

Robbins, M.B., Peterson, A.T., and Ortega-Huerta, M.A. 2002. Major negative impacts of early 

 intensive cattle stocking on tallgrass prairies: The case of the greater prairie-chicken 

 (tympanuchus cupido). North American Birds 56:239-244. 

 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitusuka, N., and Ohno, H. 2005. A 

 crop phenology detection method using time-series MODIS data. Remote Sensing of 

 Environment 96(3):366-374. 

 

Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of 

 Remote Sensing 6:1335-1372. 

 

Slayback, D.A., Pinzon, J.E., Los, S.O., Tucker, C.J. 2003. Northern hemisphere photosynthetic 

 trends 1982-1999. Global Change Biology 9(1):1-15. 

 

Tan, B., Morisette, J.T., Wolfe, R.E., Gao, F., Ederer, G.A., Nightingale, J., and Pedelty, J.A. 

 2010. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics 

 from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and 

 Remote Sensing  

 

Towne, E.G., and Kemp, K.E. 2003. Vegetation dynamics from annually burning tallgrass prairie 

 in different seasons. Journal of Range Management 56:185-192. 

 

Tucker, C. 1979. Red and photographic infrared linear combinations for monitoring vegetation. 

 Remote Sensing of Environment 8(2):127-150. 

 

Tucker, C.J., Newcomb, W.W., Los, S.O., and Prince, S.D. 1991. Mean and inter-year variation 

 of growing season normalized difference vegetation index for the sahel 1981-1989. 

 International Journal of Remote Sensing 12(6):1133-5. 

 

U.S. Department of Agriculture, National Resources Conservation Service. 2012. Web Soil 

 Survey. http://websoilsurvey.nrcs.usda.gov/ (last accessed 02.10.17). 

 

Verbesselt, J., Jönsson, P., Lhermitte, S., van Aardt, J., and Coppin, P. 2006. Evaluating satellite 

 and climate data derived indices as fire risk indicators in savanna ecosystems. IEEE 

 transactions of Geoscience and Remote Sensing 44: 1622. 

 



139 

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D. 2009. Detecting trend and seasonal 

 changes in satellite image time series. International Journal of Remote Sensing. 114: 106- 

 115. 

 

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010a. Detecting trend and seasonal 

 changes in satellite image time series. Remote Sensing of Environment. 114(1):106-115. 

 

Wardlow, B. D. 2005. An Evaluation of Time-Series MODIS 250-Meter Vegetation Index Data 

 for Crop Mapping in the U.S. Central Great Plains. PhD Dissertation, Department of

 Geography, University of Kansas, Lawrence, Kansas. 

 

Wardlow, B.D., and Egbert, S.L. 2008. Large-area crop mapping using time-series MODIS 

 250m NDVI data: An assessment for the US central great plains. Remote Sensing of 

 Environment 112(3):1096-1116. 

 

Wilgers, D.J., and Horne, E.A. 2006. Effects of different burn regimes on tallgrass prairie 

 herpetofaunal species diversity and community composition in the flint hills, Kansas. 

 Journal of Herpetology 40(1):73-84. 

 

Wilken, D.H., and Allard, S.T. 1986. Intergradation among populations of the ipomopsis 

 aggregate complex in the Colorado front range. Systematic Botany:1-13. 

 

Willis, K.S. 2015. Remote sensing change detection for ecological monitoring in united states 

 protected area. Biological Conservation 182:233-242. 

 

World Wildlife Fund. Plowprint annual report 2016. 

 

Wright, C. K., de Beurs, K. M., Henebry, G. M., 2012. Combined analysis of land cover change 

 and NDVI trends in the Northern Eurasian wheat belt. Frontier of Earth Science 

 6(2):177–187. 

 

Zhang, X., Friedl, M. A., Schaaf, C.B., Strahler, A.H., Hodges, J. C. F., Gao, F., Reed, B. C., and 

 Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of 

 Environment 84: 471-475. 

 

Zhang, X., Tarpley, D., and Sullivan, J.T. 2007. Diverse responses of vegetation phenology to a 

 warming climate. Geophysical Research Letters 34(19). 

 

Zhou, L., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., Myneni, R. B., 2001. 

 Variations in northern vegetation activity inferred from satellite data of vegetation index 

 during 1981–1999. Journal of Geophysical Research. 106: 20069–20083. 

  



140 

Appendix A - TIMESAT Input Text File 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi010101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi010930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi011016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi011101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi011117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi011203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi011219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020509.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi020525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi020930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi021016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi021101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi021117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi021203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi021219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi030930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi031016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi031101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi031117.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi031203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi031219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi040930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi041016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi041101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi041117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi041203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi041219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050525.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi050610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi050930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi051016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi051101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi051117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi051203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi051219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi060930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi061016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi061101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi061117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi061203.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi061219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi070930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi071016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi071101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi071117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi071203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi071219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080610.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi080626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi080930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi081016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi081101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi081117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi081203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi081219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi090930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi091016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi091101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi091117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi091203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi091219.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi100101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi100930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi101016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi101101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi101117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi101203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi101219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110626.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi110712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi110930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi111016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi111101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi111117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi111203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi111219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi120930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi121016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi121101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi121117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi121203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi121219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130101.dat 



148 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi130930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi131016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi131101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi131117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi131203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi131219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140712.dat 
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Z:\Projects\BragetA\FlintHillsTimeSat\mi140728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi140930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi141016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi141101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi141117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi141203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi141219.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150202.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150218.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150306.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150322.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150407.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150423.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150509.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150525.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150610.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150626.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150712.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150728.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150813.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150829.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150914.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi150930.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi151016.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi151101.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi151117.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi151203.dat 

Z:\Projects\BragetA\FlintHillsTimeSat\mi151219.dat 
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Appendix B - Scripts 

ANOVA and Tukey HSD R Script 

#read in dataset and explore its structure 

library(agricolae) 

setwd ("Z:\\Projects\\BragetA\\NewFlintHills\\Scratch\\") 

data <- read.csv(file="PhenometricMeans.csv", header=TRUE, sep=",") 

str(data) 

#Create a variable to store a phenometric name 

pheno <- data$Mean.End.Season 

#Calculate Means for Treatment "Type" 

aggregate(pheno ~ data$County, FUN=mean) 

#Run ANOVA and assess whether differences exist between brands and tasters 

output1 <- lm(pheno ~ data$County) 

summary(output1) 

anova(output1) 

#Run the Tukey's HSD test to see where differences lie 

a1 <- aov(pheno ~ data$County) 

posthoc <- TukeyHSD(x=a1, "data$County", conf.level=0.95) 

posthoc 

#Visualize the confidence intervals for the mean differences 

plot(posthoc) 

#Run the Tukey's HSD test in alternative fashion 

#Yields easier way to visualize groups with similar means 

output <- HSD.test(output1, "data$County") 

output 

#write output to file for mapping 

write.csv(output$groups, file="PhenoGroups_StartSeason.csv") 
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K-Means Script 

#perform a basic k-means analysis 

#read in dataset and explore its structure 

setwd("Z:\\Projects\\BragetA\\NewFlintHills\\Scratch") 

data <- read.csv(file="PhenoGroups_Summary.csv",header=TRUE, sep=",") 

str(data) 

myvars <- c("LDMeans", "RDMeans", "MaxMeans", "SmIntMeans", “ESMeans”, “”MidMeans”, 

“StSeaMeans”, “GSLMeans”)   

x <- data[myvars] 

str(x) 

#perform kmeans cluster analysis (4 clusters) and plot results 

#and write output to table 

km <- kmeans(x, 4) 

str(km) 

plot(x, col=km$cluster) 

write.table(km$cluster,file="outputClusters.csv",sep=",") 

#re-run kmeans using optimal number for k 

#write a function to calculate sum of all within sum of squares for clusters 

kmeans.wss.k <- function(x, k){ 

 km = kmeans(x, k) 

 km$tot.withinss = sum(km$withinss) 

 return (km$tot.withinss) 

} 

#use function to calculate the sum of withinss for k = 3 

kmeans.wss.k(x, 3) 

#write a function to extract km$tot.withinss values (distortion) for a range of clusters 

kmeans.dis <- function(x, maxk){ 

 dis=(nrow(x)-1)*sum(apply(x,2,var)) 
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 dis[2:maxk]=sapply (2:maxk, kmeans.wss.k, x=x) 

 return(dis) 

} 

#populate variable for maximum number of clusters, invoke function, and plot results 

maxk = 10 

dis = kmeans.dis(x, maxk) 

plot(1:maxk, dis, type='b', main="Elbow Curve", xlab="Number of Clusters", ylab="Distortion", 

col="blue") 

#re-run kmeans with optimal cluster number, view clusters, and add to input data 

km <- kmeans(x, 6) 

km 

plot(x, col = km$cluster) 

write.table(km$cluster,file="outputClustersLDRDMXSI.csv",sep=",") 

BFAST Script 

Load these packages in R: 
 
library(zoo) 
library(sandwich) 
library(MASS) 
library(quadprog) 
library(tseries) 
library(strucchange) 
library(fracdiff) 
library(forecast) 
library(iterators) 
library(codetools) 
library(foreach) 
library(bfast) 
 
setwd("Z:/Projects/BragetA/NewFlintHills/NewFlintHillsBFAST") 
datafile <- "fh_ndvi.csv" 
 
inidata<-read.table(datafile, header=TRUE, sep = ",", dec = ".") #use only with small files; modify if no labels are in the input  
 
mdata<-as.matrix(inidata) 
tpdata<-mdata 
vmax<-dim(mdata) 
#number of lines 
vmax[1] 
#number of columns 
vmax[2] 
 
for(count in 1:vmax[1]) 
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{ 
poly_id<-tpdata[count,1] 
ndvi<-tpdata[count,2:vmax[2]]  #highlighted number identifies first column with NDVI data 
plot(ndvi) 
tsdata<-ts(ndvi,frequency=23,start=c(2001,1)) 
dim(tsdata)<-NULL 
#(rdist<-23/length(tsdata)) 
fits<-bfast(tsdata,h=0.10,season="harmonic",max.iter=1) 
plot(fits) 
fits2<-fits$Time 
ts_trend_break_time<-t(fits2[1]) 
fits3<-fits$Magnitude 
ts_trend_break_magnitude<-t(fits3[1]) 
fits4<-fits$output 
fits4a<-fits4[[1]]$Vt.bp 
fits4adata<-as.matrix(fits4a) 
fits4amax<-dim(fits4adata) 
ts_trend_nbbreak<-t(fits4amax[1]) 
results1<-ts_trend_break_time 
aLine<-t(c(poly_id,results1)) 
write.table(aLine,file="fh_trend_breaks_time.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.names=F
ALSE,col.names=FALSE,qmethod=c("escape","double")) 
results2<-ts_trend_break_magnitude 
aLine<-t(c(poly_id,results2)) 
write.table(aLine,file="fh_trend_breaks_magnitude.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.na
mes=FALSE,col.names=FALSE,qmethod=c("escape","double")) 
results3<-ts_trend_nbbreak 
aLine<-t(c(poly_id,results3)) 
write.table(aLine,file="fh_trend_nbbreaks.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.names=FALSE,
col.names=FALSE,qmethod=c("escape","double")) 
fits4b<-fits4[[1]]$Tt 
results4<-fits4b 
aLine<-t(c(poly_id,results4)) 
write.table(aLine,file="fh_trend_bfast.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.names=FALSE,col
.names=FALSE,qmethod=c("escape","double")) 
fits4c<-fits4[[1]]$Wt.bp 
fits4cdata<-as.matrix(fits4c) 
fits4cmax<-dim(fits4cdata) 
ts_season_nbbreak<-t(fits4cmax[1]) 
results5<-ts_season_nbbreak 
aLine<-t(c(poly_id,results5)) 
write.table(aLine,file="fh_season_nbbreaks.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.names=FALS
E,col.names=FALSE,qmethod=c("escape","double")) 
ts_season_breaks_time<-t(fits4cdata) 
results6<- ts_season_breaks_time 
aLine<- t(c(poly_id,results6)) 
write.table(aLine,file="fh_season_breaks_time.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",de=".",row.names=F
ALSE,col.names=FALSE,qmethod=c("escape","double")) 
fits4d<-fits4[[1]]$St 
results7<-fits4d 
aLine<-t(c(poly_id,results7)) 
write.table(aLine,file="fh_season_bfast.txt",append=TRUE,quote=FALSE,sep=",",eol="\n",na="NA",dec=".",row.names=FALSE,c
ol.names=FALSE,qmethod=c("escape","double")) 
} 
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Appendix C - Histograms 

Figure C-1.  The histogram and summary for the growing season phenometric.  The data 

values appear to be nominally distributed. 
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Figure C-2.  The histogram and summary for the left derivative phenometric.  The data 

values appear to be nominally distributed. 
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Figure C-3.  The histogram and summary for the maximum phenometric.  The data values 

appear to be nominally distributed. 
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Figure C-4.  The histogram and summary for the middle season phenometric.  The data 

values appear to be nominally distributed. 
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Figure C-5.  The histogram and summary for the right derivative phenometric.  The data 

values appear to be nominally distributed. 
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Figure C-6.  The histogram and summary for the small integral phenometric.  The data 

values appear to be nominally distributed. 
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Figure C-7.  The histogram and summary for the start season phenometric.  The data 

values appear to be nominally distributed. 
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Appendix D -  Phenometrics 

 

Figure D-1.  ANOVA result for the Growing Season Length phenometric. 
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Figure D-2.  ANOVA test for the Growing Season Length phenometric with all counties 

being highly significant except for Riley county, which was slightly less significant. 
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Figure D-3.  Tukey test results for the Growing Season Length phenometric. 
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Figure D-4.  Tukey test groupings of the Growing Season Length phenometric.  Each of the 

26 counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-5.  ANOVA result for the Left Derivative phenometric 
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Figure D-6.  ANOVA test for the Left Derivative phenometric with all counties being highly 

significant except for Morris county, which was slightly less significant, and Riley County, 

which was not significantly different. 
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Figure D-7.  Tukey test results of the Left Derivative phenometric.  Each of the 26 counties 

of the Flint Hills was placed into a class based on their mean values.  Counties with similar 

mean values were placed into the same class. 
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Figure D-8.  Tukey test groupings of the Left Derivative phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-9.  ANOVA result for the Maximum NDVI phenometric. 
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Figure D-10.  ANOVA test for the Maximum NDVI phenometric with all counties being 

highly significant. 
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Figure D-11.  Tukey test results of the Maximum NDVI phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-12.  Tukey test groupings of the Maximum NDVI phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-13.  ANOVA result for the Middle of Season phenometric. 
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Figure D-14.  ANOVA test for the Maximum Phenometric with all counties being highly 

significant except Kay county. 
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Figure D-15.  Tukey test results of the Middle of Season phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-16.  Tukey test groupings of the Middle of Season phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-17.  ANOVA result for the Right Derivative phenometric. 
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Figure D-18.  ANOVA test for the Maximum Phenometric with all counties being highly 

significant except Dickinson being slightly less significant and Kay not significantly 

different. 
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Figure D-19.  Tukey test results of the Right Derivative phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-20.  Tukey test groupings of the Right Derivative phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-21.  ANOVA result for the Small Integral phenometric. 
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Figure D-22.  ANOVA test for the Small Integral Phenometric with all counties being 

highly significant except Osage being slightly less significant. 
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Figure D-23.  Tukey test results of the Small Integral phenometric.  Each of the 26 counties 

of the Flint Hills was placed into a class based on their mean values.  Counties with similar 

mean values were placed into the same class. 
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Figure D-24.  Tukey test groupings of the Small Integral phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-25.  ANOVA result for the Start of Season phenometric. 
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Figure D-26.  ANOVA test for the Start of Season Phenometric with all counties being 

highly significant except Woodson being insignificant. 
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Figure D-27.  Tukey test results of the Start of Season phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-28. Tukey test groupings of the Start of Season phenometric.  Each of the 26 

counties of the Flint Hills was placed into a class based on their mean values.  Counties 

with similar mean values were placed into the same class. 
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Figure D-29.  Start of Season Phenometric mean value for each cell for the 2001-2015 study 

period. 
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Figure D-30.  Small Integral Phenometric mean value for each cell for the 2001-2015 study 

period. 
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Figure D-31.  Season Length Phenometric mean value for each cell in the 2001-2015 study 

period. 
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Figure D-32.  Right Derivative phenometric mean value for each cell in the 2001-2015 study 

period. 
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Figure D-33.  Middle of Season phenometric mean value for each cell in the 2001-2015 

study period. 
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Figure D-34.  Maximum NDVI phenometric mean value for each cell in the 2001-2015 

study period. 
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Figure D-35.  Left Derivative phenometric mean value for each cell in the 2001-2015 study 

period. 
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Figure D-36.  End of Season phenometric mean value for each cell in the 2001-2015 study 

period. 
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Figure D-37.  Map of Tukey HSD test results for the growing season phenometric. 
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Figure D-38.  Map of Tukey HSD test results for the left derivative phenometric. 
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Figure D-39.  Map of Tukey HSD test results for the Maximum NDVI phenometric. 
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Figure D-40.  Map of Tukey HSD test results for the middle of season phenometric. 
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Figure D-41. Map of Tukey HSD test results for the right derivative phenometric. 
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Figure D-42.  Map of Tukey HSD test results for the small integral phenometric. 
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Figure D-43.  Map of Tukey HSD test results for the start of season phenometric. 

 


