
  

 

 

AN OPTICAL WATER VELOCITY SENSOR FOR OPEN CHANNEL FLOWS 

 

 

by 

 

 

JOSEPH SCOT DVORAK 

 

 

 

B.S., Oklahoma State University, 2005 

M.S., Oklahoma State University, 2007 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Biological and Agricultural Engineering 

College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2012 

 

 

  



  

Abstract 

An optical sensor for determining water velocity in natural open channels like creeks and 

rivers has been designed and tested. The sensor consists of a plastic body which is shaped so that 

water flows through a U-shaped channel into which are mounted LEDs and matching 

phototransistors at various angles. A small amount of dye is injected into the water just upstream 

of two sets of LEDs and phototransistors which are spaced 4 cm apart. The time delay between 

the dye’s effects on these signals depends on water velocity and is determined using a biased 

cross correlation calculation. In addition to providing velocity, the LEDs and phototransistors 

can also be used to estimate soil sediment concentration. 

A previous version of the sensor was tested in enclosed flow to confirm that the general 

design of the sensor, including LEDs, phototransistors, dye and electronics, would indeed work 

to detect the velocity of water flowing through the sensor. Although the conditions for the test 

were unlike those experienced in natural open channels, the ability to catch all the fluid flowing 

through the sensor provided a simple confirmation of the velocity estimate that was not available 

in field settings. Further testing in the field then confirmed that the sensor worked in the field but 

also identified several areas needing improvement. Computational fluid dynamics was used to 

improve the sensor body. The electronics and program running the sensor were also redesigned. 

After making these improvements, a new version of the sensor was produced. 

The testing of the new version of the sensor confirmed its ability to accurately detect 

velocity in natural open channels. The velocity measurements from this sensor were compared to 

the commercially available Flowtracker velocity sensor. A regression analysis on the 

measurements from the two sensors found that the velocity measurements from each sensor were 

nearly identical across a range of velocities. Other tests established that the electronics and 

programming running the sensor performed as designed. The development and testing of this 

sensor has resulted in a system which works in natural open channels like creeks and rivers.  
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Chapter 1 - Introduction 

The determination of the velocity of a fluid is important in many diverse fields. Aviation 

utilizes velocity sensors mounted on planes to determine airspeed. The oil and gas industry 

requires careful monitoring of velocity and discharge for product billing and control. 

Municipalities use velocity and discharge sensors in water supply systems. In irrigation, such 

sensors are used to determine water use and application rates. Velocity sensors are also important 

for all types of environmental monitoring of water in natural channels. Given the wide range of 

applications for velocity sensors, they have been important for many years and this has resulted 

in a myriad of different solutions to determining the velocity of fluids. Each solution has been 

tailored in different ways to match its intended use. 

The sensor developed in this project has been specifically designed to monitor the 

velocity of water flowing in natural open channels like rivers and creeks. The sensor has been 

under development in the Instrumentation and Control Laboratory in the Biological and 

Agricultural Engineering Department at Kansas State University. The velocity sensor was 

designed to be relatively low-cost, robust and incorporate the ability to measure soil sediment 

concentration in addition to velocity. The original work on the sensor was conducted by Stoll 

(2004) and Zhang (2009). Bigham (2012) continued work on the soil sediment concentration 

portion of the sensor. The natural open channel target environment for this sensor added 

complexities to the project. The natural open channel flow is complex, turbulent, and affected by 

many different environmental effects. One of the biggest challenges of this environment is 

caused by the turbulence. In turbulent flows, the time-averaged velocity of the flow is the 

important parameter and not the constantly changing instantaneous velocity which can cause 

difficulties in sensor design. The development of this sensor had to take all these complications 

into account in its design. 

The sensor developed is based on LEDs and phototransistors mounted into a solid plastic 

sensor body which is placed in the water flow. Velocity is determined by calculating the length 

of time required for a small amount of injected dye to flow between two sets of LEDs and 

phototransistors. The sensor also consists of the electronics necessary to calculate the results and 

log and transmit data. A basic version of the sensor consisting only of the sensor body, dye and 
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the electronics to control it can be used to take small sets of velocity measurements. Additional 

support equipment is also necessary if the sensor is installed in the field for long-term 

monitoring. The entire design consists of a system to monitor the soil sediment concentration and 

velocity, transmit and log the results, and control the supporting equipment necessary for 

operation. 

Several goals were established for this sensor to ensure that it would perform well in its 

target environment. The first goal was that the sensor be able to operate from 0.1 to 2.5 m s
-1

 

with at most 1% quantization error. Another goal was that the sensor system must both be able to 

record the results locally on permanent storage and wirelessly transmit them. The sensor must 

also be capable of operating remotely as part of a real-time monitoring network. Finally, it must 

operate while connected to another computer that could control the functions of the sensor for 

testing and non-permanent field measurements. Achieving these goals should provide for a 

sensor capable of successfully monitoring velocity in the target conditions. 
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Chapter 2 - Literature Review 

Understanding the flow of liquids in general and water in particular has been an 

important area of research since nearly the beginning of civilization. As mentioned in the 

introduction, the ability to monitor the flow of liquids has implications in areas as diverse as 

flood control, pollution monitoring, industrial processes, agricultural irrigation, and gauges in 

airplanes. Therefore, it is not surprising that there is a huge amount of research that has been 

conducted in this area and summarizing it from the beginning would fill many volumes.  Instead 

of trying to capture all of this history, this literature review will focus on topics that are germane 

to the development of the sensor for this project and its use in open channel water flows to 

monitor velocity. First, it is important to understand the nature of water flow in open channels to 

properly understand the conditions in which the sensor is expected to operate. Then various 

methods for determining velocity will be discussed with particular focus on the methods 

employed by the sensor in this project. Finally, the use of computational fluid dynamics (CFD) 

as a way to analyze fluid flows and improve the development of objects like velocity sensors that 

interact with moving fluids will be covered. 

 Water Flow Velocity in Natural Channels 

The velocity of water flowing in a natural stream is highly variable in time and spatial 

dimensions. This variability is introduced by numerous sources and can be observed in velocity 

changes over time, at different depths, across a cross section and longitudinally along a stream. 

The flow velocity downstream is the main component of velocity that is measured in these 

dimensions. In addition to the main flow going downstream, there are also lesser secondary 

spiral currents that change depending on the position in the stream. All these effects make the 

velocity pattern in a natural stream a very complex system. 

 Time Variations 

Velocity variations over time come from two main sources. The first is turbulence which 

is a natural property of fluid flow. The second source is unsteady flow which can come from 

man-made activities like dam breaks and sluice gate operation, or natural processes like tidal 

flows or flood waves moving downstream. These two variations in time are very different in 

description and effect. Turbulence is present in nearly every natural stream as a fundamental 
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property of the fluid flow. Unsteady flow is generally caused by an outside disturbance on the 

stream. 

Turbulence is a natural phenomenon in fluid flow in natural streams and many other fluid 

flow situations from air flow over wings to liquids flowing in pipes to enormous convective 

currents in stars (Hillebrandt and Kupka 2009).  As such it might be assumed that it would be 

thoroughly understood. Unfortunately, that is not at all the case, and even the definition of 

turbulence is under debate. Hillebrandt and Kupka (2009) state that “turbulence is commonly 

defined as a flow regime characterized by chaotic, stochastic property changes, such as rapid 

variation of pressure and velocity in space and time.” On the other hand Tsinober (2009) calls 

attempts to define turbulence as “futile” and instead describes its main qualitative features. 

Although this qualitative description is useful and accurate for in-depth studies of turbulence, it 

does not provide an easily understandable explanation that allows people to visualize what is 

occurring in turbulent flow. White (2003) tries to provide some insight in a basic fluid mechanics 

text by stating that the fluctuations caused by turbulence typically range from 1% to 20% of the 

average velocity and are random and contain a continuous spectrum of frequencies. On the other 

hand, Knighton (1998) reports that turbulence can cause point velocities to deviate by 60% to 

70% from time-averaged mean values in natural open channels. Although there is no basic 

theory of turbulence that is widely accepted, engineers and scientists have been working on 

turbulence for many years and have created many empirical models to deal with it. 

One of the most fundamental concepts in fluid mechanics, the Reynolds number, is 

directly related to the difference between turbulent and smooth, or laminar, flow. The Reynolds 

number is a relative comparison of the inertial forces to the viscous forces. The Reynolds 

number, Re, is (White 2003): 

     
   

 
 (1) 

 

where 

  = fluid density (kg m
-3

) 

  = fluid viscosity (Pa s) 

V = the characteristic velocity of the fluid (m s
-1

) 

L = the characteristic length scale of the fluid flow (m).  
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At Reynolds numbers above around 2300, flow starts to become turbulent (Hillebrandt 

and Kupka 2009). However, this transition point depends on numerous factors such as surface 

roughness and channel shape, and 2300 is really just the accepted design value for pipe flow 

(White 2003). Reynolds numbers for natural open channels are usually large and indicate that the 

flow is highly turbulent. The only common laminar open channel flow is the sheet flow which 

occurs with runoff rainwater (Chow 1959).  Therefore turbulent flow is a major consideration in 

any natural channel water flow.  

Given the unknown nature of turbulence, nice equations based on physical theory do not 

exist to describe the instantaneous velocity of turbulent water flowing in a natural channel. 

Instead of waiting for physicists to discover all the necessary fundamental laws, engineers have 

had to create alternative methods based on empirical observation to allow some basic 

understanding of turbulent flows for design work. One of the earlier methods was proposed by 

Osborne Reynolds (of the Reynolds number fame). In Reynolds’ Averaging approach, the 

velocity and pressure terms in the basic fluid momentum equations (Navier-Stokes equations) of 

fluid flow are written as time-averaged velocities and pressure instead. The basic Navier-Stokes 

equations are (White 2003): 
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where 

  = fluid density (kg m
-3

) 

  = fluid pressure (Pa) 

  = fluid viscosity (Pa s) 

 ,  , and   = coordinate directions (m) 

 ,  , and   = the velocity components in the x, y, and z directions respectively (m s
-1

). 

 Each velocity or pressure term is then replaced by the average velocity or pressure plus a 

fluctuating component such that    ̅          ̅           ̅      and    ̅       where 
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the time average value is represented with a bar (e.g.  ̅) and the fluctuating component is 

represented by the prime (e.g.   ). The time mean of the resulting equation is then taken. This 

approach allows calculations on the fluid flow, but the fluctuations caused by turbulence are 

necessarily removed. This approach produces the Reynolds Averaged Navier-Stokes equations 

(White 2003). The Reynolds Averaged Navier-Stokes equation for the mainstream direction is 

thus: 
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The terms,     ̅̅ ̅̅ ,      ̅̅ ̅̅ ̅̅ ,      ̅̅ ̅̅ ̅̅ , are called the turbulent stresses and represent the stress exerted 

on the flow by turbulent fluctuations (Kundu 1990). These are new terms present in turbulent 

flows that appear in addition to the Newtonian stress caused by the fluid viscosity. In engineering 

equations describing turbulent fluid flow, the averaged terms produced using Reynolds’ 

Averaging method are employed. Only the mean flow properties and not the rapid variations are 

considered (White 2003). This applies to equations for computing friction factors, pressure drops 

and many other equations designed to work with various flow geometries in turbulent flow.  

To provide a way to determine the fluctuations caused by turbulence, Nezu and Rodi 

(1986) proposed equations to describe the turbulent variations in velocity as: 

 
  

  
     (     )       (   ) (6) 

      
(
   

  )
 (7) 

where 

   = turbulence in the x direction (m s
-1

) 

   = the friction velocity (m s
-1

) and is calculated as √    , where    is the wall shear stress 

(Pa) and   is the fluid density (kg m
-3

) 

   and    are empirical constants to be determined by experiment 

  =  
 

 
, where   is the distance of a point above the channel bed (m) and   is the flow depth (m) 

   =       (dimensionless), where   is the kinematic viscosity (m
2
 s

-1
) 

  = the damping coefficient and is set to 10. 

Nezu and Rodi found good agreement with this model in their experiments with a laser Doppler 

anemometer in open channel flow by setting         and         . 
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The other type of time variation in flow in open channel streams is unsteady flow. This 

deals with changes like flood waves, sluice gate openings and dam breaks. Unsteady flow is a 

change in discharge and depth which then causes a change in velocity. It is possible to perform 

calculations to try to understand how the wave generated by these events travels down a stream, 

and Chow (1959) and Henderson (1966) devote several chapters to this type of analysis. 

However, when only considering velocity at a point, the relationship between velocity and 

discharge describes the change in velocity that will be noticed. The basic relationship between 

discharge and velocity is       where Q is the discharge (m
3
 s

-1
), V is the velocity (m s

-1
), and 

A is the area of the channel (m
2
). In general, rising discharge increases both area and velocity. 

The change in velocity depends on the depth, slope and the flow resistance of the channel. It is 

expressed empirically in the Chezy Formula (Dunne and Leopold 1978): 

    √   (8) 

where 

  = average water velocity across a cross section (m s
-1

) 

C = resistance factor, large for smooth boundaries and small for rough boundaries 

R = hydraulic radius, which is approximately equal to depth for wide channels (m) 

S = energy gradient, which is closely related to slope of the water surface (m m
-1

). 

Although the Chezy Formula and the similar Manning Formula are empirical relationships, they 

do work in practice to estimate velocity based on changes in flow area. 

The time variations in water flow can create significant difficulties for sensors trying to 

determine flow velocity. The presence of turbulence means that the velocity which is to be 

monitored is continually changing and thus presents a "moving target" for the sensor. However, 

it is almost always the average flow with which users of the sensor are concerned. The 

fluctuations from turbulence rarely appear in design equations or other uses, so sensors often 

only need to consider this average velocity instead of the constantly changing instantaneous 

velocity. The fluctuations from unsteady flow do not create as many issues for most sensors. The 

changes in flow velocity caused by unsteady flow events such as floods are often changes that 

velocity sensors are being used to detect. Therefore, the conditions in unsteady flow events can 

end up dictating the capabilities of velocity sensors. 
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 Depth Variations 

In a natural open channel stream, the velocity of the fluid flow at a point also depends on 

the depth of that point in the flow. This variation is caused by the free surface of the water and 

the friction of the channel wall (Chow 1959). Gordon, McMahon, Finlayson, Gippel and Nathan 

(2004) provide the common vertical velocity profiles shown in figure 1. The graph in (a) is a so-

called typical velocity profile for most streams. The image in (b) shows a profile near the center 

of wide, swift stream where the maximum velocity is very near the surface, and (c) shows the 

profile that can appear in shallow, steep, cobble and boulder-bed streams. 

 

 

Figure 1. Depth velocity profiles (a) in "typical" streams, (b) in the center of broad, fast 

streams, (c) in shallow, steep, rocky streams. Image based on Gordon, McMahon, 

Finlayson, Gippel and Nathan (2004) 

Chow (1959) states that the maximum velocity usually occurs below the free surface at 0.05 to 

0.25 of the total depth.  

 The velocity profiles shown above are based on observation, but considerable effort has 

been expended over the years to develop theories explaining the flow of turbulent fluid over a 

stationary surface. Such velocity profiles were rather straightforward to develop from basic 

theory for laminar fluid flow. Unfortunately, that did not hold for the turbulent flow case. As 

with laminar flow, the wall creates a no slip condition where the water immediately next to the 

wall does not move. Water further away from the wall does move and this introduces stresses 

into the flow as the water in one layer moves past another layer flowing at a lower velocity. One 

of the main complications in turbulent flow is in differences of scale. Very close to the wall, the 

stress in the fluid flow is determined by the viscosity of the fluid. This region is the inner layer. 

Further out from the wall, in what is called the outer layer, the stresses produced by the wall are 

dominated by the Reynolds stresses (Kundu 1990). 
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 In the inner layer dominated by viscous forces, the velocity distribution is given by 

(Kundu 1990): 

  ̅  
   
 

 (9) 

where 

 ̅ = time-averaged velocity at a point (m s
-1

) 

  = distance from the wall (m) 

   = wall shear stress (Pa) 

  = fluid viscosity (Pa s). 

In nondimensional variables useful near a wall, this then becomes (Kundu 1990): 

 
 ̅

  
    (10) 

where 

   = the friction velocity (m s
-1

) 

   =       (dimensionless), where   is the kinematic viscosity (m
2
 s

-1
). 

These equations for the inner layer have been shown experimentally to hold to about      

(Kundu 1990). The form of the equation indicates that the relationship between the velocity and 

distance from the wall in this layer is linear. 

 The velocity profile in the outer layer is different as the primary stress affecting the flow 

is now the Reynolds stress. The velocities in this region are defined in terms of a reduction from 

the maximum velocity in the flow. The equation used in this region is called the velocity defect 

law and is (Tennekes and Lumley 1972): 

 
 ̅      

  
  (

 

 
) (11) 

where 

     = the maximum velocity (m s
-1

) 

 ( ) = an unknown function 

  = distance from the wall (m) 

  = depth of flow (m). 

 These equations must end up matching at some point where the flow transitions from the 

inner layer to the outer layer. This led to the deduction of a logarithmic law that holds in the 

region between the two layers called the overlap layer. The following two equations emerge 
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when the equations describing the inner and outer regions are converted to show this relationship 

(Tennekes and Lumley 1972): 

 

 
 ̅      
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(13) 

where 

  = the Karman constant, experimentally determined to be about 0.41 

A and B = constants. 

These two equations must be simultaneously valid in the boundary layer which produces the 

relationship called the logarithmic friction law (Tennekes and Lumley 1972): 

  

 
    

  
 

 

 
         (14) 

where 

   = Reynolds number defined here as         . 

In fully developed enclosed flow, equation (14) allows the calculation of the maximum velocity 

as long as the pressure gradient and width are known (Tennekes and Lumley 1972). For 

example, experiments have shown that A = 5.0 and B = -1.0 for smooth flat plates (Kundu 1990) 

or in smooth pipes (Tennekes and Lumley 1972). However, White (2003) states that the 

combined value for both A and B should instead be 5.0 for smooth flow in pipes. In basic 

calculations involving fully developed pipe flow, it is assumed that the logarithmic profile in 

equation (14) extends across the entire pipe cross section and point velocities are calculated 

using this equation (Tennekes and Lumley 1972, White 2003). However, Kundu (1990) writes 

that the logarithmic function really only holds for   ⁄     , but the general defect law where 

the function is unknown holds everywhere except in the inner layer. 

For use in open channel flows Sturm (2010) provides the following form of the 

logarithmic velocity defect law:  

 
      ̅

  
  

 

 
  

 

 
    (15) 

where 



11 

 

     = the time-averaged maximum velocity of the water in the channel (m s
-1

) 

 ̅ = the time-averaged point velocity (m s
-1

) 

  = von Karman's constant and has a value of 0.40 to 0.41 

  = the distance from the wall (m) 

  = depth of flow (m) 

   = an experimentally determined constant 

   = the shear velocity (m s
-1

). 

Sturm (2010) suggests using equation (15) to calculate bed shear stress which shows up as the 

wall stress in the shear velocity term, but he cautions that it should only be used in the range 

  ⁄     . After performing some simplifications, Gordon, McMahon, Finlayson, Gippel and 

Nathan (2004) produced the following two equations to describe the velocity profile in 

hydraulically smooth conditions, equation (16), and hydraulically rough conditions, equation 

(17): 

 
 ̅

  
        (

   

 
)     (16) 

  ̅

  
        (

   

 
)     

(17) 

 

where 

 ̅ = the time-averaged point velocity (m s
-1

) 

   = the shear velocity (m s
-1

) 

  = the distance from the wall (m) 

  = the kinematic viscosity (m
2
 s

-1
) 

  = effective roughness height (m). 

Hydraulically rough conditions are situations where the particle sizes on the surface are large 

enough to extend above the inner boundary layer. This is in contrast to hydraulically smooth 

surfaces where the surface is smooth enough that disruptions do not extend past the laminar inner 

layer. These equations are much simpler than those presented above, but they depend on 

assumptions that are made for the various constants in the previous equations. 

When the various equations for the velocity profile along a wall in turbulent flow are 

plotted with transitions based on experimental evidence, the chart shown in figure 2 appears. 
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Figure 2. Velocity profiles obtained for turbulent flow along a wall. Image based on Sturm 

(2010) 

The fundamental logarithmic relationship shown here describes the velocity as distances increase 

from the nearest surface. Of course the shape and characteristics of the actual natural channel 

determine how the velocity distribution works. This distribution is only good in a limited region 

closest to the surface. Outside of this region, the unknown function,  (
 

 
), in the velocity defect 

law begins to describe the profile, and it depends on flow and channel conditions. The 

logarithmic shape can show up in near perfect conditions in the center of large streams where 

only a flat bottom surface has an effect on velocity. More complicated configurations for the 

channel can cause other surfaces besides the bottom surface to be the nearest surface and have a 

corresponding effect on the velocity profile over depth. Because of the unknown shape of the 

function in the velocity defect law, there is no one single law that is applicable in all conditions 

to describe the velocity profile with depth. 

Although there is no theory-based description of all velocity variations caused by depth, 

there are several generalizations relating average velocity across an entire channel to changes in 

depth. Dunne and Leopold (1978) state that increases in discharge cause increases in average 

0

5

10

15

20

25

30

1 10 100 1000 10000

Linear Viscous
Sublayer

Logarithmic Overlap
Layer

Velocity Profile

Diverging profiles 
based on flow 
conditions Overlap layer 

Inner Layer 



13 

 

velocity, width, and depth. So, increases in depth caused by increasing discharge should 

correspond with increases in the average velocity in a channel. The observed relationship 

between average velocity and discharge is a power function as depicted in equation (18) while 

another power function, equation (19) describes the relationship between depth and discharge 

(Leopold and Maddock 1953): 

       (18) 

       (19) 

where 

  = the average velocity across an entire cross section (m s
-1

) 

  = volume discharge (m
3
 s

-1
) 

  = depth of flow (m) 

        = numerical constants that depend on the channel. 

Because of differences in the numerical constants, this relationship must be established 

individually for each channel under consideration. Even with the constants known, these 

equations only relate discharge to channel depth and average velocity. They do not reveal the 

exact velocity that would be obtained at a single point because of such changes in depth. 

However, they are useful to better understand how depth and velocities are in general related. 

 Section Variations 

The point velocity in a natural open channel also varies across a channel section of the 

flow. This variation horizontally in a cross section is largely dependent on the friction from the 

boundaries of the channel like the velocity profile at different depths is. The logarithmic velocity 

profile from wall friction discussed to describe the effect of the channel bottom on the velocity 

depth profile also describes the friction effect of the channel side walls on the cross section 

velocity profile. However other factors also come into play such as unusual section shape, 

channel roughness, and bends (Chow 1959). At the center of the bend there is increased velocity 

near the outer bank as a result of centrifugal forces on the water flow. However, at the entrance 

to the bend, the highest velocity in the cross section will be near the inner bank (Knighton 1998). 

 Longitudinal Variations 

Many factors cause variations in velocity longitudinally along a stream or river. Size and 

shape of the channel have a direct impact on velocity as discussed in the sections on depth and 
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section variations. As a stream progresses downstream, the channel can change as the stream or 

river flows through different geomorphologic regions. Human activities can also cause changes 

in the size and shape of the channel. All of these changes will naturally cause variations in the 

mean velocity of the stream or river. However, a general pattern does emerge of increasing 

velocity with progression downstream. Dunne and Leopold (1978) established that discharge is 

related to drainage area with an equation of the form: 

       
  (20) 

where 

   = the discharge from a flood of a given frequency (m s
-1

) 

   = the drainage area (m
2
) 

  = a constant that is usually less than 1.0 and often between 0.7 and 0.8 

  = coefficient that depends on climate and frequency of the flood. 

A value less than 1.0 for   indicates that discharge does not increase as quickly as drainage area. 

Since drainage area increases going downstream, combining this result with equation (18), which 

shows increasing velocity with increasing discharge, predicts an increase in velocity from 

upstream to downstream. 

Wolman (1955) conducted studies on Brandywine Creek in Pennsylvania and measured 

velocity at different locations along the stream. He did this for 100%, 50%, 15% and 2% of 

bankfull discharge levels. He found increasing velocity at discharge levels below bankfull, but 

nearly no increase in velocity downstream at bankfull discharge. Wolman suggested that this 

might be because the rate of decrease in channel roughness from upstream to downstream might 

be less during bankfull discharge as compared to lower discharge levels. This increase in 

velocity downstream is interesting given the fact that channels tend to have less slope 

downstream (Knighton 1998). The Chezy and Manning equations predict lower velocities with 

lower slopes, but the increase in hydraulic radius from the increased discharge and lower 

roughness appears to make up for the loss of slope. 

 Spiral Flow 

Although the main flow in a stream can be described by a one-dimensional velocity going 

downstream, there are significant three-dimensional secondary currents present in natural open 

channel flow. These secondary currents are a natural process and will even appear in short, 
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straight laboratory flumes where the highest water level will shift to one side of the flume 

because of their effect. In longer uniform reaches, a double spiral motion will appear (Chow 

1959). These secondary currents are frequently called spiral currents because the flow is 

generally in a spiral. Spiral flow can have a significant effect on channel properties, but in 

magnitude, the spiral flow will be relatively small compared to the downstream velocity 

(Gordon, et al. 2004). Chow (1959) states that spiral flow is mainly due to friction on the channel 

walls, centrifugal force, and a vertical velocity distribution in the approach channel. Because of 

the effect of friction, spiral flow is affected by the Reynolds number with different spiral flow 

characteristics depending on the Reynolds number of the flow. The strength of spiral flow is 

indicated by (Chow 1959): 

     
   

 

  
     (21) 

 

 

where 

    = strength of spiral flow (dimensionless) 

    = the mean-velocity vector projected on the    (cross sectional) plane (m s
-1

)  

  = the mean velocity in a section (m s
-1

). 

Thompson (1986) developed a model using secondary flows to describe pool-riffle formation 

and the eventual formation of meanders. The process begins with the natural oscillating spiral 

flows noticed by Einstein and Shen (1964).  By adding mobile bed load, the spiral flow produces 

pool-riffle units. 

Based on observations of the Skirden Beck stream in the United Kingdom, Thompson 

concluded that the spiral flow in the riffle pool units would progress to creating meanders which 

shows the observed flow patterns in the Skirden Beck.  The spiral flow increases in the bends 

towards the outer bank and produces the scour and sediment transfer to build the meander. This 

progression, which is caused by the spiral flows, shows that even though spiral flows are 

relatively smaller than the primary downstream flow, they can have significant impacts. 

Thompson's (1986) model demonstrates how spiral flow can cause observed patterns in natural 

channels, but it is lacking in equations to define that define the process quantitatively. In his 
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analysis of the pool-riffle process, Knighton (1998) cautions that no one explanation of riffle-

pool formation is entirely satisfactory.  

The complex nature of the flow of water in natural channels creates difficulties in 

developing sensors for monitoring the velocity of that water. The constantly changing water 

velocity caused by turbulence requires that velocity sensors somehow deal with the difference 

between average and instantaneous readings to provide useful results. Another issue from 

turbulence is that the constant changes make calibration more difficult since readings taken in 

identical conditions but at different times will produce different instantaneous velocities. Only 

the time-averaged velocities can be expected to be the same in identical flow conditions. The 

spatial differences in velocity do not cause as many difficulties for sensor development, but are 

important when using the sensor to determine the average water velocity of an entire channel. 

Often these differences are the differences for which the sensor is being designed to detect. 

 USGS Stream Discharge Measurements 

For many years the United States Geological Survey (USGS) has estimated stream 

discharge in rivers and streams across the United States. They use a variety of methods to 

produce these estimates and the methods are constantly being revised and improved. The basis 

for most of these measurements is stage, also called gage height, which is the height of the water 

surface at a location (Olson and Norris 2007). Another method used in conditions where the 

stage height method does not perform well is the index velocity method. This method uses a 

continuously monitored index velocity at a fixed location in the river to estimate total discharge. 

 Stage-Discharge Method 

The procedure for establishing discharge based on stage has been under continuous 

improvement for many years. The first streamgaging station was established in 1889 on the Rio 

Grande River in New Mexico (Olson and Norris 2007). There are four main steps involved in 

conducting this kind of measurement. First, a continuous record of stage must be obtained. 

Second, periodic measurements of discharge are necessary. Third, the relationship between 

discharge and stage must be defined. Finally, this relationship is used to convert the continuous 

stage measurements into discharge measurements (Olson and Norris 2007). 

The continuous stage record is composed of data measured at a regular interval which is 

usually every fifteen minutes. One way of determining stage is to use a stilling well attached by 
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underwater pipes to the stream being measured. Changes in water level in the stream are 

reflected in changes in the water level in the stilling well. These height changes can be measured 

through various techniques such as floats or optical, pressure, or acoustic sensors. At other 

locations a bubbler is used to determine height. With a bubbler, the height is determined by the 

amount of air pressure necessary to push a small flow of gas out of a tube mounted underwater in 

the stream. These stage measurements used by the USGS are accurate to the nearest 3 mm or 

0.2% of stage, whichever is greater (Olson and Norris 2007). 

The second step in the streamgage process is to periodically determine the discharge. 

There are many methods to determine discharge. Devices such as weirs can provide discharge 

directly, but the USGS often uses a velocity-area method called the mid-section method. To 

produce a discharge measurement this way, the channel is divided into 25 to 30 vertical sections 

and the velocity is measured in each section. There are several ways to determine the velocity in 

each section. The two-point method uses point measurements from a velocity meter taken at 0.2 

and 0.8 of the depth of the flow. The 0.6-depth method uses a single point measurement from a 

velocity meter at 0.6 of the depth of the section (Rantz 1982). Traditional mechanical velocity 

meters, also called current meters, such as the Price AA or Pygmy Price can be used for these 

measurements (Olson and Norris 2007). However, more of these measurements are being made 

using acoustic instruments in recent years, and in 2006, 33% of all such measurements were 

made with acoustic instruments (Muste, et al. 2007). While taking these velocity measurements, 

the depth and distance from the bank are being recorded. Once the average velocity and position 

and depth of each section have been determined, the mid-section method provides a formula to 

produce the discharge for the entire channel (Rantz 1982). 

Another method to obtain the discharge is through the use of acoustic Doppler current 

profilers (ADCP). The ADCP is mounted on a small boat which is pulled across the river. As it is 

pulled across the river, it provides a velocity profile of the water velocity directly beneath it and 

a measurement of the depth of the channel. The location of this boat is closely tracked to 

determine its position at all times during the measurement. Using the velocity profile information 

and channel depth, discharge can be calculated by multiplying the velocity by the area (Olson 

and Norris 2007). This method can provide considerable time savings over the previous method 

involving individual point measurements. 
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The third step in this process is to determine the stage to discharge relationship. In this 

step, the stages measured by the streamgage are plotted against the discharges determined by 

several manual discharge measurements. Special effort is made to catch both high and low 

discharge periods to extend the range of the measurements. Figure 3 is an example of a stage-

discharge relationship for a streamgaging station on Pineknot Creek in Fort Benning, Georgia. 

Even after enough measurements have been made to establish the relationship between stage 

height and discharge, more manual discharge measurements must be made. This is because 

changes in the channel shape caused by events like erosion or land use changes will change this 

relationship. Therefore, new manual measurements of discharge must be made approximately 

every six to eight weeks to update this relationship (Olson and Norris 2007). 

 

Figure 3. Stage-Discharge Rating Curve for USGS streamgage 02341725 on Pineknot 

Creek in Fort Benning, Ga. (U. S. Geoligical Survey 2011) 

The final step in determining discharge using a streamgaging station is to convert the 

measured stage to discharge using the relationship determined in the third step. Since the stage is 

measured continuously, this allows a continuous estimate for discharge. This step also involves 

some quality control to ensure the estimates are reliable. Finally, the data for most streamgage 

stations is then placed online for easy access. These steps are the basic procedures used by the 

USGS to determine the discharge of most of the rivers and creeks that they monitor. 
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 Index Velocity Method 

In some cases, the stage-discharge method does not produce reliable estimates of 

discharge. Some situations where problems have been noticed include rivers affected by tides, 

rivers that have little slope, rivers that experience density currents (Blanchard 2007) or river 

confluences where rising water in one river causes variable backwater in another river (Levesque 

and Oberg 2012). The index velocity method has only seen much use recently as the 

development of acoustic Doppler current profilers (ADCP) has made this method more feasible 

than previous methods of determining a point velocity for use as the index velocity. Of the about 

7,400 stations operated by the USGS, approximately 470 utilize the index velocity method 

(Levesque and Oberg 2012). The index velocity method utilizes continuous records of both stage 

and an index velocity to estimate discharge. This method also requires that two rating curves be 

developed. The first relates stage to area and the second relates the index velocity to the mean 

velocity of the water in the channel. The results of these ratings are mean velocity and cross 

sectional area which can be multiplied together to produce the discharge of the stream. This is in 

contrast to the stage-discharge method which uses stage as a representation of the combined 

effects of velocity and area to create a unique relationship with discharge (Levesque and Oberg 

2012). 

The cross sectional area is solely a function of stage and this relationship is termed the 

stage-area rating (Levesque and Oberg 2012). The suggested technique for developing a stage-

area rating involves four steps. First, a standard cross section is established. The standard cross 

section is at a location near the index velocity sensor which can be marked and documented for 

re-surveying in the future. Second, the cross section must be surveyed. Next the cross section 

information is used to develop a stage-area rating. The AreaComp program from the USGS can 

be used to generate the rating from the cross section data (Rehmel, AreaComp 2008). The final 

step in developing a stage-area rating is validation. The cross-section needs to be resurveyed 

every year for the first three years, every three years after the first three years, and after any 

event that could be expected to cause cross section changes (Levesque and Oberg 2012). After 

completing these steps, a valid stage-area rating for the index velocity method should be ready. 

The index velocity rating can be more complicated. The mean velocity of a channel is 

often a simple function of the index velocity, but it can also be a function of several different 

factors. Some other possible forms of the average velocity function include index velocity and 
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stage or stream-wise index velocity, stage, cross-stream index velocity, and velocity head 

(Levesque and Oberg 2012). Whatever the form of this function, it is referred to as the index 

rating for use in this method. The first step in creating this rating is to measure the discharge 

under the full range of flows that can be expected at the site. This can be complicated as places 

using the index velocity method typically have unusual flow patterns. The measurements must 

also be made quickly enough that unsteady flow conditions do not impact the discharge 

measurement. It is also necessary to collect measurements that define short-term variations, like 

from tides or rainfall, and seasonal variations caused by events like snow melt (Levesque and 

Oberg 2012). After taking many discharge measurements, they are converted to mean velocity 

by dividing the discharge by the cross sectional area determined by the stage-area rating and the 

stage recorded while conducting the measurement. The rating between mean velocity and the 

index velocity can then be created using linear, compound-linear or multiple-linear regressions 

(Levesque and Oberg 2012). Besides just the index velocity, other available variables such as 

stage or the components of the index velocity are used in the regression analysis to produce the 

best possible rating. This regression analysis then provides the proper index rating for the site. 

After creating these ratings, it is then possible to produce continuous discharge estimates 

from the continuously recorded stage and index velocity at the site. The measured stage, which is 

combined with the stage-area rating, provides the area of flow. Using the index rating with the 

index velocity and any other variables required by the rating produces a mean velocity. 

Multiplying the mean velocity and the area produces the discharge estimate (Levesque and 

Oberg 2012). The steps involved in an index velocity based discharge measurement can be more 

complicated. However, the complication can be justified in being able to produce discharge 

measurements on rivers and creeks that could not be monitored reliably using simpler methods. 

 Velocity Measuring Techniques 

Measurement of fluid flow can be made in different ways such as direct measurement of 

fluid velocity at a single point or an average over an area, volumetric discharge of the entire 

flow, or mass discharge of the entire flow. These measurements are related by the density, area 

and velocity profile of the fluid flow allowing measurements of one kind to provide information 

on the others. Another issue in the measurement of fluids is the division between enclosed or 
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closed conduit and open channel flow and the differences this imposes on various measurement 

techniques. Consequently many different solutions for measuring fluid flow have been devised. 

The most straightforward measurement of fluid flow is to capture the entire flow in a container 

and time how long it takes to reach a certain volume or mass. This measurement provides a 

direct measure of the volumetric or mass flow rate and can be applied to either closed conduit or 

open channel flow as long as the entire flow can be directed into a holding container. This 

method can be very precise and is useful for providing calibrations, but is generally impractical 

in use in the field as it ends up being bulky and slow in actual systems (ASHRAE 2009). Other 

measurement methods are needed if the fluid flow is to be measured in a practical manner in 

many applications. 

 Cursory Velocity Estimating Methods 

For some applications, only a rough idea of the fluid velocity is necessary. Therefore, 

several less complicated methods have been developed to meet these applications. If velocity is 

desired rather than volumetric or mass flow rates, dropping floats in the fluid flow has been a 

simple method used for a long time. Unfortunately, floats only capture the average velocity of 

the points through which they travel and velocity changes temporally in turbulent flow and 

spatially in any fluid flow. To handle some of the spatial differences, curves have been created to 

provide rough estimates of average fluid flow velocity in open channels of different depths based 

on the surface velocity of a float (Dodge 2001). 

Because of the difficulty of actually measuring fluid flow in certain cases, engineers have 

created the slope-area methods to estimate flow discharge without actually measuring the flow. 

This is the basis of the Manning and Chezy formulas that estimate velocity based on slope, area, 

and a resistance coefficient in open channel flow (Dunne and Leopold 1978). These methods can 

be difficult to use reliably and only provide approximate measurements (Dodge 2001). The 

various methods utilized by the USGS to produce real-time and daily discharge for rivers and 

creeks across the country also fall into this type of simplified measurement. Since it is not 

practical to continuously measure discharge at sites across the United States, the USGS has to 

rely on the various relationships to determine discharge based on an easier to measure parameter 

of flow such as stage. These methods are useful for estimations, but direct measurement of flow 

is necessary for better results. 
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 Intrusive Flow Measurement 

Flow measurement devices can be divided into devices that do and do not intrude into the 

fluid flow. One of the most common methods of estimating fluid flow is an intrusive 

measurement that relies on the pressure drop across an obstruction in the flow. In closed conduit 

fluid flow, this pressure drop can be caused by thin plate orifices, nozzles, venturi nozzles, or 

elbows in the conduit. In open channel flow devices such as flumes, weirs or submerged orifices 

are used, and water elevation is measured instead of pressure. Each type of obstruction has a 

defined shape and equation used to determine the volumetric flow rate based on fluid dynamic 

properties. Precisions of 1% to 5% can be obtained from the orifice designs and 0.5% to 2% for 

the nozzle and venturi nozzle systems (ASHRAE 2009). Flumes can be designed with errors as 

small as ±2% (Dodge 2001). A significant drawback of these types of systems is the pressure or 

water elevation loss. Also, the measurements are highly dependent on the geometry of the 

obstruction so sediment or other deposits can prevent them from working properly. 

Laminar flow meters also use pressure drop to determine the flow rate. Laminar flow 

meters force the fluid to flow through small channels or honeycomb structures to ensure laminar 

fluid flow. The pressure drop of a fluid in laminar flow is linear with respect to flow rate and 

laminar flow meters use this linear relationship to determine flow rate of the fluid (White 2003).  

These devices can measure a very wide range of flow rates at 1% precision as long as the device 

is built to handle the flow and ensure laminar conditions (ASHRAE 2009). These devices are not 

suitable for fluids containing contaminants as the particles could easily block the passages used 

to ensure laminar flow (Mattingly 1983). 

Another intrusive measurement system that relies on pressure differences is the pitot 

tube. The pitot tube is a sealed tube with an opening that points upstream in the fluid flow. The 

velocity of the fluid creates a pressure in the tube called the stagnation pressure. The device has 

another sealed tube with an opening that is oriented perpendicular to the fluid flow. The pressure 

produced in this tube is the static pressure. Bernoulli’s equation provides the relationship 

between the pressures and the velocity of the fluid (Blake 1983). This velocity is a point 

measurement of the velocity at the entrance of the tube pointing upstream. Pitot tubes operate in 

both open channel and closed conduit flow (Dodge 2001). Precisions can range from 2% to 5% 

(ASHRAE 2009). The pitot tube must be precisely aligned upstream so the velocity 

measurement is only one dimensional. A drawback of this method it that the tube must have 
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sturdy support to maintain alignment, and this support cannot interfere with the fluid flow at the 

entrance. Also low velocities can produce very low pressures that sensors have trouble accurately 

detecting (White 2003). 

Rotating mechanical devices like anemometers, propellers, and turbines provide direct 

velocity measurements in both open channel and closed conduit flows. The flowing fluid causes 

a rotor inserted into the fluid flow to spin based on the fluid velocity (Mattingly 1983). The 

velocity is determined by a calibration curve that relates velocity to the speed of the spinning of 

the device (Upp and LaNasa 2002). The size of the spinning rotor causes the velocity to be an 

average velocity over the area covered by the mechanism (White 2003). Ranges of 10:1 (Upp 

and LaNasa 2002) with precisions of 0.25% to 2% (White 2003, ASHRAE 2009) are possible in 

devices designed for closed conduit flow. In recent calibration tests in open channels, Camnasio 

and Orsi (2011) determined that these types of current meters could be calibrated with ±1% to 

2% uncertainty. These devices require maintenance to stay properly calibrated, and care must be 

taken as debris in the flow can damage the rotors (Dodge 2001).   

Positive displacement meters provide a volumetric flow rate in closed conduit flows. In a 

positive displacement meter the fluid progressively fills and empties from cavities of a definite 

volume (ASHRAE 2009). These meters have good rangeability and can handle very low flow 

rates (Upp and LaNasa 2002). Precision depends on the actual meter design and can vary from 

0.1% to 2% (ASHRAE 2009). One of the biggest disadvantages of these meters is that they 

generally cause a large pressure drop and need provisions to handle jamming (Upp and LaNasa 

2002). 

The variable-area meter or rotameter is a simple device consisting of float suspended 

inside a vertical tapered tube. Fluid from a closed conduit flows upward and exerts a drag force 

on the float that is balanced by the weight of the float. The higher the velocity of the fluid, the 

higher the float will rise, thus providing an indication of velocity (Mattingly 1983). Precisions 

from 0.5% to 5% are possible with these meters (ASHRAE 2009). This meter does not provide 

design flexibility in that it must be vertical to operate. Also, bubbles and particles in the flow can 

cause inaccurate readings (White 2003). 

 A vortex flow meter is based on the fact that a bluff body placed in fluid flow will shed 

vortices at a rate proportional to the volumetric flow rate of the fluid. These vortices can be 

detected by pressure, ultrasonic or heat transfer sensors (White 2003). One percent precision is 
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possible (ASHRAE 2009) over flow ranges from 100:1 (White 2003). Vortex meters have a 

minimum velocity required for the formation of the vortices that prevents operation at very low 

velocities (Upp and LaNasa 2002). Research continues to improve vortex flow meters. Miau et 

al. (2005) determined the linearity of water flow measurements from a vortex meter based on a 

T-shaped bluff body to be ±0.391%. Zhang, Huang and Sun (2006) worked out how to extend 

the vortex flow meter in a limited case to produce mass flow rate instead of only volume flow 

rate so current research is improving the capabilities of these meters. 

Several types of velocity meters are based on the fact that a moving fluid will dissipate 

heat at a rate determined by fluid properties including flow rate. Examples of these types of 

meters include hot-wire anemometers, hot-film anemometers, and Thomas or thermal meters. 

The hot-wire and hot-film anemometers work by measuring the electrical resistance across an 

electrically self-heating wire or film that is inserted into the fluid flow. The velocity of fluid flow 

over the device determines the temperature and thus the resistance of the wire or film (Fingerson 

and Freymuth 1983). Thomas or thermal meters operate by measuring the temperature difference 

between points in front of and behind a heater or cooler placed in the fluid flow. This 

temperature difference corresponds to the mass flow rate of the fluid (ASHRAE 2009). Hot-wire 

and hot-film meters can provide good point measurements of instantaneous velocity (Fingerson 

and Freymuth 1983). Thomas or thermal meters are capable of 1% precision across a wide range 

of velocities in closed conduit flow. The major drawback of these devices is their frailty. 

Particles in the flow can easily damage these devices (White 2003). Another weakness of these 

devices is that all heat-transfer effects must be considered or inaccuracies will be introduced into 

the measurements (Fingerson and Freymuth 1983). 

 Nonintrusive Flow Measurement 

In some cases, it is not possible or desirable to have such intrusions which could affect 

fluid flow. Several non-intrusive meter designs have thus been developed. One of the earliest 

types of non-intrusive flow meters was the electromagnetic flow meter which was in use before 

the Second World War (Shercliff 1962). In electromagnetic flow meters, a magnetic field is 

applied across a conductive flowing fluid which induces a potential difference across the fluid. 

This potential difference is detected by electrodes that are embedded in the surface of a closed 

conduit or even attached to the outside of such a conduit (Shercliff 1962). Modern state of the art 
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electromagnetic flow meters require a conductivity of at least 5 μS cm
-1

 (ASHRAE 2009). They 

can easily detect flows of liquid metal (Shercliff 1962) or salt water, but more care must be taken 

when using these meters with low conductivity fresh water (White 2003). These meters are 

available for flows from 0.006 to 600 L s
-1

 with 1% precision (ASHRAE 2009). A major benefit 

of electromagnetic flow meters is that the output is related only to the velocity and not any other 

properties of the fluid (Shercliff 1962). These meters are usually rather costly compared to other 

methods (Shercliff 1962, Upp and LaNasa 2002, White 2003). Care must also be taken to ensure 

that suspended iron particles or dissolved chemicals do not deposit inside the sensor’s magnetic 

field or on the electrodes (Dodge 2001, Shercliff 1962). 

Another non-intrusive meter is the Coriolis mass flow meter. These meters utilize the 

Coriolis effect to determine mass flow rates in closed conduits. They detect the inertial forces 

that are generated as a particle in a rotating body moves forward or away from the center of 

rotation (ASME 2006). Commercial Coriolis meters oscillate the tube through which the fluid 

flows instead of rotating the tube to generate the effect. When fluid flows in the tube, the forces 

from the Coriolis effect cause the tube to twist or deflect. Measurement of this displacement then 

determines the mass flow rate through the meter (ASME 2006). Coriolis mass flow meters are 

available for mass flow rates from 0.001 kg h
-1

 to 36,000 kg min
-1

. Over a 100:1 range for full 

scale, these meters have a repeatability of 0.5%, while over a flow range of 10:1, repeatability of 

0.075% is possible (Anklin, Drahm and Rieder 2006). Accuracy is related to zero offset which 

depends on the size and construction of the individual meter (Anklin, Drahm and Rieder 2006), 

but combined effects are ±0.2% of the reading (ASME 2006). Besides mass flow rate, these 

meters can also be configured to determine fluid density and volumetric flow rate (ASME 2006).  

Many non-intrusive flow meters utilize ultrasonic techniques that transmit sound waves 

at ultrasonic frequencies though the flowing fluid. The determination of velocity can rely on 

either the difference in transit times of upstream to downstream traveling waves or the Doppler 

shift produced when the wave is reflected from particles entrained in the fluid flow. Ultrasonic 

flow meters are available for both open channel and closed conduit flow (Dodge 2001). 

Accuracies for the transit time ultrasonic flow meters in closed conduit flow range from 1% to 

5%, and if the devices can be calibrated in situ, this can drop to 0.5% to 2% (Sanderson and 

Yeung 2002). In open channel flow, meters based on the Doppler effect have been produced that 

provide either a point measurement or a profile of the velocity at different depths. Devices that 
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produce point measurements are often called acoustic Doppler velocimeters (ADVs) while 

devices that produce a velocity profile are called acoustic Doppler current profilers (ADCPs). 

ADVs have been found to produce velocity measurements within 5% of the earlier standard 

USGS measurements using rotating mechanical meters in velocities from 0.13 to 0.6 m s
-1

 

(Rehmel 2007). ADCPs have undergone extensive testing to ensure accuracy. Lemmin and 

Roland (1997) compared an ADCP to hot-film and pitot tube meters in the laboratory and to 

electromagnetic meters in shallow river environments and found accuracies better than 2 mm s
-1

 

for velocities up to 290 cm s
-1

. Oberg and Mueller (2007) tested ADCPs using a tow cart in a 

large towing basin and discovered differences between the tow cart velocity and the ADCPs 

bottom-track and water-track velocities of only -0.51% and -1.10% respectively. One drawback 

of acoustic Doppler techniques is the requirement that particles are present in the flow and lack 

of sufficient particles can produce incorrect results (Rehmel 2007). Another issue with ADCPs is 

underestimating of the velocity close to the transducers caused by interference in the flow from 

the transducer itself and incorrect assumptions of flow homogeneity at close range (Tokyay, 

Constantinescu and Gonzalez-Casto 2009). 

Laser Doppler anemometry is a velocity measuring technique that has mainly seen 

applications in laboratory settings in flumes and closed conduits. In this method, a laser beam is 

directed into the fluid flow and is scattered by particles present in the flow. The movement of the 

particles causes a Doppler shift in the scattered light that is picked up by the device and used to 

determine velocity (Adrian 1983). In the basic Laser Doppler Anemometer (LDA), the velocity 

is determined at a single small point and in only one dimension (White 2003). Systems are 

available that resolve the velocity at a single point into three dimensions (Mityushin 2002). 

Meier and Roesgen (2012) have worked on extending the measurement from a single point into a 

plane. Their system provides velocity in only one dimension but does so across the entire plane 

forming an image of the flow. All LDA systems require the walls containing the flow to be clear 

to allow the laser to enter the fluid. The fluid must also contain scattering particles, but not too 

many as the laser light must transmit though the fluid (Upp and LaNasa 2002). The cost and 

complications of LDA are justified in laboratory settings by possible 0.1% accuracy and velocity 

ranges that vary from 10 μm s
-1

 to 1 km s
-1

 (Adrian 1983). Because of the high accuracy and the 

ability to determine velocity with precision in both time and space, LDA techniques have been 

used to study and quantify turbulence. 
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Another popular velocity measurement technique that is mostly limited to laboratory 

settings is particle imaging velocimetry (PIV). In a typical PIV system a laser creates a light 

sheet that shines into the flow of a fluid. Particles in the fluid scatter the light and this scattered 

light is captured by an imaging system. Two sets of images are taken in quick succession and the 

velocity of the particles in the flow is determined using auto- and cross-correlations (Raffel, et al. 

2007). Standard PIV produces only planar estimates of velocity. However, Elsinga, Scarano, 

Wieneke and van Oudheusden (2006) have determined the velocity components in three 

dimensions for all particles in a three dimensional measurement volume using a technique called 

tomographic PIV. Another method to determine three dimensional components of velocity in a 

measurement volume is to use holography. Earlier experiments with holographic PIV used film 

(Chan, et al. 2004), but more recent experiments by Yang and Kang (2011) have reported good 

results using digital cameras. Like LDA, PIV methods have drawbacks in that particles must be 

present in the fluid and light must be able to transmit into the fluid. Precisions of individual PIV 

systems vary considerably as research is still underway, but 10% precision has been reported 

(ASHRAE 2009). 

Fluid flow velocity measurements can be carried out in numerous different ways based 

on many different properties of fluid flow. This list only covers some of the more commonly 

used methods and those under the most active research. Each method has its own advantages and 

disadvantages. The intrusive methods are generally simpler, cheaper, and more developed, but 

the requirement that part of the sensor intrude into the fluid flow and cause disruptions can be a 

severe drawback. In recent years, there has been much effort placed into non-intrusive methods 

so that the measurement does not affect the fluid flow. These non-intrusive methods have also 

created the opportunity to capture the velocity profile of fluid which could be very useful in 

certain circumstances. Measurement of fluid flow velocity is a challenging problem and much 

work is currently underway to improve these techniques. 

 Signal Time-Delay Determination 

Several methods of finding fluid velocity depend on determining the amount of time by 

which a signal is shifted from its original form. This shift results in one signal appearing with a 

time-delay compared to the original signal. Examples of velocity measuring methods that rely on 

the time-delay of signals include ultrasonic devices based on transit time and various particle 
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image velocimetry techniques. Determining the time-delay may at first seem like a simple matter 

of subtracting the start times of when a certain change occurs in both the original signal and the 

time-shifted version. Unfortunately the addition of noise in a system generally prevents the use 

of such a simple technique as the two versions of the signal are not identical which makes 

accurate identification of start times difficult. A more statistically rigorous manner of 

determining the time-delay is to use the cross-correlation of the original and time-shifted signals.  

The basic cross correlation allows delays between two signals to be determined 

statistically. The cross-correlation function between two zero-mean signals is (Bendat and 

Piersol 1986): 

    ( )   [ ( ) (   )] (22) 

where 

   ( ) = the cross-correlation 

 [ ] = the expected value function 

 ( ) and  ( ) = the two signals 

  = the time-delay (s). 

If the time-delay between  ( ) and  ( ) is   , then the maximum value of    ( ) occurs when 

    . When  ( ) and  ( ) are nonzero-mean, the cross-covariance function should be used, 

and is defined as (Bendat and Piersol 1993): 

    ( )   [( ( )    )( (   )    )]     ( )        (23) 

where 

   ( ) = the cross-covariance 

   = the mean of  ( )  

   = the mean of  ( ). 

As with the cross-correlation function, the peak value of    ( ) is when     , if the time-delay 

between  ( ) and  ( ) is   . 

The cross correlation coefficient is based on the cross-correlation function or the cross-

covariance function and provides addition information about how closely the signals match.  The 

cross correlation coefficient is defined as (Bendat and Piersol 1986): 

    ( )  
   ( )

    
 

   ( )

√   ( )   ( )
 (24) 
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where 

   ( ) = the cross correlation coefficient 

   and   , = the standard deviations of  ( ) and  ( ), respectively.  

This function is also termed the normalized cross covariance function (Bendat and Piersol 1986), 

the normalized cross correlation function (Shiavi 2007) or, even more confusing, as the cross 

correlation function (Jenkins and Watts 1968). In this work, the term cross correlation coefficient 

will be used to indicate this equation. If  ( ) and  ( ) are zero-mean, then    ( ),    ( ), and 

   ( ) can be replaced by    ( ),    ( ), and    ( ) in this equation (Bendat and Piersol 

1986).  A property of the cross correlation coefficient is that for all  ,       ( )     

The cross correlation coefficient,    ( ), measures the degree of linear dependence 

between  ( ) and  ( ) at a particular time delay,   (Bendat and Piersol 1986). A cross 

correlation coefficient of 0 at a particular time delay indicates that the signals are uncorrelated at 

that time delay while larger values indicate that the signals are closer matches (Jenkins and Watts 

1968).  Thus, the   at which the maximum cross correlation coefficient occurs determines the 

time delay, and the value of the cross correlation at that point is a useful indication of how 

closely matched the signals are. 

The previously given definitions for cross correlation and cross covariance cannot be 

directly applied to sampled signals as they rely on the expected value function. It is necessary to 

use an estimation procedure to determine the expected value. There are two commonly used 

estimation methods for these functions: unbiased and biased. Bendat and Peirsol (1993) suggest 

using the unbiased estimate in calculations involving cross correlations. The unbiased estimate 

for the cross correlation function is (Bendat and Piersol 1993): 

  

  ̂  ( )  
 

   
∫  ( ) (   )  

   

 

 (25) 

where 

 ̂  ( ) = the estimate of the cross correlation function 

T = sample length in time of  ( ) and  ( )  (s). 

The sample length, T, is such that both  ( ) and  ( ) share a common time base of      . 

Converting this to discrete-time yields the following version of the unbiased estimate of the cross 

correlation (Bendat and Piersol 1993): 
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where  

 ̂  (   ) = the discrete-time estimate of the cross correlation 

r = the lag number and is in the range       

   = the sampling interval (s) 

  = the total number of samples. 

The unbiased estimate for cross covariance is similar to the cross correlation estimate 

with the mean subtracted from each signal. The unbiased estimate for cross covariance is 

  ̂  ( )  
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where 

 ̂  ( ) = the estimate for cross covariance 

   and    = the means of the samples of the signals  ( ) and  ( ) respectively. 

The cross covariance can also be estimated in discrete time, and this produces the following 

equation for the unbiased estimate: 

  ̂  (   )  
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  (28) 

 ̂  (   ) = the discrete-time estimate of the cross covariance. 

The biased estimate for the cross correlation and cross covariance functions is similar to 

the unbiased estimate except that the division is by   ⁄  instead of  (   )⁄ . The biased 

estimate has smaller mean square error (Jenkins and Watts 1968) and its use is suggested by 

Jenkins and Watts (1968) and Shiavi (2007). The biased estimate for cross correlation is: 
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and the discrete-time form is:  

  ̂  (   )  
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The biased estimate for cross covariance is: 
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and, in discrete-time, the biased cross covariance estimator becomes (Shiavi 2007): 

  ̂  (   )  
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 (32) 

The direct calculations for the cross correlation estimates can involve large numbers of 

calculations with long sample lengths. For discrete time calculations of the estimates, it is 

possible to use the Fast Fourier Transform (FFT) to reduce calculation time (Bendat and Piersol 

1986). The use of the FFT can reduce computation time in certain circumstances, but because the 

FFT will produce a circular correlation, the sample lengths of the signals,    and   , must be 

doubled for the calculation to be correct. If    and    have sample lengths of N, they must be 

padded with zeros (or the sample mean if the sample is not zero-mean) to a length of 2N (Bendat 

and Piersol 1993). The equation to determine the cross correlation using FFTs is: 

  ̂  (   )     ( (  )( (  ))
 
) (33) 

where 

  = the FFT of a sequence 

    = the inverse FFT of a sequence 

( )  = the complex conjugate 

   and    = discrete-time sample signals. 

The result of equation (33) must still be scaled by the appropriate factor for either the biased or 

unbiased estimate of the cross correlation. 

The cross correlation between two signals provides a more rigorous approach to 

determining the time delay between them. Another benefit when using the cross correlation, is 

that the cross correlation coefficient can be used to indicate how well the signals match. 

Unfortunately, when using cross correlations, it is necessary to determine the appropriate 

estimation procedure and whether to use the direct or FFT calculation. The signals must also be 

considered to determine if they are zero-mean, and thus whether the cross covariance or cross 

correlation calculation would produce the proper result. Even though choices must be made as to 

the exact way in which the cross correlation calculation will be implemented, it can still provide 

significant benefits in estimating time delays of a signal. 
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 Computational Fluid Dynamics 

The nature of the equations describing fluid flow and fluid dynamics ends up making all 

but the very simplest of problems incredibly computationally complex. For many years, it was 

necessary to resort to scale models and simplifications to study more complicated flow 

situations. More recently the increasing power of computers has opened up a new option where 

computers are used to handle the complicated calculations. This approach to solving fluid flow 

problems is called computational fluid dynamics (CFD). 

The basis of CFD is to use computers to solve the complicated equations that describe 

fluid flow. The basic fluid flow equations are the Navier-Stokes equations described in the 

section on time variations in flow in natural streams, but it is also necessary to include equations 

describing boundary conditions and any other energy transfers that occur with elements outside 

the fluid. The computer divides the volume of interest into a discrete set of points at which it 

solves the equations (Sturm 2010). This allows CFD to solve many types of problems that would 

be too difficult to solve by hand. 

In laminar, viscous, incompressible, Newtonian fluids, the basic Navier-Stokes equations 

can describe the flow accurately. Unfortunately, applying the standard Navier-Stokes equations 

in turbulent conditions becomes much more difficult. In turbulent flow, the flow velocity is 

continuously changing in both time and space. If the Navier-Stokes equations are applied at a 

scale fine enough to catch all the variations caused by turbulence, the method is called direct 

numerical simulation (DNS) (Sturm 2010). Unfortunately, this approach requires an 

extraordinary number of calculation points in both space and time that prevent its use in most 

situations. To get around the limitations of DNS and provide usable methods for simulating more 

complicated turbulent fluid flow situations, several different models have been used to simplify 

the equations that must be solved. 

The use of Reynolds Averaged Navier-Stokes (RANS) equations provides one method to 

simplify CFD calculations in turbulent flow. While the RANS equations remove the turbulent 

variations in time and simplify the calculations, they introduce more variables called the 

Reynolds stresses. Different turbulent models must be used to provide equations for the 

Reynolds stresses. The k-ε model is one of the most commonly used models. It uses two 

equations to solve for turbulence kinetic energy (k) and turbulent energy dissipation (ε) (Sturm 

2010). The k-ε model is a semi-empirical model that relies on empiricism and phenomenological 
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considerations (ANSYS, Inc. 2010a). Although the k-ε model has been widely used for 

engineering evaluations for years, the model has several shortcomings. In general, the model is 

insensitive to adverse pressure gradients and boundary layer separation.  Thus, it can produce 

errors when the modeled flow separates from a smooth surface (ANSYS, Inc. 2010b). 

Another common model to provide closure to the RANS equations is the k-ω model. This 

model also uses the turbulent kinetic energy (k) but includes specific dissipation (ω) instead of 

turbulent energy dissipation (Sturm 2010). The advantage of the k-ω model is that it better 

predicts adverse pressure gradient boundary layer flows and separation than the k-ε model. The 

downside of the k-ω model is that the solution is sensitive to the values for k and ω in the free 

stream outside of the shear boundary layer (ANSYS, Inc. 2010b). Many different turbulent 

models have been proposed to address different situations for which the turbulent flows are 

important, and each model has its advantages and disadvantages. The selection of model requires 

considering the conditions for which it was designed and the drawbacks associated with that 

model. 

Although models based on the Reynolds Averaged Navier-Stokes (RANS) equations 

allow calculations of the mean velocities of turbulent flows, they ignore the important turbulent 

fluctuations. Because of this other computational methods have been devised to allow capturing 

of the fluctuations. Another method, called Large Eddy Simulation (LES), only computes the 

effect of the turbulent eddies down to a certain size below which average values are used in a 

manner similar to the RANS model. The LES model allows the major fluctuations from 

turbulence to be modeled using more reasonable computer resources than DNS (Tu, Yeoh and 

Liu 2008). As discussed in the section on turbulence in the section on natural channel flows, the 

lack of any rigorous description of the nature of turbulence means that any of these methods will 

at best estimate the flow conditions and engineering judgment must be used to determine if the 

model is accurate. 

Computational Fluid Dynamics has been used to model fluid flow problems in areas as 

diverse as aerodynamic systems to duct flow to open channel flow. Sturm (2010) presents a case 

study where 3.5 km of the Rhine River in Germany were modeled to see the effect of 100-year 

flood waters on a large-scale river restoration project. Based on the dimensions of open channel 

flows, the models used must be very large. Therefore only simpler models of the turbulent flow 

like those based on the RANS equations can be used. Large Eddy Simulations are impractical on 
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the dimensions required to analyze velocity profiles in natural open channels because of the 

computational power required. Sturm (2010) used the k-ε model to provide the necessary 

turbulent effects in the RANS equations in this case study. Since many of the processes involved 

in open channel flow are not known, these models require several empirical estimations for 

things like the boundary conditions imposed by the channel bed (Sturm 2010). Often it is not 

possible or very difficult to estimate the flow conditions at the inflow boundary. To still obtain 

good simulation results, estimates of the flow conditions at the inflow are used, and the inflow 

boundary is set far enough upstream that the flow has settled to a more realistic state at the 

region of interest. In the case study of the Rhine River, the model matched well with data taken 

from an actual flood event. The predicted meandering pattern to the high velocity region in the 

river was observed during the actual flood. Many different studies have been used to model 

various features in open channel flow to better understand what effect different geometries have 

on the flow. Fourniotis et al. (2009) studied the flow over sand dunes on the floor of a river. 

Their CFD simulation utilized a k-ε model. They provided a detailed description of the 

simulation setup. For the inflow, they used the mean velocity as a constant velocity for the entire 

inflow region and a turbulent intensity of 3% to simulate natural open channel conditions. To 

compensate for using a constant velocity profile at the inflow, they ensured that the inflow was 

positioned far enough upstream that this simplification did not affect the results. With this setup, 

they found the CFD simulation matched laboratory experiments using the same geometry 

indicating that these conditions worked well for simulating natural open channel flows. 

Simulation of natural open channel systems is still relatively new, but as techniques are 

improved, this technology could enable forms of analysis that have not been possible before. 

Several researchers have used CFD in evaluating sensors built to monitor fluid flow. 

Mueller et al. (2007) described using CFD in the evaluation of the effect of an acoustic Doppler 

profiler on the velocity of the fluid flow past the probe. They used the renormalized group 

turbulence model, a refinement of the k-ε model, in their study. They considered using LES in 

the modeling, but opted for the simpler model based on RANS because of the computational 

expense. In addition to simulating the effect using CFD, they tested the system in the laboratory 

using particle image velocimetry. In their comparison, they found the CFD simulations, while 

not perfect, were reasonable for use in evaluating the effect which the sensor had on fluid flow 

velocity. They also concluded that the sensor would report erroneous results for the velocity 
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close to the sensor (Mueller, et al. 2007). In another study, Tokyay, Constantinescu and 

Gonzalez-Casto (2009) utilized LES to determine the flow disturbances caused by an acoustic 

Doppler current profiler mounted on a boat. While the LES model was very computationally 

expensive, it provided a time series of the velocities which would not have been available with a 

RANS based model. They also determined that the sensor had an effect on the measured 

velocity. When considering the results in comparison to laboratory measurements and simpler 

RANS-based CFD models, they concluded that CFD modeling provided significant benefits for 

fluid flow studies around sensors (Tokyay, Constantinescu and Gonzalez-Casto 2009). 
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Chapter 3 - Sensor Design 

 Description of Fourth Generation Sensor 

The sensor design used and improved upon in this project is a continuation of work on a 

combined soil sediment and fluid velocity sensor developed by Stoll (2004) and Zhang (2009). 

The sensor developed in this previous work resulted in the creation of the fourth generation of 

the sensor. The fourth generation sensor consists of a solid plastic body made of polyvinyl 

chloride (PVC) plastic. Into this sensor body are mounted several LEDs of various wavelengths 

and phototransistors. The wavelengths of the various LEDs were set by the requirements for 

detecting the soil sediment concentration. Figure 4 shows the shape of the sensor and the position 

of the LEDs mounted into the sensor. When using the sensor for velocity measurement, only the 

orange LEDs and the corresponding phototransistors are used. The remaining blue-green and 

infrared LEDs and their phototransistors are only used for sediment monitoring. For each orange 

LED, there are two phototransistors in the same plane. One phototransistor is directly across 

from the LED at 180°, and the other phototransistor is 45° from the LED. The orange LEDs are 

model SSL-LX5093SOC which has a maximum light output at a wavelength of 610 nm. Model 

SFH314 phototransistors are used in the sensor. These phototransistors have a wide response 

range from 460 to 1080 nm with a maximum output at 850 nm. One orange LED/ 

phototransistors combination is 4 cm downstream from the first orange LED/ phototransistors 

combination. Figure 5 shows the arrangement of the orange LEDs and phototransistors in the 

sensor. The infrared and blue-green LEDs and their corresponding phototransistors are not 

shown in this figure to make it easier to see the arrangement of the orange LEDs and their 

phototransistors which are used in the velocity measurements. The circuit diagram for these 

components of the sensor is shown in figure 6. Finally, the sensor also contained internal 

passageways so that air could be forced into the sensor at one point and clean the LEDs and 

phototransistors. 
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Figure 4. Soil Sediment and Water Velocity Sensor 

 

Figure 5. Orange LED and Phototransistor Arrangement in the Sensor (Infrared and Blue-

Green LEDs and Corresponding Phototransistors not shown) 

 

Figure 6. Sensor Circuit Schematic 

The LEDs and phototransistors were connected to a circuit board which handled 

controlling the LEDs and the signal conditioning for the phototransistors. The anodes of the 



38 

 

LEDs all connected through a 100 Ω resistor to a 5 V power supply. The design of the sensor 

allowed each LED to be individually controlled by connecting its cathode to ground. The sensor 

electronics used a transistor, the NTE199, to provide this connection.  Figure 7 shows the 

schematic for the circuit the sensor electronics used to control each LED. In figure 7, the 

connection marked TO LED was connected to the cathode of an LED by attaching it to the 

appropriate wire in figure 6. The current from each phototransistor was converted into voltage by 

a resistor and then buffered by an operational amplifier (LM411) to produce the signal that was 

read by the data acquisition system as depicted in figure 8. The value of the resistor used to 

convert the current into the voltage could be changed to calibrate for a given sensitivity level. 

This resistor was actually comprised of a removable three-resistor array and jumpers which were 

used to set how the resistors in the array were connected. A diagram showing the details of this 

adjustable resistor is shown in figure 9. This allowed an adjustable resistance without the drift 

and other problems associated with potentiometers.  

 

Figure 7. LED Control Schematic 

 

Figure 8. Phototransistor Signal Conditioning Circuit 
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Figure 9. Diagram showing the Jumpers and Resistor Used as the Adjustable Resistor in 

the Phototransistor Signal Conditioning in the Fourth Generation System 

 The same circuit board controlling the LEDs and providing signal conditioning of the 

phototransistors also handled several other system functions. Dye injection was performed by a 

12 V solenoid valve from LAKE Products. The circuit used to allow logic level signals to control 

the solenoid is shown in figure 10. The same circuit and solenoid valve combination was used to 

control the flow of pressurized air into the sensor for cleaning purposes. An air compressor 

created the pressurized air used for cleaning, and the same circuit shown in figure 10 was used to 

turn off the power to the air compressor when the power supply voltage was too low. Since the 

air compressor used more current than the relay on the board could safely provide, the output 

shown in figure 10 actually connected to another relay that could handle the required current. 

This air compressor shut off control was necessary as the air compressor could turn on and drain 

the power supply battery in certain conditions. Another section of the circuit board provided 

signal conditioning for a thermocouple used to monitor water temperature. The thermocouple 

signal conditioning circuit is shown in figure 11a. The final input signal to the circuit board was 
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for the TR525USW rain gauge from Texas Electronics, Inc. which produced a 12 V pulse for 

every 0.254 mm (0.01 in.) of rain it measured. Figure 11b shows the circuit used to convert these 

12 pulse signals into 3.3V logic level signals. The board included power regulation to produce 5 

and 3.3 V power supplies from the 12 V input power, and the schematic for this circuit is shown 

in figure 11c. Finally, the board included a connection for a MicaZ mote with an MDA300 

sensor board, both from Memsic (formally Crossbow), which could be used to control the system 

and wirelessly transmit measurements made by the sensor.  

 

Figure 10. Schematic of Circuit to Operate Solenoid Valves with Logic Level Signals 

 

Figure 11. Schematics Showing (a) Thermocouple Signal Conditioning Circuit, (b) Rain 

Gauge Signal Conditioning Circuit, and (c) Power Regulation Circuit. 

 Design of Fifth Generation Sensor Body using Computational Fluid 

Dynamics 

In testing the fourth generation sensor, it became apparent that several improvements 

needed to be made to the sensor design. One area targeted for improvement was the shape of the 

sensor itself. Computational fluid dynamics (CFD) was used in determining the changes that 
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should be made in the shape of the latest generation of this sensor. Using CFD allowed analysis 

of a sensor shape without having to physically build and test each shape individually across an 

entire range of flow velocities. This provided considerable savings in time and cost for testing 

each sensor shape and, consequently, permitted many more shapes to be evaluated. Another 

benefit of CFD was that it could provide detailed information about the fluid flow that otherwise 

would only be available with complicated and expensive test equipment if such information 

could be obtained at all. This detailed flow information allowed incremental improvements and 

was very valuable in producing the final design. One drawback of CFD is that it is modeling and 

as such is not exact. Therefore, the results of each CFD simulation had to be checked to ensure 

they were realistic and the final design required testing to confirm its operation. In the end, CFD 

provided significant advantages in the development of the sensor's shape. 

CFD modeling consists of several steps. First a three dimensional (3D) model of the 

sensor shape to be tested had to be created. Then the boundaries encompassing the test volume 

around the sensor had to defined. After that, the test volume had to be divided into an 

appropriately designed three dimensional mesh. Next the boundary conditions, turbulent model 

and other features of the CFD model had to be set. Then the CFD simulation was carried out. 

Finally, a post-processing step was necessary to pull out the desired information about the flow 

velocity around the sensor. These steps were performed many times to evaluate different 

velocities and different sensor shapes. 

 Meshing 

The meshing process consists of taking the 3D model of the sensor and preparing and 

defining the environment in which it is tested. The 3D model was created using the CAD 

program Solid Works by Dassault Systèmes SolidWorks Corp. and exported as a 

STereoLithography or STL file. Only the sensor body itself was used in the CFD analysis. 

Adding the mounting bracket, U-bolt, and T-post used to mount the sensor in the stream created 

geometry that was too complex for the meshing program to properly handle. The sensor body 

was the primary feature that affected fluid flow at the point measured by the sensor so the CFD 

analysis concentrated on this part of the sensor. TGrid (version 13.0.0) by ANSYS was used for 

all of the meshing steps. The STL file containing the sensor design was imported into TGrid. The 

STL file represented the sensor shape using a triangle mesh to create the surface, but the triangle 
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mesh was not well suited for performing the CFD calculations. To create an appropriate mesh, 

the wrap process within TGrid was used to replace the unsuitable surface triangle mesh defining 

the sensor shape with a more appropriate one. In setting up the wrapping process, a default 

length of 5mm was used for the mesh size, and proximity and curvature size functions were 

enabled to adjust the mesh based on the geometry of the sensor shape. After carrying out the 

wrapping process, the “auto post improve” command was performed on the wrap mesh to ensure 

that triangle mesh defining the sensor’s shape was properly designed for the CFD calculation. 

After creating the surface mesh defining the sensor, another surface mesh had to be 

created that defined the boundaries of the entire test volume. The bounding box was created 200 

mm from each side and top and bottom, 400 mm from the front of the sensor and 600 mm from 

the back of the sensor.  Thus, the test volume was created as a rectangular box or cuboid with 

dimensions of 400 mm plus the sensor’s width, 400 mm plus the sensor’s height, and 1 m plus 

the sensor’s length. An edge length of 20 mm was used by TGrid for creating the surface mesh 

around this test volume. TGrid automatically handled creating the surface mesh and ensuring that 

appropriate number, size and shape of triangles were used to create a high quality surface mesh. 

The face of the boundary box in front of the sensor was set to have a boundary condition of 

velocity inlet. The face behind the sensor was set with an outflow boundary condition. The 

remaining faces were around the sides of the sensor and were set with symmetry boundary 

conditions. The surface mesh for the sensor itself was set as a wall boundary condition so that the 

simulation would treat it as a solid object. The velocity inlet sets the conditions for water flowing 

into the test volume while the outflow serves as the exit for the water. The symmetry boundary 

conditions require zero normal velocity and zero gradients for all variables at the boundary and 

make the test volume appear to be a small part of a much larger flow. These boundary conditions 

simulate the sensor mounted in a large region of constant velocity with the front of the sensor 

pointing upstream. Figure 12 shows the test volume boundaries (blue for the velocity inlet, red 

for the outflow, and yellow on the sides where a symmetry boundary condition was used) and the 

sensor (in black). 
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Figure 12. Test Volume Boundaries and Sensor 

After defining the test volume boundaries and generating a surface mesh for the sensor, 

the entire test volume was meshed. The primary area of interest for the CFD analysis was down 

the centerline of the sensor where the water flowed between the upstream and downstream 

LED/phototransistor pairs. Therefore, the boundary layers around the sensor and the sensor’s 

effect on water flow through and around the sensor were considered most important, and a 

meshing strategy was employed that emphasized this area. For relatively complex geometries, 

ANSYS suggests using a tetrahedral mesh with prism layers (ANSYS, Inc. 2010b), so the first 

five layers around the sensor surface were generated as a prism mesh and the rest of the volume 

was created as a tetrahedral mesh. The prism mesh permits better resolution in the boundary 

layers around the sensor while the unstructured tetrahedral mesh improved FLUENT’s 

computations in the larger open areas. This mesh was generated in TGrid using the Auto Mesh 

feature with automatic identification of topology enabled. After successfully creating the volume 

mesh, the meshing process was complete.  
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 Running the CFD Analysis 

The actual CFD analysis was performed using the FLUENT (version 13.0.0) computer 

program by ANSYS, Inc. The surface and volume meshes defining the entire simulation 

geometry created using TGrid were read into FLUENT. In FLUENT, the volume mesh fluid was 

set to liquid water using the defaults from the FLUENT database (density of 998.2 kg m
-3

 and 

viscosity of 0.001003 kg m
-1

 s
-1

). In all simulations a pressure-based solver was used with the 

SIMPLE scheme for pressure-velocity coupling. For the spatial discretization used by the solver, 

the gradient was determined using the least squares cell based method. The pressure interpolation 

was handled by FLUENT’s standard method, and first order upwind methods were used for the 

convection terms. FLUENT automatically uses second-order accuracy for the viscous terms in 

the simulation. FLUENT defaults were used for the under-relaxation factors in the solver. These 

settings were used in all simulations conducted on the sensor shape. 

Two different turbulent models were used in analyzing the sensor’s shape. The 

Realizable k-ε model with Enhanced Wall Treatment was used in analyzing all sensor shapes. 

Since the k-ε model can have problems simulating adverse pressure gradients and boundary layer 

separation (ANSYS, Inc. 2010b), the SST version of the k-ω model was used to check results 

when simulating sensor shapes where protruding LEDs and PTs created more complex 

geometries around the flow channel in which the sensor was monitoring the velocity. The 

settings used for the turbulent models were those suggested by FLUENT documentation for 

optimal results in most conditions. All other models available in FLUENT, like energy and 

radiation models, were turned off during the simulation. 

The sensor was modeled operating at different velocities by adjusting the conditions at 

the velocity inlet on the upstream boundary of the test volume. The velocity was defined by its 

magnitude normal to the boundary and was varied from 0.1 to 5 m s
-1

. The following points were 

evaluated for every sensor shape: 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 m s
-1

. It 

was also necessary to define the turbulence parameters of the flow entering the test volume. To 

do this, the flow at the velocity inlet was set with a turbulent intensity of 3% and a turbulence 

ratio of 10. These values were chosen based on other experiments in open channels covered in 

the literature review. Other values for turbulence at the inlet were tested. However, the solution 

indicated similar turbulences would be found near the sensor, and this generally only resulted in 
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a longer calculation time. The final step before calculations was initialization of the test volume 

which was done using values computed from the upstream velocity inlet. 

FLUENT ran calculations until a convergent solution was reached in each simulation. 

After ensuring that the solution was properly converged, post-processing was performed to 

analyze the result. The velocity of the water that would be measured by the sensor was 

determined using an area-weighted average of the water velocity in the volume elements along 

the centerline of the flow path between the upstream and downstream LED and phototransistor 

pairs. Also an image of the velocity contours through the center of the sensor was created. The 

image helped identify what was affecting the flow velocity and causing discrepancies. This 

contour image was very useful in determining what changes should be made to the design to 

improve the results. These results from the post-processing step made it possible to evaluate each 

sensor design to determine its effect on the measured velocity. 

 Finalizing the Fifth Generation Sensor Design 

The computational fluid dynamics analysis only considered the outside shape of the 

sensor. A few more steps were required to take this shape and generate a buildable design. The 

first step was to add channels to direct the pressurized air for the air blast cleaning. Cutouts also 

had to be added for installing the LEDs and phototransistors and their wiring. All these additions 

were made to the 3D CAD file for the final sensor design in Solid Works. The holes for air blast 

directed the air into the channel in the sensor where the LEDs and phototransistors were mounted 

to clean them. There were also air blast holes in the front of the sensor to dislodge any debris that 

hung up there. The cutouts for the LEDs and phototransistors were tubes in the channel of the 

sensor. The tubes were sized so that the LEDs and phototransistors could be inserted from the 

channel side of the sensor. A decrease in the tube diameter would only allow the LEDs and 

phototransistors to be inserted to the appropriate depth to match the shape analyzed with the 

CFD model. The leads on the LEDs and phototransistors would continue through the tube to a 

large cavity used for wiring. To inject dye, a 1.6 mm hole was added from the top of the sensor 

to the sensor flow channel at the injection point. This hole had a counterbore so that threads 

could be cut for a barb fitting to connect to the dye hose. Finally small holes were added in each 

corner for screws so that an aluminum mounting plate could be attached. After making these 
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changes to the 3D model to create the final design, it was sent to a 3D printer to be built out of 

black PVC. 

After printing, the sensor was assembled by inserting the LEDs and phototransistors. 

These components were wired identically to the schematic for the fourth generation sensor as 

depicted in figure 6 in the section on the fourth generation sensor. The wiring was Carol Brand 

model C0746A which was shielded fifteen-conductor 0.205 mm
2
 (24AWG) wire. The wire 

extended 7.6 m from the sensor, and the end was stripped for connecting to the electronics 

running the sensor. The LEDs, phototransistors and wiring were all sealed by DP-270 Epoxy 

from 3M to prevent water from affecting them and to hold them in position. The wire exited 

though the aluminum top plate which was held on with stainless steel screws so that the sensor 

could mount on a T-post. Brass fittings were added to connect the dye and air hoses. After 

assembling the sensor and allowing the epoxy to set, it was ready for testing. 

 Design of Fifth Generation Sensor Electronics 

The electronics in the fifth generation sensor were designed to overcome many of the 

shortcomings noticed during testing with the fourth generation sensor. One of the main 

requirements for the new electronics was that they be capable of much higher sample rates as the 

low sample rates were limiting resolution at the upper end of the velocity range of interest. 

Increased sample rates would also require increased memory to handle the increased number of 

samples. The fourth generation sensor did not calculate the velocity on the electronics in the 

sensor itself. Instead, it merely recorded the signals for later processing by a more powerful 

device. The new system needed to be able to calculate the velocity estimate by itself which 

would require a much more computationally powerful processor. Increasing the sample rate, and 

thus number of samples, would only make the computational demands even higher, so 

computational performance was very important. The new electronics design also needed to be 

able to provide all the services provided by the fourth generation design. The main required 

services included the ability to perform sediment measurements, calibrate the sensor output, 

wirelessly transmit data and provide local storage of results for logging. Unlike the fourth 

generation sensor, it was desired that the logging be handled directly by the electronics operating 

the sensor instead of transmitting the data to some other device for logging. During testing of the 

fourth generation sensor, it became apparent that the sensor would be much more effective if its 
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operation could be directly controlled by a computer connected to it. Therefore an additional 

requirement for the new design was that it be able to operate both stand-alone and while 

connected to a computer that could configure sensor operation and control measurements on the 

fly. Figure 13 is a diagram depicting the desired operation of the fifth generation sensor system. 

The electronics should connect to the sensor, receive power from a 12 V battery, control an air 

compressor and communicate both wirelessly and over USB. These basic requirements formed 

the basis for the design of the new electronics for the fifth generation of the sensor. 

 

Figure 13. Diagram Showing Desired Operation of Fifth Generation Sensor System 

The sampling rate is directly related to the maximum acceptable quantization error and 

the maximum velocity. The equation for determining velocity from the time delay estimated by 

the cross correlation calculation is      , where   is the velocity in m s
-1

,   is the distance 

between the LED/phototransistor pairs in meters which is 0.04 m for these sensors, and   is the 

time delay in seconds. The time delay will be in discrete intervals because of the discrete 

sampling. Substituting the discrete intervals into the velocity equation results in   (   )  , 

where   is the sample rate in samples per second and   is the number of samples in the delay 

between the signals determined by the cross correlation calculation. Thus at a given sample rate 

and distance, the velocity is inversely proportional to the number of samples of the delay 
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between upstream and downstream signals. Therefore, a change of one sample has a larger effect 

on velocity when   is small than when   is large. The maximum quantization error caused by the 

sampling will occur when the actual velocity is halfway between two possible velocities and is 

rounded to the lower value. Velocity increases with a decreasing number of samples in the delay 

between signals, so the next higher velocity has a delay of one less sample. Error is defined as 

the difference between the estimate and actual value divided by the actual value. Using these 

definitions and simplifying, the error percentage is related only to the number of samples in the 

delay between the signals,  , and is described by                 (    ). Figure 14 shows 

how the maximum percent error from the quantization changes depending on the number of 

samples in the delay between the upstream and downstream signals. 

 

Figure 14. Number of Samples in Delay between Signals Compared to Maximum Percent 

Error from Quantization 

For the new design of the sensor, it was desired that this error be at most one percent of 

the actual velocity over a range from 0.1 to 2.5 m s
-1

. Using the relationship above, one percent 

error is equal to a minimum delay of 50.5 samples. Since samples are only integer values, this 

means that a measurement will only meet this criteria if there are more than 51 samples of time 

delay between the upstream and downstream signals. Since the distance between the upstream 

and downstream LEDs/phototransistor pairs is set at 0.04 m and the minimum acceptable number 

of samples is 51, the maximum velocity with acceptable error is directly related to the sample 
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rate by            . Thus, to appropriately handle a velocity of 2.5 m s
-1

, a sample rate of 

3187.5 samples per second is required to meet the specifications for the new sensor design. 

The increase in sample rate creates a new problem in ensuring there is enough memory 

available to handle all the samples. The MicaZ mote on the fourth generation sensor used a 12-

bit Analog-to-Digital Converter (ADC) and had enough memory to store 1024 samples which 

allows 512 samples for each the upstream and downstream channels. It was desired that the new 

electronics would maintain the 12-bit precision of the fourth generation system. Thus, two bytes 

would be required to hold each individual sample, and since two channels were being sampled 

simultaneously, four bytes of memory would be required every time a sample of the signals was 

taken. Testing with the fourth generation sensor indicated that it took at least two seconds for the 

dye to completely pass both LED/phototransistor sets at 0.1 m s
-1

 which was designated as the 

low end of the operating range of the new sensor. Considering the length of time required for the 

low end of the velocity range and the sample rate necessitated by the upper end of the velocity 

range meant 25.5 kilobytes (kB) of memory would be required to capture the entire range of 

velocities. This amount of 25.5 kB of memory is only the bare minimum. Because of 

inconsistencies in the water flow, sometimes up to four seconds were required to ensure that the 

dye had completely passed through the sensor at 0.1 m s
-1

. Although 25.5 kB of memory is a tiny 

amount for desktop or laptop computers, it is about the maximum available for computations on 

many embedded microcontrollers. This meant that memory would be significant factor in 

designing the electronics and programming for the fifth generation sensor or compromises would 

have to be made on desired velocity operating ranges. 

Finally, the computational power necessary to determine the velocity estimate is also 

closely related to the total number of samples and thus the velocity range. If a given number of 

samples, N, are taken from each the upstream and downstream signals, then a complete cross 

correlation calculation will require  (   )   multiplications and (   )    additions if 

performed using the standard calculation. Division of each of the N values in the result is also 

necessary for the biased and unbiased estimate, and the maximum value must be found. To 

determine the cross correlation coefficient then requires an additional 2N+1 multiplications and 

2N divisions. The main computational cost is in the cross correlation itself, and there, the number 

of individual calculations grows with the number of samples squared or using big O notation, 

 (  ). With sample lengths over 1000, this quickly results in many calculations. It is also 
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possible to perform the cross correlation calculation using the Fast Fourier Transform (FFT). 

Using the FFT, the computations only grow by the number of samples times the logarithm of that 

number or  (      ). Unfortunately, the memory required when using the FFT is doubled as 

the sequences must be padded with zeros to double their length to prevent circular convolution. 

Thus, a trade-off exists between computational power requirements, the number of samples and 

memory required. 

 Digital Electronics  

After considering the system requirements and tradeoffs, it was decided to base the 

electronics for the new system around the LPC1769 microcontroller from NXP. The LPC1769 

utilizes an ARM M3-Cortex core, has 64 kB of SRAM for storing data, and can operate at up to 

120 MHz. It contains a 12-bit ADC with eight channels capable of converting up to 200,000 

samples per second. Finally, there are enough digital inputs and outputs capable of controlling 

the sensor and providing all the necessary features and communication. The LPC1769 is 

available on the LPCXpresso platform which was a huge benefit. The LPCXpresso platform 

consists of a board that includes the processor and all the circuitry necessary for the processor to 

run, an attached programmer, and a free development environment and debugger. The board 

containing the processor and programmer was inexpensive at $30 and enabled rapid 

development.  

To enable local logging of the data, an SD card was added to the design. The FatFS 

library which was available for the LPC1769 handled writing files on any SD card. The FatFS 

library controls the SD card with an SPI interface, which limited the amount that could be 

written to the card at one time, but there were no easily available libraries for using the more 

advanced native SD interface. Some considerations were necessary when determining the 

circuitry to connect the SD card to the LPC1769. Pull-up resistors of 10kΩ were used to prevent 

the signals lines connected to the card from floating. The power supply to the SD card was 

decoupled using a 10 μF tantalum capacitor and 0.1 μF X7R capacitor. This decoupling was 

especially important to prevent the power supply voltage from dropping when the SD card was 

inserted and started charging its internal capacitors. A schematic showing the SD card 

connections is displayed in figure 15. The SD card combined with the FatFS library made it easy 

to log data produced by the LPC1769 and met the data logging requirement. 
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Figure 15. Schematic Showing the SD Card Connection in 5th Generation Sensor System 

An XBee module was used to provide wireless transmission, and a universal 

asynchronous receiver/transmitter (UART) to USB converter allowed communication between a 

PC and the LPC1769. The XBee module made adding wireless capability relatively straight 

forward. In one of the most basic modes of operation, two XBee modules are paired together. 

Each XBee module has transmit and receive UART pins. Data sent to the receive pin of one 

module appears on the transmit pin of the other module. The XBee modules handle creating 

packets, error checking, and the actual wireless transmission. To devices connected to the XBee 

modules, the connection appears no different than a standard UART connection at 3.3 V. The 

XBee module is also capable of more complicated modes of operation such as mesh networking, 

but these features were not utilized in this design. Another useful feature of the XBee system is 

that there are many different modules with different features and transmission distance ranges. 

The standard XBee module which was used in testing this sensor only had a range of 90 m in 

perfect line-of-sight conditions or 30 m in more standard situations. However, the more powerful 

modules utilize the same pins and signals which means that they can easily replace the standard 

modules. Since the more powerful modules are larger, extra space was provided on the board so 

that these larger modules could also be mounted. According to XBee documentation, switching 
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both the transmitting and receiving modules to their most powerful XBee-Pro XSC (S3B) 

devices would enable line-of-sight transmissions of up to 45 km with a high-gain antenna. 

The use of the XBee module allowed the fifth generation sensor system to be connected 

into the wireless sensor network used for the fourth generation system. The SD card replaced the 

storage provided by the Stargate, so the Stargate was no longer necessary as long as something 

else could receive the wireless signals and transmit them over an RS-232 connection to the 

datalogger. The XBee Explorer Serial provided this capability. Figure 16 is a diagram showing 

how the XBee Explorer Serial would connect to the wireless sensor network. The XBee Explorer 

Serial can program the XBee, but in the use shown here, it merely retransmits signals it receives 

from an XBee installed on it over its RS-232 port. If the XBee on the XBee Serial Explorer and 

the XBee on the fifth generation electronics board are configured for point-to-point 

communications with each other, any message sent from one XBee will be received by the other. 

This allows direct communication between the LPC1769 and the datalogger and then on to the 

rest of the wireless network. The only other change necessary is to the message structure as the 

fifth generation system does not use the same message structure as the fourth generation system. 

The fifth generation system supplies more information (like main battery voltage) at the level of 

the sensor control than the fourth generation system, but it also leaves out information that would 

have been added by a Stargate that was accepting messages from multiple sensors at a single site. 

Therefore, to add the fifth generation sensor to the fourth generation network, changes to exactly 

what information needs to be supplied at each point would be required. 

 

Figure 16. Diagram showing the Fifth Generation Sensor's Connection to the Fourth 

Generation Sensor’s Wireless Sensor Network 

The UART to USB converter was the Breakout Board for FT232RL USB to Serial from 

Sparkfun Electronics. It was based on the FT232RL chip and contained receive and transmit 

UART pins for communicating with the microcontroller. The breakout board also provided a 
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mini-USB connector that was connected to the FT232RL. When the converter was connected to 

a USB port on a PC, the device showed up as a serial port on the computer. The converter 

handled all the USB overhead and provided a seamless connection from the serial port on the PC 

to the microcontroller. Utilizing both the XBee and the UART to USB converter allowed all 

communications from the microcontroller to be treated as relatively simple UARTs regardless of 

the destination. This allowed the same software code to handle both transmissions, so the 

electronics could be commanded and data transmitted just as easily over a wireless connection as 

when connected by a USB cable. A schematic showing the connections for (a) the XBee and (b) 

the UART-to-USB converter is displayed in figure 17. These components handled the more 

complicated aspects of wireless transmission or USB PC connections and greatly simplified the 

communications design on the microcontroller. 

 

(a)        (b) 

Figure 17. Communications Connections for the 5th Generation Sensor System: (a) XBee 

and (b) UART-to-USB Converter 

The microcontroller had to control the LEDs inside the sensor, a solenoid valve for 

injecting dye, a solenoid valve for providing high pressure air for air blast, and the power to the 

air compressor. None of these could be controlled directly by the limited current available on the 

digital output pins of the LPC1769 so additional circuitry was necessary. The microcontroller 

outputs were connected to 2N3904 transistors so that when the output was on, it would saturate 

the transistor, but otherwise the transistor was off. The ground sides of the LEDs in the sensor 

were connected directly to the transistors which provided control of the LEDs as shown in figure 

18.  
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Figure 18. LED Control in the Fifth Generation Sensor System 

These transistors could not provide enough current to switch the solenoid valves or the air 

compressor, so the transistors were connected to relays that actually switched power to these 

large current loads. The solenoid valves were switched using G5LE-1 DC12 relays from Omron 

Electronics, and the air compressor power was handled by the larger T9AS1D22-12 relay from 

TE Connectivity. The air compressor relay contained quick connects on the top of the relay so 

the power to run the air compressor did not need to travel through the printed circuit board. All 

the relays required bypass diodes to protect the transistors from inductive kicks when the relays 

switched. The circuitry for controlling the solenoid valves is shown in figure 19, while the 

circuitry for controlling the air compressor is in figure 20. In the circuit for controlling the air 

compressor, pins 3 and 4 should be connected to the power wire for the air compressor and the 

main power supply, respectively. They are marked with the no connect symbol since they were 

not connected to the printed circuit board. The quick connects on the top of the relay provided 

the electrical connection to pins 3 and 4 instead. This circuitry allowed the microcontroller to 

manipulate the different elements required to operate the sensor and take measurements.  
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Figure 19. Circuit to Control the Solenoid Values in the Fifth Generation Sensor System 

 

Figure 20. Circuit to Control the Air Compressor in the Fifth Generation Sensor System 

 Software Design 

The development environment provided with the LPC1769 supported programming in 

the C computer language and C was used in creating the program to operate the sensor. Many of 

the functions on the sensor were time-dependent so it was vital to design the program such that 

these time constraints were met. A real-time operating system would be ideal, but the real-time 
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operating systems offered for the LPCXpresso system were all based on 10 ms time intervals. 

Several functions like dye injection required operation at 15 to 45  ms intervals where the time 

increments of the real-time operating system would be very constraining. Furthermore, the 

signals from the upstream and downstream phototransistors had to be sampled back to back with 

sample rates of at least 3187.5 samples per second for consecutive samples from a signal. This 

would require utilizing a real-time operating system with a time interval of well less than one 

millisecond if each sample were to be properly triggered by the operating system. Since such an 

operating system was not readily available for the LPCXpresso environment, it was decided to 

pursue a simple “main loop” or polling type design and to extensively utilize peripheral hardware 

interrupts and settings to control time-sensitive operations like signal sampling. 

The main loop was designed to take at most one millisecond to complete. There are three 

main periodic tasks for the sensor to complete, and in order of priority, they are: take a sediment 

measurement, take a velocity measurement, and run the air blast system. The system will not 

start a lower priority task unless it can ensure that the task will complete before any higher 

priority task needs to run. Since all of these tasks are non-preemptible, checking to ensure that 

the lower priority task will complete ensures that higher priority functions like the sediment 

measurement run at the appropriate intervals. Each task can operate at different time intervals 

which can be changed during operation. A hardware timer triggers an interrupt every one 

millisecond which then updates timers for each task. One timer in each task is a countdown timer 

which controls when the task is run, while another timer keeps track of various activities within 

the task. When a countdown timer indicates that it is time for the main loop to start a task, it calls 

a task startup function as long as the task will not interfere with a higher priority task. Each task 

also has a processing function that is called once by the main loop each time through the loop if 

the task is currently ongoing. Each startup function and processing function is designed to be as 

short as possible so that the main loop will run at least once per millisecond. 

The sampling of the velocity signals will frequently require samples faster than one 

millisecond, so this sampling is controlled entirely by hardware interrupts. One hardware timer is 

reserved for velocity measurements. When the phototransistor signals are being sampled, the 

timer generates an interrupt through the nested vector interrupt controller that runs an interrupt 

handler that starts the ADC every time a sample should be taken. The ADC hardware samples 

the upstream signal and generates an interrupt as soon as it is finished. In the ADC interrupt 



57 

 

handler, the data from the upstream sample is saved and the ADC is started again to measure the 

downstream signal. After the ADC is finished sampling the downstream signal, it generates 

another interrupt which again calls the interrupt handler. After recording the downstream sample, 

the interrupt handler does nothing, and the system waits for another trigger from the hardware 

timer to start the ADC again. Unfortunately, the ADC would occasionally glitch once out of 

every several hundred or thousand measurements, which could affect the cross correlation of the 

velocity signal. Therefore the interrupt handler was changed so that each time a sample was 

requested from the ADC, it actually sampled each signal three times and reported the median. 

This eliminated the glitches. When the required number of samples for an entire velocity 

measurement had been taken, the ADC stopped running and the ADC interrupt handler set a flag 

to indicate that the sampling was complete and processing of the sampled signals could begin. 

The use of a hardware timer to control the sampling by the ADC enabled accurate sample rates 

for the velocity measurement. 

In addition to the main measurement tasks, the microcontroller also had to handle 

responding to commands it received and logging and transmitting of the measurements it had 

made. After a measurement had been made, the logging function would create a text string based 

on that measurement. This string is stored in both the SD card and transmitted over both the 

wireless XBee connection and the UART to USB connection. Since the messages are longer than 

the internal UART hardware queues that the LPC1769 uses to transmit data, the function loads as 

much into the queue as possible and then returns control to the main function. Each time the 

logging function runs, it checks to see if it can load more data into the queue until the entire 

message is sent. Tables 1 and 2 illustrate the format of the messages created by the logging 

function for the sediment and velocity data respectively. The messages are encoded as ASCII 

text. The type of measurement is indicated by a single letter at the start of the message which is 

followed by a date and time code formatted as year, month, day, hour (24-hour format), minute, 

and second. The message type is immediately followed by the date and time code, but after the 

date and time code, each value is separated by a tab. Every message ends with a carriage return 

and a new line character. In the sediment message, each value is an unsigned decimal number 

representing a 16-bit variable so each value can vary from one to five ASCII characters. Each 

individual sediment message can vary from 47 to 107 characters long. In the velocity 

measurement, the velocity, CCC and Maximum Rxy value are float variables and are represented 
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by the shorter of either regular decimals or decimals in scientific notation (both with three 

significant digits) for a length of three to seven characters each. The samples of delay and the 

sample rate are unsigned decimal numbers representing a 16 bit variable, so like the sediment 

data, they can vary from one to five characters long. The velocity messages can vary from 35 to 

55 characters long. 

Table 1. Logging Message Format for Sediment Measurements 

Message 

Type 

 

 

1 

character 

Date Time Code  

YYYYMMDDhhmmss 

 

 

14 characters 

IR 45 

On 

 

 

1-5 

digits 

BG 90 

On 

 

 

1-5 

digits 

ORA1 

45 On 

 

 

1-5 

digits 

ORA1 

180 

On 

 

1-5 

digits 

ORA2 

45 On 

 

 

1-5 

digits 

ORA2 

180 

On 

 

1-5 

digits 

Format 

Continued 

on Next 

Row 

S 20120504170213 228 2 2 91 18 76 

         

IR 45 

Off 

 

1-5 

digits 

BG 90 

Off 

 

1-5 

digits 

ORA1 

45 Off 

 

1-5 

digits 

ORA1 

180 Off 

 

1-5 

digits 

ORA2 

45 Off 

 

1-5 

digits 

ORA2 

180 Off 

 

1-5 

digits 

Main 

Battery 

 

1-5 

digits 

Temp. 

 

 

1-5 

digits 

Rain 

Count 

 

1-5 

digits 

9 2 0 9 13 25 2485 384 0 

Table 2. Logging Message Format for Velocity Measurements 

Message 

Type 

 

 

 

1 

character 

Date Time Code  

YYYYMMDDhhmmss 

 

 

 

14 characters 

Velocity 

(m s
-1

) 

 

floating 

point 

3-7 

digits 

CCC 

 

 

floating 

point 

3-7 

digits 

Maximum 

Rxy Value 

 

floating 

point 

3-7  

digits 

Samples 

of Delay 

 

 

integer 

1-5 

digits 

Sample 

Rate 

(s
-1

) 

 

integer 

1-5 

digits 

Repeat 

Necessary? 

(* = Yes) 

 

 

1 character 

V 20120504181935 0.721 0.95 507 201 3621    

 

The sediment data message shown in table 1 consists of the value produced by the ADC 

for each phototransistor with its LED on and with its LED off. It also includes the ADC value 

from the main battery (12V battery powering the whole system) voltage monitoring circuit and 

from the thermocouple signal conditioning. Finally, the number of pulses received from the rain 

gauge is reported at the end. The ADC is a 12-bit ADC with a reference voltage at 3.3 V, so the 

ADC value is converted into a voltage using the relationship, 
         

    
     V. The 

thermocouple signal conditioning is handled by the AD595AD instrumentation amplifier and 
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cold junction compensation chip which produces 10 mV °C
-1

, so the temperature is found by 

multiplying the voltage result by 100. The conversion for the main battery voltage is slightly 

different from the rest as its circuit contains a 6:1 voltage divider, so the equation to determine 

the main battery voltage is 
         

    
      V. The values in the sediment measurement are 

logged as integers produced by the ADC to reduce errors from truncating the actual voltage and 

to reduce the space necessary to store the messages. It is assumed that any program reading the 

values can convert them to the necessary format for presentation or further processing. 

The velocity measurement message is shown in table 2. After the date and time code, the 

message reports the velocity in m s
-1

, the cross correlation coefficient (CCC), the maximum 

value for the Rxy estimate, the number of samples of delay between the signals, and the sample 

rate. The final term indicates if it is necessary to repeat a measurement and this is represented by 

an asterisk at the end of the message. The system signals that it is necessary to repeat if the 

quantization error is greater than a certain threshold or if the CCC value is below its minimum 

value. Both levels used for determining if a measurement is good are settable parameters in the 

software and can be modified at any time.  

The sensor control system handled commands by checking the received data hardware 

buffer in the UARTs connected to the XBee and UART to USB converter. Commands could be 

sent to the system using either communication method. Commands started with the ‘#’ symbol, 

consisted of two characters that designated the command followed by an optional data section 

and ended with a return. The commands are listed in Appendix B - . Commands that requested 

an update to a program setting used the data section for the new setting. The microcontroller 

responded with “Accepted” if the command was understood and it changed the setting in the 

program. It responded with “Rejected” if the command was either malformed or it was not 

possible to change the setting to the indicated value for some reason. For example, commands 

would be rejected that requested a change to the number of samples or the sample rate in each 

velocity measurement if a measurement was currently underway or would require more memory 

than was available. Other commands just requested current program settings. These commands 

did not have anything in the data section, and the microcontroller responded by sending the 

requested data across the connection that sent the command. 

The new software system running on the LPC1769 provided several benefits over the 

fourth generation system. The biggest benefit was the ability to set the sample rate for the 
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velocity measurement higher than the 280 samples per second limit of the fourth generation 

system. Another important addition was the ability to change many system parameters while the 

program was running. These changes could be accepted either from a computer connected via 

USB or wirelessly which would permit remote updating or changes to the system operation if 

conditions warranted. The new design was also able to locally log data directly to the SD card. 

With the fourth generation design, the logging was accomplished on a separate device and 

transmission problems, power problems or other hardware problems could prevent logging 

which resulted in data loss even if the sensor and its circuitry were operating perfecting. With 

these additions, the fifth generation software design produced a more capable and useful system. 

 Velocity Measurement in Fifth Generation Design 

Several alterations were made to the basic velocity measurement system in the fifth 

generation design based on tests and experience using this sensor. As with the fourth generation 

sensor, several velocity measurements were made in quick succession and then another set would 

be taken after a certain time period. The time between each set of measurements was called the 

major period, and the time between the individual measurements in a set was called the minor 

time period. Unlike the fourth generation sensor which could only perform four measurements 

spaced 30 seconds apart every hour, the number of measurements every major time period, the 

major time period and the minor time period were all configurable through commands. The first 

step in taking a velocity measurement with the fifth generation system was to turn on both 

orange LEDs and then wait for 100 ms to ensure the LEDs were completely on before anything 

else happened. The next step depended on the settings for dye injection time and the time offset 

between the start of sampling and the end of dye injection. Depending on these values, either the 

dye was injected or sampling started first. The other then followed at the appropriate time which 

was once again determined by the adjustable program settings. After sampling completed, the 

program began the processing stage for the velocity measurement. 

The first step in processing the velocity signals was to adjust the signals so that they were 

zero mean. In the fourth generation sensor, the cross covariance calculation was used for 

processing, but a different method was used in this system. The cross correlation calculation 

considers zero to be the baseline for the signals and then deviations from zero as important 

changes in the signal. The signals in the velocity measurements are similar. However, the 
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baseline for the signal is a non-zero value, and important deviations from this baseline are always 

in the form of values lower than this baseline as the dye begins to absorb light and prevent it 

from reaching the phototransistor. Figure 21 (a) shows the signals as they are recorded by the 

sensor. In the fourth generation system, the signals were processed using the cross covariance. 

This subtracts the sample mean from the signal to produce the zero-mean signal used in the 

calculation as shown in figure 21 (b). A problem with this is that the sample mean does not 

correspond to the baseline of the signal which is actually the value when dye is not affecting the 

signal. The sample mean will be less than this baseline and approaches the baseline as the 

sampling time increases toward infinity and the percent of time the signal is affected by the dye 

decreases. Since the sample mean does not correspond to the baseline of the signal, during the 

cross correlation calculation parts of the signal unaffected by the dye are considered important, 

contribute to signal matching and  affect the cross correlation coefficient. The fifth generation 

sensor provided more control over the sampling process so it was possible to ensure that the 

signals could be sampled before dye affected the signal. This signal level was recorded and 

decreases in the voltage level from the phototransistors were considered positive changes in the 

signal as they indicated when the dye was affecting the signals. Furthermore, the dye could only 

decrease the voltage level from the baseline, so any increases above the baseline had to be 

caused by some other unimportant phenomena so voltages above the baseline were ignored by 

setting them to zero. This process created the signals shown in figure 21 (c) which only highlight 

the effect of the dye on the signals. The signals in figure 21 (c) better highlight the differences 

caused by dye and provided a CCC of 0.95 compared to a CCC of 0.92 for the signals in figure 

21 (b). After converting the signals to an appropriate form, the microcontroller started the cross 

correlation calculation. 
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(a)   (b)    (c) 

Figure 21. (a) Original Signal, (b) Signal Conversion to Zero-Mean used in Fourth 

Generation Sensor (c) Signal Conversion used in Fifth Generation Sensor 

To actually calculate the cross correlation between the signals, the microcontroller 

utilized the standard definition for the cross correlation given in equation (30) instead of the FFT 

form of equation (33). Although the FFT calculation method could reduce computation time, it 

required much more memory to perform. FFT libraries are available for the LPC1769, but they 

were not created to minimize memory requirements, so all of them would require more than 

double the amount of memory used to represent the signals. When using the standard form of the 

cross correlation estimate, only the maximum result and position had to be recorded so it was not 

necessary to store the entire result which freed up even more memory. This was not possible 

with the versions of the FFT libraries available. An entirely new FFT library could be written 

from scratch that conserved memory and only used double the memory of the standard equation, 

but this was not pursued given that the computing speed improvements only became important 

when a large number of samples were taken, and in that case, the extra memory required would 

be a problem. For the actual computation, both an integer math and an easier-to-program floating 

point math version were created. The integer math provided speed improvements as the 

LPC1769 lacked built-in support for floating point math, but was more complicated to debug. 

Unlike most other options, this setting had to be set at compile time. Finally, it was also possible 

to select either the biased or unbiased estimate for the cross correlation. This setting could be set 

at any time over the command interface. After performing the cross correlation estimate and 

determining its maximum value, the velocity,  , was calculated from the time delay,  , between 

the signals using   (   )  , where   is the distance between the upstream and downstream 

phototransistors and   is the sample rate in samples per second. 
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The velocity measurements would work from 0.1 to 2.5 m s
-1

 if the sample rate was 

above 3187.5 samples per second to limit the quantization error to less than 1% at the high end 

and the signals were sampled for at least 2 seconds to capture the dye passing completely 

through the sensor at the low end. However, this method would require 6375 samples per signal 

and was not very efficient. The high sample rates were only necessary when measuring a high 

velocity and it was only necessary to sample the signals for long periods of time at low velocity. 

If the approximate velocity was known before a measurement, excessively high sample rates or 

sampling for extra-long times could be avoided. Both high sample rates and extra-long sampling 

times would increase the number of samples taken per signal and thus increase computation time 

unnecessarily. To prevent this, the “smart” velocity measurement system was developed. 

The “smart” velocity system was so called because it prevented unnecessary 

computations and improved the efficiency of the system by limiting the number of samples per 

signal. This provided better utilization of the limited memory available on the microcontroller. 

Measurements in high velocity flows required high sample rates to maintain resolution but 

needed only a short time period for sampling. On the other hand, low velocity flows only 

required much lower sample rates but the time period for sampling was much longer as the dye 

took longer to flow through the sensor. The smart velocity system attempted to balance these 

requirements by looking at the last velocity measurement as an indication of the likely velocity 

in the next measurement. The most important parameter in this system was the number of 

samples to take from each signal which was adjustable through the command interface. The 

sensor system recorded this many samples of each signal in every measurement and adjusted the 

sample rate to match the water velocity. The first time the sensor took a velocity measurement, it 

sampled at 344 samples per second. As long as the number of samples to take from each signal 

was higher than 1376, at least four seconds of the signals would be recorded. This would allow 

capturing the dye flowing through the sensor at the low range. It would also end up producing 

high quantization errors at all but the lowest velocities, but it would still provide an approximate 

velocity which was used in setting up the next measurement. The next velocity measurement 

would be taken using a sample rate equal to a given ratio of the required sample rate to produce 

less than a given quantization error percentage at the just measured velocity. Both the ratio and 

quantization error percentage were adjustable using commands. To achieve the goals for the fifth 

generation sensor, the ratio and quantization error percentage were set so that the next 
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measurement was at a sample rate necessary to produce 1% error if the next velocity happened to 

be twice that of the measurement just completed. Thus the sample rate for the next measurement 

was always based on velocity of the just completed measurement. This resulted in the system 

constantly updating its parameters to match field conditions.  

The velocity system also tracked the quality of its measurements and only considered a 

measurement to be of good quality if its quantization error was below 1% and its CCC was over 

0.9. Measurements that did not meet the quality standard were recorded, but then the 

measurement was repeated until a high quality measurement was made. This meant that the 

sensor took at least a certain number of high quality measurements every major period.  

One drawback of this system is that if one velocity was ever estimated to be significantly 

higher than the actual velocity of the next measurement, the signals might not be sampled long 

enough to catch the dye effect in the next measurement. Without the dye, the cross correlation 

would detect very close to zero time delay in the signals and estimate a very high velocity. This 

estimate would be considered low quality because of a low CCC value, but it would start a cycle 

of very high velocities estimates with low CCC values as the dye was continuously missed. To 

prevent this from occurring, any time a sample was taken at the maximum sample rate allowed 

on the system of 22,500 samples per second, the next sample would to be taken at 344 samples 

per second. This would allow the sensor to once again catch the dye effect. Based on the 

maximum sample rate, the sensor system would be able to measure water flowing at 17.6 m s
-1

 

with only 1% quantization error, if it were possible to force water at that velocity through the 

sensor. All the values discussed in the “smart” velocity section are adjustable system parameters 

so its operation can be changed based on field conditions. This “smart” system allowed velocity 

measurements of low quantization error to be taken across a wider range of velocities than 

initially required and did so using a smaller number of samples which limited the computation 

time required. 

 Analog Electronics 

The analog portion of the sensor electronics system consists of the signal conditioning 

chip for the thermocouple, the voltage divider to monitor main battery voltage, calibration 

resistors and op amps to convert the current produced by the phototransistors in the sensor into 

voltages and the ADC to convert the analog signals into digital form. Several parts of the fifth 
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generation analog electronics design are the same as the fourth generation design. The same 

AD595 chip is used as the instrumentation amplifier and cold junction compensation for the 

thermocouple. Also, the signals from the phototransistors are converted into voltages by an 

adjustable calibration resistor and buffered by an op amp before going to an ADC. However, in 

the fifth generation design, the ADC was the 12-bit converter in the LPC1769 microcontroller 

and the op amp was changed to one better suited to this system. Overvoltage protection circuitry 

was also added to the analog inputs to prevent hardware damage. Although the same basic design 

was used for the analog electronics, significant improvements were made to make the design 

more robust and stable. 

The ADC in the LPC1769 provided 12-bit conversions at up to 200,000 samples per 

second. The clock that runs the ADC sampling could only be set to at a limited number of ratios 

of the main processor clock. The main processor clock was set to run at its maximum of 120 

MHz to decrease calculation time, and based on the ratios available, the actual maximum number 

of samples per second was 184,615 instead of 200,000. The ADC was set up to run at this 

sample rate with individual sampling controlled by software. This allowed the software to set 

different sample rates by requesting conversions at the appropriate times up to the maximum rate 

of the ADC. The maximum absolute error for the ADC was 4 times the size of the least 

significant bit, which was 3.2 mV with the 3.3 V power running the ADC. This 3.2 mV was used 

as the maximum error level when selecting the rest of the components in the analog system. 

The op amp used to buffer the signals was changed to the OPA4344 from Texas 

Instruments. This was a rail-to-rail op amp capable of operating with on a single supply of 3.3 V. 

The inputs could extend 300 mV beyond the power supply rails which provided voltage 

headroom for input protection circuitry. The gain bandwidth product of the OPA4344 was 1 

MHz and the slew rate was 0.8 V µs
-1

. These specifications easily met the system requirements 

considering that the SFH314 phototransistors used in the sensor only had a rise and fall time of at 

most 8 µs for a 5 V step change. This op amp has low noise ratings, but that was not too critical 

as the op amp was being used in a unity gain configuration and the smallest change detectable by 

the ADC was 3.2 mV. However, input bias current could have a larger effect as any current from 

the input pin connected to the phototransistor would be converted into a voltage and part of the 

signal by the calibration resistor. Therefore, the effect of the input bias current depended on the 

calibration resistor used. The highest value for the calibration resistors used in the fourth 
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generation system was around 16 kΩ, and to provide extra calibration range, it was decided to 

design for calibration resistors up to 64 kΩ. To limit the effect of the input bias current to less 

than 3.2 mV with this size resistor meant the input bias current needed to be less than 50 nA. The 

OPA4344 easily met this criterion with a maximum input bias current of only 10 pA, but the 

LM324 used in the fourth generation design could not meet this standard as it had a maximum 

input bias current of 250 nA. The LM324 also had a maximum input voltage offset of 7 mV 

which was also over the 3.2 mV target error level. The OPA4344 had an acceptable maximum 

input voltage offset of 1 mV. Considering all of these factors, the OPA4344 met all the necessary 

requirements for the analog circuit and the rail to rail input and outputs made it convenient to 

include in the rest of the design. 

The OPA4344 was suggested by Texas Instruments for use in driving a sampling ADC in 

single voltage supply circuits. As such, the data sheet included advice on achieving best possible 

performance for ADC circuits. One suggestion was to include a simple RC filter on the output 

from the op amp to remove the effect of charge injection from the ADC caused by its sampling 

clock. This filter was implemented with a cutoff frequency of 891 kHz to enable input signal 

changes at up to the maximum possible sample rate of 200 kHz but to block the effect of the 

internal ADC clock which ran at over 12 MHz. After the filtering, the output was connected to 

the ADC for converting into digital samples. This circuit for handling the inputs from the 

phototransistors is shown in figure 22 where the connection to the grounded calibration resistor 

is shown by the ORA2_45_CAL label. The input to the ADC is represented by the 

ORA2_45_PT_BUF label. 
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Figure 22. Phototransistor Signal Conditioning Circuit for the Fifth Generation System 

Several components of the analog design were fairly simple or identical to the fourth 

generation design. The voltage divider for monitoring the main battery voltage was created using 

a 5 kΩ and a 1 kΩ resistor to produce a 6:1 divider. Based on the maximum input into the ADC 

of 3.3 V, the voltage divider could detect main battery voltages up to 19.8 V. Above this level, 

the overvoltage protection circuitry would protect the ADC from damage. As mentioned above, 

the signal conditioning for the thermocouple is handled by the AD595 instrumentation amplifier 

and cold junction compensation chip. To reduce errors, this chip is mounted on the printed 

circuit board as close as possible to the thermocouple connection. The calibration resistors are 

nearly the same as the fourth generation design except that the circuit has been flipped vertically 

to produce the configuration seen in figure 23. 
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Figure 23. Diagram showing the Jumpers and Resistor Used as the Adjustable Resistor in 

the Phototransistor Signal Conditioning in the Fifth Generation System 

The fourth generation analog electronics contained no circuitry to limit voltage level 

going into the ADC. If the calibration resistor was sized incorrectly or excessive light suddenly 

hit the phototransistors, the voltage levels could easily surpass the maximum allowable levels 

and damage the ADC. To provide protection for the ADC, a BAT85 Schottky diode was 

connected between every analog signal and the 3.3 V power rail. For the input from the 

thermocouple and the voltage divider monitoring the main battery voltage, this was on the input 

into the ADC.  For the signals from the phototransistors, the Schottky diode was placed before 

the op amp buffer as can be seen in figure 22. The op amp was operated at 3.3V which then 

protected the ADC as its outputs were limited to this level. The Schottky diode limited the 

analog voltages to within the absolute maximum levels for both the ADC and the op amp. It 

could also handle up to 200mA and was thus able to handle the maximum current that could be 

produced by the components connected to the analog inputs. The protection provided by the 

BAT85 Schottky diodes prevented damage to the sensitive analog electronics to make the design 

more resilient. 
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 Power Electronics 

Significant changes were made to the power system electronics in the fifth generation 

design. In the fourth generation design, switching relays caused interferences with the analog 

system which affected velocity measurements. The fifth generation design attempted several 

improvements to eliminate this interference. First, all components were grouped by the types of 

signals they used and noise they could produce. This ended up creating analog, digital, and high 

power sections. Figure 24 shows how the sections were placed on the board to minimize 

interferences from return currents which could affect the operation of sensitive components. 

Power entered the board on the bottom right side and the analog section was placed furthest from 

this point while the high power relays were placed closer. The high power section consisted of 

relays for controlling the solenoids and air compressor which could cause significant noise 

spikes when operating. This division of components was a key feature in attempting to eliminate 

interference effects. 

 

Figure 24. Fifth Generation Electronics Board Divisions 

A ground plane was added to the bottom of the board to improve grounding and 

shielding. This ground plane, shown in figure 25, contained cuts for isolating various sections of 

the board. The divisions between these sections were also observed when running the signal and 
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power lines across the top of the board to prevent loops from forming with the return currents. 

The separated section of the ground plane on the right side of the board was the ground for the 

solenoid values. The power and grounds for the solenoid valves were completely separated from 

the rest of the power to prevent the inductive kick from the solenoids from affecting the rest of 

the electronics. The relay used for controlling power to the air compressor had quick connect 

spades on the top of the relay so that the power to the air compressor never actually had to run 

through the board.  

 

Figure 25. Fifth Generation Electronics Board Ground Plane 

Another very important aspect of the power distribution was the use of decoupling caps 

for all the components. They each had a 0.1 μF X7R capacitor as close to the power pin of the 

device as possible and a 10 μF Tantalum cap located in the same region of the board. The 

LPC1769 contained decoupling as part of the LPCXpresso board so extra decoupling was not 

added to this board, and the UART to USB chip was powered from the USB connection so it did 

not have decoupling on this board. Otherwise, all other microchips had decoupling capacitors. 

The voltage divider monitoring main battery voltage also had a decoupling cap to smooth spikes 

and to ensure that the average battery voltage was being monitored. 

The components used in the design of the fifth generation electronics required 3 different 

voltage levels: 3.3, 5, and 12 V. The 3.3 and 5 V power rails were provided by the LM1086IT-

3.3 and LM1086IT-5 low dropout positive voltage regulators, respectively. Components utilizing 
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the 12 V power did not require regulated power supplies, so no regulator was used for 12 V. The 

LM1086 series regulators could handle the 12 V power for input and produce up to 1.5 A of 

output current at each voltage which was enough to power all components at maximum levels. 

The datasheet for the LM1086 series regulators required a 10 μF capacitor on the input power 

and a 10 μF Tantalum capacitor on the output power for stability, so these were added as 10 μF 

Tantalum capacitors as close to the regulator as possible. A 0.1 μF X7R capacitor was also added 

to the input of the regulator to handle any high frequency transients. To add further stability to 

the system, a ferrite bead was placed on the output of the regulator after the stabilizing capacitor. 

This bead could handle up to 5A and provided filtering and electromagnetic interference 

suppression to improve the stability of the power rail. After the ferrite bead on the 3.3 V and 5 V 

power rails, a 10,000 μF aluminum capacitor was placed to provide more stable voltage even 

during sudden changes in current load. These large capacitors were used because of the large 

current changes that occurred when the relays switched on or off and switched even larger 

solenoid valves. It was not possible to size them large enough to provide sufficient capacitance to 

maintain constant voltage levels using the capacitor alone during the entire activation time of the 

relay. Therefore, the highest value capacitor at a reasonable size and cost was selected. A similar 

large capacitor was used on the 12 V power line, but this capacitor was only 2200 μF as the 

higher voltage limited capacitor options. The 12 V power rail also included a 100 μF aluminum, 

a 10 μF Tantalum and a 0.1 μF X7R capacitor to provide better voltage smoothing across a range 

of frequencies. This power supply circuitry for each voltage rail is shown in figure 26. 
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Figure 26. Schematic of the Power Supply for the Fifth Generation Sensor System 

 Overall Electronics Design 

Each individual component of the electronics design of the fifth generation sensor was 

designed as described in the preceding sections. This produced the final printed circuit board 

shown in figure 27 and individual layers are shown in Appendix A - along with the complete 

schematic for the design and the bill of materials.  
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Figure 27. Printed Circuit Board Design for the Fifth Generation Sensor 

This system was designed with special care to minimize interference between the 

different system components. Using the LPC1769 as the microcontroller, also significantly 

increased processing power and options available in velocity measurement. Communication 

methods have also been provided to handle changes in sensor operation and to support both long-

term installations as well as portable systems for one-time measurements. Figure 28 is a diagram 

showing the overall operation of the electronics for the fifth generation system. The system 

developed allowed the fifth generation design to meet the goals set out for it and to produce a 

much more capable system. 
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Figure 28. Diagram showing Fifth Generation Sensor System Electronics 

 Fifth Generation System PC Interface 

The fifth generation sensor system was designed to be capable of operation while 

connected to a PC. The microcontroller running the sensor system had an extensive set of 

commands that allowed much of the operation of the sensor to be adjusted while it was running. 

Nearly every parameter of the different measurements could be adjusted—from measurement 

frequency to which channels should be monitored for the velocity measurement. However, these 

commands are not the easiest to type, and the messages from the microcontroller were not simple 

to read as they were mostly just lists of ADC counts. To make it easier to use the sensor when it 

was connected to the computer, a simple C# .NET program, Sensor Control, was created. A 

screenshot of the program is shown in figure 29. 
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Figure 29. Screen Shot of the Sensor Control Program used to Operate the Fifth 

Generation System from a PC 

When a computer was connected to the USB port on the UART-to-USB converter, a new 

serial port appeared on the computer. Inside the Sensor Control program, this port could be 

selected and a connection to the fifth generation system could be made. Once connected, results 

from the sediment and velocity measurements would show up in convenient tables for easier 

reading. The units for the measurements could be changed from ADC counts to actual voltages. 

The program also provided buttons to turn on and off individual outputs for testing purposes. 

Finally, it was also possible to log data from the sensor to a file on the computer hard drive. The 

program would separate velocity data for logging so that each individual measurement could be 

more easily plotted if that was desired. Unfortunately, the program did not provide every 

command available to the sensor in simple menus. Therefore, a text box was available where 

individual commands to the sensor could be written and then sent. If more commands were 
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incorporated as options in the program, it could make using the sensor in either standalone mode 

or changing settings in a field installation as simple as selecting menu options. Although this 

program was not very powerful, it did provide a simpler interface for the sensor and demonstrate 

how the sensor could be used while connected to a computer. 
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Chapter 4 - Sensor Test Procedures 

 Fourth Generation Sensor Tests in Enclosed Flow 

 To determine the ability of the fourth generation sensor to measure the velocity of fluid, 

the sensor was tested in an enclosed flow situation. Using water in enclosed flow allowed the 

average velocity of the fluid to be more carefully controlled and measured and eliminated some 

of the error introduced by velocity variations in open channel conditions. In this test the sensor 

was attached to a piece of standard polyvinyl chloride pipe (PVC). The internal diameter of the 

pipe was 1.91 cm (3/4 inch schedule 40) which matched the diameter of the curved part of the 

sensor where the LEDs and phototransistors are mounted. A piece of pipe was carefully 

machined to match the shape of the sensor and gaps were filled with silicone caulk to ensure a 

smooth transition of constant diameter from the pipe through the sensor and back to the pipe. A 

straight horizontal section was maintained for 50 cm in front of the sensor and 20 cm behind the 

sensor. The water velocity through the pipe could be varied from 0.125 to 4.5 m s
-1

 through the 

use of valves. Several sources mention limiting water velocities to 1.52 m s
-1

 (5 feet per second) 

in PVC pipes for irrigation (Sneed and Barker 1996, Rowan, Mancl and Caldwell 2004), so this 

testing range has provided an extra buffer beyond this. The water velocity was confirmed by 

timing how long it took to fill a container of a known volume.  

The dye was injected through a nozzle 1.6 mm in diameter into the pipe 10 cm before the 

sensor (14.7 cm before the first LED/phototransistors set). The dye used in this experiment was 

erioglaucine disodium salt at a concentration of 5 g l
-1

 of water. Erioglaucine disodium salt has a 

maximum absorption of visible light at a wavelength of 625 nm making it especially suitable to 

blocking the 610 nm light from the orange LEDs. The dye container was 78 cm above the sensor 

and this generated enough head pressure to ensure the dye flowed through the nozzle into the 

pipe. The dye was injected by turning on a solenoid valve for 15 ms. Figure 30 shows the test 

setup. 
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Figure 30. Experiment Setup for the Sensor in Enclosed Flow  

 

The electronics of the sensor system were connected to a National Instruments PCI-6025E data 

acquisition board installed in a PC. This data acquisition board was connected to the sensor 

electronics in place of the MicaZ mote to provide more data storage and collection capabilities. 

A LabVIEW program on the PC controlled the injection of the dye and the recording of the 

sensor output through this board. The output from each of the four phototransistors was 

simultaneously sampled and recorded at 50,000 samples per second. The signals were sampled 

for 1 second for water flow velocities of 0.75 to 4.5 m s
-1

, for 2 seconds for velocities of 0.25 m 

s
-1

  and 0.5 m s
-1

  and for 4 seconds at a water velocity of 0.125 m s
-1

. These lengths of time 

guaranteed that the dye would flow completely past the downstream LED/phototransistor set 

before the sampling stopped.  

The signals from the phototransistors were processed to determine velocity by estimating 

the cross correlation of the upstream and downstream signals. The signals from the 

phototransistors were normally a positive voltage which was then attenuated to a lower level as 

the dye passed in front of the phototransistor. This meant that the signals were not zero-mean, so 

the cross covariance (with its adjustment for the mean) was used to determine the time delay of 

the signals. One calculation was performed for the upstream and downstream signals from the 

phototransistors at 180° from the LEDs and another for the signals from the phototransistors at 

an angle of 45° from the LEDs. 
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The biased estimate for cross covariance was the version of the equation used because of 

issues that appeared when testing the unbiased cross covariance estimate. The first issue was that 

the cross correlation coefficient calculated from the unbiased estimate was dependent not only on 

the degree to which the signals matched but also on the sample length of the signals and time 

delay between the signals. Another issue was that the unbiased estimate tended to underestimate 

velocities because it weighted alignments at longer time delays over alignments at shorter time 

delays. The cross covariance was only considered for values of the time delay from 0% to 90% 

of the sample length. The sensor could not operate with time delays less than zero as that would 

indicate negative velocity which would prevent the dye from flowing through the sensor. Time 

delays at 90% of the sample length proved very unreliable as this only occurred when the sensor 

could not capture the entire signal change from the dye in both the upstream and downstream 

signals. The final step in analyzing the signals from individual measurements was to calculate 

the cross correlation coefficient to indicate how well the signals matched each other.  

Using the described testing system, ten samples were recorded at each of the following 

velocities: 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 m s
-1

. At each velocity, both the 

samples from the phototransistors at 45° and those at 180° were processed separately to create 

velocity estimates. In addition to considering the raw velocity estimates from the sensor, testing 

was also performed to determine if calibration could be used to improve measurement accuracy 

in a particular situation. Thus, these measurements were used to create an interpolation table of 

the average true velocity and the average sensor estimate, and this interpolation table was used as 

a calibration for the sensor. To test this calibration, a second set of ten measurements at each 

velocity using the same setup and procedures as the first step was taken at a separate point in 

time. 

 Fourth Generation Sensor Field Tests 

The fourth generation sensor was tested in field conditions to determine its ability to 

estimate velocity in open channel water flow. It was installed in Little Kitten Creek in 

Manhattan, Kansas and Pineknot Creek in Fort Benning, Georgia. The sensor system was 

installed in these locations and operated autonomously. Data from the measurements was logged 

locally in flash storage and transmitted across a wireless network to a web server where the data 
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could be accessed online shortly after it had been taken. This stand-alone installation in the field 

necessarily required more setup than the laboratory tests with the sensor in enclosed flow. 

The sensor was mounted on a T-post driven into the streambed as shown in figure 31. 

Several feet upstream from the sensor, another T-post was driven into the streambed to deflect 

large objects floating in the creek from direct hits on the sensor. Above the sensor on the same T-

post, a cover was mounted to shield the sensor from direct sunlight and to provide further 

protection to the sensor. Figure 32a shows how this was installed in Little Kitten Creek, and 

figure 32b is a picture of the installation in Pineknot Creek. 

 

Figure 31. Fourth Generation Sensor Mounted on a T-Post 
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(a)       (b) 

Figure 32. Sensor Mounted in (a) Little Kitten Creek, Manhattan, Kansas and in (b) 

Pineknot Creek, Fort Benning, Georgia 

The signal conditioning and control circuit board for the sensor in these field installations 

was mounted in an enclosure on the bank. A MicaZ mote and MDA300 sensor board controlled 

the sensor and recorded the data it produced. Since the sensors were installed in the creeks for 

weeks without human intervention, a pressurized air cleaning system was included to keep the 

sensor clean. This system used an AC-1.5 12 V air compressor from Omega Research to provide 

high pressure air which was limited to 517 kPa (75 psi) by a regulator. The control system for the 

sensor operated two solenoid valves: one to inject dye and one to discharge the pressurized air 

through the sensor for cleaning. The control system ran a relay that had to be energized to 

provide power to the air compressor. The entire system was powered from a twelve volt deep 

cycle battery. The battery was charged by a solar panel and solar charger. A 40 W solar panel 

was used at Little Kitten Creek and a 65 W solar panel was used at Pineknot Creek. A 5 L 

canister held enough dye for about two months of operation with four velocity measurements 

every hour before it needed to be refilled. A schematic showing the electrical system for these 

field installations is shown in figure 33. Finally, a Stargate, a single board computer from 

Crossbow, was installed near the sensor control board to log the data transmitted by the MicaZ 

mote and to transmit it over the wireless network. 
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Figure 33. Schematic for Fourth Generation Sensor Field Installation 

When first installed in the field, this system lacked the ability to disconnect power from 

the air compressor and ran into issues with the air compressor turning on when the battery was 

weak. This caused the voltage from the battery to drop below that necessary to turn the electric 

motor on the air compressor, but the motor would remain energized and would drain what power 

remained in the battery. The energized motor would also prevent the solar panel from recharging 

the system as it would drain any power that the charger attempted to put in the battery. Using the 

mote to ensure that the battery voltage was high before powering the air compressor fixed this 

problem. 

The MicaZ mote and MDA300 sensor board created several limitations on the velocity 

measurements for a variety of reasons. The MicaZ mote used TinyOS and the drivers provided 

by Crossbow to operate the MDA300. The way this system was designed only allowed sampling 
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the signals from the phototransistors at a maximum of 280 Hz when two signals were sampled 

consecutively as was required for the velocity measurement. The memory available on the 

MicaZ mote also limited the total sample length to 512 samples per signal with the MDA300 

performing 12-bit analog to digital conversions of the phototransistor signals. Even though the 

length was very limited, the MicaZ mote did not have enough computational power to perform 

the cross correlation estimation in a reasonable amount of time and determine the time delay 

between the signals. The data had to be transmitted for processing on a more powerful device. 

Four velocity measurements spaced 30 seconds apart were taken every hour. The 30 seconds 

allowed enough time for the sampled signals to be transmitted out of the mote before another 

measurement began and four measurements was the maximum that the wireless network could 

reliably transmit to the Internet each hour. 

Early tests of the velocity system with the fourth generation sensor had the dye injected 

just upstream from the sensor by several centimeters. Unfortunately, the dye did not reliably flow 

through the sensor with this setup. Occasionally, the dye would be caught in an eddy in the water 

flow and travel over or to the side of the sensor. The sensor was also very sensitive to alignment 

and had to be aligned perfectly upstream or the dye would flow around the sensor. This made the 

dye very susceptible to objects floating in the creeks that could hit the sensor and turn it slightly. 

To address this issue, an extension was made to the original fourth generation sensor. This 

extension had the same profile as the original sensor and contained a small nozzle through which 

dye could be injected. The nozzle was positioned exactly 10 cm before the upstream LED and 

phototransistors. Figure 34 shows the original sensor with the extension attached. In this image 

the extension was made out of white PVC, but the sensors installed in the field used black PVC 

and matched the color of the rest of the sensor. The nozzle was created by a brass insert and had 

a 1.6 mm diameter hole through which the dye flowed. The extension was attached to the rest of 

the sensor by a plate screwed into the tops of both. Glue was used to fill the gaps between the 

extension and the sensor and ensure a smooth connection between the two. 
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Figure 34. Original Sensor with Extension for Dye Injection 

For comparison purposes, a Flowtracker Handheld-ADV from Sontek was used to 

measure the velocity of the water in the creek. The Flowtracker is an ultrasonic velocity meter 

based on Doppler measurements of the ultrasonic waves reflecting from sediment particles in the 

water. The Flowtracker measures velocity in a small volume 10 cm from the center of the 

transducer on the Flowtracker. Therefore, the sensor had to mounted or held 10 cm to the side of 

the water flowing into the fourth generation optical sensor to measure this water. The 

Flowtracker was used to determine the unobstructed velocity of the water in the stream that was 

flowing through the sensor so it measured the velocity 9 cm in front of the sensor (with 

extension) to prevent it from picking up any disturbances in the water that could be caused by the 

sensor. At first these measurements in Little Kitten Creek were made by holding the sensor at the 

proper location, but in later measurements, a bracket was attached to the sensor cover in order to 

hold the Flowtracker at a constant position for every measurement. 

 Index Velocity Comparison at Pineknot Creek 

The sensor in Pineknot Creek was installed in the same cross section as the USGS 

streamgage 02341725. This gaging station provided stage information and discharge data based 

on the standard USGS stage-discharge rating methods. One goal of the project was to see how 

the velocity measured by the sensor could be used to estimate discharge. Since the sensor 

installed in Pineknot Creek provided velocity at a single fixed point, the index velocity method 

was used to estimate the discharge from the sensor’s velocity. Normally, the index velocity 

method would not be used at this site since the normal stage-discharge relationship had been 
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judged sufficient by the USGS. This does introduce some differences between this situation and 

the standard index velocity installation. One benefit was that since the USGS had certified the 

discharge values from the sensor according to their standard procedure, it provided a useful 

record of the discharge that would normally not be available during an index velocity 

measurement. 

The first step in the index velocity method is to define a standard cross section for use in 

creating a stage-area rating. Normally, the standard cross section is not at the same location as 

the gage station since the ADCPs used for the index velocity method must be mounted on large 

sturdy structures like bridges which prevent accurate cross section measurements. In this case, 

the gaging station was a simple bubbler and the sensor only required mounting on a T-post so the 

standard cross section was placed at the cross section including the gaging station and the sensor. 

Figure 35 is the standard cross section used. This cross section was surveyed by the United State 

Geological Survey when they were taking discharge measurements at the gaging station in 

Pineknot Creek (U. S. Geological Survey 2012). The datum for this cross section is the same as 

the gage height datum. The outlet for the bubbler and the sensor are both near the 3 m location, 

just before the depth increases in the thalweg. 

 

Figure 35. Cross Section of Pineknot Creek at Sensor and Gaging Station Location used as 

the Standard Cross Section (U. S. Geological Survey 2012) 

The cross section in figure 35 was not surveyed all the way to past bankfull stage which 

limited the range of heights to use for the index velocity method to below this level. However, 

this was not a significant restriction as the maximum depth in the cross section was nearly 

entirely below this limit. On several occasions it reached this level or only surpassed it by less 
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than 3 cm for a few hours. It was assumed that the stage-area rating could be extrapolated for 

these small increases above the established rating. The stage height only significantly surpassed 

the limit twice during comparisons—once by 6 cm, another time by 11 cm. The data from these 

periods were removed from use in the index velocity method. Although it would be preferable to 

resurvey the cross section and extend it, the use of this cross section as the standard cross section 

did not significantly limit the comparison since the stage was nearly always in the range 

surveyed.  

 The next step in the preparing for the index method was to create a stage-area rating. This 

was performed using the computer program suggested by the USGS—AreaComp. The points for 

the standard cross section were imported into AreaComp and the program then produced the 

stage-area rating shown in figure 36. The maximum and minimum stages used in the program 

were 0.5 and 0.0 m respectively. The stage-area rating produced by AreaComp is actually just a 

lookup table showing the area for a given stage value, and the graph in figure 36 shows all the 

points in this lookup table. In this case, as suggested by the literature, the relationship was very 

linear. Therefore, the linear relationship given by the trendline in the graph was employed as the 

stage-area rating instead of utilizing the lookup table. Since this rating was only used during the 

one year comparison period, the study was complete before the annual validation step of the 

cross section was performed.  

 

Figure 36. Stage-Area Rating for Pineknot Creek 
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 The next step in the index velocity method was the creation of the index rating. Normally 

this is done by manually taking many separate discharge measurements using an ADCP or the 

mid-section method and comparing them to the index velocity. These discharge measurements 

need to cover the entire range and types of flows for the site. Unfortunately, at Pineknot only 

three separate discharge measurements were made with the mid-section method while the index 

velocity sensor was operating. These did not cover the full range of flows and were insufficient 

to generate an index rating. However, the USGS had previously measured discharge at a wide 

range of flows and created a stage-discharge curve for the station at the site. From this, they were 

providing discharge measurements at the cross section every fifteen minutes. In a departure from 

the standard index velocity application, these discharge measurements were the ones used to 

generate the index rating since they were available. Using these measurements for the discharge 

meant that there were many more than normally available for performing the regression analysis. 

 The discharge from the gage station was converted to mean velocity using the stage 

measurement and the stage-area rating. The regression analysis normally compares the mean 

velocity to index velocity, stage and any other possibly relevant parameter of the flow. However, 

the discharge was already determined by the USGS to be related to the stage by the stage-

discharge rating which was shown above in figure 3. Since it was not the goal of the regression 

to rediscover this relationship, stage was left out of the regression analysis. Other parameters like 

crosswise velocity were not available for this sensor, so only the velocity measurement produced 

by the sensor was used as the index velocity. 

 The sensor installed in Pineknot Creek performed four velocity measurements each hour 

with each measurement separated by thirty seconds. Measurements with a cross correlation 

coefficient of 0.85 or higher were considered good quality measurements and were used in the 

analysis. All the good measurements from a single hour were averaged together to produce the 

velocity estimate from the sensor for that hour. As will be further detailed in the discussion 

section, the hourly velocity estimates were very noisy. Therefore, the hourly velocity 

measurements were smoothed using a 24-hour moving average to produce the index velocity 

used in the regression analysis. The regression analysis provided a linear equation to describe the 

relationship between the mean velocity and the index velocity and thus the index rating. 

 After creating both the stage-area and the index rating, the index velocity method could 

be used to produce discharge estimates. First, the stage measured by the gage station was used 



88 

 

with the stage-area rating to estimate area. Next the mean velocity was determined by the 

velocity measured by the sensor and the index rating. Multiplying the mean velocity and the area 

resulted in the discharge estimate by the index velocity method. 

 Fifth Generation System Operational Tests 

The first step in testing the fifth generation system was to ensure all components operated 

as designed. These tests included checks of the command and communication systems over both 

the UART-to-USB wired connection and the XBee wireless connection. The clock that tracked 

time also required testing to ensure proper timestamps were being recorded. The ADC was 

checked to make sure it properly converted voltages as it was used in the program. The entire SD 

card file system design had to be examined to ensure it continuously logged data without an 

error. It was necessary to stress the power supply system to ensure that there were no weaknesses 

in its design that would affect measurements. The cross correlation calculation was timed to 

determine how long it took to complete the calculation with different numbers of samples per 

measurement. Finally, tests were also performed to ascertain if the “smart velocity” system 

adjusted sample rates to properly detect velocities with high accuracy. 

 Fifth Generation System Flume Tests 

Before installing the fifth generation system in the field, it was tested in a laboratory 

flume. The flume used for these tests was constructed by Hydraulic Design & Products Company 

and had a channel with a width of 15 cm, height of 30 cm and a length of 180 cm. The sensor 

was tested at a distance of 145 cm from the entrance of the flume as this was the region with the 

most consistent flow during the experiments. Only limited velocities could be tested in this flow 

as it lacked the capacity to create velocities over around 0.4 m s
-1

 and still have the cross 

sectional area of flow large enough to completely submerge the sensor. Also, because of the 

limited size of the flow compared to the size of the sensor, placing the sensor in the flow had a 

significant effect on the velocity. 

The flume was used to test the sensor at four different velocities. The flume was setup to 

produce velocities of 0.1, 0.2, 0.3 and 0.37 m s
-1

 without the sensor in the flume. The 

measurements from the fifth generation sensor system were compared to measurements from a 

Flowtracker from Sontek. Because the small size of the flume caused the sensor to increase the 

velocity of the water in the flume, comparisons were made between the sensors when both were 
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mounted in the flume together. The Flowtracker was mounted to observe the velocity of a point 

just below the part of the sensor where the LEDs and phototransistors were mounted. In one set 

of measurements, the fifth generation sensor was mounted in line with the flow. Another set of 

experiments at the same velocities was conducted to see what effect misaligning the sensor with 

the fluid flow would have. For these experiments, the fifth generation sensor was tilted 30° away 

from the direction of the flow. At least 36 measurements were taken with the fifth generation 

sensor at each velocity level and orientation. The Flowtracker recorded two separate 

measurements each having a 40 s sampling time at each velocity level. Statistical analysis was 

then performed to compare the measurements from the Flowtracker to those from the fifth 

generation sensor. 

 Fifth Generation System Field Tests 

After performing the operational tests and testing in the laboratory flume, the fifth 

generation sensor system was installed in the field in Little Kitten Creek in Manhattan, Kansas. It 

took the position of the fourth generation sensor that had previously been monitoring velocity in 

Little Kitten Creek. The fourth generation sensor was converted to a sediment-only sensor and 

moved upstream. The fifth generation sensor took over the fourth generation sensor’s dye 

canister, mounting brackets and position and shared the battery, air compressor, and solar 

charger with the moved fourth generation sensor. The new sensor was not connected to the 

wireless sensor network as the fourth generation sensor required the Stargate be connected to the 

datalogger for transmission while the fifth generation system would need to replace the Stargate 

to transmit over the wireless sensor network. The fifth generation sensor therefore only logged 

the measurements recorded instead of transmitting them over the wireless network. 

The fifth generation system was tested while installed in the field by comparing it to the 

commercially available Flowtracker. A bracket was added to the fifth generation sensor to which 

the Flowtracker probe could be mounted. The bracket held the probe so that the Flowtracker was 

measuring the velocity of a point 8 cm in front of the centerline of the fifth generation sensor. 

The Flowtracker could not be permanently mounted in the creek, so the bracket ensured that it 

could be placed at the exact same position for every test. When conducting tests the Flowtracker 

was installed on the bracket and was configured to sample for 40 seconds for each velocity 

measurement it produced. Tests were conducted at different times and on different days to catch 
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different flow velocities that resulted from different flow conditions. During these comparison 

tests, the fifth generation sensor system was connected directly to a laptop that could control the 

measurements being made and record all the data. Using the laptop, the velocity measurement 

period for the fifth generation sensor was changed to less than 20 seconds. This allowed the fifth 

generation sensor to record many individual measurements during each of these field tests. While 

the fifth generation sensor was taking its set of measurements, the Flowtracker was continually 

commanded to take more velocity measurements at the same time. This produced a set of 

velocity measurements from each the Flowtracker and the fifth generation sensor that were taken 

at the same time and under the same flow conditions. Since the flow conditions were assumed to 

be the same, the individual measurements might be different, but the time-averaged velocity 

should be identical. It was attempted to obtain at least 15 good measurements from the 

Flowtracker and at least 30 good measurements from the fifth generation sensor. This was 

generally the case, but certain events like debris catching on the sensor which rendered certain 

measurement invalid, time-constraints during an individual test, or dying batteries caused the 

actual number of samples taken during each test to vary. 

The period when the fifth generation sensor was tested in the field was a relatively calm 

period in terms of weather events. Little Kitten Creek would not have naturally seen the 

variations that were needed to test the sensor at different velocities. To create different velocities 

for sensor calibration, the stream flow was altered to produce different flow rate. These 

alterations included placing rocks downstream from the sensor to slow the flow though the 

sensor, creating restrictions upstream for the same purpose and using sandbags to ensure the 

thalweg of the creek was directly in line with the sensor. On two occasions, sandbags were 

placed upstream to restrict and backup water. When these sandbags were removed, the backed up 

water resulted in increased discharge and velocity for long enough to take a consistent set of 

measurements. There was an initial surge for about a minute immediately after removing the 

sandbags so measurements from the sensors had to wait until this surge past. Using these 

methods, it was possible to generate different velocity levels in Little Kitten Creek for these 

tests. However, these methods were never close to producing the flow levels observed during 

rain events. The two highest velocities recorded in the creek both came from natural rain events, 

so the modifications to the stream flow only allowed the velocity range to be filled in with more 

tests.  
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Chapter 5 - Results and Discussion 

 Fourth Generation Sensor Tests in Enclosed Flow 

The tests of the sensor in enclosed flow were designed to better understand the operation 

of the sensor and ensure that it could detect fluid velocity consistently. The first step in checking 

the operation of the sensor was to observe the signals recorded during dye injection. After 

confirming the signals were as expected, the estimated velocity and actual velocity were 

compared. A final useful result of this test was the determination of how well the upstream and 

downstream signals matched each other as revealed by the cross correlation coefficient of each 

measurement. In these tests, each instantaneous measurement from the sensor was considered 

individually and compared to the actual average velocity in the pipe during that test. This 

highlighted the effect of turbulence in the measurements in this first test, so in later tests several 

individual measurements were averaged together to produce a better estimate of the actual 

average velocity with the effects of turbulence. 

The signals recorded from the 180° set of phototransistors at 0.125 m s
-1

 are shown in 

figure 37a. Figure 37b shows the downstream signal shifted up to match the upstream signal 

using the time delay indicated by the cross covariance estimate. Figure 38 is the same 

measurement at 0.125 m s
-1

 recorded by the phototransistors 45° from the LEDs. The 

transmission of light from the LEDs to the phototransistors directly across the sensor is much 

stronger in the clean water used in the experiment. Therefore, the signal levels from them are 

much higher than those from the 45° phototransistors. The effect of the dye is clearly visible in 

both measurements. The time delay from the cross covariance estimate in both cases caused the 

signals to closely align on the front edge of the dye effect. 
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        (a)                                                                 (b) 

Figure 37. Signals from 180° Phototransistors with a water velocity of 0.125 m s
-1

 (a) as 

recorded, and (b) shifted to align the signals as determined by the cross correlation. 

 

        (a)                                                                 (b) 

Figure 38. Signals from 45° Phototransistors with a Water Velocity of 0.125 m s
-1

 (a) as 

Recorded, and (b) Shifted to Align the Signals as Determined by the Cross Correlation. 

The signals from the 180° and 45° phototransistors recorded with a water velocity of 4.5 

m s
-1

 are shown in figure 39 and figure 40, respectively. The signal change caused by the dye 

was much less in these measurements. There was also more noise represented by the random 

spikes in the signals. The cause of the increased noise was not determined, but at this velocity the 

water was travelling very quickly though the pipe and bubbles could have been trapped in the 
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flow of water. The shifting of the signals based on the cross correlation was much less as there 

was less time delay between the dye affecting each phototransistor pair.  

 

        (a)                                                                 (b) 

Figure 39. Signals from 180° Phototransistors with a Water Velocity of 4.5 m s
-1

 (a) as 

Recorded, and (b) Shifted to Align the Signals as Determined by the Cross Correlation. 

 

 

        (a)                                                                 (b) 

Figure 40. Signals from 45° Phototransistors with a Water Velocity of 4.5 m s
-1

 (a) as 

Recorded, and (b) Shifted to Align the Signals as Determined by the Cross Correlation. 

The velocity measured by the sensor using signals from the phototransistors 180° from 

the LEDs is plotted against the true velocity of the water in figure 41. This chart also shows the 

cross correlation coefficient of each measurement through the color and symbol used to plot the 
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data point. Figure 42 shows the same data using the signals from the phototransistors 45° from 

the LEDs. In both sets of measurements, the cross correlation coefficient of the measurements 

was higher at lower velocities. Also, the measurements from the signals from the 180° 

phototransistors had higher cross correlation coefficients at a given velocity than the data from 

the 45° phototransistors. Finally, the measurements using the 180° phototransistors remained 

tightly bunched from low to high velocities. However in the data from the 45° phototransistors, 

measurements began to spread out and underestimate the velocity at higher velocity. 

 

Figure 41. Measured Velocity compared to True Velocity and Cross Correlation 

Coefficient of each Measurement using the Signals from the 180° Phototransistors 
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Figure 42. Measured Velocity compared to True Velocity and Cross Correlation 

Coefficient of each Measurement using the Signals from the 45° Phototransistors 

Based on tests using the sensor, there were likely problems with the measurement or 

sensor setup when the cross correlation coefficient was below 0.75. Table 3 below shows the 

percentage of measurements at each velocity that had a cross correlation coefficient above 0.75. 

Table 3. Percentage of Measurements with a Cross Correlation Coefficient Greater than 

0.75 

Reliable Measurement Percentage 

Nominal 
Velocity 

(m s
-1

) 
180° 

Phototransistors 
45° 

Phototransistors 

0.125 100% 100% 

0.25 100% 100% 

0.5 100% 100% 

0.75 100% 100% 

1 100% 100% 

1.5 100% 100% 

2 100% 100% 

2.5 100% 90% 

3 90% 90% 

3.5 100% 100% 

4 90% 80% 

4.5 60% 60% 
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A regression analysis was performed on the velocity measurements comparing the true 

velocity with the measured velocity. Only measurements with cross correlation coefficients 

above 0.75 were considered in this analysis. The R
2
 value for a linear relationship of the 

measurements using the 180° phototransistors was 0.9975 and was 0.9878 for the measurements 

from the 45° phototransistors. The results in the charts of sensor performance show that the 

sensor did detect the water velocity. Also, the measurements from the 180° phototransistors 

appear better than the measurements from the 45° phototransistors. The measurements from the 

180° phototransistors were all grouped tightly and correspond closely to the actual true velocity. 

The high R
2
 value for the relationship between the measured and true velocity indicates that 

water velocity alone determines the output of the sensor. The results from the 45° 

phototransistors were not grouped as tightly as the results from the 180° phototransistors. 

Especially at higher velocities, there were samples where the measured velocity was lower than 

the actual. However, the R
2
 value for the 45° phototransistors was still high indicating good 

performance from the sensor. 

The Mean Absolute Percent Error (MAPE) was calculated at each velocity using only the 

reliable measurements. Figure 43 shows the MAPE for the data from the 180° phototransistors. 

The higher MAPE for the measurements taken at velocities below 0.5 m s
-1

 indicated that these 

measurements were less accurate. The velocity measurements from 0.5 to 4.5 m s
-1

 were the 

most reliable. The MAPE in this range was consistently 5% or less. However as the velocity 

increased, the cross correlation coefficient decreased indicating that the upstream and 

downstream signals were not as similar compared to lower velocities. At 4.5 m s
-1

, only 60% of 

the cross correlation coefficient values were higher than 0.75. On the other hand, the MAPE 

remained low at this velocity. This indicates that although an increasing number of 

measurements would have to be removed for having a low cross correlation coefficient, accuracy 

remained high at 4.5 m s
-1

. As long as more measurement attempts could be made at the higher 

velocities to account for the decreasing cross correlation coefficient, the accuracy of the sensor 

remained high all the way to 4.5 m s
-1

. 
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Figure 43. MAPE at each Velocity using the Signals from the 180° Phototransistors 

Figure 44 shows the MAPE chart using the 45° phototransistors. The measurements 

based on the signals from the 45° phototransistors were similar to those from the 180° up to 

velocities of 2 m s
-1

. The MAPE for the measurements from the 45° phototransistors was also 

high at velocities below 0.5 m s
-1

 and then stayed below 5% from 0.5 to 1.5 m s
-1

. Starting at 2 m 

s
-1

, velocity measurements occasionally started showing up that were lower than the true 

velocity. The signals from the phototransistors for these measurements had the same form and 

shape as measurements that produced estimates closer to the true velocity. The cross correlation 

coefficients for these low measurements were also similar to the accurate measurements so these 

were not just outliers, but rather part of the operation of the sensor. It should also be noted that 

the 180° phototransistors took simultaneous measurements with the 45° phototransistors and the 

measurements from the 180° phototransistors were not any lower at this point. This rules out dye 

fluctuations causing the lower readings. The samples taken with the 45° phototransistors had a 

larger spread toward lower velocity estimates at higher true velocities. Another noticeable 

feature in the data from the 45° phototransistors was that the cross correlation coefficient was 

lower for a given velocity than the data from the 180° phototransistors. The cross correlation 

coefficient values for the data from the 45° phototransistors were in general lower and indicated 

less similarity between the upstream and downstream signals. 
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Figure 44. MAPE at each Velocity using the Signals from the 45° Phototransistors 

The data from the second (validation) set was very similar to the first set. The second 

validation set was taken to test the calibration interpolation table created from the first set of 

measurements. The validation data set measurements were adjusted using this calibration. Figure 

45 and figure 46 show the sensor performance in the validation data set for the 180° and 45° 

phototransistors respectively. As before, a linear regression was performed to determine the 

relationship between the true and measured velocities for each set of phototransistors. The R
2
 

value for this relationship with the 180° phototransistors was 0.9976. The same R
2
 for the 45° 

phototransistors was 0.9960. 
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Figure 45. Measured Velocity compared to True Velocity and Cross Correlation 

Coefficient of each Measurement using the Signals from the 180° Phototransistors in the 

Validation Set 

 

Figure 46. Measured Velocity compared to True Velocity and Cross Correlation 

Coefficient of each Measurement using the Signals from the 45° Phototransistors in the 

Validation Set 
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Figure 47 and figure 48 show the MAPE of the measurements from the 180° 

phototransistors and the 45° phototransistors in the validation data set. Both the uncalibrated and 

calibrated MAPE from this data set are displayed for comparison. There is no data point for 

measurements at 4.5 m s
-1

 with the 45° phototransistors in the validation data as all of these 

measurements had cross correlation coefficients below 0.75. The increased MAPE at velocities 

above 2 m s
-1

 with the 45° phototransistors was not noticed in validation set. Therefore, the 

MAPE for the velocity estimates using the 45° phototransistors was more similar to that from the 

180° phototransistors in the validation data. However, the estimates from the 45° 

phototransistors still had lower cross correlation coefficients compared to those from the 180° 

phototransistors.  

 

Figure 47. MAPE at each Velocity using the 180° Phototransistors from the Validation 

Data 
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Figure 48. MAPE at each Velocity using the 45° Phototransistors from the Validation Data 

The MAPE graphs shows that there were increased errors at velocities below 0.5 m s
-1

 in 

data from both sets of phototransistors. This error was not random. The sensor velocity estimates 

were consistently higher than the true velocity. As the true average velocity in the pipe 

decreased, this overestimation increased. At these low velocities, the dye appeared to travel 

between the LED/phototransistor sets and affect the signal levels in a shorter amount of time 

than expected given the average velocity of the water in the pipe. A simple test was conducted to 

examine whether diffusion of the dye could explain the increased speed. In this test, dye was 

injected into a piece of pipe filled with still water. Using only diffusion, it took 105 seconds for 

the dye to travel the 4 cm distance between the LED/phototransistor sets. This provides a 

velocity of 0.38 mm s
-1

 based on diffusion, and this value sets a lower limit on velocity for the 

operation of this sensor. Since the overestimation of velocities was all in the range from 0.1 to 

0.5 m s
-1

, diffusion does not appear to causing the increase. Some other phenomenon must be 

producing this effect. 

This overestimation of low velocities (while the high velocities appeared very linear) 

drove the development of the calibration interpolation table that was used with the validation 

data. The MAPE graphs for the validation data show that calibration improved the accuracy of 

the sensor at velocities below 0.5 m s
-1

. There was still an increase in error at lower velocities, 

but it was not as large following the calibration. 

The sensor’s velocity estimate was mostly a direct correspondence with the actual 

velocity. This direct relationship broke down at low velocities where the sensor instead 
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overestimated velocities. The sensor performed best when the relationship was exactly one to 

one. The calibration interpolation table accounted for this deviation from the directly linear 

relationship. However, there were still increased variations in the measurement estimate leading 

to greater error in at lower velocities. 

The tests of this sensor in enclosed flow conditions confirmed that the sensor could 

determine the velocities of the water flowing through it. Overall, the sensor worked best at 

velocities above 0.5 m s
-1

 using the signals from the phototransistors 180° from the LEDs. In 

these conditions the measurement error was less than 5%. Using the signals from the 45° 

phototransistors could produce similar MAPE levels, but the lower cross correlation coefficients 

indicated that the sensor had a harder time making good velocity measurements using these 

phototransistors. This would force measurements relying on the 45° phototransistors to try the 

measurement multiple times before a good measurement could be confirmed. This test did not 

attempt to compensate for the instantaneous velocity fluctuations caused by the turbulent water 

flow in the pipe. Instead of taking several measurements with the sensor and determining a time-

average, this test considered each measurement individually. Therefore, the effect of the 

turbulence in the water increased the MAPE of the sensor measurements, so the MAPE was not 

entirely determined by the sensor itself. The results of this test and the MAPE values obtained 

for individual measurements highlight the need to consider the time-averages instead of 

individual measurements. This test also established that the sensor system consisting of dye, 

LEDs, phototransistors, and the use of the cross correlation to determine time lag worked to 

produce a valid velocity estimate. Finally, the use of the cross correlation coefficient to 

determine if a measurement was of high quality was also proven. 

 Velocity Data Recorded by the Fourth Generation Sensor Field Installations 

The sensor systems installed in the field were programmed to take four velocity 

measurements every hour. These four velocity measurements were taken 30 seconds apart so that 

the samples were coming from similar flow conditions. The sensor system only recorded the 

signals from the phototransistors. The biased cross correlation estimate to determine time delay 

was performed later on more powerful devices. The processing step created a single velocity for 

each hour from the four measurements by averaging the measurements that were less than 1.12 

m/s and had a cross correlation coefficient over 0.85. The upper limit of 1.12 m s
-1

 was imposed 
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because the limited sampling rate of the fourth generation sensor system meant that at velocities 

above 1.12 m s
-1

, a one sample change in the time delay estimation resulted in more than a 10% 

change in velocity. Measurements with results above this point were highly unreliable and 

usually indicated an error in the sensor system.  

At Pineknot Creek in Fort Benning, Georgia, the field installation started recording 

velocity measurements with this method on 4 April, 2011. At Little Kitten Creek in Manhattan, 

Kansas, these velocity measurements began on 17 May, 2011. The hourly velocity measurements 

recorded from Pineknot Creek from 21 July, 2011 to 31, July 2011 are shown in figure 49 along 

with hourly precipitation as recorded by the USGS gaging station at that site. The figure shows 

that the velocity was generally between 0.2 and 0.3 m s
-1

 until a rain event on 28 July, 2011 

caused a spike in velocity. After the spike from the rain event, the velocity then settled at a 

higher level of around or just above 0.3 m s
-1

. The gaps in the lines indicate hours when no 

reliable measurement from the fourth generation sensor exists. 
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Figure 49. Hourly Velocity Measured by Fourth Generation Sensor in Pineknot Creek 

from 21 July, 2011 to 31 July, 2011 

The hourly velocity measurements exhibit constant fluctuations. The fourth generation 

sensor was limited to only four consecutive measurements each hour which did not seem to be 

adequate to produce the time-averaged velocity in the presence of turbulence. Even more 

limiting was the fact that sometimes less than four measurements were used in calculations as 

not all four measurements had a high enough cross correlation coefficient. These fluctuations in 

the hourly data make it difficult to clearly discern velocity trends over longer periods of time. To 

provide more values for use in time-averaging, a twenty-four hour moving average of the 

velocities was employed. This produced figure 50 which shows the velocity measured by the 

sensor in Pineknot Creek from 4 April, 2011 to 26 April, 2012. Once again hourly precipitation 

is included with velocity in the figure. One feature that shows up is the velocity spikes caused by 

rain events. It is also possible to see that the drier than average summer in Georgia caused lower 
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velocities during the summer and fall. Gaps in this chart appear any time there were fewer than 

six hours of good measurements in any twenty-four period. 

 

Figure 50. Twenty-Four Hour Moving Average Velocity Measured by Fourth Generation 

Sensor in Pineknot Creek from 4 April, 2011 to 26 April, 2012 

A similar chart of the twenty-four hour moving average for the velocity in Little Kitten 

Creek is displayed in figure 51. The velocity measurements in Little Kitten Creek stop in 

November 2011 as that is when the water in the creek froze, and it was no longer possible to take 

measurements. The velocity spikes in Little Kitten Creek do not align with major precipitation 

events as several tests were conducted in the creek which altered the velocity at the sensor. For 

example, the high velocities in June and early July correspond with a test that increased the 

portion of water in the creek flowing past the sensor. In figure 51, precipitation data came from 

Weather Underground, Inc. which provided a daily total precipitation instead of the hourly 

precipitation from the USGS for Pineknot Creek in figure 50. There are more gaps in this data as 
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forcing more of the water in the creek to flow through the sensor ended up causing more debris 

such as leaves to catch on the sensor and prevented it from taking good measurements.  

 

Figure 51. Twenty-Four Hour Moving Average Velocity Measured by Fourth Generation 

Sensor in Little Kitten Creek 17 May, 2011 to 8 November, 2011 

The year-long velocity histories also provide an opportunity to use the cross correlation 

coefficient to determine how well the sensor was operating. Figure 52 shows the cross 

correlation coefficients of all the velocity measurements from 4 April, 2011 to 26 April, 2012 in 

Pineknot Creek. The cross correlation coefficients were averaged using a twenty-four hour 

moving average to highlight the trends in the results. Periods when the sensor’s operation is 

impaired are noticeable by the significant drops in cross correlation coefficient at certain points. 

A variety of reasons caused these drops and figure 53 details the reasons for the impairment of 

the sensor’s operation. The large drop in cross correlation coefficient in May, 2011, was caused 

by debris catching on the sensor and blocking light from the downstream LED from reaching the 

phototransistor across the sensor consistently. The drop in early September, 2011, occurred when 
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the dye canister ran out of dye, and thus there was no large change in signals for the cross 

correlation to detect to determine the time delay. The periods in the fall and early winter with 

low cross correlation coefficients were caused by leaves that fell from trees and into the creek 

and caught on the front of the sensor where they interfered with dye being injected properly. 

These leaves would occasionally be dislodged or moved to where dye was again allowed to flow 

through the sensor normally. That is why there are periods of alternating normal operation and 

periods where the dye was blocked. The gaps in the cross correlation coefficient data in late 

winter and early spring occurred because the solar power regulator that provided power to the 

Stargate began operating erratically before finally failing in late February, 2012. The Stargate 

was responsible for recording and transmitting the data, so no measurements exist for this time 

period. 

 

Figure 52. Twenty-Four Hour Moving Average Cross Correlation Coefficient Measured by 

Fourth Generation Sensor in Pineknot Creek from 4 April, 2011 to 26 April, 2012 
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Figure 53. Operating Status for the Sensor in Pineknot Creek from 4 April, 2011 to 26 

April, 2012 

 The year-long sampling at Pineknot Creek also revealed that this design for the velocity 

sensor is relatively immune to the effect of fouling from residue accumulation. Because the 

sensor is installed in natural open channel flows, over time residue builds up on the sensor (Stoll 

2004). This buildup can have a significant impact on this sensor’s operation while trying to 

determine soil sediment concentration (Bigham 2012). At Pineknot Creek, the sensor was 

manually cleaned just before 19 May, 2011. It then continued operating without any manual 

cleaning for several months. During these months, residue slowly deposited on the sensor. This 

was noticeable by a decrease in the voltage level of the signals from the phototransistors without 

the dye present. However, during this time, the sensor continued providing velocity 

measurements with high cross correlation coefficients. Figure 54 shows the relationship of the 

cross correlation coefficient to the dye-free downstream phototransistor signal level during each 

measurement from 19 May, 2011 to 29 August, 2011. At the beginning of this time period, the 

dye-free signal level was over 1 V, but by the end of this period, it had dropped to less than 0.05 

V in some measurements. As can be seen in figure 54, the cross correlation coefficients are 

relatively unaffected by the residue and remain mostly high across the entire range of signal 

levels. This ability to continue providing good velocity estimates even with considerable residue 

accumulation was unexpected. In this case, the sensor continued operating and providing good 

velocity estimates without human intervention over a several month time span even though 

significant residue buildup occurred. This ability makes the velocity part of this sensor more 

robust and could potentially allow its use more areas. 
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Figure 54. Relationship of the Cross Correlation Coefficient to the Dye-free Downstream 

Phototransistor Signal Level during each Measurement from 19 May, 2011 to 29 August, 

2011 

A graph showing the cross correlation for the fourth generation sensor in Little Kitten 

Creek from 17 May, 2011 to 8 November, 2011 is displayed in figure 55. There was more 

variability in the cross correlation coefficients of measurements made by the sensor in Little 

Kitten Creek. As mentioned before, the sensor in Little Kitten Creek was placed at a constriction 

in the creek where almost all the water flowing in the creek went past the sensor and many leaves 

and other plant materials floating in the creek accumulated on the sensor. The sensor was cleaned 

nearly daily to remove the material blocking the sensor. Therefore, the cross correlation 

coefficient alternated from above 0.85 to a lower value often, and this change depended on when 

it was cleaned and the amount of plant material floating in the creek. The issues that caused 

problems for the sensor’s operation at different points in time are displayed in figure 56. The 

lowest values in October occurred when the leaves were dropping from the trees and the entire 

creek was covered in leaves. During this period, it was not possible to clean the sensor often 

enough to capture many good velocity measurements in a single day. This problem with debris 
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catching on the sensor created significant periods of time when the sensor produced low-quality 

measurements with low cross correlation coefficients. However, outside of these periods the 

sensor operated properly and was able to estimate the velocity. 

 

Figure 55. Twenty-Four Hour Moving Average Cross Correlation Coefficient Measured by 

Fourth Generation Sensor in Little Kitten Creek from 17 May, 2011 to 8 November, 2011 

 

Figure 56. Operating Status for the Sensor in Little Kitten Creek from 17 May, 2011 to 8 

November, 2011 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ro

ss
 C

o
rr

e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t 

Date 

Working

Debris Blocking Sensor

Stargate Failure

Dye Hose Unconnected



111 

 

Even though the sensor in Little Kitten Creek had problems with plant debris which 

prevented long periods with high cross correlation coefficients, it still collected useful data 

during various experiments. In these tests, the Flowtracker from Sontek was used to monitor the 

velocity of the water 9 cm in front of the fourth generation sensor with the extension for dye 

injection. In one experiment continuous measurements were taken with both the Flowtracker and 

the fourth generation sensor for thirty minutes. The flow conditions in Little Kitten Creek were 

constant during this experiment. The Flowtracker monitors the flow for 40 seconds and then 

provides a velocity estimate. Each velocity measurement had to be manually retriggered 

resulting in slightly longer than 40 seconds between each measurement. The fourth generation 

sensor was programmed to take one sample every 30 seconds. The clocks on both devices were 

synchronized before the experiment so that the time stamps matched each other. Figure 57 shows 

the velocity estimates from the fourth generation sensor and the Flowtracker during the 

experiment. The average velocity reading for the Flowtracker was 0.337 m s
-1

 with a standard 

deviation of 0.032 m s
-1

, while the average velocity measurement from the fourth generation 

sensor was 0.306 m s
-1

 with a standard deviation of 0.028 m s
-1

. Several interesting features are 

present in the comparison chart. The first is that the Flowtracker seemed to detect a gradual 

change in velocity from over 0.35 m s
-1

 to under 0.3 m s
-1

 and then back to about 0.35 m s
-1

. On 

the other hand, the fourth generation sensor showed a random distribution of values about the 

mean which was expected for point measurements taken in turbulent flow. The mean velocity 

estimates from both devices, while not identical, were close, indicating that the fourth generation 

sensor was indeed detecting the velocity of the water flowing in the creek.  
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Figure 57. Comparison of Flowtracker velocity measurements to the Fourth Generation 

Sensor Velocity Measurements 

One drawback of the experimental setup which produced figure 57 is that both sensors 

cannot be mounted at the exact same point at the exact same time. Since they cannot be mounted 

at the same point and time, based on the turbulent nature of the water, they will not measure the 

exact same velocity. Furthermore, each sensor actually has an effect on the velocity of the water 

flowing around it. Even if they were somehow mounted at the same point at the same time, the 

readings from one sensor would be affected by the other sensor. This means that simultaneous 

measurements cannot be taken with both sensors for comparing the sensors. Therefore, the 

Flowtracker was installed upstream from the fourth generation sensor to ensure the Flowtracker 

was installed in flow undisturbed by the fourth generation sensor. The Flowtracker sampled a 

volume to the side of the physical structure of the sensor, so it is assumed that it did not affect 

the operation of the fourth generation sensor. Unfortunately, the turbulent nature of the flow and 

the spatial difference between the devices meant that they were not sampling the exact same 

velocity. However, as pointed out in the literature review of turbulence, the average properties of 

identical flows should be the same. That is why only the averages were compared instead of each 

individual instantaneous measurement. 
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The Flowtracker in normal operation only provided a velocity estimate after running for 

40 seconds, but it was possible to download the raw velocity measurements it created every 

second before processing these measurements to produce the final estimate. Figure 58 shows the 

raw velocity recorded by the Flowtracker each second while it was creating the first (at 8:39) 

estimate plotted in figure 57. The distribution of the raw, one-second measurements from the 

Flowtracker is more random, and the distribution appears similar to that of the point 

measurements from the fourth generation sensor. The similarity between the point measurements 

indicates the effect that the turbulence in the water had on both sensors. 

 

Figure 58. One Second Raw Velocity Measurements from Flowtracker in Little Kitten 

Creek 

Another experiment done in Little Kitten Creek involved using the Flowtracker to record 

the velocity of the water in front of the sensor at many different flow velocities. The velocities 

were varied by measuring on different days when the creek had higher or lower discharge and by 

creating small changes in the channel which changed the velocity at the sensor. Figure 59 shows 

a comparison of the velocity measurements from the two sensors. The fourth generation sensor 

velocity was determined by averaging only the measurements with high cross correlation values 

from the four measurements taken each hour. The hourly value taken closest to the time of the 

Flowtracker measurement was used in the comparison. The velocities ranged from 0.1 m s
-1

 to 

about 0.6 m s
-1

. The expected linear relationship between the sensors is evident in the data. The 
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limited number of measurements in each time-averaged velocity combined with the effect of 

turbulence ensured that the points would not lie on a perfect line. 

 

Figure 59. Comparison of Fourth Generation Sensor to Flowtracker Velocity Estimates 

over a Range of Velocities 

 Index Velocity Results 

The first step in the index velocity processing was to obtain the stage information to 

determine the cross sectional area. Figure 60 shows the stage as recorded by the USGS 

streamgage in Pineknot Creek. There are some clearly erroneous values in the stage with the 

values that are shown as sharp negative spikes to the 0.3 or 0.2 m range. These appear in the data 

as a sudden change from the normal value to the lower value for a short period of time. They 

then immediately return to the previous value range. Since there is no known natural cause for 

such a quick and temporary change in the height of the stream, these were judged to be errors in 

the USGS data and removed from the analysis. Also, since the stage-area rating only went to 0.5 

m, periods of time when the stage was above 0.53 m were removed from the analysis as well. 

This stage information was used with the stage-area rating to produce the area. 
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Figure 60. Stage in Pineknot Creek (U. S. Geological Survey 2012) 

 The next step in the index velocity process was to determine the mean velocity using the 

index rating. The index rating was developed using the discharge provided by the USGS for the 

site. The discharge from the USGS for the period under consideration is shown in figure 61. One 

feature that stands out is the strange increase in base discharge levels from 9 August, 2011 to 12 

October, 2011. A similar increase is not apparent in the stage at the same time. Since the data up 

to 30 September, 2011 had been approved by the USGS, this was first treated as a natural 

phenomenon. The mean velocity for the cross section was determined by dividing the discharge 

by the area determined using the stage and stage-area rating. A regression analysis was then 

performed on the mean velocity and the index velocity. 
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Figure 61. Discharge in Pineknot Creek from USGS (U. S. Geological Survey 2012) 

 The regression analysis performed using these data sets failed to find a strong 

relationship between the mean velocity and the index velocity. The index velocity is the 24-hour 

moving average of the good quality measurements from the sensor as was presented in figure 50. 

The equation resulting from the linear regression was  ̅                , where  ̅ is the 

mean velocity and    is the index velocity. The R
2
 value for this relationship was 0.0005 

indicating that the index velocity is not accounting for any significant portion of the variability in 

the mean velocity. In the ANOVA analysis associated with the regression, the p-value for the 

coefficient for the index velocity was 0.11 indicating that it is not possible to reject the 

hypothesis that the coefficient should be zero at a 0.05 significance level. Since a linear 

relationship would require a non-zero coefficient, this test indicates that the relationship should 

be explored further. The mean velocity and index velocity were compared against each other 

along with the relationship predicted by the regression in figure 62. Investigation of the plot in 

figure 62 provides a clue of what is causing such a low R
2
 value. Similar patterns appear 

vertically offset from each other in the chart. Investigations of the offset revealed that all the 

higher set of points occurred in the 9 August, 2011 to 12 October, 2011 time period when the 

discharge figures provided by the USGS were surprisingly high. 
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Figure 62. Chart Comparing Index Velocity to Mean Velocity over the Entire Comparison 

Period with the Linear Relationship Predicted by Regression 

 Since the second set of points had been determined to come from a single period of time 

with an unexplained increase in discharge, all points from the 9 August, 2011 to 12 October, 

2011 period were removed and the linear regression analysis was repeated. The resulting 

equation was  ̅               . This time the R
2
 value was 0.341 which indicates that there 

was still significant variability in the mean velocity that was not accounted for by the index 

velocity. However, this was much better than the near-zero value in the first analysis. The p-

value for the significance of the index velocity coefficient was less than the minimum value 

representable by the ANOVA which allows rejection of the hypothesis that the coefficient was 

zero. Therefore, there is definitely a positive linear relationship between the mean and index 

velocities. The comparison between the index velocity and the mean velocity for this regression 

analysis is shown in figure 63. The linear equation produced by the regression model passes 

though the center of the largest portion of the samples. Most of the points in the graph lie close to 

the line, but there are still several points that do not lie close to the line. Most of these points are 

concentrated above the line produced by the regression equation which means they represent an 

increase in mean velocity without a corresponding increase in the index velocity. The reason for 

this concentration of points above the regression equation line is unknown. The equation 

produced by this regression model,  ̅               , was used as the index rating. 
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Figure 63. Chart Comparing Index Velocity to Mean Velocity with the Linear Relationship 

Predicted by Regression over the Comparison Period without data from 9 August, 2011 to 

12 October, 2011 

 With both the stage-area rating and the index rating, it was possible to estimate discharge 

using the stage from the USGS gaging station and the velocity from the fourth generation sensor. 

The area estimated from the stage was multiplied by the mean velocity estimated from the index 

velocity. The resulting discharge estimate for the entire study period is shown in figure 64. Also 

included in this graph is the normal discharge estimate produced by the USGS from their 

streamgaging station. It can be seen that the discharge estimated using the fourth generation 

sensor tracked the discharge from the gaging station well. Two differences are evident. The first 

is that the discharge estimated from the index velocity does not have the jump in discharge from 

9 August, 2011 to 12 October, 2011. This was expected as neither stage nor the index velocities 

for this period exhibited a jump like the USGS discharge estimate. The second deviation between 

the two discharge estimates was that the index velocity-based discharges do not spike as high 

during rain events as the stage-based discharge measurements. One explanation for this could be 

that the averaging necessary to produce a more accurate time-averaged velocity for the index 

velocity removed the spikes in the index velocity. To address this, the entire regression process 
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was repeated using the measurements from each hour individually without the 24-hour moving 

average.  

 

Figure 64. Discharge measured in Pineknot Creek by both the USGS Streamgage and the 

Index Velocity Method using the Fourth Generation Sensor 

When using the hourly velocity measurements, the regression produced  ̅          

      as the index rating. The R
2
 value for this regression was only 0.274 because of the 

increased variations in the index velocity. The resulting discharge estimate is shown in figure 65 

where it is again compared to the USGS discharge. Even though these values were not averaged 

over 24 hours, the discharge based on the index velocity method still exhibited the difference in 

the discharge in spikes from rainfall events. Unfortunately, this method still did not detect the 

high spikes in discharge after large rainfall events. Figure 65 does show higher spikes than figure 

64, but not as high as the values from the USGS estimate. Also noticable is a significant increase 

in the noise in the discharge estimate based on the fourth generation sensor. This indicates that 

another method is needed to ensure enough individual velocity measurements are taken at a 

given point in time to produce a better average velocity and reduce the variability from 

turbulence or other factors.  

0

1

2

3

4

5

6

7

D
is

ch
ar

ge
 (

m
3
) 

Date 

Streamgage

Index Velocity



120 

 

 

Figure 65. Discharge measured in Pineknot Creek by both the USGS Streamgage and the 

Index Velocity Method using the Hourly Velocity Estimates from the Fourth Generation 

Sensor 

The field tests of the fourth generation sensor confirmed that the sensors can measure 

velocities in a realistic setting, while the enclosed pipe tests confirmed accuracy when the 

average velocity could be carefully controlled and measured. The fact that the sensor in Pineknot 

Creek was able to operate for months at a time without human intervention indicated that this 

design was capable of long-term monitoring when properly installed. Furthermore, when 

problems do occur, the cross correlation coefficient allowed quick identification of 

measurements that had been affected. This allowed identification of the existence of problems 

without requiring manual inspection of the field site. The field tests also pointed out several 

issues with the sensor design and testing. Because of turbulence, only the average velocity, and 

not a point velocity measurement, was the same in identical flow conditions. This sensor needs 

to be able to provide an average velocity for comparison purposes. Without using average 
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velocities, the fluctuations from the turbulence added a great deal of noise that made 

comparisons very difficult. To provide a good average value, it needs to guarantee multiple 

samples with high accuracy at the same time. However, this would be limited by processing 

power and memory if the calculation was to be done locally. If the processing was to be done on 

a more powerful device not in the field, the wireless network would have to be able to handle the 

transmission of the extra data from the additional samples. One final problem with this system 

was the upper limit at 1.12 m s
-1

 because the low sampling rate prevented accuracy at higher 

velocities.  

Utilizing the index velocity method with the fourth generation sensor did enable the 

sensor to estimate discharge. More investigation will be necessary to determine the reason for the 

index velocity method not predicting large spikes in discharge after rainfall. Perhaps more 

variables need to be considered in the regression analysis to produce the index rating. This would 

require more experimentation and data. One benefit of the index velocity method is that it 

provided a second set of data to check the jump that appeared in the USGS discharge data. Given 

that neither the stage nor the velocity detected by the sensor saw any significant changes to 

account for this jump, it seems likely that this jump was a case of a stage-discharge rating being 

temporarily shifted incorrectly. The index velocity would provide a second data point to help 

determine if that was the case and to adjust the data back to more realistic values. 

 Results from Sensor Body Design using Computational Fluid Dynamics 

Improving the design based on computational fluid dynamics was an iterative process. 

First the original sensor shape was analyzed to determine its performance. Then, modifications 

were made to the design to address weaknesses highlighted by the results of the simulation. This 

process of testing and modifying was carried out repeatedly for more than twenty-two different 

sensor designs. In the end, a final design was selected for building based on its performance in 

the simulations. 

The original sensor design had some interesting features in the flow velocity around the 

sensor. Directly in front of the sensor and directly behind the sensor are slower regions. Because 

of the filleted entrance and exit to the sensor, there are regions of higher velocity as the flow 

enters and exits the channel in the sensor. Finally, a slower boundary layer starts to develop 

along the surfaces of the sensor that run parallel to the flow. This includes the top of the sensor 
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and the U-shaped portion of the sensor which serves as the channel through which the water 

flows. This slower boundary layer region grows in size and slows the velocity of the water in that 

region more the longer the surface is parallel to the flow. This means the boundary layer is very 

small in the U-shaped channel at the front of the sensor, but has grown much larger near the exit 

of the U-shaped channel. Although these general features of the flow around the sensor are 

noticeable at all tested velocities, the relative sizes of these features changed at different 

velocities. At higher velocities the faster regions at the channel entrance and exit were more 

prominent while at lower velocities, the boundary layer had a greater effect. Figure 66 shows the 

velocity contours around the original sensor design with an upstream velocity of 0.1 m s
-1

, and 

figure 67 shows the same at 5 m s
-1

. 

 

Figure 66. Velocity Contours around the Original Sensor Design with an Upstream 

Velocity of 0.1 m s
-1
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Figure 67. Velocity Contours around the Original Sensor Design with an Upstream 

Velocity of 5 m s
-1 

To compare how well the sensor would perform, the percent error of the velocity through 

the sensor between the LEDs and phototransistor pairs to the upstream water velocity was 

calculated. Figure 68 is a chart which demonstrates how the original sensor affected the 

measured velocity at different upstream flow velocities. The meshing program used for creating 

the meshes around the sensor and in the test volume, TGrid, had some difficulties creating a high 

quality mesh with the geometry of the original sensor. This caused greatly increased calculation 

times for each simulation and indicates that the solution might not be as reliable. To produce a 

better simulation, the protruding LEDs of the original design were removed as if they were 

mounted in such a way as to create a flat surface inside the channel. With this shape, TGrid was 

able to produce a much higher quality mesh and the results of this design are also shown in 

figure 68. In further analysis of other designs with protruding LEDs versus those without (in 

cases where both designs meshed well), the protruding LEDs generally caused a decrease in 

velocity of about 2% to 4% across the entire range of velocities tested with a stronger effect at 

higher velocities. This agrees with the change seen in the original sensor design for removing the 

LEDs. In the chart in figure 68, it is possible to see the strong effect of the larger boundary layer 

development at lower velocities resulting in measured velocities that are too low. At high 
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velocities, the effect of the increased velocities caused by the sloping entrance and exit causes 

measured velocities that are higher. 

 

Figure 68. Percent Error of Flow Velocity through the Original Sensor Design to the 

Upstream Velocity 

The first modification to the original design was made to try to remove the regions of 

increased velocity caused by the filleted entrance and exit. To try to remove this effect, a sensor 

shape (named sensor 2) with entrances and exits that slope away from the channel was designed. 

Sensor 2 also utilizes LEDs that are mounted flush to produce a flat channel through the sensor. 

Figure 69 shows this new sensor design. This design saw less of an impact from the increased 

velocity at the entrance and exit of the sensor, and the lower velocity regions upstream and 

downstream from the sensor were also weaker. Unfortunately, the increased velocity at the exit 

had the effect of mitigating the slowdown from the boundary layer, so now the boundary layer 

was more noticeable. The flow contours around this design at 0.1 and 5 m s
-1

 are shown in 

figures 70 and 71, respectively, and figure 72 is a chart comparing this design’s effect on 

measured velocity to that of the original sensor and several other later designs. 
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Figure 69. Shape of Sensor 2 Design 

 

Figure 70. Velocity Contours around "Sensor 2" with an Upstream Velocity of 0.1 m s
-1
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Figure 71. Velocity Contours around "Sensor 2" with an Upstream Velocity of 5 m s
-1

 

 

Figure 72. Comparison of Percent Error of Flow Velocity through the Sensor for Various 

Sensor Designs  

The design of Sensor 2 accomplished removing the higher velocity regions at the 

entrances and exits of the sensor channel which resulted in a very low error at higher velocities. 
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Unfortunately, the boundary layer was larger and affected a larger range of velocities than with 

the original design. The next modifications were made to try to adjust the exit from the sensor to 

a more upward sloping exit to try to weaken the effect of the boundary layer. This design (called 

Sensor 6) is shown in figure 73. The velocity contours around the sensor at 0.1 m s
-1

 are 

displayed in figure 74, and the velocity contours at 5 m s
-1

 are in figure 75. As the contour plots 

show, the region of faster water flow once again exists at the exit of sensor and limits the 

formation of the boundary layer at low upstream velocities. In the chart (figure 72) comparing 

the different sensor designs, it can be seen that there is less error at upstream velocities less than 

1 m s
-1

 as compared to sensor 2. However, the velocities measured above 2 m s
-1

 are over 5% too 

high. Further modifications were necessary to the sensor design to prevent the overestimation at 

high velocities while maintaining the low error at slower water speeds. 

 

Figure 73. Shape of Sensor 6 Design 
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Figure 74. Velocity Contours around "Sensor 6" with an Upstream Velocity of 0.1 m s
-1

 

 

Figure 75. Velocity Contours around "Sensor 6" with an Upstream Velocity of 5 m s
-1

 

The next set of modifications tried adding protruding LEDs to the channel in the sensor. 

Also, the exit from the sensor was adjusted to be slightly less upward sloping. These changes 

produced the design named sensor 17 and it is shown in figure 76. The addition of the protruding 

LEDs slowed the flow though the sensor at higher upstream velocities, and the upward sloping 
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exit to the sensor still controlled some of the formation of the boundary layer. The velocity 

contours at 0.1 m s
-1

 can be seen in figure 77, and the contours at 5 m s
-1

 are in figure 78. In the 

comparisons chart in figure 72, it can be seen sensor 17 has very low error when the upstream 

velocity is over 1 m s
-1

, but the boundary layer still has an effect at upstream velocities under 0.5 

m s
-1

 which increased errors in that velocity range. 

 

Figure 76. Shape of Sensor 17 Design 
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Figure 77. Velocity Contours around "Sensor 17" with an Upstream Velocity of 0.1 m s
-1

 

 

 

Figure 78. Velocity Contours around "Sensor 17" with an Upstream Velocity of 5 m s
-1

 

Since the formation of the boundary layer was the main issue with the sensor designs so 

far, several adjustments were made to try to limit the boundary layer. The slowing effect of the 

boundary layer increased from the entrance of the sensor to the exit of the sensor. Because the 

boundary layer had the most effect at the exit of the sensor, modifications were made to try to 

limit the length of the sensor and thus reduce the boundary layer effect. The sensor needed 10 cm 

between the dye injection point and the upstream LEDs/phototransistor pair and then 4 cm 

between the upstream and downstream LEDs and phototransistors. Therefore, the sensor was 

designed so that the dye injection point was barely inside the sensor entrance and the final set of 

LEDs and phototransistors were just before the end of the sensor. Protruding LEDs were used in 

the design to try to match the results of sensor 17 at the upper range of upstream velocities. This 

sensor design, called sensor 22, is shown in figure 79. The velocity contours around sensor 22 at 

an upstream velocity of 0.1 m s
-1

 are displayed in figure 80 and the contours at 5 m s
-1

 are in 

figure 81. In the comparison chart in figure 72, it can be seen that the effect of boundary layer 

formation at low upstream velocity has indeed been controlled, and the protruding LEDs have 

limited the error at the higher velocity range but not as much as in the sensor 17 design. The 
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design of sensor 22 has the lowest difference in errors between high and low velocities of all 

designs considered so far. 

 

Figure 79. Shape of Sensor 22 Design 

 

Figure 80. Velocity Contours around "Sensor 22" with an Upstream Velocity of 0.1 m s
-1
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Figure 81. Velocity Contours around "Sensor 22" with an Upstream Velocity of 5 m s
-1

 

Since the design of sensor 22 contains LEDs that protrude into the flow channel which 

increased the complexity of the design, it was decided to try simulating the design using the k-ω 

turbulent model. A chart showing the percent error in measured velocity to upstream velocity for 

the different turbulent models under which the sensor 22 design was simulated is shown in figure 

82. The k-ω turbulent model predicted slightly higher error at the higher upstream velocities than 

the k-ε turbulent model. The k-ω also showed an even smaller effect from the boundary layer and 

the errors remained more consistent across a wider range of upstream velocities. 
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Figure 82. Comparison of Error of Sensor Velocity to Free Stream Velocity for Sensor 22 

using the k-ε and k-ω Turbulent Models 

It was attempted to modify the design of sensor 22 to achieve even better results, but 

these attempts were not successful at decreasing the error. Sensor 22 represented a significant 

improvement over the original sensor design and sensor 22 was chosen as the design to use to 

actually build a sensor for further testing. The maximum absolute error predicted by both 

turbulent models was just over 3%. Another desirable feature of the sensor 22 design is that the 

percent error remains fairly constant across a large range of velocities instead of shifting 

considerably like was seen in certain designs. The design of sensor 22 was an iterative process 

based on results of the CFD analysis of various sensor designs. Even if each design had been 

individually built and tested, the flow contours that the CFD analysis produced helped 

considerably in identifying the areas that needed improvement. CFD proved very useful in 

designing the shape of this sensor as it is not a shape that would have otherwise been considered.  

 Operational Tests of the Fifth Generation Sensor 

Several tests were performed on the fifth generation sensor to ensure that components 

were operating as designed. These tests were mostly simple confirmations of operation. The tests 

are listed here to indicate these systems were checked so that their functions could be trusted 

when they were used in the more complicated measurements that the sensor was designed to 

carry out. 
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The communications tests were rather straightforward. The LPCXpresso system included 

a debugger as part of the development board. In addition to programming the LPC1769, the 

debugger could also be used to pause the program running on the LPC1769 and check the status 

of various program variables. This ability to check internal program variables was utilized during 

the communication tests. To test communications, commands were sent from a PC over both the 

USB connection and the wireless XBee connection. Using the debugger, it was possible to 

ensure that the command had the proper effect and the variable controlling sensor operation had 

been changed. Commands were also checked by providing invalid inputs or inputs at the wrong 

time. This included changing the number of samples while a velocity measurement was ongoing 

as this would corrupt the ongoing measurement or setting the value too large to store in the 

LPC1769’s memory. In this case, the LPC1769 was supposed to respond by saying the command 

had been rejected and not change the internal variable. In every test, the command properly 

changed the operating parameter of the sensor. The command interface also rejected commands 

that did not allow for proper operation. 

Another simple test was making sure the clock on the LPC1769 kept time properly. This 

time was used to provide the time stamp used on the measurements, so it needed to be close to 

the actual time. While drifting several seconds a day (like many computers do) would not ruin 

the sensor’s ability to provide useful measurements, it was important that it not have skips or 

totally lose track of the current time. The real-time clock (RTC) peripheral on the LPC1769 was 

used for tracking time. This was a low power clock that was supposed to maintain time as long a 

small 3.3 V battery provided power to the clock’s power input. The sensor’s timing was first 

tested by letting the sensor program run for over a day and ensuring that the time in the LPC1769 

was still reporting the proper time. After this test, the sensor system still reported the correct 

time. The separate battery for the real-time clock was supposed to allow the fifth generation 

system to maintain time even when disconnected from the main power supply. This ability was 

tested by setting the time on the LPC1769 and removing all power except for the input to the 

real-time clock for over a day and checking the time again after restoring power. Only one out of 

two sets of the sensor’s electronics passed this test. This was the system which was installed in 

the field. The LPC1769 that failed this test began reporting random and invalid times everytime 

the main power was disconnected. Further investigation revealed that NXP had released an errata 

stating that the RTC in the ‘-‘ revision used in the fifth generation sensor did not work reliably 
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within the temperature range. Because of this issue, one LPC1769 could only maintain time 

when connected to the main power, but no issues were ever noticed in the other system and time 

stamps remained correct even when main power was disconnected. Even though the RTC did not 

work reliably without main power in one set of the electronics, it still kept time accurately as 

long as the main power supply was connected. 

The logging provided by the SD card was checked by operating the sensor and ensuring 

that it was able to log all data produced over a several day period. An error flag was created 

within the sensor program that would be set any time the program detected an error recording 

data to the SD card. When the sensor was set up to run and log one sediment measurement every 

30 seconds and six velocity measurements every hour each spaced 30 seconds apart, it had no 

problem logging as confirmed by the error flag. This was tested over a four day period. 

However, it was possible for the sensor system to overload the SD card and cause errors in 

logging. The sensor could be set up to report both the upstream and downstream signals as 

recorded and as adjusted for use in the cross correlation calculation. In one test, the sensor was 

configured to record 1600 samples for each the upstream and downstream signals and report 

them as recorded and adjusted. This resulted in 3200 values being recorded in text format on the 

SD card for each measurement. After two velocity samples, 30 seconds apart, the SD card could 

not keep up and stopped logging data until the program was reset. After this test, the sensor was 

not programmed to log the upstream and downstream signals to ensure it would not have errors. 

Instead, it only logged the final result of the velocity measurement. 

It was necessary to try to stress the power supply to ensure it did not affect 

measurements. To do this, the timing was adjusted on a velocity measurement by setting the dye 

injection time length to 45 ms, and setting the sampling-to-injection offset to -60 ms. This caused 

the sampling to start 15 ms before the relay turned on to inject dye. The relay then remained on 

for 45 ms before shutting off again. If the relay could affect the velocity measurement, it should 

show up as a change in the upstream and downstream signals at 15 ms when the relay turned on 

and at 60 ms when it turned off as it did with the fourth generation system. Figure 83 is a graph 

showing a velocity measurement taken with these settings and figure 84 is the same 

measurement showing only the time first 100 ms of sampling. No change in the signals is evident 

at 15 and 60 ms confirming that the power supply system is indeed capable of providing stable 

power to the analog electronics while the relays are switching. 
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Figure 83. Signals from a Velocity Measurement taken with the Dye Injection Relay Active 

from 15 to 60 ms 

 

Figure 84. The First 100 ms of Signals from a Velocity Measurement taken with the Dye 

Injection Relay Active from 15 to 60 ms 

One power system issue did appear in testing, however. When inserting an SD card, the 

system would reset. This appeared to be caused by a voltage drop resulting from the SD card 

charging its own internal capacitor after inserting. The decoupling capacitor used for the SD card 

needs to be larger to supply the current necessary to charge the SD card’s capacitor without 

affecting the rest of the system. 
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It was important to determine the time necessary to complete the cross correlation 

calculation to ensure a velocity measurement could be completed in a reasonable amount of time. 

The processing power of the ARM processor was a primary reason for selecting the LPC1769 

microcontroller, and tests of the calculation time were necessary to determine if the processing 

power was indeed enough. As discussed in section on the design of the fifth generation 

electronics in chapter 4, the computational time was expected to increase with the square of the 

number of samples taken of the upstream and downstream signals since the cross correlation 

calculation was being computed exactly as defined instead of using the FFT method. Figure 85 is 

a graph showing the amount of time required to complete the cross correlation calculation using 

integer math when the number of samples taken from each the upstream and downstream signals 

increased from 1000 to 7500 samples. As can be seen in the graph, the time required for 

computation increases with the square of the number of samples. If floating point math is used in 

the computation instead of integer math, the time increases by about 20%, but the exact amount 

is dependent on the values of the samples in the signals being computed. The LPC1769 ran out 

of memory at 7500 samples for the upstream and downstream signals. At that point the 

computation required just less than 25 seconds to complete, but this would still allow taking a 

measurement every 30 seconds. These tests confirmed that the cross correlation calculation was 

possible to complete in a reasonable amount of time on the LPC1769. 

 

Figure 85. Time Required to Complete the Cross Correlation Calculations with Various 

Sample Lengths on the LPC1769 
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The final operational test was to make sure the “smart velocity” system would adjust the 

sample rate to capture the full effect of the dye at high accuracy. This was tested in several ways. 

The first was just to make sure that when it took a measurement, it set the sample rate for the 

next sample based on the velocity from the previous sample. This is demonstrated in the data 

displayed in table 4 which shows measurements taken shortly after a large rainfall event. The 

creek was flowing much quicker for the first several samples so they were at higher velocities 

until the flow re-stabilized. During this test, the “smart velocity” system was configured to adjust 

the sample rate so that if the next measurement was at the same velocity as the current 

measurement, the quantization error would be 0.25%. As can be seen in the table, the “smart 

velocity” system constantly changed the sample rate to produce quantization errors close to 

0.25%.  

Table 4. Series of Velocity Measurements showing the Sample Rate Adjustment from the 

“Smart Velocity” System 

Measured 
Velocity 

Sample 
Rate 

Quantization 
Error 

0.935 4490 0.26% 

0.974 4677 0.26% 

0.96 4871 0.25% 

0.706 4799 0.18% 

0.994 3528 0.35% 

0.92 4969 0.23% 

0.876 4600 0.24% 

0.957 4380 0.27% 

0.815 4786 0.21% 

0.9 4073 0.28% 

1.15 4500 0.32% 

0.906 5732 0.20% 

0.915 4531 0.25% 

0.989 4576 0.27% 

0.916 4947 0.23% 

0.724 4580 0.20% 

0.928 3620 0.32% 

0.821 4641 0.22% 

0.711 4107 0.22% 

0.799 3555 0.28% 

Another concern when using the smart velocity system was that it could recover if one 

measurement was effected by debris, a fish or something else that caused an inaccurate velocity 

measurement once. This was a concern since the sample rate could be adjusted so high that 

sampling was complete before the dye even appeared in both signals. If that happened the time 
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difference between the signals would be very close to zero and result in an even higher sample 

rate. The smart velocity system was designed to detect when the sample rate had been adjusted to 

the maximum and reset it to the minimum sample rate to ensure that it would detect the dye.  

Table 5 is a series of velocity measurement carried out when the sensor had not been cleaned for 

several weeks and material had built up around the LEDs and phototransistors. The debris on the 

sensor interfered with the signals and resulted in an incorrect velocity estimate of 4.66 m s
-1

. This 

measurement and the following two measurements were marked by the sensor as unreliable, but 

after that, the system returned to producing reliable measurements. Although this particular event 

was caused by debris on the sensor, a similar situation could occur if there happened to be a 

sudden change in flow velocity from an important event, so it was important that the sensor be 

able to adjust for such events. 

Table 5. Series of Velocity Measurements showing the “Smart Velocity” System Recovering 

from a Bad Measurement 

Measured 
Velocity 

Sample 
Rate 

Quantization 
Error 

0.909 4091 0.28% 

4.66 4545 1.30% 

infinity 22500 -100.00% 

0.724 344 2.70% 

0.721 3621 0.25% 

0.775 3602 0.27% 

 

 These operational tests of the fifth generation system were important to confirm that it 

was capable of working as designed. Except for the issues with the real-time clock and the SD 

card reset, the rest of the system performed as expected. Although these tests verified that the 

sensor operated correctly, it was necessary to conduct further testing to ensure the velocity 

measurements were actually useful and accurate. 

 Flume Tests of the Fifth Generation Sensor 

The flume tests of the fifth generation sensor investigated whether the fifth generation 

sensor could properly detect water flow velocity in open channel conditions in a laboratory. The 

average velocities from the fifth generation sensor and from the Flowtracker in tests at different 

flume velocities are plotted against each other in figure 86. Confidence intervals based on the 

Student t statistic were calculated for each point in each test. These confidence intervals around 
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the average velocity measured by each sensor are shown as errors bars in figure 86. In the chart it 

can be seen that the confidence intervals for the Flowtracker are very large because only two 

samples were taken with the Flowtracker. However, the chart also shows that the average 

velocities are very close to the same for both sensors. A linear regression was performed on this 

relationship. The equation produced by the regression analysis was                    

     , where          is the velocity from the fifth generation sensor and     is the velocity 

from the Flowtracker. In the regression analysis, 95% confidence intervals were calculated for 

both the slope and intercept of the regression equation. The 95% confidence interval was 0.682 

to 1.275 for the slope and -0.092 to 0.104 for the intercept. A perfect match between the sensor 

measurements would produce a slope of one and an intercept of zero. Since these values are 

included in the 95% confidence intervals for the slope and intercept, it is not possible to reject 

the null hypothesis that the sensor measurements are identical with 95% confidence. This 

indicates that the fifth generation sensor is indeed working as expected and detecting the same 

velocity as the Flowtracker. Finally, the R
2
 value of 0.9902 indicates that the measurements are 

all very close to the line produced by the regression equation which further reinforces the fact 

that both sensors are detecting the same velocity. 

 

Figure 86. Comparison of Velocities Measured by the 5th Generation Sensor to the 

Flowtracker with 95% Confidence Intervals in Flume Tests 
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 Another set of tests were conducted in the flume at the same time to determine the effect 

of sensor misalignment. During these tests the centerline of the new fifth generation sensor was 

tilted 30° to the direction of the water flow in the flume. Figure 87 is a comparison of the average 

velocities in this test obtained from the fifth generation sensor and the Flowtracker. The results 

obtained with the sensor parallel to the flow are shown in addition to these results. In the chart, it 

can be seen that tilting the sensor caused a significant increase in the measured velocity. This 

demonstrates that it is very important for the fifth generation sensor to be mounted parallel with 

the water flow to produce valid results. 

 

Figure 87. Comparison of Velocities Measured by Straight and Tilted 5th Generation 

Sensor to the Flowtracker in Flume Tests 

 The flume test of the fifth generation sensor confirmed that the sensor did detect an 

average velocity very similar to that from the Flowtracker. However, the flume test was only at a 

limited range of velocities. The sensor installed in the field could see significantly higher 

velocities, so more testing needed to be conducted to extend the range. Also, the limited size of 

the flume meant that placing the sensor in the water flow changed the water velocity. This would 

most likely not be the case in the larger flows present in natural open channels for which the 

sensor was being designed. The conditions in the laboratory were also much more controlled 

than those in the field. For these reasons, the sensor needed to be tested in actual field 

installations to confirm the response seen here. However, the flume tests did provide a good 

indication that the sensor was working as intended in a controlled environment. 
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 Field Tests of the Fifth Generation Sensor 

The field tests compared the measurements of the fifth generation sensor to those from 

the Flowtracker in an actual field installation. As in the flume test, the goal was to determine if 

the sensor could properly detect the average water velocity in real-world conditions where 

turbulent flow was present. This field test was conducted in Little Kitten Creek. Twenty-eight 

separate tests were conducted in Little Kitten Creek comparing these sensors. In each test, 

multiple measurements were taken with both sensors. While the presence of turbulence in the 

water meant that the instantaneous velocity measurements would not be identical, the experiment 

was designed so that during a given test, the average velocity measured by both sensors would be 

the same because the flow conditions experienced by both sensors were the same.  

To show the relationship of the measurements to each other, the Flowtracker and the fifth 

generation sensor measurements are plotted against each other in figure 88. Each point on this 

graph represents a single test and shows the average result for one sensor compared to the 

average result from the other sensor. Also, 95% confidence intervals for each mean were 

determined. These confidence intervals are shown by error bars around each point in the figure. 

A linear relationship for the measurements from each sensor is apparent across the entire velocity 

range tested from about 0.25 m s
-1

 to about 1.66 m s
-1

.  

 

Figure 88. Comparison of Velocities Measured by the 5th Generation Sensor to the 

Flowtracker with 95% Confidence Intervals in Field Tests 
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A least squares regression analysis was performed on the means across all the different 

velocities measured. The equation produced by the regression analysis was          

                , where          is the velocity from the fifth generation sensor and     is 

the velocity from the Flowtracker. If both sensors were operating perfectly, the average 

measurements from both sensors should be identical. This would correspond to a slope of one 

and an intercept of zero for the equation relating the two measurements. Therefore, a statistical 

analysis was carried out to determine if the equation met these criteria indicating that the 

measurements were identical. The null hypothesis in this test was that the measurements were 

identical as determined by the regression equation. The 95% confidence interval for the slope in 

the regression equation was 0.941 to 1.066, and the same confidence interval for the intercept 

was -0.078 to 0.010. Since both the slope of one and intercept of zero lie within the confidence 

interval, the null hypothesis that the sensor measurements were identical cannot be rejected with 

95% confidence. This indicates that the fifth generation sensor was detecting the same velocity 

as the Flowtracker. Finally, the high R
2
 value of 0.9769 indicates that all the points in the 

regression lie very close to the equation describing the relationship. This further supports the 

conclusion from the regression that the same velocities are being measured by both sensors. 

A large rain event occurred on 30 May 2012, which supplied the measurements at the two 

highest velocities. The conditions during this test were different than those in the other tests. 

However, the results from these tests closely matched those from the previous tests so they were 

included in the earlier analysis. The measurements taken at 1.66 m s
-1

 were performed with dye 

injecting normally just after the rain storm passed. After these measurements, the dye valve 

jammed open and released the entire canister of dye. Unexpectedly, the fifth generation sensor 

continued to produce valid measurements of the velocity without dye. The second set of 

measurements on that day was made thirty minutes later. By this time, the velocity had slowed to 

about 1.25 m s
-1

 and the dye canister was empty. Several differences were noticed in this test 

compared to others. Naturally, the cross correlation coefficients were lower because of the lack 

of a very strong disturbance. However, there was enough natural variability in the light 

transmissibility of the water for the sensor to operate. During these tests, Little Kitten Creek was 

carrying significant sediment which may have been the source of the natural variability. 

Figure 89 is an example of the signals from the phototransistors during a measurement 

without dye. The velocity estimate for this measurement was 1.14 m s
-1

 and the cross correlation 
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coefficient was 0.73. This low cross correlation coefficient was not usual for the good velocity 

measurements performed without dye in this test. The average cross correlation coefficient for 

such measurements was 0.74. This value was much lower than the minimum of 0.85 that was 

enforced for measurements when dye was being injected.  

 

        (a)                                                                 (b) 

Figure 89. Phototransistor Signals (a) as Recorded, and (b) Shifted to Align the Signals as 

Determined by the Cross Correlation in a Successful Velocity Measurement Performed 

without Dye 

The fifth generation sensor system was not designed to handle these measurements 

without dye, and only 24 of the 57 measurements taken without dye were accurate. One cause of 

the low number of valid measurements was the “smart” velocity system. When a signal lacked 

enough variability to correctly align them, the velocity estimate would be wrong. This would 

then cause a wrong setting for the sample frequency in the next sample and it would take several 

more measurements before the correct frequency was found again. Another cause of the bad 

measurements was the way the signals were handled. The processing of the signals assumed that 

the start of the signal was a maximum value and only values below this level were important. 

Since there was no dye to cause a decrease at a certain point, the start of the signal could actually 

be one of the lowest signal levels. In this case, most of the signal was ignored and the velocity 

estimate was not accurate. More testing and a redesign of the velocity measurement system will 

need to be conducted if the sensor is to run well in this type of situation, but it is promising to 

have confirmation of the system working without dye. 
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The velocity measurements from the fifth generation sensor were closer to those from the 

Flowtracker than those from the fourth generation sensor. This is evident when examining the 

relationships shown in figure 59 for the fourth generation sensor and that shown in figure 88 for 

the fifth generation sensor. The regression analysis preformed on these relationships confined 

this. The slope of the line representing the relationship in the fourth generation case was 0.83. 

While in the fifth generation case, it was much closer to the ideal of 1.00 at 1.003. The R
2
 value 

also improved from 0.655 to 0.977 which shows that this relationship was not only much closer 

to the ideal, but also that most of the points tested were closer to this line. The fact that the 

measurements from the fifth generation sensor are much closer to an ideal relationship with the 

Flowtracker confirms that the changes made to the design of the fifth generation sensor did 

improve sensor operation and produce a better sensor. 
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Chapter 6 - Conclusions 

This project covered the development of an optical water velocity sensor for use in 

natural open channel flows. A previous design of the sensor was tested in both enclosed and 

open channel flows to determine how well it operated. Based on the results of these tests and 

computational fluid dynamics, a new version of the sensor was developed which addressed many 

of the shortcomings identified in the previous version. Further testing was conducted with the 

new sensor to ascertain its abilities. This testing confirmed that the goals for the sensor system 

were indeed met with the new design. 

The concept for this sensor was tested in enclosed flow conditions from 0.125 to           

4.5 m s
-1

. In these tests, the sensor could be calibrated so that each individual measurement had 

less than 4% mean absolute percent error from 0.5 to 4.5 m s
-1

. The sensor system was also field 

tested by installing it in Pineknot Creek in Fort Benning, Georgia and Little Kitten Creek in 

Manhattan, Kansas. At Pineknot Creek, the sensor was combined with the index velocity method 

to estimate discharge. This sensor was also compared to measurements from a Flowtracker at 

flow velocities from 0.1 to 0.6 m s
-1

. The relationship between the sensors was linear but the 

slope of this relationship was 0.83 instead of the ideal 1.00. Also, the R
2
 value was only 0.66 in 

this experiment. 

Improvements were made to the design of the sensor based on the results of the previous 

experiments. Computational fluid dynamics was used to analyze the sensor body design and 

make iterative improvements to its design. The sensor’s electronics were redesigned to operate 

better and provide more reliable results. The LPCXpresso development platform based on the 

LPC1769 ARM Cortex-M3 microcontroller was used to significantly increase the computation 

power on the sensor. The final sensor design was then tested in a flume and in field tests. The 

sensor was once again compared to the Flowtracker—this time at velocities from 0.25 to          

1.66 m s
-1

. A regression analysis provided a slope of 1.003 for the relationship between the two 

sensors. Furthermore, a regression analysis confirmed that the ideal slope of 1.00 and the ideal 

intercept of 0.0 for this relationship were both within the 95% confidence interval for these 

values. Finally, the R
2
 value for the linear relationship between the measurements from the 

sensors was 0.98. 
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To briefly summarize all the main points of this research: 

 Testing in enclosed flow confirmed the sensor operation at velocity from 0.125 to          

4.5 m s
-1

. 

 Mean absolute percent error for individual measurements in enclosed flow was less than 

4% from 0.5 to 4.5 m s
-1

. 

 Long-term operation of the sensor was confirmed by the sensor in field tests. 

 Testing the fourth generation sensor in field conditions against the Flowtracker resulted 

in a relationship of                         with an R
2
 of 0.66. 

 Computational fluid dynamics was used to improve the sensor body. 

 The microcontroller was changed to the more powerful ARM Cortex-M3 based 

LPC1769. 

 Electronics and programming were also changed to make the sensor more capable. 

 Flume testing of the fifth generation sensor compared to the Flowtracker provided a 

relationship of                          with an R
2
 of 0.9902. 

 The fifth generation sensor was also compared to the Flowtracker in field testing which 

provided a relationship of                           with an R
2
 of 0.9769. 

 

The development and testing of this sensor, has resulted in a system which works in its 

intended environment. The design of the sensor isolates the more expensive and vulnerable 

electronics from the rugged and simple sensor body. This should allow this sensor to be utilized 

in more places than many other natural open channel velocity sensors. The cost and 

susceptibility to damage of many current sensors means they can only be mounted on large 

structures like bridges. Further work could easily be performed to improve this sensor’s 

operation and extend its capabilities and applications. The final design of the sensor in this 

project has produced a simple, robust, low-cost velocity sensor capable of operating in open 

channel flows. 
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Chapter 7 - Recommendations for Future Work 

Although the sensor system met the direct goals of this project, there are still several 

ways to improve the system and extend it. Several improvements could be made to the way the 

sensor operates. Testing revealed the importance of taking multiple samples to determine the 

average velocity in turbulent water. The current system handled this by ensuring a minimum 

number of high quality measurements. However, another possibility for making sure good 

quality estimates of the average velocity are obtained would be to set a confidence interval for 

the average velocity. For example, the requirement could be that the range of the 5% to 95% 

confidence interval for the average velocity be no greater than 5% of the estimated value for the 

average velocity. Then after every measurement, the system would perform a statistical analysis 

of the results to determine if enough measurements had been taken to reduce the error of the 

measurement to meet the confidence interval. This method would be an improvement over 

current designs as the result would always be statistically guaranteed to have a certain level of 

error and no unnecessary sampling that could waste dye. This would be an entirely new way to 

design a velocity sensor. Current sensors, like the Flowtracker, only sample for a certain number 

of samples or for a certain time period and then report error values after the measurement is 

complete. A sensor that did this on the fly would be a new development in such systems. 

If a statistical program could be created to estimate and appropriately account for error, it 

should also be possible to estimate turbulent intensity using this sensor. The turbulent intensity 

would show up as the variability in the individual point velocity measurements. Significant 

testing and development would be necessary to confirm that the sensor could indeed determine 

turbulent intensity, but it should be possible as the sensor operates by taking many individual 

samples at different points in time and averages them together to find the time-averaged velocity. 

To ensure more robust operation of the entire system, it would be beneficial to have a 

real-time operating system running all of the different parts of the sensor. The current system 

became quite complicated to guarantee that the time constraints were met as changes were being 

made. A real-time system should make this system easier to work with even if it becomes more 

complicated through the addition of features like statistical determination of the measurement 

accuracy. However, this real-time system would have to have precise timing for activating 

outputs and sampling analog signals. Either a real-time system with a time step considerably 
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shorter than the standard ten milliseconds or a system that supported hardware timing of these 

features would be necessary. If such an improvement could be made, it should make the 

operation of the sensor more robust and the entire system simpler. Such a real-time system could 

see significant applications in many areas where sensors must be operated at high sample rates as 

part of a larger system. 

A final area of improvement in programming involves fully developing the computer 

application for controlling the sensor. Right now the computer application makes it easier to 

observe and log data and perform several basic tasks. It would be preferable to have a system 

that focused on what a hydrologist using the sensor would want to know and be able to control. 

Instead of having commands that directly set the operation of the sensor, the options in the 

computer program should provide the general features hydrologists look for when using these 

sensors. Examples include commands for general tasks like testing or configuring a sensor or 

automatic logging and computation of a mid-section discharge measurement. Each of these tasks 

would involve the program issuing several commands and then waiting for measurements from 

the sensor before sending more commands. All of these developments would require the input 

from both a hydrologist looking at field use and someone intimately familiar with the operation 

of the sensor. 

Another area of future research is the sensor’s ability to operate when the flow is not 

perfectly aligned with the sensor. Brief testing in the flume indicated that the current design was 

susceptible to errors caused by misalignment. Further testing or CFD modeling would be needed 

to quantify this effect. A possible solution could include the development of a fin and flexible 

mounting system to maintain sensor alignment with the flow direction. If that fails or proves 

impractical for some reason, CFD modeling could also be used to develop new sensor bodies that 

were less susceptible to misalignment. Finally, it would be beneficial to perform some of this 

testing in the tow tanks used by the USGS for calibration of other sensors. Although these tow 

tank tests don’t simulate natural open channel conditions especially with regards to turbulence, 

they have been used for years by the USGS for testing various velocity sensors. Testing in these 

conditions would go a long way toward convincing traditional hydrologists of the validity of the 

design. 

Although this sensor was designed for natural open channel flows and the latest revision 

of the sensor performed well in those conditions, this sensor could easily see applications in a 
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wide variety of areas. Irrigation is one such area. The non-intrusive nature of the sensor in 

enclosed flow could allow it to work in irrigation systems that distribute lagoon waste that would 

plug many traditional meters. Further the sensor could see applications in other “dirty” water 

conditions. In water with high sediment concentrations, the phototransistors 45° from the LEDs 

detect higher levels of reflected light. However, the tests in enclosed pipe flow established that 

the dye still caused a decrease in reflected light. This would seem to indicate that the sensor 

could operate in less clear water by relying on the decrease in reflectance when it is not possible 

to transmit enough light through the water. In such situations with high suspended sediment 

loads, it might also be possible to operate the sensor without using dye based on the testing in 

Little Kitten Creek without dye. This might allow the sensor to be used in conditions where dye 

injection is impractical. Operation in any of these uses would require testing to ensure it 

performs properly, but if so, the non-intrusive simple design of the sensor in enclosed flow 

combined with an operating range of different water clarities could make the sensor valuable in 

many fields. 
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Appendix A - Fifth Generation Sensor Electronics Schematics and 

Printed Circuit Board Layers 

 Schematics 



157 

 

 

Figure A-1. Fifth Generation Schematic - High Power Circuits 
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Figure A-2. Fifth Generation Schematic - Analog Circuits 
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Figure A-3. Fifth Generation Schematic - Digital Circuits 
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Figure A-4. Fifth Generation Schematic - Calibration Resistors 
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 Board Layers 

 

Figure A-5. Fifth Generation Printed Circuit Board - Top Layer 

 

Figure A-6. Fifth Generation Printed Circuit Board - Bottom Layer 
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Figure A-7. Fifth Generation Printed Circuit Board - Top Silk Screen Layer 

 Bill of Materials 

Table A-1. Fifth Generation Sensor Printed Circuit Board Bill of Materials 

Item Qty Reference Part Name/Value Manufacturer Manufacturer Part#  Unit Cost   Total Cost  

1 1 BT1 
3.3V BATTERY 
HOLDER 

MPD (Memory 
Protection 
Devices) 

BS-7 

 $       0.61   $       0.61  

2 6 
C1,C2,C3,C4, 
C5,C6 

2200pF 
Murata 
Electronics 
North America 

GRM2165C1H222JA01D 

 $     0.073   $       0.44  

3 4 
C7,C10,C12, 
C14 

10uF Kemet T491A106K010AT 
 $     0.399   $       1.60  

4 5 
C8,C9,C11, 
C13,C15 

0.1uF 
Murata 
Electronics 
North America 

GCM21BR72A104KA37L 

 $     0.106   $       0.53  

5 2 C16,C27 2200uF Kemet ESK228M035AM7AA  $       0.99   $       1.98  

6 4 
C17,C20,C24, 
C30 

0.1uF 
Murata 
Electronics 
North America 

GCM21BR72A104KA37L 

 $     0.106   $       0.42  

7 6 
C18,C19,C21, 
C23,C25,C29 

10uF Kemet T491C106M035ZT 
 $     0.838   $       5.03  

8 2 C22,C26 10000uF Panasonic - ECG ECA-0JM103  $       1.01   $       2.02  

9 1 C28 100uF Kemet ESK107M035AE3AA  $       0.21   $       0.21  

10 9 
D1,D2,D3,D4,
D5,D6,D7,D8,
D9 

BAT85 
NXP 
Semiconductors 

BAT85 
 $     0.264   $       2.38  

11 3 D10,D12,D14 1N4148 
Fairchild 
Semiconductor 

1N4148 
 $       0.10   $       0.30  
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12 2 D11,D13 1N4004 
Fairchild 
Semiconductor 

1N4004 
 $     0.223   $       0.45  

13 1 D15 LED 
TT Electronics/ 
Optek 
Technology OVLGC0C6B9  $       0.37   $       0.37  

14 1 J1 SENSOR Phoenix Contact 1727117  $       5.82   $       5.82  

15 1 J2 RAIN GAUGE Phoenix Contact 1990012  $       0.32   $       0.32  

16 1 J3 THERMOCOUPLE Phoenix Contact 1990009  $       0.23   $       0.23  

17 1 J4 SD CARD SOCKET 4UCON Sparkfun: PRT-00136  $       3.95   $       3.95  

18 1 J5 
STATUS LED 
SOCKET 

Phoenix Contact 1990009 
 $       0.23   $       0.23  

19 1 J6 SENSOR POWER 
Wurth 
Electronics Inc 

691414720002 
 $       1.36   $       1.36  

20 1 J7 DYE SOLENOID 
Wurth 
Electronics Inc 

691414720002 
 $       1.36   $       1.36  

21 1 J8 AIR SOLENOID 
Wurth 
Electronics Inc 

691414720002 
 $       1.36   $       1.36  

22 6 
J9,J10,J15, 
J16, J21,J22 

RESISTOR SOCKET TE Connectivity 382441-1 
 $     0.897   $       5.38  

23 12 

J11,J12,J13, 
J14,J17,J18, 
J19,J20,J23, 
J24,J25,J26 

JUMPER HEADER FCI 67997-412HLF 

 $     0.393   $       4.72  

24 1 J27 RELAY POWER 
Wurth 
Electronics Inc 

691414720002 
 $       1.36   $       1.36  

25 2 LS1,LS2 RELAY DPDT 
Omron 
Electronics Inc-
EMC Div 

G5LE-1 DC12 
 $       1.32   $       2.64  

26 2 L1,L2 BEAD 
Laird-Signal 
Integrity 
Products 

28C0236-0JW-10 
 $       1.09   $       2.18  

27 7 
Q1,Q2,Q3,Q4, 
Q5,Q6,Q7 

2N3904 
Fairchild 
Semiconductor 

2N3904BU 
 $     0.165   $       1.16  

28 1 RL1 RELAY SPST TE Connectivity T9AS1D22-12  $       3.79   $       3.79  

29 1 R1 100 
Stackpole 
Electronics Inc 

CF14JT100R 
 $       0.08   $       0.08  

30 1 R2 1.8k 
Stackpole 
Electronics Inc 

CF14JT1K80 
 $       0.08   $       0.08  

31 6 
R3,R4,R6,R7, 
R8,R9 

510 
Stackpole 
Electronics Inc 

CF14JT510R 
 $     0.053   $       0.32  

32 1 R5 3.3k Yageo CFR-25JB-3K3  $     0.082   $       0.08  

33 6 
R10,R11,R12, 
R13,R14,R20 

10k 
Stackpole 
Electronics Inc 

CF14JT10K0 
 $     0.053   $       0.32  

34 1 R15 1.5k 
Stackpole 
Electronics Inc 

CF14JT1K50 
 $       0.08   $       0.08  

35 8 
R16,R17,R18, 
R19,R22,R23, 
R24,R25 

1.0k 
Stackpole 
Electronics Inc 

CF14JT1K00 

 $     0.053   $       0.42  
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36 1 R21 2.0k 
Stackpole 
Electronics Inc 

CF14JT2K00 
 $       0.08   $       0.08  

37 1 SW1 
PUSH BUTTON 
SWITCH 

Panasonic - ECG ESE-20C341 
 $       1.49   $       1.49  

38 2 U1,U3 OPA4344 
Texas 
Instruments 

OPA4344PA 
 $       3.19   $       6.38  

39 1 U2 AD595AD Analog Devices AD595ADZ  $     37.75   $     37.75  

40 1 U4 UART-TO-USB Sparkfun BOB-00718  $     14.95   $     14.95  

41 1 U5 LPCXPRESSO NXP LPCEXpresso LPC1769  $     29.95   $     29.95  

42 1 U6 XBEE 
Digi 
International/ 
Maxstream 

XB24-AWI-001 

 $     19.00   $     19.00  

43 1 U7 LM1086IT-3.3 
National 
Semiconductor 

LM1086IT-3.3/NOPB 
 $       1.97   $       1.97  

44 1 U8 LM1086IT-5.0 
National 
Semiconductor 

LM1086CT-5.0/NOPB 
 $       1.97   $       1.97  

45 2 Not Shown XBee sockets 3M 950510-6102-AR  $       1.62   $       3.24  

46 2 Not Shown 
LPCXpresso 
Sockets 

3M 929974-01-36-RK 
 $       2.57   $       5.14  

47 2 Not Shown 
LPCXpresso 
Headers 

Molex Inc 22-28-4360 
 $       0.89   $       1.78  

48 1 Not Shown 3.3V BATTERY Panasonic - BSG CR2032  $       0.28   $       0.28  

  1 Not Shown PCB Board 
Advanced 
Electronics 

  
 $     33.00   $     33.00  

  1 Not Shown SD Card SanDisk 4 GB  $       4.25   $       4.25  

             Total   $   214.79  

 

Table A-2. Fifth Generation Sensor Body Bill of Materials 

Quantity Name Manufacturer Manufacturer Part #  Unit Cost   Total Cost  

1 Sensor Body 3D Printing (PVC)    $   100.00   $   100.00  

1 Epoxy Potting 3M DP-270 (50mL)  $     16.24   $     16.24  

1 Aluminum Bracket   1/8"x5"x6"  $     10.00   $     10.00  

2 
Air and Dye Barbed Hose 
Fitting   

Brass 0.17" barb to pipe 
adapter  $       1.21   $       2.42  

50 Sensor Wire (Qty in feet) General Cable/ Carol Brand C0746A.18.10  $       0.86   $     43.00  

100 
Dye and Air Hose (Qty in 
feet)   0.17IDx1/4OD Poly Tube  $       0.17   $     17.00  

2 Orange LED Lumex Opto/ Components Inc SSL-LX5093SOC  $       1.12   $       2.24  

1 Blue/Green LED 
TT Electronics/ Optek 
Technology OVLGC0C6B9  $       0.37   $       0.37  

1 Infrared LED Fairchild Optoelectronics QED522  $       0.50   $       0.50  

6 Phototransistor 
OSRAM Opto Semiconductors 
Inc SFH314  $       0.34   $       2.04  

         Total   $   193.81  
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Appendix B - Fifth Generation Sensor Commands 

Command Format 

 All commands begin with # and end with \r (character return) 

 Any time a # is received, it will be interpreted as the beginning of a new command. Any 

previous partially entered command will be dumped and ignored. 

 See sensor.h header file for units of each variable in the configuration. 

 2nd character is type {S = Sediment, V = Velocity, C = Cleaning, P = Power Enable} 

 3rd character is action to be performed and depend on type 

S "Sediment" Type: 

 #SE Update Sediment Measurement Enable (enable != 0, disable = 0) 

 #SP Update Period (seconds) 

 #SR Report Sample Data 

 #SA Report All Data for Sediment (entire structure defined for sediment measurements) 

 #SN Run Now - run as soon as possible (measurement must be enabled) 

V "Velocity" Type: 

 #VE Update Velocity Measurement Enable (enable != 0, disable = 0) 

 #VP Update Major Period (seconds) 

 #Vp Update Minor Period (seconds) 

 #VI Update Dye Injection Time (milliseconds) 

 #VO Update Dye Injection-Sampling Offset Time (milliseconds) 

 #VF Update Sample Frequency (samples seconds
-1

) 

 #VL Update Sample Length (samples) 

 #VM Update Total Minor Measurements/Major Period (measurements) 

 #VU Update Upstream Channel (ADC channel number) 

 #VD Update Downstream Channel (ADC channel number) 

 #VB Update Distance Between Up- and Down-stream LED/PT (meters) 

 #VS Update Rxy Save Enable (enable != 0, disable = 0) 

 #VT Update logging type for velocity measurements (enable = 1, disable = 0) By Bit: 

   0: Log Upstream Signal 

1: Log Downstream Signal 

2: Log Rxy 

3: Log the Upstream and Downstream Signals before Inverting 

 #VR Report Sample Data 

 #VA Report All Data for Velocity (entire structure defined for velocity measurements except arrays) 
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 #Vu Begin dumping entire upstream array 

 #Vd Begin dumping entire downstream array 

 #Vr Begin dumping entire Rxy array (cross correlation) 

 #VN Run Now - run as soon as possible (measurement must be enabled) 

 #Ve Update Smart Velocity System Enable (enable != 0, disable = 0)  

 #VQ Update Maximum Allow Quantization Error (% - leave off percent sign) 

 #VX Update Ratio of Measured Velocity to Next Velocity (set using req. accy.) 

 #VC Update Minimum CCC for a good measurement 

 #Vx Update type of xcorr (cross correlation calculation) (biased != 0, unbiased = 0)  

C "Cleaning" Type: 

 #CE Update cleaning Enable (enable != 0, disable = 0) 

 #CP  Update Period (seconds) 

 #CD  Duration of active cleaning (seconds) 

 #CA Report all data for cleaning (entire structure defined for cleaning) 

 #CN Run Now - run as soon as possible (measurement must be enabled) 

P "Power Shut off" Type: 

 #PE Update power shut off Enable (enable != 0, disable = 0)  

 #PV Low Voltage Limit (volts) 

 #PT Length of shut off time (seconds) 

 #PA Report all data for power shut off (entire structure defined for power shut off) 

G "General" Type: (Used for system-wide commands or information) 

 #GC Report Clock 

 #GS Set Clock (format: YYYY MM DD hh:mm:ss using 24-hour clock) 

 #GE Report Errors and Clear Current Errors (error occurred = 1, no error = 0) By bit: 

   0: No SD card 

   1: Error Transmitting Log Data 

   2: Error Opening File 

   3: File System Error 

   4: Error Saving Log 

 #GX Close Logging File 

 #GO Open Logging File (Name based on date) 

 #GM Mount SD card file system 

 #GU Unmount SD card file system 

 #GH Set a particular output high (Outputs are number by pin on LPCXpresso board) 

 #GL Set a particular output low (Outputs are number by pin on LPCXpresso board) 

 #GP Report high/low status of outputs (Outputs are number by pin on LPCXpresso board) 
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Appendix C - Source Code 

 Sensor Control Program on the LPC1769 

This program is in C and was created using the LPCXpresso development environment. 

sensor.h 

//******************************************************************* 

// 

// sensor.h declares constants and functions for the optical sensor 

// 

// 

//******************************************************************* 

 

#ifndef SENSOR_H_ 

#define SENSOR_H_ 

 

#define USE_ONLY_INTEGER_MATH //Integer math is usually about 20% faster than float math for CCC but is 

more complicated. 

//#define FAKE_VELOCITY_SIGNALS //Create fake velocity signals for testing instead of using the ADC. 

 

#define IR45_CHAN   5//0 

#define ORA45_1_CHAN  3//1 

#define ORA180_1_CHAN  2//2 

#define ORA45_2_CHAN  1//3 

#define ORA180_2_CHAN  0//4 

#define THERMO_CHAN  6//5 

#define BG90_CHAN   4//6 

#define BATT_CHAN  7//7 

 

#define MAX_INPUT_CHAN  7 

 

//Channels for each output. Make sure to changes are made to channels and pins together. 

#define IR_LED_CHAN   3 

#define ORA_1_LED_CHAN   4 

#define ORA_2_LED_CHAN   5 

#define BG_LED_CHAN   2 

#define STATUS_LED_CHAN  22 

#define DYE_SOLENOID_CHAN 6 

#define AIR_BLAST_SOL_CHAN 7 

#define AIR_BLAST_EN_CHAN  8 

//Pins for each output. Make sure to changes are made to channels and pins together. 
#define BG_LED_XPIN   44 

#define IR_LED_XPIN   45 

#define ORA_1_LED_XPIN  46 

#define ORA_2_LED_XPIN  47 

#define DYE_SOLENOID_XPIN 48 

#define AIR_BLAST_SOL_XPIN 49 

#define AIR_BLAST_EN_XPIN 50 

#define STATUS_LED_XPIN  24 //Connected to Status LED on surface of LPCXpresso board 
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#define MAX_VEL_SAMP_FREQ 22500UL //120MHz System Clock -> 12MHz ADC Clock -> 65 

Clocks/Conversion -> with 2(x3) Conversions = 30000 (Actually 22500 by testing) 

#define MAX_DURATION  4294967UL //Duration counts for cleaning and power are in seconds 

           //and must be compared to 

uint32_t counters with 0xFFFFFFFF maximums 

#define MIN_DISTANCE_UP_DN 0 //Minimum distance between up and downstream LEDs/PTs 

#define MAX_DISTANCE_UP_DN 100  //Maximum distance between up and downstream LEDs/PTs 

#define MAX_FREQ_RATIO  10 //Maximum allowed frequency ratio for smart velocity 

#define MIN_FREQ_RATIO  1 //Minimum allowed frequency ratio for smart velocity 

 

//Startup Defaults 

#define  SED_INTERVAL_DEFAULT  30UL // Sediment sample period (s) 

#define  USE_SED_DEFAULT   1 

 

#define  VEL_MINOR_SAMP_DEFAULT  6 // How many samples should be taken in each major 

period 

#define  VEL_MINOR_INTERVAL_DEFAULT 30//30 // Time between each minor sample (s) 

#define  DYE_DURA_DEFAULT   45 // Duration that dye solenoid is on (ms) 

#define  VEL_OFFSET_DEFAULT   -45 // Time between dye is shut off and sampling 

starts. Can be negative. (ms) 

#define  VEL_FREQ_DEFAULT   344//5000UL // Sample frequency in velocity 

measurements (Hz) 

#define  VEL_LENGTH_DEFAULT   3200UL//1600UL //Number of samples for each up and 

down-stream measurements. 1375 takes about 1 sec to complete 

#define  VEL_MAJOR_INTERVAL_DEFAULT 3600UL//150 // Time between sets of measurements (s) 

#define  UPSTREAM_CHAN_DEFAULT  ORA180_1_CHAN //Analog channel for the upstream 

samples 

#define  DOWNSTREAM_CHAN_DEFAULT ORA180_2_CHAN //Analog channel for the downstream 

samples 

#define  SAVE_RXY_DEFAULT   0 // Do not create Rxy array. 

#define  USE_VELOCITY_DEFAULT  1 

#define  LOG_TYPE_DEFAULT   0 // Only log the results 

#define  USE_SMART_VEL_DEFAULT  1 // Use smart velocity 

#define  REQUIRED_ACC_DEFAULT  1 // Required accuracy (based on sampling rate) for a 

measurement 

#define  FREQ_RATIO_DEFAULT   2 // Sampling rate set to 2 times that required for 

measured velocity 

#define  MIN_CCC_DEFAULT   0.9 // Minimum acceptable CCC 

#define  DIST_DEFAULT    0.04 //Distance between up and down 

LED/PT pairs 

#define  LED_PRE_ON_TIME   150 // How long should the LEDs be on before starting 

anything else (ms) 

#define  MIN_FREQ     344 // Minimum allowed frequency (otherwise velocity 

could last a VERY long time) 

#define  DEFAULT_XCORR_TYPE   1 // Biased XCorr 

 

#define  AIR_BLAST_INTERVAL_DEFAULT 3600UL // Time between each cleaning (s) 

#define  AIR_BLAST_DURATION_DEFAULT 10 // Duration that cleaning process is run (s) 

#define  USE_AIR_BLAST     1  // Flag to indicate if cleaning should be 

enabled 

 

#define  USE_POWER_SHUTOFF   1 // Flag that indicates if shutoff is being used 

#define  SHUTOFF_LEVEL_DEFAULT  12 // Voltage under which battery level is considered 

too low (ADC Counts-Depends on Voltage Divider) 

#define  SHUTOFF_TIME_DEFAULT  3700UL // Length of time that the voltage must be above 

shutoff_level before turning on (s) 
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#define  POWER_START_CONDITION  0 // Flag that indicates if the system currently has 

power to the air compressor 

 

//Velocity States 

#define STOPPED   0 

#define WAITING   1 

#define SAMPLING  2 

#define CALCULATING  3 

#define LOGGING_WAIT 4 

 

//Error Bits: Type of error 

#define NO_SD_CARD   0x00000001 

#define LOG_TRANS_ERROR  0x00000002 

#define OPEN_FILE_ERROR  0x00000004 

#define OTHER_FAT_ERROR  0x00000008 

#define LOG_SAVE_ERROR  0x00000010 

 

//Velocity Logging Bits 

#define LOG_UP   0x01 

#define LOG_DOWN  0x02 

#define LOG_RXY   0x04 

#define LOG_ORGINAL  0x08 

 

//Structure to hold the data from a sediment measurement 
typedef struct 

{ 

 // Results 

 uint16_t IR_45_on_reading; //measurement_taken bit 0 

 uint16_t BG_90_on_reading; //measurement_taken bit 11 

 uint16_t ORA1_45_on_reading; //measurement_taken bit 4 

 uint16_t ORA1_180_on_reading; //measurement_taken bit 5 

 uint16_t ORA2_45_on_reading; //measurement_taken bit 6 

 uint16_t ORA2_180_on_reading; //measurement_taken bit 7 

 uint16_t IR_45_off_reading; //measurement_taken bit 1 

 uint16_t BG_90_off_reading; //measurement_taken bit 10 

 uint16_t ORA1_45_off_reading; //measurement_taken bit 2 

 uint16_t ORA1_180_off_reading; //measurement_taken bit 3 

 uint16_t ORA2_45_off_reading; //measurement_taken bit 8 

 uint16_t ORA2_180_off_reading; //measurement_taken bit 9 

 uint16_t battery_reading; //measurement_taken bit 13 

 uint16_t thermo_reading; //measurement_taken bit 12 

 uint16_t last_rain_gauge_count; //last pulse count from rain gauge input. Copied from current 

count to hold for logging. 

 // Operation 

 uint32_t sediment_counter; // Variable controlled by the ms counter 

 uint8_t sediment_running; // Flag to indicate if a measurement is currently in progress 

 uint8_t complete; // Flag that indicates a measurement is complete and done 

 uint16_t measurement_taken; //Each measurement sets a bit to indicate that the measurement has 

been taken. 

 uint8_t ready_to_run; //Flag that indicates that it is time to take another measurement 

 // Configuration 

 uint8_t use_sediment;  //Flag to indicate if sediment measurements should be 

made 

 uint32_t sediment_sample_period; // Sediment sample period (s) 
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 uint16_t cur_rain_gauge_count; //current pulse count from rain gauge input. Zeros when a 

sediment measurement is made 

 

 uint32_t SedimentCountDown; // counter till time (s) to run sediment 

}sediment_data; 

 

//Structure to hold the data from a velocity measurement 
typedef struct 

{ 

 // Results 
 float velocity; 

 float CCC;     // Cross Correlation Coefficient 

 float maxRxy;     //Stores highest calculated Rxy 

 uint32_t max_index;   //The index of the highest Rxy value 

 uint16_t *up;    //Pointer to upstream data array 

 uint16_t *down;    //Pointer to downstream data array 

 float  *Rxy;    //Pointer to Rxy data array (not always used) 

 // Operation 

 uint32_t velocity_counter; // Variable controlled by the ms counter 

 uint8_t state; 

 uint32_t dye_start;   // ms count at which to turn on dye solenoid 

 uint32_t dye_stop;   // ms count at which to turn off dye solenoid 

 uint8_t dye_on;    // Flag that indicates that the dye solenoid is on. 

 uint32_t sampling_start; // ms count at which to start sampling the ADC 

 uint8_t complete;    // Flag that indicates a measurement is complete and 

done 

 uint8_t minor_measurements_done; // Number of minor measurements performed in this 

major period 

 uint8_t ready_to_run;   //Flag that indicates that it is time to take another measurement 

 uint32_t current_sample; //Index for the up and down arrays. Used in recording and as 

offset in calculating. 

 // Configuration 

 uint8_t use_velocity;  //Flag to indicate if velocity measurements should be 

made 

 uint8_t save_Rxy;   //Flag to indicate if Rxy array should be created and Rxy saved 

 uint32_t minor_period;  // Time between each minor sample (s) 

 uint16_t dye_injection_duration; // Duration that dye solenoid is on (ms) 

 int16_t injection_sample_offset; // Time between dye is shut off and sampling starts. Can 

be negative. (ms) 

 uint32_t sample_frequency; // Sample frequency in velocity measurements (Hz) 

 uint32_t sample_length;  //Number of samples for each up and down-stream measurements 

 uint32_t major_period;  // Time between sets of measurements (s) 

 uint8_t minor_measurement_total; // How many measurements should be taken in each 

major period 

 uint8_t upstream_chan;  // Channel to use for upstream 

 uint8_t downstream_chan; // Channel to use for downstream 

 float dist_btw_up_down;  // The distance in m between up- and down-stream sensors. 

 uint8_t logging_type;  // Bits indicate what should be logged (Bit: 0-up, 1-down, 2-Rxy, 3-

log original up and down) 
 

 uint8_t logging_done;  // Flag set to indicate that original data has been logged and 

calculations can continue 

 uint8_t use_smart_velocity; // Flag to use smart velocity measurement system 

 float percent_acc;   // Required accuracy (based on sampling rate) for a 

measurement 
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 float frequency_ratio;  // Ratio of desired frequency (based on percent_acc) to last 

measured frequency. > 1 

 float min_CCC;    // Minimum accepted CCC in smart velocity 

 uint32_t last_sample_frequency; // Sample frequency of last measurement in velocity 

measurements (Hz) 

 uint8_t last_meas_status; // Flag indicates if the last measurement met 'good' measurement 

criteria 

 

 uint8_t delayed_start;  // Flag to indicate that sampling should start with first 

dye detection 

 uint32_t max_samples;  // Number of samples to be taken without detecting before timing 

out 

 uint16_t start_trigger_level; // Level at which dye is considered detected in upstream 

 uint8_t calc_type;   //XCorr Type - 0=unbiased; 1=biased. 

 uint32_t VelocityCountDown; // counter till time (s) to run velocity 

}velocity_data; 

 

typedef struct 

{ 

 uint32_t air_blast_counter; // Variable controlled by the ms counter 

 uint8_t air_blast_running; // Flag to indicate if a cleaning is currently in progress 

 uint8_t ready_to_run; //Flag that indicates that it is time to do another cleaning 

 // Configuration 

 uint8_t use_cleaning; // Flag to indicate if cleaning should be enabled 

 uint32_t air_blast_period; // Time between each cleaning (s) 

 uint32_t air_blast_duration; // Duration that cleaning process is run (s) 

 

 uint32_t AirBlastCountDown; // counter till time (s) to run air blast 

}air_blast_data; 

 

typedef struct 

{ 

 uint32_t shutoff_counter; // Variable controlled by the ms counter 

 uint8_t power_on; // Flag that indicates if the system currently has power to the air compressor 

 // Configuration 

 uint8_t shutoff_enable; // Flag that indicates if shutoff is being used 

 uint16_t shutoff_level; // Voltage under which battery level is considered too low (ADC Counts-

Depends on Voltage Divider) 

 uint32_t shutoff_time; // Length of time that the voltage must be above shutoff_level before 

turning on (s) 
}air_compressor_data; 

 

//typedef struct 

//{ 

// uint16_t chan[8]; // Holds the result of the latest channel 0-7 conversions 

// uint8_t chan_done[8]; // Holds the result of the latest channel 0-7 conversions 

// uint8_t chan_requested[8]; // Conversion of a channel, 0-7, has been requested 

// uint8_t in_use; // Flag to indicate if a measurement is currently in progress 

// uint8_t doing_velocity; //Flag to indicate that a velocity measurement is underway 

//}adc_device; 
typedef struct 

{ 

 uint16_t chan[8]; // Holds the result of the latest channel 0-7 conversions 

 uint8_t chan_done; // Flag to indicate that conversion is complete 

 uint8_t chan_requested; // Conversion of a channel, 0-7, has been requested 

 uint8_t in_use; // Flag to indicate if a measurement is currently in progress 
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 uint8_t doing_velocity; //Flag to indicate that a velocity measurement is underway 

}adc_device; 

 

//Initialize the ADC and GPIO necessary to use the sensor 
void sensor_init(void); 

 

//The following functions control the outputs 
void IR_LED_on (void); 

void IR_LED_off (void); 

void BG_LED_on (void); 

void BG_LED_off (void); 

void ORA1_LED_on (void); 

void ORA1_LED_off (void); 

void ORA2_LED_on (void); 

void ORA2_LED_off (void); 

void status_LED_on (void); 

void status_LED_off (void); 

void dye_solenoid_on (void); 

void dye_solenoid_off (void); 

void air_blast_on (void); 

void air_blast_off (void); 

void air_blast_enable_on (void); 

void air_blast_enable_off (void); 

 

//These functions perform sampling for the sensor 
uint16_t sample_IR_45(void); 

uint16_t sample_BG_90(void); 

uint16_t sample_ORA1_45(void); 

uint16_t sample_ORA1_180(void); 

uint16_t sample_ORA2_45(void); 

uint16_t sample_ORA2_180(void); 

uint16_t sample_thermo(void); 

uint16_t sample_batt(void); 

 

//System Functions 
uint32_t start_sediment_measurement(sediment_data *c_d); 

void process_sediment_measurement(sediment_data *c_d); 

uint32_t start_velocity_measurement(velocity_data *c_d); 

void process_velocity_measurement(velocity_data *c_d); 

uint32_t start_air_blast_cleaning(air_blast_data *c_d); 

void process_air_blast_cleaning(air_blast_data *c_d); 

void process_air_compressor_shutoff(air_compressor_data *c_d); 

void parse_command(char *c_buffer); 

void start_velocity_sampling(velocity_data *c_d); 

 

//Calculation Functions 
void XCorr_one_pass_int(velocity_data *c_d); 

void XCorr_one_pass_float(velocity_data *c_d); 

 

 

 

 

 

#endif /*SENSOR_H_*/ 

comm.h 
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/* 

 * comm.h 

 * 

 *  Created on: Jan 25, 2012 

 *      Author: default 

 */ 
 

#ifndef COMM_H_ 

#define COMM_H_ 

 

#define COM_DATA_LEN 125 

#define UART_COUNT 4 

#define DIGITS_UINT32 10 

#define DIGITS_UINT16 5 

#define DIGITS_INT16 6 

#define DIGITS_UINT8 3 

#define DIGITS_FLOAT 9 //Print using %.3g 

#define SEND_BUF_LEN 64 // Must be at least 35 

#define LOG_BUF_LEN 110 //Length of log buffer. Need at least 15 samples*(5 digits + 1 tab) + datetime (14+1) = 

105 or 107 for vel message 
typedef struct 

{ 

 char delim;   //# to indicate the start of a command 

 char type;   //The type of command 

 char action;  //Action to be performed 

 char data [COM_DATA_LEN]; //Data from the command 

}gen_command; 

 

typedef struct 

{ 

 uint8_t report;  // 1 = Something to transmit back. 0 = Nothing to transmit 

 uint8_t accepted; // 1 = Command accepted. 0 = Command rejected. 

 char type;   // Command Type. 

 char action;  // Command Action (Varies based on type) 

 uint32_t var_index; // For reporting commands, keeps track of variable to send. Value is based 

on position in structure 

 uint32_t count;  // For reporting commands, keeps track of position in variable for array variables 

 uint8_t send_buf[SEND_BUF_LEN]; //Buffer to store data to be sent 

 uint8_t buf_wr_index; //index of write position in send buffer 

 uint8_t buf_tx_index; //index of position for transmitting from send buffer 

 uint8_t log_buf_index; //index for determining transmitted log data 

}comm_report_struct; 

 

 

void init_uart(void); 

void process_commands(void); 

void parse_com(char *c_buf, uint8_t uart_num); 

uint8_t parse_uint32_t(gen_command *com, uint32_t *p_u32_data, uint32_t max, 

uint32_t min); 

uint8_t parse_uint16_t(gen_command *com, uint16_t *p_u16_data, uint16_t max, 

uint16_t min); 

uint8_t parse_int16_t(gen_command *com, int16_t *p_16_data, int16_t max, 

int16_t min); 

uint8_t parse_uint8_t(gen_command *com, uint8_t *p_u8_data, uint8_t max, 

uint8_t min); 
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uint8_t parse_float(gen_command *com, float *p_float_data, float max, float 

min); 

void report_results(void); 

int set_time(char* r_buf); 

int send_log_data(char* l_buf); 

int comm_log_ready(void); 

 

 

#endif /* COMM_H_ */ 

logging.h 

/* 

 * logging.h 

 * 

 *  Created on: Jan 25, 2012 

 *      Author: default 

 */ 

 

#ifndef LOGGING_H_ 

#define LOGGING_H_ 

 

#define BASE_YEAR 2000 

#define BASE_MONTH 1 

#define BASE_DAY 1 

#define BASE_HOUR 0 

#define BASE_MINUTE 0 

#define BASE_SECOND 0 

 

//LOG_BUF_LEN is defined in comm.h since it is necessary to determine the size to transmit 

 

void init_ssp(void); 

void init_time(void); 

int init_logging(void); 

void process_logging(void); 

void log_file_flush(void); 

int open_log_file(void); 

int close_log_file(void); 

int mount_SD(void); 

int unmount_SD(void); 

 

#endif /* LOGGING_H_ */ 

main.c 

/* 

=============================================================================== 

 Name        : main.c 

 Author      :  

 Version     : 

 Copyright   : Copyright (C)  

 Description : main definition 

=============================================================================== 

 */ 

 

#ifdef __USE_CMSIS 

#include "LPC17xx.h" 
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#endif 

 

#include <cr_section_macros.h> 

#include <NXP/crp.h> 

 

// Variable to store CRP value in. Will be placed automatically 

// by the linker when "Enable Code Read Protect" selected. 

// See crp.h header for more information 
__CRP const unsigned int CRP_WORD = CRP_NO_CRP ; 

//lpc_types.h must be included before diskio.h because both files "helpfully" define booleans differently 

//and it only works in this order. 

#include <stdlib.h> 

#include "sensor.h" 

#include "logging.h" 

#include "comm.h" 

#include "lpc_types.h" 

#include "diskio.h" 

 

//Global variables 

uint32_t spp_startup_count; // counter to track how long the spp has been running 

volatile uint16_t ms_sec_count; // counter that determines when 1000ms passed 

uint32_t t0_count; 

sediment_data sediment_measurement; 

velocity_data velocity_measurement; 

air_blast_data air_blast; 

air_compressor_data power_shutoff; 

adc_device adc; 

 

uint32_t gen_errors; //Bits are set when an error occurs. Bit meaning: 

   //Bit: Meaning 

   //  0 No SD Card 

   //  1 Logging Data Transmission Failure 

   //  2 Cannot open logging file 

 

// TODO: need to check for dye when setting frequency 

// TODO: Seems to lock up in SPI interface when velocity > ~3 

 

// **************** 

//  SysTick_Handler 
void SysTick_Handler(void) { 

 if (ms_sec_count == 0) 

 { 

  ms_sec_count = 1000; 

  if(sediment_measurement.use_sediment) //Only change SedimentCountDown if 

cleaning is enabled. 
  { 

   if (sediment_measurement.SedimentCountDown == 0) 

   { 

    sediment_measurement.SedimentCountDown = 

sediment_measurement.sediment_sample_period; 

    sediment_measurement.ready_to_run = 1; 

   } 

   else 

   { 

    sediment_measurement.SedimentCountDown--; 

   } 

  } 
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  if(velocity_measurement.use_velocity) //Only change VelocityCountDown if velocity 

is enabled. 
  { 

   if (velocity_measurement.VelocityCountDown == 0) 

   { 

    if (velocity_measurement.minor_measurements_done < 

(velocity_measurement.minor_measurement_total-1)) //Have multiple minor samples left 

    { 

     velocity_measurement.VelocityCountDown = 

velocity_measurement.minor_period; 

    } 

    else // Only one minor sample left. The next sample will be after the major period 

time 
    { 

     velocity_measurement.VelocityCountDown = 

velocity_measurement.major_period - 

       velocity_measurement.minor_period * 

(velocity_measurement.minor_measurement_total-1); 

    } 

    velocity_measurement.ready_to_run = 1; 

   } 

   else 

   { 

    velocity_measurement.VelocityCountDown--; 

   } 

  } 

  if(air_blast.use_cleaning) //Only change AirBlastCountDown if cleaning is enabled. 

  { 

   if (air_blast.AirBlastCountDown == 0) 

   { 

    air_blast.AirBlastCountDown = 

air_blast.air_blast_period; 

    air_blast.ready_to_run = 1; 

   } 

   else 

   { 

    air_blast.AirBlastCountDown--; 

   } 

  } 

  log_file_flush(); 

 } 

 else 

 {ms_sec_count--;} 

 sediment_measurement.sediment_counter++; 

 velocity_measurement.velocity_counter++; 

 air_blast.air_blast_counter++; 

 if (!(power_shutoff.power_on)) // Only increment when the power is off 

 { 

  power_shutoff.shutoff_counter++; 

 } 

 if (ms_sec_count%10 == 0)//Run every 10ms 

 { 

  disk_timerproc(); 

 } 

 spp_startup_count++; //Reset when SPP is initialized used to make sure the system is running before 

using SD card 
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} 

 

int main(void) { 

 

 //System Initialization 

 if (SysTick_Config(SystemCoreClock / 1000)) {// Setup SysTick Timer to interrupt at 1 

msec intervals 

  while (1);  // Capture error 

 } 

 sensor_init(); 

 init_uart(); 

 init_ssp(); 

 init_time(); 

 init_logging();//Logging creates the log file. Requires ssp and time to be setup first. 

 

 while(1) { 

  if (sediment_measurement.ready_to_run && 

(velocity_measurement.state == STOPPED) && !(air_blast.air_blast_running)) 

  { 

   start_sediment_measurement(&sediment_measurement); 

  } 

  else if (velocity_measurement.ready_to_run && 

    !(sediment_measurement.sediment_running) && 

!(air_blast.air_blast_running) && 

    ((sediment_measurement.SedimentCountDown > 

((velocity_measurement.dye_injection_duration+velocity_measurement.injection_

sample_offset + 

     

 (velocity_measurement.sample_length*1000)/velocity_measurement.sample_f

requency)/1000)) || 

      !(sediment_measurement.use_sediment))) 

  { 

   //Check to make sure sediment is not running and that there is enough time to complete 

velocity before starting 
   start_velocity_measurement(&velocity_measurement); 

  } 

  else if (air_blast.ready_to_run && 

    !(sediment_measurement.sediment_running) && 

    (velocity_measurement.state == STOPPED) && 

    ((sediment_measurement.SedimentCountDown > 

(air_blast.air_blast_duration+1)) || 

      !(sediment_measurement.use_sediment))&& 

    ((velocity_measurement.VelocityCountDown > 

(air_blast.air_blast_duration+1)) || 

      !(velocity_measurement.use_velocity))) 

  { 

   //Check to make sure sediment and velocity are not running and that there is enough time to 

finish before starting 
   start_air_blast_cleaning(&air_blast); 

  } 

  //processing functions 
  process_sediment_measurement(&sediment_measurement); 

  process_velocity_measurement(&velocity_measurement); 

  process_air_blast_cleaning(&air_blast); 

  process_air_compressor_shutoff(&power_shutoff); 

  process_commands(); 

  process_logging(); 
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 } 

 return 0 ; 

} 

comm.c 

/* 

 * comm.c 

 * 

 * This file contains functions relating to communicating- 

 * sending results and accepting commands 

 * 

 * Functions in this file directly access the global variables 

 * for different measurements instead of relying on pointers 

 * 

 *  Created on: Jan 25, 2012 

 *      Author: default 

 */ 

#include "LPC17xx.h" 

#include "lpc17xx_uart.h" 

#include "lpc17xx_rtc.h" 

#include "comm.h" 

#include "command.h" 

#include "sensor.h" 

#include "logging.h" 

#include <stdlib.h> 

#include <string.h> 

#include <stdio.h> 

static comm_report_struct comm_report[UART_COUNT]; //One comm_report for each UART 

connection 

static char log_data_buffer[LOG_BUF_LEN]; //Buffer to hold logged data ready to transmit 

 

/************************************************************ 

 * Function Name:  init_uart 

 * 

 * Description:  This function initializes the UARTs used 

 *      for communication 

 *      (UART1=UART-USB and UART3=XBee) 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void init_uart(void) 

{ 

 UART_CFG_Type  uartCfg; 

 uint8_t i; 

 

 for(i = 0; i < UART_COUNT; i++) 

 { 

  comm_report[i].report = FALSE; 

  comm_report[i].log_buf_index = LOG_BUF_LEN; 

 } 

 

 //Initialize pins for UART3 
 LPC_PINCON->PINSEL0 = (LPC_PINCON->PINSEL0 & 0xFFFFFFF0) | 0x0000000A;

 // P0.0-1, TXD3, RXD3 function 10 
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 //UART 3 configuration 
 uartCfg.Baud_rate = 115200; 

 uartCfg.Databits = UART_DATABIT_8; 

 uartCfg.Parity = UART_PARITY_NONE; 

 uartCfg.Stopbits = UART_STOPBIT_1; 

 

 UART_Init(LPC_UART3, &uartCfg); 

 

 UART_TxCmd(LPC_UART3, ENABLE); 

 

 //Initialize pins for UART1 
 LPC_PINCON->PINSEL0 = (LPC_PINCON->PINSEL0 & 0x7FFFFFFF) | 0x40000000;

 // P0.15, TXD1 function 01 
 LPC_PINCON->PINSEL1 = (LPC_PINCON->PINSEL1 & 0xFFFFFFFC) | 0x00000001;

 // P0.16, RXD1 function 01 

 //UART 1 configuration 
 uartCfg.Baud_rate = 115200; 

 uartCfg.Databits = UART_DATABIT_8; 

 uartCfg.Parity = UART_PARITY_NONE; 

 uartCfg.Stopbits = UART_STOPBIT_1; 

 

 UART_Init(LPC_UART1, &uartCfg); 

 

 UART_TxCmd(LPC_UART1, ENABLE); 

 

} 

/************************************************************ 

 * Function Name:  process_commands 

 * 

 * Description:  This function check UART buffers to see if 

 *      a new command has come in and if so calls 

 *      commands to parse and handle it 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void process_commands(void) 

{ 

 static char c_buf1[128]; //Declared static to remain between function calls 

 static uint8_t buf_index1; 

 static char c_buf3[128]; //Declared static to remain between function calls 

 static uint8_t buf_index3; 

 uint8_t recd; 

 char new_char; 

 

 recd = 0; 

 while(LPC_UART3->LSR & 0x00000001) //Read all bytes in the UART buffer 

 { 

  new_char = (char)UART_ReceiveData(LPC_UART3); 

  if((new_char == 0x7f || new_char == '\b') && buf_index3 != 0) 

  { 

   buf_index3--; //decrement the index if a DEL or backspace is entered 

  } 

  else if(new_char == '#' || buf_index3 >= 127) // A new command is coming or 

command too long 
  { 
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   buf_index3 = 0; 

   c_buf3[buf_index3++] = new_char; 

  } 

  else 

  { 

   c_buf3[buf_index3++] = new_char; 

  } 

  recd++; //Keep track of how many char have been received this function call. 

  //Received characters are limited each time through this function to limit time in this function 
  if(new_char == '\r' || recd == 32) 

  { 

   break;//Stop reading if we have an entire command 

  } 

 } 

 while(LPC_UART1->LSR & 0x00000001) //Read all bytes in the UART buffer 

 { 

  new_char = (char)UART_ReceiveData(LPC_UART1); 

  if((new_char == 0x7f || new_char == '\b') && buf_index1 != 0) 

  { 

   buf_index1--; //decrement the index if a DEL or backspace is entered 

  } 

  else if(new_char == '#' || buf_index1 >= 127) // A new command is coming or 

command too long 
  { 

   buf_index1 = 0; 

   c_buf1[buf_index1++] = new_char; 

  } 

  else 

  { 

   c_buf1[buf_index1++] = new_char; 

  } 

  recd++; //Keep track of how many char have been received this function call. 

  //Received characters are limited each time through this function to limit time in this function 
  if(new_char == '\r' || recd == 32) 

  { 

   break;//Stop reading if we have an entire command 

  } 

 } 

 

 //Check if a new command is in, call a function to parse it 
 if(c_buf1[0] == '#' && c_buf1[buf_index1-1] == '\r') 

 { 

  parse_com(c_buf1, 1); 

  buf_index1 = 0; 

 } 

 if(c_buf3[0] == '#' && c_buf3[buf_index3-1] == '\r') 

 { 

  parse_com(c_buf3, 3); 

  buf_index3 = 0; 

 } 

 report_results(); // Send responses to any commands. 

} 

/************************************************************ 

 * Function Name:  parse_com 

 * 

 * Description:  This function determines the type of command 
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 *      received and how to respond to it 

 * 

 * Parameters:  char *c_buf - A string containing the command 

 *      uint8_t uart_num - A number indicating UART 

 *           the command came from 

 * 

 * Return Value  none 

 ************************************************************/ 
void parse_com(char *c_buf, uint8_t uart_num) 

{ 

 gen_command *com; 

 com = (gen_command *)c_buf; 

 uint32_t u32_data; 

 uint16_t u16_data; 

 int16_t s16_data; 

 uint8_t u8_data; 

 float float_data; 

 extern sediment_data sediment_measurement; 

 extern velocity_data velocity_measurement; 

 extern air_blast_data air_blast; 

 extern air_compressor_data power_shutoff; 

 

 switch (com->type) 

 { 

 case 'S': 

 { 

  switch (com->action) 

  { 

  case 'E': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    sediment_measurement.use_sediment = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'P': 

   if(parse_uint32_t(com, &u32_data, 0xFFFFFFFF, 1) == TRUE) 

   { 

    sediment_measurement.sediment_sample_period = 

u32_data; 

    if(sediment_measurement.SedimentCountDown > 

sediment_measurement.sediment_sample_period) 

    { 

     sediment_measurement.SedimentCountDown = 

u32_data; 

    } 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 
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   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'R': 

  case 'A': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  case 'N': 

   sediment_measurement.ready_to_run = 1; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  } 

 } 

 break; 

 case 'V': 

 { 

  switch (com->action) 

  { 

  case 'E': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.use_velocity = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

    if(velocity_measurement.up == NULL) // Check if we need to 

allocate memory 
    { 

     if ((velocity_measurement.up = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

     { 

      comm_report[uart_num].accepted = FALSE;  

// Report Failure 
      velocity_measurement.use_velocity = 

FALSE; //Can't use if memory not allocated 

     } 

    } 

    if(velocity_measurement.down == NULL)// Check if we need to 

allocate memory 
    { 

     if ((velocity_measurement.down = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

     { 

      comm_report[uart_num].accepted = FALSE;  

// Report Failure 
      velocity_measurement.use_velocity = 

FALSE; //Can't use if memory not allocated 

     } 

    } 

    if(velocity_measurement.Rxy == NULL && 

velocity_measurement.save_Rxy)// Check if we need to allocate memory 
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    { 

     if ((velocity_measurement.Rxy = 

malloc(velocity_measurement.sample_length * sizeof(float))) == NULL) 

     { 

      comm_report[uart_num].accepted = FALSE;  

// Report Failure 
      velocity_measurement.save_Rxy = FALSE; 

//Can't use if memory not allocated 
     } 

    } 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'P': 

   if(parse_uint32_t(com, &u32_data, 0xFFFFFFFF, 0) == TRUE) 

   { 

    velocity_measurement.major_period = u32_data; 

    if(velocity_measurement.VelocityCountDown > 

velocity_measurement.major_period) 

    { 

     velocity_measurement.VelocityCountDown = 

u32_data; 

    } 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'p': 

   if(parse_uint32_t(com, &u32_data, 0xFFFFFFFF, 0) == TRUE) 

   { 

    velocity_measurement.minor_period = u32_data; 

    if(velocity_measurement.VelocityCountDown > 

velocity_measurement.minor_period) 

    { 

     velocity_measurement.VelocityCountDown = 

u32_data; 

    } 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'I': 
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   if(parse_uint16_t(com, &u16_data, 0xFFFF, 0) == TRUE) 

   { 

    velocity_measurement.dye_injection_duration = 

u16_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'O': 

   if(parse_int16_t(com, &s16_data, 32767, -32768) == TRUE) 

   { 

    velocity_measurement.injection_sample_offset = 

s16_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'F': 

   //only allow changes for valid data and if a velocity measurement is not currently underway. 
   if(parse_uint32_t(com, &u32_data, MAX_VEL_SAMP_FREQ, 1) == 

TRUE && velocity_measurement.state == STOPPED) 

   { 

    velocity_measurement.sample_frequency = u32_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'L': 

   //only allow changes for valid data and if a velocity measurement is not currently underway. 
   if(parse_uint32_t(com, &u32_data, 0xFFFFFFFF, 1) == TRUE && 

velocity_measurement.state == STOPPED) 

   { 

    velocity_measurement.sample_length = u32_data; 

    comm_report[uart_num].accepted = TRUE; 

    if(velocity_measurement.up != NULL)// Check if we need to release 

memory 
    { 

     free(velocity_measurement.up); 

    } 

    if(velocity_measurement.down != NULL)// Check if we need to 

release memory 
    { 
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     free(velocity_measurement.down); 

    } 

    if ((velocity_measurement.up = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

    { 

     comm_report[uart_num].accepted = FALSE;  // Report 

Failure 

     velocity_measurement.use_velocity = FALSE; // 

Memory was not allocated so can't use 
    } 

    if ((velocity_measurement.down = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

    { 

     comm_report[uart_num].accepted = FALSE;  // Report 

Failure 

     velocity_measurement.use_velocity = FALSE; // 

Memory was not allocated so can't use 
    } 

    if(velocity_measurement.save_Rxy)// Check if we need to allocate 

memory 
    { 

     if(velocity_measurement.Rxy != NULL)// Check if we 

need to release memory 
     { 

      free(velocity_measurement.Rxy); 

     } 

     if ((velocity_measurement.Rxy = 

malloc(velocity_measurement.sample_length * sizeof(float))) == NULL) 

     { 

      comm_report[uart_num].accepted = FALSE;  

// Report Failure 

      velocity_measurement.save_Rxy = FALSE; // 

Memory was not allocated so can't save 
     } 

    } 

   } 

   else // sampling in progress or bad command format 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'M': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.minor_measurement_total = 

u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 
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   break; 

  case 'U': 

   if(parse_uint8_t(com, &u8_data, MAX_INPUT_CHAN, 0) == TRUE) 

   { 

    velocity_measurement.upstream_chan = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'D': 

   if(parse_uint8_t(com, &u8_data, MAX_INPUT_CHAN, 0) == TRUE) 

   { 

    velocity_measurement.downstream_chan = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'B': 

   if(parse_float(com, &float_data, MAX_DISTANCE_UP_DN, 

MIN_DISTANCE_UP_DN) == TRUE) 

   { 

    velocity_measurement.dist_btw_up_down = float_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'S': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.save_Rxy = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

    if(velocity_measurement.save_Rxy)// Check if we need to allocate 

memory 
    { 

     if(velocity_measurement.Rxy != NULL)// Check if we 

need to release memory 
     { 

      free(velocity_measurement.Rxy); 

     } 

     if ((velocity_measurement.Rxy = 

malloc(velocity_measurement.sample_length * sizeof(float))) == NULL) 

     { 
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      comm_report[uart_num].accepted = FALSE;  

// Report Failure 

      velocity_measurement.save_Rxy = FALSE; // 

Memory was not allocated so can't save 
     } 

    } 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'T': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.logging_type = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'e': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.use_smart_velocity = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

 

  case 'Q': 

   if(parse_float(com, &float_data, 100, 0) == TRUE) 

   { 

    velocity_measurement.percent_acc = float_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'X': 

   if(parse_float(com, &float_data, MAX_FREQ_RATIO, 

MIN_FREQ_RATIO) == TRUE) 
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   { 

    velocity_measurement.frequency_ratio = float_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'C': 

   if(parse_float(com, &float_data, 1, 0) == TRUE) 

   { 

    velocity_measurement.min_CCC = float_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'x': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    velocity_measurement.calc_type = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

 

  case 'R': 

  case 'A': 

  case 'u': 

  case 'd': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  case 'r': 

   if(velocity_measurement.save_Rxy) 

   { 

    comm_report[uart_num].accepted = TRUE; 

    comm_report[uart_num].type = com->type; 

    comm_report[uart_num].action = com->action; 

    comm_report[uart_num].var_index = 0; 

    comm_report[uart_num].count = 0; 
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   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

    comm_report[uart_num].type = 0; 

   } 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'N': 

   velocity_measurement.ready_to_run = 1; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  } 

 } 

 break; 

 case 'C': 

 { 

  switch (com->action) 

  { 

  case 'E': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    air_blast.use_cleaning = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'P': 

   if(parse_uint32_t(com, &u32_data, 0xFF, 1) == TRUE) 

   { 

    air_blast.air_blast_period = u32_data; 

    if(air_blast.AirBlastCountDown > 

air_blast.air_blast_period) 

    { 

     air_blast.AirBlastCountDown = u32_data; 

    } 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'D': 

   if(parse_uint32_t(com, &u32_data, MAX_DURATION, 0) == TRUE) 

   { 

    air_blast.air_blast_duration = u32_data; 

    comm_report[uart_num].accepted = TRUE; 
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   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'A': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  case 'N': 

   air_blast.ready_to_run = 1; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  } 

 } 

 break; 

 case 'P': 

 { 

  switch (com->action) 

  { 

  case 'E': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    power_shutoff.shutoff_enable = u8_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'V': 

   if(parse_uint16_t(com, &u16_data, 0xFFFF, 0) == TRUE) 

   { 

    power_shutoff.shutoff_level = u16_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'T': 

   if(parse_uint32_t(com, &u32_data, MAX_DURATION, 0) == TRUE) 
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   { 

    power_shutoff.shutoff_time = u32_data; 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'A': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  } 

 } 

 break; 

 case 'G': 

 { 

  switch (com->action) 

  { 

  case 'S': 

   if(set_time(com->data) == TRUE) 

   { 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'C': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  case 'E': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  case 'X': 

   if(close_log_file()) 

   { 
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    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'O': 

   if(open_log_file()) 

   { 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'M': 

   if(mount_SD()) 

   { 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'U': 

   if(unmount_SD()) 

   { 

    comm_report[uart_num].accepted = TRUE; 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'H': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    switch(u8_data) 

    { 

    case BG_LED_XPIN: 

     BG_LED_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case IR_LED_XPIN: 

     IR_LED_on(); 

     comm_report[uart_num].accepted = TRUE; 
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     break; 

    case ORA_1_LED_XPIN: 

     ORA1_LED_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case ORA_2_LED_XPIN: 

     ORA2_LED_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case DYE_SOLENOID_XPIN: 

     dye_solenoid_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case AIR_BLAST_SOL_XPIN: 

     air_blast_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case AIR_BLAST_EN_XPIN: 

     air_blast_enable_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case STATUS_LED_XPIN: 

     status_LED_on(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    default: 

     comm_report[uart_num].accepted = FALSE; 

    } 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'L': 

   if(parse_uint8_t(com, &u8_data, 0xFF, 0) == TRUE) 

   { 

    switch(u8_data) 

    { 

    case BG_LED_XPIN: 

     BG_LED_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case IR_LED_XPIN: 

     IR_LED_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case ORA_1_LED_XPIN: 

     ORA1_LED_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case ORA_2_LED_XPIN: 

     ORA2_LED_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 
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    case DYE_SOLENOID_XPIN: 

     dye_solenoid_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case AIR_BLAST_SOL_XPIN: 

     air_blast_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case AIR_BLAST_EN_XPIN: 

     air_blast_enable_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    case STATUS_LED_XPIN: 

     status_LED_off(); 

     comm_report[uart_num].accepted = TRUE; 

     break; 

    default: 

     comm_report[uart_num].accepted = FALSE; 

    } 

   } 

   else 

   { 

    comm_report[uart_num].accepted = FALSE; 

   } 

   comm_report[uart_num].type = 0; 

   comm_report[uart_num].report = TRUE; 

   break; 

  case 'P': 

   comm_report[uart_num].report = TRUE; 

   comm_report[uart_num].accepted = TRUE; 

   comm_report[uart_num].type = com->type; 

   comm_report[uart_num].action = com->action; 

   comm_report[uart_num].var_index = 0; 

   comm_report[uart_num].count = 0; 

   break; 

  } 

 } 

 break; 

 } 

} 

/************************************************************ 

 * Function Name:  report_results 

 * 

 * Description:  Handles sending responses back on the UARTs 

 *      Output in each call is limited to what the 

 *      UART buffer can hold as this is non-blocking. 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void report_results(void) 

{ 

 uint8_t i,len; 

 uint8_t sent; 

 uint8_t left; 

 RTC_TIME_Type rtc_time; 



195 

 

 extern sediment_data sediment_measurement; 

 extern velocity_data velocity_measurement; 

 extern air_blast_data air_blast; 

 extern air_compressor_data power_shutoff; 

 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 for(i = 0; i < UART_COUNT; i++) 

 { 

  if(comm_report[i].report) // is there anything to report 

  { 

   switch (comm_report[i].type) // check the type of report 

   { 

   case 0: 

    if(comm_report[i].accepted) 

    { 

     len = sprintf((char*)(comm_report[i].send_buf), 

"Accepted\r\n"); // write data at the beginning of the buffer 

     comm_report[i].buf_tx_index = 0; // set transmit buffer 

to zero 

     comm_report[i].buf_wr_index = len; // indicate the 

lenght of data written to the buffer 

     comm_report[i].report = FALSE; // no more reporting is 

necessary after transmitting the buffer 
    } 

    else 

    { 

     len = sprintf((char*)(comm_report[i].send_buf), 

"Rejected\r\n"); 

     comm_report[i].buf_tx_index = 0; 

     comm_report[i].buf_wr_index = len; 

     comm_report[i].report = FALSE; 

    } 

    break; // break for type 0 (no type) 

   case 'S': 

   { 

    switch (comm_report[i].action) 

    { 

    case 'R': 

    { 

     switch (comm_report[i].var_index) 

     { // these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"IR_45ON %u\r\n", sediment_measurement.IR_45_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"BG_90ON %u\r\n", sediment_measurement.BG_90_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O1_45ON %u\r\n", sediment_measurement.ORA1_45_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O1_180ON %u\r\n", sediment_measurement.ORA1_180_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O2_45ON %u\r\n", sediment_measurement.ORA2_45_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 6; 
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      } 

      else {break;} 

     } 

     case 6: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O2_180ON %u\r\n", sediment_measurement.ORA2_180_on_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 7; 

      } 

      else {break;} 

     } 

     case 7: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"IR_45OFF %u\r\n", sediment_measurement.IR_45_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 8; 

      } 

      else {break;} 

     } 

     case 8: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"BG_90OFF %u\r\n", sediment_measurement.BG_90_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 9; 

      } 

      else {break;} 

     } 

     case 9: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O1_45OFF %u\r\n", sediment_measurement.ORA1_45_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 10; 

      } 

      else {break;} 

     } 

     case 10: 

     { 
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      if(comm_report[i].buf_wr_index + 12 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O1_180OFF %u\r\n", sediment_measurement.ORA1_180_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 11; 

      } 

      else {break;} 

     } 

     case 11: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O2_45OFF %u\r\n", sediment_measurement.ORA2_45_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 12; 

      } 

      else {break;} 

     } 

     case 12: 

     { 

      if(comm_report[i].buf_wr_index + 12 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"O2_180OFF %u\r\n", sediment_measurement.ORA2_180_off_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 13; 

      } 

      else {break;} 

     } 

     case 13: 

     { 

      if(comm_report[i].buf_wr_index + 7 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"BATT %u\r\n", sediment_measurement.battery_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 14; 

      } 

      else {break;} 

     } 

     case 14: 

     { 

      if(comm_report[i].buf_wr_index + 7 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"TEMP %u\r\n", sediment_measurement.thermo_reading); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 15; 

      } 

      else {break;} 

     } 

     case 15: 

     { 

      if(comm_report[i].buf_wr_index + 7 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"RAIN %u\r\n", sediment_measurement.last_rain_gauge_count); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } // switch based on variable index 

     break; 

    } //end case 'R'  

    case 'A': 

    { 

     switch (comm_report[i].var_index) 

     { // these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sediment_counter %u\r\n", sediment_measurement.sediment_counter); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sediment_running %u\r\n", sediment_measurement.sediment_running); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"complete %u\r\n", sediment_measurement.complete); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 20 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"measurement_taken %u\r\n", sediment_measurement.measurement_taken); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"ready_to_run %u\r\n", sediment_measurement.ready_to_run); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 6; 

      } 

      else {break;} 

     } 

     case 6: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"use_sediment %u\r\n", sediment_measurement.use_sediment); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 7; 
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      } 

      else {break;} 

     } 

     case 7: 

     { 

      if(comm_report[i].buf_wr_index + 20 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"SedimentCountDown %u\r\n", sediment_measurement.SedimentCountDown); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 8; 

      } 

      else {break;} 

     } 

     case 8: 

     { 

      if(comm_report[i].buf_wr_index + 24 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"last_rain_gauge_count %u\r\n", sediment_measurement.last_rain_gauge_count); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 8; 

      } 

      else {break;} 

     } 

     case 9: 

     { 

      if(comm_report[i].buf_wr_index + 25 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sediment_sample_period %u\r\n", 

sediment_measurement.sediment_sample_period); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].action = 'R'; // The 

rest of the data is transmitted as from a standard sediment report 

       comm_report[i].var_index = 1; // Skip 

the acceptance measurement from the R type 
      } 

      else {break;} 

     } 

     } 

     break; 

    } //end case 'A' 

    } // end switch for action 

    break; // break for type S (sediment) 

   } // end case 'S' (sediment) 

   case 'V'://Reporting velocity information 

   { 

    switch (comm_report[i].action) 

    { 
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    case 'R': 

    { 

     switch (comm_report[i].var_index) 

     { // these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"VELOCITY %.3g\r\n", velocity_measurement.velocity); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 6 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"CCC %.3g\r\n", velocity_measurement.CCC); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"MAX Rxy %.3g\r\n", velocity_measurement.maxRxy); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 12 + 

DIGITS_UINT32 < SEND_BUF_LEN) 
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      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"MAX INDEX %u\r\n", velocity_measurement.max_index); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 14 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"MEAS STATUS %u\r\n", velocity_measurement.last_meas_status); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } 

     break; 

    } //end case 'R' 

    case 'A': 

    { 

     switch (comm_report[i].var_index) 

     { // these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"velocity_counter %u\r\n", velocity_measurement.velocity_counter); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 8 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"state %u\r\n", velocity_measurement.state); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 12 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"dye_start %u\r\n", velocity_measurement.dye_start); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"dye_stop %u\r\n", velocity_measurement.dye_stop); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 9 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"dye_on %u\r\n", velocity_measurement.dye_on); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 6; 

      } 

      else {break;} 

     } 

     case 6: 

     { 

      if(comm_report[i].buf_wr_index + 17 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sampling_start %u\r\n", velocity_measurement.sampling_start); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 7; 
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      } 

      else {break;} 

     } 

     case 7: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"complete %u\r\n", velocity_measurement.complete); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 8; 

      } 

      else {break;} 

     } 

     case 8: 

     { 

      if(comm_report[i].buf_wr_index + 26 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"minor_measurements_done %u\r\n", 

velocity_measurement.minor_measurements_done); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 9; 

      } 

      else {break;} 

     } 

     case 9: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"ready_to_run %u\r\n", velocity_measurement.ready_to_run); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 10; 

      } 

      else {break;} 

     } 

     case 10: 

     { 

      if(comm_report[i].buf_wr_index + 17 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"current_sample %u\r\n", velocity_measurement.current_sample); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 11; 

      } 

      else {break;} 

     } 

     case 11: 
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     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"use_velocity %u\r\n", velocity_measurement.use_velocity); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 12; 

      } 

      else {break;} 

     } 

     case 12: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"save_Rxy %u\r\n", velocity_measurement.save_Rxy); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 13; 

      } 

      else {break;} 

     } 

     case 13: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"minor_period %u\r\n", velocity_measurement.minor_period); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 14; 

      } 

      else {break;} 

     } 

     case 14: 

     { 

      if(comm_report[i].buf_wr_index + 25 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"dye_injection_duration %u\r\n", 

velocity_measurement.dye_injection_duration); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 15; 

      } 

      else {break;} 

     } 

     case 15: 

     { 

      if(comm_report[i].buf_wr_index + 26 + 

DIGITS_INT16 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"injection_sample_offset %d\r\n", 

velocity_measurement.injection_sample_offset); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 16; 

      } 

      else {break;} 

     } 

     case 16: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sample_frequency %u\r\n", velocity_measurement.sample_frequency); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 17; 

      } 

      else {break;} 

     } 

     case 17: 

     { 

      if(comm_report[i].buf_wr_index + 16 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"sample_length %u\r\n", velocity_measurement.sample_length); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 18; 

      } 

      else {break;} 

     } 

     case 18: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"major_period %u\r\n", velocity_measurement.major_period); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 19; 

      } 

      else {break;} 

     } 

     case 19: 

     { 

      if(comm_report[i].buf_wr_index + 26 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"minor_measurement_total %u\r\n", 

velocity_measurement.minor_measurement_total); 
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       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 20; 

      } 

      else {break;} 

     } 

     case 20: 

     { 

      if(comm_report[i].buf_wr_index + 16 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"upstream_chan %u\r\n", velocity_measurement.upstream_chan); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 21; 

      } 

      else {break;} 

     } 

     case 21: 

     { 

      if(comm_report[i].buf_wr_index + 18 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"downstream_chan %u\r\n", velocity_measurement.downstream_chan); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 22; 

      } 

      else {break;} 

     } 

     case 22: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"dist_btw_up_down %.3g\r\n", velocity_measurement.dist_btw_up_down); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 23; 

      } 

      else {break;} 

     } 

     case 23: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"logging_type %u\r\n", velocity_measurement.logging_type); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 24; 

      } 

      else {break;} 

     } 
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     case 24: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"logging_done %u\r\n", velocity_measurement.logging_done); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 25; 

      } 

      else {break;} 

     } 

     case 25: 

     { 

      if(comm_report[i].buf_wr_index + 21 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"use_smart_velocity %u\r\n", velocity_measurement.use_smart_velocity); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 26; 

      } 

      else {break;} 

     } 

     case 26: 

     { 

      if(comm_report[i].buf_wr_index + 14 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"percent_acc %.3g\r\n", velocity_measurement.percent_acc); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 27; 

      } 

      else {break;} 

     } 

     case 27: 

     { 

      if(comm_report[i].buf_wr_index + 18 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"frequency_ratio %.3g\r\n", velocity_measurement.frequency_ratio); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 28; 

      } 

      else {break;} 

     } 

     case 28: 

     { 

      if(comm_report[i].buf_wr_index + 10 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"min_CCC %.3g\r\n", velocity_measurement.min_CCC); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 29; 

      } 

      else {break;} 

     } 

     case 29: 

     { 

      if(comm_report[i].buf_wr_index + 24 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"last_sample_frequency %u\r\n", velocity_measurement.last_sample_frequency); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 30; 

      } 

      else {break;} 

     } 

     case 30: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"last_meas_status %u\r\n", velocity_measurement.last_meas_status); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 31; 

      } 

      else {break;} 

     } 

     case 31: 

     { 

      if(comm_report[i].buf_wr_index + 12 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"calc_type %u\r\n", velocity_measurement.calc_type); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 32; 

      } 

      else {break;} 

     } 

     case 32: 

     { 

      if(comm_report[i].buf_wr_index + 20 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"VelocityCountDown %u\r\n", velocity_measurement.VelocityCountDown); 

       comm_report[i].buf_wr_index += len; 
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       comm_report[i].action = 'R'; // The 

rest of the data is transmitted as from a standard sediment report 

       comm_report[i].var_index = 1; // Skip 

the acceptance measurement from the R type 
      } 

      else {break;} 

     } 

     } 

     break; 

    } //end case 'A' 

    case 'u': 

    { 

     if(comm_report[i].var_index == 0) 

     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\nUpstream 

Data\r\n%u\r\n", velocity_measurement.up[0]); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     // write to the buffer until it is full. It will restart there next time the 

function is called. 
     while(comm_report[i].var_index < 

velocity_measurement.sample_length && 

       comm_report[i].buf_wr_index + 2 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

     { 

      len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"%u\r\n", velocity_measurement.up[comm_report[i].var_index]); 

      comm_report[i].buf_wr_index += len; 

      comm_report[i].var_index++; 

     } 

     if(comm_report[i].var_index == 

velocity_measurement.sample_length) 

     { 

      comm_report[i].report = FALSE; 

     } 

     break; 

    } //end case 'u' 

    case 'd': 

    { 

     if(comm_report[i].var_index == 0) 

     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\nDownstream 

Data\r\n%u\r\n", velocity_measurement.down[0]); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     // write to the buffer until it is full. It will restart there next time the 

function is called. 
     while(comm_report[i].var_index < 

velocity_measurement.sample_length && 
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       comm_report[i].buf_wr_index + 2 + 

DIGITS_UINT16 < SEND_BUF_LEN) 

     { 

      len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"%u\r\n", velocity_measurement.down[comm_report[i].var_index]); 

      comm_report[i].buf_wr_index += len; 

      comm_report[i].var_index++; 

     } 

     if(comm_report[i].var_index == 

velocity_measurement.sample_length) 

     { 

      comm_report[i].report = FALSE; 

     } 

     break; 

    } //end case 'd' 

    case 'r': 

    { 

     if(comm_report[i].var_index == 0) 

     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\nRxy Data\r\n%.3g\r\n", 

velocity_measurement.Rxy[0]); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     // write to the buffer until it is full. It will restart there next time the 

function is called. 
     while(comm_report[i].var_index < 

velocity_measurement.sample_length && 

       comm_report[i].buf_wr_index + 2 + 

DIGITS_FLOAT < SEND_BUF_LEN) 

     { 

      len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"%.3g\r\n", velocity_measurement.Rxy[comm_report[i].var_index]); 

      comm_report[i].buf_wr_index += len; 

      comm_report[i].var_index++; 

     } 

     if(comm_report[i].var_index == 

velocity_measurement.sample_length) 

     { 

      comm_report[i].report = FALSE; 

     } 

     break; 

    } //end case 'r' 

    } // end switch for action 

    break; // break for type V (velocity) 

   } // end case 'V' (velocity) 

   case 'C'://Reporting cleaning information 

   { 

    switch (comm_report[i].action) 

    { // these case statements fall through until the buffer is full. It will restart there 

next time the function is called. 
    case 'A': 
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    { 

     switch (comm_report[i].var_index) 

     { 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 20 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"air_blast_counter %u\r\n", air_blast.air_blast_counter); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 20 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"air_blast_running %u\r\n", air_blast.air_blast_running); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"ready_to_run %u\r\n", air_blast.ready_to_run); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 15 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 
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       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"use_cleaning %u\r\n", air_blast.use_cleaning); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"air_blast_period %u\r\n", air_blast.air_blast_period); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 6; 

      } 

      else {break;} 

     } 

     case 6: 

     { 

      if(comm_report[i].buf_wr_index + 21 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"air_blast_duration %u\r\n", air_blast.air_blast_duration); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 7; 

      } 

      else {break;} 

     } 

     case 7: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"AirBlastCountDown %u\r\n", air_blast.AirBlastCountDown); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } 

     break; 

    }    } 

    break; // break for type C (cleaning) 

   }// end case 'C' (cleaning) 

   case 'P'://Reporting power shutoff information 

   { 

    switch (comm_report[i].action) 

    { // these case statements fall through until the buffer is full. It will restart there 

next time the function is called. 
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    case 'A': 

    { 

     switch (comm_report[i].var_index) 

     { 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 18 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"shutoff_counter %u\r\n", power_shutoff.shutoff_counter); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 11 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"power_on %u\r\n", power_shutoff.power_on); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 3; 

      } 

      else {break;} 

     } 

     case 3: 

     { 

      if(comm_report[i].buf_wr_index + 17 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"shutoff_enable %u\r\n", power_shutoff.shutoff_enable); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 4; 

      } 

      else {break;} 

     } 

     case 4: 

     { 

      if(comm_report[i].buf_wr_index + 16 + 

DIGITS_UINT8 < SEND_BUF_LEN) 

      { 



216 

 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"shutoff_level %u\r\n", power_shutoff.shutoff_level); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 5; 

      } 

      else {break;} 

     } 

     case 5: 

     { 

      if(comm_report[i].buf_wr_index + 19 + 

DIGITS_UINT32 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"shutoff_time %u\r\n", power_shutoff.shutoff_time); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } 

     break; 

    } 

    } 

    break; // break for type P (power shutoff) 

   }// end case 'P' (power shutoff) 

   case 'G'://Reporting general system information 

   { 

    switch (comm_report[i].action) 

    { 

    case 'C': 

    { 

     switch (comm_report[i].var_index) 

     {// these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 27 < 

SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"Time: YYYY/MM/DD hh:mm:ss\r\n"); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 
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     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 27 < 

SEND_BUF_LEN) 

      { 

       RTC_GetFullTime(LPC_RTC, 

&rtc_time); 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

"Time: %u/%u/%u %u:%u:%u\r\n", rtc_time.YEAR, rtc_time.MONTH, rtc_time.DOM, 

rtc_time.HOUR, rtc_time.MIN, rtc_time.SEC); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } 

     break; 

    } 

    case 'E': 

    { 

     len = sprintf((char*)(comm_report[i].send_buf), 

"Accepted\r\nErrors: %u\r\n", gen_errors); 

     comm_report[i].buf_tx_index = 0; 

     comm_report[i].buf_wr_index = len; 

     comm_report[i].report = FALSE; 

     gen_errors = 0; //Clear all errors 

     break; 

    } 

    case 'P': 

    { 

     switch (comm_report[i].var_index) 

     {// these case statements fall through until the buffer is full. It will 

restart there next time the function is called. 

     case 0://write to a send buffer, but use var_index to record written 

vars. 
     { 

      len = 

sprintf((char*)(comm_report[i].send_buf), "Accepted\r\n"); 

      comm_report[i].buf_tx_index = 0; 

      comm_report[i].buf_wr_index = len; 

      comm_report[i].var_index = 1; 

     } 

     case 1: 

     { 

      if(comm_report[i].buf_wr_index + 

(DIGITS_UINT8 * 8) + 12 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

         "%u: %u\t%u: %u\t%u: 

%u\t%u: %u\t", 

         BG_LED_XPIN, 

(LPC_GPIO2->FIOPIN & (1 << BG_LED_CHAN))?1:0, 

          

 IR_LED_XPIN, (LPC_GPIO2->FIOPIN & (1 << IR_LED_CHAN))?1:0, 
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 ORA_1_LED_XPIN, (LPC_GPIO2->FIOPIN & (1 << ORA_1_LED_CHAN))?1:0, 

             

  ORA_2_LED_XPIN, (LPC_GPIO2->FIOPIN & (1 << ORA_2_LED_CHAN))?1:0); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].var_index = 2; 

      } 

      else {break;} 

     } 

     case 2: 

     { 

      if(comm_report[i].buf_wr_index + 

(DIGITS_UINT8 * 8) + 14 < SEND_BUF_LEN) 

      { 

       len = 

sprintf((char*)(&(comm_report[i].send_buf[comm_report[i].buf_wr_index])), 

         "%u: %u\t%u: %u\t%u: 

%u\t%u: %u\t\r\n", 

         DYE_SOLENOID_XPIN, 

(LPC_GPIO2->FIOPIN & (1 << DYE_SOLENOID_CHAN))?1:0, 

          

 AIR_BLAST_SOL_XPIN, (LPC_GPIO2->FIOPIN & (1 << 

AIR_BLAST_SOL_CHAN))?1:0, 

            

 AIR_BLAST_EN_XPIN, (LPC_GPIO2->FIOPIN & (1 << AIR_BLAST_EN_CHAN))?1:0, 

             

  STATUS_LED_XPIN, (LPC_GPIO0->FIOPIN & (1 << 

STATUS_LED_CHAN))?1:0); 

       comm_report[i].buf_wr_index += len; 

       comm_report[i].report = FALSE; 

      } 

      else {break;} 

     } 

     } 

     break; 

    } 

    }// end switch for action 

    break; // break for type G (general) 

   }// end case 'G' (general) 

   } // end switch based on type 

  } // end if checking to see if there is anything to report 

 }// end for loop through uart interfaces 

 

 //check if there is any log data to transmit and make sure that nothing else is transmitting 
 if((comm_report[1].log_buf_index < LOG_BUF_LEN) && 

(comm_report[1].buf_tx_index == 0) && (comm_report[1].buf_wr_index == 0)) 

 { 

  //write data to the send buffer. It is limited by the length of each array. If the send array fills first, 

  //writes will wait until the uart has sent the entire send buffer before refilling. When logged data is 

finished 

  //sending, the log_buf_index will be equal to the length of the log_buffer. 
  while(comm_report[1].log_buf_index < LOG_BUF_LEN && 

comm_report[1].buf_wr_index < SEND_BUF_LEN) 

  { 

   if(log_data_buffer[comm_report[1].log_buf_index] != '\0') // 

Check for end of log string 
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   { 

   

 comm_report[1].send_buf[comm_report[1].buf_wr_index++] = 

log_data_buffer[comm_report[1].log_buf_index++]; 

   } 

   else 

   { 

    comm_report[1].log_buf_index = LOG_BUF_LEN; // Indicate 

that the entire string has been copied to send_buffer 
   } 

  } 

 } 

 //check if there is any log data to transmit and make sure that nothing else is transmitting 
 if((comm_report[3].log_buf_index < LOG_BUF_LEN) && 

(comm_report[3].buf_tx_index == 0) && (comm_report[3].buf_wr_index == 0)) 

 { 

  //write data to the send buffer. It is limited by the length of each array. If the send array fills first, 

  //writes will wait until the uart has sent the entire send buffer before refilling. When logged data is 

finished 

  //sending, the log_buf_index will be equal to the length of the log_buffer. 
  while(comm_report[3].log_buf_index < LOG_BUF_LEN && 

comm_report[3].buf_wr_index < SEND_BUF_LEN) 

  { 

   if(log_data_buffer[comm_report[3].log_buf_index] != '\0') // 

Check for end of log string 
   { 

   

 comm_report[3].send_buf[comm_report[3].buf_wr_index++] = 

log_data_buffer[comm_report[3].log_buf_index++]; 

   } 

   else 

   { 

    comm_report[3].log_buf_index = LOG_BUF_LEN; // Indicate 

that the entire string has been copied to send_buffer 
   } 

  } 

 } 

 

 if( comm_report[1].buf_tx_index < comm_report[1].buf_wr_index) // check if 

there is data in the buffer that hasn't been transmitted 
 { 

  left = comm_report[1].buf_wr_index - comm_report[1].buf_tx_index; 

// calculate how much is left to transmit 
  sent = UART_Send(LPC_UART1, 

&(comm_report[1].send_buf[comm_report[1].buf_tx_index]), left, 

NONE_BLOCKING); //send as much as possible to uart1 without blocking 

  comm_report[1].buf_tx_index += sent; // update the amount transmitted 

  if( comm_report[1].buf_tx_index == comm_report[1].buf_wr_index) // 

We've transmitted everything, reset buffer to 0 
  { 

   comm_report[1].buf_tx_index = 0; 

   comm_report[1].buf_wr_index = 0; 

  } 

 } 

 if( comm_report[3].buf_tx_index < comm_report[3].buf_wr_index) // check if 

there is data in the buffer that hasn't been transmitted 
 { 
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  left = comm_report[3].buf_wr_index - comm_report[3].buf_tx_index; 

// calculate how much is left to transmit 
  sent = UART_Send(LPC_UART3, 

&(comm_report[3].send_buf[comm_report[3].buf_tx_index]), left, 

NONE_BLOCKING); //send as much as possible to uart1 without blocking 

  comm_report[3].buf_tx_index += sent; // update the amount transmitted 

  if( comm_report[3].buf_tx_index == comm_report[3].buf_wr_index) // 

We've transmitted everything, reset buffer to 0 
  { 

   comm_report[3].buf_tx_index = 0; 

   comm_report[3].buf_wr_index = 0; 

  } 

 } 

} 

 

/************************************************************ 

 * Function Name:  parse_uint32_t 

 * 

 * Description:  converts the data in the command string to 

 *      a uint32_t and checks to make sure it is valid 

 * 

 * Parameters:  *com - The command which has the data to parse 

 *      *p_u32_data - The function places the result 

 *         of the conversion in the variable 

 *         pointed to by this pointer 

 *      max - maximum value allowed 

 *      min - minimum value allowed 

 * 

 * Return Value  TRUE - If conversion succeeded 

 *      FALSE - If conversion failed 

 ************************************************************/ 
uint8_t parse_uint32_t(gen_command *com, uint32_t *p_u32_data, uint32_t max, 

uint32_t min) 

{ 

 char *index; 

 *p_u32_data = strtoul(com->data, &index, 10); 

 if(com->data[0] < '0' || com->data[0] > '9')//strtoul will not produce an error if the 

first digit is not a number ie('-','\r') 
 {return FALSE;} 

 // strtoul will return 0xFFFFFFFF on overflow, so make sure 0xFFFFFFFF is really 0xFFFFFFFF 
 if((*p_u32_data == 0xFFFFFFFF) && (strncmp(com->data, "4294967295", 10) 

!= 0)) 

 {return FALSE;} 

 if(*p_u32_data > max || *p_u32_data < min) 

 {return FALSE;} 

 if(*index == '\r') 

 {return TRUE;} 

 else 

 {return FALSE;} 

} 

/************************************************************ 

 * Function Name:  parse_int16_t 

 * 

 * Description:  converts the data in the command string to 

 *      a int16_t and checks to make sure it is valid 

 * 

 * Parameters:  *com - The command which has the data to parse 
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 *      *p_16_data - The function places the result 

 *         of the conversion in the variable 

 *         pointed to by this pointer 

 *      max - maximum value allowed 

 *      min - minimum value allowed 

 * 

 * Return Value  TRUE - If conversion succeeded 

 *      FALSE - If conversion failed 

 ************************************************************/ 
uint8_t parse_int16_t(gen_command *com, int16_t *p_16_data, int16_t max, 

int16_t min) 

{ 

 char *index; 

 int32_t data; 

 data = strtol(com->data, &index, 10); 

 if((com->data[0] < '0' || com->data[0] > '9') && com->data[0] != '-

')//strtoud will not produce an error if the first digit is not a number ie('\r') 

 {return FALSE;} 

 *p_16_data = (int16_t)data; 

 if(*p_16_data > max || *p_16_data < min) 

 {return FALSE;} 

 if(*index == '\r' && (data == *p_16_data)) 

 {return TRUE;} 

 else 

 {return FALSE;} 

} 

/************************************************************ 

 * Function Name:  parse_uint16_t 

 * 

 * Description:  converts the data in the command string to 

 *      a uint16_t and checks to make sure it is valid 

 * 

 * Parameters:  *com - The command which has the data to parse 

 *      *p_u16_data - The function places the result 

 *         of the conversion in the variable 

 *         pointed to by this pointer 

 *      max - maximum value allowed 

 *      min - minimum value allowed 

 * 

 * Return Value  TRUE - If conversion succeeded 

 *      FALSE - If conversion failed 

 ************************************************************/ 
uint8_t parse_uint16_t(gen_command *com, uint16_t *p_u16_data, uint16_t max, 

uint16_t min) 

{ 

 char *index; 

 uint32_t data; 

 data = strtoul(com->data, &index, 10); 

 if(com->data[0] < '0' || com->data[0] > '9')//strtoul will not produce an error if the 

first digit is not a number ie('-','\r') 
 {return FALSE;} 

 *p_u16_data = (uint16_t)data; 

 if(*p_u16_data > max || *p_u16_data < min) 

 {return FALSE;} 

 if(*index == '\r' && (data == *p_u16_data)) 

 {return TRUE;} 

 else 



222 

 

 {return FALSE;} 

} 

/************************************************************ 

 * Function Name:  parse_uint8_t 

 * 

 * Description:  converts the data in the command string to 

 *      a uint8_t and checks to make sure it is valid 

 * 

 * Parameters:  *com - The command which has the data to parse 

 *      *p_u8_data - The function places the result 

 *         of the conversion in the variable 

 *         pointed to by this pointer 

 *      max - maximum value allowed 

 *      min - minimum value allowed 

 * 

 * Return Value  TRUE - If conversion succeeded 

 *      FALSE - If conversion failed 

 ************************************************************/ 
uint8_t parse_uint8_t(gen_command *com, uint8_t *p_u8_data, uint8_t max, 

uint8_t min) 

{ 

 char *index; 

 uint32_t data; 

 data = strtoul(com->data, &index, 10); 

 if(com->data[0] < '0' || com->data[0] > '9')//strtoul will not produce an error if the 

first digit is not a number ie('-','\r') 
 {return FALSE;} 

 *p_u8_data = (uint8_t)data; 

 if(*p_u8_data > max || *p_u8_data < min) 

 {return FALSE;} 

 if(*index == '\r' && (data == *p_u8_data)) 

 {return TRUE;} 

 else 

 {return FALSE;} 

} 

/************************************************************ 

 * Function Name:  parse_float 

 * 

 * Description:  converts the data in the command string to 

 *      a float and checks to make sure it is valid 

 * 

 * Parameters:  *com - The command which has the data to parse 

 *      *p_float_data - The function places the result 

 *         of the conversion in the variable 

 *         pointed to by this pointer 

 *      max - maximum value allowed 

 *      min - minimum value allowed 

 * 

 * Return Value  TRUE - If conversion succeeded 

 *      FALSE - If conversion failed 

 ************************************************************/ 
uint8_t parse_float(gen_command *com, float *p_float_data, float max, float 

min) 

{ 

 char *index; 

 *p_float_data = (float)strtod(com->data, &index); 
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 if((com->data[0] < '0' || com->data[0] > '9') && com->data[0] != '-

')//strtoud will not produce an error if the first digit is not a number ie('\r') 

 {return FALSE;} 

 if(*p_float_data > max || *p_float_data < min) 

 {return FALSE;} 

 if(*index == '\r') 

 {return TRUE;} 

 else 

 {return FALSE;} 

} 

/************************************************************ 

 * Function Name:  set_time 

 * 

 * Description:  This function sets the RTC (real time clock) 

 *      to a new time. 

 * 

 * Parameters:  r_buf - a string that contains the new time. 

 *      Its format is YYYY/MM/DD hh:mm:ss 

 *      Hours are 24-hour clock with a range of 0-23 

 * 

 * Return Value  TRUE (1) if time successfully set, or 

 *      FALSE (0) if time not set 

 ************************************************************/ 
int set_time(char* r_buf) 

{ 

 RTC_TIME_Type rtc_time; 

 uint8_t i; 

 uint8_t valid; 

 

 //Check if the input string has numeral digits in the correct places 
 for (i = 0, valid = 1; i < 19; i++) 

 { 

  if(i == 4 || i == 7 || i == 10 || i == 13 || i == 16) 

  { 

   i++; // Skip locations in the string where delimiters are. 

  } 

  if((r_buf[i] > 57) || (r_buf[i] < 48)) 

  { 

   return FALSE; 

  } 

 } 

 rtc_time.YEAR = (r_buf[0] - 48) * 1000 + (r_buf[1] - 48) * 100 + 

(r_buf[2] - 48) * 10 + (r_buf[3] - 48); 

 if(rtc_time.YEAR < 1980 || rtc_time.YEAR > 4095) //FAT file system requires years 

above 1980. RTC can not go over 4095 
 { 

  return FALSE; 

 } 

 rtc_time.MONTH = (r_buf[5] - 48) * 10 + (r_buf[6] - 48); 

 if(rtc_time.MONTH < 1 || rtc_time.MONTH > 12) 

 { 

  return FALSE; 

 } 

 rtc_time.DOM = (r_buf[8] - 48) * 10 + (r_buf[9] - 48); 

 //Check for correct number of days in a month based on month and leap year (leap year not accurate in 2100). 
 switch (rtc_time.MONTH) 

 { 
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 case 1: 

 case 3: 

 case 5: 

 case 7: 

 case 8: 

 case 10: 

 case 12: 

  if(rtc_time.DOM < 1 || rtc_time.DOM > 31) 

  { 

   return FALSE; 

  } 

  break; 

 case 4: 

 case 6: 

 case 9: 

 case 11: 

  if(rtc_time.DOM < 1 || rtc_time.DOM > 30) 

  { 

   return FALSE; 

  } 

  break; 

 case 2: 

  if(rtc_time.DOM < 1 || rtc_time.DOM > 29 || (rtc_time.DOM > 28 && 

    ((rtc_time.YEAR % 4 != 0) || ((rtc_time.YEAR % 100 == 

0) && rtc_time.YEAR % 400 != 0)))) //determines non-leap years 

  { 

   return FALSE; 

  } 

  break; 

 } 

 rtc_time.HOUR = (r_buf[11] - 48) * 10 + (r_buf[12] - 48); 

 if(rtc_time.HOUR < 0 || rtc_time.HOUR > 23) 

 { 

  return FALSE; 

 } 

 rtc_time.MIN = (r_buf[14] - 48) * 10 + (r_buf[15] - 48); 

 if(rtc_time.MIN < 0 || rtc_time.MIN > 59) 

 { 

  return FALSE; 

 } 

 rtc_time.SEC = (r_buf[17] - 48) * 10 + (r_buf[18] - 48); 

 if(rtc_time.SEC < 0 || rtc_time.SEC > 59) 

 { 

  return FALSE; 

 } 

 rtc_time.DOW = 1; //Not used so just setting to a valid number to eliminate errors 

 rtc_time.DOY = 1; //Not used so just setting to a valid number to eliminate errors 

 RTC_Init(LPC_RTC); 

 RTC_SetFullTime(LPC_RTC, &rtc_time); 

 RTC_Cmd(LPC_RTC, ENABLE); 

 return TRUE; 

} 

/************************************************************ 

 * Function Name:  send_log_data 

 * 

 * Description:  This function is called by the logging function 

 *      and prepares to transmit the data being logged 
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 *      on the UARTs. 

 * 

 *      This function only transmits on UARTs 1 & 3.  If other 

 *      interfaces are added this function will need to be updated. 

 * 

 * Parameters:  l_buf - a string that contains the logged data. Must be of length LOG_BUF_LEN 

 * 

 * Return Value:  1 if transmit buffer was empty (already sent all data) 

 *      0 if transmit buffer was overwritten by the new data 

 ************************************************************/ 
int send_log_data(char* l_buf) 

{ 

 int res = 1; 

 

 strcpy(log_data_buffer, l_buf); //Copy the log data string into the buffer. 

 

 if(comm_report[1].log_buf_index != LOG_BUF_LEN) // Check if everything had been sent 

 { 

  res = 0; //UART had not finished transmitting the last set of logged data 

 } 

 comm_report[1].log_buf_index = 0; // set the index to 0 to indicate new data is ready 

 if(comm_report[3].log_buf_index != LOG_BUF_LEN) // Check if everything had been sent 

 { 

  res = 0; //UART had not finished transmitting the last set of logged data 

 } 

 comm_report[3].log_buf_index = 0; // set the index to 0 to indicate new data is ready 

 

 return res; 

} 

/************************************************************ 

 * Function Name:  comm_log_ready 

 * 

 * Description:  This function is called by the logging function 

 *      to see if the uarts are ready for transmitting 

 * 

 *      This function only transmits on UARTs 1 & 3.  If other 

 *      interfaces are added this function will need to be updated. 

 * 

 * Parameters:  none 

 * 

 * Return Value:  1 if transmit buffer is empty (already sent all data) 

 *      0 if transmit buffer still has unsent data 

 ************************************************************/ 
int comm_log_ready(void) 

{ 

 int res = 1; 

 if(comm_report[1].log_buf_index != LOG_BUF_LEN) // Check if everything had been sent 

 { 

  res = 0; //UART had not finished transmitting the last set of logged data 

 } 

 if(comm_report[3].log_buf_index != LOG_BUF_LEN) // Check if everything had been sent 

 { 

  res = 0; //UART had not finished transmitting the last set of logged data 

 } 

 return res; 

} 
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logging.c 

/* 

 * logging.c 

 * 

 *  Created on: Jan 25, 2012 

 *      Author: default 

 */ 

#include "LPC17xx.h" 

#include "lpc17xx_ssp.h" 

#include "lpc17xx_uart.h" 

#include "lpc17xx_rtc.h" 

#include "diskio.h" 

#include "ff.h" 

#include "logging.h" 

#include "comm.h" 

#include "sensor.h" 

#include <stdio.h> 

 

FATFS  fs[1]; 

FIL  file; 

 

/************************************************************ 

 * Function Name:  init_ssp 

 * 

 * Description:  Starts the SSP (SPI) that is used to 

 *      communicate with the SD card 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void init_ssp(void) 

{ 

 SSP_CFG_Type SSP_Cfg; 

 extern uint32_t spp_startup_count; 

 

 //Initialize pins for SPI 
 LPC_PINCON->PINSEL0 = (LPC_PINCON->PINSEL0 & 0xFFF03FFF) | 0x000A8000;

 // P0.7-9, SCK, MISO, MOSI function 10 

 LPC_PINCON->PINSEL4 = LPC_PINCON->PINSEL4 & 0xFFFFFFCF; // P2.2 SSEL as 

GPIO function 0 

 LPC_PINCON->PINMODE0 &= 0xFFF0FFFF; // P0.7-9, SCK, MISO, MOSI pin mode 0 - pullup resistor 

 LPC_PINCON->PINMODE4 &= 0xFFFFFFCF; // P2.2, SSEL pin mode 0 - pullup resistor 

 

 SSP_ConfigStructInit(&SSP_Cfg); 

 

 // Initialize SSP peripheral with parameter given in structure above 
 SSP_Init(LPC_SSP1, &SSP_Cfg); 

 

 // Enable SSP peripheral 
 SSP_Cmd(LPC_SSP1, ENABLE); 

 spp_startup_count = 0; 

} 

/************************************************************ 

 * Function Name:  init_time 

 * 
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 * Description:  This function makes sure the rtc is enabled 

 *      and in a valid state. It does not check time 

 *      or reset the time at startup. Time can 

 *      be maintained by rtc if its battery is not 

 *      dead. 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void init_time(void) 

{ 

 if(LPC_RTC->CCR & 0x0C) //Re-initialize RTC if we are in an invalid state 

 { 

  RTC_Init(LPC_RTC); 

 } 

 RTC_Cmd(LPC_RTC, ENABLE); 

} 

/************************************************************ 

 * Function Name:  init_logging 

 * 

 * Description:  Sets up the file system on the SD card. 

 *      Creates/Opens the file to use for logging. 

 *      Logging file is named based on day of creation. 

 * 

 * Parameters:  none 

 * 

 * Return Value  TRUE (1) if time successfully set, or 

 *      FALSE (0) if time not set 

 ************************************************************/ 
int init_logging(void) 

{ 

 DSTATUS status; 

 BYTE res; 

 DIR dir; 

 char buf[64]; 

 RTC_TIME_Type rtc_time; 

 uint32_t i; 

 extern uint32_t spp_startup_count; 

 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 

 while(spp_startup_count < 500); 

 

 status = disk_initialize(0); 

 

 if (status != 0) { 

  gen_errors |= NO_SD_CARD; 

  return FALSE; 

 } 

 

 res = f_mount(0, &fs[0]); 

 if (res != FR_OK) { 

  gen_errors |= OTHER_FAT_ERROR; 

  return FALSE; 

 } 

 

 res = f_opendir(&dir, "/"); 
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 if (res) { 

  gen_errors |= OTHER_FAT_ERROR; 

  return FALSE; 

 } 

 

 RTC_GetFullTime(LPC_RTC, &rtc_time); 

 i = sprintf(buf, "%d%02d%02d.txt", rtc_time.YEAR, rtc_time.MONTH, 

rtc_time.DOM); 

 res = f_open(&file, buf, FA_WRITE | FA_OPEN_ALWAYS | FA_READ | 

FA_WRITE); 

 if (res != FR_OK) { 

  gen_errors |= OPEN_FILE_ERROR; 

  return FALSE; 

 } 

 

 f_lseek(&file, file.fsize); 

 return 1; 

 

} 

/************************************************************ 

 * Function Name:  get_fattime 

 * 

 * Description:  Function required by the FatFS library. It 

 *      returns the current time obtained from the 

 *      rtc. 

 * 

 * Parameters:  none 

 * 

 * Return Value  DWORD - time in format required by FatFS 

 ************************************************************/ 
DWORD get_fattime(void) 

{ 

 RTC_TIME_Type rtc_time; 

 RTC_GetFullTime(LPC_RTC, &rtc_time); 

 return ((DWORD)(rtc_time.YEAR - 1980) << 25) 

   | ((DWORD)rtc_time.MONTH << 21) 

   | ((DWORD)rtc_time.DOM << 16) 

   | ((DWORD)rtc_time.HOUR << 11) 

   | ((DWORD)rtc_time.MIN << 5) 

   | ((DWORD)rtc_time.SEC >> 1); 

} 

/************************************************************ 

 * Function Name:  process_logging 

 * 

 * Description:  Function to handle logging data to a file. 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void process_logging(void) 

{ 

 extern sediment_data sediment_measurement; 

 extern velocity_data velocity_measurement; 

 extern uint32_t gen_errors; 

 char log_buf[LOG_BUF_LEN]; 

 int i; 
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 UINT written_count; 

 RTC_TIME_Type rtc_time; 

 

 RTC_GetFullTime(LPC_RTC, &rtc_time); 

 

 

 if(sediment_measurement.complete) 

 { 

  if(comm_log_ready()) 

  { 

   i = sprintf(log_buf, 

"S%04d%02d%02d%02d%02d%02d\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\t%

u\t%u\t%u\r\n", 

     rtc_time.YEAR, 

     rtc_time.MONTH, 

     rtc_time.DOM, 

     rtc_time.HOUR, 

     rtc_time.MIN, 

     rtc_time.SEC, 

     sediment_measurement.IR_45_on_reading, 

     sediment_measurement.BG_90_on_reading, 

     sediment_measurement.ORA1_45_on_reading, 

     sediment_measurement.ORA1_180_on_reading, 

     sediment_measurement.ORA2_45_on_reading, 

     sediment_measurement.ORA2_180_on_reading, 

     sediment_measurement.IR_45_off_reading, 

     sediment_measurement.BG_90_off_reading, 

     sediment_measurement.ORA1_45_off_reading, 

     sediment_measurement.ORA1_180_off_reading, 

     sediment_measurement.ORA2_45_off_reading, 

     sediment_measurement.ORA2_180_off_reading, 

     sediment_measurement.battery_reading, 

     sediment_measurement.thermo_reading, 

     sediment_measurement.last_rain_gauge_count); 

   if(send_log_data(log_buf) == 0)//determine if it sent properly 

   { 

    gen_errors |= LOG_TRANS_ERROR; //Set a flag indicating data was not 

logged properly 
   } 

   if(f_write(&file, log_buf, i, &written_count) != 

FR_OK)//determine if it saved properly 

   { 

    gen_errors |= LOG_SAVE_ERROR; //Set a flag indicating data was not 

logged properly 
   } 

   sediment_measurement.complete = 0; //We've logged the data so clear the 

complete flag 
  } 

 } 

 if(velocity_measurement.complete) 

 { 

  if(comm_log_ready()) 

  { 

   i = 0; 

   velocity_measurement.logging_done = 0; 

   if(velocity_measurement.current_sample == 0)//First time through. 
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   { 

    i += sprintf(log_buf, 

"V%04d%02d%02d%02d%02d%02d\t%.3g\t%.3g\t%.3g\t%u\t%u %c\r\n", //This can take 66 chars 

at max 
      rtc_time.YEAR, 

      rtc_time.MONTH, 

      rtc_time.DOM, 

      rtc_time.HOUR, 

      rtc_time.MIN, 

      rtc_time.SEC, 

      velocity_measurement.velocity, 

      velocity_measurement.CCC, 

      velocity_measurement.maxRxy, 

      velocity_measurement.max_index, 

     

 velocity_measurement.last_sample_frequency, 

      (velocity_measurement.last_meas_status ? 

' ' : '*')); 

    if(velocity_measurement.logging_type)//Check if we are logging 

any extra data 

    { //This can take 41 chars at max. 

     if(velocity_measurement.logging_type & LOG_UP) 

     { 

      i += sprintf((&(log_buf[i])), "Up\t"); 

     } 

     if(velocity_measurement.logging_type & 

LOG_DOWN) 

     { 

      i += sprintf((&(log_buf[i])), "Down\t"); 

     } 

     if((velocity_measurement.logging_type & 

LOG_RXY) && velocity_measurement.save_Rxy) 

     { 

      i += sprintf((&(log_buf[i])), "Rxy\t"); 

     } 

     i += sprintf((&(log_buf[i])), "\r\n"); 

     if(velocity_measurement.logging_type & LOG_UP) 

     { 

      i += sprintf((&(log_buf[i])), "U%u\t", 

velocity_measurement.up[0]); 

     } 

     if(velocity_measurement.logging_type & 

LOG_DOWN) 

     { 

      i += sprintf((&(log_buf[i])), "D%u\t", 

velocity_measurement.down[0]); 

     } 

     if((velocity_measurement.logging_type & 

LOG_RXY) && velocity_measurement.save_Rxy) 

     { 

      i += sprintf((&(log_buf[i])), "R%.3g\t", 

velocity_measurement.Rxy[0]); 

     } 

     i += sprintf((&(log_buf[i])), "\r\n"); 

     velocity_measurement.current_sample++; 

    } 

   } 
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   while (velocity_measurement.current_sample < 

velocity_measurement.sample_length && 

     i + 8 + 2*DIGITS_UINT16 + DIGITS_FLOAT < 

LOG_BUF_LEN) 

   { 

    if(velocity_measurement.logging_type)//Check if we are logging 

any extra data 
    { 

     if(velocity_measurement.logging_type & LOG_UP) 

     { 

      i += sprintf((&(log_buf[i])), "U%u\t", 

velocity_measurement.up[velocity_measurement.current_sample]); 

     } 

     if(velocity_measurement.logging_type & 

LOG_DOWN) 

     { 

      i += sprintf((&(log_buf[i])), "D%u\t", 

velocity_measurement.down[velocity_measurement.current_sample]); 

     } 

     if((velocity_measurement.logging_type & 

LOG_RXY) && velocity_measurement.save_Rxy) 

     { 

      i += sprintf((&(log_buf[i])), "R%.3g\t", 

velocity_measurement.Rxy[velocity_measurement.current_sample]); 

     } 

     i += sprintf((&(log_buf[i])), "\r\n"); 

    } 

    velocity_measurement.current_sample++; 

   } 

   if(velocity_measurement.current_sample >= 

velocity_measurement.sample_length) 

   { 

    velocity_measurement.logging_done = 1; 

    velocity_measurement.current_sample = 0; 

 

    velocity_measurement.complete = 0; //We've logged the data so 

clear the complete flag 
   } 

 

   send_log_data(log_buf); 

   if(f_write(&file, log_buf, i, &written_count) != 

FR_OK)//determine if it saved properly 

   { 

    gen_errors |= LOG_SAVE_ERROR; //Set a flag indicating data was not 

logged properly 
   } 

  } 

 

 } 

 if(velocity_measurement.state == LOGGING_WAIT) 

 { 

  if(comm_log_ready()) 

  { 

   i = 0; 

   if(velocity_measurement.current_sample == 0) //First time through. 

This can take 24 chars at max. 
   { 
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    if(velocity_measurement.logging_type & LOG_UP) 

    { 

     i += sprintf((&(log_buf[i])), "Up\t"); 

    } 

    if(velocity_measurement.logging_type & LOG_DOWN) 

    { 

     i += sprintf((&(log_buf[i])), "Down\t"); 

    } 

    i += sprintf((&(log_buf[i])), "\r\n"); 

    if(velocity_measurement.logging_type & LOG_UP) 

    { 

     i += sprintf((&(log_buf[i])), "O%d\t", 

velocity_measurement.up[0]); 

    } 

    if(velocity_measurement.logging_type & LOG_DOWN) 

    { 

     i += sprintf((&(log_buf[i])), "%d\t", 

velocity_measurement.down[0]); 

    } 

    i += sprintf((&(log_buf[i])), "\r\n"); 

    velocity_measurement.current_sample++; 

   } 

   while (velocity_measurement.current_sample < 

velocity_measurement.sample_length && 

     i + 5 + 2*DIGITS_UINT16 < LOG_BUF_LEN) 

   { 

    if(velocity_measurement.logging_type & LOG_UP) 

    { 

     i += sprintf((&(log_buf[i])), "O%d\t", 

velocity_measurement.up[velocity_measurement.current_sample]); 

    } 

    if(velocity_measurement.logging_type & LOG_DOWN) 

    { 

     i += sprintf((&(log_buf[i])), "%d\t", 

velocity_measurement.down[velocity_measurement.current_sample]); 

    } 

    i += sprintf((&(log_buf[i])), "\r\n"); 

    velocity_measurement.current_sample++; 

   } 

 

   if(velocity_measurement.current_sample >= 

velocity_measurement.sample_length) 

   { 

    velocity_measurement.logging_done = 1; 

    velocity_measurement.current_sample = 0; 

   } 

 

   send_log_data(log_buf); 

   if(f_write(&file, log_buf, i, &written_count) != 

FR_OK)//determine if it saved properly 

   { 

    gen_errors |= LOG_SAVE_ERROR; //Set a flag indicating data was not 

logged properly 
   } 

  } 

 } 

} 
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/************************************************************ 

 * Function Name:  log_file_flush 

 * 

 * Description:  Ensures data has been written to the SD card. 

 * 

 * Parameters:  none 

 * 

 * Return Value  none 

 ************************************************************/ 
void log_file_flush(void) 

{ 

 f_sync(&file); 

} 

/************************************************************ 

 * Function Name:  open_log_file 

 * 

 * Description:  Opens the log file using a file name based 

 *      on current date. 

 * 

 * Parameters:  none 

 * 

 * Return Value  1 - success 

 *      0 - failure 

 ************************************************************/ 
int open_log_file(void) 

{ 

 BYTE res; 

 char buf[64]; 

 RTC_TIME_Type rtc_time; 

 uint32_t i; 

 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 RTC_GetFullTime(LPC_RTC, &rtc_time); 

 i = sprintf(buf, "%d%02d%02d.txt", rtc_time.YEAR, rtc_time.MONTH, 

rtc_time.DOM); 

 res = f_open(&file, buf, FA_WRITE | FA_OPEN_ALWAYS | FA_READ | 

FA_WRITE); 

 if (res != FR_OK) { 

  gen_errors |= OPEN_FILE_ERROR; 

  return FALSE; 

 } 

 

 f_lseek(&file, file.fsize); 

 return 1; 

} 

/************************************************************ 

 * Function Name:  close_log_file 

 * 

 * Description:  Closes the file currently used to log data. 

 * 

 * Parameters:  none 

 * 

 * Return Value  1 - success 

 *      0 - failure 

 ************************************************************/ 
int close_log_file(void) 

{ 

 BYTE res; 
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 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 

 res = f_close(&file); 

 if(res != FR_OK) { 

  gen_errors |= OTHER_FAT_ERROR; 

  return FALSE; 

 } 

 return 1; 

} 

/************************************************************ 

 * Function Name:  mount_SD 

 * 

 * Description:  Mounts the SD card and creates the file system. 

 * 

 * Parameters:  none 

 * 

 * Return Value  1 - success 

 *      0 - failure 

 ************************************************************/ 
int mount_SD(void) 

{ 

 DSTATUS status; 

 BYTE res; 

 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 

 status = disk_initialize(0); 

 

 if (status != 0) { 

  gen_errors |= NO_SD_CARD; 

  return FALSE; 

 } 

 

 res = f_mount(0, &fs[0]); 

 if (res != FR_OK) { 

  gen_errors |= OTHER_FAT_ERROR; 

  return FALSE; 

 } 

 return 1; 

} 

/************************************************************ 

 * Function Name:  unmount_SD 

 * 

 * Description:  Closes all files and unmounts SD card 

 * 

 * Parameters:  none 

 * 

 * Return Value  1 - success 

 *      0 - failure 

 ************************************************************/ 
int unmount_SD(void) 

{ 

 BYTE res; 

 extern uint32_t spp_startup_count; 

 extern uint32_t gen_errors; //Bits are set when an error occurs. 

 

 if (file.fs != NULL) // Make sure logging file is closed before unmounting 

 { 
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  res = f_close(&file); 

  if(res != FR_OK) { 

   gen_errors |= OTHER_FAT_ERROR; 

   return FALSE; 

  } 

 

 } 

 res = f_mount(0, NULL); 

 if (res != FR_OK) { 

  gen_errors |= OTHER_FAT_ERROR; 

  return FALSE; 

 } 

 return 1; 

} 

sensor.c 

//******************************************************************* 

// 

// sensor.c provides functions that interact with the optical sensor 

// 

// 

//******************************************************************* 

 

#include <stdlib.h> 

#include "LPC17xx.h" 

#include "sensor.h" 

#include "math.h" 

//#include "adc.h" 

 

// Pin connections: 

// Outputs: 

// BG_LED   P2.2 

// IR_LED   P2.3 

// ORA1_LED P2.4 

// ORA2_LED P2.5 

// 

// DYE_SOLENOID  P2.6 

// AIR_BLAST_SOL P2.7 

// AIR_BLAST_EN  P2.8 

// 

// Inputs: 

// Counter: 

// RAIN_GAUGE P0.4 

// 

// ADC: 

// IR45     P0.23 ADC0.0 

// ORA45_1  P0.24 ADC0.1 

// ORA180_1 P0.25 ADC0.2 

// ORA45_2  P0.26 ADC0.3 

// ORA180_2 P1.30 ADC0.4 

// THERMO   P1.31 ADC0.5 

// BG90     P0.3  ADC0.6 

// 12V_BATT P0.2  ADC0.7 

 

// Control ADC conversions 

// Starts a conversion without safety checks on input for minimum size. 
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static __INLINE void start_ADC(uint8_t chan) 

{ 

 LPC_ADC->ADCR = ( 1 << chan ) |  // select channel for conversion 

   ( 4 <<  8 ) |    // CLKDIV = 5 for a 12MHz clock from 60MHz ADC_pclk 

   ( 0 << 16 ) |   // BURST = 0, no BURST, software controlled 

   ( 1 << 21 ) |    // PDN = 1, normal operation 

   ( 1 << 24 );     // Start now 

 LPC_ADC->ADINTEN = ( 1 << chan ); // Enable interrupt on desired channel 

} 

// Stops ADC conversions. Leaves timings the same. 
static __INLINE void stop_ADC(void) 

{ 

 LPC_ADC->ADCR = ( 1 << 0 ) |  // select channel for conversion 

   ( 4 <<  8 ) |    // CLKDIV = 5 for a 12MHz clock from 60MHz ADC_pclk 

   ( 0 << 16 ) |   // BURST = 0, no BURST, software controlled 

   ( 1 << 21 ) |    // PDN = 1, normal operation 

   ( 0 << 24 );     // No Start 

 LPC_ADC->ADINTEN = ( 0 );  // Disable interrupts on ADC 

} 

void EINT3_IRQHandler(void) 

{ 

 extern sediment_data sediment_measurement; 

 if(LPC_GPIOINT->IO0IntStatR & 0x00000010) //Make sure a rising edge on P0.4 triggered the 

interrupt 
 { 

  LPC_GPIOINT->IO0IntClr |= 0x00000010; //Clear interrupt flag 

  sediment_measurement.cur_rain_gauge_count++; 

 } 

} 

void TIMER0_IRQHandler(void) 

{ 

 extern velocity_data velocity_measurement; 

 extern adc_device adc; 

 LPC_TIM0->IR = 2; //Clear Interrupt flag 

 adc.chan_requested = velocity_measurement.upstream_chan; 

 start_ADC(velocity_measurement.upstream_chan);// Start upstream conversion 

} 

void ADC_IRQHandler(void){ //Handler for IRQ generated by the ADC during velocity measurements 

 

 extern velocity_data velocity_measurement; 

 extern adc_device adc; 

 uint32_t status_reg; 

 static uint8_t count; // The number of samples taken from this pin. 

 static uint16_t res[3]; 

 //The ADC takes multiple samples and uses a median filter to remove glitches. 
 status_reg = LPC_ADC->ADSTAT; 

 

 if(status_reg & (1 << adc.chan_requested)) // Make sure the requested channel is 

complete 
 { 

  switch(adc.chan_requested){ 

  case 0: 

   res[count++] = (LPC_ADC->ADDR0 >> 4) & 0xFFF;; 

   break; 

  case 1: 

   res[count++] = (LPC_ADC->ADDR1 >> 4) & 0xFFF;; 
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   break; 

  case 2: 

   res[count++] = (LPC_ADC->ADDR2 >> 4) & 0xFFF;; 

   break; 

  case 3: 

   res[count++] = (LPC_ADC->ADDR3 >> 4) & 0xFFF;; 

   break; 

  case 4: 

   res[count++] = (LPC_ADC->ADDR4 >> 4) & 0xFFF;; 

   break; 

  case 5: 

   res[count++] = (LPC_ADC->ADDR5 >> 4) & 0xFFF;; 

   break; 

  case 6: 

   res[count++] = (LPC_ADC->ADDR6 >> 4) & 0xFFF;; 

   break; 

  case 7: 

   res[count++] = (LPC_ADC->ADDR7 >> 4) & 0xFFF;; 

   break; 

  } 

 } 

 if(count >=3) // Time to do the median filtering 

 { 

  if((res[0] <= res[2] && res[0] >= res[1]) || (res[0] <= res[1] && 

res[0] >= res[2])){ 

   adc.chan[adc.chan_requested] = res[0];} 

  else if((res[1] <= res[2] && res[1] >= res[0]) || (res[1] <= 

res[0] && res[1] >= res[2])){ 

   adc.chan[adc.chan_requested] = res[1];} 

  else if((res[2] <= res[0] && res[2] >= res[1]) || (res[2] <= 

res[1] && res[2] >= res[0])){ 

   adc.chan[adc.chan_requested] = res[2];} 

  adc.chan_done = 1; // Indicate that the measurement has been completed 

  count = 0; // set count to zero since this conversion is done. 

  if(adc.doing_velocity) 

  { 

   if(adc.chan_requested == 

velocity_measurement.upstream_chan) 

   { 

#ifdef FAKE_VELOCITY_SIGNALS 

    if((velocity_measurement.current_sample >= 10) && 

(velocity_measurement.current_sample < 100)) 

    { 

    

 velocity_measurement.up[velocity_measurement.current_sample] = 0; 

    } 

    else 

    { 

    

 velocity_measurement.up[velocity_measurement.current_sample] = 0xFFF; 

    } 

#else 

   

 velocity_measurement.up[velocity_measurement.current_sample] = 

adc.chan[velocity_measurement.upstream_chan]; 

#endif 

    //Start a downstream conversion 
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    adc.chan_requested = 

velocity_measurement.downstream_chan; 

    start_ADC(velocity_measurement.downstream_chan); 

   } 

   else if(adc.chan_requested == 

velocity_measurement.downstream_chan) 

   { 

#ifdef FAKE_VELOCITY_SIGNALS 

    if((velocity_measurement.current_sample >= 20) && 

(velocity_measurement.current_sample < 110)) 

    { 

    

 velocity_measurement.down[velocity_measurement.current_sample] = 0; 

    } 

    else 

    { 

    

 velocity_measurement.down[velocity_measurement.current_sample] = 0xFFF; 

    } 

#else 

   

 velocity_measurement.down[velocity_measurement.current_sample] = 

adc.chan[velocity_measurement.downstream_chan]; 

#endif 

    velocity_measurement.current_sample++; 

    stop_ADC(); // Stop ADC conversions since the next upstream will be triggered 

by timer. 
    if(velocity_measurement.current_sample >= 

velocity_measurement.sample_length) 

    { 

     //All velocity samples taken. Stop Timer. Set flags. 
     LPC_TIM0->TCR = 0; 

     adc.doing_velocity = 0; 

     adc.in_use = 0; 

    } 

   } 

  } 

  else{ 

   stop_ADC(); // Stop ADC conversions. 

  } 

 } 

 else 

 { 

  start_ADC(adc.chan_requested); // Need more samples before filtering. Start ADC 

again. 
 } 

} 

 

//Initialize the data structures, ADC and GPIO necessary to use the sensor 
void sensor_init(void) 

{ 

 extern sediment_data sediment_measurement; 

 extern velocity_data velocity_measurement; 

 extern air_blast_data air_blast; 

 extern air_compressor_data power_shutoff; 

 extern volatile uint16_t ms_sec_count; // counter that determines when 1000ms passed 

 ms_sec_count = 1; 
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 sediment_measurement.SedimentCountDown = 1; //Initialize count down to start a 

measurement quickly after starting 

 velocity_measurement.VelocityCountDown = 1; //Initialize count down to start a 

measurement quickly after starting 

 air_blast.AirBlastCountDown = 1; //Initialize count down to start cleaning quickly after starting 

 

 sediment_measurement.sediment_running = 0; 

 sediment_measurement.complete = 0; 

 sediment_measurement.ready_to_run = 0; 

 sediment_measurement.sediment_sample_period = SED_INTERVAL_DEFAULT; 

 sediment_measurement.use_sediment = USE_SED_DEFAULT; 

 

 velocity_measurement.complete = 0; 

 velocity_measurement.minor_measurements_done = 0; 

 velocity_measurement.ready_to_run = 0; 

 velocity_measurement.state = STOPPED; 

 

 velocity_measurement.minor_period = VEL_MINOR_INTERVAL_DEFAULT; 

 velocity_measurement.dye_injection_duration = DYE_DURA_DEFAULT; // Duration 

that dye solenoid is on (ms) 

 velocity_measurement.injection_sample_offset = VEL_OFFSET_DEFAULT; // Time 

between dye is shut off and sampling starts. Can be negative. (ms) 

 velocity_measurement.sample_frequency = VEL_FREQ_DEFAULT; // Sample frequency 

in velocity measurements (Hz) 

 velocity_measurement.sample_length = VEL_LENGTH_DEFAULT; //Number of samples 

for each up and down-stream measurements 

 velocity_measurement.major_period = VEL_MAJOR_INTERVAL_DEFAULT; // Time 

between sets of measurements (s) 
 velocity_measurement.minor_measurement_total = VEL_MINOR_SAMP_DEFAULT; 

 velocity_measurement.upstream_chan = UPSTREAM_CHAN_DEFAULT; // Analog channel 

for the upstream samples 

 velocity_measurement.downstream_chan = DOWNSTREAM_CHAN_DEFAULT; // Analog 

channel for the downstream samples 
 velocity_measurement.save_Rxy = SAVE_RXY_DEFAULT; 

 velocity_measurement.use_velocity = USE_VELOCITY_DEFAULT; 

 velocity_measurement.logging_type = LOG_TYPE_DEFAULT; 

 velocity_measurement.use_smart_velocity = USE_SMART_VEL_DEFAULT; // Flag 

to use smart velocity measurement system 
 velocity_measurement.percent_acc = REQUIRED_ACC_DEFAULT;  

 // Required accuracy (based on sampling rate) for a measurement 

 velocity_measurement.frequency_ratio = FREQ_RATIO_DEFAULT;  // Ratio 

of desired frequency (based on percent_acc) to last measured frequency. > 1 

 velocity_measurement.min_CCC = MIN_CCC_DEFAULT;    // 

Minimum accepted CCC in smart velocity 

 velocity_measurement.dist_btw_up_down = DIST_DEFAULT; //Distance between up and 

down LED/PT pairs 

 velocity_measurement.calc_type = DEFAULT_XCORR_TYPE; // Type of XCorr calculation 

 

 if(velocity_measurement.use_velocity) 

 { 

  if ((velocity_measurement.up = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

  { 

   velocity_measurement.use_velocity = 0; // Don't allow measurements if 

allocation failed. 
  } 
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  if ((velocity_measurement.down = 

malloc(velocity_measurement.sample_length * sizeof(uint16_t))) == NULL) 

  { 

   velocity_measurement.use_velocity = 0; // Don't allow measurements if 

allocation failed. 
  } 

  if(velocity_measurement.save_Rxy) 

  { 

   if ((velocity_measurement.Rxy = 

malloc(velocity_measurement.sample_length * sizeof(float))) == NULL) 

   { 

    velocity_measurement.save_Rxy = 0; // Don't allow saving if 

allocation failed. 
   } 

  } 

 } 

 

 air_blast.air_blast_running = 0; // Flag to indicate if a measurement is currently in progress 

 air_blast.ready_to_run = 0; //Flag that indicates that it is time to do another cleaning 

 air_blast.air_blast_period = AIR_BLAST_INTERVAL_DEFAULT; // Time between each 

cleaning (s) 

 air_blast.air_blast_duration = AIR_BLAST_DURATION_DEFAULT; // Duration that 

cleaning process is run (s) 

 air_blast.use_cleaning = USE_AIR_BLAST; // Flag to indicate if cleaning should be enabled 

 

 power_shutoff.shutoff_enable = USE_POWER_SHUTOFF; // Flag that indicates if shutoff is 

being used 

 power_shutoff.shutoff_level = SHUTOFF_LEVEL_DEFAULT; // Voltage under which 

battery level is considered too low (ADC Counts-Depends on Voltage Divider) 

 power_shutoff.shutoff_time = SHUTOFF_TIME_DEFAULT; // Length of time that the 

voltage must be above shutoff_level before turning on (s) 

 power_shutoff.power_on = POWER_START_CONDITION; // Flag that indicates if the system 

currently has power to the air compressor 

 

 //Initialize Sensor Outputs 

 // Set P2.2, P2.3, P2.4, P2.5, P2.6, P2.7, P2.8 to GPIO 
 LPC_PINCON->PINSEL4 &= (0xFFFC000F); 

 // Set P2.2, P2.3, P2.4, P2.5, P2.6, P2.7, P2.8 to Outputs 
 LPC_GPIO2->FIODIR |= (0x00001FC); 

 

 //Initialize Rain Gauge Input (P0.4) 

 LPC_PINCON->PINSEL0 &= (0xFFFFFCFF); //Set to GPIO 

 LPC_GPIO0->FIODIR &= (0xFFFFFFEF); //Set to Input 

 LPC_GPIOINT->IO0IntEnR |= (0x00000010); //Enable interrupt on rising edge 

 NVIC_EnableIRQ(EINT3_IRQn); //Active interrupt 

 

 

 //Initialize the LED on LPCExpresso board 

 // Set P0.22 to GPIO 
 LPC_PINCON->PINSEL1 &= (0xFFFFCFFF); 

 // Set P0.22 to GPIO 
 LPC_GPIO0->FIODIR |= (1 << STATUS_LED_CHAN); 

 

 //Initialize the ADC 

 /* Turn on ADC clock*/ 
 LPC_SC->PCONP |= (1 << 12); 
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 /* all the related pins are set to ADC inputs, AD0.0-7 */ 

 LPC_PINCON->PINSEL0 &= 0xFFFFFF0F; // P0.2-3, A0.6-7, function 10 

 LPC_PINCON->PINSEL0 |= 0x000000A0; 

 LPC_PINCON->PINSEL1 &= 0xFFC03FFF; // P0.23-26, A0.0-3, function 01 

 LPC_PINCON->PINSEL1 |= 0x00154000; 

 LPC_PINCON->PINSEL3 |= 0xF0000000; // P1.30-31, A0.4-5, function 11 

 

 /* No pull-up no pull-down (function 10) on these ADC pins. */ 
 LPC_PINCON->PINMODE0 &= 0xFFFFFF0F; 

 LPC_PINCON->PINMODE0 |= 0x000000A0; 

 LPC_PINCON->PINMODE1 &= 0xFFC03FFF; 

 LPC_PINCON->PINMODE1 |= 0x002A8000; 

 LPC_PINCON->PINMODE3 &= 0x0FFFFFFF; 

 LPC_PINCON->PINMODE3 |= 0xA0000000; 

 

 //Setup the main ADC control register for software controlled operation 

 //Use Interrupts to record results 

 //For proper timing, System clock must be 120MHz. adc_pclk divider must be /2 for 60MHz clock. 

 LPC_ADC->ADCR = ( 1 << 0 ) |  // select first channel for conversion 

   ( 4 <<  8 ) |    // CLKDIV = 5 for a 12MHz clock from 60MHz ADC_pclk 

   ( 0 << 16 ) |   // BURST = 0, no BURST, software controlled 

   ( 1 << 21 ) |    // PDN = 1, normal operation 

   ( 0 << 24 );     // Remain stopped 

 NVIC_EnableIRQ(ADC_IRQn); // Enable ADC Interrupt 

 // Make sure everything starts out off. 
 IR_LED_off(); 

 ORA1_LED_off(); 

 ORA2_LED_off(); 

 BG_LED_off(); 

 status_LED_off(); 

 dye_solenoid_off(); 

 air_blast_off(); 

 air_blast_enable_off(); 

} 

 

//Turn on the IR LED 
void IR_LED_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << IR_LED_CHAN); 

} 

//Turn off the IR LED 
void IR_LED_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << IR_LED_CHAN); 

} 

//Turn on the BG LED 
void BG_LED_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << BG_LED_CHAN); 

} 

//Turn off the BG LED 
void BG_LED_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << BG_LED_CHAN); 

} 
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//Turn on the ORA1 LED 
void ORA1_LED_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << ORA_1_LED_CHAN); 

} 

//Turn off the ORA1 LED 
void ORA1_LED_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << ORA_1_LED_CHAN); 

} 

//Turn on the ORA2 LED 
void ORA2_LED_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << ORA_2_LED_CHAN); 

} 

//Turn off the ORA2 LED 
void ORA2_LED_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << ORA_2_LED_CHAN); 

} 

//Turn on the ORA2 LED 
void status_LED_on (void) 

{ 

 LPC_GPIO0->FIOSET = (1 << STATUS_LED_CHAN); 

} 

//Turn off the ORA2 LED 
void status_LED_off (void) 

{ 

 LPC_GPIO0->FIOCLR = (1 << STATUS_LED_CHAN); 

} 

void dye_solenoid_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << DYE_SOLENOID_CHAN); 

} 

void dye_solenoid_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << DYE_SOLENOID_CHAN); 

} 

void air_blast_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << AIR_BLAST_SOL_CHAN); 

} 

void air_blast_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << AIR_BLAST_SOL_CHAN); 

} 

void air_blast_enable_on (void) 

{ 

 LPC_GPIO2->FIOSET = (1 << AIR_BLAST_EN_CHAN); 

} 

void air_blast_enable_off (void) 

{ 

 LPC_GPIO2->FIOCLR = (1 << AIR_BLAST_EN_CHAN); 

} 

//These functions perform sampling for the sensor 

 

//Take a sample from IR_45 
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//This function waits on the ADC conversion before returning 
uint16_t sample_IR_45(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = IR45_CHAN; // Set flag to indicate channel requested 

  start_ADC(IR45_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[IR45_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from BG_90 

//This function waits on the ADC conversion before returning 
uint16_t sample_BG_90(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = BG90_CHAN; // Set flag to indicate channel requested 

  start_ADC(BG90_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[BG90_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from ORA1_45 

//This function waits on the ADC conversion before returning 
uint16_t sample_ORA1_45(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = ORA45_1_CHAN; // Set flag to indicate channel requested 

  start_ADC(ORA45_1_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[ORA45_1_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from ORA1_180 

//This function waits on the ADC conversion before returning 
uint16_t sample_ORA1_180(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = ORA180_1_CHAN; // Set flag to indicate channel requested 
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  start_ADC(ORA180_1_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[ORA180_1_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from ORA2_45 

//This function waits on the ADC conversion before returning 
uint16_t sample_ORA2_45(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = ORA45_2_CHAN; // Set flag to indicate channel requested 

  start_ADC(ORA45_2_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[ORA45_2_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from ORA2_180 

//This function waits on the ADC conversion before returning 
uint16_t sample_ORA2_180(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = ORA180_2_CHAN; // Set flag to indicate channel requested 

  start_ADC(ORA180_2_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[ORA180_2_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from thermocouple 

//This function waits on the ADC conversion before returning 
uint16_t sample_thermo(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = THERMO_CHAN; // Set flag to indicate channel requested 

  start_ADC(THERMO_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[THERMO_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

//Take a sample from the 12V battery 
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//This function waits on the ADC conversion before returning 
uint16_t sample_batt(void) 

{ 

 uint16_t ADC_result = 0; 

 extern adc_device adc; 

 if(!adc.in_use) 

 { 

  adc.chan_requested = BATT_CHAN; // Set flag to indicate channel requested 

  start_ADC(BATT_CHAN); 

  while(!(adc.chan_done)); // Wait for channel to finish conversion 

  ADC_result = adc.chan[BATT_CHAN]; 

  adc.chan_done = 0; //Indicate that the measurement been recorded 

 } 

 return ( ADC_result ); // return A/D conversion value 

} 

 

//System Functions 

/************************************************************ 

 * Function Name:  start_sediment_measurement 

 * 

 * Description:  This function starts a initializes the sediment 

 *      measurement process 

 * 

 * Parameters:  c_d - sediment measurement information 

 * 

 * Return Value  1 if sediment measurement successfully started, or 

 *      0 if sediment measurement not started 

 ************************************************************/ 
uint32_t start_sediment_measurement(sediment_data *c_d) 

{ 

 if (c_d->sediment_running == 0) 

 { 

  c_d->complete = 0; //Remove complete flag first in case we are interrupted 

  c_d->sediment_counter = 0; 

  c_d->sediment_running = 1; 

  c_d->measurement_taken = 0; // Clear bits indicating channels sampled 

  c_d->ready_to_run = 0; 

  IR_LED_on(); //Turn on LED for first measurement 

  ORA1_LED_off(); //Make sure other LEDs are off 

  ORA2_LED_off(); //Make sure other LEDs are off 

  BG_LED_off(); //Make sure other LEDs are off 

  status_LED_on(); //Turn on status LED to indicate a measurement is going on 

  return 1; 

 }else{ 

  return 0; 

 } 

} 

/************************************************************ 

 * Function Name:  process_sediment_measurement 

 * 

 * Description:  This function performs the sediment 

 *      measurement process 

 * 

 * Parameters:  c_d - sediment measurement information 

 * 

 * Return Value  none 

 ************************************************************/ 
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void process_sediment_measurement(sediment_data *c_d) 

{ 

 extern uint32_t gen_errors; 

 if(c_d->sediment_running == 1) 

 { 

  switch(c_d->sediment_counter) 

  { 

  case 100: //Take first sample after waiting 100ms 

   if((c_d->measurement_taken & 0x0001) == 0) //Only sample the first 

time 
   { 

    c_d->IR_45_on_reading =  sample_IR_45(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x0001; 

   } 

   break; 

  case 200: 

   IR_LED_off(); 

   break; 

  case 300: 

   if((c_d->measurement_taken & 0x000E) == 0) //Only sample the first 

time 
   { 

    c_d->IR_45_off_reading =  sample_IR_45(); 

    c_d->ORA1_45_off_reading =  sample_ORA1_45(); 

    c_d->ORA1_180_off_reading =  sample_ORA1_180(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x000E; 

   } 

   break; 

  case 400: 

   ORA1_LED_on(); 

   break; 

  case 500: 

   if((c_d->measurement_taken & 0x0030) == 0) //Only sample the first 

time 
   { 

    c_d->ORA1_45_on_reading =  sample_ORA1_45(); 

    c_d->ORA1_180_on_reading =  sample_ORA1_180(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x0030; 

   } 

   break; 

  case 600: 

   ORA1_LED_off(); 

   ORA2_LED_on(); 

   break; 

  case 700: 

   if((c_d->measurement_taken & 0x00C0) == 0) //Only sample the first 

time 
   { 

    c_d->ORA2_45_on_reading =  sample_ORA2_45(); 

    c_d->ORA2_180_on_reading =  sample_ORA2_180(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x00C0; 

   } 

   break; 
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  case 800: 

   ORA2_LED_off(); 

   break; 

  case 900: 

   if((c_d->measurement_taken & 0x0700) == 0) //Only sample the first 

time 
   { 

    c_d->ORA2_45_off_reading =  sample_ORA2_45(); 

    c_d->ORA2_180_off_reading =  sample_ORA2_180(); 

    c_d->BG_90_off_reading = sample_BG_90(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x0700; 

   } 

   break; 

  case 1000: 

   BG_LED_on(); 

   break; 

  case 1100: 

   if((c_d->measurement_taken & 0x0800) == 0) //Only sample the first 

time 
   { 

    c_d->BG_90_on_reading = sample_BG_90(); 

    c_d->measurement_taken = c_d->measurement_taken | 

0x0800; 

   } 

   break; 

  case 1200: 

   BG_LED_off(); 

   if((c_d->measurement_taken & 0x3000) == 0) //Only sample the first 

time 
   { 

    c_d->thermo_reading = sample_thermo(); 

    c_d->battery_reading = sample_batt(); 

    c_d->last_rain_gauge_count = c_d-

>cur_rain_gauge_count; // Copy rain gauge count value for logging. 

    c_d->cur_rain_gauge_count = 0; // Zero the rain gauge pulse count 

    c_d->sediment_running = 0; 

    if(c_d->complete) 

    { 

     gen_errors |= LOG_TRANS_ERROR; //Set a flag indicating 

data was not logged properly 
    } 

    c_d->complete = 1; 

    status_LED_off(); // Done 

    c_d->measurement_taken = c_d->measurement_taken | 

0x3000; 

   } 

   break; 

  } 

 } 

} 

/************************************************************ 

 * Function Name:  start_velocity_measurement 

 * 

 * Description:  This function starts a initializes the velocity 

 *      measurement process 

 * 
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 * Parameters:  c_d - velocity measurement information 

 * 

 * Return Value  1 if velocity measurement successfully started, or 

 *      0 if velocity measurement not started 

 ************************************************************/ 
uint32_t start_velocity_measurement(velocity_data *c_d) 

{ 

 extern adc_device adc; 

 

 if ((c_d->state == STOPPED) && !(adc.in_use)) 

 { 

  c_d->complete = 0; //Remove complete flag first in case we are interrupted 

  c_d->ready_to_run = 0; 

  c_d->current_sample = 0; //Set back to the start position. 

  adc.in_use = 1; 

  adc.doing_velocity = 1; 

  status_LED_on(); //Turn on status LED to indicate a measurement is going on 

  ORA1_LED_on(); 

  ORA2_LED_on(); 

  IR_LED_off(); //Make sure other LEDs are off 

  BG_LED_off(); //Make sure other LEDs are off 

 

  if((int32_t)(c_d->dye_injection_duration) >= -1 * c_d-

>injection_sample_offset) 

  { 

   //dye starts first or dye injection and sampling start together. 
   c_d->velocity_counter = 0; 

   c_d->dye_start = 0 + LED_PRE_ON_TIME; 

   c_d->dye_stop = c_d->dye_injection_duration + c_d-

>dye_start; 

   c_d->sampling_start = c_d->dye_injection_duration + c_d-

>dye_start + c_d->injection_sample_offset; 

   //c_d->dye_on = 1; 

   //dye_solenoid_on(); 
   c_d->state = WAITING; 

  } 

  else 

  { 

   //sampling starts first 
   c_d->velocity_counter = 0; 

   c_d->sampling_start = 0 + LED_PRE_ON_TIME; 

   c_d->dye_start = -1 * (c_d->dye_injection_duration + c_d-

>injection_sample_offset) + LED_PRE_ON_TIME; 

   c_d->dye_stop = c_d->dye_start + c_d-

>dye_injection_duration; 

   //start_velocity_sampling(c_d); 

   //c_d->state = SAMPLING; 
   c_d->state = WAITING; 

  } 

  return 1; 

 } 

 else 

 { 

  return 0; 

 } 

} 
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/************************************************************ 

 * Function Name:  start_velocity_sampling 

 * 

 * Description:  This function starts the velocity ADC sampling process 

 *      If using smart velocity system, the initial 

 *      conditions are set by normal velocity length and sample rate 

 * 

 * Parameters:  c_d - velocity measurement information 

 * 

 * Return Value  none 

 ************************************************************/ 
void start_velocity_sampling(velocity_data *c_d) 

{ 

 uint32_t pclkdiv, pclk; 

 //Setup timer0 to trigger the ADC at the desired sample rate 

 //Timer0 runs at pclk (based on core_clock) with prescale set to 0. 

 //When Timer0 reaches match value, it resets and generates an interrupt. 

 //The interrupt starts an upstream sample. 

 //The ADC will complete the upstream conversion and generate an interrupt. 

 //The data will be saved in the interrupt. The ADC will start for downstream 

 //and that result will be recorded. The next timer interrupt will start a new 

 //upstream measurement followed by a downstream measurement. 

 //When the required number of conversions has completed, the timer is stopped 

 //and flags indicating a running velocity sampling are cleared. 

 LPC_SC->PCONP |= (1<<1); //Ensure Timer0 has power 

 LPC_TIM0->IR = 0x3F; // Clear all timer interrupt flags 

 LPC_TIM0->PR = 0; // Do not use prescaler. Increment every pclk 

 pclkdiv = (LPC_SC->PCLKSEL0 >> 2) & 0x03; 

 switch ( pclkdiv ) 

 { 

 case 0x00: 

 default: 

  pclk = SystemCoreClock/4; 

  break; 

 case 0x01: 

  pclk = SystemCoreClock; 

  break; 

 case 0x02: 

  pclk = SystemCoreClock/2; 

  break; 

 case 0x03: 

  pclk = SystemCoreClock/8; 

  break; 

 } 

 

 LPC_TIM0->MR1 = (pclk/((LPC_TIM0->PR) + 1))/(c_d->sample_frequency) - 

1; //Keep PR small as these are integers 

 LPC_TIM0->MCR = 0x00000018; //Reset on MR1 match. Enable Interrupt 

 LPC_TIM0->TCR = 0x2; //Reset timer0 

 LPC_TIM0->TCR = 0x1; // Enable timer0 and release from reset 

 NVIC_EnableIRQ(TIMER0_IRQn); 

} 

/************************************************************ 

 * Function Name:  process_velocity_measurement 

 * 

 * Description:  This function performs the velocity 

 *      measurement process 
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 * 

 * Parameters:  c_d - velocity measurement information 

 * 

 * Return Value  none 

 ************************************************************/ 
void process_velocity_measurement(velocity_data *c_d) 

{ 

 uint16_t base_up; 

 uint16_t base_down; 

 uint32_t i; 

 float   up_sq_sum; 

 float  down_sq_sum; 

 extern adc_device adc; 

 extern uint32_t gen_errors; 

 if (c_d->state == WAITING) 

 { 

  if((c_d->velocity_counter >= c_d->dye_start) && (c_d-

>velocity_counter < c_d->dye_stop) && !(c_d->dye_on)) 

  { 

   c_d->dye_on = 1; 

   dye_solenoid_on(); 

  } 

  if((c_d->velocity_counter >= c_d->dye_stop) && c_d->dye_on) 

  { 

   c_d->dye_on = 0; 

   dye_solenoid_off(); 

  } 

  if(c_d->velocity_counter >= c_d->sampling_start) 

  { 

   start_velocity_sampling(c_d); 

   c_d->state = SAMPLING; 

  } 

 } 

 else if (c_d->state == SAMPLING) 

 { 

  if((c_d->velocity_counter >= c_d->dye_stop) && c_d->dye_on) 

  { 

   c_d->dye_on = 0; 

   dye_solenoid_off(); 

  } 

  if((c_d->velocity_counter >= c_d->dye_start) && (c_d-

>velocity_counter < c_d->dye_stop) && !(c_d->dye_on)) 

  { 

   c_d->dye_on = 1; 

   dye_solenoid_on(); 

  } 

  if(!adc.doing_velocity)//Check if the ADC has finished recording samples 

  { 

   ORA1_LED_off(); 

   ORA2_LED_off(); 

   if(c_d->logging_type & LOG_ORGINAL) //Check if the bit for logging original 

data is set 
   { 

    c_d->state = LOGGING_WAIT; // Wait on logging of original data to finish 

    c_d->logging_done = 0; 

    c_d->current_sample = 0; // Used to track logging 

   } 
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   else 

   { 

    // Begin Calculation Process 
    c_d->state = CALCULATING; 

 

    base_up = c_d->up[0]; 

    base_down = c_d->down[0]; 

 

    //Our signals should have a maximum at the beginning and decrease from the dye. 

    //Baseline signal will be forced to be the maximum to maintain unsigned integer math. 

    //Shifting the signals so that the baseline signal is zero. 
    for(i = 0;i < c_d->sample_length; i++) 

    { 

     c_d->up[i] = (base_up > c_d->up[i]) ? (base_up 

- c_d->up[i]) : 0; 

     c_d->down[i] = (base_down > c_d->down[i]) ? 

(base_down - c_d->down[i]) : 0; 

    } 

    c_d->current_sample = 0; // Current sample stores the offset that is 

currently being computed. 
    c_d->maxRxy = 0; 

    c_d->max_index = 0; 

   } 

  } 

  //Nothing to do until ADC finishes. 
 } 

 else if (c_d->state == LOGGING_WAIT) 

 { 

  if(c_d->logging_done) 

  { 

   // Begin Calculation Process 
   c_d->state = CALCULATING; 

 

   base_up = c_d->up[0]; 

   base_down = c_d->down[0]; 

 

   //Our signals should have a maximum at the beginning and decrease from the dye. 

   //Baseline signal will be forced to be the maximum to maintain unsigned integer math. 

   //Shifting the signals so that the baseline signal is zero. 
   for(i = 0;i < c_d->sample_length; i++) 

   { 

    c_d->up[i] = (base_up > c_d->up[i]) ? (base_up - c_d-

>up[i]) : 0; 

    c_d->down[i] = (base_down > c_d->down[i]) ? 

(base_down - c_d->down[i]) : 0; 

   } 

   c_d->current_sample = 0; // Current sample stores the offset that is currently 

being computed. 
   c_d->maxRxy = 0; 

   c_d->max_index = 0; 

  } 

  //Nothing to do until logging finishes. 
 } 

 else if(c_d->state == CALCULATING) 

 { 

#ifdef USE_ONLY_INTEGER_MATH 

  XCorr_one_pass_int(c_d); 
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#else 

  XCorr_one_pass_float(c_d); 

#endif 

  //Check to see if the last pass was just calculated 
  if(c_d->current_sample >= c_d->sample_length) 

  { 

   //Calc CCC 

   //Since this is an XCorr calc, dividing by root of square sums. XCov would be divided by the 

standard deviations. 
   up_sq_sum = 0; 

   down_sq_sum = 0; 

   for(i = 0;i < c_d->sample_length; i++) 

   { 

 

    up_sq_sum += (float)(c_d->up[i]) * (float)(c_d-

>up[i]); 

    down_sq_sum +=(float)(c_d->down[i]) * (float)(c_d-

>down[i]); 

   } 

   up_sq_sum = sqrt(up_sq_sum / c_d->sample_length); 

   down_sq_sum = sqrt(down_sq_sum / c_d->sample_length); 

   c_d->CCC = (float)(c_d->maxRxy)/(up_sq_sum*down_sq_sum); 

 

   //Make sure velocity calculation is completely carried out with floating point math. 

   //Velocity = distance * sample_frequency / offset 
   c_d->velocity = c_d->dist_btw_up_down * (float)(c_d-

>sample_frequency) / (float)(c_d->max_index); 

 

   c_d->state = STOPPED; 

   if(c_d->complete) 

   { 

    gen_errors |= LOG_TRANS_ERROR; //Set a flag indicating data was not 

logged properly 
   } 

   c_d->complete = 1; 

   c_d->current_sample = 0; //Set to zero so logging knows it is at the beginning 

   c_d->last_sample_frequency = c_d->sample_frequency; // Save last 

sampling rate for logging 
   if(c_d->use_smart_velocity) 

   { 

    // Don't count a measurement unless required accuracy and CCC are reached 
    c_d->last_meas_status = (c_d->max_index > (50 / c_d-

>percent_acc)) && (c_d->CCC >= c_d->min_CCC); 

    if(c_d->last_meas_status) 

    { 

     c_d->minor_measurements_done++; 

    } 

    //Set new sampling rate based on last measurement 
    c_d->sample_frequency = ((float)(c_d-

>sample_frequency) * c_d->frequency_ratio) / 

      ((float)(c_d->max_index) * (c_d-

>percent_acc)/100);//Convert % to decimal in calc 

    if(c_d->sample_frequency > MAX_VEL_SAMP_FREQ) 

    { 

     if(c_d->last_sample_frequency == 

MAX_VEL_SAMP_FREQ) 

     { 
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      c_d->sample_frequency = VEL_FREQ_DEFAULT; 

//We must have missed the dye so slowing down again. 
     } 

     else 

     { 

      c_d->sample_frequency = 

MAX_VEL_SAMP_FREQ; 

     } 

    } 

    if(c_d->sample_frequency < MIN_FREQ) 

    {c_d->sample_frequency = MIN_FREQ;} 

   } 

   else 

   { 

    c_d->minor_measurements_done++; //if not doing smart velocity, 

increment normally 
   } 

   if(c_d->minor_measurements_done >= (c_d-

>minor_measurement_total)) 

   { 

    c_d->minor_measurements_done = 0; 

   } 

   status_LED_off(); // Done 

  } 

 

 } 

} 

/************************************************************ 

 * Function Name:  XCorr_one_pass_int 

 * 

 * Description:  This function runs through one offset value 

 *      of the Cross Correlation Calculation using 

 *      integer math  (unbiased xcorr) 

 * 

 * Parameters:  c_d - velocity measurement information 

 * 

 * Return Value  none 

 ************************************************************/ 
void XCorr_one_pass_int(velocity_data *c_d) 

{ 

 uint32_t i; 

 uint32_t temp_Rxy; 

 uint32_t remainder; 

 uint32_t multiply; 

 

 temp_Rxy=0; 

 remainder = 0; 

 //c_d->current_sample stores the current offset being computed. 

 if (c_d->calc_type)//XCorr Type - 0=unbiased; 1=biased. 

 {//(divided for biased xcorr) 

  for(i = 0; (i + c_d->current_sample) < c_d->sample_length; i++) 

  { 

   multiply = (uint32_t)(c_d->up[i]) * (c_d->down[i + c_d-

>current_sample]); 

   remainder = remainder + multiply % (c_d->sample_length); 

   temp_Rxy = temp_Rxy + multiply / (c_d->sample_length) + 

remainder / (c_d->sample_length); 
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   remainder = remainder % (c_d->sample_length); 

  } 

  if((c_d->sample_length) % 2==0) // even 

  { 

   if(remainder >= (c_d->sample_length) / 2) 

   {temp_Rxy++;} 

  } 

  else // odd 

  { 

   if(remainder > (c_d->sample_length) / 2) 

   {temp_Rxy++;} 

  } 

 } 

 else //(divided for unbiased xcorr) 

 { 

  for(i = 0; (i + c_d->current_sample) < c_d->sample_length; i++) 

  { 

   multiply = (uint32_t)(c_d->up[i]) * (c_d->down[i + c_d-

>current_sample]); 

   remainder = remainder + multiply % (c_d->sample_length - 

c_d->current_sample); 

   temp_Rxy = temp_Rxy + multiply / (c_d->sample_length - c_d-

>current_sample) + remainder / (c_d->sample_length-c_d->current_sample); 

   remainder = remainder % (c_d->sample_length - c_d-

>current_sample); 

  } 

  if((c_d->sample_length - c_d->current_sample) % 2==0) // even 

    { 

   if(remainder >= (c_d->sample_length - c_d->current_sample) 

/ 2) 

   {temp_Rxy++;} 

    } 

  else // odd 

  { 

   if(remainder > (c_d->sample_length - c_d->current_sample) / 

2) 

   {temp_Rxy++;} 

  } 

 } 

 

 if(temp_Rxy > c_d->maxRxy) 

 { 

  c_d->maxRxy = (float)temp_Rxy; 

  c_d->max_index = c_d->current_sample; 

 } 

 if(c_d->save_Rxy) 

 { 

  c_d->Rxy[c_d->current_sample] = (float)temp_Rxy; 

 } 

 (c_d->current_sample)++; 

} 

/************************************************************ 

 * Function Name:  XCorr_one_pass_float 

 * 

 * Description:  This function runs through one offset value 

 *      of the Cross Correlation Calculation using 

 *      floating point math (unbiased xcorr) 
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 * 

 * Parameters:  c_d - velocity measurement information 

 * 

 * Return Value  none 

 ************************************************************/ 
void XCorr_one_pass_float(velocity_data *c_d) 

{ 

 uint32_t i; 

 float temp_Rxy; 

 

 temp_Rxy=0; 

 for(i = 0; (i + c_d->current_sample) < c_d->sample_length; i++) 

 { 

  temp_Rxy = temp_Rxy + (uint32_t)(c_d->up[i]) * c_d->down[i+c_d-

>current_sample]; 

 } 

 if (c_d->calc_type)//XCorr Type - 0=unbiased; 1=biased. 

 { 

  temp_Rxy = temp_Rxy / (c_d->sample_length); //(divided for biased xcorr) 

 } 

 else 

 { 

  temp_Rxy = temp_Rxy / (c_d->sample_length - c_d->current_sample); 

//(divided for unbiased xcorr) 
 } 

 if(temp_Rxy > c_d->maxRxy) 

 { 

  c_d->maxRxy = temp_Rxy; 

  c_d->max_index = c_d->current_sample; 

 } 

 if(c_d->save_Rxy) 

 { 

  c_d->Rxy[c_d->current_sample] = (float)temp_Rxy; 

 } 

 (c_d->current_sample)++; 

} 

 

 

 

 

/************************************************************ 

 * Function Name:  start_air_blast_cleaning 

 * 

 * Description:  This function starts a initializes the air 

 *      blast cleaning process 

 * 

 * Parameters:  c_d - air blast information 

 * 

 * Return Value  1 if air blast cleaning successfully started, or 

 *      0 if air blast cleaning not started 

 ************************************************************/ 
uint32_t start_air_blast_cleaning(air_blast_data *c_d) 

{ 

 if (c_d->air_blast_running == 0) 

 { 

  c_d->air_blast_counter = 0; 

  c_d->air_blast_running = 1; 



256 

 

  c_d->ready_to_run = 0; 

  status_LED_on(); //Turn on status LED to indicate a cleaning is going on 

  air_blast_on(); 

  return 1; 

 }else{ 

  return 0; 

 } 

} 

/************************************************************ 

 * Function Name:  process_air_blast_cleaning 

 * 

 * Description:  This function performs the air 

 *      blast cleaning process 

 * 

 * Parameters:  c_d - air blast information 

 * 

 * Return Value  none 

 ************************************************************/ 
void process_air_blast_cleaning(air_blast_data *c_d) 

{ 

 if (c_d->air_blast_running == 1) 

 { 

  if((c_d->air_blast_counter / 1000) >= c_d->air_blast_duration) 

  { 

   air_blast_off(); 

   c_d->air_blast_running = 0; 

   status_LED_off(); // Done 

  } 

 } 

} 

/************************************************************ 

 * Function Name:  process_air_compressor_shutoff 

 * 

 * Description:  This function checks to see if the air 

 *      compressor can be operated 

 * 

 * Parameters:  c_d - air blast information 

 * 

 * Return Value  none 

 ************************************************************/ 
void process_air_compressor_shutoff(air_compressor_data *c_d) 

{ 

 extern adc_device adc; 

 static uint32_t last_high_counter; 

 uint16_t batt_volt_adc; 

 if(c_d->shutoff_enable && !(adc.in_use)) 

 { 

  batt_volt_adc = sample_batt(); 

  if(((batt_volt_adc * 3.3 / 4096) * 6) > c_d->shutoff_level) 

  { 

   last_high_counter = c_d->shutoff_counter; 

   if((c_d->shutoff_counter/1000) >= c_d->shutoff_time) 

   { 

    c_d->power_on = 1; 

    air_blast_enable_on(); 

   } 

   else 
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   { 

    c_d->power_on = 0; 

    air_blast_enable_off(); 

   } 

  } 

  else 

  { 

   if(c_d->shutoff_counter - last_high_counter > 3000) // Make 

sure we stay low for 3s before reset 
   { 

    c_d->shutoff_counter = 0; // Power is too low. Reset counter 

   } 

   c_d->power_on = 0; 

   air_blast_enable_off(); 

  } 

 } 

} 

cr_startup_lpc176x.c 

//***************************************************************************** 

//   +--+ 

//   | ++----+ 

//   +-++    | 

//     |     | 

//   +-+--+  | 

//   | +--+--+ 

//   +----+    Copyright (c) 2009-10 Code Red Technologies Ltd. 

// 

// Microcontroller Startup code for use with Red Suite 

// 

// Version : 101130 

// 

// Software License Agreement 

// 

// The software is owned by Code Red Technologies and/or its suppliers, and is 

// protected under applicable copyright laws.  All rights are reserved.  Any 

// use in violation of the foregoing restrictions may subject the user to criminal 

// sanctions under applicable laws, as well as to civil liability for the breach 

// of the terms and conditions of this license. 

// 

// THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED 

// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. 

// USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT 

// TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH 

// CODE RED TECHNOLOGIES LTD. 

// 

//***************************************************************************** 

#if defined (__cplusplus) 

#ifdef __REDLIB__ 

#error Redlib does not support C++ 

#else 

//***************************************************************************** 

// 

// The entry point for the C++ library startup 

// 
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//***************************************************************************** 
extern "C" { 

 extern void __libc_init_array(void); 

} 

#endif 

#endif 

 

#define WEAK __attribute__ ((weak)) 

#define ALIAS(f) __attribute__ ((weak, alias (#f))) 

 

// Code Red - if CMSIS is being used, then SystemInit() routine 

// will be called by startup code rather than in application's main() 

#if defined (__USE_CMSIS) 

#include "system_LPC17xx.h" 

#endif 

 

//***************************************************************************** 

#if defined (__cplusplus) 

extern "C" { 

#endif 

 

//***************************************************************************** 

// 

// Forward declaration of the default handlers. These are aliased. 

// When the application defines a handler (with the same name), this will 

// automatically take precedence over these weak definitions 

// 

//***************************************************************************** 
     void ResetISR(void); 

WEAK void NMI_Handler(void); 

WEAK void HardFault_Handler(void); 

WEAK void MemManage_Handler(void); 

WEAK void BusFault_Handler(void); 

WEAK void UsageFault_Handler(void); 

WEAK void SVCall_Handler(void); 

WEAK void DebugMon_Handler(void); 

WEAK void PendSV_Handler(void); 

WEAK void SysTick_Handler(void); 

WEAK void IntDefaultHandler(void); 

 

//***************************************************************************** 

// 

// Forward declaration of the specific IRQ handlers. These are aliased 

// to the IntDefaultHandler, which is a 'forever' loop. When the application 

// defines a handler (with the same name), this will automatically take 

// precedence over these weak definitions 

// 

//***************************************************************************** 
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler); 

void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler); 

void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler); 

void UART0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void UART1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void UART2_IRQHandler(void) ALIAS(IntDefaultHandler); 

void UART3_IRQHandler(void) ALIAS(IntDefaultHandler); 
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void PWM1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void I2C2_IRQHandler(void) ALIAS(IntDefaultHandler); 

void SPI_IRQHandler(void) ALIAS(IntDefaultHandler); 

void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void PLL0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void RTC_IRQHandler(void) ALIAS(IntDefaultHandler); 

void EINT0_IRQHandler(void) ALIAS(IntDefaultHandler); 

void EINT1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void EINT2_IRQHandler(void) ALIAS(IntDefaultHandler); 

void EINT3_IRQHandler(void) ALIAS(IntDefaultHandler); 

void ADC_IRQHandler(void) ALIAS(IntDefaultHandler); 

void BOD_IRQHandler(void) ALIAS(IntDefaultHandler); 

void USB_IRQHandler(void) ALIAS(IntDefaultHandler); 

void CAN_IRQHandler(void) ALIAS(IntDefaultHandler); 

void DMA_IRQHandler(void) ALIAS(IntDefaultHandler); 

void I2S_IRQHandler(void) ALIAS(IntDefaultHandler); 

void ENET_IRQHandler(void) ALIAS(IntDefaultHandler); 

void RIT_IRQHandler(void) ALIAS(IntDefaultHandler); 

void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler); 

void QEI_IRQHandler(void) ALIAS(IntDefaultHandler); 

void PLL1_IRQHandler(void) ALIAS(IntDefaultHandler); 

void USBActivity_IRQHandler(void) ALIAS(IntDefaultHandler); 

void CANActivity_IRQHandler(void) ALIAS(IntDefaultHandler); 

 

//***************************************************************************** 

// 

// The entry point for the application. 

// __main() is the entry point for Redlib based applications 

// main() is the entry point for Newlib based applications 

// 

//***************************************************************************** 

#if defined (__REDLIB__) 

extern void __main(void); 

#endif 

extern int main(void); 

//***************************************************************************** 

// 

// External declaration for the pointer to the stack top from the Linker Script 

// 

//***************************************************************************** 
extern void _vStackTop(void); 

 

//***************************************************************************** 

#if defined (__cplusplus) 

} // extern "C" 

#endif 

//***************************************************************************** 

// 

// The vector table. 

// This relies on the linker script to place at correct location in memory. 

// 

//***************************************************************************** 
extern void (* const g_pfnVectors[])(void); 

__attribute__ ((section(".isr_vector"))) 
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void (* const g_pfnVectors[])(void) = { 

 // Core Level - CM3 

 &_vStackTop, // The initial stack pointer 

 ResetISR,        // The reset handler 

 NMI_Handler,       // The NMI handler 

 HardFault_Handler,      // The hard fault handler 

 MemManage_Handler,      // The MPU fault handler 

 BusFault_Handler,      // The bus fault handler 

 UsageFault_Handler,      // The usage fault handler 

 0,          // Reserved 

 0,          // Reserved 

 0,          // Reserved 

 0,          // Reserved 

 SVCall_Handler,       // SVCall handler 

 DebugMon_Handler,      // Debug monitor handler 

 0,          // Reserved 

 PendSV_Handler,       // The PendSV handler 

 SysTick_Handler,      // The SysTick handler 

 

 // Chip Level - LPC17 

 WDT_IRQHandler,       // 16, 0x40 - WDT 

 TIMER0_IRQHandler,      // 17, 0x44 - TIMER0 

 TIMER1_IRQHandler,      // 18, 0x48 - TIMER1 

 TIMER2_IRQHandler,      // 19, 0x4c - TIMER2 

 TIMER3_IRQHandler,      // 20, 0x50 - TIMER3 

 UART0_IRQHandler,      // 21, 0x54 - UART0 

 UART1_IRQHandler,      // 22, 0x58 - UART1 

 UART2_IRQHandler,      // 23, 0x5c - UART2 

 UART3_IRQHandler,      // 24, 0x60 - UART3 

 PWM1_IRQHandler,      // 25, 0x64 - PWM1 

 I2C0_IRQHandler,      // 26, 0x68 - I2C0 

 I2C1_IRQHandler,      // 27, 0x6c - I2C1 

 I2C2_IRQHandler,      // 28, 0x70 - I2C2 

 SPI_IRQHandler,       // 29, 0x74 - SPI 

 SSP0_IRQHandler,      // 30, 0x78 - SSP0 

 SSP1_IRQHandler,      // 31, 0x7c - SSP1 

 PLL0_IRQHandler,      // 32, 0x80 - PLL0 (Main PLL) 

 RTC_IRQHandler,       // 33, 0x84 - RTC 

 EINT0_IRQHandler,      // 34, 0x88 - EINT0 

 EINT1_IRQHandler,      // 35, 0x8c - EINT1 

 EINT2_IRQHandler,      // 36, 0x90 - EINT2 

 EINT3_IRQHandler,      // 37, 0x94 - EINT3 

 ADC_IRQHandler,       // 38, 0x98 - ADC 

 BOD_IRQHandler,       // 39, 0x9c - BOD 

 USB_IRQHandler,       // 40, 0xA0 - USB 

 CAN_IRQHandler,       // 41, 0xa4 - CAN 

 DMA_IRQHandler,       // 42, 0xa8 - GP DMA 

 I2S_IRQHandler,       // 43, 0xac - I2S 

 ENET_IRQHandler,      // 44, 0xb0 - Ethernet 

 RIT_IRQHandler,       // 45, 0xb4 - RITINT 

 MCPWM_IRQHandler,      // 46, 0xb8 - Motor Control PWM 

 QEI_IRQHandler,       // 47, 0xbc - Quadrature 

Encoder 

 PLL1_IRQHandler,      // 48, 0xc0 - PLL1 (USB PLL) 
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 USBActivity_IRQHandler,     // 49, 0xc4 - USB Activity interrupt 

to wakeup 

 CANActivity_IRQHandler,     // 50, 0xc8 - CAN Activity interrupt 

to wakeup 
}; 

 

//***************************************************************************** 

// Functions to carry out the initialization of RW and BSS data sections. These 

// are written as separate functions rather than being inlined within the 

// ResetISR() function in order to cope with MCUs with multiple banks of 

// memory. 

//***************************************************************************** 
__attribute__ ((section(".after_vectors"))) 

void data_init(unsigned int romstart, unsigned int start, unsigned int len) { 

 unsigned int *pulDest = (unsigned int*) start; 

 unsigned int *pulSrc = (unsigned int*) romstart; 

 unsigned int loop; 

 for (loop = 0; loop < len; loop = loop + 4) 

  *pulDest++ = *pulSrc++; 

} 

 

__attribute__ ((section(".after_vectors"))) 

void bss_init(unsigned int start, unsigned int len) { 

 unsigned int *pulDest = (unsigned int*) start; 

 unsigned int loop; 

 for (loop = 0; loop < len; loop = loop + 4) 

  *pulDest++ = 0; 

} 

 

#ifndef USE_OLD_STYLE_DATA_BSS_INIT 

//***************************************************************************** 

// The following symbols are constructs generated by the linker, indicating 

// the location of various points in the "Global Section Table". This table is 

// created by the linker via the Code Red managed linker script mechanism. It 

// contains the load address, execution address and length of each RW data 

// section and the execution and length of each BSS (zero initialized) section. 

//***************************************************************************** 
extern unsigned int __data_section_table; 

extern unsigned int __data_section_table_end; 

extern unsigned int __bss_section_table; 

extern unsigned int __bss_section_table_end; 

#else 

//***************************************************************************** 

// The following symbols are constructs generated by the linker, indicating 

// the load address, execution address and length of the RW data section and 

// the execution and length of the BSS (zero initialized) section. 

// Note that these symbols are not normally used by the managed linker script 

// mechanism in Red Suite/LPCXpresso 3.6 (Windows) and LPCXpresso 3.8 (Linux). 

// They are provide here simply so this startup code can be used with earlier 

// versions of Red Suite which do not support the more advanced managed linker 

// script mechanism introduced in the above version. To enable their use, 

// define "USE_OLD_STYLE_DATA_BSS_INIT". 

//***************************************************************************** 
extern unsigned int _etext; 

extern unsigned int _data; 

extern unsigned int _edata; 

extern unsigned int _bss; 
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extern unsigned int _ebss; 

#endif 

 

 

//***************************************************************************** 

// Reset entry point for your code. 

// Sets up a simple runtime environment and initializes the C/C++ 

// library. 

//***************************************************************************** 
__attribute__ ((section(".after_vectors"))) 

void 

ResetISR(void) { 

 

#ifndef USE_OLD_STYLE_DATA_BSS_INIT 

    // 

    // Copy the data sections from flash to SRAM. 

    // 
 unsigned int LoadAddr, ExeAddr, SectionLen; 

 unsigned int *SectionTableAddr; 

 

 // Load base address of Global Section Table 
 SectionTableAddr = &__data_section_table; 

 

    // Copy the data sections from flash to SRAM. 
 while (SectionTableAddr < &__data_section_table_end) { 

  LoadAddr = *SectionTableAddr++; 

  ExeAddr = *SectionTableAddr++; 

  SectionLen = *SectionTableAddr++; 

  data_init(LoadAddr, ExeAddr, SectionLen); 

 } 

 // At this point, SectionTableAddr = &__bss_section_table; 

 // Zero fill the bss segment 
 while (SectionTableAddr < &__bss_section_table_end) { 

  ExeAddr = *SectionTableAddr++; 

  SectionLen = *SectionTableAddr++; 

  bss_init(ExeAddr, SectionLen); 

 } 

#else 

 // Use Old Style Data and BSS section initialization. 

 // This will only initialize a single RAM bank. 
 unsigned int * LoadAddr, *ExeAddr, *EndAddr, SectionLen; 

 

    // Copy the data segment from flash to SRAM. 
 LoadAddr = &_etext; 

 ExeAddr = &_data; 

 EndAddr = &_edata; 

 SectionLen = (void*)EndAddr - (void*)ExeAddr; 

 data_init((unsigned int)LoadAddr, (unsigned int)ExeAddr, SectionLen); 

 // Zero fill the bss segment 
 ExeAddr = &_bss; 

 EndAddr = &_ebss; 

 SectionLen = (void*)EndAddr - (void*)ExeAddr; 

 bss_init ((unsigned int)ExeAddr, SectionLen); 

#endif 

 

#ifdef __USE_CMSIS 

 SystemInit(); 
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#endif 

 

#if defined (__cplusplus) 

 // 

 // Call C++ library initialisation 

 // 
 __libc_init_array(); 

#endif 

 

#if defined (__REDLIB__) 

 // Call the Redlib library, which in turn calls main() 
 __main() ; 

#else 

 main(); 

#endif 

 

 // 

 // main() shouldn't return, but if it does, we'll just enter an infinite loop 

 // 
 while (1) { 

  ; 

 } 

} 

 

//***************************************************************************** 

// Default exception handlers. Override the ones here by defining your own 

// handler routines in your application code. 

//***************************************************************************** 
__attribute__ ((section(".after_vectors"))) 

void NMI_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void HardFault_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void MemManage_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void BusFault_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 
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void UsageFault_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void SVCall_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void DebugMon_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void PendSV_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

__attribute__ ((section(".after_vectors"))) 

void SysTick_Handler(void) 

{ 

    while(1) 

    { 

    } 

} 

 

//***************************************************************************** 

// 

// Processor ends up here if an unexpected interrupt occurs or a specific 

// handler is not present in the application code. 

// 

//***************************************************************************** 
__attribute__ ((section(".after_vectors"))) 

void IntDefaultHandler(void) 

{ 

    while(1) 

    { 

    } 

} 

 Sensor PC Interface 

This program is in C# and Microsoft Visual Studio 2010 

Program.cs 

using System; 
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using System.Collections.Generic; 

using System.Linq; 

using System.Windows.Forms; 

using System.IO; 

 

namespace WindowsFormsApplication1 

{ 

    static class Program 

    { 

        /// <summary> 

        /// The main entry point for the application. 

        /// </summary> 
        [STAThread] 

        static void Main() 

        {    

            Application.EnableVisualStyles(); 

            Application.SetCompatibleTextRenderingDefault(false); 

            Application.Run(new Form1()); 

        } 

    } 

} 

Form1.Designer.cs 

namespace WindowsFormsApplication1 

{ 

    partial class Form1 

    { 

        /// <summary> 

        /// Required designer variable. 

        /// </summary> 
        private System.ComponentModel.IContainer components = null; 

 

        /// <summary> 

        /// Clean up any resources being used. 

        /// </summary> 

        /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param> 
        protected override void Dispose(bool disposing) 

        { 

            if (disposing && (components != null)) 

            { 

                components.Dispose(); 

            } 

            base.Dispose(disposing); 

        } 

 

        #region Windows Form Designer generated code 

 

        /// <summary> 

        /// Required method for Designer support - do not modify 

        /// the contents of this method with the code editor. 

        /// </summary> 
        private void InitializeComponent() 

        { 

            this.components = new System.ComponentModel.Container(); 

            this.panel1 = new System.Windows.Forms.Panel(); 

            this.rainResetButton = new System.Windows.Forms.Button(); 
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            this.tableLayoutPanel3 = new 

System.Windows.Forms.TableLayoutPanel(); 

            this.label28 = new System.Windows.Forms.Label(); 

            this.Batt_label = new System.Windows.Forms.Label(); 

            this.label29 = new System.Windows.Forms.Label(); 

            this.batt_Unit_label = new System.Windows.Forms.Label(); 

            this.temp_label = new System.Windows.Forms.Label(); 

            this.tempUnitLabel = new System.Windows.Forms.Label(); 

            this.curr_RainLabel = new System.Windows.Forms.Label(); 

            this.curr_Rain_UnitLabel = new System.Windows.Forms.Label(); 

            this.label37 = new System.Windows.Forms.Label(); 

            this.totalRainLabel = new System.Windows.Forms.Label(); 

            this.totalRainUnitLabel = new System.Windows.Forms.Label(); 

            this.label34 = new System.Windows.Forms.Label(); 

            this.label4 = new System.Windows.Forms.Label(); 

            this.label15 = new System.Windows.Forms.Label(); 

            this.SedADCCountRadioButton = new 

System.Windows.Forms.RadioButton(); 

            this.SedActURadioButton = new System.Windows.Forms.RadioButton(); 

            this.tableLayoutPanel1 = new 

System.Windows.Forms.TableLayoutPanel(); 

            this.label14 = new System.Windows.Forms.Label(); 

            this.label3 = new System.Windows.Forms.Label(); 

            this.pt_unit_label = new System.Windows.Forms.Label(); 

            this.label2 = new System.Windows.Forms.Label(); 

            this.ORA1_45ONLabel = new System.Windows.Forms.Label(); 

            this.ORA1_180ONLabel = new System.Windows.Forms.Label(); 

            this.ORA2_45ONLabel = new System.Windows.Forms.Label(); 

            this.ORA2_180ONLabel = new System.Windows.Forms.Label(); 

            this.IR_45ONLabel = new System.Windows.Forms.Label(); 

            this.BG_90ONLabel = new System.Windows.Forms.Label(); 

            this.ORA1_45OFFLabel = new System.Windows.Forms.Label(); 

            this.BG_90Label = new System.Windows.Forms.Label(); 

            this.label11 = new System.Windows.Forms.Label(); 

            this.label9 = new System.Windows.Forms.Label(); 

            this.label6 = new System.Windows.Forms.Label(); 

            this.label5 = new System.Windows.Forms.Label(); 

            this.label7 = new System.Windows.Forms.Label(); 

            this.label8 = new System.Windows.Forms.Label(); 

            this.label10 = new System.Windows.Forms.Label(); 

            this.label12 = new System.Windows.Forms.Label(); 

            this.label13 = new System.Windows.Forms.Label(); 

            this.ORA1_180OFFLabel = new System.Windows.Forms.Label(); 

            this.ORA2_45OFFLabel = new System.Windows.Forms.Label(); 

            this.ORA2_180OFFLabel = new System.Windows.Forms.Label(); 

            this.BG_90OFFLabel = new System.Windows.Forms.Label(); 

            this.IR_45OFFLabel = new System.Windows.Forms.Label(); 

            this.label21 = new System.Windows.Forms.Label(); 

            this.sedDateTimeLabel = new System.Windows.Forms.Label(); 

            this.label1 = new System.Windows.Forms.Label(); 

            this.panel2 = new System.Windows.Forms.Panel(); 

            this.tableLayoutPanel4 = new 

System.Windows.Forms.TableLayoutPanel(); 

            this.label17 = new System.Windows.Forms.Label(); 

            this.curSampNumLabel = new System.Windows.Forms.Label(); 

            this.tableLayoutPanel2 = new 

System.Windows.Forms.TableLayoutPanel(); 
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            this.label26 = new System.Windows.Forms.Label(); 

            this.label27 = new System.Windows.Forms.Label(); 

            this.velocityLabel = new System.Windows.Forms.Label(); 

            this.CCC_Label = new System.Windows.Forms.Label(); 

            this.label16 = new System.Windows.Forms.Label(); 

            this.DateTimeLabel = new System.Windows.Forms.Label(); 

            this.label31 = new System.Windows.Forms.Label(); 

            this.saveFileDialog1 = new System.Windows.Forms.SaveFileDialog(); 

            this.button1 = new System.Windows.Forms.Button(); 

            this.button2 = new System.Windows.Forms.Button(); 

            this.serialPort1 = new 

System.IO.Ports.SerialPort(this.components); 

            this.serialPortcomboBox = new System.Windows.Forms.ComboBox(); 

            this.label18 = new System.Windows.Forms.Label(); 

            this.ConnectButton = new System.Windows.Forms.Button(); 

            this.sensorSendtextBox = new System.Windows.Forms.TextBox(); 

            this.label19 = new System.Windows.Forms.Label(); 

            this.label20 = new System.Windows.Forms.Label(); 

            this.sensorRcvdtextBox = new System.Windows.Forms.TextBox(); 

            this.button3 = new System.Windows.Forms.Button(); 

            this.button4 = new System.Windows.Forms.Button(); 

            this.checkBox1 = new System.Windows.Forms.CheckBox(); 

            this.label22 = new System.Windows.Forms.Label(); 

            this.loggingPathTextBox = new System.Windows.Forms.TextBox(); 

            this.button5 = new System.Windows.Forms.Button(); 

            this.button6 = new System.Windows.Forms.Button(); 

            this.label23 = new System.Windows.Forms.Label(); 

            this.dyeOnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.dyeOffRadioButton = new System.Windows.Forms.RadioButton(); 

            this.airBlastOffRadioButton = new 

System.Windows.Forms.RadioButton(); 

            this.airBlastOnRadioButton = new 

System.Windows.Forms.RadioButton(); 

            this.APOffRadioButton = new System.Windows.Forms.RadioButton(); 

            this.APOnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.ORA1OffRadioButton = new System.Windows.Forms.RadioButton(); 

            this.ORA1OnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.ORA2OffradioButton = new System.Windows.Forms.RadioButton(); 

            this.ORA2OnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.BGOffRadioButton = new System.Windows.Forms.RadioButton(); 

            this.BGOnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.IROffradioButton = new System.Windows.Forms.RadioButton(); 

            this.IROnRadioButton = new System.Windows.Forms.RadioButton(); 

            this.groupBox1 = new System.Windows.Forms.GroupBox(); 

            this.groupBox2 = new System.Windows.Forms.GroupBox(); 

            this.groupBox3 = new System.Windows.Forms.GroupBox(); 

            this.groupBox4 = new System.Windows.Forms.GroupBox(); 

            this.groupBox5 = new System.Windows.Forms.GroupBox(); 

            this.groupBox6 = new System.Windows.Forms.GroupBox(); 

            this.groupBox7 = new System.Windows.Forms.GroupBox(); 

            this.groupBox8 = new System.Windows.Forms.GroupBox(); 

            this.statusLEDOnRadioButton = new 

System.Windows.Forms.RadioButton(); 

            this.statusLEDOffRadioButton = new 

System.Windows.Forms.RadioButton(); 

            this.panel1.SuspendLayout(); 

            this.tableLayoutPanel3.SuspendLayout(); 
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            this.tableLayoutPanel1.SuspendLayout(); 

            this.panel2.SuspendLayout(); 

            this.tableLayoutPanel4.SuspendLayout(); 

            this.tableLayoutPanel2.SuspendLayout(); 

            this.groupBox1.SuspendLayout(); 

            this.groupBox2.SuspendLayout(); 

            this.groupBox3.SuspendLayout(); 

            this.groupBox4.SuspendLayout(); 

            this.groupBox5.SuspendLayout(); 

            this.groupBox6.SuspendLayout(); 

            this.groupBox7.SuspendLayout(); 

            this.groupBox8.SuspendLayout(); 

            this.SuspendLayout(); 

            //  

            // panel1 

            //  
            this.panel1.BorderStyle = 

System.Windows.Forms.BorderStyle.FixedSingle; 

            this.panel1.Controls.Add(this.rainResetButton); 

            this.panel1.Controls.Add(this.tableLayoutPanel3); 

            this.panel1.Controls.Add(this.label4); 

            this.panel1.Controls.Add(this.label15); 

            this.panel1.Controls.Add(this.SedADCCountRadioButton); 

            this.panel1.Controls.Add(this.SedActURadioButton); 

            this.panel1.Controls.Add(this.tableLayoutPanel1); 

            this.panel1.Controls.Add(this.label1); 

            this.panel1.Location = new System.Drawing.Point(12, 12); 

            this.panel1.Name = "panel1"; 

            this.panel1.Size = new System.Drawing.Size(247, 373); 

            this.panel1.TabIndex = 0; 

            //  

            // rainResetButton 

            //  
            this.rainResetButton.Dock = 

System.Windows.Forms.DockStyle.Bottom; 

            this.rainResetButton.Location = new System.Drawing.Point(0, 348); 

            this.rainResetButton.Name = "rainResetButton"; 

            this.rainResetButton.Size = new System.Drawing.Size(245, 23); 

            this.rainResetButton.TabIndex = 7; 

            this.rainResetButton.Text = "Reset Rain Gauge Total"; 

            this.rainResetButton.UseVisualStyleBackColor = true; 

            //  

            // tableLayoutPanel3 

            //  
            this.tableLayoutPanel3.CellBorderStyle = 

System.Windows.Forms.TableLayoutPanelCellBorderStyle.Single; 

            this.tableLayoutPanel3.ColumnCount = 3; 

            this.tableLayoutPanel3.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

33.33333F)); 

            this.tableLayoutPanel3.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

33.33334F)); 

            this.tableLayoutPanel3.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

33.33334F)); 

            this.tableLayoutPanel3.Controls.Add(this.label28, 0, 0); 
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            this.tableLayoutPanel3.Controls.Add(this.Batt_label, 1, 0); 

            this.tableLayoutPanel3.Controls.Add(this.label29, 0, 1); 

            this.tableLayoutPanel3.Controls.Add(this.batt_Unit_label, 2, 0); 

            this.tableLayoutPanel3.Controls.Add(this.temp_label, 1, 1); 

            this.tableLayoutPanel3.Controls.Add(this.tempUnitLabel, 2, 1); 

            this.tableLayoutPanel3.Controls.Add(this.curr_RainLabel, 1, 2); 

            this.tableLayoutPanel3.Controls.Add(this.curr_Rain_UnitLabel, 2, 

2); 

            this.tableLayoutPanel3.Controls.Add(this.label37, 0, 3); 

            this.tableLayoutPanel3.Controls.Add(this.totalRainLabel, 1, 3); 

            this.tableLayoutPanel3.Controls.Add(this.totalRainUnitLabel, 2, 

3); 

            this.tableLayoutPanel3.Controls.Add(this.label34, 0, 2); 

            this.tableLayoutPanel3.Location = new System.Drawing.Point(0, 

281); 

            this.tableLayoutPanel3.Name = "tableLayoutPanel3"; 

            this.tableLayoutPanel3.RowCount = 4; 

            this.tableLayoutPanel3.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel3.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel3.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel3.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel3.Size = new System.Drawing.Size(245, 61); 

            this.tableLayoutPanel3.TabIndex = 6; 

            //  

            // label28 

            //  
            this.label28.AutoSize = true; 

            this.label28.Location = new System.Drawing.Point(4, 1); 

            this.label28.Name = "label28"; 

            this.label28.Size = new System.Drawing.Size(72, 14); 

            this.label28.TabIndex = 0; 

            this.label28.Text = "Battery Level (V)"; 

            //  

            // Batt_label 

            //  
            this.Batt_label.AutoSize = true; 

            this.Batt_label.Location = new System.Drawing.Point(85, 1); 

            this.Batt_label.Name = "Batt_label"; 

            this.Batt_label.Size = new System.Drawing.Size(13, 13); 

            this.Batt_label.TabIndex = 1; 

            this.Batt_label.Text = "0"; 

            //  

            // label29 

            //  
            this.label29.AutoSize = true; 

            this.label29.Location = new System.Drawing.Point(4, 16); 

            this.label29.Name = "label29"; 

            this.label29.Size = new System.Drawing.Size(70, 13); 

            this.label29.TabIndex = 2; 

            this.label29.Text = "Temperature "; 

            //  

            // batt_Unit_label 

            //  
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            this.batt_Unit_label.AutoSize = true; 

            this.batt_Unit_label.Location = new System.Drawing.Point(166, 1); 

            this.batt_Unit_label.Name = "batt_Unit_label"; 

            this.batt_Unit_label.Size = new System.Drawing.Size(14, 13); 

            this.batt_Unit_label.TabIndex = 3; 

            this.batt_Unit_label.Text = "V"; 

            //  

            // temp_label 

            //  
            this.temp_label.AutoSize = true; 

            this.temp_label.Location = new System.Drawing.Point(85, 16); 

            this.temp_label.Name = "temp_label"; 

            this.temp_label.Size = new System.Drawing.Size(13, 13); 

            this.temp_label.TabIndex = 4; 

            this.temp_label.Text = "0"; 

            //  

            // tempUnitLabel 

            //  
            this.tempUnitLabel.AutoSize = true; 

            this.tempUnitLabel.Location = new System.Drawing.Point(166, 16); 

            this.tempUnitLabel.Name = "tempUnitLabel"; 

            this.tempUnitLabel.Size = new System.Drawing.Size(18, 13); 

            this.tempUnitLabel.TabIndex = 5; 

            this.tempUnitLabel.Text = "°C"; 

            //  

            // curr_RainLabel 

            //  
            this.curr_RainLabel.AutoSize = true; 

            this.curr_RainLabel.Location = new System.Drawing.Point(85, 31); 

            this.curr_RainLabel.Name = "curr_RainLabel"; 

            this.curr_RainLabel.Size = new System.Drawing.Size(13, 13); 

            this.curr_RainLabel.TabIndex = 7; 

            this.curr_RainLabel.Text = "0"; 

            //  

            // curr_Rain_UnitLabel 

            //  
            this.curr_Rain_UnitLabel.AutoSize = true; 

            this.curr_Rain_UnitLabel.Location = new System.Drawing.Point(166, 

31); 

            this.curr_Rain_UnitLabel.Name = "curr_Rain_UnitLabel"; 

            this.curr_Rain_UnitLabel.Size = new System.Drawing.Size(38, 13); 

            this.curr_Rain_UnitLabel.TabIndex = 8; 

            this.curr_Rain_UnitLabel.Text = "inches"; 

            //  

            // label37 

            //  
            this.label37.AutoSize = true; 

            this.label37.Location = new System.Drawing.Point(4, 46); 

            this.label37.Name = "label37"; 

            this.label37.Size = new System.Drawing.Size(56, 13); 

            this.label37.TabIndex = 9; 

            this.label37.Text = "Total Rain"; 

            //  

            // totalRainLabel 

            //  
            this.totalRainLabel.AutoSize = true; 

            this.totalRainLabel.Location = new System.Drawing.Point(85, 46); 
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            this.totalRainLabel.Name = "totalRainLabel"; 

            this.totalRainLabel.Size = new System.Drawing.Size(13, 13); 

            this.totalRainLabel.TabIndex = 10; 

            this.totalRainLabel.Text = "0"; 

            //  

            // totalRainUnitLabel 

            //  
            this.totalRainUnitLabel.AutoSize = true; 

            this.totalRainUnitLabel.Location = new System.Drawing.Point(166, 

46); 

            this.totalRainUnitLabel.Name = "totalRainUnitLabel"; 

            this.totalRainUnitLabel.Size = new System.Drawing.Size(38, 13); 

            this.totalRainUnitLabel.TabIndex = 11; 

            this.totalRainUnitLabel.Text = "inches"; 

            //  

            // label34 

            //  
            this.label34.AutoSize = true; 

            this.label34.Location = new System.Drawing.Point(4, 31); 

            this.label34.Name = "label34"; 

            this.label34.Size = new System.Drawing.Size(61, 13); 

            this.label34.TabIndex = 6; 

            this.label34.Text = "Latest Rain"; 

            //  

            // label4 

            //  
            this.label4.AutoSize = true; 

            this.label4.Location = new System.Drawing.Point(3, 265); 

            this.label4.Name = "label4"; 

            this.label4.Size = new System.Drawing.Size(70, 13); 

            this.label4.TabIndex = 5; 

            this.label4.Text = "General Data"; 

            //  

            // label15 

            //  
            this.label15.AutoSize = true; 

            this.label15.Dock = System.Windows.Forms.DockStyle.Top; 

            this.label15.Location = new System.Drawing.Point(0, 224); 

            this.label15.Name = "label15"; 

            this.label15.Size = new System.Drawing.Size(69, 13); 

            this.label15.TabIndex = 4; 

            this.label15.Text = "Output Units:"; 

            //  

            // SedADCCountRadioButton 

            //  
            this.SedADCCountRadioButton.AutoSize = true; 

            this.SedADCCountRadioButton.Location = new 

System.Drawing.Point(64, 245); 

            this.SedADCCountRadioButton.Name = "SedADCCountRadioButton"; 

            this.SedADCCountRadioButton.Size = new System.Drawing.Size(83, 

17); 

            this.SedADCCountRadioButton.TabIndex = 3; 

            this.SedADCCountRadioButton.Text = "ADC Counts"; 

            this.SedADCCountRadioButton.UseVisualStyleBackColor = true; 

            //  

            // SedActURadioButton 

            //  
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            this.SedActURadioButton.AutoSize = true; 

            this.SedActURadioButton.Checked = true; 

            this.SedActURadioButton.Location = new System.Drawing.Point(3, 

245); 

            this.SedActURadioButton.Name = "SedActURadioButton"; 

            this.SedActURadioButton.Size = new System.Drawing.Size(55, 17); 

            this.SedActURadioButton.TabIndex = 2; 

            this.SedActURadioButton.TabStop = true; 

            this.SedActURadioButton.Text = "Actual"; 

            this.SedActURadioButton.UseVisualStyleBackColor = true; 

            this.SedActURadioButton.CheckedChanged += new 

System.EventHandler(this.SedActURadioButton_CheckedChanged); 

            //  

            // tableLayoutPanel1 

            //  
            this.tableLayoutPanel1.AutoSize = true; 

            this.tableLayoutPanel1.CellBorderStyle = 

System.Windows.Forms.TableLayoutPanelCellBorderStyle.Single; 

            this.tableLayoutPanel1.ColumnCount = 2; 

            this.tableLayoutPanel1.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

44.2211F)); 

            this.tableLayoutPanel1.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

55.7789F)); 

            this.tableLayoutPanel1.Controls.Add(this.label14, 0, 13); 

            this.tableLayoutPanel1.Controls.Add(this.label3, 0, 1); 

            this.tableLayoutPanel1.Controls.Add(this.pt_unit_label, 1, 1); 

            this.tableLayoutPanel1.Controls.Add(this.label2, 0, 2); 

            this.tableLayoutPanel1.Controls.Add(this.ORA1_45ONLabel, 1, 2); 

            this.tableLayoutPanel1.Controls.Add(this.ORA1_180ONLabel, 1, 4); 

            this.tableLayoutPanel1.Controls.Add(this.ORA2_45ONLabel, 1, 6); 

            this.tableLayoutPanel1.Controls.Add(this.ORA2_180ONLabel, 1, 8); 

            this.tableLayoutPanel1.Controls.Add(this.IR_45ONLabel, 1, 10); 

            this.tableLayoutPanel1.Controls.Add(this.BG_90ONLabel, 1, 12); 

            this.tableLayoutPanel1.Controls.Add(this.ORA1_45OFFLabel, 1, 3); 

            this.tableLayoutPanel1.Controls.Add(this.BG_90Label, 0, 12); 

            this.tableLayoutPanel1.Controls.Add(this.label11, 0, 10); 

            this.tableLayoutPanel1.Controls.Add(this.label9, 0, 8); 

            this.tableLayoutPanel1.Controls.Add(this.label6, 0, 6); 

            this.tableLayoutPanel1.Controls.Add(this.label5, 0, 4); 

            this.tableLayoutPanel1.Controls.Add(this.label7, 0, 3); 

            this.tableLayoutPanel1.Controls.Add(this.label8, 0, 5); 

            this.tableLayoutPanel1.Controls.Add(this.label10, 0, 7); 

            this.tableLayoutPanel1.Controls.Add(this.label12, 0, 9); 

            this.tableLayoutPanel1.Controls.Add(this.label13, 0, 11); 

            this.tableLayoutPanel1.Controls.Add(this.ORA1_180OFFLabel, 1, 5); 

            this.tableLayoutPanel1.Controls.Add(this.ORA2_45OFFLabel, 1, 7); 

            this.tableLayoutPanel1.Controls.Add(this.ORA2_180OFFLabel, 1, 9); 

            this.tableLayoutPanel1.Controls.Add(this.BG_90OFFLabel, 0, 13); 

            this.tableLayoutPanel1.Controls.Add(this.IR_45OFFLabel, 1, 11); 

            this.tableLayoutPanel1.Controls.Add(this.label21, 0, 0); 

            this.tableLayoutPanel1.Controls.Add(this.sedDateTimeLabel, 1, 0); 

            this.tableLayoutPanel1.Dock = System.Windows.Forms.DockStyle.Top; 

            this.tableLayoutPanel1.Location = new System.Drawing.Point(0, 

13); 

            this.tableLayoutPanel1.Name = "tableLayoutPanel1"; 
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            this.tableLayoutPanel1.RowCount = 14; 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel1.Size = new System.Drawing.Size(245, 211); 

            this.tableLayoutPanel1.TabIndex = 1; 

            //  

            // label14 

            //  
            this.label14.AutoSize = true; 

            this.label14.Location = new System.Drawing.Point(4, 196); 

            this.label14.Name = "label14"; 

            this.label14.Size = new System.Drawing.Size(96, 13); 

            this.label14.TabIndex = 20; 

            this.label14.Text = "Blue-green 90 OFF"; 

            //  

            // label3 

            //  
            this.label3.AutoSize = true; 

            this.label3.Location = new System.Drawing.Point(4, 16); 

            this.label3.Name = "label3"; 

            this.label3.Size = new System.Drawing.Size(77, 13); 

            this.label3.TabIndex = 1; 

            this.label3.Text = "Phototransistor"; 

            //  

            // pt_unit_label 

            //  
            this.pt_unit_label.AutoSize = true; 

            this.pt_unit_label.Location = new System.Drawing.Point(112, 16); 

            this.pt_unit_label.Name = "pt_unit_label"; 

            this.pt_unit_label.Size = new System.Drawing.Size(55, 13); 

            this.pt_unit_label.TabIndex = 2; 
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            this.pt_unit_label.Text = "Output (V)"; 

            //  

            // label2 

            //  
            this.label2.AutoSize = true; 

            this.label2.Location = new System.Drawing.Point(4, 31); 

            this.label2.Name = "label2"; 

            this.label2.Size = new System.Drawing.Size(85, 13); 

            this.label2.TabIndex = 0; 

            this.label2.Text = "Orange 1 45 ON"; 

            //  

            // ORA1_45ONLabel 

            //  
            this.ORA1_45ONLabel.AutoSize = true; 

            this.ORA1_45ONLabel.Location = new System.Drawing.Point(112, 31); 

            this.ORA1_45ONLabel.Name = "ORA1_45ONLabel"; 

            this.ORA1_45ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA1_45ONLabel.TabIndex = 3; 

            this.ORA1_45ONLabel.Text = "0"; 

            //  

            // ORA1_180ONLabel 

            //  
            this.ORA1_180ONLabel.AutoSize = true; 

            this.ORA1_180ONLabel.Location = new System.Drawing.Point(112, 

61); 

            this.ORA1_180ONLabel.Name = "ORA1_180ONLabel"; 

            this.ORA1_180ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA1_180ONLabel.TabIndex = 6; 

            this.ORA1_180ONLabel.Text = "0"; 

            //  

            // ORA2_45ONLabel 

            //  
            this.ORA2_45ONLabel.AutoSize = true; 

            this.ORA2_45ONLabel.Location = new System.Drawing.Point(112, 91); 

            this.ORA2_45ONLabel.Name = "ORA2_45ONLabel"; 

            this.ORA2_45ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA2_45ONLabel.TabIndex = 7; 

            this.ORA2_45ONLabel.Text = "0"; 

            //  

            // ORA2_180ONLabel 

            //  
            this.ORA2_180ONLabel.AutoSize = true; 

            this.ORA2_180ONLabel.Location = new System.Drawing.Point(112, 

121); 

            this.ORA2_180ONLabel.Name = "ORA2_180ONLabel"; 

            this.ORA2_180ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA2_180ONLabel.TabIndex = 9; 

            this.ORA2_180ONLabel.Text = "0"; 

            //  

            // IR_45ONLabel 

            //  
            this.IR_45ONLabel.AutoSize = true; 

            this.IR_45ONLabel.Location = new System.Drawing.Point(112, 151); 

            this.IR_45ONLabel.Name = "IR_45ONLabel"; 

            this.IR_45ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.IR_45ONLabel.TabIndex = 11; 

            this.IR_45ONLabel.Text = "0"; 
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            //  

            // BG_90ONLabel 

            //  
            this.BG_90ONLabel.AutoSize = true; 

            this.BG_90ONLabel.Location = new System.Drawing.Point(112, 181); 

            this.BG_90ONLabel.Name = "BG_90ONLabel"; 

            this.BG_90ONLabel.Size = new System.Drawing.Size(13, 13); 

            this.BG_90ONLabel.TabIndex = 13; 

            this.BG_90ONLabel.Text = "0"; 

            //  

            // ORA1_45OFFLabel 

            //  
            this.ORA1_45OFFLabel.AutoSize = true; 

            this.ORA1_45OFFLabel.Location = new System.Drawing.Point(112, 

46); 

            this.ORA1_45OFFLabel.Name = "ORA1_45OFFLabel"; 

            this.ORA1_45OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA1_45OFFLabel.TabIndex = 14; 

            this.ORA1_45OFFLabel.Text = "0"; 

            //  

            // BG_90Label 

            //  
            this.BG_90Label.AutoSize = true; 

            this.BG_90Label.Location = new System.Drawing.Point(4, 181); 

            this.BG_90Label.Name = "BG_90Label"; 

            this.BG_90Label.Size = new System.Drawing.Size(92, 13); 

            this.BG_90Label.TabIndex = 12; 

            this.BG_90Label.Text = "Blue-green 90 ON"; 

            //  

            // label11 

            //  
            this.label11.AutoSize = true; 

            this.label11.Location = new System.Drawing.Point(4, 151); 

            this.label11.Name = "label11"; 

            this.label11.Size = new System.Drawing.Size(77, 13); 

            this.label11.TabIndex = 10; 

            this.label11.Text = "Infrared 45 ON"; 

            //  

            // label9 

            //  
            this.label9.AutoSize = true; 

            this.label9.Location = new System.Drawing.Point(4, 121); 

            this.label9.Name = "label9"; 

            this.label9.Size = new System.Drawing.Size(91, 13); 

            this.label9.TabIndex = 8; 

            this.label9.Text = "Orange 2 180 ON"; 

            //  

            // label6 

            //  
            this.label6.AutoSize = true; 

            this.label6.Location = new System.Drawing.Point(4, 91); 

            this.label6.Name = "label6"; 

            this.label6.Size = new System.Drawing.Size(85, 13); 

            this.label6.TabIndex = 5; 

            this.label6.Text = "Orange 2 45 ON"; 

            //  

            // label5 
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            //  
            this.label5.AutoSize = true; 

            this.label5.Location = new System.Drawing.Point(4, 61); 

            this.label5.Name = "label5"; 

            this.label5.Size = new System.Drawing.Size(91, 13); 

            this.label5.TabIndex = 4; 

            this.label5.Text = "Orange 1 180 ON"; 

            //  

            // label7 

            //  
            this.label7.AutoSize = true; 

            this.label7.Location = new System.Drawing.Point(4, 46); 

            this.label7.Name = "label7"; 

            this.label7.Size = new System.Drawing.Size(89, 13); 

            this.label7.TabIndex = 15; 

            this.label7.Text = "Orange 1 45 OFF"; 

            //  

            // label8 

            //  
            this.label8.AutoSize = true; 

            this.label8.Location = new System.Drawing.Point(4, 76); 

            this.label8.Name = "label8"; 

            this.label8.Size = new System.Drawing.Size(95, 13); 

            this.label8.TabIndex = 16; 

            this.label8.Text = "Orange 1 180 OFF"; 

            //  

            // label10 

            //  
            this.label10.AutoSize = true; 

            this.label10.Location = new System.Drawing.Point(4, 106); 

            this.label10.Name = "label10"; 

            this.label10.Size = new System.Drawing.Size(89, 13); 

            this.label10.TabIndex = 17; 

            this.label10.Text = "Orange 2 45 OFF"; 

            //  

            // label12 

            //  
            this.label12.AutoSize = true; 

            this.label12.Location = new System.Drawing.Point(4, 136); 

            this.label12.Name = "label12"; 

            this.label12.Size = new System.Drawing.Size(95, 13); 

            this.label12.TabIndex = 18; 

            this.label12.Text = "Orange 2 180 OFF"; 

            //  

            // label13 

            //  
            this.label13.AutoSize = true; 

            this.label13.Location = new System.Drawing.Point(4, 166); 

            this.label13.Name = "label13"; 

            this.label13.Size = new System.Drawing.Size(81, 13); 

            this.label13.TabIndex = 19; 

            this.label13.Text = "Infrared 45 OFF"; 

            //  

            // ORA1_180OFFLabel 

            //  
            this.ORA1_180OFFLabel.AutoSize = true; 
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            this.ORA1_180OFFLabel.Location = new System.Drawing.Point(112, 

76); 

            this.ORA1_180OFFLabel.Name = "ORA1_180OFFLabel"; 

            this.ORA1_180OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA1_180OFFLabel.TabIndex = 21; 

            this.ORA1_180OFFLabel.Text = "0"; 

            //  

            // ORA2_45OFFLabel 

            //  
            this.ORA2_45OFFLabel.AutoSize = true; 

            this.ORA2_45OFFLabel.Location = new System.Drawing.Point(112, 

106); 

            this.ORA2_45OFFLabel.Name = "ORA2_45OFFLabel"; 

            this.ORA2_45OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA2_45OFFLabel.TabIndex = 22; 

            this.ORA2_45OFFLabel.Text = "0"; 

            //  

            // ORA2_180OFFLabel 

            //  
            this.ORA2_180OFFLabel.AutoSize = true; 

            this.ORA2_180OFFLabel.Location = new System.Drawing.Point(112, 

136); 

            this.ORA2_180OFFLabel.Name = "ORA2_180OFFLabel"; 

            this.ORA2_180OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.ORA2_180OFFLabel.TabIndex = 23; 

            this.ORA2_180OFFLabel.Text = "0"; 

            //  

            // BG_90OFFLabel 

            //  
            this.BG_90OFFLabel.AutoSize = true; 

            this.BG_90OFFLabel.Location = new System.Drawing.Point(112, 196); 

            this.BG_90OFFLabel.Name = "BG_90OFFLabel"; 

            this.BG_90OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.BG_90OFFLabel.TabIndex = 24; 

            this.BG_90OFFLabel.Text = "0"; 

            //  

            // IR_45OFFLabel 

            //  
            this.IR_45OFFLabel.AutoSize = true; 

            this.IR_45OFFLabel.Location = new System.Drawing.Point(112, 166); 

            this.IR_45OFFLabel.Name = "IR_45OFFLabel"; 

            this.IR_45OFFLabel.Size = new System.Drawing.Size(13, 13); 

            this.IR_45OFFLabel.TabIndex = 25; 

            this.IR_45OFFLabel.Text = "0"; 

            //  

            // label21 

            //  
            this.label21.AutoSize = true; 

            this.label21.Location = new System.Drawing.Point(4, 1); 

            this.label21.Name = "label21"; 

            this.label21.Size = new System.Drawing.Size(58, 13); 

            this.label21.TabIndex = 26; 

            this.label21.Text = "Date/Time"; 

            //  

            // sedDateTimeLabel 

            //  
            this.sedDateTimeLabel.AutoSize = true; 
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            this.sedDateTimeLabel.Location = new System.Drawing.Point(112, 

1); 

            this.sedDateTimeLabel.Name = "sedDateTimeLabel"; 

            this.sedDateTimeLabel.Size = new System.Drawing.Size(0, 13); 

            this.sedDateTimeLabel.TabIndex = 27; 

            //  

            // label1 

            //  
            this.label1.AutoSize = true; 

            this.label1.Dock = System.Windows.Forms.DockStyle.Top; 

            this.label1.Location = new System.Drawing.Point(0, 0); 

            this.label1.Name = "label1"; 

            this.label1.Size = new System.Drawing.Size(77, 13); 

            this.label1.TabIndex = 0; 

            this.label1.Text = "Sediment Data"; 

            //  

            // panel2 

            //  
            this.panel2.BorderStyle = 

System.Windows.Forms.BorderStyle.FixedSingle; 

            this.panel2.Controls.Add(this.tableLayoutPanel4); 

            this.panel2.Controls.Add(this.tableLayoutPanel2); 

            this.panel2.Controls.Add(this.label31); 

            this.panel2.Location = new System.Drawing.Point(265, 12); 

            this.panel2.Name = "panel2"; 

            this.panel2.Size = new System.Drawing.Size(220, 223); 

            this.panel2.TabIndex = 1; 

            //  

            // tableLayoutPanel4 

            //  
            this.tableLayoutPanel4.CellBorderStyle = 

System.Windows.Forms.TableLayoutPanelCellBorderStyle.Single; 

            this.tableLayoutPanel4.ColumnCount = 2; 

            this.tableLayoutPanel4.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

50F)); 

            this.tableLayoutPanel4.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

50F)); 

            this.tableLayoutPanel4.Controls.Add(this.label17, 0, 0); 

            this.tableLayoutPanel4.Controls.Add(this.curSampNumLabel, 1, 0); 

            this.tableLayoutPanel4.Location = new System.Drawing.Point(3, 

149); 

            this.tableLayoutPanel4.Name = "tableLayoutPanel4"; 

            this.tableLayoutPanel4.RowCount = 2; 

            this.tableLayoutPanel4.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel4.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel4.Size = new System.Drawing.Size(212, 30); 

            this.tableLayoutPanel4.TabIndex = 2; 

            //  

            // label17 

            //  
            this.label17.AutoSize = true; 

            this.label17.Location = new System.Drawing.Point(4, 1); 

            this.label17.Name = "label17"; 
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            this.label17.Size = new System.Drawing.Size(82, 13); 

            this.label17.TabIndex = 0; 

            this.label17.Text = "Sample Number"; 

            //  

            // curSampNumLabel 

            //  
            this.curSampNumLabel.AutoSize = true; 

            this.curSampNumLabel.Location = new System.Drawing.Point(109, 1); 

            this.curSampNumLabel.Name = "curSampNumLabel"; 

            this.curSampNumLabel.Size = new System.Drawing.Size(13, 13); 

            this.curSampNumLabel.TabIndex = 0; 

            this.curSampNumLabel.Text = "1"; 

            //  

            // tableLayoutPanel2 

            //  
            this.tableLayoutPanel2.AutoSize = true; 

            this.tableLayoutPanel2.CellBorderStyle = 

System.Windows.Forms.TableLayoutPanelCellBorderStyle.Single; 

            this.tableLayoutPanel2.ColumnCount = 2; 

            this.tableLayoutPanel2.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

43.24324F)); 

            this.tableLayoutPanel2.ColumnStyles.Add(new 

System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 

56.75676F)); 

            this.tableLayoutPanel2.Controls.Add(this.label26, 0, 2); 

            this.tableLayoutPanel2.Controls.Add(this.label27, 0, 1); 

            this.tableLayoutPanel2.Controls.Add(this.velocityLabel, 1, 1); 

            this.tableLayoutPanel2.Controls.Add(this.CCC_Label, 1, 2); 

            this.tableLayoutPanel2.Controls.Add(this.label16, 0, 0); 

            this.tableLayoutPanel2.Controls.Add(this.DateTimeLabel, 1, 0); 

            this.tableLayoutPanel2.Location = new System.Drawing.Point(3, 

13); 

            this.tableLayoutPanel2.Name = "tableLayoutPanel2"; 

            this.tableLayoutPanel2.RowCount = 5; 

            this.tableLayoutPanel2.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel2.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel2.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel2.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel2.RowStyles.Add(new 

System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 14F)); 

            this.tableLayoutPanel2.Size = new System.Drawing.Size(212, 76); 

            this.tableLayoutPanel2.TabIndex = 1; 

            //  

            // label26 

            //  
            this.label26.AutoSize = true; 

            this.label26.Location = new System.Drawing.Point(4, 31); 

            this.label26.Name = "label26"; 

            this.label26.Size = new System.Drawing.Size(28, 13); 

            this.label26.TabIndex = 0; 

            this.label26.Text = "CCC"; 

            //  
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            // label27 

            //  
            this.label27.AutoSize = true; 

            this.label27.Location = new System.Drawing.Point(4, 16); 

            this.label27.Name = "label27"; 

            this.label27.Size = new System.Drawing.Size(71, 13); 

            this.label27.TabIndex = 1; 

            this.label27.Text = "Velocity (m/s)"; 

            //  

            // velocityLabel 

            //  
            this.velocityLabel.AutoSize = true; 

            this.velocityLabel.Location = new System.Drawing.Point(95, 16); 

            this.velocityLabel.Name = "velocityLabel"; 

            this.velocityLabel.Size = new System.Drawing.Size(13, 13); 

            this.velocityLabel.TabIndex = 2; 

            this.velocityLabel.Text = "0"; 

            //  

            // CCC_Label 

            //  
            this.CCC_Label.AutoSize = true; 

            this.CCC_Label.Location = new System.Drawing.Point(95, 31); 

            this.CCC_Label.Name = "CCC_Label"; 

            this.CCC_Label.Size = new System.Drawing.Size(13, 13); 

            this.CCC_Label.TabIndex = 3; 

            this.CCC_Label.Text = "0"; 

            //  

            // label16 

            //  
            this.label16.AutoSize = true; 

            this.label16.Location = new System.Drawing.Point(4, 1); 

            this.label16.Name = "label16"; 

            this.label16.Size = new System.Drawing.Size(58, 13); 

            this.label16.TabIndex = 4; 

            this.label16.Text = "Date/Time"; 

            //  

            // DateTimeLabel 

            //  
            this.DateTimeLabel.AutoSize = true; 

            this.DateTimeLabel.Location = new System.Drawing.Point(95, 1); 

            this.DateTimeLabel.Name = "DateTimeLabel"; 

            this.DateTimeLabel.Size = new System.Drawing.Size(0, 13); 

            this.DateTimeLabel.TabIndex = 5; 

            //  

            // label31 

            //  
            this.label31.AutoSize = true; 

            this.label31.Location = new System.Drawing.Point(6, 0); 

            this.label31.Name = "label31"; 

            this.label31.Size = new System.Drawing.Size(70, 13); 

            this.label31.TabIndex = 0; 

            this.label31.Text = "Velocity Data"; 

            //  

            // button1 

            //  
            this.button1.Location = new System.Drawing.Point(482, 350); 

            this.button1.Name = "button1"; 



281 

 

            this.button1.Size = new System.Drawing.Size(95, 25); 

            this.button1.TabIndex = 2; 

            this.button1.Text = "Select Log File"; 

            this.button1.UseVisualStyleBackColor = true; 

            this.button1.Click += new 

System.EventHandler(this.button1_Click); 

            //  

            // button2 

            //  
            this.button2.Location = new System.Drawing.Point(482, 509); 

            this.button2.Name = "button2"; 

            this.button2.Size = new System.Drawing.Size(62, 25); 

            this.button2.TabIndex = 3; 

            this.button2.Text = "Test Log"; 

            this.button2.UseVisualStyleBackColor = true; 

            this.button2.Click += new 

System.EventHandler(this.button2_Click); 

            //  

            // serialPort1 

            //  
            this.serialPort1.DataReceived += new 

System.IO.Ports.SerialDataReceivedEventHandler(this.serialPort1_DataReceived)

; 

            //  

            // serialPortcomboBox 

            //  
            this.serialPortcomboBox.FormattingEnabled = true; 

            this.serialPortcomboBox.Location = new System.Drawing.Point(15, 

404); 

            this.serialPortcomboBox.Name = "serialPortcomboBox"; 

            this.serialPortcomboBox.Size = new System.Drawing.Size(227, 21); 

            this.serialPortcomboBox.TabIndex = 4; 

            this.serialPortcomboBox.DropDown += new 

System.EventHandler(this.serialPortcomboBox_DropDown); 

            //  

            // label18 

            //  
            this.label18.AutoSize = true; 

            this.label18.Location = new System.Drawing.Point(12, 388); 

            this.label18.Name = "label18"; 

            this.label18.Size = new System.Drawing.Size(95, 13); 

            this.label18.TabIndex = 5; 

            this.label18.Text = "Select Sensor Port"; 

            //  

            // ConnectButton 

            //  
            this.ConnectButton.Location = new System.Drawing.Point(248, 403); 

            this.ConnectButton.Name = "ConnectButton"; 

            this.ConnectButton.Size = new System.Drawing.Size(77, 25); 

            this.ConnectButton.TabIndex = 6; 

            this.ConnectButton.Text = "Connect"; 

            this.ConnectButton.UseVisualStyleBackColor = true; 

            this.ConnectButton.Click += new 

System.EventHandler(this.ConnectButton_Click); 

            //  

            // sensorSendtextBox 

            //  
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            this.sensorSendtextBox.Location = new System.Drawing.Point(14, 

483); 

            this.sensorSendtextBox.Name = "sensorSendtextBox"; 

            this.sensorSendtextBox.Size = new System.Drawing.Size(462, 20); 

            this.sensorSendtextBox.TabIndex = 7; 

            //  

            // label19 

            //  
            this.label19.AutoSize = true; 

            this.label19.Location = new System.Drawing.Point(12, 467); 

            this.label19.Name = "label19"; 

            this.label19.Size = new System.Drawing.Size(119, 13); 

            this.label19.TabIndex = 8; 

            this.label19.Text = "Text to Send to Sensor:"; 

            //  

            // label20 

            //  
            this.label20.AutoSize = true; 

            this.label20.Location = new System.Drawing.Point(12, 428); 

            this.label20.Name = "label20"; 

            this.label20.Size = new System.Drawing.Size(115, 13); 

            this.label20.TabIndex = 10; 

            this.label20.Text = "Received from Sensor:"; 

            //  

            // sensorRcvdtextBox 

            //  
            this.sensorRcvdtextBox.Location = new System.Drawing.Point(14, 

444); 

            this.sensorRcvdtextBox.Name = "sensorRcvdtextBox"; 

            this.sensorRcvdtextBox.ReadOnly = true; 

            this.sensorRcvdtextBox.Size = new System.Drawing.Size(462, 20); 

            this.sensorRcvdtextBox.TabIndex = 9; 

            //  

            // button3 

            //  
            this.button3.Location = new System.Drawing.Point(331, 403); 

            this.button3.Name = "button3"; 

            this.button3.Size = new System.Drawing.Size(71, 25); 

            this.button3.TabIndex = 11; 

            this.button3.Text = "Close"; 

            this.button3.UseVisualStyleBackColor = true; 

            this.button3.Click += new 

System.EventHandler(this.button3_Click); 

            //  

            // button4 

            //  
            this.button4.Location = new System.Drawing.Point(14, 509); 

            this.button4.Name = "button4"; 

            this.button4.Size = new System.Drawing.Size(73, 25); 

            this.button4.TabIndex = 12; 

            this.button4.Text = "Send"; 

            this.button4.UseVisualStyleBackColor = true; 

            this.button4.Click += new 

System.EventHandler(this.button4_Click); 

            //  

            // checkBox1 

            //  
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            this.checkBox1.AutoCheck = false; 

            this.checkBox1.AutoSize = true; 

            this.checkBox1.Location = new System.Drawing.Point(482, 486); 

            this.checkBox1.Name = "checkBox1"; 

            this.checkBox1.Size = new System.Drawing.Size(64, 17); 

            this.checkBox1.TabIndex = 13; 

            this.checkBox1.Text = "Logging"; 

            this.checkBox1.UseVisualStyleBackColor = true; 

            //  

            // label22 

            //  
            this.label22.AutoSize = true; 

            this.label22.Location = new System.Drawing.Point(482, 378); 

            this.label22.Name = "label22"; 

            this.label22.Size = new System.Drawing.Size(70, 13); 

            this.label22.TabIndex = 14; 

            this.label22.Text = "Logging Path"; 

            //  

            // loggingPathTextBox 

            //  
            this.loggingPathTextBox.Location = new System.Drawing.Point(482, 

394); 

            this.loggingPathTextBox.Name = "loggingPathTextBox"; 

            this.loggingPathTextBox.ReadOnly = true; 

            this.loggingPathTextBox.Size = new System.Drawing.Size(244, 20); 

            this.loggingPathTextBox.TabIndex = 15; 

            //  

            // button5 

            //  
            this.button5.Location = new System.Drawing.Point(482, 424); 

            this.button5.Name = "button5"; 

            this.button5.Size = new System.Drawing.Size(95, 25); 

            this.button5.TabIndex = 16; 

            this.button5.Text = "Start Logging"; 

            this.button5.UseVisualStyleBackColor = true; 

            this.button5.Click += new 

System.EventHandler(this.button5_Click); 

            //  

            // button6 

            //  
            this.button6.Location = new System.Drawing.Point(482, 455); 

            this.button6.Name = "button6"; 

            this.button6.Size = new System.Drawing.Size(95, 25); 

            this.button6.TabIndex = 17; 

            this.button6.Text = "Stop Logging"; 

            this.button6.UseVisualStyleBackColor = true; 

            this.button6.Click += new 

System.EventHandler(this.button6_Click); 

            //  

            // label23 

            //  
            this.label23.AutoSize = true; 

            this.label23.Location = new System.Drawing.Point(549, 14); 

            this.label23.Name = "label23"; 

            this.label23.Size = new System.Drawing.Size(78, 13); 

            this.label23.TabIndex = 18; 

            this.label23.Text = "Manual Control"; 
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            //  

            // dyeOnRadioButton 

            //  
            this.dyeOnRadioButton.AutoSize = true; 

            this.dyeOnRadioButton.Location = new System.Drawing.Point(6, 19); 

            this.dyeOnRadioButton.Name = "dyeOnRadioButton"; 

            this.dyeOnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.dyeOnRadioButton.TabIndex = 19; 

            this.dyeOnRadioButton.Text = "On"; 

            this.dyeOnRadioButton.UseVisualStyleBackColor = true; 

            this.dyeOnRadioButton.CheckedChanged += new 

System.EventHandler(this.dyeOnRadioButton_CheckedChanged); 

            //  

            // dyeOffRadioButton 

            //  
            this.dyeOffRadioButton.AutoSize = true; 

            this.dyeOffRadioButton.Location = new System.Drawing.Point(51, 

19); 

            this.dyeOffRadioButton.Name = "dyeOffRadioButton"; 

            this.dyeOffRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.dyeOffRadioButton.TabIndex = 21; 

            this.dyeOffRadioButton.Text = "Off"; 

            this.dyeOffRadioButton.UseVisualStyleBackColor = true; 

            this.dyeOffRadioButton.CheckedChanged += new 

System.EventHandler(this.dyeOffRadioButton_CheckedChanged); 

            //  

            // airBlastOffRadioButton 

            //  
            this.airBlastOffRadioButton.AutoSize = true; 

            this.airBlastOffRadioButton.Location = new 

System.Drawing.Point(51, 19); 

            this.airBlastOffRadioButton.Name = "airBlastOffRadioButton"; 

            this.airBlastOffRadioButton.Size = new System.Drawing.Size(39, 

17); 

            this.airBlastOffRadioButton.TabIndex = 24; 

            this.airBlastOffRadioButton.Text = "Off"; 

            this.airBlastOffRadioButton.UseVisualStyleBackColor = true; 

            this.airBlastOffRadioButton.CheckedChanged += new 

System.EventHandler(this.airBlastOffRadioButton_CheckedChanged); 

            //  

            // airBlastOnRadioButton 

            //  
            this.airBlastOnRadioButton.AutoSize = true; 

            this.airBlastOnRadioButton.Location = new System.Drawing.Point(6, 

19); 

            this.airBlastOnRadioButton.Name = "airBlastOnRadioButton"; 

            this.airBlastOnRadioButton.Size = new System.Drawing.Size(39, 

17); 

            this.airBlastOnRadioButton.TabIndex = 22; 

            this.airBlastOnRadioButton.Text = "On"; 

            this.airBlastOnRadioButton.UseVisualStyleBackColor = true; 

            this.airBlastOnRadioButton.CheckedChanged += new 

System.EventHandler(this.airBlastOnRadioButton_CheckedChanged); 

            //  

            // APOffRadioButton 

            //  
            this.APOffRadioButton.AutoSize = true; 
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            this.APOffRadioButton.Location = new System.Drawing.Point(51, 

19); 

            this.APOffRadioButton.Name = "APOffRadioButton"; 

            this.APOffRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.APOffRadioButton.TabIndex = 27; 

            this.APOffRadioButton.Text = "Off"; 

            this.APOffRadioButton.UseVisualStyleBackColor = true; 

            this.APOffRadioButton.CheckedChanged += new 

System.EventHandler(this.APOffRadioButton_CheckedChanged); 

            //  

            // APOnRadioButton 

            //  
            this.APOnRadioButton.AutoSize = true; 

            this.APOnRadioButton.Location = new System.Drawing.Point(6, 19); 

            this.APOnRadioButton.Name = "APOnRadioButton"; 

            this.APOnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.APOnRadioButton.TabIndex = 25; 

            this.APOnRadioButton.Text = "On"; 

            this.APOnRadioButton.UseVisualStyleBackColor = true; 

            this.APOnRadioButton.CheckedChanged += new 

System.EventHandler(this.APOnRadioButton_CheckedChanged); 

            //  

            // ORA1OffRadioButton 

            //  
            this.ORA1OffRadioButton.AutoSize = true; 

            this.ORA1OffRadioButton.Location = new System.Drawing.Point(51, 

19); 

            this.ORA1OffRadioButton.Name = "ORA1OffRadioButton"; 

            this.ORA1OffRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.ORA1OffRadioButton.TabIndex = 30; 

            this.ORA1OffRadioButton.Text = "Off"; 

            this.ORA1OffRadioButton.UseVisualStyleBackColor = true; 

            this.ORA1OffRadioButton.CheckedChanged += new 

System.EventHandler(this.ORA1OffRadioButton_CheckedChanged); 

            //  

            // ORA1OnRadioButton 

            //  
            this.ORA1OnRadioButton.AutoSize = true; 

            this.ORA1OnRadioButton.Location = new System.Drawing.Point(6, 

19); 

            this.ORA1OnRadioButton.Name = "ORA1OnRadioButton"; 

            this.ORA1OnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.ORA1OnRadioButton.TabIndex = 28; 

            this.ORA1OnRadioButton.Text = "On"; 

            this.ORA1OnRadioButton.UseVisualStyleBackColor = true; 

            this.ORA1OnRadioButton.CheckedChanged += new 

System.EventHandler(this.ORA1OnRadioButton_CheckedChanged); 

            //  

            // ORA2OffradioButton 

            //  
            this.ORA2OffradioButton.AutoSize = true; 

            this.ORA2OffradioButton.Location = new System.Drawing.Point(51, 

19); 

            this.ORA2OffradioButton.Name = "ORA2OffradioButton"; 

            this.ORA2OffradioButton.Size = new System.Drawing.Size(39, 17); 

            this.ORA2OffradioButton.TabIndex = 33; 

            this.ORA2OffradioButton.Text = "Off"; 
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            this.ORA2OffradioButton.UseVisualStyleBackColor = true; 

            this.ORA2OffradioButton.CheckedChanged += new 

System.EventHandler(this.ORA2OffradioButton_CheckedChanged); 

            //  

            // ORA2OnRadioButton 

            //  
            this.ORA2OnRadioButton.AutoSize = true; 

            this.ORA2OnRadioButton.Location = new System.Drawing.Point(6, 

19); 

            this.ORA2OnRadioButton.Name = "ORA2OnRadioButton"; 

            this.ORA2OnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.ORA2OnRadioButton.TabIndex = 31; 

            this.ORA2OnRadioButton.Text = "On"; 

            this.ORA2OnRadioButton.UseVisualStyleBackColor = true; 

            this.ORA2OnRadioButton.CheckedChanged += new 

System.EventHandler(this.ORA2OnRadioButton_CheckedChanged); 

            //  

            // BGOffRadioButton 

            //  
            this.BGOffRadioButton.AutoSize = true; 

            this.BGOffRadioButton.Location = new System.Drawing.Point(51, 

19); 

            this.BGOffRadioButton.Name = "BGOffRadioButton"; 

            this.BGOffRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.BGOffRadioButton.TabIndex = 36; 

            this.BGOffRadioButton.Text = "Off"; 

            this.BGOffRadioButton.UseVisualStyleBackColor = true; 

            this.BGOffRadioButton.CheckedChanged += new 

System.EventHandler(this.BGOffRadioButton_CheckedChanged); 

            //  

            // BGOnRadioButton 

            //  
            this.BGOnRadioButton.AutoSize = true; 

            this.BGOnRadioButton.Location = new System.Drawing.Point(6, 19); 

            this.BGOnRadioButton.Name = "BGOnRadioButton"; 

            this.BGOnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.BGOnRadioButton.TabIndex = 34; 

            this.BGOnRadioButton.Text = "On"; 

            this.BGOnRadioButton.UseVisualStyleBackColor = true; 

            this.BGOnRadioButton.CheckedChanged += new 

System.EventHandler(this.BGOnRadioButton_CheckedChanged); 

            //  

            // IROffradioButton 

            //  
            this.IROffradioButton.AutoSize = true; 

            this.IROffradioButton.Location = new System.Drawing.Point(51, 

19); 

            this.IROffradioButton.Name = "IROffradioButton"; 

            this.IROffradioButton.Size = new System.Drawing.Size(39, 17); 

            this.IROffradioButton.TabIndex = 39; 

            this.IROffradioButton.Text = "Off"; 

            this.IROffradioButton.UseVisualStyleBackColor = true; 

            this.IROffradioButton.CheckedChanged += new 

System.EventHandler(this.IROffradioButton_CheckedChanged); 

            //  

            // IROnRadioButton 

            //  
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            this.IROnRadioButton.AutoSize = true; 

            this.IROnRadioButton.Location = new System.Drawing.Point(6, 19); 

            this.IROnRadioButton.Name = "IROnRadioButton"; 

            this.IROnRadioButton.Size = new System.Drawing.Size(39, 17); 

            this.IROnRadioButton.TabIndex = 37; 

            this.IROnRadioButton.Text = "On"; 

            this.IROnRadioButton.UseVisualStyleBackColor = true; 

            this.IROnRadioButton.CheckedChanged += new 

System.EventHandler(this.IROnRadioButton_CheckedChanged); 

            //  

            // groupBox1 

            //  
            this.groupBox1.Controls.Add(this.dyeOffRadioButton); 

            this.groupBox1.Controls.Add(this.dyeOnRadioButton); 

            this.groupBox1.Location = new System.Drawing.Point(497, 30); 

            this.groupBox1.Name = "groupBox1"; 

            this.groupBox1.Size = new System.Drawing.Size(99, 41); 

            this.groupBox1.TabIndex = 40; 

            this.groupBox1.TabStop = false; 

            this.groupBox1.Text = "Dye"; 

            //  

            // groupBox2 

            //  
            this.groupBox2.Controls.Add(this.airBlastOnRadioButton); 

            this.groupBox2.Controls.Add(this.airBlastOffRadioButton); 

            this.groupBox2.Location = new System.Drawing.Point(497, 77); 

            this.groupBox2.Name = "groupBox2"; 

            this.groupBox2.Size = new System.Drawing.Size(99, 41); 

            this.groupBox2.TabIndex = 41; 

            this.groupBox2.TabStop = false; 

            this.groupBox2.Text = "Air Blast"; 

            //  

            // groupBox3 

            //  
            this.groupBox3.Controls.Add(this.APOnRadioButton); 

            this.groupBox3.Controls.Add(this.APOffRadioButton); 

            this.groupBox3.Location = new System.Drawing.Point(497, 124); 

            this.groupBox3.Name = "groupBox3"; 

            this.groupBox3.Size = new System.Drawing.Size(99, 41); 

            this.groupBox3.TabIndex = 42; 

            this.groupBox3.TabStop = false; 

            this.groupBox3.Text = "Air Power"; 

            //  

            // groupBox4 

            //  
            this.groupBox4.Controls.Add(this.IROnRadioButton); 

            this.groupBox4.Controls.Add(this.IROffradioButton); 

            this.groupBox4.Location = new System.Drawing.Point(602, 171); 

            this.groupBox4.Name = "groupBox4"; 

            this.groupBox4.Size = new System.Drawing.Size(99, 41); 

            this.groupBox4.TabIndex = 43; 

            this.groupBox4.TabStop = false; 

            this.groupBox4.Text = "Infrared LED"; 

            //  

            // groupBox5 

            //  
            this.groupBox5.Controls.Add(this.ORA1OnRadioButton); 
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            this.groupBox5.Controls.Add(this.ORA1OffRadioButton); 

            this.groupBox5.Location = new System.Drawing.Point(602, 30); 

            this.groupBox5.Name = "groupBox5"; 

            this.groupBox5.Size = new System.Drawing.Size(99, 41); 

            this.groupBox5.TabIndex = 43; 

            this.groupBox5.TabStop = false; 

            this.groupBox5.Text = "Orange 1 LED"; 

            //  

            // groupBox6 

            //  
            this.groupBox6.Controls.Add(this.ORA2OnRadioButton); 

            this.groupBox6.Controls.Add(this.ORA2OffradioButton); 

            this.groupBox6.Location = new System.Drawing.Point(602, 77); 

            this.groupBox6.Name = "groupBox6"; 

            this.groupBox6.Size = new System.Drawing.Size(99, 41); 

            this.groupBox6.TabIndex = 43; 

            this.groupBox6.TabStop = false; 

            this.groupBox6.Text = "Orange 2 LED"; 

            //  

            // groupBox7 

            //  
            this.groupBox7.Controls.Add(this.BGOnRadioButton); 

            this.groupBox7.Controls.Add(this.BGOffRadioButton); 

            this.groupBox7.Location = new System.Drawing.Point(602, 124); 

            this.groupBox7.Name = "groupBox7"; 

            this.groupBox7.Size = new System.Drawing.Size(99, 41); 

            this.groupBox7.TabIndex = 43; 

            this.groupBox7.TabStop = false; 

            this.groupBox7.Text = "Blue-Green LED"; 

            //  

            // groupBox8 

            //  
            this.groupBox8.Controls.Add(this.statusLEDOnRadioButton); 

            this.groupBox8.Controls.Add(this.statusLEDOffRadioButton); 

            this.groupBox8.Location = new System.Drawing.Point(497, 171); 

            this.groupBox8.Name = "groupBox8"; 

            this.groupBox8.Size = new System.Drawing.Size(99, 41); 

            this.groupBox8.TabIndex = 44; 

            this.groupBox8.TabStop = false; 

            this.groupBox8.Text = "Status LED"; 

            //  

            // statusLEDOnRadioButton 

            //  
            this.statusLEDOnRadioButton.AutoSize = true; 

            this.statusLEDOnRadioButton.Location = new 

System.Drawing.Point(6, 19); 

            this.statusLEDOnRadioButton.Name = "statusLEDOnRadioButton"; 

            this.statusLEDOnRadioButton.Size = new System.Drawing.Size(39, 

17); 

            this.statusLEDOnRadioButton.TabIndex = 37; 

            this.statusLEDOnRadioButton.Text = "On"; 

            this.statusLEDOnRadioButton.UseVisualStyleBackColor = true; 

            this.statusLEDOnRadioButton.CheckedChanged += new 

System.EventHandler(this.statusLEDOnRadioButton_CheckedChanged); 

            //  

            // statusLEDOffRadioButton 

            //  
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            this.statusLEDOffRadioButton.AutoSize = true; 

            this.statusLEDOffRadioButton.Location = new 

System.Drawing.Point(51, 19); 

            this.statusLEDOffRadioButton.Name = "statusLEDOffRadioButton"; 

            this.statusLEDOffRadioButton.Size = new System.Drawing.Size(39, 

17); 

            this.statusLEDOffRadioButton.TabIndex = 39; 

            this.statusLEDOffRadioButton.Text = "Off"; 

            this.statusLEDOffRadioButton.UseVisualStyleBackColor = true; 

            this.statusLEDOffRadioButton.CheckedChanged += new 

System.EventHandler(this.statusLEDOffRadioButton_CheckedChanged); 

            //  

            // Form1 

            //  
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 

            this.ClientSize = new System.Drawing.Size(738, 570); 

            this.Controls.Add(this.groupBox8); 

            this.Controls.Add(this.groupBox7); 

            this.Controls.Add(this.groupBox6); 

            this.Controls.Add(this.groupBox5); 

            this.Controls.Add(this.groupBox4); 

            this.Controls.Add(this.groupBox3); 

            this.Controls.Add(this.groupBox2); 

            this.Controls.Add(this.groupBox1); 

            this.Controls.Add(this.label23); 

            this.Controls.Add(this.button6); 

            this.Controls.Add(this.button5); 

            this.Controls.Add(this.loggingPathTextBox); 

            this.Controls.Add(this.label22); 

            this.Controls.Add(this.checkBox1); 

            this.Controls.Add(this.button4); 

            this.Controls.Add(this.button3); 

            this.Controls.Add(this.label20); 

            this.Controls.Add(this.sensorRcvdtextBox); 

            this.Controls.Add(this.label19); 

            this.Controls.Add(this.sensorSendtextBox); 

            this.Controls.Add(this.ConnectButton); 

            this.Controls.Add(this.label18); 

            this.Controls.Add(this.serialPortcomboBox); 

            this.Controls.Add(this.button2); 

            this.Controls.Add(this.button1); 

            this.Controls.Add(this.panel2); 

            this.Controls.Add(this.panel1); 

            this.Name = "Form1"; 

            this.Text = "Form1"; 

            this.FormClosing += new 

System.Windows.Forms.FormClosingEventHandler(this.Form1_FormClosing); 

            this.panel1.ResumeLayout(false); 

            this.panel1.PerformLayout(); 

            this.tableLayoutPanel3.ResumeLayout(false); 

            this.tableLayoutPanel3.PerformLayout(); 

            this.tableLayoutPanel1.ResumeLayout(false); 

            this.tableLayoutPanel1.PerformLayout(); 

            this.panel2.ResumeLayout(false); 

            this.panel2.PerformLayout(); 

            this.tableLayoutPanel4.ResumeLayout(false); 
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            this.tableLayoutPanel4.PerformLayout(); 

            this.tableLayoutPanel2.ResumeLayout(false); 

            this.tableLayoutPanel2.PerformLayout(); 

            this.groupBox1.ResumeLayout(false); 

            this.groupBox1.PerformLayout(); 

            this.groupBox2.ResumeLayout(false); 

            this.groupBox2.PerformLayout(); 

            this.groupBox3.ResumeLayout(false); 

            this.groupBox3.PerformLayout(); 

            this.groupBox4.ResumeLayout(false); 

            this.groupBox4.PerformLayout(); 

            this.groupBox5.ResumeLayout(false); 

            this.groupBox5.PerformLayout(); 

            this.groupBox6.ResumeLayout(false); 

            this.groupBox6.PerformLayout(); 

            this.groupBox7.ResumeLayout(false); 

            this.groupBox7.PerformLayout(); 

            this.groupBox8.ResumeLayout(false); 

            this.groupBox8.PerformLayout(); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

 

        } 

 

        #endregion 

 

        private System.Windows.Forms.Panel panel1; 

        private System.Windows.Forms.Label label1; 

        private System.Windows.Forms.Label label15; 

        private System.Windows.Forms.RadioButton SedADCCountRadioButton; 

        private System.Windows.Forms.RadioButton SedActURadioButton; 

        private System.Windows.Forms.TableLayoutPanel tableLayoutPanel1; 

        private System.Windows.Forms.Label BG_90ONLabel; 

        private System.Windows.Forms.Label BG_90Label; 

        private System.Windows.Forms.Label IR_45ONLabel; 

        private System.Windows.Forms.Label label11; 

        private System.Windows.Forms.Label ORA2_180ONLabel; 

        private System.Windows.Forms.Label label9; 

        private System.Windows.Forms.Label ORA2_45ONLabel; 

        private System.Windows.Forms.Label ORA1_180ONLabel; 

        private System.Windows.Forms.Label label5; 

        private System.Windows.Forms.Label label2; 

        private System.Windows.Forms.Label label3; 

        private System.Windows.Forms.Label pt_unit_label; 

        private System.Windows.Forms.Label ORA1_45ONLabel; 

        private System.Windows.Forms.Label label6; 

        private System.Windows.Forms.Panel panel2; 

        private System.Windows.Forms.TableLayoutPanel tableLayoutPanel2; 

        private System.Windows.Forms.Label label26; 

        private System.Windows.Forms.Label label27; 

        private System.Windows.Forms.Label velocityLabel; 

        private System.Windows.Forms.Label CCC_Label; 

        private System.Windows.Forms.Label label31; 

        private System.Windows.Forms.TableLayoutPanel tableLayoutPanel3; 

        private System.Windows.Forms.Label label28; 

        private System.Windows.Forms.Label Batt_label; 

        private System.Windows.Forms.Label label29; 



291 

 

        private System.Windows.Forms.Label label4; 

        private System.Windows.Forms.Label label14; 

        private System.Windows.Forms.Label ORA1_45OFFLabel; 

        private System.Windows.Forms.Label label7; 

        private System.Windows.Forms.Label label8; 

        private System.Windows.Forms.Label label10; 

        private System.Windows.Forms.Label label12; 

        private System.Windows.Forms.Label label13; 

        private System.Windows.Forms.Label ORA1_180OFFLabel; 

        private System.Windows.Forms.Label ORA2_45OFFLabel; 

        private System.Windows.Forms.Label ORA2_180OFFLabel; 

        private System.Windows.Forms.Label BG_90OFFLabel; 

        private System.Windows.Forms.Label IR_45OFFLabel; 

        private System.Windows.Forms.Button rainResetButton; 

        private System.Windows.Forms.Label batt_Unit_label; 

        private System.Windows.Forms.Label temp_label; 

        private System.Windows.Forms.Label tempUnitLabel; 

        private System.Windows.Forms.Label curr_RainLabel; 

        private System.Windows.Forms.Label curr_Rain_UnitLabel; 

        private System.Windows.Forms.Label label37; 

        private System.Windows.Forms.Label totalRainLabel; 

        private System.Windows.Forms.Label totalRainUnitLabel; 

        private System.Windows.Forms.Label label34; 

        private System.Windows.Forms.SaveFileDialog saveFileDialog1; 

        private System.Windows.Forms.Button button1; 

        private System.Windows.Forms.Button button2; 

        private System.IO.Ports.SerialPort serialPort1; 

        private System.Windows.Forms.Label label16; 

        private System.Windows.Forms.Label DateTimeLabel; 

        private System.Windows.Forms.TableLayoutPanel tableLayoutPanel4; 

        private System.Windows.Forms.Label label17; 

        private System.Windows.Forms.Label curSampNumLabel; 

        private System.Windows.Forms.ComboBox serialPortcomboBox; 

        private System.Windows.Forms.Label label18; 

        private System.Windows.Forms.Button ConnectButton; 

        private System.Windows.Forms.TextBox sensorSendtextBox; 

        private System.Windows.Forms.Label label19; 

        private System.Windows.Forms.Label label20; 

        private System.Windows.Forms.TextBox sensorRcvdtextBox; 

        private System.Windows.Forms.Button button3; 

        private System.Windows.Forms.Button button4; 

        private System.Windows.Forms.Label label21; 

        private System.Windows.Forms.Label sedDateTimeLabel; 

        private System.Windows.Forms.CheckBox checkBox1; 

        private System.Windows.Forms.Label label22; 

        private System.Windows.Forms.TextBox loggingPathTextBox; 

        private System.Windows.Forms.Button button5; 

        private System.Windows.Forms.Button button6; 

        private System.Windows.Forms.Label label23; 

        private System.Windows.Forms.RadioButton dyeOnRadioButton; 

        private System.Windows.Forms.RadioButton dyeOffRadioButton; 

        private System.Windows.Forms.RadioButton airBlastOffRadioButton; 

        private System.Windows.Forms.RadioButton airBlastOnRadioButton; 

        private System.Windows.Forms.RadioButton APOffRadioButton; 

        private System.Windows.Forms.RadioButton APOnRadioButton; 

        private System.Windows.Forms.RadioButton ORA1OffRadioButton; 

        private System.Windows.Forms.RadioButton ORA1OnRadioButton; 



292 

 

        private System.Windows.Forms.RadioButton ORA2OffradioButton; 

        private System.Windows.Forms.RadioButton ORA2OnRadioButton; 

        private System.Windows.Forms.RadioButton BGOffRadioButton; 

        private System.Windows.Forms.RadioButton BGOnRadioButton; 

        private System.Windows.Forms.RadioButton IROffradioButton; 

        private System.Windows.Forms.RadioButton IROnRadioButton; 

        private System.Windows.Forms.GroupBox groupBox1; 

        private System.Windows.Forms.GroupBox groupBox2; 

        private System.Windows.Forms.GroupBox groupBox3; 

        private System.Windows.Forms.GroupBox groupBox4; 

        private System.Windows.Forms.GroupBox groupBox5; 

        private System.Windows.Forms.GroupBox groupBox6; 

        private System.Windows.Forms.GroupBox groupBox7; 

        private System.Windows.Forms.GroupBox groupBox8; 

        private System.Windows.Forms.RadioButton statusLEDOnRadioButton; 

        private System.Windows.Forms.RadioButton statusLEDOffRadioButton; 

    } 

} 

Form1.cs 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using System.IO; 

using System.IO.Ports; 

 

namespace WindowsFormsApplication1 

{ 

    public partial class Form1 : Form 

    { 

        public delegate void updateVelLabels(string velString); 

        public updateVelLabels velDelegate; 

        public delegate void updateSedLabels(string sedString); 

        public updateSedLabels sedDelegate; 

        public delegate void updateSerText(string serString); 

        public updateSerText serDelegate; 

        StreamWriter sw_all; 

        StreamWriter sw_base; 

        StreamWriter sw_org; 

        StreamWriter sw_mod; 

        int sampleCount; 

        string indata; 

        string fileLoc; 

        int ir45on, bg90on, ora1_45on, ora1_180on, ora2_45on, ora2_180on, 

            ir45off, bg90off, ora1_45off, ora1_180off, ora2_45off, 

ora2_180off, 

            batt, therm, rain, totalRain; 

 

        /*sediment_measurement.IR_45_on_reading, 

    sediment_measurement.BG_90_on_reading, 

    sediment_measurement.ORA1_45_on_reading, 
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    sediment_measurement.ORA1_180_on_reading, 

    sediment_measurement.ORA2_45_on_reading, 

    sediment_measurement.ORA2_180_on_reading, 

    sediment_measurement.IR_45_off_reading, 

    sediment_measurement.BG_90_off_reading, 

    sediment_measurement.ORA1_45_off_reading, 

    sediment_measurement.ORA1_180_off_reading, 

    sediment_measurement.ORA2_45_off_reading, 

    sediment_measurement.ORA2_180_off_reading, 

    sediment_measurement.battery_reading, 

    sediment_measurement.thermo_reading, 

    sediment_measurement.last_rain_gauge_count);*/ 

 

 

        public Form1() 

        { 

            InitializeComponent(); 

            velDelegate = new updateVelLabels(updateVelLabelsMethod); 

            sedDelegate = new updateSedLabels(updateSedLabelsMethod); 

            serDelegate = new updateSerText(updateSerTextMethod); 

             

        } 

 

        private void button1_Click(object sender, EventArgs e) 

        { 

            SaveFileDialog saveFileDialog1 = new SaveFileDialog(); 

 

            saveFileDialog1.Filter = "All files (*.*)|*.*"; 

            saveFileDialog1.RestoreDirectory = true; 

 

            if (saveFileDialog1.ShowDialog() == DialogResult.OK) 

            { 

                fileLoc = saveFileDialog1.FileName; 

                loggingPathTextBox.Text = fileLoc; 

 

                sampleCount = 0; 

                curSampNumLabel.Text = sampleCount.ToString(); 

            } 

        } 

 

        private void Form1_FormClosing(object sender, FormClosingEventArgs e) 

        { 

            if (sw_all != null) 

            { 

                sw_all.Close(); 

            } 

            if (sw_base != null) 

            { 

                sw_base.Close(); 

            } 

            if (sw_org != null) 

            { 

                sw_org.Close(); 

            } 

            if (sw_mod != null) 

            { 

                sw_mod.Close(); 
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            } 

        } 

 

        public void updateVelLabelsMethod(string velString) 

        { 

            DateTimeLabel.Text = velString.Substring(1, 14); 

            DateTimeLabel.Text = velString.Substring(1, 4) + "/" + 

velString.Substring(5, 2) + "/" + 

               velString.Substring(7, 2) + " " + velString.Substring(9, 2) + 

":" + 

               velString.Substring(11, 2) + ":" + velString.Substring(13, 2); 

            string[] dataSplit = velString.Substring(16).Split('\t'); 

            velocityLabel.Text = dataSplit[0]; 

            CCC_Label.Text = dataSplit[1]; 

            curSampNumLabel.Text = sampleCount.ToString(); 

        } 

 

        public void updateSedLabelsMethod(string sedString) 

        { 

            sedDateTimeLabel.Text = sedString.Substring(1, 4) + "/" + 

sedString.Substring(5, 2) + "/" + 

                sedString.Substring(7, 2) + " " + sedString.Substring(9, 2) + 

":" + 

                sedString.Substring(11, 2) + ":" + sedString.Substring(13, 

2); 

            string[] dataSplit = sedString.Substring(16).Split('\t'); 

            ir45on = Int32.Parse(dataSplit[0]); 

            bg90on = Int32.Parse(dataSplit[1]); 

            ora1_45on = Int32.Parse(dataSplit[2]); 

            ora1_180on = Int32.Parse(dataSplit[3]); 

            ora2_45on = Int32.Parse(dataSplit[4]); 

            ora2_180on = Int32.Parse(dataSplit[5]); 

            ir45off = Int32.Parse(dataSplit[6]); 

            bg90off = Int32.Parse(dataSplit[7]); 

            ora1_45off = Int32.Parse(dataSplit[8]); 

            ora1_180off = Int32.Parse(dataSplit[9]); 

            ora2_45off = Int32.Parse(dataSplit[10]); 

            ora2_180off = Int32.Parse(dataSplit[11]); 

            batt = Int32.Parse(dataSplit[12]); 

            therm = Int32.Parse(dataSplit[13]); 

            rain = Int32.Parse(dataSplit[14]); 

            totalRain += rain; 

            updateSLabels(); 

        } 

 

        public void updateSerTextMethod(string serString) 

        { 

            sensorRcvdtextBox.Text = serString; 

        } 

 

        private void updateSLabels() 

        { 

            if (SedActURadioButton.Checked)//Use Engineering Units 

            { 

                IR_45ONLabel.Text = ((Double)ir45on / 4096 * 3.3).ToString(); 

                BG_90ONLabel.Text = ((Double)bg90on / 4096 * 3.3).ToString(); 
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                ORA1_45ONLabel.Text = ((Double)ora1_45on / 4096 * 

3.3).ToString(); 

                ORA1_180ONLabel.Text = ((Double)ora1_180on / 4096 * 

3.3).ToString(); 

                ORA2_45ONLabel.Text = ((Double)ora2_45on / 4096 * 

3.3).ToString(); 

                ORA2_180ONLabel.Text = ((Double)ora2_180on / 4096 * 

3.3).ToString(); 

                IR_45OFFLabel.Text = ((Double)ir45off / 4096 * 

3.3).ToString(); 

                BG_90OFFLabel.Text = ((Double)bg90off / 4096 * 

3.3).ToString(); 

                ORA1_45OFFLabel.Text = ((Double)ora1_45off / 4096 * 

3.3).ToString(); 

                ORA1_180OFFLabel.Text = ((Double)ora1_180off / 4096 * 

3.3).ToString(); 

                ORA2_45OFFLabel.Text = ((Double)ora2_45off / 4096 * 

3.3).ToString(); 

                ORA2_180OFFLabel.Text = ((Double)ora2_180off / 4096 * 

3.3).ToString(); 

                Batt_label.Text = ((Double)batt / 4096 * 3.3 * 6).ToString(); 

                temp_label.Text = ((Double)therm / 4096 * 330).ToString(); 

                curr_RainLabel.Text = ((Double)rain * 0.01).ToString(); 

                totalRainLabel.Text = ((Double)totalRain * 0.01).ToString(); 

            } 

            else // Use ADC values 

            { 

                IR_45ONLabel.Text = ir45on.ToString(); 

                BG_90ONLabel.Text = bg90on.ToString(); 

                ORA1_45ONLabel.Text = ora1_45on.ToString(); 

                ORA1_180ONLabel.Text = ora1_180on.ToString(); 

                ORA2_45ONLabel.Text = ora2_45on.ToString(); 

                ORA2_180ONLabel.Text = ora2_180on.ToString(); 

                IR_45OFFLabel.Text = ir45off.ToString(); 

                BG_90OFFLabel.Text = bg90off.ToString(); 

                ORA1_45OFFLabel.Text = ora1_45off.ToString(); 

                ORA1_180OFFLabel.Text = ora1_180off.ToString(); 

                ORA2_45OFFLabel.Text = ora2_45off.ToString(); 

                ORA2_180OFFLabel.Text = ora2_180off.ToString(); 

                Batt_label.Text = batt.ToString(); 

                temp_label.Text = therm.ToString(); 

                curr_RainLabel.Text = rain.ToString(); 

                totalRainLabel.Text = totalRain.ToString(); 

            } 

        } 

        private void button2_Click(object sender, EventArgs e) 

        { 

            ir45on = 2048; 

            batt = 2048; 

            therm = 1601; 

            indata += "V20120323105500\t3\t1.01\t232e5\t541\t154 *\r\n"; 

            indata += "O4096\t4095\r\n"; 

            indata += "O0\t4\r\n"; 

            indata += "V20120323105500\t2e5\t.964\t41e7\t150\t350  \r\n"; 

            indata += "Up\tDown\t\r\n"; 

            indata += "U0\tD0\tR15e+01\r\n"; 

            indata += "U4096\tD4095\tR15e+01\r\n"; 
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            indata += "VEL 0.5\r\n"; 

            if (indata.Contains("\n")) 

            { 

                string[] split = indata.Split('\n'); 

                foreach (string s in split) 

                { 

                    if (s == split.Last()) 

                    { 

                        indata = split.Last(); 

                    } 

                    else 

                    { 

                        Invoke(serDelegate, s); 

                        if (sw_all != null) 

                        { 

                            sw_all.Write(s); 

                        } 

                        if (char.IsDigit(s, 1)) 

                        { 

                            switch (s[0]) 

                            { 

                                case 'V': 

                                    sampleCount++; 

                                    Invoke(velDelegate, s); 

 

                                    if (sw_base != null) 

                                    { 

                                        sw_base.Write(s); 

                                    } 

                                    if (sw_org != null) 

                                    { 

                                        sw_org.Close(); 

                                        sw_org = null; 

                                    } 

                                    if (sw_mod != null) 

                                    { 

                                        sw_mod.Close(); 

                                        sw_mod = null; 

                                    } 

                                    break; 

                                case 'S': 

                                    Invoke(sedDelegate, s); 

                                    break; 

                                case 'O': 

                                    if (sw_org == null) 

                                    { 

                                        FileStream fs = File.Open(fileLoc + 

                                            "-org" + (sampleCount + 

1).ToString() 

                                            + ".txt", FileMode.Append); 

                                        sw_org = new StreamWriter(fs); 

                                    } 

                                    if (sw_org != null) 

                                    { 

                                        sw_org.Write(s.Substring(1)); 

                                    } 

                                    break; 
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                                case 'U': 

                                case 'D': 

                                case 'R': 

                                    if (sw_mod == null) 

                                    { 

                                        FileStream fs = File.Open(fileLoc + 

                                            "-mod" + sampleCount.ToString() 

                                            + ".txt", FileMode.Append); 

                                        sw_mod = new StreamWriter(fs); 

                                    } 

                                    if (s[1] != 'p' && s[1] != 'o' && s[1] != 

'x') // Skip header rows "Up Down Rxy" 

                                    { 

                                        if (sw_mod != null) 

                                        { 

                                            string[] splitTab = 

s.Split('\t'); 

                                            foreach (string sTab in splitTab) 

                                            { 

                                                if (sTab == splitTab.Last()) 

                                                    

sw_mod.Write(sTab.Substring(1) + "\r"); 

                                                else 

                                                    

sw_mod.Write(sTab.Substring(1) + "\t"); 

                                            } 

                                        } 

                                    } 

                                    break; 

                                default: 

 

                                    break; 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        private void serialPort1_DataReceived(object sender, 

System.IO.Ports.SerialDataReceivedEventArgs e) 

        { 

            SerialPort sp = (SerialPort)sender; 

            indata += sp.ReadExisting(); 

            if (indata.Contains("\n")) 

            { 

                string[] split = indata.Split('\n'); 

                foreach (string s in split) 

                { 

                    if (s == split.Last()) 

                    { 

                        indata = split.Last(); 

                    } 

                    else 

                    { 

                        Invoke(serDelegate, s); 

                        if (sw_all != null) 
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                        { 

                            sw_all.Write(s); 

                        } 

                        if (char.IsDigit(s, 1)) 

                        { 

                            switch (s[0]) 

                            { 

                                case 'V': 

                                    sampleCount++; 

                                    Invoke(velDelegate, s); 

 

                                    if (sw_base != null) 

                                    { 

                                        sw_base.Write(s); 

                                    } 

                                    if (sw_org != null) 

                                    { 

                                        sw_org.Close(); 

                                        sw_org = null; 

                                    } 

                                    if (sw_mod != null) 

                                    { 

                                        sw_mod.Close(); 

                                        sw_mod = null; 

                                    } 

                                    break; 

                                case 'S': 

                                    Invoke(sedDelegate, s); 

                                    break; 

                                case 'O': 

                                    if (sw_org == null) 

                                    { 

                                        FileStream fs = File.Open(fileLoc + 

                                            "-org" + (sampleCount + 

1).ToString() 

                                            + ".txt", FileMode.Append); 

                                        sw_org = new StreamWriter(fs); 

                                    } 

                                    if (sw_org != null) 

                                    { 

                                        sw_org.Write(s.Substring(1)); 

                                    } 

                                    break; 

                                case 'U': 

                                case 'D': 

                                case 'R': 

                                    if (sw_mod == null) 

                                    { 

                                        FileStream fs = File.Open(fileLoc + 

                                            "-mod" + sampleCount.ToString() 

                                            + ".txt", FileMode.Append); 

                                        sw_mod = new StreamWriter(fs); 

                                    } 

                                    if (s[1] != 'p' && s[1] != 'o' && s[1] != 

'x') // Skip header rows "Up Down Rxy" 

                                    { 

                                        if (sw_mod != null) 
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                                        { 

                                            string[] splitTab = 

s.Split('\t'); 

                                            foreach (string sTab in splitTab) 

                                            { 

                                                if (sTab == splitTab.Last()) 

                                                    

sw_mod.Write(sTab.Substring(1) + "\r"); 

                                                else 

                                                    

sw_mod.Write(sTab.Substring(1) + "\t"); 

                                            } 

                                        } 

                                    } 

                                    break; 

                                default: 

 

                                    break; 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        private void ConnectButton_Click(object sender, EventArgs e) 

        { 

            if (serialPort1.IsOpen) 

            { 

                serialPort1.Close(); 

            } 

            serialPort1.PortName = (string)serialPortcomboBox.SelectedItem; 

            serialPort1.BaudRate = 115200; 

            serialPort1.Open(); 

        } 

 

        private void button3_Click(object sender, EventArgs e) 

        { 

            serialPort1.Close(); 

        } 

 

        private void button4_Click(object sender, EventArgs e) 

        { 

            if (serialPort1.IsOpen) 

            { 

                serialPort1.Write(sensorSendtextBox.Text + "\r"); 

            } 

        } 

 

        private void SedActURadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            updateSLabels(); 

        } 

 

        private void button5_Click(object sender, EventArgs e) 

        { 
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            if (fileLoc != null) 

            { 

                if (sw_all != null) 

                { 

                    sw_all.Close(); 

                    sw_all.Dispose(); 

                    sw_all = null; 

                } 

                FileStream fs = File.Open(fileLoc + ".txt", FileMode.Append); 

                sw_all = new StreamWriter(fs); 

                if (sw_base != null) 

                { 

                    sw_base.Close(); 

                    sw_base.Dispose(); 

                    sw_base = null; 

                } 

                fs = File.Open(fileLoc + "-base.txt", FileMode.Append); 

                sw_base = new StreamWriter(fs); 

                checkBox1.Checked = true; 

            } 

        } 

 

        private void button6_Click(object sender, EventArgs e) 

        { 

            if (sw_all != null) 

            { 

                sw_all.Close(); 

                sw_all.Dispose(); 

                sw_all = null; 

            } 

            if (sw_base != null) 

            { 

                sw_base.Close(); 

                sw_base.Dispose(); 

                sw_base = null; 

            } 

            if (sw_org != null) 

            { 

                sw_org.Close(); 

                sw_org.Dispose(); 

                sw_org = null; 

            } 

            if (sw_mod != null) 

            { 

                sw_mod.Close(); 

                sw_mod.Dispose(); 

                sw_mod = null; 

            } 

            checkBox1.Checked = false; 

        } 

 

        private void serialPortcomboBox_DropDown(object sender, EventArgs e) 

        { 

            serialPortcomboBox.Items.Clear(); 

            serialPortcomboBox.Items.AddRange(SerialPort.GetPortNames()); 

            if (serialPortcomboBox.Items.Count > 1) 

            { 
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                serialPortcomboBox.SelectedIndex = 1; 

            } 

        } 

 

        private void dyeOnRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (dyeOnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH48\r"); 

                } 

            } 

        } 

 

        private void dyeOffRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (dyeOffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL48\r"); 

                } 

            } 

        } 

 

        private void airBlastOnRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (airBlastOnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH49\r"); 

                } 

            } 

        } 

 

        private void airBlastOffRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (airBlastOffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL49\r"); 

                } 

            } 

        } 

 

        private void APOnRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (APOnRadioButton.Checked) 

            { 
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                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH50\r"); 

                } 

            } 

        } 

 

        private void APOffRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (APOffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL50\r"); 

                } 

            } 

        } 

 

        private void statusLEDOnRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (statusLEDOnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH24\r"); 

                } 

            } 

        } 

 

        private void statusLEDOffRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (statusLEDOffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL24\r"); 

                } 

            } 

        } 

 

        private void ORA1OnRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (ORA1OnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH46\r"); 

                } 

            } 

        } 

 

        private void ORA1OffRadioButton_CheckedChanged(object sender, 

EventArgs e) 
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        { 

            if (ORA1OffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL46\r"); 

                } 

            } 

        } 

 

        private void ORA2OnRadioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (ORA2OnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH47\r"); 

                } 

            } 

        } 

 

        private void ORA2OffradioButton_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (ORA2OffradioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL47\r"); 

                } 

            } 

        } 

 

        private void BGOnRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (BGOnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH44\r"); 

                } 

            } 

        } 

 

        private void BGOffRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (BGOffRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL44\r"); 

                } 

            } 

        } 
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        private void IROnRadioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (IROnRadioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GH45\r"); 

                } 

            } 

        } 

 

        private void IROffradioButton_CheckedChanged(object sender, EventArgs 

e) 

        { 

            if (IROffradioButton.Checked) 

            { 

                if (serialPort1.IsOpen) 

                { 

                    serialPort1.Write("#GL45\r"); 

                } 

            } 

        } 

 

         

    } 

} 


