OPTIMAL AVAILABILITY ALLOCATION IN SERIES-PARALLEL MAINTAINED SYSTEMS

2115-5574A

by

Chang Hoon Lie

B.S. (Nuclear Engineering), Seoul National University

Seoul, Korea, 1970

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

Kansas State University

Manhattan, Kansas

1974

Approved by :

Co-Major Professor

Co-Major Professor

LD 2668 T4. 1974 TABLE OF CONTENTS L538 C.2 Document LIST OF TABLES LIST OF FIGURES ACKNOWLEDGEMENTS CHAPTER 1 INTRODUCTION CHAPTER 2 BASIC CONCEPTS 2.1 Introduction 2.2 Corrective and preventive maintenance 2.3 Maintainability Indexes 2.4 Availability 2.5 Three concepts of availability 2.6 Profitability of preventive maintenance CHAPTER 3 LITERATURE SURVEY Reliability and availability models for the system with corrective maintenance

Reliability and availability models for the system with both corrective and preventive maintenance 3.3 Optimization of reliability and availability allocation problem in multistage systems 3.4 Availability allocation problem in this 35 thesis CHAPTER 4 DEVELOPMENT OF THE MODEL 38 4.1 Increase in mean time between unscheduled 38 maintenance or mean life due to preventive maintenance 4.2 Mean maintenance time for corrective and 48 preventive maintenance 4.3 Availability model for the n-unit redun-51 dant system with exponential distribution

			page
		for failure and repair times	
×		Availability model for the n-unit redundant system with failure and repair time distributions other than exponential	57
	4.5	Cost structure	76
	4.6	Mathematical statement of problem	81
CHAPTER	5	GENERALIZED REDUCED GRADIENT (GRG) METHOD AND SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT)	89
	5.1	Generalized reduced gradient (GRG) method	89
	5.2	Sequential unconstrained minimization technique (SUMT)	96
CHAPTER (5	NUMERICAL EXAMPLES	103
	6.1	Example 1: Exponential distributions for failure and repair times	1,03
	6.2	Example 2: Weibull failure time and general repair time distributions	124
CHAPTER '	7	DISCUSSION AND CONCLUSIONS	1.44
REFERENCE	£S		149
APPENDIX	1		157
	A1.1	Glossary of terms in reliability and maintainability	157
	A1.2	Markov processes	162
	A1.3	The trapezoidal rule	167
APPENDIX	2	COMPUTER PROGRAM LISTINGS	172
	A2.1	GRG : User supplied subroutines for example 1.	172
	A2.2	GRG : User supplied subroutines for example 2.	179
	A2.3	SUMT : Lai's version with user supplied subroutines for example 1.	186
	A2.4	SUMT : User supplied subroutines for example 2.	202

LIST OF TABLES

Table	× ×	page
4.1	Summary of the expressions for the MTBM , MTBMs, MTBM, \overline{M}_{ct} , \overline{M}_{pt} , \overline{M} , and A for the n-unit redundant system	77
5.1	Parameters	94
5.2	List of information	102
6.1a	GRG solution for the first set of starting values (numerical example 1)	113
6.1b	GRG solution for the first set of starting values (numerical example 1): using $\frac{1}{\lambda j's}$ and $\frac{1}{\mu j's}$ as original problem variables	118
6.2a	GRG solution for the second set of starting values (numerical example 1)	120
6.2b	GRG solution for the second set of starting values (numerical example 1): using $\frac{1}{\lambda j's}$ and $\frac{1}{\mu j's}$ as original problem variables	121
6.3	SUMT solution for the first set of starting values (numerical example 1)	122
6.4	SUMT solution for the second set of starting values (numerical example 1)	123
6.5a	Summary of GRG and SUMT final results for the first set of starting values (numerical example 1)	125
6.5b	Summary of GRG and SUMT final results for the second set of starting values (numerical example 1)	126
6.6a	GRG solution for the first set of starting values (numerical example 2)	134
6.6b	GRG solution for the first set of starting values (numerical example 2): using $\frac{1}{\lambda j^{'s}}$ as original problem variables	135

Table		page
6.7a	GRG solution for the second set of starting values (numerical example 2)	137
6.7b	GRG solution for the second set of starting values (numerical example 2): using $\frac{1}{\lambda_j}$ as original problem variables	138
6.8	SUMT solution for the first set of starting values (numerical example 2)	139
6.9	SUMT solution for the second set of starting values (numerical example 2)	140
6.10a	Summary of GRG and SUMT final results for the first set of starting values (numerical example 2)	142
6.10b	Summary of GRG and SUMT final results for the second set of starting values (numerical examples 2)	143

LIST OF FIGURES

Figure		page
2.1	Operational cycle	13
2.2	The failure rate r(t) versus time t when preventive maintenance is performed at age T: (a) increasing failure rate, (b) decreasing failure rate, and (c) constant rate	15a
4.1	Mean time between unscheduled maintenance of a preventive maintained redundant system where preventive maintenance period is T	45
4.2	Series-parallel system with N subsystem in series where each subsystem consists of n_j identical units in parallel	82
A1.1	Markov graph for a two-unit redundant system	165
A1.2	A function	170

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his major professors, Dr. F.A. Tillman and Dr. C.L. Hwang for their valuable guidance and helpful advice in the course of this work. He also acknowledges the support and encouragement from Dr. D.L. Grosh and Dr. N.D. Eckhoff.

The author wishes to extend his deep gratitude to his parents for their constant help and inspiration; to his wife, Kyunghee, for her continued support and patience throughout this work.

THIS BOOK CONTAINS NUMEROUS PAGES WITH MULTIPLE PENCIL AND/OR PEN MARKS THROUGHOUT THE TEXT.

THIS IS THE BEST IMAGE AVAILABLE.

Chapter 1

INTRODUCTION

Increasing complexity of modern-day equipment, both in the military and commercial areas, has brought with it new types of engineering problems involving high performance, reliability, and maintainability. Reliability engineering appeared on the scene in the late 1940s and early 1950s and first applied to the fields of communication and transportation. Much of the early reliability work was confined to making trade-offs between certain performance and reliability aspects of systems. Ever since, reliability has always been considered during system design. However, as systems have become increasingly complex, the reliability problem has become more acute.

Despite the fact that the reliability programs were effective in prolonging the life of systems, the concept of maintainability was recognized as a result of the reliability programs conducted in the late 1940s and early 1950s, which indicated that 100% reliability of system was an unobtainable goal. Therefore, although problems in reliability continue, when maintenance is possible, another aspect of system performance - that of maintenance and repair - is now-becoming a major discipline from the point of view of engineering design and management. The objective of maintainability is to design and develop systems which can be maintained in the least time, at the least cost, and with

a minimum expenditure of support resources, without adversely affecting the each unit's performance or safety charateristics.

If maintenance is possible, reliability is an incomplete measure for the system effectiveness in that it only considers the mean time to failures. Thus, an appropriate single measure for the system effectiveness which takes into account the duration of repairs as well as the frequency of failures are required. This single measure of effectiveness for the maintained system is availability which is of primary concern in this study.

Availability models for the series-parallel systems consisting of subsystems in series, where each subsystem has identical units in parallel are developed assuming various probability density functions for failure and repair times of each unit. In developing the availability models, two types of maintenance policies for each subsystem are considered: the corrective maintenance is performed when the subsystem fails due to the failure of all redundant units and the preventive maintenance is scheduled at a fixed age of the subsystem and is actually performed only if the subsystem has not failed before this fixed age. Preventive maintenance action consists of replacing or reparing only the failed units if each unit has a constant failure rate and replacing both failed and unfailed units if each unit has an increasing failure rate with time. Thus, each subsystem is assumed to be fully restored after the completion of either corrective or preventive maintenance. The cost

of the system consists of three cost components; the cost for designing the mean time between maintenance and mean corrective and preventive maintenance time, the cost for corrective maintenance, and the cost for preventive maintenance.

The optimal availability allocation problem, then, is to determine individual units' detailed availability specifications which will minimize the total cost of the system under the constraint of meeting the system availability requirement. Both, the cost function and the availability equation of the system, are highly nonlinear, the optimization methods employed to solve this problem are both generalized reduced gradient (GRG) method and sequential unconstrained minimization technique (SUMT). This availability allocation technique is applicable in the early stages of maintained system design to determine individual units' detailed availability specifications that will achieve a specified level of system availability with the least cost for the system. This technique may also be applied in the latter stages of system design when modifications and improvements for the initial specifications are required.

Chapter 2

BASIC CONCEPTS

2.1 INTRODUCTION

Reliability is defined as the probability of a system performing its purpose adequately for the period of time intended under the operating conditions encountered. If f(t) is the probability density function of failure times of a system or a unit, then the reliability function R(t) is given by

$$R(t) = P(T>t) = \int_{t}^{\infty} f(s)ds \qquad (2.1)$$

where T = time to failure or life length

P = the probability

Reliability has always been considered during system However, as the high degree of complexity is involved in many of the modern large - scale electronic systems which are required to give continuous service, e.g., computing equipment used to monitor and regulate continuous processes such as commercial power distribution, certain types of communication systems, and military defense systems on continuous alert, etc., it is difficult even with the best design technique to obtain long mean operating periods between failures. several practices have been adopted to offset the high failure Redundancy is ordinarily employed in the various subrates. systems of the system so that a subsystem failure occurs only when all units are down, However, when maintenance is possible, reliability is an incomplete measure

for the system effictiveness, thus other appropriate measures which take account of the duration of repairs as well as the frequency of failures are required.

Dependability is an appropriate measure when a system is assigned to a mission with a specified duration. It is defined as the probability that a system either does not fail or fails and is repaired in an allowable time interval during a mission period [94]. It considers operating time and active corrective maintenance time during a mission period. If a system is intended for continuous use for a long period of time and preventive maintenance is considered as well as corrective maintenance, then availability or fractional uptime is a better measure for the system effectiveness [72]. The definition and concepts of availability will be discussed in the later sections.

2.2 CORRECTIVE AND PREVENTIVE MAINTENANCE

All recoverable systems which are used for continuous or intermittent service for some period of time are subject to maintenance at one time or another. In general, maintenance actions can be classified in two categories: First, there is unscheduled or corrective maintenance, necessitated by system in - service failure or malfunction. Its purpose is to restore system operation as soon as possible by replacing, repairing, or adjusting the unit or units which cause interruption of service. Second, there is scheduled or preventive maintenance actions. Its purpose is to keep the system in

a condition consistent with its built - in levels of performance, reliability, and safety. According to Bazovsky[14], preventive maintenance fulfills this purpose by servicing, inspections, and minor or major overhauls during which

- "1. regular care is provided to normally operating subsystems and units which require such attention (lubrication, refueling, cleaning, adjustment, alignment, etc.),
- failed redundant units are checked, replaced, or repaired if the system contains redundancy, and
- 3. units which are nearing a wearout condition are replaced or overhauled."

These actions are performed to prevent unit and system failure rates from increasing over and above the design levels.

2.3 MAINTAINABILITY INDEXES

Let's examine the maintainability indexes in some detail. The following indexes are the means for determining whether or not the maintainability requirement stated in the overall specification for a system has been complied with, and are defined in [17] and [29].

Mean time to repair (MTTR)

Mean active corrective maintenance time (\vec{N}_{ct}) is often construed as being synonymous with MTTR. It is the statistical mean of the times required to repair a unit or a system, and as such, represents the summation of all repair times, divided by the total number of failures that occurred during a given

period. It is expressed by the following equation :

$$MTTR = \overline{M}_{ct} = \frac{\int_{\Sigma^{c}(M_{ct})}^{f_{c}(M_{ct})} i}{f_{c}}$$
(2.2)

where $f_c = number of failures$

= number of corrective actions

Mct = active maintenance time per corrective maintenance task.

Mean preventive maintenance time (\overline{M}_{pt})

In order to reduce the probability that a system will require corrective action, it normally is taken out of operation from time to time for preventive action. Because the time required for this type of action represents a portion of the total period of a system's inoperability, it must be calculated as contributing to total system down-time. Mean preventive maintenance time thus is defined as the statistical mean of the summation of periods required for preventive action, divided by the total number of preventive actions scheduled for a period as follows:

$$\tilde{M}_{pt} = \frac{\sum_{i=1}^{f_{p}(M_{pt})} i}{f_{p}}$$
 (2.3)

where $f_p = number of preventive maintenance actions$

 $M_{\rm pt}$ = active maintenance time per preventive maintenance. Mean active corrective and preventive maintenance time (\bar{M})

This index is established to represent all system down-time

resulting from both corrective and preventive activities; as such, it represents active down-time, thereby excluding the down-time for which administrative actions, unavailability of tools, etc., are responsible. It is the statistical mean of the periods during which corrective and preventive work is performed on a system during a given period, divided by the total number of all such maintenance actions. It is calculated by use of the following equation:

$$\bar{M} = \frac{\bar{M}_{ct}f_{c} + \bar{M}_{pt}f_{p}}{f_{c} + f_{p}}$$
 (2.4)

or

$$\bar{M} = \frac{\bar{M}_{ct}(1/MTBM_{u}) + \bar{M}_{pt}(1/MTBM_{s})}{1/MTBM_{u} + 1/MTBM_{s}}$$
(2.5)

where $MTBM_{u}$ = mean interval of unscheduled or corrective maintenance

MTBM_s = mean interval of scheduled or preventive maintenance

Mean down-time (MDT)

It is the sum of mean active corrective and preventive maintenance time $(\overline{\mathbb{M}})$ and mean delay time for that system during a specified period. Because delay time is determined by administrative and supply factors that cannot accurately be anticipated, they are beyond a designer's control, and accordingly, can play little part in maintainability design.

2.4 AVAILABILITY

This is the principal measure of the effectiveness of maintained systems and is of primary concern in this work.

Availability is defined as the fraction of the total desired operating time that the system is actually operable, or it can be defined as the ratio of uptime to total time [26]:

$$A = \frac{\text{Uptime}}{\text{Total Time}} \tag{2.6}$$

This equation can be rewritten as

$$A = \frac{MTBF}{MTBF + MTTR}$$
 (2.7)

where MTBF = mean time between failures

Equation (2.7) is frequently called the inherent availability.

To examine how equation (2.6) can be written as equation (2.7), let's introduce system utilization factor U defined as follows [14].

$$U = \frac{t}{t + T_0 + T_p + T_r}$$
 (2.8)

where t = system operating time

 T_0 = total corrective maintenance time

 $T_n = \text{total preventive maintenance time}$

 T_r = downtime other than T_o and T_p such as administrative time, supply time, etc.

If the system is in an ideal support environment without consideration for preventive maintenance action and T_r , then we have

$$U = \frac{t}{t + T_0} \tag{2.9}$$

This is a measure of the system's availability because it gives the percentage of time the system will be available for operation. If for the system operating time we select its mean time between failures MTBF, which may be some fraction or some multiple of t in U, we can then derive the average maintenance time MTTR which is required for every MTBF system operating hours.

$$MTTR = T_0 \frac{MTBF}{t}$$
 (2.10)

Now if we use MTBF and MTTR instead of t and T_0 in the utilization factor, we obtain a value which is numerically identical with U, which is by definition called system availability A as given by equation (2.7). It gives the same percentage of average time the system will be available for service as obtained from U.

2.5 THREE CONCEPTS OF AVAILABILITY

In general there are three concepts of availability, i.e., inherent availability, achieved availability, and operational availability. Blanchard and Lowery [17] define them as follows.

Inherent availability (A;)

The probability that a system or a unit, when used under stated conditions, without consideration for any scheduled or preventive action, in an ideal support environment (i.e., available tools, spares, manpower, data, etc.), shall operate satisfactorily at a given point in time. It excludes ready

time, preventive maintenance downtime, logistics time, and waiting or administrative downtime. It is a function of the reliability and the mean active corrective maintenance time characteristics of the system. It can be expressed as

$$A_{i} = \frac{MTBF}{MTBF + MTTR}$$
 (2.11)

Achieved availability (Aa)

The probability that a system or a unit, when used under stated conditions in an ideal support environment, shall operate satisfactorily at a given point in time. It excludes logistics time and waiting or administrative downtime. It includes active preventive and corrective maintenance downtime and is a function of the frequency of maintenance and the mean maintenance time. It can be expressed as

$$\mathbf{A_a} = \frac{\mathbf{MTBM}}{\mathbf{MTBM} + \mathbf{M}} \tag{2.12}$$

where \overline{M} is mean active corrective and preventive maintenance time given in equation (2.5) and MTBM is the mean time between maintenance or mean interval of all maintenance requirements which can be expressed as

$$MTBM = \frac{1}{1/MTBM_{1} + 1/MTBM_{S}}$$
 (2.13)

Operational availability (Ao)

The probability that a system or a unit, when used under stated conditions in an actual operational environment, shall operate satisfactorily at a given point in time. It includes

ready time, logistics time, and waiting or administrative downtime. It can be expressed as

$$A_{o} = \frac{\text{MTBM} + \text{ready time}}{(\text{MTBM} + \text{ready time}) + \text{MDT}}$$
 (2.14)

where ready time = operational cycle - (MTBM + MDT).

The operational cycle is the total of all operating time,
ready time, and down-time. This is illustrated in Figure 2.1.

Now we have defined three concepts of availability. Of the three concepts of availability, achieved availability is the major concern in this work. The system considered in this work is assumed to be used for continuous service for some period of time. Hence both the corrective and preventive maintenance actions are assumed to be taken during the duty time. If the system is used for intermittent service for some period of time and the preventive or corrective maintenance is done during off duty time, then this sould be reflected in f_c, f_p or MTBM_u and MTBM_s. In the later chapters, achieved availability for the particular system will be developed assuming various probability density functions for the failure and repair times of each unit.

For those terms not defined in this section, refer to Appendix A1.1.

2.6 PROFITABILITY OF PREVENTIVE MAINTENANCE

Preventive maintenance is described as a particular category of maintenance designed to optimize the related

THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.

Figure 2.1. Operational cycle

concepts of availability and the costs associated with the repair actions. By performing preventive maintenance it is expected to reduce the operational failures, thus it may be possible either to increase the availability of the system or to reduce the total maintenance costs. To achieve a balance between availability and maintenance costs for any system, several factors must be weighed simultaneously. According to ARINC [84], the various factors to be considered are:

- " 1. the reliability index and time duration desired;
 - 2. the cost of an in-service failure ;
 - 3. the cost of replacement before failure ;
 - 4. the most economical point in the equipment life to effect this replacement; and
 - 5. the predictability of the failure pattern of the equipment under consideration. "

To make preventive maintenance worthwhile, the failure rate of the systems and/or units must increase with time, or the preventive maintenance of the system must cost less than the corrective maintenance. The preventive maintenance is also advantageous for those systems which exhibit probability density functions with coefficient of variation of failure times less than that of the exponential distribution.

with regard to the cost required for the maintenance action, Bell, Kamins, and McCall [15] show three reasons for expecting this cost to be higher for a corrective maintenance than for a preventive maintenance. Because of the unexpected-

ness of a corrective maintenance, the reaction to a demandis not immediate, thus relatively long periods are spent awaiting service in case of a corrective maintenance, thereas this waiting time can be reduced to a minimum in case of preventive maintenance. The second reason is that actual repair or replacement time is often greater for a corrective maintenance than for a preventive maintenance because it is more difficult to repair or replace a failed unit than to repair or replace an unfailed unit, and the failure of a unit sometimes causes damage to other units. Finally, since more resources required to perform the maintenance action are needed for a corrective maintenance than for a preventive maintenance the value per unit time of the output foregone during a corrective maintenance action often exceeds the same measure for a preventive maintenance action.

The profitability of preventive maintenance with regard to the failure rate is discussed below: Let us assume that the system can be restored to its original condition after the completion of a preventive maintenance action and the preventive maintenance is scheduled at age T. Then, for a system having an increasing failure rate over time, the failure rate r(t) drops back to the original level at age T as a result of the preventive maintenance as illustrated in Figure 2.2.(a). Hence, the actual failure of a system can be reduced, thus an increase in the mean life or the mean time between unscheduled maintenance can be attained. In this situation, preventive maintenance is worthwhile.

Figure 2.2. The failure rate r(t) versus time t when preventive maintenance is performed at age T: (a) increasing failure rate, (b) decreasing failure rate, and (c) constant failure rate.

As shown in Figure 2.2.(b), if the failure rate of a system decreases with time, the performance of the preventive maintenance makes a system more unreliable. In this case, since the older system is more reliable, preventive maintenance is not worthwhile. For a system having a constant failure rate, the age of a system has nothing to do with its failure rate as shown in Figure 2.2.(c). Thus, we gain nothing by applying preventive maintenance to this system.

The coefficient of variation, $\sqrt{V(t)}/E(t)$, is also closely related to the failure rate. Barlow and Proschan [11] show that the coefficient of variation of a failure distribution having an increasing failure rate over time is less than that of the exponential distribution. For a distribution having a decreasing failure rate over time, the inequality is reversed. Hence, the coefficient of variation can be used as an alternative criterion to test the profitability of the preventive maintenance. In other words, the preventive maintenance is worthwhile for those systems which exhibit probability density functions with coefficient of variation of failure times less than that of the exponential distribution, since this implies that the systems have increasing failure rates over time.

If the failure rate of system decreases with time, preventive maintenance is not worthwhile. This corresponds to the case of greater coefficient of variation than that of the exponential distribution. Examples of probability density functions for failure times which belong to this

category are :

1. Gamma distribution for $\alpha < 1$ and $\lambda = 1$

$$f(t) = \frac{\lambda}{\Gamma(\alpha)} (\lambda t)^{\alpha - 1} e^{-\lambda t} , t > 0$$
 (2.15)

2. Weibull distribution for $\alpha < 1$ and $\lambda = 1$

$$f(t) = (\lambda \alpha) t^{\alpha - 1} e^{-\lambda t^{\alpha}} , t > 0$$
 (2.16)

where λ and α are scale and shape parameters respectively. If the failure rate increases with time, the preventive maintenance is worthwhile. This corresponds to the case of smaller coefficient of variation than that of the exponential distribution. Examples of probability density functions for failure times which belong to this category are :

1. Normal distribution

$$f(t) = \frac{2}{\sqrt{2\pi(V(t))}} e^{-\frac{(t-E(t))^2}{2(V(t))}}$$
 (2.17)

- 2. Gamma distribution for $\alpha > 1$ and $\lambda = 1$
- 3. Weibull distribution for $\alpha > 1$ and $\lambda = 1$
- 4. Erlang distribution for k > 1

$$f(t) = \frac{(k\lambda)^k (\lambda t)^{k-1} e^{-k\lambda t}}{(k-1)!}$$
 (2.18)

If the failure rate of a system is constant, it presents the border-line case for which preventive maintenance may be or may not be advisable. The following distributions are

belong to this case :

1. Exponential distribution

$$f(t) = \lambda e^{-\lambda t}$$
 , $t > 0$ (2.19)

where $\lambda = failure rate (constant)$

- 2. Gamma distribution for $\alpha = 1$, $\lambda = 1$
- 3. Weibull distribution for $\alpha = 1$, $\lambda = 1$
- 4. Erlang distribution for k = 1

The above four distributions are identical because they reduce to exponential distribution for the specified values of parameters.

A few examples are shown below to illustrate this coefficient of variation characteristics. Now, the coefficient of variation of the exponential distribution is 1 as shown below: Since exponential distribution is given by equation (2.19), expected value of failure times E(t) is

$$E(t) = \int_0^\infty tf(t)dt = \frac{1}{\lambda}$$
 (2.20)

and

$$E(t^2) = \int_0^\infty t^2 f(t) dt = \frac{2}{\lambda^2}$$
 (2.21)

Then the variability V(t) is

$$V(t) = E(t^2) - (E(t))^2 = \frac{1}{\lambda^2}$$
 (2.22)

Hence, the coefficient of variation is

$$\sqrt{V(t)} / E(t) = 1$$
 (2.23)

Let us consider a system with two identical units in parallel whose failure times are exponentially distributed with parameter λ . Then the reliability of each unit $R_a(t)$ is

$$R_{a}(t) = \int_{t}^{\infty} f(s)ds = e^{-\lambda t}$$
 (2.24)

thus the reliability of the system $R_s(t)$ is

$$R_{s}(t) = R_{a}(t) + R_{a}(t) - (R_{a}(t))(R_{a}(t))$$

$$= 2e^{-\lambda t} - e^{-2\lambda t}$$
(2.25)

The density function for failure times of the system $f_s(t)$ is

$$f_{S}(t) = -\frac{dR_{S}(t)}{dt}$$

$$= 2\lambda e^{-\lambda t} - 2\lambda e^{-2\lambda t}$$
(2.26)

The expected value of failure times of the system E(t) is

$$E(t) = \int_0^\infty tf_s(t)dt = \frac{3}{2\lambda}$$
 (2.27)

and

$$E(t^2) = \int_0^\infty t^2 f_s(t) dt = \frac{7}{2\lambda^2}$$
 (2.28)

Then the variability V(t) is

$$V(t) = E(t^2) - (E(t))^2 = \frac{5}{4\lambda^2}$$
 (2.29)

Hence, the coefficient of variation of the two-unit redundant system is

$$\sqrt{V(t)} / E(t) = \sqrt{\frac{5}{4\lambda^2}} / \frac{3}{2\lambda} = \sqrt{\frac{5}{3}} = 0.743$$
 (2.30)

Since the coefficient of variation of the two unit redundant system, 0.743, is less than that of a single unit system with the exponential failure distribution, 1, the preventive maintenance would be worthwhile.

Let us now consider a system with k functional subsystems connected in series. Each subsystem is assumed to have approximately identical failure rate k\(\lambda\) and individually characterized by exponential failure distribution.

$$f(t) = k\lambda e^{-k\lambda t}$$
 (2.31)

Then the Erlang k density function for this system is given by

$$f(t) = \frac{(k_{\lambda})^{k} (\lambda t)^{k-1} e^{-k\lambda t}}{(k-1)!}$$
 (2.32)

Further we can obtain

$$R(t) = e^{-k\lambda t} \sum_{n=0}^{k-1} \frac{(k\lambda t)^n}{n!}$$
 (2.33)

$$E(t) = \frac{1}{\lambda} \tag{2.34}$$

$$V(t) = \frac{1}{k\lambda^2} \tag{2.35}$$

Hence, the coefficient of variation of the system is

$$\sqrt{V(t)} / E(t) = \sqrt{\frac{1}{k\lambda^2}} / \frac{1}{\lambda} = \frac{1}{\sqrt{k}}$$
 (2.36)

Since

$$\frac{1}{\sqrt{k}} < 1 \qquad \text{for } k > 1 \qquad (2.37)$$

i.e., the system coefficient of variation of failure times is less than that of the exponential case, preventive maintenance would be worthwhile.

Chapter 3

LITERATURE SURVEY

3.1 RELIABILITY AND AVAILABILITY MODELS FOR THE SYSTEM WITH CORRECTIVE MAINTENANCE.

Reliability models for systems with repair have been discussed in a number of articles [31, 36, 39, 46, 56, 67]. Exponential distributions are frequently assumed for failure times and repair times. This assumption allows us to employ a Markovian approach which, in turn, permits us to work with linear homogeneous differential equations with constant coefficients as a result of Laplace transforms. The Markovian approach in the formulation of reliability models of the system is developed by Barlow and Hunter[8,9], Epstein and Hosford[31], and Htun[50]. deMercado[28] develops methods for predicting the reliability and moments of the first time to failure of complex systems having many failed states by using discrete He shows that once the matrix of the constant Markov processes. failure and repair rates of the subsystems is known, and the state assignment is made, then we can obtain the probabilistic description of the complex system. Sandler[76] and Shooman[80] also demonstrate the use of Markov process in developing both reliability models for the non-maintained system and availability models for the maintained system. They consider systems with a single unit, units in series, units in parallel and standby under various repair policies. To apply Markov processes in formulating availability models, exponential distribution must

be assumed for failure and repair times because it enables us to have constant failure rate and repair rate, thus a lack of memory property is satisfied.

To justify the use of exponential failure law, experimental and operational data have been collected. One of the earliest reports of a statistical nature was made by Carhart[21], and subsequent studies by Davis[27] and Boodman[18] indicate that this distribution adequately fits failure experience. regard to repair times, Rohn[72] maintains that the essential characteristic of repair times of complex electronic equipment is stated as a high frequency of short repair times and a few long repair times, thus this sort of behavior suggests representtation by an exponential distribution. Howard, Howard and Hadden[48] presents the operational data of ground equipment for surface-to-air missiles systems and heavy radar systems. They show that there is a strong tendency for down times to follow the log-normal distribution. Several other studies on airborne radar equipment have also indicated observed repair time distributions to fit the log-normal distribution best[90], but it has been usually approximated by an exponential distribution for analytic convenience and computational purposes [91]. it is not always possible to describe systems' failure and repair times by an exponential distribution, this limits the applicability of Markov processes.

McGregor [60] has developed an approximation formula for reliability with repair for the system with n-identical subsystems in parallel. Arms and Goodfriend [6] presents graphical infor-

mation for making reliability and maintainability analyses at both unit and system levels. Myers [66] suggests the use of Monte Carlo technique whenever the problem is extremely complex and/or experimentation is desirable but costly, and illustrates a few examples of this solution technique. However, Faragher and Watson [33] maintains that availability analyses of complex systems utilizing Monte Carlo simulation technique has revealed lack of realism because it is inflexible with respect to configuration changes, thus making it unsuitable for study of optimization of availability through unit redundancy. other approaches concentrate on the mathematical aspects of the By incorporating simulation and neglect the engineering aspects. engineering and mathematical analysis, he presents realistic methodology which involves engineering description of the system, formulation of the simulation model and programming it for the computer, and computer exercises and engineering analysis. Finkelstein and Schafer [36] and Wohl [94] have developed models for repairable systems using dependability as a measure of system effectiveness instead of using availability.

For analytic and computational reason, not much work has been done when failure and repair times are other than exponential. Branson and Shah [19] demonstrate the reliability analysis of two-unit redundant systems with exponential failure times and general repair-time probability laws using a semi-Markov process. Hall, Dubner, and Adler [45] have developed the reliability formulae for redundant configurations when failure times and repair times follow combinations of the exponential, Weibull

and log-normal distributions. They illustrate the use of Fourier series for evaluating the inverse Laplace transformation. When failure distribution is not of an exponential form, non-Markov process or the usual definition of availability

$$A = \frac{MTBF}{MTBF + MTTR}$$
 (3.1)

may be employed. This definition assumes a steady state condition which is of an expected value function. Though non-Markovian processes have not been studied as widely as Markov processes, Sandler [76] shows that it is often possible to treat a stochastic process of the non-Markovian type by reducing it to a Markov process by increasing the number of states, each being described by a constant transition rate. He illustrates an example for a single-unit system where the failure distribution is Gamma function

$$F(t) = 1 - e^{-\lambda t} - \lambda t e^{-\lambda t}$$
 (3.2)

and the repair distribution is exponential.

$$G(t) = 1 - e^{-\mu t}$$
 (3.3)

He assumes that the unit goes through two exponential phases each of length $\frac{1}{\lambda}$ since

$$\int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$
 (3.4)

and

$$\int_0^\infty \lambda t e^{-\lambda t} dt = \frac{1}{\lambda}$$
 (3.5)

Thus, he reduces this process to a Markov process by adding one more state and obtains the steady state availability for this system. The definition given by equation (3.1) has been used as a main design criterion for maintained systems [17, 29, 40], though there is no probabilistic guarantee that specified availability value will ever be reached in practice except roughly on the average [59]. Using the definition given by equation (3.1), Wohl [94] has developed availability of a single-unit system with Weibull-distributed time to failure and repair. Martz [59] provides a definition of single-cycle availability that incorporates a probabilistic guarantee that the availability value will be reached in practice. Single-cycle availability is defined as the value Ay such that

$$P(A \ge A_{\nu}) = \nu \tag{3.6}$$

where $0 \le \nu \le 1$ is specified. To illustrate the use of this definition, he presents a few examples with exponential, uniform and Rayleigh distributions for failure and repair times, and shows that the median cycle availability $A_{\nu} = 0.5$ is equivalent to the steady state availability given by equation (3.1) in all his examples.

3.2 RELIABILITY AND AVAILABILITY MODELS FOR THE SYSTEM WITH BOTH CORRECTIVE AND PREVENTIVE MAINTENANCE

So far, in the previous section literature on reliability and availability models, only corrective maintenance has been considered. The literature on the effects of preventive

maintenance in the formulation of availability model and the cost associated with it will now be discussed. The earliest approach to the planned replacement problem has been made by Campbell [20]. He has discussed the comparative advantages of replacing a number of street lamps either all at once or Though his paper is of some interest as a as they failed. precursor of many recent investigations, his problem differs from most problems of current interest in that he does not require immediate replacement to be made when a failure occurs. Welker [89] is also concerned with mass replacement, and develops a method for determining optimum replacement intervals for certain vacuum tubes. Savage [77] studies optimum block replacement policies for an infinite time span within a more However, his formulation does not seem general setting. readily applicable since he leaves the expression for the cost as a function of the replacement interval in general form. Barlow, Hunter and Proschan[10] treat a somewhat less general version of this problem by specifying a form for the cost function. The situation is described in terms of a checking The optimal checking times are chosen to minimize problem. the expected loss, given that a cost for a single check and a cost for a failure in the system in the interval between A theory of optimum sequential replacement policies inspections. for the case of a finite time horizon has been developed by Barlow and Proschan [12]. They show that for a finite time horizon there exists policies which require that after each removal the next planned replacement interval is selected to

minimize expected expenditure during the remaining time, and that these policies will be more effective than a fixed replacement policy.

However, periodic or preventive maintenance policies assuming an infinite usage horizon seems to have received the most attention in the literature. When an optimum interval exists, Morse [65] shows how to determine the replacement interval minimizing expected cost per unit of time. Zelen [95] discusses that most of the periodic maintenance policies have the relation for the expected cost as a function of time

$$C(t, \delta) = C_1 E[N_1(t, \delta)] + C_2 E[N_2(t, \delta)]$$
 (3.7)

where C_1 is the cost of a replacement or preventive maintenance, C_2 the cost of a corrective maintenance due to a failure, $N_1(t,\delta)$ the number of preventive maintenance actions or replacement in time t, $N_2(t,\delta)$ the number of failures in time t, and δ is the maintenance period which must be determined. The criterion usually chosen is to set $dD/d\delta=0$ where

$$D(\delta) = \lim_{t \to \infty} C(t, \delta) / t$$
 (3.8)

The existence of the limit is guaranteed by the fundamental theorems of renewal theory. A comprehensive study of this type of theory is found in [7].

Renewal theory is an application of the analysis of recurrent events to problems concerning the duration of life in aggregates of physical system. Such aggregates are

sometimes referred to as self-renewing when the failure of any unit results in its replacement. The renewal density, m(t), is given by

$$m(t) = f(t) + \int_{0}^{t} m(t-x)f(x)dx$$
 (3.8a)

As shown by this equation, the probability of a renewal occurring in [t, t+dt], m(t)dt, is the sum of the probability, f(t)dt, that the first renewal is in [t, t+dt] and the sum over x of the probability that there is a renewal near t-x followed by a failure-time of length x. Hence, the process at time t is dependent of its past. A Markov process is defined as a stochastic process such that the conditional probability distribution for the state at any future instant, given the present state, is unaffected by any additional knowledge of the past history of the system. Hence, the future states of the process are independent of its past. Moreover, the behavior of the entire process for all values of the time parameter is studied in a Markov process, whereas the study of renewal processes is restricted to renewal points. One of the advantages of this restriction is that we do not make any assumptions regarding the behavior of the process during a renewal period. Whenever a process has the property that its present state is independent of its past, this implies that the exponential distribution describes the failure Whenever the failure process follows some other distribution and is time dependent, it sometimes can be approximated by the exponential distribution and can be simply

analyzed as a Markovian process. If the process cannot be approximated by the exponential distribution, the renewal theory approach must be utilized.

Earlier works on restricted forms of the periodic maintenance problems are found in [86]. In a series of report, Weiss [85, 86, 87] considers the effects on system reliability and on maintenance costs of both strictly periodic and random periodic maintenance or replacement policies for an essentially infinite usage period. The operating characteristic of random periodic policies were determined by Flehinger [37]. and Sacks [30] obtain the optimal replacement policy for a piece of equipment in which the decision to replace depends on the observed state of equipment deterioration at specified points in time. The derivation of an optimum periodic maintenance interval corresponding to a given finite span is basically much more difficult problem. Barlow and Proschan [13] prove the existence of such an optimal policy. they carefully expose the strictly periodic and random periodic maintenance problems, and have shown that for an infinite time horizon there always exists a strictly periodic maintenance policy which is superior to a random policy [12].

In practice random preventive maintenance policy or sequential replacement policy may be quite difficult to find analytically and it is therefore of some interest to restrict our attention to the preventive maintenance policy such that the preventive maintenance is scheduled at age T and preventive maintenance is actually performed only if the system has not

failed before age T. If the system has failed before age T, the system is assumed to be restored to its original good condition as a result of the corrective maintenance and the preventive maintenance is rescheduled at time T from this point. In this case, T is taken to be fixed. Bell, Kamins, and McCall [15] have investigated replacement policies for aircraft and missile parts, and have obtained specific replacement policies for parts which fail according to one of the following probability distributions: normal, log-normal, and Weibull. The relationship which gives the average hourly costs in terms of two costs, K₁ and K₂, and the failure distribution of the unit has been developed by Weissbaum [88]. His model is

$$c_{A}(T) = \frac{K_{1} - (K_{1} - K_{2})G(T)}{\int_{0}^{T} G(t)dt}$$
 (3.9)

where $C_{\Lambda}(\Lambda)$ = the average hourly cost,

 K_1 = the total cost of an in-service failure,

K₂ = the total cost of a preventive maintenance or replacement,

G(T) = the probability that a new unit will last at least T hours before failure,

T = the fixed time between preventive maintenance or replacement, and

 $\int_0^T G(t) dt =$ mean interval of all maintenance requirements. The ratio of K_1 to K_2 is the critical factor in arriving at a decision regarding preventive maintenance or replacement

policy. As the ratio increases, the lowest average hourly cost is realized by replacing the unit after a short life. Welker [89] has also considered policies which minimize the average hourly operating cost on a single unit. The effects of scheduled maintenance on availability for a system composed of a similar units of which at least n out of m units must operate for the system to be functioning have been studied by Meyers and Dick [62]. Cho [25] has introduced distribution of prolongation U(x)

$$U(x) = \frac{\int_{x}^{\infty} R(s)ds}{\int_{0}^{\infty} R(s)ds}$$
(3.10)

where R(s) is the reliability function, and has formulated a preventive maintenance objective function which maximizes system availability.

If T_f = the mean interval of corrective maintenance

 T_a = the mean interval of preventive maintenance

 T_m = mean corrective maintenance time

 T_p = mean preventive maintenance time

then, in general, $T_a < T_f$, $T_p < T_m$, and T_p is more likely to be nearly constant in duration than is T_m because of its scheduled nature [25]. Morse [65] has shown that an optimum T_a exists which will maximize the system availability A expressed as

$$A = \left(1 + \frac{aR}{1-U} + b\frac{1-R}{1-U}\right)^{-1} \tag{3.11}$$

where $a = T_p/T_f$ and $b = T_m/T_f$, and has obtained optimum T_a by using the chart with known T_p/T_m .

Rosenheim [73] has developed an expression for mean life or mean time between unscheduled maintenance of a renewable system m(T) when preventive maintenance is scheduled every T hours.

$$m(T) = \frac{\int_0^T R(t) dt}{Q(T)}$$
(3.12)

where T is the fixed interval for preventive maintenance, R(t) is the reliability function for the system, and Q(T) is the probability of failure. It has been shown that if redundancy exists the increase in mean life and reliability can be achieved by a preventive maintenance policy even when all units have constant failure rates [84]. According to Bazovsky [14], equation (3.12) is valid regardless of the failure distribution If the renewal of the system is possible either by of units. corrective maintenance or preventive maintenance, equation (3.12) can be applied to any failure time distributions. thesis, equation (3.12) is used to find the mean time between unscheduled maintenance of the system under the assumption of the following maintenance policies: The corrective maintenance policy is such that repair or replacement of units begins only after the system has failed, thus the renewal of the system is assumed to be possible as a result of the corrective maintenance. The preventive maintenance policy is such that the preventive maintenance is scheduled at age T and the preventive maintenance is actually performed only if the system has not failed before If the system has failed before age T, the system is restored to its original good condition as a result of the corrective maintenance, thus the preventive maintenance is rescheduled at time T from this noint

3.3 OPTIMIZATION OF RELIABILITY AND AVAILABILITY ALLOCATION PROBLEM IN MULTISTAGE SYSTEMS

As a high degree of complexity is involved in many of the modern systems, much interest have been shown in allocating the reliability or availability parameters such as failure rates, mean time to repair, and/or preventive maintenance period to the various units that make up a system in the early stages of system design. The practical problem is to determine those parameters from a design, redesign or operating point of view such that some measures like cost or weight of the system is minimized while a system reliability or availability requirement is met.

A number of authors has discussed optimization of reliability allocation problems in multistage systems. them. Bellman and Dreyfus [16] applied dynamic programming for solving the problem of maximizing reliability subject to the two linear constraints of cost and weight. Kettelle [55] has developed an algorithm which utilizes dynamic programming for solving the problem of maximizing reliability subject to a single cost constraint. By extending the work of Kettelle, Proschan and Bray [71] have developed a procedure for solving the problem of maximizing reliability subject to multiple linear constraints, which is a special case of the more general problem treated by Tillman and Littschwager [83]. They investigate the reliability optimization problems which are subject to linear separable constraints by using integer programming. Tillman [81] has again employed integer

programming to determine the optimum number and location of redundant units for the system which has subsystems with units, where the subsystems and the units within the same subsystem are subject to more than two modes of failure. Mizukami 647 also demonstrates the applicability of convex and integer programming to the problem of determining optimum redundancy. He describes a design method to maximize system reliability subject to several constraints on total cost, weight, volume, Rudd [74] uses dynamic programming to determine the optimal parallel redundancy of chemical processing system which maximizes the profit of the system, and illustrates an numerical example for the three-stage process system. Fan, Wang, Tillman, and Hwang [32] develop the computational procedure for the same chemical system considered by Rudd by the use of discrete maximum principle, and present numerical examples for the three-stage and eight-stage Whenever the redundant units cannot be reduced to systems. a purely parallel or series configuration in a complex system, Tillman, Hwang, Fan, and Lai [82] use the Bayes' theorem to obtain the reliability of this system, then employ the sequential unconstrained minimization technique (SUMT) for optimizing the reliability with nonlinear constraint.

Some of the relatively recent papers have treated the optimization of availability allocation problems. Goldman and Whitin [41] discuss the trade-off technique between reliability and maintainability, and show how the availability parameters consistent with minimum cost operation and the

specified system availability can be calculated. Kabak [54] has used geometric programming to determine the optimal design parameters which minimize total system cost. Johnson [53] presents a methodology for finding the optimum number of Dynamic programming is proposed for redundant units. optimizing the cost function under the predetermined availability McNichols and Messer, Jr. [61] have developed a costlevel. based procedure for allocating the availability parameters to the various units of the system. The allocation problem is expressed as the minimization of the total improvement cost, subject to the constraint of meeting the system availability goal, and is solved using Lagrange multipliers method. Shershin [79] has dealt with mathematical means for optimizing the simultaneous apportionments of reliability and maintainability by means of Lagrange multipliers and dynamic programming. Wilknson and Walvekar [92] have used dynamic programming for allocating availability optimally to a multicomponent system. They determine the MTBF and MTTR which minimize the system cost under the minimum availability requirement. As an extension of this study, Lambert, Walvekar, and Hirmas [58] present a method for determining the optimum MTBF, MTTR, and the number of redundant units to use in a multistage system to achieve a given availability at minimum cost. A three-stage example is illustrated by the use of dynamic programming.

Chatterjee [24] has studied the problem of allocating the availability parameters which consist of failure and repair rate of each unit and the preventive maintenance period to

each unit of the system consists of n subsystems in series where each subsystem has two identical units in parallel. Assuming exponential distribution for failure and repair times, he applied Markov process to obtain the availability expression for the two unit redundant system. Since the expression obtained by using Markov process reflects only the corrective maintenance he, under the assumption made on an intuitive basis that the decrease in the probability of the systems being down as a result of the introduction of preventive maintenance is directly proportional to the increase in the mean life achieved by introducing preventive maintenance, has developed the availability model which reflects both the corrective and preventive His model may well be applied, however the maintenance. principal assumption is based on an intuitive basis and the use of Markovian approach limits the applicability of the Besides, the availability model does not include the model. time required for the preventive maintenance. Therefore some different approaches are desired which could eliminate those difficiencies.

3.4 AVAILABILITY ALLOCATION PROBLEM IN THIS THESIS

No one in the literature reviewed has developed a mathematical availability model for the general series-parallel system, which reflects both the corrective and preventive maintenance. If the system can be restored to its original good condition after preventive maintenance action, the model is applicable regardless of the failure time distribution of

In addition, no one has treated the problem of each unit. allocating the availability parameters which consists of failure rate, mean corrective maintenance time, mean preventive maintenance time, and preventive maintenance period to each unit of the system. The system considered consists of N subsystems in series and each subsystem has n; identical units The availability model which reflects both the in parallel. corrective and preventive maintenance has been developed for the n unit redundant system which is equivalent to the subsystem in this study using the definition given by equation (2.12) assuming various probability distributions for the failure and repair times of each unit. The corrective maintenance begins only when the system fails due to the failure of all redundant units. The preventive maintenance is scheduled at age T and is actually performed only if the system has not failed before age T. If the system has failed before age T. the system is renewed as a result of the corrective maintenance and the preventive maintenance is rescheduled at time T from The cost structure of the system consists of this point. three cost components: cost for designing mean time between maintenance and mean maintenance time, cost for corrective maintenance, and cost for preventive maintenance. availability allocation problem is to determine the optimum availability parameters which minimize the cost of the system under the constraint of the specified availability requirement Two numerical examples are shown for the for the system. system with three subsystems in series where each subsystem

consists of two identical units in parallel. Exponential distributions are assumed for failure and repair times in the first example and Weibull failure time and general repair time distributions are assumed in the second example. Since the nature of both the objective function and the constraint is nonlinear, the optimization techniques used for solving these problems are the generalized reduced gradient (GRG) method and the sequential unconstrained minimization technique (SUMT).

Chapter 4

DEVELOPMENT OF THE MODEL

4.1 INCREASE IN MEAN TIME BETWEEN UNSCHEDULED MAINTENANCE OR MEAN LIFE DUE TO PREVENTIVE MAINTENANCE

The effects of the preventive maintenance policy on the mean life or mean time between unscheduled maintenance of redundant systems will be considered. The mean life of the system m, without preventive maintenance is defined as

$$m = \int_{0}^{\infty} tf(t)dt$$
 (4.1)

where f(t) is the failure density function of the system.

It can alternatively be defined as [80]

$$m = \int_{0}^{\infty} R(t)dt$$
 (4.2)

where R(t) is the reliability function of the system. Thus, on the average the system will fail once every m hours if failed redundant units are not replaced until system failure. However, if the preventive maintenance policy is adopted which allows for the repair or replacement of failed redundant units before the system fails, system failure can be postponed depending on how often the system is inspected and maintained if inspection reveals the presence of failed units. With this preventive maintenance policy the system will fail less frequently than it would without preventive maintenance because it is assured that after every preventive maintenance action full redundancy is restored. The mean life or the mean time between unscheduled

maintenance with preventive maintenance thus becomes longer than m, and theoretically it will become infinitely long if failed redundant units are immediately replaced. The relationship between the preventive maintenance period T and the mean time between unscheduled (corrective) maintenance when preventive maintenance is scheduled at age T will now be derived.

Rosenheim [73] has shown that the mean life or the mean time between unscheduled (corrective) maintenance of a system having redundant units can be increased by scheduling preventive To derive the general reliability and mean life maintenance. equations, the following maintenance procedure is assumed: Corrective maintenance policy is such that repair or replacement begins only when the system fails due to failure of all redundant Preventive maintenance is scheduled at age T, starting at time 0, and is actually performed only if the system has not failed before age T. Every unit is checked, and any one which has failed is replaced by a new and statistically identical unit if the exponential failure law is assumed for all units, thus the system is restored to new condition after each preventive maintenance action. To derive the reliability function, a time period of t hours can be written as

$$t = jT + s$$
 $j = 0, 1, 2, \dots; 0 \le s \le T$ (4.3)

Let us denote the reliability function of a redundant system in which preventive maintenance is scheduled at age T by $R_{\rm T}(t)$, then for a time period such that j=1 and s=0

$$R_{m}(t = T) = R(T) \tag{4.4}$$

If j=2 and s=0, the system has to operate the first T hours without failure of the system. After replacement of all failed units, another T hours of failure-free system operation is required. Hence,

$$R_{T}(t=2T) = R(T)R(T) = [R(T)]^{2}$$
 (4.5)

If 0<s<F, an additional s hours of failure-free system operation is required. Hence,

$$R_{m}(t=2T+s) = [R(T)]^{2} R(s)$$
 (4.6)

In general, the reliability function of a redundant system in which preventive maintenance is scheduled at age T can be written as

$$R_{\eta}(t=jT+s) = [R(T)]^{j} R(s) \qquad j=0,1,2,\dots; 0 \le T \quad (4.7)$$

Therefore, the mean life of a redundant system in which preventive maintenance is scheduled at age T, m(T), is

$$m(T) = \int_0^\infty R_T (t) dt$$
 (4.8)

The integral over the range 0<t<∞ can be expressed as the sum of integrals over intervals of T, or

$$m(T) = \sum_{j=0}^{\infty} \int_{jT}^{(j+1)T} R_{T}(t)dt$$
 (4.9)

Since t = jT + s, dt = ds and the limits of the integral become 0 to T.

Hence

$$m(T) = \sum_{j=0}^{\infty} \int_{0}^{T} R_{T}(t) ds$$

$$= \sum_{j=0}^{\infty} \int_{0}^{T} [R(T)]^{j} R(s) ds$$

$$= \sum_{j=0}^{\infty} [R(T)]^{j} \int_{0}^{T} R(s) ds$$

When x < 1

$$\sum_{j=0}^{\infty} x^{j} = \frac{1}{1-x}$$
 (4.10)

Substitution of R(T) in place of x gives

$$\sum_{j=0}^{\infty} \left[R(T) \right]^{j} = \frac{1}{1-R(T)} , R(T) < 1$$
 (4.11)

Therefore

$$m(T) = \frac{\int_0^T R(s)ds}{1 - R(T)}$$
 (4.12)

If we denote the unreliability of the system by Q(T), then

$$Q(T) = 1 - R(T)$$
 (4.13)

Using this notation, equation (4.12) can be rewritten as

$$m(T) = \frac{\int_0^T R(s)ds}{Q(T)} \qquad (4.14)$$

This is the mean time between unscheduled maintenance of the redundant system in which preventive maintenance is scheduled

at age T. Now, let us denote the numerator of the equation (4.14) by MTBM

$$MTBM = \int_0^T R(s)ds \qquad (4.15)$$

Then, equation (4.15) represents the mean time between both scheduled (preventive or periodic) and unscheduled (corrective) maintenance, in other words, it is the mean time at which the system is restored to its original condition [14]. Of these system maintenance actions which put the system back in a state of fully restored redundancy, 100 [Q(T)] percent are caused by unscheduled or corrective maintenance, whereas 100 [R(T)] or 100 [1 - Q(T)] percent are caused by scheduled or preventive maintenance actions. Thus, the mean time between unscheduled maintenance m(T) given by equation (4.14) is expressed as the ratio of the mean time between both scheduled and unscheduled maintenance MTBM to the fraction of maintenance caused by actual failure of the system Q(T). Similarly, since 100 R(T) percent of maintenance actions are caused by preventive maintenance, the mean time between scheduled maintenance MTBM can be written as

$$MTBM_{S} = \frac{\int_{0}^{T} R(s) ds}{R(T)}$$
 (4.16)

An example which shows the increase in mean life that can be achieved by a preventive maintenance policy is illustrated in [84] for a system having two identical units in parallel.

Each individual unit is assumed to have an exponential failure

distribution with parameter λ . Preventive maintenance is scheduled at age T, starting at time 0. The reliability function of the two unit redundant system is

$$R(t) = 2e^{-\lambda t} - e^{-2\lambda t}$$
 (4.17)

Using equation (4.14), the mean life of the system with preventive maintenance is

$$m(T) = \frac{\int_{0}^{T} (2e^{-\lambda S} - e^{-2\lambda S}) dS}{1 - (2e^{-\lambda T} - e^{-2\lambda T})}$$

$$= \frac{\frac{3}{2\lambda} - \frac{2}{\lambda} e^{-\lambda T} + \frac{1}{2\lambda} e^{-2\lambda T}}{1 - (2e^{-\lambda T} - e^{-2\lambda T})}$$
(4.18)

If preventive maintenance is not performed, i.e., $T=\infty$, m(T) becomes

$$m(T) = \frac{3}{2\lambda} \tag{4.19}$$

which is equivalent to m

$$m = \frac{3}{2\lambda} \tag{4.20}$$

For the specified value of λ , λ = .01 failures/hour, the mean life of the system with preventive maintenance for the various values of T is compared below:

$$T = \infty$$
: $m(T) = 150 \text{ hrs}$

$$T = 150 hrs : m(T) = 179 hrs$$

T = 100 hrs: m(T) = 208 hrs

T = 50 hrs: m(T) = 304 hrs

T = 10 hrs: m(T) = 1097 hrs

Figure 4.1[14] shows the mean time between unscheduled maintenance or mean life m(T) of a system with preventive maintenance as a function of the preventive maintenance period T. The shorter is T, the longer will be the m(T). Conversely, the longer T is made, the shorter becomes its m(T), and in the limit, when T = infinity, m(T) reduces to m.

$$m(T) = m = \int_{0}^{\infty} R(t) dt \qquad (4.21)$$

For the redundant system in which failure times of each individual unit is exponentially distributed, the preventive maintenance policy can achieve an increased mean life of the system if the corrective maintenance policy is such that repair begins only when the system has failed due to failure of all redundant units. When preventive maintenance is scheduled under this corrective maintenance policy, the system might have been working with some redundant units in the failed state, and these failed units can be replaced or restored to new condition. However, if the corrective maintenance policy is to replace a failed unit the instant it fails, then the system will be always in a state of fully restored redundancy, thus the application of preventive maintenance will not increase the mean life of the system.

Figure 4.1. Mean time between unscheduled maintenance of a preventively maintained redundant system where scheduled preventive maintenance period is T.

Since the exponential failure law is assumed for each of the redundant units, each unit has a constant failure rate over time, i.e., the age of a unit has nothing to do with its failure rate.

An old unit and a brand new one are equally likely to go on operating for some particular time period. Due to this constant failure rate characteristic the system can be in a state of its original good condition if only the failed units are replaced. As discussed above, we gain nothing by performing preventive maintenance for a single unit system having an exponential failure law since the unit we install is no better than the one we take out. This can be seen by comparing the mean life of a system with and without preventive maintenance.

The reliability of a single unit system is

$$R(t) = e^{-\lambda t} (4.22)$$

The mean life of a system without preventive maintenance is

$$m = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$
 (4.23)

The mean life of a system in which preventive maintenance is scheduled at age T is

$$m(T) = \frac{\int_{0}^{T} e^{-\lambda S} dS}{1 - e^{-\lambda T}}$$

$$= \frac{\frac{1}{\lambda} (1 - e^{-\lambda T})}{1 - e^{-\lambda T}}$$

$$= \frac{1}{\lambda} \qquad (4.24)$$

Thus, regardless of T, m(T) is always constant and is equal to m for a single unit system having an exponential failure law.

We have seen the effects of preventive maintenance on the mean time between unscheduled maintenance of the redundant system in which the redundant units have the exponential failure Although equation (4.14) is derived under the distribution. assumption of the exponential failure law for each of the redundant units, according to Bazovsky [14], it is valid regardless of the failure distribution of the redundant units if the system can be restored to its original good condition after each preventive maintenance action. For the system whose redundant units have increasing failure rates over time. if the unit is known to fail because of wearout and if it is not replaced on schedule, it will fail with a mean life equal to its mean wearout life. However, if the units are replaced on schedule before wearout can affect them, we can expect an increase in the mean life or the mean time between To apply equation (4.14) to the unscheduled maintenance. system whose redundant units have increasing failure rates over time, we assume that the corrective maintenance policy is such that replacement begins only when system fails due to failure of all the redundant units. When the redundant units have constant failure rates, the system can be restored to its original good condition only if failed units are replaced or overhauled during the preventive maintenance action. However, if the redundant units have increasing failure rates over time, we assume that the preventive maintenance policy is such that

both failed and unfailed units are replaced at age T only if the system has not failed before age T, thus the system is renewed after each preventive maintenance action. In summary, the following maintenance policies will be assumed throughout this thesis : Corrective maintenance begins only when the system fails due to failure of all redundant units, thus the system is renewed after each corrective maintenance action. Preventive maintenance is scheduled at age T and is actually performed only if the system has not failed before age T. If the system has failed before age T, the system is renewed as a result of the corrective maintenance, thus the preventive maintenance is rescheduled at time T from If the redundant units have constant failure this point. rates, only failed units are replaced or overhauled, whereas if the redundant units have increasing failure rates over time, both failed and unfailed units are replaced during the Under this preventive preventive maintenance action. maintenance policy, the system can be restored to its original good condition regardless of the failure distribution of the redundant units.

4.2 MEAN MAINTENANCE TIME FOR CORRECTIVE AND PREVENTIVE
MAINTENANCE

In the previous section, we have obtained the express-

ions for the mean time between unscheduled (corrective) maintenance MTBM, or m(T) and the mean time between scheduled (preventive) maintenance MTBM $_{
m s}$ for the redundant system in which preventive maintenance is scheduled at age T. have seen that the more frequently the system is scheduled for preventive maintenance, the longer will be the MTBM, Thus the probability that a system will require corrective maintenance action is reduced. If the reliability is considered as a measure of system effectiveness, then more frequent performance of the preventive maintenance will give us a higher value of the reliability. However, if the availability which takes account of the reliability as well as the maintainability is a measure of primary concern to us, then more a frequent schedule of the preventive maintenance will not necessarily give us a higher value of For the system intended for continuous the availability. service, since both the corrective and preventive maintenance actions must be taken during the duty time, the time required for both the corrective and preventive maintenance actions represents the period of a system's inoperability.

Now, let us consider the mean corrective maintenance time of the system with n identical units in parallel. If it takes $t_{\rm c}$ hours for one repairman to repair a failed unit and the corrective maintenance policy is such that repair begins only when the system fails due to failure of

all redundant units, then the mean corrective maintenance time of the n unit redundant system, \overline{M}_{ct} , with one repairman is

$$\overline{M}_{ct} = nt_c \tag{4.25}$$

Under the same corrective maintenance policy, if n repairmen are assigned to the n unit redundant system, then the mean corrective maintenance time of the system $\overline{\text{M}}_{\text{ct}}$ is

$$\overline{M}_{et} = t_e \tag{4.26}$$

therefore, mean corrective maintenance time of the redundant system \overline{M}_{ct} can be determined by the repair time distribution of the unit and the number of repairmen.

Similarly, if the mean preventive maintenance time of a unit is t_p hours for one repairman, then the mean preventive maintenance time of the system \overline{M}_{pt} , with one repairman, is

$$\overline{M}_{pt} = nt_p$$
 (4.27)

If n repairmen are ssigned to the n unit redundant system, then the mean preventive maintenance time of the system $\overline{\rm M}_{\rm pt}$ is

$$\overline{M}_{pt} = t_p \tag{4.28}$$

In general, t_p is less than t_c and is more likely to be nearly constant in duration than is t_c because of its schedule nature [25]. In the following section, various probability distributions will be assumed for the repair time of a unit requiring corrective maintenance. However, for the preventive maintenance time of a unit, a general repairtime distribution will be assumed.

4.3 AVAILABILITY MODEL FOR THE n - UNIT REDUNDANT SYSTEM WITH EXPONENTIAL DISTRIBUTION FOR FAILURE AND REPAIR TIMES

Let us consider a redundant system with n identical units in parallel. The system failure occurs only when all units are down. The corrective maintenance policy is such that repair or replacement begins only when the system fails due to failure of all redundant units. n repairmen are assigned to the system and every repairman is assumed to be equally capable. If the exponential distribution is assumed for the failure and repair times of each individual unit with a failure rate λ and a repair rate μ respectively, then the probability density function (pdf) for the failure time for each unit is given by

$$f(t) = \lambda e^{-\lambda t} , \qquad t > 0$$
 (4.29)

where $\lambda > 0$ is the constant failure rate and the pdf for the repair times of each unit is

$$g(t) = \mu e^{-\mu t}$$
, $t > 0$ (4.30)

where $\mu > 0$ is the constant repair rate. The reliability of a unit $R_a(t)$ is

$$R_{a}(t) = \int_{t}^{\infty} f(s) ds$$

$$= \int_{t}^{\infty} \lambda e^{-\lambda s} ds = e^{-\lambda t}$$
(4.31)

The unreliability of a unit $Q_a(t)$ is

$$Q_{a}(t) = \int_{0}^{t} f(s)ds$$

= 1 - R_a(t) = 1 - e^{-\lambda t} (4.32)

Now, consider a system with two identical units in parallel. Since a system failure occurs only when both units are down, the reliability of a system R(t) is

R(t) = 1 - (Probability that both units will fail)

$$= 1 - Q_a(t) Q_a(t)$$

$$= 1 - [Q_3(t)]^2$$

$$= 1 - (1 - e^{-\lambda t})^2 = 2e^{-\lambda t} - e^{-2\lambda t}$$
 (4.33)

The reliability of a two-unit redundant system given by equation (4.33) can also be obtained by structuring it as a Markov process. The general concepts of a Markov process are presented and equation (4.33) is obtained by the use of the Markovian approach in Appendix A 1.2. Similarly, for a three-unit redundant system, R(t) is

$$R(t) = 1 - [Q_a(t)]^3$$

$$= 1 - (1 - e^{-\lambda t})^3$$
(4.34)

In general, the reliability of a n-unit redundant system R(t) is

$$R(t) = 1 - [Q_a(t)]^n$$

$$= 1 - (1 - e^{-\lambda t})^n$$
(4.35)

If we denote the unreliability of a system by Q(t), then

$$Q(t) = [Q_a(t)]^n = (1 - e^{-\lambda t})^n$$
 (4.36)

where R(t) + Q(t) = 1

If preventive maintenance is scheduled at age T, then the mean time between unscheduled (corrective) maintenance of the n-unit redundant system MTBM $_{\rm u}$ (or m(t) as defined in section 4.1)

is (refer to equation (4.14))

$$MTEM_{u} = \frac{\int_{0}^{T} R(t)dt}{Q(T)}$$

$$= \frac{\int_{0}^{T} [1 - (1 - e^{-\lambda t})^{n}] dt}{(1 - e^{-\lambda T})^{n}}$$
(4.37)

and the mean time between scheduled (preventive) maintenance of the system MTBM, is (refer to equation (4.16))

$$MTBM_{S} = \frac{\int_{0}^{T} R(t)dt}{R(T)}$$

$$= \frac{\int_{0}^{T} [1 - (1 - e^{-\lambda t})^{n}]dt}{1 - (1 - e^{-\lambda T})^{n}}$$
(4.38)

Hence, the mean time between maintenance or mean interval of both scheduled and unscheduled maintenance MTBM is

$$MTBM = \frac{1}{1/MTBM_{u} + 1/MTBM_{s}}$$

$$= \int_{0}^{T} R(t)dt$$

$$= \int_{0}^{T} [1 - (1 - e^{-\lambda t})^{n}]dt \qquad (4.39)$$

The mean corrective maintenance time of a unit t_c is obtained from equation (4.30)

$$t_c = E(t) = \int_0^\infty tg(t)dt$$

$$= \int_0^\infty t\mu e^{-\mu t} dt = \frac{\Gamma(2)}{\mu} = \frac{1}{\mu}$$
(4.40)

where E(t) is the expected value of repair time t. If the corrective maintenance policy is such that repair or replacement begins only when the system fails, and if n repairmen are available, then the mean corrective maintenance time of the system \overline{M}_{ct} is

$$\overline{M}_{ct} = t_c = \frac{1}{u} \tag{4.41}$$

If we assume a general repair-time distribution for the preventive maintenance time of each unit and denote the mean preventive maintenance time of a unit by t_p , then the mean preventive maintenance time of the system \overline{M}_{pt} , with n repairmen, is

$$\overline{M}_{pt} = t_p$$
 (4.42)

Hence, the mean corrective and preventive maintenance time $\overline{\mathrm{M}}$, which represents all the system down-time resulting from both corrective and preventive maintenance is, (refer to equation(2.5))

(4.44)

$$\overline{M} = \frac{\overline{M}_{ct} (1/MTBM_{u}) + \overline{M}_{pt} (1/MTBM_{s})}{1/MTBM_{u} + 1/MTBM_{s}}$$

$$= \overline{M}_{ct} Q(T) + \overline{M}_{pt} R(T)$$

$$= (\frac{1}{u})(1 - e^{-\lambda T})^{n} + t_{p}[1 - (1 - e^{-\lambda T})^{n}] \qquad (4.43)$$

Therefore, the achieved availability of the n-unit redundant system A (which is defined as A_a in Chapter 2) is (refer to equation (2.12)) $A = \frac{MTBM}{MTBM + \overline{M}}$ $= \frac{\int_{0}^{T} R(t)dt}{\int_{0}^{T} R(t)dt + \overline{M}_{et} Q(T) + \overline{M}_{pt} R(T)}$ $= \frac{\int_{0}^{T} [1-(1-e^{-\lambda t})^{n}]dt}{\int_{0}^{T} [1-(1-e^{-\lambda t})^{n}]dt + (\frac{1}{\mu})(1-e^{-\lambda T})^{n} + t_{p}[1-(1-e^{-\lambda T})^{n}]}$

Equation (4.44) represents the general expression of the achieved availability for the n-unit redundant system with n repairmen when the exponential distribution is assumed for the failure and repair times of each individual unit.

Under the same corrective maintenance policy, if one repairman is assigned to the system, then

$$\overline{M}_{ct} = nt_c = \frac{n}{\mu}$$
 (4.45)

and

$$\overline{M}_{pt} = nt_p$$
 (4.46)

Thus, the achieved availability of the system becomes

$$A = \frac{\int_{0}^{T} [1-(1-e^{-\lambda t})^{n}]dt}{\int_{0}^{T} [1-(1-e^{-\lambda t})^{n}]dt + (\frac{n}{\mu})(1-e^{-\lambda T})^{n} + nt_{p}[1-(1-e^{-\lambda T})^{n}]}$$
(4.47)

For the evaluation of the integral term in equations (4.44) and (4.47), it is possible to expand $(1-e^{-\lambda t})^n$ using the binomial theorem.

However, especially when the failure time distribution is assumed to be other than exponential, it is difficult, if not impossible, to solve analytically. Therefore, numerical integration by the use of trapezoidal rule will be employed to evaluate this integral term (refer to Appendix A1.3).

4.4 AVAILABILITY MODEL FOR THE n-UNIT REDUNDANT SYSTEM
WITH FAILURE AND REPAIR TIME DISTRIBUTIONS OTHER
THAN EXPONENTIAL

Let us consider a n-unit redundant system whose redundant units have increasing failure rates over time. The assumptions

on the state of system failure, corrective maintenance policy, and number of repairmen are identical with those considered in the previous section. However, since the redundant units have increasing failure rates over time, we assume that the preventive maintenance policy is such that both failed and unfailed units are replaced at age T only if the system has not failed before age T. The achieved availability of the n-unit redundant system is developed assuming the following combinations of failure time - repair time distributions : Gamma - Gamma, Weibull - Weibull, Rayleigh - Rayleigh, Normal -Normal, and Weibull - general. For the preventive maintenance time of each redundant unit, a general repair time distribution is assumed. The mean time between maintenance MTBM and mean corrective and preventive maintenance time $\overline{\mathbf{M}}$ are derived for each failure and repair time distribution, note that other combinations can be used to derive the achieved availability In this section, however, only the above of the system. combinations will be considered.

Gamma distributions for failure and repair times

Let us consider Gamma distributions for failure and repair times of each redundant unit. The pdf for failure times of each unit is given by

$$f(t) = \frac{\lambda}{\Gamma(\alpha)} (\lambda t)^{\alpha - 1} e^{-\lambda t} \qquad , t > 0 \qquad (4.48)$$

where $\lambda > 0$: scale parameter

 $\alpha \geq 1$: shape parameter

Since we are interested in the increasing failure rate over time, we will restrict our attention to the case where $\alpha>1$. The pdf for repair times of each unit is

$$g(t) = \frac{\mu}{\Gamma(\beta)} (\mu t)^{\beta-1} e^{-\mu t} , t > 0$$
 (4.49)

where $\mu > 0$: scale parameter

 $\beta \geq 1$: shape parameter

The reliability of a unit $R_a(t)$ is

$$R_{a}(t) = \int_{t}^{\infty} f(s)ds$$

$$= \int_{t}^{\infty} \frac{\lambda}{\Gamma(\alpha)} (\lambda s)^{\alpha-1} e^{-\lambda s} ds \qquad (4.50)$$

By transformation of variable, i.e., let

$$\lambda s = u \tag{4.51}$$

the limits of integral become at to ∞. Hence

$$R_{a}(t) = \int_{\lambda t}^{\infty} \frac{u^{\alpha-1} e^{-u}}{\Gamma(\alpha)} du \qquad (4.52)$$

If α is a positive integer

$$\Gamma(\alpha) = (\alpha' - 1)! \tag{4.53}$$

Thus, equation (4.52) becomes

$$R_a(t) = \int_{\lambda t}^{\infty} \frac{u^{\alpha - 1} e^{-u}}{(\alpha - 1)!} du$$
 (4.54)

Equation (4.54) can be rewritten as

$$(\alpha-1)! R_{a}(t) = \int_{\lambda t}^{\infty} u^{\alpha-1} e^{-u} du$$
 (4.55)

The right hand side of equation (4.55) can be integrated by parts by letting

$$x = u^{\alpha - 1}$$
 , $dy = e^{-u} du$ (4.56)

Then, we obtain

$$dx = (\alpha - 1)u^{\alpha - 2}du$$
 , $y = -e^{-u}$ (4.57)

Hence, equation (4.55) becomes

$$(\alpha-1)!R_a(t) = e^{-\lambda t} (\lambda t)^{\alpha-1} + (\alpha-1) \int_{\lambda t}^{\infty} e^{-u} u^{\alpha-2} du$$
 (4.58)

Continuing to integrate by parts, we obtain

$$(\alpha-1)!R_{a}(t) = e^{-\lambda t} [(\lambda t)^{\alpha-1} + (\alpha-1)(\lambda t)^{\alpha-2} + (\alpha-1)(\alpha-2)(\lambda t)^{\alpha-3} + \dots + (\alpha-1)!]$$

$$(4.59)$$

Therefore

$$R_{a}(t) = e^{-\lambda t} \left[1 + \lambda t + \frac{(\lambda t)^{2}}{2!} + \dots + \frac{(\lambda t)^{\alpha - 1}}{(\alpha - 1)!} \right]$$

$$= \frac{\alpha^{-1}}{k - 0} \frac{e^{-\lambda t} (\lambda t)^{k}}{k!}$$
(4.60)

Note that equation (4.60) represents the cumulative density function (cdf) of the Poisson distribution. The reliability of the n-unit redundant system R(t) is

$$R(t) = 1 - [1 - R_a(t)]^n$$

$$= 1 - [1 - \frac{\alpha - 1}{k}] \frac{e^{-\lambda t} (\lambda t)^k}{k!}]^n \qquad (4.61)$$

and the unreliability of the system Q(t) is

$$Q(t) = 1 - R(t) = \left[1 - \frac{\alpha_{-}^{-1}}{k=0} \frac{e^{-\lambda t} (\lambda t)^{k}}{k!} \right]^{n}$$
 (4.62)

If preventive maintenance is scheduled at age T, the mean time between unscheduled maintenance of the system is (refer to equation (4.14))

$$MTBM_{u} = \frac{\int_{0}^{T} R(t)dt}{Q(T)}$$

$$= \frac{\int_{0}^{T} \left[1 - \left(1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda^{t}} (\lambda^{t})^{k}}{k!}\right)^{n}\right] dt}{\left[1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda^{T}} (\lambda^{T})^{k}}{k!}\right]^{n}}$$
(4.63)

and the mean time between scheduled maintenance of the system is (refer to equation (4.16))

$$MTBM_{S} = \frac{\int_{0}^{T} R(t)dt}{R(T)}$$

$$= \frac{\int_{0}^{T} \left[1 - \left(1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda t} (\lambda t)^{k}}{k!}\right)^{n}\right] dt}{1 - \left[1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda T} (\lambda T)^{k}}{k!}\right]^{n}}$$
(4.64)

The mean time between maintenance MTBM is

MTBM =
$$\int_{0}^{T} R(t)dt = \int_{0}^{T} \left[1 - \left(1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!}\right)^{n}\right]dt$$
 (4.65)

The mean corrective maintenance time of a unit tc is

$$t_{c} = E(t) = \int_{0}^{\infty} tg(t)dt$$

$$= \frac{\mu^{\beta}}{\Gamma(\beta)} \int_{0}^{\infty} t^{\beta}e^{-\mu t} dt \qquad (4.66)$$

If we let

$$x = \mu t \tag{4.67}$$

equation (4.66) becomes

$$t_{c} = \frac{\mu^{\beta}}{\Gamma(\beta) \mu^{\beta+1}} \int_{0}^{\infty} x^{\beta} e^{-x} dx$$

$$=\frac{\Gamma(\beta+1)}{\Gamma(\beta)\mu} = \frac{\beta}{\mu} \tag{4.68}$$

The mean corrective maintenance time of the system, with n repairmen, is

$$\overline{M}_{ct} = t_c = \frac{\beta}{\mu}$$
 (4.69)

Since general repair time distribution is assumed for the preventive maintenance time of each unit, the mean preventive maintenance time of the system, with n repairmen, is

$$\widetilde{M}_{pt} = t_p \tag{4.70}$$

Using equations (2.5), (4.63), (4.64), (4.69), and (4.70), the mean corrective and preventive maintenance time of the system $\overline{\mathbb{M}}$ is

$$\overline{M} = \left(\frac{\beta}{\mu}\right) \left[1 - \frac{\alpha \overline{\Sigma}^{1}}{k=0} \frac{e^{-\lambda T} (\lambda T)^{k}}{k!}\right]^{n} + t_{p} \left[1 - \left(1 - \frac{\alpha \overline{\Sigma}^{1}}{k=0} \frac{e^{-\lambda T} (\lambda T)^{k}}{k!}\right)^{n}\right]$$

$$(4.71)$$

Using equations (2.12), (4.65) and (4.71) the achieved availability of the system is obtained as

$$A = \left[\int_{0}^{T} \left[1 - \left(1 - \frac{\alpha \Sigma^{1}}{k = 0} \right) \frac{e^{-\lambda t} (\lambda t)^{k}}{k!} \right)^{n} dt \right]$$

$$\left[\int_{0}^{T} \left[1 - \left(1 - \frac{\alpha \Sigma^{1}}{k = 0} \right) \frac{e^{-\lambda t} (\lambda t)^{k}}{k!} \right)^{n} dt + \left(\frac{\beta}{\mu} \right) \left[1 - \frac{\alpha \Sigma^{1}}{k = 0} \right) \frac{e^{-\lambda T} (\lambda T)^{k}}{k!} \right]^{n}$$

$$+ t_{p} \left[1 - \left(1 - \frac{\alpha \Sigma^{1}}{k = 0} \right) \frac{e^{-\lambda T} (\lambda T)^{k}}{k!} \right]^{n} \right]$$

$$(4.72)$$

Equation (4.72) represents the achieved availability for the n-unit redundant system with n repairmen when Gamma distributions

are assumed for failure and repair times of each redundant unit.

For comparison, the achieved availability of the system with one repairman can be obtained by replacing $\frac{\beta}{\mu}$ and t_p by $\frac{n\beta}{u}$ and nt_p respectively in equation (4.72).

Weibull distributions for failure and repair times

Let us consider Weibull distributions for failure and repair times of each redundant unit. The pdf for failure times of each unit is given by

$$f(t) = (\lambda \alpha) t^{\alpha - 1} e^{-\lambda t^{\alpha}} , t > 0$$
 (4.73)

where $\lambda > 0$: scale parameter $\alpha > 0$: shape parameter

The pdf for repair times of each unit is

$$g(t) = (\mu \beta) t^{\beta-1} e^{-\mu t^{\beta}}$$
, $t > 0$ (4.74)

where $\mu > 0$: scale parameter

 $\beta > 0$: shape parameter

The reliability of a unit $R_a(t)$ is

$$R_{s}(t) = \int_{t}^{\infty} (\lambda s) s^{\alpha - 1} e^{-\lambda s} ds = e^{-\lambda t}$$
 (4.75)

The failure rate r(t) is obtained as [11]

$$r(t) = \frac{f(t)}{R_a(t)} = \lambda \alpha t^{\alpha - 1}$$
 (4.76)

Thus, if $\alpha > 1$, the failure rate increases with time. The reliability of the n-unit redundant system is

$$R(t) = 1 - (1 - e^{-\lambda t^{\alpha}})^{n}$$
 (4.77)

and the unreliability of the system is

$$Q(t) = (1 - e^{-\lambda t^{\alpha}})^n$$
 (4.78)

The mean time between unscheduled maintenance of the system in which preventive maintenance is scheduled at age T is (refer to equation (4.14))

$$MTBM_{u} = \frac{\int_{0}^{T} R(t)dt}{Q(T)}$$

$$= \frac{\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{\alpha}})^{n}\right] dt}{(1 - e^{-\lambda T^{\alpha}})^{n}}$$
(4.79)

and the mean time between scheduled maintenance of the system is (refer to equation (4.16))

$$MTBM_{s} = \frac{\int_{0}^{T} R(t)dt}{R(T)}$$

$$= \frac{\int_{0}^{T} \left[1 - \left(1 - e^{-\lambda t^{\alpha}}\right)^{n}\right] dt}{1 - \left(1 - e^{-\lambda T^{\alpha}}\right)^{n}}$$
(4.80)

The mean time between maintenance is

MTBM =
$$\int_{0}^{T} R(t)dt = \int_{0}^{T} [1 - (1 - e^{-\lambda t^{\alpha}})^{n}]dt$$
 (4.81)

The mean corrective maintenance time of a unit t_c is

$$t_c = \int_0^\infty tg(t)dt = \mu \frac{1}{\beta} \left[\frac{1}{\beta} + 1 \right]$$
 (4.82)

Thus, the mean corrective maintenance time of the system, with n repairmen, is

$$\overline{M}_{et} = t_e = \mu^{-\frac{1}{\beta}} \Gamma(\frac{1}{\beta} + 1)$$
 (4.83)

The mean preventive maintenance time of the system, with n repairmen, is

$$\overline{M}_{pt} = t_p \tag{4.84}$$

Using equations (2.5), (4.79), (4.80), (4.83), and (4.84), the mean

corrective and preventive maintenance time of the system $\overline{\mathtt{M}}$ is

$$\overline{M} = \left[\mu^{-\frac{1}{\beta}}\Gamma(\frac{1}{\beta} + 1)\right](1 - e^{-\lambda T^{\alpha}})^{n} + t_{p}\left[1 - (1 - e^{-\lambda T^{\alpha}})^{n}\right]$$
(4.85)

Using equations (2.12), (4.81), and (4.85), the achieved availability for the n-unit redundant system with n repairmen when Weibull distributions are assumed for failure and repair times of each unit is

$$A = \left[\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{\alpha}})^{n} \right] dt \right]$$

$$\left[\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{\alpha}})^{n} \right] dt + \left[\mu^{-\frac{1}{\beta}} \left[\left(\frac{1}{\beta} + 1 \right) \right] (1 - e^{-\lambda T^{\alpha}})^{n} + t \right]$$

$$t_{p} \left[1 - (1 - e^{-\lambda T^{\alpha}})^{n} \right]$$

$$(4.86)$$

The achieved availability of the system with one repairman can be obtained by replacing t_c and t_p by nt_c and nt_p respectively in equation (4.86).

Rayleigh distributions for failure and repair times

Let us consider Rayleigh distributions for failure and repair times of each redundant unit with parameters λ and μ

respectively. The pdf for failure times of each unit is

$$f(t) = \lambda t e^{-\lambda t^2/2}$$
 , $\lambda > 0$, $t \ge 0$ (4.87)

and the pdf for repair times of each unit is

$$g(t) = \mu t e^{-\mu t^2/2}$$
 , $\mu > 0$, $t \ge 0$ (4.88)

The reliability of a unit $R_a(t)$ is

$$R_a(t) = \int_t^\infty \lambda s e^{-\lambda s^2/2} ds = e^{-\lambda t^2/2}$$
 (4.89)

The failure rate r(t) is

$$r(t) = \frac{f(t)}{R_{s}(t)} = \lambda t \tag{4.90}$$

Thus, the failure rate linearly increases with time for $\lambda > 0$. The reliability of the n-unit redundant system is

$$R(t) = 1 - (1 - e^{-\lambda t^2/2})^n$$
 (4.91)

and the unreliability of the system is

$$Q(t) = (1 - e^{-\lambda t^2/2})^n$$
 (4.92)

If preventive maintenance is scheduled at age T, using equations (4.14), (4.16), and (4.15), MTBM, MTBMs and MTBM of the system are respectively

$$MTBM_{u} = \frac{\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{2}/2})^{n}\right] dt}{(1 - e^{-\lambda T^{2}/2})^{n}}$$
(4.93)

$$MTBM_{S} = \frac{\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{2}/2})^{n}\right] dt}{1 - (1 - e^{-\lambda T^{2}/2})^{n}}$$
(4.94)

MTBM =
$$\int_0^T [1-(1-e^{-\lambda t^2/2})^n] dt$$
 (4.95)

The mean corrective maintenance time of the system, with n repairmen, is

$$\overline{M}_{ct} = t_c = \int_0^\infty tg(t)dt = \sqrt{\pi/(2\mu)}$$
 (4.96)

The mean preventive maintenance time of the system, with n repairmen, is

$$\overline{M}_{pt} = t_p \tag{4.97}$$

Using equations (2.5), (4.93), (4.94), (4.96), and (4.97), the mean corrective and preventive maintenance time of the system $\overline{\mathbf{M}}$ is

$$\overline{M} = \sqrt{\pi/(2\mu)} (1 - e^{-\lambda T^2/2})^n + t_p[1 - (1 - e^{-\lambda T^2/2})^n]$$
 (4.98)

Using equations (2.12), (4.95), and (4.98), the achieved availability for the n-unit redundant system with n repairmen when Rayleigh distributions are assumed for failure and repair times of each unit is

$$A = \left[\int_{0}^{T} [1 - (1 - e^{-\lambda t^{2}/2})^{n}] dt \right]$$

$$\left[\int_{0}^{T} [1 - (1 - e^{-\lambda t^{2}/2})^{n}] dt + \sqrt{\pi/(2\mu)} (1 - e^{-\lambda T^{2}/2})^{n} + t_{p} [1 - (1 - e^{-\lambda T^{2}/2})^{n}] \right]$$

$$(4.99)$$

It is also possible to obtain the achieved availability of the system with one repairman by replacing t_c and t_p by nt_c and nt_p respectively.

Normal distributions for failure and repair times

Let us consider Normal distributions for failure and repair times of each redundant unit. The pdf for failure times of each unit is

$$f(t) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2}(\frac{t-\alpha}{\sigma})^2}$$
 (4.100)

where α = mean and σ = standard deviation and the pdf for repair times of each unit is

$$g(t) = \frac{1}{\sqrt{2\pi} \sigma'} e^{-\frac{1}{2}(\frac{t-\beta}{\sigma'})^2}$$
 (4.101)

where β = mean and σ' = standard deviation. The reliability of a unit $R_a(t)$ is

$$R_{a}(t) = \int_{t}^{\infty} f(s)ds$$

$$= 1 - \int_{-\infty}^{t} f(s)ds$$

$$= 1 - h(\frac{t-\alpha}{s}) \qquad (4.102)$$

where h is the tabulated normal cumulative distribution function.

Thus, the reliability of the n-unit redundant system is

$$R(t) = 1 - \left[h\left(\frac{t-\alpha}{\sigma}\right)\right]^n \tag{4.103}$$

and the unreliability of the system Q(t) is

$$Q(t) = \left[h\left(\frac{t-\alpha}{\sigma}\right)\right]^n \tag{4.104}$$

The MTBM_u, MTBM_s, and MTBM of the system in which preventive maintenance is scheduled at age T are respectively (refer to equations (4.14), (4.16), and (4.15))

$$MTBM_{u} = \frac{\int_{0}^{T} \left[1 - \left[h \left(\frac{t - \alpha}{\sigma}\right)\right]^{2}\right] dt}{\left[h \left(\frac{T - \alpha}{\sigma}\right)\right]^{n}}$$

$$(4.105)$$

$$MTBM_{S} = \frac{\int_{0}^{T} \left[1 - \left[h \left(\frac{t - \alpha}{\sigma}\right)\right]^{n}\right] dt}{1 - \left[h \left(\frac{T - \alpha}{\sigma}\right)\right]^{n}}$$
(4.106)

$$MTBM = \int_0^T \left[1 - \left[h \left(\frac{t - \alpha}{\sigma}\right)\right]^n\right] dt$$
 (4.107)

The mean corrective maintenance time of the system, with n repairmen, is

$$\overline{M}_{ct} = t_c = \beta \tag{4.108}$$

The mean preventive maintenance time of the system, with n repairmen, is

$$\overline{M}_{pt} = t_p \tag{4.109}$$

The mean corrective and preventive maintenance time of the system \overline{M} is (refer to equations (2.5), (4.105), (4.106), (4.108), and (4.109))

$$\overline{M} = \beta \left[h \left(\frac{T - \alpha}{\sigma} \right) \right]^n + t_p \left[1 - \left[h \left(\frac{T - \alpha}{\sigma} \right) \right]^n \right]$$
 (4.110)

Therefore, the achieved availability for the n-unit redundant system with n repairmen is (refer to equations (2.12), (4.107), and (4.110))

$$A = \frac{\int_{0}^{T} \left[1 - \left[h\left(\frac{t - \alpha}{\sigma}\right)\right]^{n}\right] dt}{\int_{0}^{T} \left[1 - \left[h\left(\frac{t - \alpha}{\sigma}\right)\right]^{n}\right] dt + \beta \left[h\left(\frac{T - \alpha}{\sigma}\right)\right]^{n} + t_{p} \left[1 - \left[h\left(\frac{T - \alpha}{\sigma}\right)\right]^{n}\right]}$$

$$(4.111)$$

Weibull failure-time distribution and general repair time distribution.

If the Weibull distribution is assumed for failure times of each redundant unit, from equations (4.79), (4.80), and (4.81), the MTBM, MTBMs, and MTBM are respectively

$$MTBM_{u} = \frac{\int_{0}^{T} [1 - (1 - e^{-\lambda t^{\alpha}})^{n}] dt}{(1 - e^{-\lambda T^{\alpha}})^{n}}$$
(4.112)

$$MTBM_{S} = \frac{\int_{0}^{T} \left[1 - (1 - e^{-\lambda t^{tt}})^{n}\right] dt}{1 - (1 - e^{-\lambda T^{\alpha}})^{n}}$$
(4.113)

MTBM =
$$\int_{0}^{T'} [1 - (1 - e^{-\lambda t^{\alpha}})^{n}] dt$$
 (4.114)

If general repair-time distributions are assumed for both corrective and preventive maintenance times of each redundant unit, then \overline{M}_{ct} and \overline{M}_{pt} of the system, with n repairmen, are respectively

$$\overline{M}_{ct} = t_c \tag{4.115}$$

$$\overline{M}_{pt} = t_{p}$$
 (4.116)

Using equations (2.5), (4.112), (4.113), (4.115), and (4.116), the mean corrective and preventive maintenance time of the system $\overline{\mathbf{M}}$ is

$$\overline{M} = t_c (1 - e^{-\lambda T^{\alpha}})^n + t_p [1 - (1 - e^{-\lambda T^{\alpha}})^n]$$
 (4.117)

Using equations (2.12), (4.114), and (4.117), when Weibull failuretime and general repair-time distributions of each unit are assumed, the achieved availability for the n-unit redundant system with n repairmen is

$$A = \frac{\int_{0}^{T} [1 - (1 - e^{-\lambda t^{\alpha}})^{n}] dt}{\int_{0}^{T} [1 - (1 - e^{-\lambda t^{\alpha}})^{n}] dt + t_{c} (1 - e^{-\lambda T^{\alpha}})^{n} + t_{p} [1 - (1 - e^{-\lambda T^{\alpha}})^{n}]}$$
(4.118)

In addition to the combinations treated in this section, it is possible to consider other combinations of failure time - repair time distributions. By using the already derived expressions for MTBM_u, MTBM_s, MTBM, $\overline{\mathrm{M}}_{\mathrm{ct}}$, and $\overline{\mathrm{M}}_{\mathrm{pt}}$ for various distributions for failure and repair times, we can obtain $\overline{\mathrm{M}}$ and achieved availabilities for other combinations of failure and repair time distributions. The expressions for the above quantities are summarized in Table 4.1 for the combinations treated in Sections 4.3 and 4.4.

4.5 COST STRUCTURE

A fundamental objective in the building of a system is that it be capable of performing its intended function at minimum total cost. The primary reason for developing mathematical availability models for maintained systems is to compare alternate designs and select the one that best satisfies the objective. To make cost predictions, ARINC [84] suggests " (1) break the expenditures down into rather small categories, (2) collect as much past experience on expenditures in each category as possible, and (3) predict from this information how much is likely to be spent in each category for the project being costed ". Thereafter, all the categories must again be put together to obtain the total cost of the system. General cost information with regard to the reliability and the maintainability is available in [5] and [84].

Table 4.1. Summary of the expressions for the MTBM, MTBM, MTBM, Met. Mpt. K, and A for the n-unitredundant system.

	pdf for failure times	R(t)	$\text{EXTERM}_{\mathbf{q}} = \frac{Q(2)}{Q(2)}$	$MTBM_{S} = \frac{\int_{O}^{T} R(t) dt}{R(T)}$	MTEM== for(t)dt	A = MIEN + M	
	pdf for repair times		M _{et}	• N _{pt}	$\overline{\mathbf{R}} = \frac{\overline{\mathbf{M}}_{\text{ot}}(1/\text{MTBM}_{\text{u}}) + \overline{\mathbf{M}}_{\text{pt}}(1/\text{MTBM}_{\text{g}})}{1/\text{MTBM}_{\text{u}} + 1/\text{MTBM}_{\text{g}}}$		
	· : /•-7:	1-(1-e ^{-\t}) ⁿ	$\frac{\int_{0}^{T} [1-(1-e^{-\lambda t})^{T}] dt}{(1-e^{-\lambda T})^{T}}$	$\frac{\int_{0}^{\infty} [1-(1-e^{-\lambda t})^{n}] dt}{1-(1-e^{-\lambda t})^{n}}$	∫ ₀ [1-(1-e ^{-lt}) ⁿ]dt	, for [1-(1-e-lt)] dt	
Exponential	µe−µt	1-(1-•)	1 u	t _p	$(\frac{1}{\mu})(1-e^{-\lambda T})^{n}+t_{p}[1-(1-e^{-\lambda T})^{n}]$	$\int_{0}^{T} [1-(1-e^{-\lambda t})^{n}] dt + (\frac{1}{p})(1-e^{-\lambda T})^{n} + t_{p}[1-(1-e^{-\lambda T})^{n}]$	
Çazma	\(\lambda \)(\lambda t)a-1_e-At	$1-\left(1-\frac{\alpha-1}{k}-\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}\right)^{n}$	$\frac{\int_{0}^{T} \left(1 - \left(1 - \sum_{k=0}^{\alpha-1} \frac{e^{-\lambda t} (\lambda t)^{k}}{k!}\right)^{n}\right] dt}{\left[1 - \frac{\alpha-1}{k-0} \frac{e^{-\lambda T} (\lambda T)^{k}}{k!}\right]^{n}}$	$\frac{\int_{0}^{T} \left[1-\left(1-\frac{\alpha_{T}^{-1}}{k^{2}} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!}\right)^{n}\right] dt}{1-\left[1-\frac{\alpha_{T}^{-1}}{k^{2}} \frac{e^{-\lambda T}(\lambda T)^{k}}{k!}\right]^{n}}$		$\frac{\int_{0}^{T} \left[1-\left(1-\frac{\alpha_{k-1}^{-1}}{k-0}\frac{e^{-\frac{1}{2}t}(\lambda t)^{k}}{k t}\right)^{n}\right] dt}{\int_{0}^{T} \left[1-\left(1-\frac{\alpha_{k-1}^{-1}}{k-0}\frac{e^{-\frac{1}{2}t}(\lambda t)^{k}}{k t}\right)^{n}\right] dt+\left(\frac{\delta}{2}\right)\left[1-\frac{\alpha_{k-1}^{-1}}{k-0}\frac{e^{-\frac{1}{2}T}(\lambda T)^{k}}{k t}\right]^{n}}$	
	11 (µt) ^{β-1} -µt	k=0 k1	<u>9</u>	t _p	$(\frac{9}{\mu})[1 - \frac{\alpha_{\tilde{E}}^{1}}{k=0} \frac{e^{-\lambda_{\tilde{E}}^{2}}(\lambda_{\tilde{E}})^{k}}{k!}]^{n} + t_{p}[1 - (1 - \frac{\alpha_{\tilde{E}}^{1}}{k=0} \frac{e^{-\lambda_{\tilde{E}}^{T}}(\lambda_{\tilde{E}})^{k}}{k!})^{n}]$	$+t_{p}[1-(1-\frac{\alpha-1}{2=0}\frac{e^{-\lambda T}(\lambda T)^{2}}{k!})^{n}]$	

Table 4.1. (Continued)

Weibull	(\aa) ta-1 e-\ta	1-(1-e ^{-\lambdata}) ⁿ	$\frac{\int_0^T \left[1-\left(1-e^{-\lambda t^{\alpha}}\right)^n\right] dt}{\left(1-e^{-\lambda T^{\alpha}}\right)^n}$	$\frac{\int_0^T [1-(1-e^{-\lambda t^{\alpha}})^n] dt}{1-(1-e^{-\lambda T^{\alpha}})^n}$	∫ ₀ ^T [1-(1-e ^{-λt^α}) ⁿ]it	$\frac{\int_0^T \left[1-(1-e^{-\lambda t^{\alpha}})^n\right] dt}{\int_0^T \left[1-(1-e^{-\lambda t^{\alpha}})^n\right] dt + \left[\mu^{-1/\beta} \left[\left(\frac{t}{\beta}+1\right)\right] \left(1-e^{-\lambda T^{\alpha}}\right)^n\right]}{+t_p \left[1-(1-e^{-\lambda T^{\alpha}})^n\right]}$	
	(u3)t ³⁻¹ e ^{-ut⁸}		$\mu^{-1/\beta} \lceil (\frac{1}{\beta} + 1) \rceil$	t _p			
Rayleigh	Ate-At ² /2	1-(1-e ^{-\lambda t^2/2})n	$\frac{\int_{0}^{T} [1-(1-e^{-\lambda t^{2}/2})^{n}] dt}{(1-e^{-\lambda T^{2}/2})^{n}}$	$\frac{\int_0^T \left[1 - (1 - e^{-\lambda t^2/2})^n\right] dt}{1 - (1 - e^{-\lambda T^2/2})^n}$	∫ ₀ ^T [1-(1-e ^{-λt²/2}) ⁿ]it		
	ute-ut ² /2		√π/(2μ)	t _p	$\sqrt{\pi/(2\mu)}(1-e^{-\lambda T^2/2})^n$ + $t_p[1-(1-e^{-\lambda T^2/2})^n]$	$\frac{\int_{0}^{T} [1-(1-e^{-\lambda t^{2}/2})^{n}] dt}{\int_{0}^{T} [1-(1-e^{-\lambda t^{2}/2})^{n}] dt + \sqrt{-/(2u)} (1-e^{-\lambda t^{2}/2})^{n}}{+t_{p}[1-(1-e^{-\lambda T^{2}/2})^{n}]}$	
Normal	$\frac{1}{\sqrt{2+\sigma}} e^{-\frac{1}{2}(\frac{t-\alpha}{\sigma})^2}$	$1-[h(\frac{t-\alpha}{n})]^n$	$\frac{\int_0^T \left[1-\left[h\left(\frac{t-\alpha}{\sigma}\right)\right]^n\right]dt}{\left[h\left(\frac{T-\alpha}{\sigma}\right)\right]^n}$	$\frac{\int_0^T \left[1-\left[n\left(\frac{t-\alpha}{\sigma}\right)\right]^n\right]dt}{1-\left[n\left(\frac{T-\alpha}{\sigma}\right)\right]^n}$	$\int_0^T \left[1-\left[h\left(\frac{t-\alpha}{\sigma}\right)\right]^h\right] dt$	$\int_0^{\tau} \left[1 - \left[h\left(\frac{t-\tau}{\sigma}\right)\right]^{\tau_0}\right] dt$	
	$\frac{1}{\sqrt{2\pi}\sigma'} e^{-\frac{1}{2}(\frac{t-\beta}{\sigma'})^2}$	ď	β	t _p	$\mathfrak{p}\left[h\left(\frac{T-\alpha}{\sigma}\right)\right]^{n}+\mathfrak{t}_{p}\left[1-\left[h\left(\frac{T-\alpha}{\sigma}\right)\right]^{n}\right]$	$f_0^{T}\left[1-\left[h\left(\frac{t-q}{\sigma}\right)\right]^{T}\right] t+\varepsilon\left[n\left(\frac{r-q}{\sigma}\right)\right]^{T}+t_{p}\left[1-\left[h\left(\frac{r-q}{\sigma}\right)\right]^{T}$	
Weibull	(λ ₂) t ^{α-1} e ^{-λt^α}	1-(1-e ^{-\(\lambda\)t\(\alpha\)^n}	$\frac{\int_0^T \left[1-\left(1-e^{-\lambda t^{\alpha}}\right)^n\right] dt}{\left(1-e^{-\lambda T^{\alpha}}\right)^n}$	$\frac{\int_0^T [1-(1-e^{-\lambda t^{\alpha}})^n]dt}{1-(1-e^{-\lambda T^{\alpha}})^n}$	$\int_0^{T} [1-(1-e^{-\lambda t^{\alpha}})^n] dt$	∫ ^T ₀ [1-(1-e ^{-λt^a}) ⁿ]dt	
general			t _e	t _p	$t_{c}(1-e^{-\lambda T^{\alpha}})^{n}+t_{p}[1-(1-e^{-\lambda T^{\alpha}})^{n}]$	$\int_0^T \left[1-\left(1-e^{-\lambda t^{\alpha}}\right)^n\right] dt+t_c \left(1-e^{-\lambda T^{\alpha}}\right)^n+t_p \left[1-\left(1-e^{-\lambda T^{\alpha}}\right)^n\right] dt+t_c \left(1-e^{-\lambda T^{\alpha}}\right)^n$	

^{*} General repair-time distribution is assumed for mean preventive maintenance time.

Let us divide the total cost of the n-unit redundant system into three components: the cost of design for the mean time between maintenance and the mean maintenance time, the cost of corrective maintenance, and the cost of preventive maintenance. Shershin [79] suggests that such a breakdown of the cost is justified since the data for each component can be estimated. Thus, the cost functions for each component can be stated as follows:

1. the cost of design for the mean time between maintenance and the mean maintenance time, C_d , is

$$c_d = a(MTBM) + \frac{b}{M} - c$$
 (4.119)

2. the cost of corrective maintenance, C_c , is

$$c_{c} = \left(\frac{z}{\text{MTBM}_{u}}\right) \left(d\overline{M}_{ct}\right)^{2} \tag{4.120}$$

3. the cost of preventive maintenance, $C_{\mathbf{p}}$, is

$$c_{p} = \left(\frac{z}{MTBM_{s}}\right) \left(u\overline{M}_{pt} - v\right) \tag{4.121}$$

where MTBM_u, MTBM_s, MTBM, \overline{M}_{ct} , \overline{M}_{pt} , and \overline{M} are derived in the previous section for the various probability distributions.

The parameters a, b, c, d, u, and v are cost coefficients which must be estimated from the data, and z is the total mission time of the system.

As the MTBM of the system increases, the system will operate longer without either scheduled or unscheduled down time of the system. Similarly, the decrease in M implies that the system can be repaired in a shorter time. the increase in MTBM and/or the decrease in \overline{M} will require more effort in the research and development of each unit of the system. Thus, the design cost component is expected to increase as the MTBM increases and/or the \overline{M} decreases. The corrective maintenance cost component decreases as the \overline{M}_{ct} decreases since the system can be repaired in a shorter time as $\overline{\mathbf{M}}_{\text{ct}}$ decreases. This cost component is weighted by the number of system failures during the total mission time z, z/MTBM,. The interrelationship between corrective and preventive maintenance is reflected in this weighting factor since the length of MTBM, is affected by the preventive maintenance period T. Similarly, the preventive maintenance cost component decreases as \overline{M}_{nt} decreases. This cost component is weighted by the number of preventive maintenance actions during the total mission time z, z/MTBM_s . If the preventive maintenance is scheduled more frequently, $\mathrm{MTBM}_{\mathrm{S}}$ will be smaller, thus this cost component will increase. duplication of the maintenance cost, it is assumed that the overlapping of the maintenance actions is negligible.

Now, consider a series-parallel system consisting of N

subsystems in series where each subsystem consists of n_j identical units in parallel. Due to the series connection, the entire system is down if any one of subsystems fails. Using the subscript j, the three cost components of j^{th} subsystem can be written as

$$(c_d)_j = a_j(MTBM)_j + \frac{b_j}{(\overline{M})_j} - c_j$$
 (4.122)

$$(c_e)_j = \frac{z}{(MTBM_u)_j} [d_j(\overline{M}_{et})_j]^2$$
 (4.123)

$$(C_{p})_{j} = \frac{z}{(MTBM_{s})_{j}} [u_{j}(\overline{M}_{pt})_{j} - v_{j}]$$
 (4.124)

Finally, the total cost of the series-parallel system, $\boldsymbol{c}_{\mathrm{T}}$, is

$$c_{T} = \sum_{j=1}^{N} [(c_{d})_{j} + (c_{e})_{j} + (c_{p})_{j}]$$
 (4.125)

4.6 MATHEMATICAL STATEMENT OF PROBLEM

Consider a series-parallel system with N subsystems in series where each subsystem consists of n_j identical units in parallel as shown in Figure 4.2. The subsystems are assumed to be statistically independent of each other. Due to the series connection, the entire system is down if any one of

subsystems fails. The corrective maintenance policy is such that repair or replacement of each unit of the subsystem begins only when the subsystem fails due to failure of all redundant units. The preventive maintenance for the jth subsystem is scheduled at age T_j and is actually performed only if the jth subsystem has not failed before age T_j. If the jth subsystem has failed before age T_j, this subsystem can be renewed as a result of the corrective maintenance, thus the preventive maintenance for this subsystem is rescheduled at time T_j from this point on. The number of repairmen is equal to that of units for each subsystem and they are assumed to work independently of each other. If we denote the achieved availability of the jth subsystem by A_j, then the achieved availability of the series-parallel system, A_s, is expressed as

$$A_{S} = \prod_{j=1}^{N} A_{j}$$
 (4.126)

The problem, then, is to determine T_j , $(t_p)_j$, $j=1, 2, \cdots, N$, and some particular parameters of the probability distributions for the failure and repair times of each unit for each subsystem which minimize the total cost of the system

$$c_{T} = \sum_{j=1}^{N} [(c_{d})_{j} + (c_{e})_{j} + (c_{p})_{j}]$$
 (4.127)

subject to

$$A_{s} \ge A_{o} \tag{4.128}$$

where Ao is the system availability requirement to be met.

Additional constraints are boundary conditions for each of the decision variables.

This optimization problem is formulated below more specifically for the combinations of exponential-exponential and Weibull-general distributions for failure time and repair time distributions.

Exponential distributions for failure and repair times

Using equations (4.39), (4.37), (4.38), (4.41), (4.42), (4.43), and (4.44), the mean time between maintenance, the mean time between unscheduled maintenance, the mean time between scheduled maintenance, the mean corrective maintenance time, the mean preventive maintenance time, the mean corrective and preventive maintenance time, and the achieved availability for the jth subsystem can respectively be written as

$$(MTBM)_{j} = \int_{0}^{T_{j}} [1 - (1 - e^{-\lambda} j^{t})^{n} j] dt$$
 (4.129)

$$(MTBM_u)_{j} = \frac{(MTBM)_{j}}{(1 - e^{-\lambda} j^T j)^{n} j}$$
 (4.130)

$$(MTBM_s)_{j} = \frac{(MTBM)_{j}}{1 - (1 - e^{-\lambda} j^T j)^{n} j}$$
 (4.131)

$$(\overline{M}_{\text{ct}})_{j} = \frac{1}{\mu_{j}} \tag{4.132}$$

$$(\overline{M}_{pt})_{j} = (t_{p})_{j}$$
 (4.133)

$$(\overline{\mathbf{M}})_{\mathbf{j}} = (\overline{\mathbf{M}}_{\mathbf{ct}})_{\mathbf{j}} (1 - e^{-\lambda_{\mathbf{j}} \mathbf{T}_{\mathbf{j}}})^{\mathbf{n}_{\mathbf{j}}} + (\overline{\mathbf{M}}_{\mathbf{pt}})_{\mathbf{j}} [1 - (1 - e^{-\lambda_{\mathbf{j}} \mathbf{T}_{\mathbf{j}}})^{\mathbf{n}_{\mathbf{j}}}] (4.134)$$

$$A_{j} = \frac{(MTBM)_{j}}{(MTBM)_{j} + (\overline{M})_{j}}$$
(4.135)

By substituting equations (4.129), (4.130), (4.131), (4.132), (4.133), and (4.134) into equations (4.122), (4.123), and (4.124), the three cost components for the j^{th} subsystem $(C_d)_j$, $(C_c)_j$, and $(C_p)_j$ can respectively be obtained, where a_j , b_j , c_j , d_j , u_j , and v_j are cost coefficients for the j^{th} subsystem. Then, for the known total mission time z, the problem may be stated as follows:

Determine λ_j , μ_j , $(t_p)_j$, and T_j , $j=1, 2, \dots, N$ which minimize the total cost of the system, C_{τ}

$$c_{T} = \sum_{j=1}^{N} [(c_{d})_{j} + (c_{e})_{j} + (c_{p})_{j}]$$
 (4.136)

subject to

$$A_{s} = \prod_{j=1}^{N} A_{j} \ge A_{0}$$
 (4.137)

and

$$B_{j} \leq \lambda_{j} \leq D_{j}$$
, $j = 1, 2, \dots, N$
 $E_{j} \leq \mu_{j} \leq F_{j}$, $j = 1, 2, \dots, N$
 $G_{j} \leq (t_{p})_{j} \leq H_{j}$, $j = 1, 2, \dots, N$
 $L_{j} \leq T_{j} \leq M_{j}$, $j = 1, 2, \dots, N$
 $L_{j} \leq T_{j} \leq M_{j}$, $j = 1, 2, \dots, N$

where B_j , D_j , E_j , F_j , G_j , H_j , L_j , and M_j for $j=1, 2, \cdots$, N and A_0 are known constants.

Weibull failure-time distribution and general repair-time distribution

Similarly, using equations (4.114), (4.112), (4.113), (4.115), (4.116), (4.117), and (4.118), MTBM, MTBM, MTBM, \overline{M}_{ct} , \overline{M}_{pt} , \overline{M} , and the achieved availability for th jth subsystem, when the Weibull failure-time distribution and the general repair-time distribution are assumed for each unit of each subsystem, can respectively be given by

$$(MTBM)_{j} = \int_{0}^{T} j[1 - (1 - e^{-\lambda_{j}t^{\alpha_{j}}})^{n_{j}}]dt$$
 (4.139)

$$(MTBM_u)_{j} = \frac{(MTBM)_{j}}{(1 - e^{-\lambda_{j}T_{j}})^{n_{j}}}$$
 (4.140)

$$(MTBM_{g})_{j} = \frac{(MTBM)_{j}}{1 - (1 - e^{-\lambda_{j}T_{j}})^{n_{j}}}$$
 (4.141)

$$(\overline{\mathbb{M}}_{ct})_{j} = (t_{c})_{j} \tag{4.142}$$

$$(\overline{M}_{pt})_{j} = (t_{p})_{j}$$
 (4.143)

$$(\overline{\mathbb{M}})_{j} = (\overline{\mathbb{M}}_{ct})_{j} (1 - e^{-\lambda_{j}^{T_{j}^{\alpha_{j}}}})^{n_{j}} + (\overline{\mathbb{M}}_{pt})_{j} [1 - (1 - e^{-\lambda_{j}^{T_{j}^{\alpha_{j}}}})^{n_{j}}]$$

(4.144)

$$A_{j} = \frac{(MTBM)_{j}}{(MTBM)_{j} + (\overline{M})_{j}}$$

$$(4.145)$$

The three cost components for the jth subsystem can be obtained by substituting equations (4.139), (4.140), (4.141), (4.142), (4.143), and (4.144) into equations (4.122), (4.123), and (4.124). Then, for the known total mission time z and the known shape parameters α_j , $j=1, 2, \cdots$, N, the problem may be stated as follows:

Determine λ_j , $(t_c)_j$, $(t_p)_j$, and T_j , j=1, 2, ..., N which minimize

$$c_{T} = \sum_{j=1}^{N} [(c_{d})_{j} + (c_{e})_{j} + (c_{p})_{j}]$$
 (4.146)

subject to

$$A_{s} = \int_{j=1}^{N} A_{j} \ge A_{0}$$
 (4.147)

and

$$B_{j} \leq \lambda_{j} \leq D_{j}$$
, $j=1,2,\dots, N$
 $E_{j} \leq (t_{c})_{j} \leq F_{j}$, $j=1,2,\dots, N$
 $G_{j} \leq (t_{p})_{j} \leq H_{j}$, $j=1,2,\dots, N$
 (4.148)
 $C_{j} \leq T_{j} \leq M_{j}$, $j=1,2,\dots, N$

where B_j, D_j, E_j, F_j, G_j, H_j, L_j, and M_j for j=1,2,..., N and A_o are known constants.

The optimization techniques employed for solving these problems are both the generalized reduced gradient (GRG) method and sequential unconstrained minimization technique (SUMT). The concepts and the computational procedures of the GRG and SUMT will be discussed in the following Chapter.

Chapter 5

GENERALIZED REDUCED CRADIENT (GRG) METHOD AND SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT)

5.1 GENERALIZED REDUCED GRADIENT (GRG) METHOD

The generalized reduced gradient (GRG) method has been proposed by Abadie and Carpentier [4, 38] by extending the Wolfe reduced gradient method [2, 42]. The Wolfe method solves problems with a nonlinear objective function and linear constraints, whereas the GRG method concerns itself with the case of nonlinear constraints. The GRG method has been coded in FORTRAN by Abadie [3], Abadie and Guigou [1], and Guigou [43, 44]. Three generations of programs have been developed. The first is an experimental code called GRG 66 which is followed by the second code, GRG 69. An improved code, GREG, is the outgrowth of the first two codes and is regarded as the highly promising nonlinear programming procedure.

The general nonlinear programming problem may be stated in the form of maximize

$$f_0(\underline{X}), \quad \underline{X} = (X_j | j = 1, 2, \dots, M)$$
 (5.1)

subject to the constraints

$$\underline{f}(\underline{X}) = 0, \quad \underline{f} = (f_i \mid i = 1, 2, \dots, m)$$
 (5.2)

$$a_{j} \le X_{j} \le b_{j}$$
, $j = 1, 2, \dots, M$ (5.3)

where the underbar denotes a vector.

Note that the inequality constraints can be reduced to the equality constraints by the addition of slack variables, thus any nonlinear programming problem may be put into this form.

The GRG algorithm is based on a basic optimization procedure which transforms a constrained optimization problem into one that is unconstrained. This is accomplished by partitioning the solution vector \underline{X} into m-dimensional dependent variables, \underline{y} and (M-m)-dimensional independent variables, \underline{x} . The dependent variables, \underline{y} , then, are solved in terms of the independent variables, \underline{x} , via the constraints. If a feasible point \underline{X}^0 be given in such a way as to satisfy the non-degeneracy assumption, i.e., there exists a partition of \underline{X} into \underline{x} and \underline{y} such that

$$a_{j} \le y_{j}^{0} \le b_{j}$$
, $j=1, 2, \dots, m$ (5.4)

and $\partial f/\partial y^0$ is non-singular, the GRG algorithm may, then, be briefly summarized as follows [1,52]:

- Step 1. Compute the reduced gradient, \underline{g}^{0} , and the projected reduced gradient, \underline{p}^{0} , at the starting point $\underline{X}^{0} = [\underline{x}^{0}, \underline{Y}^{0}]$. Then, the direction of movement for the independent variable \underline{x} , \underline{h}^{0} , may be $\underline{h}^{0} = \underline{p}^{0}$. It may be modified by conjugate directions, where the restriction is that $\underline{h}^{0} \cdot \underline{p}^{0} > 0$.
- Step 2. Compute θ which maximizes $f_0(\underline{x}^0 + \theta \underline{h}^0, \underline{y}^0 + \theta \underline{k}^0)$ by applying a one-dimensional search technique, where

- $\underline{\mathbf{k}}^{\mathsf{O}}$ represents the direction of movement for $\underline{\mathbf{y}}^{\mathsf{O}}$.
- Step 3. Compute $\tilde{\underline{x}}^1 = \underline{x}^0 + \theta \underline{h}^0$ and $\tilde{\underline{y}}^1 = \underline{y}^0 + \theta \underline{k}^0$, and project the values for the independent variables onto the bounds, $a_j \leq x_j \leq b_j$, $j=1, 2, \cdots, M-m$, to obtain \underline{x}^1 . Since $\tilde{\underline{y}}^1$ usually do not satisfy the feasibility conditions, it is used as the starting point for finding \underline{y}^1 iteratively at Step 4.
- Step 4. A feasible solution is obtained by solving $\underline{f}(\underline{x}^1, \underline{y}^1)$ = 0 by an iterative method. If no speedy convergence is observed, decrease θ (for instance, set $\theta = \theta/2$) and go to Step 3. Otherwise, let \underline{y}^1 be the solution obtained if the new solution, $\underline{x}^1 = [\underline{x}^1, \underline{y}^1]$, improves the objective function. If the objective function is not improved, θ is reduced by $\theta/2$ and the procedure is returned to Step 3.
- Step 5. Set $\underline{X}^0 = \underline{X}^1$ and repeat the algorithm. Theoretically, the stopping condition for the GRG algorithm is when $p_j^0 = 0$, $j = 1, 2, \cdots, M-m$. In practice, the following stopping criteria are employed:

$$\| \mathbf{p}^{\circ} \| = \sqrt{\sum_{j=1}^{m} (\mathbf{p}_{j}^{\circ})^{2}} < \epsilon$$
 (5.5)

$$p_{j}^{o} < \epsilon, \qquad j = 1, 2, \dots, M-m$$
 (5.6)

$$\left|f_{0}(\underline{x}^{1})-f_{0}(\underline{x}^{0})\right| < \epsilon \tag{5.7}$$

where $\epsilon \geq 10^{-7}$ are recommended.

Details of the GRG algorithm, computational procedures, flow diagrams, and numerical examples may be seen in [1] and [52].

The GREG program developed by Abadie and his associates of Electricité de France has been coded in FORTRAN IV. It consists of a main program, nine permanent or internal subroutines, and four user supplied external subroutines. The main program and the permanent subroutines have been compiled and stored in a partitioned data set. The four user supplied subroutines are called in the following order.

Subroutine PHIX

PHIX defines the objective function to the GREG program. This value is stored in the FORTRAN variable PHI, and is described in terms of the FORTRAN vector array, XC(J), J=1, 2, \cdots , NV. Only the original problem variables are used to describe PHI. The code is dimensioned with the constraint of NV < 100.

Subroutine CPHI

CPHI defines the inequality and/or equality constraint functions. The values are stored in the vector array VC(I), I = 1, 2, ..., NC, where NC \leq 50, and in terms of the original problem variables, XC(J), J = 1, 2, ..., NV. The constraints must be ordered with inequalities first and equalities second.

Subroutine JACOB

JACOB defines the gradients of the constraint functions. The partial derivative $\partial f_i / \partial x_j$ is stored in the matrix array A(i, j). The rows of the matrix represent each constraint function, $f_i(\underline{X})$, $i = 1, 2, \cdots$, NC, in the same order as sequenced in CPHI.

Subroutine GRADFI

GRADFI defines the gradient of the objective function in terms of the array XC(J), J=1, 2, ..., NV. The component values are stored in the vector array C(J), J=1, 2, ..., NV.

To use the GREG program, values for nineteen parameters, a starting point, a lower bound, and an upper bound must be established. The list of parameters and their definitions are given in Table 5.1 [81]. Each parameter is given a default value which is used if it is not changed in the parameter input list. The stopping criterion is recommended to be greater than 10⁻⁷. Details of the single precision arithmetic and double precision arithmetic for GRG may respectively be found in [93]and [78].

Table 5.1. Parameters

t Value	0	0	ď	*02	*9	*00	+1	0	50		0	10
Explanations	number of original problem variables.	number of inequality constraints.	number of equality constraints.	iterations for Newton's	the maximum number of bisections in the parabolic interpolation process when maximizing a function of a single variable.	of previous iterations used to help maximum value for 9.	conjugate directions are desired when otherwise zero.	diagonal directions are desired when otherwise zero.	number of iterations.	1 if the cost function is linear, otherwise,	1 if $\frac{all}{aro}$ of the constraints are linear, ise, zero.	equals zero for linear programming problems and is the number of constraints for nonlinear programming problems.
	the num	the num	the num	the max Method.	the max interpoof	the number determine a	equals 1 if maximizing,	equals 1 if maximizing,	the maximum	equals zero.	equals 1 is otherwise,	equals > the r prograr
FORTRAN Program Symbols	AV.	NIN	NEG	NEVL	NTØ (NT zero)	ITET	ICONJ	IDIAG	ITMAX	KFIL	KLIN	NCØ
FOR	• • -1	2	ю.	. 7	ň	•	2.	· ω	6	10.	t	12.

Table 5.1. (continued)

*	50 ,	0.1E0*	0.1E-02	0,1E-02	0,1E-02	0.0
the iteration which recording of the intermediate output starts. (1 < ITSOR < ITWAX)	the solution is printed out every ISOLSR iterations. For small problems, ISOLSR = ITWAX. For large problems, ISOLSR < ITWAX.	used as a criterion for the choice of a pivot in the changing and inversion of a basis. $(10^{-2} \le \text{EPSIL} \le 10^{-1})$	is used as a stopping criteria for Newton's Method. (EPSIL $\beta \geq 10^-$?)	is used as a stopping criteria if the problem is declared convex. (EPSILI $\geq 10^{-7}$)	is used as a stopping criterion by using the norm of the reduced gradient, (EPSIL2 \geq 10-7)	equals zero if the problem is non-convex; equals one if the problem is convex. This parameter affects only the stopping criteria.
ITSOR	ISOLSR	EPSIL	EPSILØ (EPSIL zero)	EPSILI	EPSIL2	PC
4	÷	15.	16.	17.	18.	19.

* - it is recommended that these values are not changed.

5.2 SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE(SUMT)

The sequential unconstrained minimization technique (SUMT) was proposed by Carroll [22, 23] and further developed by Fiacco and McCormick [34, 35]. This technique solves a constrained minimization problem by transforming it into a sequence of unconstrained minimization problems which, then, can be solved by the use of any available unconstrained minimization techniques.

The general nonlinear programming problem with nonlinear and/or linear inequality and/or equality constraints may be formulated as the problem of finding the M-dimensional column vector \underline{X} , $\underline{X} = (X_1, X_2, \dots, X_M)^T$, which minimizes

$$f(\underline{X})$$
 (5.8)

subject to

$$g_{i}(\underline{X}) \geq 0, \quad i = 1, 2, \dots, m$$
 (5.9)

$$h_{j}(\underline{X}) = 0, \quad j = 1, 2, \dots, 1$$
 (5.10)

where superscript T denotes transposition.

The SUMT technique for solving this problem is based on the minimization of a function

$$S(\underline{X}, r_k) = f(\underline{X}) + r_k \sum_{i=1}^{m} \frac{1}{g_i(\underline{X})} + r_k^{-1/2} \sum_{j=1}^{1} h_j^2(\underline{X})$$
 (5.11)

over a strictly monotonic decreasing sequence $\{r_k\}$.

Under certain restrictions, the sequence of values of the S function, $S(\underline{X}, r_k)$, is respectively minimized by a sequence of $\{\underline{X}(r_k)\}$ over a strictly monotonic decreasing sequence $\{r_k\}$, converging to the constrained optimum values of the original objective function, $f(\underline{X})$. The essential requirement is the convexity of the S function.

The intuitive concept of the S function can be described as follows:

The second term of the S function, $r_k = \frac{m}{\sum_{i=1}^{m} \frac{1}{g_i(\underline{X})}}$, can

be considered as a penalty factor attached to the objective function. By adding this penalty term, the minimization of S function will assure a minimum to be in the interior of the inequality constrained region. Since this term will approach infinity as the value of X approaches any one of the boundaries of the inequality constraints, $g_{\underline{i}}(\underline{X}) \geq 0$ for $\underline{i} = 1, 2, \cdots, m$, the value of X will tend to remain inside the inequality constrained feasible region. The third term of the S function, $r_k^{-1/2} \frac{1}{\sum} h_{\underline{j}}^2(\underline{X})$, will approach infinity as r_k approaches zero unless $h_{\underline{j}}(\underline{X}) = 0$ for all $\underline{j} = 1, 2, \cdots, 1$. Hence, this consideration will force all equality constraints to be zero.

The computational procedure is started by selecting an arbitrary starting point inside the feasible region bounded by the inequality constraints and selecting a value of \mathbf{r}_k either arbitrarily or using the formula. Minimization of S function for the current value of \mathbf{r}_k is made by the use of any unconstrained minimization technique (e.g., the second-

order gradient method or Hooke and Jeeves pattern search method). After a minimum value of S function is reached, the value of r_k is reduced and a search is repeated starting from the previous minimum point of S function. To obtain any meaningful optimal solution, the procedure must satisfy two stopping criteria. The first criterion is needed to terminate the minimization of S function for each value of r_k . When Hooke and Jeeves pattern search method is used, this criterion is the predetermined limit, and if the step size is reduced below this limit convergence is assumed. The criteria used for the second-order gradient method may be seen in $\lceil 49 \rceil$.

The second stopping criterion such as

$$\left\| \frac{f[\underline{X}(\mathbf{r}_{k})]}{G[\underline{X}(\mathbf{r}_{k})]} \right\| -1 < \epsilon \tag{5.12}$$

is needed for terminating overall minimization of $f[\underline{X}(r_k)]$, where the dual value, $G[\underline{X}(r_k)]$, is defined as [34]

$$G[\underline{X}(r_k)] = f[\underline{X}(r_k)] - r_k \sum_{i=1}^{m} \frac{1}{\varepsilon_i(\underline{X})} + r_k^{-1/2} \sum_{j=1}^{1} h_j^2(\underline{X}) \quad (5.13)$$

In general, ϵ is ranging from 10⁻³ to 10⁻⁵. By employing a strictly monotonic decreasing sequence of $\{r_k\}$, a monotonic decreasing sequence $\{s_{\min}(\underline{x}, r_k)\}$ inside the feasible region is obtained. As r_k approaches zero the

second term of S function approaches zero and the equality constraints, $h_j(\underline{X}) = 0$ for $j = 1, 2, \cdots, 1$, are forced to be satisfied, thus the third term of S function is forced to approach zero. Therefore, as r_k approaches zero $S(\underline{X}, r_k)$ approaches $f(\underline{X})$, where \underline{X} is the optimum point which yields the minimum $S(\underline{X}, r_k)$ as well as the minimum $f(\underline{X})$. For details of the SUMT algorithm, computational procedures, flow diagrams, and numerical examples, refer to [49] and [57].

Currently available computer program for the SUMT is "RAC Computer Program Implementing the SUMT for Nonlinear Programming", IBM SHARE number 3189, developed by McCormick, This computer program uses a second-Mylander, and Fiacco. order gradient search method as the unconstrained minimization To use a second-order gradient search method, technique. one has to find the first- and second-order derivatives of the converted objective function. This, often, arises difficulties whenever the nonlinear programming problem is a highly complex one. To bypass this difficulty, a modified version was developed by Lai [57]. The modified version incorporates the Hooke and Jeeves pattern search method [47, 51] which requires no derivatives. The direction of search in the gradient method is the steepest descent direction, whereas in the Hooke and Jeeves pattern search technique it is determined by a direct comparison of two values of the objective function at two points separated from each other For this reason, when the pattern search by a finite step. is close to the boundary of inequality constraints, it falls

into the infeasible region. A heuristic technique developed by Paviani and Himmelblau [68] is then used to direct the search back into the feasible region.

The program designed by Lai [93] consists of the following routines:

Main Program

Subroutine BACK - used to pull back infeasible point.

Subroutine PENAT - used to compute penalty terms.

Subroutine WEIGH - used to compute the weight of violations.

Subroutine READIN - used to read in additional data if needed.

Subroutine OUTPUT - used to print additional information if needed.

Subroutine OBRES - used to compute the objective function and constraints.

Lai's original program uses the WATFOR compiler, however, in this work some statements have been changed to use the FORTRAN H level since this compiler is faster than WATFOR compiler. The list of information which the program requires is shown in Table 5.2. If the objective function is considered to be flat, the double precision procedure is recommended. As discussed earlier the optimum \underline{X} value is obtained when the S functional value approaches the f functional value. The program computes a final stopping criteria, YSTOP, at the end of each stage of the monotonically decreasing sequence of R. If YSTOP becomes less than THETA at any stage, the computation stops, and the value of \underline{X} at that stage is the final optimal

point.

Details of Lai's modified version may be seen in [57].

Table 5.2. List of information

FORTRAN Program Symbol	<u>Explanations</u>
N	total number of decision variables.
MG	total number of inequality constraints.
MH	total number of equality constraints.
R	the penalty coefficient, rk.
RATIO	reducing rate for reducing R.
INCUT	stopping criterion for stopping each k-
	iteration.
THETA	final stopping criterion.
x(1)	initial starting point.
D(1)	step size in the Hooke and Jeeves pattern
	search.
OX(I)	estimated optimum point.
NOPM	number of input problem sets.
XAMTI	specified maximum number of calculating
	f-functional values within each k-iteration.
MAXP	specified maximum number of k-iterations.
ISIZE	input option code for initial step size set-up.
ICUT	input option code for the step size in each
	of the stage.
Y	function of X(I) for the objective function.
G(J)	function of X(I) for the j th inequality
	constraint.
H(K)	function of X(I) for the k th equality constraints

Chapter 6

NUMERICAL EXAMPLES

6.1 EXAMPLE 1 : EXPONENTIAL DISTRIBUTIONS FOR FAILURE
AND REPAIR TIMES

Problem Statement

Consider a series-parallel system with three subsystems in series where each subsystem consists of two identical units in parallel. Due to the series connection, the entire system is down if any one of subsystems fails. Let the failure times and repair times of each unit of the j^{th} subsystem be exponentially distributed with failure rate λ_j and repair rate μ_j . Then, the following assumptions are made to formulate the problem :

- The subsystems are statistically independent of each other.
- 2. The number of repairmen is equal to that of units for each subsystem. Every repairman is equally capable and works independently of each other.
- 3. The corrective maintenance policy is such that repair or replacement of each unit of the jth subsystem begins only when the jth subsystem fails due to failure of both redundant units. Hence, the subsystem redundancy is fully restored after the completion of the corrective maintenance action.
- 4. The preventive maintenance for the j^{th} subsystem is scheduled at age T_j and is actually performed only if

the jth subsystem has not failed before age T_j. If
the jth subsystem has failed before age T_j, this subsystem
can be renewed as a result of the corrective maintenance,
thus the preventive maintenance for this subsystem
is rescheduled at time T_j from this point. The preventive maintenance action consists of replacing or overhauling only failed units. Since redundant units have
constant failure rate, the subsystem can be restored
to its original good condition under this preventive
maintenance policy.

5. General repair time is assumed for the mean preventive maintenance time of each unit, $(t_p)_j$, for the j^{th} subsystem.

The cost of each subsystem consists of three cost components: the cost of design for the mean time between maintenance and mean maintenance time, the cost of corrective maintenance, and the cost of preventive maintenance. The total cost of the series-parallel system is the summation of the cost of each subsystem.

The problem, then, is to determine the failure rate λ_j , the repair rate μ_j , the mean preventive maintenance time $(t_p)_j$, and the scheduled preventive maintenance period T_j , for j=1,2,3, which minimize the total cost of the system under the constraint of the system availability requirement.

Problem Formulation

The following values are assumed for the following constants:

Number of subsystems :

$$N = 3$$
 (6.1)

Number of identical units for each subsystem ;

$$n_j = 2$$
 , $j = 1, 2, 3$ (6.2)

Total mission time ;

$$z = 1500.$$
 (6.3)

System availability requirement;

$$A_0 = .97$$
 (6.4)

Cost coefficients for each subsystem;

$$a_1 = .6$$
 $a_2 = .5$ $a_3 = .8$
 $b_1 = 400.$ $b_2 = 500.$ $b_3 = 600.$
 $c_1 = 5.$ $c_2 = 5.$ $c_3 = 5.$
 $d_1 = 1.8$ $d_2 = 2.$ $d_3 = 1.7$
 $u_1 = 20.$ $u_2 = 15.$ $u_3 = 50.$
 $v_1 = 3.$ $v_2 = 4.$ $v_3 = 2.$

Boundary values for each variable ;

$$B_{j} = .001$$
, $D_{j} = .02$, $j = 1, 2, 3$
 $E_{j} = .02$ $F_{j} = .6667$, $j = 1, 2, 3$
 $G_{j} = .5$ $H_{j} = 25$. $j = 1, 2, 3$
 $G_{j} = .5$ $G_{j} = .5$

By substituting equations (4.129), (4.130), (4.131), (4.132), (4.133), and (4.134) with equation (6.2) and (6.3) into equations (4.122), (4.123), and (4.124), the three cost components of each subsystem $(C_d)_j$, $(C_c)_j$, and $(C_p)_j$, for j = 1, 2, 3, are respectively given by

$$(c_{d})_{j} = a_{j} \int_{0}^{T_{j}} [1 - (1 - e^{-\lambda_{j} t})^{2}] dt + \frac{b_{j}}{(\frac{1}{\mu_{j}})(1 - e^{-\lambda_{j} T_{j}})^{2} + (t_{p})_{j} [1 - (1 - e^{-\lambda_{j} T_{j}})^{2}]} - c_{j}$$

$$, j = 1, 2, 3 \quad (6.7)$$

$$(c_{c})_{j} = \frac{1500}{\int_{0}^{T} [1-(1-e^{-\lambda_{j}t})^{2}]dt} [d_{j}(\frac{1}{\mu_{j}})]^{2}$$

$$(1-e^{-\lambda_{j}T})^{2}$$

$$, j = 1, 2, 3$$

$$(6.8)$$

$$(c_{p})_{j} = \frac{1500}{\int_{0}^{T} j [1-(1-e^{-\lambda}j^{t})^{2}]dt} [u_{j}(t_{p})_{j} - v_{j}], \quad j=1,2,3$$

$$1-(1-e^{-\lambda}j^{T}j)^{2}$$

$$(6.9)$$

where the values for the cost coefficients of each subsystem, a_j , b_j , c_j , d_j , u_j , and v_j , for j=1,2,3, are given by equation (6.5). By substituting equations (4.129) and (4.134) with equation (6.2) into equation (4.135), the achieved availability of each subsystem, A_j , j=1,2,3, is given by

$$A_{j} = \left\{ \int_{0}^{T_{j}} [1 - (1 - e^{-\lambda_{j} t})^{2}] dt \right\}$$

$$\left\{ \int_{0}^{T_{j}} [1 - (1 - e^{-\lambda_{j} t})^{2}] dt + (\frac{1}{\mu_{j}}) (1 - e^{-\lambda_{j} T_{j}})^{2} + (t_{p})_{j} [1 - (1 - e^{-\lambda_{j} T_{j}})^{2}] \right\} , j = 1, 2, 3$$

$$(6.10)$$

The total cost of the system, C_T , which is a function of λ_j , μ_j , $(t_p)_j$, and T_j , for j=1, 2, 3, is then given by

$$c_{T} = \sum_{j=1}^{3} [(c_{d})_{j} + (c_{e})_{j} + (c_{p})_{j}]$$
 (6.11)

where $(C_d)_j$, $(C_c)_j$, and $(C_p)_j$ are respectively given by equations (6.7), (6.8), and (6.9).

Since the three subsystems are in series, the system is operational only when all three subsystems are operational. Hence, the achieved availability of the system, $\mathbf{A_s}$, is given by

$$A_{s} = \int_{j=1}^{\pi} A_{j}$$
 (6.12)

where A_{j} is given by equation (6.10).

Then, for the total mission time z=1500 hours, the problem is to determine λ_j , μ_j , $(t_p)_j$, and T_j , for j=1,2,3, which minimize the total cost of the system, C_T , given by equation (6.11) under the constraint of the system availability requirement

$$A_{s} \ge A_{o} = .97$$
 (6.13)

with the boundary conditions for each of variables

.001
$$\leq \lambda_{j} \leq .02$$
 , $j=1,2,3$
.02 $\leq \mu_{j} \leq .6667$, $j=1,2,3$
.5 $\leq (t_{p})_{j} \leq 25$, $j=1,2,3$
100. $\leq T_{j} \leq 800$, $j=1,2,3$

Problem Definition for the GRG program

The nonlinear programming problem in the GRG format is stated as follows:

maximize $-C_{\text{T}}$ subject to

$$.97 - A_{s} \le 0$$

$$A_{s} - 1. \le 0$$
(6.15)

As discussed in section 5.1, in order to use the GREG program the individual variables are described in terms of the FORTRAN vector array XC(j), $j=1,2,\cdots,12$, i.e.,

$$\lambda_{j} = XC(j)$$
 , $j=1,2,3$
 $\mu_{j} = XC(j+3)$, $j=1,2,3$
 $(t_{p})_{j} = XC(j+6)$, $j=1,2,3$
 $T_{j} = XC(j+9)$, $j=1,2,3$

(6.16)

Using these original problem variables, the objective function PHI is defined in the subroutine PHIX. Since the problem must be defined in the form of maximizing the objective function, we set

$$PHI = -C_{\tau} \tag{6.17}$$

Constraints are defined in subroutine CPHI using vector array VC(i) , i=1,2, i.e.,

$$VC(1) = .97 - A_{s}$$
 (6.18)

$$VC(2) = A_S - 1.$$

In subroutine JACOB, the numerical partial derivatives of the constraints with respect to each variable are defined using the matrix array A(i,j). The numerical partial derivatives of the objective function with respect to each variable are defined using vector array C(j), j=1,2,...,12, in subroutine GRADFI. The reason we take the numerical partial derivatives is due to the fact that both the objective function and the constraints are of highly nonlinear. In the data cards, the following parameter values are specified:

NV = 12

NIN = 5

ISOLSR = 1

Other parameters not listed above are given default values as shown in Table 5.1. After the parameter data, a starting point, a lower bound, and a upper bound must follow. For details of the user supplied subroutines, refer to Appendix 2. Problem Definition for the SUMT Program

The nonlinear programming problem in the SUMT format is stated as follows:

minimize C_{T}

subject to

$$g(j) = \lambda_j - .001 > 0 , j=1,2,3$$

$$g(j+3) = .02 - \lambda_{j} > 0 , j=1,2,3$$

$$g(j+6) = \mu_{j} - .02 > 0 , j=1,2,3$$

$$g(j+9) = .6667 - \mu_{j} > 0 , j=1,2,3$$

$$g(j+12) = (t_{p})_{j} - .5 > 0 , j=1,2,3$$

$$g(j+15) = 25. - (t_{p})_{j} > 0 , j=1,2,3$$

$$g(j+18) = T_{j} - 100. > 0 , j=1,2,3$$

$$g(j+21) = 800. - T_{j} > 0 , j=1,2,3$$

$$g(25) = A_{s} - .97 > 0$$

$$g(26) = 1. - A_{s} > 0$$

To use the SUMT program, FORTRAN vector array X(j), $j=1,2,\dots,12$, is used to represent the individual variables, i.e.,

$$\lambda_{j} = X(j)$$
 , $j=1,2,3$
 $\mu_{j} = X(j+3)$, $j=1,2,3$
 $(t_{p})_{j} = X(j+6)$, $j=1,2,3$
 $T_{j} = X(j+9)$, $j=1,2,3$

(6.20)

The objective function and constraints are respectively defined using the FORTRAN variable Y and vector array G(J), $J=1, 2, \cdots$, 26, in subroutine OBRES. In the data cards, the following parameter values are specified:

NOPM = 1

NAME = SUMTAV

N = 12

MG = 26

MH = 0

R = 0

RATIO = 0

ITMAX = 500

INCUT = 4

THETA = 10^{-3}

MAXP = 30

ISIZE = 0

ICUT = 1

After the parameter data, a starting point, a step size, and the estimated optimum values must follow. For details of the SUMT computer program, refer to Appendix 2.

GRG Results

A GRG solution obtained by starting from a set of initial starting values, $\begin{bmatrix} \lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \mu_3, (t_p)_1, (t_p)_2, (t_p)_3, T_1, T_2, T_3 \end{bmatrix} = \begin{bmatrix} .005, .005, .005, .04, .04, .04, 2., 2., 2., 500., 500., 500. \end{bmatrix}$, is shown in Table 6.1a. The stopping criterion used to terminate the program is

$$\left| f_{o}(\overline{x}^{o} + \theta \overline{h}^{o}, \overline{y}^{o} + \theta \overline{k}^{o}) - f_{o}(\overline{x}^{o}, \overline{y}^{o}) \right| < 10^{-12} \left| f_{o}(\overline{x}^{o}, \overline{y}^{o}) \right|$$

$$(6.21)$$

where f_0 , \overline{x}^0 , \overline{y}^0 , \overline{h}^0 , \overline{k}^0 , and θ are defined in section 5.1. It is worth noting that the first six variables, λ_j 's and μ_j 's, are more sensitive than the remaining variables.

Table 6.1a. GRG solution for the first set of starting values (numerical example 1)

Iteration	f	ailure r	ate	re	pair rat	te		n prevent n tenance				ventive period	cos	t of des	ign	cost of maintena	corrective ince		cost o	of preve	ntive	total cost	system avail- ability
No.	λ ₁	λ2	λ3	μ ₁	μ2	μ3	(t _p) ₁	(t _p) ₂	(t _p)3	T ₁	T ₂	^T 3	(c _d) ₁	(c _d) ₂	(c _d)3	(c _c) ₁	(c _e) ₂	(c _c) ₃	(c _p) ₁	(c _p) ₂	(c _p) ₃	c _T	As
starting point	.005	.005	.005	. 04	.04	.04	2.	2.	2.	500.	500.	500.	174.41	152.31	237.34	9555.39	11796.80	8523-17	32.62	-22.92	86.40	30581.35	.79423
1	.001	.001	.001	.04717	.04856	.04652	2.	2.	2.	500.	500.	500.	368.67	346.87	505.95	526,99	587.39	493.81	98.73	69.38	261.50	3914.44	.97217
2	.001	.001	.001	.05194	.05376	.05096	1.99998	1.99998	1.99996	500.	500.	500.	375.12	354.41	515.34	418.86	474.94	394.59	98.73	69.38	261.49	3446.60	•97396
3	.001	.001	.00220	.05194	.05376	.16299	1.99998	1.99998	1.99996	500.	500.	500.	365.70	341.96	476.83	586.96	676.46	178.55	98.73	69.38	200.27	2994.83	.97166
4	.001	.001	.00220	.05194	.05376	.25484	1.99998	1.99998	1.99996	500.	500.	500.	365.70	341.96	644.72	568.96	676.46	13.18	98.73	69.38	200.27	2943.16	.97639
5	.001	.001	.00392	.05231	.05417	.25484	1.99998	1.99998	1.99996	500.	500.	500.	366.26	342.72	442.28	575.12	661.77	137.20	98.73	69.38	139.33	2823.05	.97128
6	.001	.001	.00685	.14557	.15676	.26059	1.99964	1.99974	1.99964	500.	500.	500.	412.68	403.31	333.62	116.17	124.99	269.13	98.72	69.37	52.38	1820.70	.97131
7	.001	.001	.00642	.14557	.15676	.26059	1.99964	1.99974	1.99964	500.	500.	500.	425.33	419.28	334.89	74.73	79.56	265.12	98.71	69.37	52.53	1819.52	.97247
8	.001	.001	.00639	.14557	.15676	.26059	1.99964	1.99974	1.99964	500.	500.	500.	425.33	419.28	335.31	74.73	79.56	264.39	98.71	69.37	52.84	1819.51	.97251
9	.001	.001	.00629	.14559	.15678	.26064	1.99964	1.99974	1.99964	500.	500.	500.	425.33	419.28	337.14	74.72	79.55	261.20	98.71	69.37	54.17	1819.46	.97267
10	.001	.001	.00622	.14563	.15681	.26072	1.99964	1.99974	1.99963	500.	500.	500.	425.34	419.29	339.28	74.69	79.52	257.51	98.71	69.37	55.71	1819.43	.97286
11	.001	.001	.00594	.14606	.15720	.26170	1.99963	1.99975	1.99961	500.	500.	500.	425.52	419.47	348.54	74.23	79.11	241.60	98.71	69.37	62.18	1819.74	.97365
12	.001	.001	.00758	.15265	.16313	.27640	1.99951	1.99996	1.99932	500.	500.	500.	427.98	421.99	317.99	67.96	73.47	241.60	98.71	69.38	34.18	1793.68	.97094
13	.001	.001	.00689	.15265	.16313	.27640	1.99951	1.99996	1.99992	500.	500.	500.	427.98	421.99	332.63	67.96	73.47	254.77	98.71	69.38	44.14	1791.03	.97247
14	.001	.001	.00684	.15265	.16313	.27640	1.99951	1.99996	1.99932	500.	500.	500.	427.98	421.99	333.37	67.96	73.47	253.50	98.71	69.38	44.66	1791.02	.97254
15	.001	.001	.00675	.15267	.16315	.27645	1.99951	1.99996	1.99932	500.	500.	500.	427.99	421.99	335.17	67.95	73.46	250.42	98.71	69.38	45.92	1790.98	.97217
16	.001	.001	.00669	.15270	.16317	.27651	1.99951	1.99996	1.99931	500.	500.	500.	428.00	422.00	336.86	67.93	73.44	247.54	98.71	69.38	47.10	1790.96	.97287
17	.001	.001	.00653	.15284	.16331	.27686	1.99951	1.99996	1.99931	500.	500.	500.	428.04	422.05	340.30	67.83	73.35	241.71	98.71	69.38	49.46	1790.80	.97318
15	.001	.001	.00701	.15302	.16347	.27726	1.99950	1.99997	1.99930	500.	500.	500.	428.12	422.13	330.42	67.64	73.17	257.94	98.70	69.38	42.23	1789.72	.97226
19	.001	.001	.00681	.15305	.16349	.27733	1.99950	1.99997	1.99930	500.	500.	500.	428.12	422.14	333.60	67.62	73.15	252.37	98.70	69.38	44.44	1789.51	.97257

Table 6.1a. (continued)

Iteration	λ ₁	λ ₂	λ3	μ1	μ2	μ3	(t _p) ₁	(t _p) ₂	(t _p) ₃	^T 1	т2	т3	(c _d) ₁	(c _d) ₂	(c _d) ₃	(C _c) ₁	(c _c) ₂	(c _c)3	(c _p) ₁	(c _p)2	(c _p)3	c _T ·	As
20	.001	.001	.00675	.15307	.16351	.27737	1.99950	1.99997	1.99930	500.	500.	500.	428.13	422.14	335.96	67.60	73.14	248.34	98.70	69.38	46.09	1789.49	.97279
21	.001	.001	.00668	.15310	.16354	.27747	1.99950	1.99997	1.99930	500.	500.	500.	428.14	422.16	337.67	63.57	73.11	245.44	98.70	69.38	47.28	1789.45	.97295
22	.001	.001	.00584	.15795	.16799	.28892	1.99941	2.00018	1.99907	500.	500.	500.	429.87	423.97	367.81	63.48	69.28	194.24	98.70	69.39	64.55	1781.29	.97549
23	.001	.001	.01354	.24108	.24428	.48495	1.99790	2.00366	1.99523	500.	500.	500.	451.68	447.40	374.51	27.25	32.76	166.21	98.62	69.53	3.04	1671.00	.97215
24	.001	.001	.01142	.24462	.24752	.49328	1.99784	2.00383	1.99506	500.	500.	500.	452.37	448.16	395.68	26.47	31.91	135.25	98.62	69.53	7.43	1665.41	.97520
25	.00266	.00211	.01060	.24462	.24752	.49328	1.99784	2.00383	1.99506	500.	500.	500.	351.06	375.37	403.53	115.58	101.04	125.41	66.84	54.47	10.39	1603.70	•97099
26 .	.00278	.00195	.01065	. 24464	.24753	.49328	1.99784	2.00383	1.99506	500.	500.	500.	346.04	383.17	403.10	121.48	92.01	125.92	65.01	56.30	10.22	1603.23	.97098
27	.00291	.00191	.01050	.24468	.24756	.49327	1.99783	2.00383	1.99506	500.	500.	500.	339.08	387.65	404.50	129.94	87.02	124.28	62.44	57.33	10.80	1603.04	.97098
28	.00291	.00191	.01050	.24468	.24756	.49327	1.99783	2.00383	1.99506	500.	500.	500.	339.09	387.68	404.49	129.93	86.99	124.29	62.45	57.33	10.79	1602.89	.97098
Pinal	.00291	.00191	.01050	.24468	.24756	.49327	1.99783	2.00383	1.99506	500.	500.	500.	337.85	387.67	404.50	130.67	87.00	124.29	62.80	57.33	10.79	1602.89	.97093

If we recall that the direction of movement in the GRG is along the projected reduced gradient and the magnitude of the reduced gradient for each independent variable, i.e., the magnitude of the movement for each variable is determined by the magnitude of the partial derivatives of both objective function and constraints with respect to each variable, then this phenomenon can be explained to be caused due to the great differences between the magnitude of the numerical partial derivatives of both objective function and constraints with respect to each variable in this particular problem. To illustrate these differences, let us investigate the approximate values of the partial derivatives of objective function (f_0) and two constraints (f_1 and f_2) with respect to each variable at one particular iteration, i.e., at 19th iteration.

$$\frac{\partial f_0}{\partial \lambda_1} = -0.18 \times 10^5 , \frac{\partial f_0}{\partial \lambda_2} = -0.28 \times 10^5 , \frac{\partial f_0}{\partial \lambda_3} = -0.15 \times 10^4$$

$$\frac{\partial f_0}{\partial \mu_1} = 0.46 \times 10^3 , \frac{\partial f_0}{\partial \mu_2} = 0.42 \times 10^3 , \frac{\partial f_0}{\partial \mu_3} = 0.11 \times 10^4$$

$$\frac{\partial f_0}{\partial (t_p)_1} = -0.83 \times 10 , \frac{\partial f_0}{\partial (t_p)_2} = 0.19 \times 10^2 , \frac{\partial f_0}{\partial (t_p)_3} = -0.20 \times 10^2$$

$$\frac{\partial f_0}{\partial T_1} = -0.25 , \frac{\partial f_0}{\partial T_2} = -0.22 , \frac{\partial f_0}{\partial T_3} = 0.25$$

$$(6.22)$$

$$\frac{\partial f_{i}}{\partial \lambda_{1}} = \pm 0.30 \times 10^{-1}, \frac{\partial f_{i}}{\partial \lambda_{2}} = \pm 0.28 \times 10^{-1}, \frac{\partial f_{i}}{\partial \lambda_{3}} = \pm 0.22 \times 10^{-1}$$

$$\frac{\partial f_{i}}{\partial \mu_{1}} = \pm 0.13 \times 10^{-1}, \frac{\partial f_{i}}{\partial \mu_{2}} = \pm 0.11 \times 10^{-1}, \frac{\partial f_{i}}{\partial \mu_{3}} = \pm 0.53 \times 10^{-1}$$

$$\frac{\partial f_{i}}{\partial (t_{p})_{1}} = \pm 0.17 \times 10^{-2}, \frac{\partial f_{i}}{\partial (t_{p})_{2}} = \pm 0.17 \times 10^{-2}, \frac{\partial f_{i}}{\partial (t_{p})_{3}} = \pm 0.30 \times 10^{-3}$$

$$\frac{\partial f_{i}}{\partial T_{1}} = \pm 0.52 \times 10^{-5}, \frac{\partial f_{i}}{\partial T_{2}} = \pm 0.54 \times 10^{-5}, \frac{\partial f_{i}}{\partial T_{3}} = \pm 0.15 \times 10^{-5}$$

$$(6.23)$$

where upper sign corresponds to the first constraint, i=1, and lower sign corresponds to the second constraint, i=2. The values of the partial derivatives vary from one iteration to another. However, almost the same magnitude of difference has been maintained throughout iterations. Note that the magnitudes of the partial derivatives of both objective function and constraints with respect to T_j 's are negligible compared with those with respect to λ_j 's and μ_j 's. This is why T_j 's are remained almost unchanged throughout iterations whereas λ_j 's and μ_j 's are relatively sensitive. This type of difficulty sometimes makes the computation inefficient and may lead the program terminated at a false optimum.

One possible alleviation from this difficulty is to employ the inverse of those sensitive variables as original problem variables. This approach is not guaranteed to work,

Therefore, the fundamental alleviation from this type of difficulty is to modify the direction of movement so that each of the variables has about the same sensitivity to a given movement. Since this modification must be made within the main program stored in the computer and requires a lot of time, this is not attempted in this study. Without this modification, the only way to get an optimal solution is to try both methods as we did for the first set of starting values and select the best result as a global optimum.

To test whether or not further improved solution can be obtained, another set of starting values, $[\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \mu_3, (t_p)_1, (t_p)_2, (t_p)_3, T_1, T_2, T_3] = [.005, .004, .003, .4, .3, .4, 2., 2., 1.5, 400., 300., 300.], is$

Table 6.1b. CRG solution for the first set of starting values (numerical example 1), using $\frac{1}{\lambda_j$'s and $\frac{1}{\mu_j}$'s as original problem variables

		Tailure rate			repair rate			preventi		sched	uled prever enance peri	tive .od	co	st of d	esign		of correctenance	tive	cost o	f preve	ntive	total cost	avail- ability
Iteration No.	, 1 ₁	λ ₂	λ 3	P1	μ2	μ3	(t _p) ₁	(t _p) ₂	(t _p)3	71	T ₂	т3	(c _d) ₁	(c _d) ₂	(c _d)3	(c _e) ₁	(c _c) ₂	(c _c)3	(c _p)1	(c _p)2	(c _p)3	C _T	
starting point	(200.)*	(200.)	(200.)	(25.)	(25.)	(25.)	2.	2.	2.	500.	500.	500.	174.41	152.31	237.34	9555.39	11796.80	8523.17	32.62	22.92	86.40	30581.35	.79422
1	(201.44995)	(201.70576)	(201.32007)	(5.39353) .18534	(1.5)	(7.19589) .13897	1.06388	1.15855	.50172	499.98093	499,97580	499.98842	458.42	506.86	662.31	33.45	41.12	29.90	6.38	3.21	2.09	3114.57	.93547
2	(201.49169)	(201.70591)	(261.38122)	(3.11859)	(1.5)	(4.72349) .21171	.73915	1.08236	. 50172	499.97961	499.97681	499.98535	455.67	485.14	658.31	33.99	41.93	30.33	6.23	8.87	20.55	1673.20	.9850
3	(201.49169)	(201.70991)	(201.35122) .00497	(2.49503)	(1.5)	(4.72349) .21171	.73915	1.08236	. 50172	499.97961	499.97681	499.98535	330.42	479.07	359.18	102.64	41.93	300.96	10.49	10.91	20.53	1654.87	.97173
	(201.49169)	(201.70991)	(201.33122)	(2.49503) .41036	(1.5)	(4.72349) .21171	.73915	1.08236	. 50172	499.97961	499,97681	499.98535	341.80	479.07	359.18	89.75	41.93	300.95	10.49	10.91	20.53	1654.61	.9722
5	(201.49169)	(201.70991)	(201.33122) .00497	(2.41399)	(1.5)	(4.72349)	.73915	1.08236	.50172	499.97961	499,97681	499.98535	342.65	479.07	359.18	88.88	41.93	300.96	10.49	10.91	20.53	1654.59	.97227
6	(201.43555)	(201.70296) .cc496	(201.38665) .00497	(1.92446)	(2.24666) .44511	(3.13767)	.67898	1.40755	.50172	499.98017	499.97738	499.98539	396.51	357.39	446.92	52.34	102.36	115.93	9.28	15.83	20.53	1515.73	.97663
7	(201.43467)	(201.70250)	(201.33581) .06497	(1.92808)	(2.19887) .45478	(3.07501)	.68278	1.41297	.40172	499.98025	499.97743	499.98553	388.43	371.36	436.25	56.18	90.10	127.54	9.49	15.33	20.53	1515.23	-97644
8	(201.43425)	(201.70233)	(201.38541)	(1.92963)	(2.17792) .45915	(3.04693)	.68453	1.41573	. 50172	499.93030	499.97746	499.98559	388.32	372.40	437.29	56.23	89.22	126.35	9.50	15.35	20.53	1515.17	.97652
9		(201.70230)	(201.38535)	(1.92985)		(3.04281)	.68480	1.41623	.5	499.98030	499.97747	499.98560	388.19	373.66	438.59	56.29	88.15	124.89	9.52	15.38	20.46	1515.12	.97661
7inal	A STATE OF THE STA		(201.38535)			(3.04281)	.68480	1.41623	.5	499.98030	499.97747	499.98560	388.19	373.68	438.60	56.29	88.14	124.87	9.52	15.38	20.46	1515.12	.97651

[•] Pigures in parentheses respectively represent $\frac{1}{\lambda_{\frac{1}{2}}$'s and $\frac{1}{\mu_{\frac{1}{2}}$'s values

tried. Table 6.2a shows the result. Using $\frac{1}{\lambda_j$'s and

 $\frac{1}{\mu_{j}}$ as variables in place of λ_{j} 's and μ_{j} 's, the same set of starting points is again tried. The converted starting values are $\left[\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \frac{1}{\lambda_{3}}, \frac{1}{\mu_{1}}, \frac{1}{\mu_{2}}, \frac{1}{\mu_{3}}, (t_{p})_{1}, (t_{p})_{2}, (t_{p})_{3}, T_{1}, T_{2}, T_{3}\right] = \begin{bmatrix} 200., 250., 333.3333, 2.5, 3.3333, 2.5, 2., 2., 2., 1.5, 400., 300., 300. \end{bmatrix}$ and the result is shown in Table 6.2b. Since the results obtained in Table 6.1a, 6.2a, and 6.2b are inferior to that obtained in Table 6.1b, we conclude that the solution obtained in Table 6.1b is the global optimum.

To compare the SUMT results with the GRG results, the identical two sets of starting values as used for GRG are The result for the first set of starting values is shown in Table 6.3. Since this starting point is in infeasible region, a new feasible starting point is selected by the computer program before the minimization of S-function is started. Seven (k=7) iterations for the minimization of S-function and 3481 calculations for the objective functional values are required to reach the optimal solution. the number of cut-down step-size operation is 4, the minimization of S-function at each k-iteration is terminated. The final stopping criterion used to terminate the program is $\epsilon = 10^{-3}$. The result for the second set of starting values is shown in Table 6.4. Five(k=5) iterations for S-function minimization and 2223 calculations for the objective functional values are required to reach the optimal solutiin.

Table 6.2a. GRG solution for the second set of starting values (numerical example 1)

Iteration	fa	ilure ra	te	re	pair rat	е -		n prevent			eduled preventenance per		cos	st of dea	sign		of corr tenance	rective		of preve tenance	entive	total cost	system avail- ability
No.	\ \ \ 1	12	. A3	μ ₁	μ2	μ3	(t _p) ₁	(t _p) ₂	(t _p)3	T 1	T ₂	^T 3	(c _d) ₁	(c _d) ₂	(c _à)3	(c _c) ₁	(c _c) ₂	(c _c)3	(C _p)1	(c _p) ₂	(c _p)3	c _T	As
	.005	.004	.003	.4	.3	44	2.	2.	1.5	400.	300.	300.	312.12	301.47	524.15	91.68	138.10	37.20	56.54	84.65	276.56	1822.47	.97247
point 1	.00523	.00374	.00421	.40000	.30001	.39999	2.00000	2.00000	1.50000	400.	300.	300.	308.00	308.25	479.20	96.41	124.82	59.83	53.15	87.62	228.34	1745.61	.97133
2	.00539	.00355	.00504	.40000	.30002	.39999	2.00000	2.00000	1.50000	400.	300.	300.	298.42	321.91	410.36	107.42	99.12	109.34	46.77	95.22	147.11	1702.18	.96822
3	.00545	.00349	.00531	.40000	.30002	.39999	2.00000	2.00000	1.50000	400.	300.	300.	301.45	317.26	430.26	103.83	107.52	92.38	48.78	92.69	172.17	1689.51	.96933
4	.00453	.00349	.00618	.40000	.30002	.39999	2.00000	2.00000	1.50000	400.	300.	300.	323.15	314.18	422.15	80.76	113.27	98.96	63.29	90.98	162.10	1668.84	.97001
5	.00387	.00100	.00893	.40005	.30012	.40002	2.00000	1.99999	1.49998	400.	300.	300.	287.65	382.08	409.73	121.07	15.14	109.93	39.68	123.09	142.27	1618.58	.97001
6	.00472	.00100	.00823	.40006	.30012	.40007	1.99999	1.99999	1.49997	400.	300.	300.	318.89	382.08	381.75	84.96	15.14	139.59	60.42	123.09	109.17.	1615.08	.97001
7	.00458	.00100	.00835	.40010	.30013	.40012	1.99999	1.99999	1.49997	400.	300.	300.	321.98	382.08	379.84	81.89	15.14	141.93	62.49	123.09	106.54	1614.97	.97001
8	.00578	.00100	.00783	.41105	.30182	.41936	1.99893	1.99987	1.49715	400.00001	300.00001	300.00004	301.50	382.24	399.57	102.62	14.97	119.78	46.22	123.08	118.11	1608.08	.97001
9	.00881	.00100	.01087	. 55651	.32416	.60000	1.98492	1.99827	1.45976	400.00013	300.00011	300.00054	311.34	383.94	462.86	91.94	13.21	85.27	21.96	122.98	60.60	1553.67	.97001
10	.00732	.00100	.01236	.55653	.32417	. 59999	1.98492	1.99826	1.45976	400.00013	300.00011	300.00054	329.71	384.18	451.25	73.68	12.98	97.44	29.99	122.96	43.93	1546.12	.97061
11	.00792	.00142	.01204	. 55654	.32417	. 59997	1.98492	1.99827	1.45975	400.00013	300.00012	300.00054	329.74	376.08	453.35	73.56	21.94	95.07	30.27	119.22	46.79	1545.87	.97001
12	.00725	.00135	.01215	. 55654	.32418	- 59997	1.98492	1.99827	1.45975	400.00013	300.00012	300.00054	330.51	376 19	452.77	72.90	21.81	95.72	30.58	119.27	46.00	1545.74	.97000
13	.00725	.00133	.01217	. 55654	.32418	. 59997	1.98492	1.99827	1.45975	400.00013	300.00012	300.00054	330.58	376.51	452.62	72.82	21.45	95.88	30.64	119.42	45.80	1545.72	.97000
14	.00725	.00133	.01217	. 55654	.32418	- 59997	1.98492	1.99827	1.45975	400.00013	300.00012	300.00054	330.59	376.57	452.60	72.81	21.38	95.91	30.65	119.45	45.77	1545.72	.97000
Final	.00725	.00133	.01217	. 55654	.32418	. 59997	1.98492	1.00827	1.45975	400.00013	300.00012	300.00054	330.59	376.58	452.59	72.81	21.38	95.91	30.65	110.45	45.76	1545.72	.97000

Table 6.2b. GRG solution for the second set of starting values (numerical example) , using $\frac{1}{\lambda_j^{'s}}$ and $\frac{1}{\mu_j^{'s}}$ as original problem variables

		failure rate			repair rate			n prevent			uled preven enance peri		cos	t of des	ign	cost	of corr	rec- nance		of prevenanten		total cost	system avail-
Iteration	1,	λ2	13	μ,	μ2	μ3	(t _p) ₁	(t _p) ₂	(tp)3	71	T ₂	т,	(c _d) ₁	(c ^d) ⁵	(ca)3	(c _e) ₁	(c _c) ₂	(c _e)3	(c _p)1	(c _p)2	(c _p)3	c _T	Atility A _S
starting point	(200.)*	(250.)	(333.3333)	(2.5)	(3:3333)	(2.5)	2.	2.	1.5	400.	300.	300.	312.12	301.47	524.15	91.68	138.10	37.20	56.54	84.65	275.56	1322.47	.97247
1	(199.99700)	(250.00151)	(333.32831)	(2.06144)	(2.72640)	(2.64764)	1.87526	1.85609	.64434	400.00138	300.00201	300.00905	405.36	438.09	642.80	32.87	28.25	51.16	44.92	63.15	86.47	1750.40	.93229
2	(199.99210)	(250.00173)	(333: 31795)	(1.72234) .58061	(2.14981) .46516	(3.19423) .31306	1.76946	1.76851	.5	400,00298	300.00426	300.01989	405.25	430.57	553.52	32.88	27.78	90.92	45.00	67.20	86.46	1729.48	.98084
3	(199.97307)	(249.99617)	(333.27654)	(1.91109)	(1.55527) .64298	(4.74494) .21075	1.80460	2.21253	.5	400.00674	300.01005	300.05537	336.12	344.33	421.99	68.36	27.79	274.33	51.77	123.12	86.43	1684.41	.97245
4	(199.9537) .00500	(249.99539)	(333.26976)	(1.84601) .54171	(1.54255) .64828	(4.71863) .21193	1.77794	2.35237	.5	400.00785	300.01081	300.06196	360.35	372.55	503.29	51.19	29.57	132.15	49.86	98.52	86.45	1683.85	.97753
5	·(199.96641) .00500	(249.97519)	(333.26745)	(1.82419)	(1.56505) .64723	(4.64932) .21509	1176848	2.39765	.5	400,00830	300.01108	300.06436	364.15	367.44	505.86	49.16	29.44	129.49	49.39	102.38	86.45	1683.71	.97711
6	(199.96514) .00500	(249.99506)	(333.26589)	(1.81496) .55098	(1.54505) .64723	(4.60965) .21694	1.76392	2.42318	.5	400.00858	300.01127	300.06594	365.70	365.14	508.74	48.37	29.48	125.60	49.18	104.03	. 86.45	1683.68	-97715
7	(199.95450)	(249.99550)	(333.26508)	(1.81135)	(1.54505)	(4.59108) .21781	1.76196	2.43511	.5	400.00872	300.01137	300.06677	366.57	363.59	510.83	47.95	29.48	124.56	49.06	105.21	86.45	1683.66	.97713
2	(199.96333) .00500	(249.99494)	(333.26435)	(1.80810)	(1.54505) .64723	(4.57362) .21865	1.76015	2.44634	.5	400.00586	300.01146	300.06756	366.75	363.22	511.32	47.86	29.48	124.08	49.03	105.48	86.45	1683.66	.97713
9	(199.95318) .60500	(249.99487)	(333.26341)	(1.80507) .55400	(1.54505)	(4.554.98)	1.75832	2.45832	.5	400.00901	300.01158	300.06846	367.10	362.48	512.34	47.69	29.48	123.10	48.97	106.05	85.44	1633.65	-97719
Final	(199.95313)	(249.93437)	(333.26341)	(1.80507) .55400	(1.54505) .64723	(4.55498) .21954	1.75832	2.45832	.5	400.00901	300.01158	300.06846										1683.65	

[•] Figures in parentheses respectively represent $\frac{1}{\lambda_{\frac{1}{2}}$'s and $\frac{1}{\mu_{\frac{1}{2}}$'s values

Table 6.3. SUMT solution for the first set of starting values (numerical example 1)

Iteration	cumulative No. of f-value calculations up		fa	ilure ra	te		repair	rate		an preven intenance			duled pres tenance pe		co	st of de	ign	cost	of correct	tive		of preve	intive		unoti mal	
k	to iteration k	r's	λ ₁	12	٨3	μ1	μ2	43	(t _p)1	(t _p) ₂	(tp)3	71	72	73	(c _d)1	(cq)2	(c4)3	(c _e) ₁	(c _c) ₂	(c _c)3	(c _p) ₁	(c _p)2	(c _p)3	c _T	value	abili:
estimated optimus values			.063	.003	.003	.4	.4	.4	2.	2,	2.	400.	400.	400.							•					
initial step-size			.0003	.0003	.0003	.04	.04	.04	.2	.2	.2	40.	40	.40												
terting		6.84260	.005	.005	.005	.04	.04	.04	2.	2.	2.	500.	500.	500.	174.41	152.31	237.34	9555-39	11796.80	8523.17	32.62	22.92	85.40	30531.35	35230.00	7542
relected fear		6.84200	.0032	.0032	.0032	.28	.2	.2	1.2	1.2	1.2	340.	340.	340.	340.05	308.07	426.26	98.11	237.40	171.52	63.52	42.35	175.45	1953.00	16630.00	. 971
tarting poi	503	6.84200	.00431	.00463	.00519	.39101	.36141	.44591	1.12503	1.31907	1.48287	628.710	628.710	632.427	354.45	337.15	489.39	87.08	136.13		11.80				9985.85	
2	1004	.85520	.00709	.00661	.00739	. 58985	. 57721	. 54788	1.51384	2.06865	1.20387	788.710	783.710	792.427	357.47	395.72	486.07	65.84	79.01	71.04	1.45	1.95			2 2307.75	1
3	1505	.21380	.00735	.00661	.00777	. 57460	. 56196	. 53263	1.43761	2.24442	1.12754	788.710	797.10	792.43	347.00	387.99	469.10	72.00	83.38	79.05	1.15	2.03			1663.63	
4	2006	.05345	.00840	.00645	.00789	. 59534	.53722	.49054	1.15405	2.25485	. 64409	796.52	797.10	796.65	340.32	378.33	441.77	76.70	89.04	94.59	.42	2.26			1489.57	
5	2510	.01336	.00843	.00645	.00792	.59134	. 53683	.49054	.98565	2.63292	.51800	796.52	797.10	796.65	338.40	377.53	441.39	78.02	89.15	94.93	.34	2.69			1440.45	
6	2975	.00334	.00843	.00645	.00792	. 59134	. 53683	.49054	.98565	2.63292	.51800	795.52	797.10	796.65	338.40	377.53	441.39	78.02	89.15	94.93	.34	2.69		The state of the s	1427.43	
7 (Firal)	3481	.00684	.00843	.00645	.00797	-59134	. 53683	.49054	.98565	2.63292	. 51800	796.52	797.10	796.65	338.40	377-53	441.39	78.02	89.15	94.93		2.69			1424.23	

Table 6.4. SUMT solution for the second set of starting values (numerical example 1)

teration	of f-value calculations up	value of	10	ilure ra	te	re	pair rat	•		an preven intenance		sche main	duled pre tenance p	ventive eriod	eo	st of de	sign	cost mair	of corr tenance	ectiva	cost o	f preve	entive	total cost	S Cunctional	system
	to iteration k		λ ₁	12	۲3	μ1	μ2	μ3	(t _p) ₁	(tp)2	(tp)3	T ₁	T2	T 3	(c _d)1	(c _d) ₂	(c _d)3	(c _c) ₁	(c _c) ₂	(c _e) ₃	(c _p)1	(c _p)2	(c _p) ₃	c _T	value	ability
stimated ptimum alues			.003	.003	.003	.4	.4	.4	2;	2.	2.	400.	400.	400.												
nitial tep-size			.0003	.6003	.0003	.04	.04	.04	.2	.2	2	40.	40.	40.		-										
tarting		.26220	.005	.004	.003	.4	.3	.4	2.	2.	1.5	400.	300.	300.	312.12	301.47	524.15	91.68	138.10	37.20	56.54	84 65	276 56	1922 60	2273.00	
1	501	.26220	.00562	.00462	.00514	.43529	.40193	.42633	1.23810	2.15813	.99600	653.367	577.463	615.805	327.86	347.44	484.58	94.42	108.82		6.62					
2	810	.03277	.00592	.00462	.00514	.44529	.40193	.42633	1.28810	2.15813	.99600	653.367	577.463	615.805	320.20	347.44	484.58	99.79	108.82			1000 1000	100000		1802.21	
3	1314	.00319	.00632	.00475	.00564	.44670	.40577	.42692	1.01615	2.16784	.67764	667.157	591.398	629.595	316.28	346.59	466.94	101.55	110 34	R7 ch	2.74				1473.37	The sun of the
4	1748	.00102	.00708	.00550	.00564	.44670	.40577	.42692	1.01615	2.16784	.67764	667.157	591.398	629.595	301.15	329.31	466.94	114 18	120.00	07.54	3.26	DOMESTIC:			1470.13	
5 [inal]	2223	.00026	.00708	.00550	.00564	.44670	.40577	.42692	1.01615	2.16784	.67764	667.157	591.398	629.595	301.15	329.31	466.94	114.18	129.99	87.54	2.20				1455.86	

The same stopping criterion is applied to terminate the program. Since the solution obtained in Table 6.4 is inferior to that in Table 6.3, we conclude that the solution in Table 6.3 is the global optimum.

Comparison Between GRG and SUMT Results

Both GRG and SUMT final results for the first and second sets of starting values are respectively summarized in Table 6.5a and 6.5b. There is approximately 6% difference between the global optimum values obtained by GRG and SUMT. The difficulty persisted in GRG might have caused this diff-In the Lai's modified version of SUMT which incorporates the Hooke and Jeeves pattern search, the direction of search is determined by a direct comparison of two values of the objective function at two points separated from each other by a finite step. This requires a large number of evaluation of functional values, thus increases the computing However, such difficulty as persisted in GRG can be alleviated in SUMT. As far as the computing time is concerned. GRG has an advantage over SUMT as shown in Table 6.5a and 6.5b. In general, if some modifications in the main program of GRG are provided to move each variable at about the same rate, then GRG is expected to give us a further improved solution which will converge to the SUMT solution with the advantage of computing time.

6.2 EXAMPLE 2: WEIBULL FAILURE TIME AND GENERAL REPAIR TIME DISTRIBUTIONS

Table 6.5a. Summary of GRG and SUMT final results for the first set of starting values (numerical example 1)

	fai	lure rat	е	rep	air rate			an preven intenance			led prevent nance time	ive	total cost	system avail- ability	iteration	execution time(min.
	λ ₁	λ2	λ3	μ1	μ2	μ3	(t _p) ₁	(t _p) ₂	(t _p)3	T ₁	T ₂	т3	c _t	A _s		
tarting point	.005	.005	.005	.04	.04	.04	2.	2.	2.	500.	500.	500.	30581.35	.79422		
RG	.00291	.00191	.01050	.24468	:24756	.49327	1.99783	2.00383	1.99506	500.	500.	500.	1602.89	.97093	23	.982
RG(using $\frac{1}{\lambda_j$'s and $\frac{1}{i's}$ as variables)	.00496	.00496	.00497	.51817	.45978	.32864	.68480	1.41623	.5	499.98030	499.97747	499.98560	1515.12*	.97661	9	. 523
נות ביית ביית ביית ביית ביית ביית ביית בי		.00645	.00797	. 59134	. 53683	.49054	.98565	2.63292	.51800	796.52	797.10	796.65	1423.15*	.97216	k=7 (3481)	2.543

[·] global optimum obtained by GRG

^{**} global optimum obtained by SUMT

Table 6.5b. Summary of GRG and SUMT final results for the second set of starting values (numerical example 1)

	fa	ilure ra	te	1	repair ra	te	mea mai	n preventintenance	tive time		eduled preventenance tim		total cost	system avail- ability	No. of itera-	execution time(min.)
	λ ₁	λ2	λ3	μ ₁	μ ₂	μ3	(t _p) ₁	(t _p) ₂	(t _p) ₃	T ₁	T ₂	^Т 3	c _T	As	tion	
starting point	.005	.004	.003	.4	.3	.4	. 2.	2.	1.5	400.	300.	300.	1822.47	.97247	2	- = =
GRG (using $\frac{1}{\lambda_1$'s and	.00725	.00133	.01217	. 55654	.32418	- 59997	1.98492	1.99827	1.45975	400.00013	300.00012	300.00054	1545.72	.97000	.14	.714
1 as variables)	.005	.004	.003	.55400	.64723	.21954	1.75832	2.45832	.5	400.00901	300.01158	300.06846	1683.65	.97720	9	. 502
SUMT	.00708	.00550	.00564	.44670	.40577	.42692	1.01615	2.16784	.67764	667.157	591.398	629.595	1454.37	.97177	k=5 (2223)	1.759

Problem Statement

Consider the same configuration of the system as considered in section 6.1. Let Weibull failure-time distribution with scale parameter λ_j and shape parameter α_j and general repair-time distribution with mean corrective maintenance time $(t_c)_j$ be assumed for each unit of the j^{th} subsystem. Then, assumptions 1, 2, and 5 are identically made as in section 6.1. However, assumptions 3 and 4 are modified as follows:

- 3. Since the failure rate increases with time, for $\alpha_j > 1$, the corrective maintenance policy is such that the replacement of each unit of the j^{th} subsystem begins only when the j^{th} subsystem fails due to failure of both redundant units. Hence, the subsystem redundancy is fully restored after the completion of the corrective maintenance action.
- 4. The same preventive maintenance policy as in section
 6.1 is scheduled. The preventive maintenance action,
 however, consists of replacing both failed and unfailed
 units. Under this preventive maintenance policy, the
 subsystem can be restored to its original good condition
 even if each unit of it has a increasing failure rate
 with time.

Then, using the same cost structure as in section 6.1, for the known total mission time z and the known shape parameter α_j , j=1,2,3, the problem is to determine the scale parameter λ_j , the mean corrective maintenance time

 $(t_c)_j$, the mean preventive maintenance time $(t_p)_j$, and the scheduled preventive maintenance period T_j , for j=1,2,3, which minimize the total cost of the system under the constraint of the system availability requirement.

Problem Formulation

The values for N, n_j , j=1,2,3, and z respectively given by equations (6.1), (6.2), and (6.3) are also used in this section with the following assumed values for the following constants: Shape parameter;

$$\alpha_{j} = 2$$
 , $j=1,2,3$ (6.24)

System availability requirement;

$$A_0 = .93$$
 (6.25)

Cost coefficients for each subsystem ;

$$a_1 = 1.8$$
 $a_2 = 1.3$ $a_3 = 2.$
 $b_1 = 200.$ $b_2 = 170.$ $b_3 = 250.$
 $c_1 = 5.$ $c_2 = 5.$ $c_3 = 5.$
 $d_1 = 2.$ $d_2 = 2.5$ $d_3 = 3.$
 $d_1 = 40.$ $d_2 = 100.$ $d_3 = 50.$
 $d_1 = 3.$ $d_2 = 4.$ $d_3 = 2.$

Boundary values for each variable ;

$$B_{j} = .0001$$
 $D_{j} = .0007$, $j=1,2,3$ $E_{j} = .5$ $F_{j} = 20$, $j=1,2,3$ (6.27) $G_{j} = .1$ $H_{j} = 10$, $j=1,2,3$ $M_{j} = 150$, $j=1,2,3$

By substituting equations (4.139), (4.140), (4.141), (4.142), (4.143), and (4.144) with equations (6.2), (6.3), and (6.24) into equations (4.122), (4.123), and (4.124), the three cost components of each subsystem $(C_d)_j$, $(C_c)_j$, and $(C_p)_j$, for j=1,2,3, are respectively given by

$$(c_d)_j = a_j \int_0^T j[1-(1-e^{-\lambda_j t^2})^2]dt +$$

$$\frac{b_{j}}{(t_{c})_{j}(1-e^{-\lambda_{j}T_{j}^{2}})^{2}+(t_{p})_{j}[1-(1-e^{-\lambda_{j}T_{j}^{2}})^{2}]}-c_{j}$$

$$, j = 1, 2, 3$$
 (6.28)

$$\frac{(c_c)_j}{\int_0^T j[1-(1-e^{-\lambda_j t^2})^2]dt} [d_j(t_c)_j]^2$$

$$\frac{\int_0^T j[1-(1-e^{-\lambda_j t^2})^2]dt}{(1-e^{-\lambda_j t^2})^2}$$

$$, j = 1, 2, 3$$

$$(6.29)$$

$$(c_{p})_{j} = \frac{1500}{\int_{0}^{T_{j}} [1-(1-e^{-\lambda_{j}t^{2}})^{2}]dt} [u_{j}(t_{p})_{j} - v_{j}]$$

$$1-(1-e^{-\lambda_{j}T_{j}^{2}})^{2}$$

$$j = 1, 2, 3 \quad (6.29)$$

$$(6.29)$$

where the values for the cost coefficients of each subsystem, a_j , b_j , c_j , d_j , u_j , and v_j , for j=1, 2, 3, are given by equation (6.26). By substituting equations (4.139) and (4.144) with equations (6.2) and (6.24) into equation (4.145), the achieved availability of each subsystem, A_j , j=1, 2, 3, is given by

$$A_{j} = \left(\int_{0}^{T_{j}} [1 - (1 - e^{-\lambda_{j}t^{2}})^{2}] dt \right) / \left(\int_{0}^{T_{j}} [1 - (1 - e^{-\lambda_{j}t^{2}})^{2}] dt + (t_{p})_{j} [1 - (1 - e^{-\lambda_{j}t^{2}})^{2}] \right) , j = 1, 2, 3$$

$$(6.31)$$

The total cost of the system, C_T , which is a function of λ_j , $(t_c)_j$, $(t_p)_j$, and T_j , for j=1, 2, 3, is then given by

$$c_{T} = \sum_{j=1}^{3} [(c_{d})_{j} + (c_{c})_{j} + (c_{p})_{j}]$$
 (6.32)

where $(^{\text{C}}_{\text{d}})_{\text{j}}$, $(^{\text{C}}_{\text{c}})_{\text{j}}$, and $(^{\text{C}}_{\text{p}})_{\text{j}}$ are respectively given by equations (6.28), (6.29), and (6.30). Since the three subsystems are in series, the achieved availability of the system, $^{\text{A}}_{\text{s}}$, is given by

$$A_{s} = \int_{j=1}^{3} A_{j}$$
 (6.33)

where A_j is given by equation (6.31).

Then, for the total mission time z=1500 hours and for

the shape parameter $\alpha_j = 2$, j=1,2,3, the problem is to determine λ_j , $(t_c)_j$, $(t_p)_j$, and T_j , for j=1,2,3, which minimize the total cost of the system, C_T , given by equation (6.32) under the constraint of the system availability requirement

$$A_{s} \ge A_{o} = .93$$
 (6.34)

with the boundary conditions for each of variables

.0001
$$\leq \lambda_{j} \leq .0007$$
 , j=1,2,3
.5 $\leq (t_{c})_{j} \leq 20$. , j=1,2,3
.1 $\leq (t_{p})_{j} \leq 10$. , j=1,2,3
50. $\leq T_{j} \leq 150$. , j=1,2,3

Problem Definition for the GRG Program

The problem in the GRG format is stated as follows : $\label{eq:maximize} \textbf{-} \textbf{C}_{\underline{T}}$ subject to

$$A_{s} - A_{s} \le 0$$

$$A_{s} - 1. \le 0$$
(6.36)

To use the GREG program, the individual variables are described in terms of the array XC(j), $j=1,2,\cdots$, 12, i.e.,

$$\lambda_{j} = XC(j)$$
 , j=1,2,3
 $(t_{c})_{j} = XC(j+3)$, j=1,2,3
 $(t_{p})_{j} = XC(j+6)$, j=1,2,3

$$T_{j} = XC(j+9)$$
 , $j=1,2,3$ (6.37)

Using these original problem variables, the objective function, the constraints, the partial derivatives of the objective function, and the partial derivatives of the constraints are similarly defined as in section 6.1. The same parameter values as specified in section 6.1 are used.

Problem Definition for the SUMT Program

$$g(j) = \lambda_{j} - .0001 > 0 , j=1,2,3$$

$$g(j+3) = .0007 - \lambda_{j} > 0 , j=1,2,3$$

$$g(j+6) = (t_{c})_{j} - .5 > 0 , j=1,2,3$$

$$g(j+9) = 20. - (t_{c})_{j} > 0 , j=1,2,3$$

$$g(j+12) = (t_{p})_{j} - .1 > 0 , j=1,2,3$$

$$g(j+15) = 10. - (t_{p})_{j} > 0 , j=1,2,3$$

$$g(j+18) = T_{j} - 50. > 0 , j=1,2,3$$

$$g(j+21) = 150. - T_{j} > 0 , j=1,2,3$$

$$g(25) = \lambda_{s} - .93 > 0$$

$$g(26) = 1. - \lambda_{s} > 0$$

To use the SUMT program, X(j), $j=1,2,\cdots$, 12, is used to describe the individual variables, i.e.,

$$\lambda_{j} = X(j)$$
 , j=1,2,3
 $(t_{e})_{j} = X(j+3)$, j=1,2,3
 $(t_{p})_{j} = X(j+6)$, j=1,2,3

$$T_{i} = X(j+9)$$
 , $j = 1, 2, 3$ (6.39)

The same parameter values as specified in section 6.1 are used. With these informations the problem can, similarly, be defined in the SUMT format as in section 6.1.

GRG Results

A GRG solution for a set of starting values, $[\lambda_1, \lambda_2,$ $(t_c)_1$, $(t_c)_2$, $(t_c)_3$, $(t_p)_1$, $(t_p)_2$, $(t_p)_3$, T_1 , T_2 , T_3 **=** [.0002, .0002, .0002, 2., 2., 2., 1., 1., 1., 100., 100., 100.], is shown in Table 6.6a. This indicates that only λ_{j} 's are sensitive while others are remained unchanged. This can be explained by the same reason as discussed in section It is, therefore, highly probable that this solution might result in a false optimum. Since the same difficulty as persisted in the previous section has been encountered, the same approach as we did in section 6.1 will be followed without repeating discussions. Using $\frac{1}{\lambda_i$'s as variables in place of λ_j 's, the same set of starting points, $\left[\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_2$ $\frac{1}{\lambda_3}$, $(t_c)_1$, $(t_c)_2$, $(t_c)_3$, $(t_p)_1$, $(t_p)_2$, $(t_p)_3$, T_1 , T_2 , T_3 = [5000., 5000., 5000., 2., 2., 2., 1., 1., 1., 100., 100., 100.], is tried. The solutions obtained and shown in Table 6.6b indicates much improvement. To test whether or not further improved solutions could be obtained, another set of starting points was tried. As we did for the first set of starting points. we tried both methods. The solutions for a set of starting values, $[\lambda_1, \lambda_2, \lambda_3, (t_c)_1, (t_c)_2, (t_c)_3, (t_p)_1, (t_p)_2, (t_p)_3,$

Table 6.6a. GRG solution for the first set of starting values (numerical example 2)

Iteration	sca	ale param	eter		n corre			nean nain	prev	enti	ve ime		uled p enance			st of dea	sign	cost	of corretenance	ective		of corr	ective	total cost	system avail-
No.	λ ₁	λ2	λ3	(t _c) ₁	(t _c) ₂	(t _c)3	(t _I)1	(t _p)	2	(t _p)3	T1	т2	^T 3	(c _d) ₁	(c _d)2	(c _d)3	(c _c) ₁	(c _c) ₂	(c _c) ₃	(c _p) ₁	(c _p) ₂	(c _p)3	c _T	ability ^A s
starting point	.0002	.0002	.0002	2.	14		1.		1.		1.	100.	100.	100.	245.38	190.46	289.10	.237.59	371.23	534.57	185.45	481.16	240.58	2775.51	.93367
•	.000215					2.	1.		1.		1.	100.	100.	100.	230.54	160.69	301.51	285.21	588.02	467.39	129.59	135.70	287.88	2611.38	.92437
2	.000217	.000257	.000191	2.	2.	2.	1.		1.		1.	100.	100.	100.	238.32	174.52	294.91	259.86	477.61	502.95	157.43	282.80	261 29	2663.74	.92934
3	.000217	.000257	.000191	2.	2.	2.	1.		1.	*	1.	100.	100.	100.	239.61	176.61	293.87	255.79	462.61	508.68	162.13	307.32	257.10	2663.71	93001
4	.000217	.000257	.000191	2.	2.0000	3 2.	1.		1.		1.	100.	100.	100.	239.59	176.57	293.91	255.85	462.90	508 47	162.05	306.87	257.25	2663.58	02000
5	.000217	.000257	.000191	2.	2.0000	4 2.	1.		1.		1.	100.	100.	100.	239.60	176.58	293.90	255.83	462.81	508.53	162.08	307.00	257.21	2663.56	03000
6	.000217	.000257	.000191	2.	2.0000	4 2.	1.	*	1.		1.	100.	100.	100.	239.60	176.58	293.90	255.83	462.79	508 55	162.08	302.04	257 10	2663.56	.93000
7	.000217	.000257	.000161	2.	2.0000	4 2.	1.		1.	٠,	1.	100.	100.	100.	239.60	176.58	328.36	255.83	462.78	339.47	162.08	307.04	201 26	2659.60	.93000
8	.000217	.000257	.000159	2.	2.0000	4 2.	1.		1.		1.	100.	100.	100.	239.60	176.58	310.25	255.83	462.78	422.95	162.08	307.04	391.25	2659.59	.93402
9	.000229	.000284	.000158	2.	2.0000	4 2.	1.		1.		1.	100.	100.	100.	232,16	166.91	312.05	279.81	535. 78	414 15	136 31	102.00	222.48	2626.81	.93206
10	.000229	.000284	.000158	2.	2.0000	6 2.	1.		1.		1.	100.	100.	100.	235.72	121.35	311.36	268.13	501 13	117.16	1/19 00	246 52	329.51	2626.81	.92749
11	.000229	.000284	.000158	2.	2.0000	7 2.	1.		1.		1.	100.	100.	100.	235.73	121.36	311 36	268 12	501.10	417.40	140.00	246.53	326.85	2626.71 2626.68	.93002
12	.000229	.000284	.000158						1.		1.	100	100	100	235 73	171 36	211 26	260.12	501.10	417.48	148.09	246.57	326.84	2626.68	.93002
13	.000229	.000284							1.		1.	100	100.	100.	235 73	171.30	211.36	200.12	501.10	417.48	148.09	246.57	326.84	2626.66	.93002
14	.000229	.000284	.000158								1	100.	100.	100.	235.72	171.35	311.35	208.14	501.14	417.49	148.06	246.50	326,83	2626.63	.93001
15	.000229	.000284	.000158																					2626.62	
16	.000229	.000284										100.	100.	100.	235.72	171.36	311.36	268.13	501.12	417.49	148.08	246.54	326.83	2626.62	.93002
7	.000229	.000284	.000158	2.	2.0000	4.	1.																	2626.62	
inal	.000229					- 1			1.	•														2626.62	
al	.000229	.000284	.000158	2.	2.00008	2.	1.		1.		1.	100.	100.	100.	235.72	171.36	311.36	268.13	501.11	417.49	148.08	246.54	326.83	2626.62	.93002

Table 6.6b. GRG solution for the first of starting values (numerical example 2): using $\frac{1}{\lambda_j$'s as original problem variables

Iteration	5	cale paramete	r		an correct intenance		mean p	reven	tive time		scheduled pre		cos	t of de	sign		of cor	rective		of pre	ventive	total	system avail-
No.	λ ₁	λ ₂	λ ₃	(t _c) ₁	(t _c) ₂	(t _c)3	(t _p)1	(t _p) ₂	(t _p) ₃	Ti	T ₂	т3	(c _d) ₁	(c _d) ₂	(c _d)3	(c _c) ₁	(c _c) ₂	(c _c) ₃ ,	(c _p) ₁	(c _p) ₂	(c _p) ₃	C _T	ability
starting point	(5000.)*	(5000.)	(5000.)	2.	2.	2.	1.	1.	1.	100.	100.	100.	245 38	100 46	200 10	220 60	204 0	2 401 40				$\overline{}$	
1	(4999.99992) .00020	(4999.99972) .00020	(5000.00004)	1.34713	.87725	.5	.4115	8 .1	. 2644										185.45				
2	(4999.99989) .00020	(4999.99969) .00020	(4999.99998) .00020	1.27891	. 92334	1.09035					2010 100.0586												
3	(4999 .99984) .00020	(4999.99962) .00020	(4999.99991) .00020	1.16180	.98034	1.07295			.1														. 95555
4	(4999.99983)	(4999.99961) .00020	(4999.99990)	1.16340		1.06097			.1		842 100.0691												(4)
5	(4999.99933) .00020	(4999.99961) .00020	(4999.99990)			1.05751			.1		863 100.06948												
Pinal	(4999.99953) .00020	(4999.99961)	(4999.99990)								870 100.06959									29.89	14.96	1493.29	.96811
	.00020	.00020	.00020	1.16387	.97741	1.05751	.1	.1	.1	100.02	870 100.06959	100.03629	354.70	318.24	452.91	80.21	88.42	148.97	4.99	29.89	14.96	1493.29	.9681

^{*} Pigures in parentheses respectively represent 1/1/8 values

 T_1 , T_2 , T_3] = [.00015, .00015, .00015, 2., 2., 2., 1.5, 1.5, 1.5, 1.5, 110., 110., 110.], and a set of converted starting values, $\left[\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3}, (t_c)_1, (t_c)_2, (t_c)_3, (t_p)_1, (t_p)_2, (t_p)_3, T_1, T_2, T_3\right]$ = [6666.667, 6666.667, 6666.667, 2., 2., 2., 1.5, 1.5, 1.5, 110., 110., 110.], are respectively shown in Table 6.7a and 6.7b. The same stopping criterion given by equation (6.21) is applied to terminate the program. The solutions obtained in Table 6.6a, 6.7a, and 6.7b are inferior to that obtained in Table 6.6b. Hence, we conclude that the solution obtained in Table 6.6b is the global optimum.

SUMT Results

To compare the SUMT results with GRG results, the identical two sets of starting values as used for the GRG were tried. The SUMT results for the first set of starting values and for the second set of starting values are respectively shown in Table 6.8 and 6.9. Five (k=5) iterations for S-function minimization and 2252 calculations for the objective functional values, and k=4 iterations and 1729 objective functional value calculations are respectively required for the first and second set of starting values to reach the optimal solutions. In both cases, when the number of cut-down step-size operation is 4, the minimization of S-function at each k-iteration is terminated and the final stopping criterion used to terminate the program is Since the optimum solution obtained in Table 6.9 is somewhat inferior to that in Table 6.8, we conclude that

Table 6.7a. GRG solution for the second set of starting values (numerical example 2)

Iteration	БСА	le parame	ter	mean maint	correc		mean p						cos	t of des	ign	100000000000000000000000000000000000000	of corre	ctive	2000 Carlotte	of preve tenance	entive	total cost	system avail- ability
No.	λ ₁	λ2	λ3	(t _c) _{1,}	(t _c) ₂	(t _c) ₃	(t _p) ₁	(tp)2	(t _p)3	^T 1	^T 2	^T 3	(c _d) ₁	(c _d) ₂	(c _d)3	(c _c) ₁	(c _c) ₂	(c _c) ₂	(c _p) ₁	(c _p) ₂	(c _p)3	C _T	As
starting point	.00015	.00015	.00015	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	257.94	198.71	302.17	195.51	305.49	439.91	297.32	761.54	380.77	3139.36	.93815
1	.000166	.000196	.000158	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	251.53	185.85	298.55	216.05	393.45	462.62	257.38	496.28	355.26	2916.95	.93415
2	.000179	.000227	.000164	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	238.16	167.92	290.43	260.57	529.06	514.68	179.41	196.57	299.54	2809.36	.92627
3	.000185	.000240	.000167	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	241.84	173.24	292.75	248.06	486.88	499.60	200.04	273.79	315.27	2772.92	.92875
4	.000185	.000282	.000129	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	244.61	168.98	312.69	238.79	520.55	375.58	216.00	210.92	456.69	2744.80	.93038
5	.000185	.000285	.000127	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	244.57	168.22	314.85	238.94	526.67	362.68	215.73	200.53	472.53	2744.66	:93038
6	.000186	.000285	.000126	2.	2.	2.	1.5	1.5	1.5	110.	: 110.	110.	244.31	168.54	314.31	239.79	524.06	365.86	214.24	204.93	468.60	2744.64	.93038
inal	.000186	.000285	.000126	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	244.18	168.57	314.44	240.23	523.86	365.12	213.48	205.25	469.51	2744.64	.93038
																and a later being			and the same of		N-12		

Table 6.7b. GRG solution for the second set of starting values (numerical example 2) susing $\frac{1}{\lambda_j$'s as original problem variables

Iteration		cale paramete	4.66		an correctintenance			an preventintenance			duled preve tenance per		COE	t of des	lgn	cost	of corre	ctive		of preve	ntive	total	system avail-
	¹ 1	l ₂	۸,	(t _c) ₁	(t _c) ₂	(t _c)3	(t _p) ₁	(t _p) ₂	(tp)3	71	T ₂	^T 3	(c _d) ₁	(c _d) ₂	(ca)3	(c _c) ₁	(C _c) ₂	(c,)3	(c _p) ₁	(c _p) ₂	(c _p)3	c _T	atility As
starting point	(6665.667)° .00015	(6665.667)	(6666.667)	2.	2.	.2.	i.5	1.5	1.5	110.	110.	110.	257.94	198.71	302.17	195.51	305.49	439.01	297.31	761.54	303.77	3139.36	. 6321 6
1	(6666.64690)	(6666.66671)	(6666.66695)	1.57330	0 1.26411	.94284	1.01153	.20644	.88941	110.01975	110.05653	110.02097	364.79										
2	(6666.66635)	(6666.66663)	(6666.66690)	1.3851	2 1.02166	.68208	.72709	.1				110.03138											
3	(6556.65573)	(6666.66658)	(6666.66681)	1.24018	3 1.04397	1.11245	.29770	.1				110.04201										1590.61	
4	(6665.65672)	(6666.66653)	(6666.66675)	1.17902	2 1.05172	1.200031	.1	.1	.1			110.05090									1.00		25 2055
5	(6666.66670)	(6666.66651)	(6666.66673)	1.21626	1.04674	1.11267	.1	.1	.1	No.		110.05256											
6	(6666.66669)	(6666.66550) .00015		1.23000	1.04548	1.09493	.1	.1	.1			. 110.05349											
7	(6666.66669)	(6666.66650)	(6666.66672)	1.23442	1.04491	1.08920	.1	.1	.1	- Dillion		110.05392											
8	(6666.66668)	(6666.66650)		1.23725	1.04464	1.08576	.1	.1	.1	The state of the s		110.05422											
Final	(6665.65563)	(6666.66650)	(6666.66672)	1.23725	1.04464	1.08576	.1	.1	.1			110.05422						129.28				1525.48	

[•] Pigures in parentheses respectively represent $\frac{1}{\lambda_{\frac{1}{4}}$'s values

Table 6.8. SUMT solution for the first set of starting values (numerical example 2)

	cumulative No. of f-value calculations up		f sca	le parame	ter		correcti			an preven		sche main	duled pre	ventive eriod	cost	of des	gn		of corre	ective		of preve	entive	total	functional	system avail-
	to iteration k		11	λ ₂	, kg .	(t _c) ₁	(t _c) ₂	(t _c) ₃	(t _p)1	(t _p) ₂	(tp)3	7,	72	73 (c _d) ₁	(c _d) ₂	(ca)3	(c _e) ₁	(c _c) ₂	(c _e) ₃	(c _p) ₁	(c _p)2	(c _p)3	c _T		ability
estimated optimum value			.00015	.00015	.00015	1.5	1.5	1.5	1.	1.	1.	110.	110.	110.								,			7	
initial step-size			.000015	.000015	.000015	.15	.15	.15	.1	.1	.1	. 11.	11.	11.												
starting		.01912	.0002	.0002	.0002	2.	2.	2.	1.	1.	1.	100.	100.	100. 2	45.38	190.46	289.10	237.59	371.23	534.57	185.45	481.26	240.58	2775. 51	3469.00	. 61767
point 1	501	.01912	.000234	.000234	.000234	1.66452	1.66452	1.66452	.77635	.77635	.77635	124.602	131.185	132.233 2											2441.65	
2	813	.00239	.000249	.000234	.000234	1.66452	1.66452	1.66452	.77635	.77635				132.233 2											1545.88	
3	1314	.00060	.000268	.000253	.000215	1.27903	1.16468	1.23386	.39700	.39700				143.296 2												.95179
4	1749	.00007	.000305	.000253	.000215	1.27903	1.16468	1.23386	.39700	.39700				143.296 20											1463.59	
5 (?iral)	2252	.00002	.000305	.000253	.000215	.67892	1.16468	.90380	.73807	.24353				143.296 4							2.83				1450.95	

Table 6.9. SUMT solution for the second set of starting values (numerical example 2)

	cumulative No. of f-value calculations up	25	. sca	le paramet	er		n correct ntenance			n prevent intenance			uled pre-		cos	t of desi	ign		of corre	ective		of preve tenance	entive	total	S functional value	system avail- ability
ķ.	to iteration k	k	1	75	3	(t _c) ₁	(t _c) ₂	(t _c) ₃	(t _p) ₁	(t _p) ₂	(t _p)3	71	T ₂	73	(c _d) ₁	(c _d) ₂	(c ₄)3	(c _e) ₁	(c _c) ₂	(c _e)3	(Cp)1	(c _p)2	(c _p)3	c _T		A _s
stimated poinus alue			.00025	.00025	.00025	1.5	1.5	1.5	1.5	1.5	1.5	110.	110.	110.												
nitial tep-size			.000025	.000025	.000025	.15	.15	.15	.15	.15	.15	11.	11.	11.												
tarting		C1196	.00015	.00015	.00015	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	257.94	198.71	302.17	195.51	305.49	439.91	297.32	761.54	380.77	3139.36	3924.00	.93515
oint 1	501	01196	.000206	.000206	.000206	1.66452	1.66452	1.66452	1.16452	1.16452	1.16452	134.602	136.161	134.255	259.34	201.45	305.65	200.11	313.69	449.91	39.14	92.60	51.47	1913.34	2326.33	.94029
2	792	60150	.000222	.000206	.000206	1.66452	1.66452	1.66452	1.16452	1.16452	1.16452	134.602	136.161	134.255	254.09	201.45	305.65	209.65	313.69	449.91	30.54	92.60	51.47	1909.03	1958.94	.93955
3	1294	00037	.000316	.000262	.000237	1.25019	1.17294	1.16948	.59780	: 59780	. 59780	144.319	144.895	144.415	271.16	232.49	358.66	145.17	180.83	245.33	1.35	9.71	7.96	1455.64	1462.07	.95018
inal)	1729	.00005	.000379	.000262	.000237	1.25019	1.17294	1.16948	.59760	. 59780	.59780	144.319	144.895	144.415	260.95	232.49	358.66	159.26	180.83	245.33	.40	9.71	7.96	1455.56	1456.72	.94545

the solution obtained in Table 6.8 is the global optimum.

Comparison Between CRG and SUMT Results

Both GRG and SUMT final results for the first and second set of starting values are respectively summarized in Table 6.10a and 6.10b. There is approximately 2.9% difference between the global optimum values obtained by GRG and SUMT. This difference might have been caused by the difficulty discussed in section 6.1. Since other comparisons between the results can, similarly, be made as was done in section 6.1, these will not be repeated in this section.

Table 6.10a. Summary of GRG and SUMT final results for the first set of starting values (numerical example: 2)

	Sca	ale parame	eter		an correct intenance			an preven intenance		sch	eduled prev	entive riod	total cost	system avail-	No. of iteration	execution time(min.)
	λ ₁	λ2	^λ 3	(t _c) ₁	(t _c) ₂	(t _c)3	(t _p) ₁	(t _p) ₂	(t _p)3	T ₁	^T 2	т ₃	c _T	ability A _s		cime(min.)
tarting point	.0002	.0002	.0002	ż.	2.	2.	1.	1.	1.	100.	100.	100.	2775.51	.93367		
RG (using $\frac{1}{\lambda_i$'s	.000229	.000284	.000158	2.	2.00008	2.	1.	1.	1.	100.	100.	100.	2626.62	.93002	17	1.061
variables)	.0002	.0002	.0002	1.16387	.97741	1.05751	.1	.1	.1	100.02870	100.06959	100.03629	1493.29*	.96812	5	.439
UNT	.000305	.000253	.000215	.67892	1.16468	.90380	.73807	.24353	.55048	140.849	135.946	143.296	1450.45**	.96311	k=5 (2252)	1.681

global optimum obtained by GRG

^{**} global optimum obtained by SUMT

Table 6.10b. Summary of GRG and SUMT final results for the second set of starting values (numerical example 2)

	sca	ile parame	ter		an correct intenance		me: ma	an preven intenance	tive time	sch mai	eduled preventenance per	entive riod	total cost	system avail-	No. of iteration	execution time(min.)
	λ ₁	λ ₂	λ3	(t _c) ₁	(t _c) ₂	(t _c) ₃	(t _p) ₁	(t _p) ₂	(t _p)3	T ₁	^T 2	^T 3	$c_{_{\mathbf{T}}}$	ability A _s		
starting point	.00015	.00015	.00015	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	3139.36	.93515		
RG 1	.000186	.000285	.000126	2.	2.	2.	1.5	1.5	1.5	110.	110.	110.	2744.64	.93038	6	.413
RG(using $\frac{1}{\lambda_{j}}$'s s variables)	.00015	.00015	.00015	1.23725	1.04464	1.08576	.1	.1	.1	110.04956	110.08717	110.05422	1525.48	.97204	8	.442
UMT	.000379	.000262	.000237	1.25019	1.17294	1.16948	. 59780	. 59780	. 59780	144.319	144.895	144.415	145 5. 56	.94845	k=4 (1729)	1.292

Chapter 7

DISCUSSION AND CONCLUSIONS

This study deals with the optimal availability allocation problem for maintained systems. The introduction of availability as a single measure of system effectiveness is of primary concern in this study. Since availability reflects both the reliability and maintainability of a system, it appears to be an appropriate measure from an engineering design and management viewpoint.

Availability models are developed for systems which contain subsystems in series where each subsystem has identical units in parallel. The definition of availability employed in this study assumes a steady state condition. The models developed herein enable us to assume various probability density functions for failure and repair times, whereas the normal Markovian approach uses only exponential failure distributions.

In developing the availability models, the corrective maintenance policy assumed is such that repair or replacement for the subsystem begins only when the subsystem fails due to the failure of all redundant units. This assumption requires the subsystem to be fully restored after the completion of corrective maintenance. This policy, however, is applicable to those subsystems where the subsystem's output is monitored. For those subsystems in which the status of individual units can be monitored, some variations of the corrective maintenance

policy may also be considered. Under a policy such as to repair each individual unit as it fails, the cost associated with corrective maintenance is expected to increase due to the increased frequent maintenance. Hence, the latter policy might be preferrable only if the reduction in the costs associated with both design and preventive maintenance exceeds the increase in the cost of corrective maintenance. In this thesis, however, only the former policy has been considered because it seems to be preferred from an administrative point of view and seems to be the case most often encountered in practice.

The preventive maintenance policy assumed in this study is more realistic than strictly periodic maintenance policy in that preventive maintenance action for each subsystem need not necessarily be performed every T_j. Thus, the number of actual preventive maintenance actions under this policy is expected to be less than that under a strictly periodic maintenance policy. In this respect, the cost associated with preventive maintenance will be reduced with this policy

The proposed model is inadequate if a sequentially determined preventive maintenance policy is assumed. The development of model with a sequentially determined preventive maintenance policy seems to be much more complex and is not attempted in this study. However, if such a study is conducted at a later date a similar conceptual approach used in this study may be employed.

Under both corrective and preventive maintenance policies

assumed in this thesis, each subsystem redundancy can be fully restored after the completion of either corrective or preventive maintenance. These assumptions enable us to develop availability models which reflect the effects of both corrective and preventive maintenance as proposed in this thesis. If subsystem redundancy cannot be fully restored either by corrective or preventive maintenance, the problem of developing availability models analytically is much more complex. The simulation approach, however, is expected to solve this type of problem and is suggested for further work.

The number of repairmen assigned to each subsystem is assumed to be either one or equal to that of redundant units.

It is possible, however, to develop models under the assumption of various number of repairmen.

The availability equations contain a integral term. If exponential failure distribution is assumed, this can be evaluated analytically with the use of binomial theorem. However, when the failure time distribution is other than exponential, it is difficult, if not impossible, to evaluate it analytically. Therefore, numerical integration by the use of trapezoidal rule is employed to evaluate this integral term in numerical examples.

In numerical examples, the number of redundant units assumed for each subsystem is two, but different number of units for each subsystem can be assumed. Although this is treated as a given constant, future study on this subject will be able to treat it as a variable.

The cost function for the system consists of three cost components: the cost for design, the cost for corrective maintenance, and the cost for preventive maintenance. Each of the individual cost components are interrelated and are an approximation of real world situations. In numerical examples, a typical set of constants is assumed for the cost coefficients, however, they can be estimated if operational data is available for any particular system.

Both GRG and SUMT are employed to solve availability allocation problems. The results obtained by these two methods are compared. In GRG, the direction of movement is along the projected reduced gradient and the magnitude of movement for each variable is determined by the magnitudes of the partial derivatives of both the objective function and the constraints. Due to the great differences between the values of the partial derivatives, only some variables having large values of partial derivatives have significant movement to improve the value of the objective function while the others with small values of the partial derivatives remained unchanged. One possible alleviation from this difficulty is to employ the inverse of those variables having large values of the partial derivatives as variables in the problem. This, sometimes, enables us to lessen the difference between the values of partial derivatives. As shown in the numerical examples, this method has helped to obtain improved solutions, however, fundamental alleviation from this type of difficulty still remains unsolved. In Lai's modified version of SUMT

which incorporates the Hooke and Jeeves pattern search, the direction of search is determined by a direct comparison of two values of the object function at two points. This requires a large number of evaluations of the functional values, thus increasing the computing time.

The availability models developed in this thesis are more general and extensive than any others developed in the past in that they reflect the effects of both corrective and preventive maintenance. This study provides the basis for a procedure to allocate the availability parameters to the individual units of the subsystem. The availability allocation is treated as a cost minimization problem, subject to the constraint of satisfying the system availability requirement. This allocation technique is valuable in the early stages of maintained system design. This technique is also useful in the latter stages of system design when modifications and improvements for the initial specifications are required.

REFERENCES

- 1. Abadie, J. (ed.), Integer and Nonlinear Programming, North Holland Publishing Co., Amsterdam, 1970.
- 2. Abadie, J. (ed.), Nonlinear Programming, North Holland publishing Co., Amsterdam, 1967.
- 3. Abadie, J., "Solution des questions de dégénérescence dans la methode GRG", Electricité de France note HI 143/00 du 25 Septembre 1969.
- Abadie, J. and Carpendier, J., Generalisation de la methode du gradient reduit de Wolfe au cas de constrintes non-lineaires, Electricité de France note HR 6678, du 27 Octobre 1965.
- 5. Ankenbrandt, F.L. (ed.), Maintainability Design, Engineering Publishers, Elizabeth, N.J., 1963.
- 6. Arms, R.L. and Goodfriend, R.D., "Some Useful Reliability Graphs for Units and Simple Repairable Systems", 11th Nat. Sym. on Rel. and Q.C., pp.408-418, Miami beach, Florida, Jan. 1965.
- 7. Barlow, R.E. and Hunter, L.C., "System Efficiency and Reliability", Technometrics, Vol. 2, No.1, pp. 43-53,1960.
- 8. Barlow, R.E. and Hunter, L.C., "Mathematical Models for Systems Reliability", The Sylvania Technologist, Vol. XIII, Nos. 1 and 2, Jan. and Apr. 1960.
- 9. Barlow, R.E. and Hunter, L.C., "Reliability Analysis of One Unit System", J. of the ORSA, Vol. 9 pp. 200-208, Mar. Apr. 1961.
- 10. Barlow, R.E., Hunter, L.C., and Proschan, F., "Optimum Checking Procedures", 7th Nat. Sym. on Rel. and Q.C., pp. 485-495, Philadelphia, Pa., Jan. 1961.
- 11. Barlow, R.E. and Proschan, F., Mathematical Theory of Reliability, John Wiley, N.Y., 1965.
- 12. Barlow, R.E. and Proschan, F., "Planned Replacement", EDL-M 296, Electronic Defense Laboratories, Mountain View, Cal., 1960.
- 13. Barlow, R.E. and Proschan, F., "Planned Replacement", Studies in Applied Probability and Management Science (edited by Arrow, Karlin, and Scarf), Stanford University Press, Stanford, Calif., 1962.

- 14. Bazovsky, I., Reliability Theory and Practice, Prentice-Hall, Englewood Cliffs, N.J., 1961.
- 15. Bell, C.F., Kamins, M., and McCall, J.J., "Some Elements of planned Replacement Theory", 1966 Annual Sym. on Rel., pp. 98-117, San Francisco, Calif., Jan. 1966.
- 16. Bellman, R.E. and Dreyfus, S.E., "Dynamic Programming and the Reliability of Multicomponent Devices", Operations Research, Vol.6, No.2, pp. 200-206, Mar.-Apr. 1958.
- 17. Blanchard, B.S., Jr. and Lowery, E.E., Maintainability, McGraw-Hill, 1969.
- 18. Boodman, D.M., "The Reliability of Airborne Radar Equipment", J. of ORSA, Vol. 1, No. 2, pp. 39-45, Feb. 1953.
- 19. Branson, M.H. and Shah, B., "Reliability Analysis of Systems Comprised of Units with Arbitrary Repair-Time Distribution", IEEE Trans. on Rel., Vol. R-20, No.4, pp. 217-223, Nov. 1971.
- 20. Campbell, N.R., "The Replacement of Perishable Members of a Continually Operating System", J. Roy. Stat. Soc., Vol.7, pp. 110-130, 1941.
- 21. Carhart, R.R., "A Survey of the Current Status of the Reliability Problem", Rand Corp., Research Memo. RM-1131, Aug. 1953.
- 22. Carroll, C.W., "An Operations Research Approach to the Economic Optimization of a Kraft Pulping Process", Ph.D. Dissertation, Institute of Paper Chemistry, Applitown, Wisc., 1959.
- 23. Carroll, C.W., "The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems", Operations Research, Vol. 9, pp. 169-184, 1961.
- 24. Chatterjee, S., "Availability Models of Maintained Systems", A Master's Thesis, Dep't of I.E., Kansas State University, 1971.
- 25. Cho,H.H., "On Proper Preventive Maintenance", 9th Nat. Sym. on Rel. and Q.C., pp. 431-438, San Francisco, Calif., Jan. 1963.
- 26. Cunningham, C.E. and Cox, W., Applied Maintainability Engineering, John Wiley & Sons, 1972.
- 27. Davis, D.J., "An Analysis of Some Failure Data", J. of the American Statistical Assoc., Vol. 47, No. 258, pp. 113-150, June 1952.

- 28. deMercado, J.B., "Reliability Prediction Studies of Complex Systems having Many Failed States', IEEE Trans. on Rel., Vol. R-20, No. 4, pp. 223-230, Nov. 1971.
- 29. Dep't of 'the Army Pamphlet 705-1, Maintainability Engineering, Headquarters, Dep't of the Army, June 1966.
- 30. Derman, C. and Sacks, J., "Replacement of Periodically Inspected Equipment", Naval Research Logistics Quarterly, Vol. 7, No. 4, pp. 597-607, 1960.
- 31. Epstein, B. and Hosford, J. "Reliability of Some Two Unit Redundant Systems", 6th Nat. Sym. on Rel. and Q.C., pp. 469-476, Washington, D.C., Jan. 1960.
- 32. Fan, L.T., Wang, C.S., Tillman, F.A., and Hwang, C.L., "Optimization of Systems Reliability", IEEE Trans. on Rel., Vol. R-16, No. 2, pp. 81-86, Sept. 1967.
- 33. Faragher, W.E. and Watson, H.S., "Availability Analyses-A Realistic Methodology", 10th Nat. Sym. on Rel. and Q.C., pp. 365-378, Washington, D.C., 1964.
- 34. Fiacco, A.V., and McCormick, G.P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons, N.Y., 1968.
- 35. Fiacco, A.V. and McCormick, G.P., "The Sequential Unconstrained Minimization Technique for Nonlinear Programming: A Primal-Dual Method", Management Sci., Vol. 10, pp. 360-366, 1964.
- 36. Finkelstein, J. and Schafer, R., "Dependability Models for a System of N Parallel Elements", 8th Nat. Sym. on Rel. and Q.C., pp. 434-441, Washington, D.C., 1962.
- 37. Flehinger, B.J., "A General Model for the Reliability Analysis of Systems Under Various Preventive Maintenance Policies", Annals of Math. Stat., Vol. 33, No. 1, pp. 137-156, 1962.
- 38. Fletcher, R. (ed.), Optimization, Academic Press, N.Y., 1969.
- 39. Gaver, D.P., Jr., "Time to Failure and Availability of Paralleled Systems with Repair", IEEE Trans. on Rel., vol. R-12, No. 2, pp. 30-38, June 1963.
- 40. Goldman, A.S. and Slattery, T.B., Maintainability, John Wiley & Sons, N.Y., 1964.
- 41. Goldman, A.S. and Whitin, T.M., "Optimizing the Trade-off Between Reliability and Maintainability Design", 10th Nat. Sym. on Rel. and Q.C., pp, 19-32, Washington, D.C.,

- 1964.
- 42. Graves, R. and Wolfe, P. (eds.), Recent Advances in Mathematical Programming, McGraw-Hill, N.Y., 1963.
- 43. Guigou, J., Presentation et utilisation du code GRG, Electricité de France note HI 102/02 du 9 Juin 1969.
- 44. Guigou, J., Presentation et utilisation du code GREG, Electricité de France note HI 582/2 du Mai 1971.
- 45. Hall, R.A., Dubner, H., and Adler, L.B., "Reliability of Nonexponential Redundant Systems", 1966 Annual Symposium on Rel., pp. 594-608, San Francisco, Calif., Jan. 1966.
- 46. Hall, K.M. and McDonald, R.H., "Improving System Reliability", 7th Nat. Sym. on Rel. and Q.C., pp. 214-228, Philadelphia, Pa., Jan. 1961.
- 47. Hooke, R. and Jeeves, T.A., "Direct Search Solution of Numerical and Statistical Problems", J. Assoc. Compt. Mach., Vol. 8, 1961.
- 48. Howard, R.R., Howard, W.J., and Hadden, F.A., "Study of Down Time in Military Equipment", 5th Nat. Sym. on Rel. and Q.C., pp. 402-408, Philadelphia, Pa, 1959.
- 49. Hsu, F.T., Fan, L.T., and Hwang, C.L., "Sequential Unconstrained Minimization Technique (SUMT) for Optimal Production Planning", Institute for Systems Design and Optimization, Kansas State University,
- 50. Htun, L.T., "Reliability Prediction Techiques for Complex Systems", IEEE Trans. on Rel., Vol. R-15, pp. 58-69, Aug. 1966.
- 51. Hwang, C.L., Fan, L.T., and Kumar, S., "Hooke and Jeeves Pattern Search Solution to Optimal Production Planning Problems", Report No. 18, Institute of Systems Design and Optimization, Kansas State University, 1969.
- 52. Hwang, C.L., Williams, J.L., and Fan, L.T., "Introduction to the Generalized Reduced Gradient Method", Report No. 39, Institute for Systems Design and Optimization, Kansas State University, July 1972.
- 53. Johnson, P.A., "A Proposed Methodelogy for Designing Real-Time InformationSystems with Availability Constraints", IEEE Trans. on Rel., Vol. R-21, No. 4, pp. 220-223, Nov. 1972.
- 54. Kabak, I.W., "System Availability and Some Design Implications", Operations Research, Vol. 17, pp. 827-837, 1969.

- 55. Kettelle, J.D., Jr., "Least-Cost Allocation of Reliability Investment", Operations Research, Vol. 10, No. 2, pp. 249-265, 1962.
- 56. Kneale, S.G., "Reliability of Parallel Systems with Repair and Switching", 7th Nat. Sym. on Rel. and Q.C., pp. 129-133, Philadelphia, Pa., Jan. 1961.
- 57. Lai, K.C., "Optimization of Industrial Management Systems by the Sequential Unconstrained Minimization Technique", A Master's Report, Dep't of I.E., Kansas State Univ., 1970.
- 58. Lambert, B.K., Walvekar, A.G., and Hirmas, J.P., "Optimal Redundancy and Availability Allocation in Multistage Systems", IEEE Trans. on Rel., Vol. R-20, No. 3, pp. 182-185, Aug. 1971.
- 59. Martz, H.F., Jr., "On Single-Cycle Availability", IEEE Trans. on Rel., Vol. R-20, No. 1, pp. 21-23, Feb. 1971.
- 60. McGregor, M.A., "Approximation Formulas for Reliability with Repair", IEEE Trans. on Rel., Vol. R-12, No. 4, pp. 64-91, Dec. 1963.
- 61. McNichols, R.J. and Messer, G.H., Jr., "A Cost-Based Availability Allocation Algorithm", IEEE Trans. on Rel., Vol. R-20, No. 3, pp. 178-182, Aug. 1971.
- 62. Meyers, R. and Dick, R.S., "Some Considerations of Scheduled Maintenance", 8th Nat. Sym. on Rel. and Q.C., pp. 343-356, Washington, D.C., Jan. 1962.
- 63. Meykar, O.A., "Maintainability Terminology Supports the Effectiveness Concepts", IEEE Trans. on Rel., Vol. R-16, No. 1, pp. 10-15, May 1967.
- 64. Mizukami, K., "Optimum Redundancy for Maximum System Reliability by the Method of Convex and Integer Programming", ORSA, Vol. 16, pp. 392-406, Mar.-Apr. 1968.
- 65. Morse, P.M., Queues, Inventories, and Maintenance, John Wiley & Sons, N.Y., 1958.
- 66. Myers, P.J., "Monte Carlo: Reliability Tool for Design Engineers", 9th Nat. Sym. on Rel. and Q.C., pp. 487-492, San Francisco, Calif., Jan. 1963.
- 67. Nagy, G., "The Reliability of Repairable Systems", 9th Nat. Sym. on Rel. and Q.C., pp. 93-108, San Francisco, Calif., Jan. 1963.
- 68. Paviani, D.A. and Himmelblau, D.M., "Constrained Nonlinear

- Optimization by Heuristic Programming", AICHE meeting in New Orleans, March 1969.
- 69. Pennington, R.H., Introductory Computer Methods and Numerical Analysis, The Macmillan Co., N.Y., 1967.
- 70. Peterson, E.L., "Maintainability Application to System Effectiveness Quantification", IEEE Trans. on Rel., Vol. R-20, No. 1, pp. 3-7, Feb. 1971.
- 71. Proschan, F. and Bray, T., "Optimum Redundance under Multiple Constraints", ORSA, Vol. 13, pp. 800-814, Sept.-0ct. 1965.
- 72. Rohn, W.B., "Reliability Prediction for Complex Systems", 5th Nat. Sym. on Rel. and Q.C., pp. 381-388, Philadelphia, Pa., Jan. 1959.
- 73. Rosenheim, D.E., "Analysis of Reliability Improvement through Redundancy", Prodeedings of the New York Conference on Reliability Theory, June 1958.
- 74. Rudd, D.F., "Reliability Theory in Chemical Systems Design", I & EC Fundamentals, Vol. 1, No. 2, pp. 138-143, May 1962.
- 75. Ryerson, C.M., "Definitions Panel", 5th Nat Sym. on Rel. and Q.C., pp. 161-178, Philadelphia, Pa., Jan. 1959.
- 76. Sandler, G.H., System Reliability Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1963.
- 77. Savage, I.R., "Cycling", Naval Research Logistics Quarterly, Vol. 3, No. 3, pp. 163-175, 1956.
- 78. Shafii, Y., "A Study of the Generalized Reduced Gradient Method", A Master's Report, Dep't of I.E., Kansas State University, 1973.
- 79. Shershin, A.C., "Mathematical Optimization Techniques for the Simultaneous Apportionments of Reliability and Maintainability", Operations Research, Vol. 18, No. 1, pp. 95-106, 1970.
- 80. Shooman, M.L., Probabilistic Reliability An Engineering Approach, McGraw-Hill, 1968.
- 81. Tillman, F.A., "Optimization of Constrained Reliability Problems with Several Modes of Failures by Integer Programming", IEEE Trans. on Rel., Vol. R-18, pp. 47-53, May 1969.
- 82. Tillman, F.A., Hwang, C.L., Fan, L.T., and Lai, K.C.,

- "Optimal Reliability of a Complex System", IEEE Trans. on Rel., Vol. R-19, No.3, pp. 95-100, Aug. 1970.
- 83. Tillman, F.A. and Littschwager, J., "Integer Programming Formulation of Constrained Reliability Problems", Management Science, Vol. 13, pp. 887-899, July 1967.
- 84. Von Alven, W.H. (ed.), Reliability Engineering, ARINC Research Corp., Prentice-Hall, Englewood Cliffs, N.J., 1964.
- 85. Weiss, G.H., "On the Theory of Replacement of Machinery with a Random Filure Time", Naval Research Logistics Quarterly, Vol. 3, No. 4, pp. 279-294, 1956.
- 86. Weiss, G.H., "On Some Economic Factors Influencing a Reliability Program", NAVORD Report 4256, U.S. Naval Ordance Lab., White Oak, Md., 1956.
- 87. Weiss, G.H., "The Reliability of a Redundant System which Operators Repetitively", NAVORD Report 4348, U.S. Naval Ordance Lab., White Oak, Md., 1956.
- 88. Weissbaum, W.E., "Probability Theoretic Solution of Some Maintenance Problems", Proc. Fouth Signal Maintenance Symposium, 1960.
- 89. Welker, E.L., "Relationship Between Equipment Reliability, Preventive Maintenance Policy, and Operating Costs", ARINC Research Corp., Publication No. 101-9-135, Feb. 1959.
- 90. Welker, E.L. and Horne, R.C., "Concepts Associated with System Effectiveness", ARINC Monograph No. 9, ARINC Research Corp., July, 1960.
- 91. Westland, R.A., Hanifan, D.T., and Sacks, J., "A Reliability Maintainability Trade-Off Procedure", 10th Nat. Sym. on Rel. and Q.C., pp. 600-611, Washington, D.C., Jan. 1964.
- 92. Wilkinson, R.E. and Walvekar, A.G., "Optimal Availability Allocation in a Multicomponent System", AIIE Trans., vol. 2, No. 3, pp. 270-272, Sept. 1970.
- 93. Williams, J.L., "Optimization of Industrial Systems with the Separable Programming and the Generalized Reduced Gradient Methods", A Master's Thesis, Dep't of I.E., Kansas State University, 1972.
- 94. Wohl, J.G., "System Operational Readiness and Equipment Dependability", IEEE Trans. on Rel., Vol. R-15, No. 1, pp. 1-6, May 1966.

95. Zelen, M. (ed.), Statistical Theory of Reliability, Publication No. 9 of the Mathematics Research Center, U.S. Army, The University of Wisconsin Press, Madison, Wisc., 1964.

APPENDIX 1

A1.1 GLOSSARY OF TERMS IN RELIABILITY AND MAINTAINABILITY

This glossary is intended to clarify those technical

terms and definitions used throughout this thesis and other
related literatures on reliability and maintainability.

These terms are defined in [17, 63, 75, 84].

Active Repair Time

That portion of down time during which one or more repairmen are working on the system to effect a repair.

This time includes preparation time, fault-location time, fault-correction time, and final check-out time for the system.

Chance Failure

A chance failure is a failure which occurs at random within the operational time of a system after all efforts have been made to eliminate design defects and unsound units, and before wearout becomes predominant.

Dependability

According to Peterson [70], dependability accounts for reliability, maintainability, and alternate operational modes. The mathematical definition of dependability can be written as

$$D = R + M_{O}(1 - R)$$
 (A1.1)

where D is the dependability which is the probability that a system's mission will be successfully completed within the mission time t_1 , provided that a down time per failure not

exceeding a given time t_2 will not adversely affect the overall mission. R is the reliability which is the probability that a system will operate without failure for the mission time t_1 . M_0 is the operational maintainability of the system - the probability that when a failure occurs it will be repaired in a time not exceeding the allowable downtime t_2 . $\frac{1}{1}$

The total time during which the system is not in acceptable operating condition. This can be subdivided into active repair time, logistics or supply time, and wait or administrative time.

Failure

The inability of a system to perform within previously specified limits.

Failure Rate

The failure rate or hazard rate r(t) associated with the random variable T is defined as

$$r(t) = \frac{f(t)}{R(t)} \tag{A1.2}$$

where f(t) is the pdf of T and R(t) is the reliability function. To interpret r(t), consider the conditional probability, i.e., the probability that the system will fail during the next &t time units, given that the system is functioning properly at time t. Applying the definition of conditional probability, we may write this as

$$P(t \le T \le t + \delta t \mid T > t) = \frac{P(t < T \le t + \delta t)}{P(T > t)}$$

$$= \frac{\int_{t}^{t+\delta t} f(x)dx}{P(T > t)} = \frac{\delta t f(\epsilon)}{R(t)}$$
(A1.3)

where $t \le \epsilon \le t + \delta t$.

For small δt and supposing that f is continuous at 0^+ , the last expression in equation (A1.3) is approximately equal to $\delta tr(t)$. Thus, $\delta tr(t)$ represents the approximate probability of failure occurring between time t and t + δt . Note that the pdf of T, f, uniquely determines the failure rate r(t), or conversely, r(t) uniquely determines the pdf f by the following equation:

$$f(t) = r(t)e^{-\int_0^t r(s)ds}$$
(A1.4)

Logistics or Supply Time

That portion of down time during which maintenance is delayed solely because a required item is not immediately available.

<u> Mean Time Between Failures (MTBF)</u>

The total measured operating time of a population of equipments divided by the total number of failures within the population during the measured period of time. Alternatively, mean time between failures of a repairable equipment is

defined as the ratio of the total operating time to the total number of failures. The measured operating time of the equipments of the population which did not fail must be included. This measurement is normally made during that period of time between the early life and wearout failures. In the case of exponentially distribution time between failures this ratio is the reciprocal of failure rate.

Meam Time to Failure (MTTF)

The measured operating time of a single piece of equipment divided by the total number of failures of the equipment during the measured period of time. This measurement is normally made during that period of time between the early life and wearout failures.

Mean Time to First Failure (MTTFF)

The average time to first failure of several equipments.

It is used to determine the apparent approach of the equipment life characteristic to its random failure rate and is accomplished during the manufacturing phase of a program.

Mission Time

The period of time in which a device must perform specified mission task in a specified environment.

Operating Time

The time during which the system is operating in a manner acceptable to the operator. This includes the time when the operator may be somewhat dissatisfied with the manner of operation, but is not sufficiently dissatisfied to shut the

system down and request repair action.

Operational Readiness

The probability that a product will perform satisfactorily at any point in calendar time.

Probability of Survival

The probability of a given system of performing its intended function for the given Use Cycle.

Redundancy

The existence of more than one means for accomplishing a given task, where all means must fail before there is an over-all failure to the system. Parallel redundancy applies to systems where both means are working at the same time to accomplish the task, and either of the systems is capable of handling the job itself in case of failure of the other system. Standby redundancy applies to a system where there is an alternate means of accomplishing the task that is switched in by a malfunction sensing device when the primary system fails.

Repair Time

The time measured from the beginning of correction of a malfunction to the completion of such correction. It is assumed that the cause of malfunction is known. Repair time is distinguished from repair effort which is measured in man-hours.

System Effectiveness

A measure of the degree to which a system can be expected to achieve a set of specific mission requirements.

and which may be expressed as a function of availability, dependability, and capability.

Uptime

That elements of active time during which a system is either alert, reacting, or performing a mission.

Uptime Ratio

The quotient of uptime, divided by uptime plus downtime.

Wait or Administrative time

That portion of down time not included in active repair time and logistics or supply time. This includes both necessary administrative actions and unnecessarily wasted time.

Wearout

The process of attrition which results in an increase of the failure rate with increasing age.

Wearout Failures

Those failures which occur as a result of deterioration processes or mechanical wear, and whose probability of occurrence normally increases with time.

A1.2 MARKOV PROCESSES

When a sequence of experiments or trials constitutes a Markov process, it is assumed that the outcome on any trial depends on the outcome of the directly preceding trial. Hence a conditional probability associated with every pair of outcomes is required to be introduced. Space and time concepts are also needed to be introduced. For example, we may define the states of a machine as operating

or failed, and consider how transitions are made back and forth from each of the possible states. It is possible to consider processes discrete in both space and time, processes discrete in space and continuous in time, and processes continuous in both space and time. Most reliability and availability problems are of processes discrete in space The important feature of a Markov and continuous in time. process is that the future states of the process depend only on its immediate past history, therefore we say that there is a lack of memory. If the conditional transition probability is constant, a process is called statioary. If the conditional probabilities vary with time, a process is called non-stationary To apply Markov processes in the formulation or non-Markovian. of reliability and availability models, exponential distribution is assumed for failure times. This assumption enables us to have a constant failure rate, thus a lack of memory property of a Markov process is satisfied.

To illustrate the use of Markovian approach, the reliability function for a two-unit redundant system given by equation (4.33) is obtained below by applying Markov process [31]. Under the same assumptions assumed in section 4.3, the possible states of the system are defined as

state 0: both units operating

state 1: one unit failed and is not repaired, the other operating

state 2: both units failed.

The Markov graph for this system is shown in Figure A1.1.

The transition matrix in this case is

To develop the system of differential equations we must first enumerate the probabilities of being in each state at time t+dt.

These are:

$$P_0 (t + dt) = P_0 (t)(1 - 2\lambda dt)$$

$$P_1 (t + dt) = P_0 (t)(2\lambda dt) + P_1 (t)(1 - \lambda dt)$$

$$P_2 (t + dt) = P_1 (t)(\lambda dt) + P_2(t)$$

where $P_i(t)$ represents the probability of being in i^{th} state at time t. From equation (A1.6), we obtain

$$P_0'(t) = -2\lambda P_0(t)$$

Figure A1.1. Markov graph for a two-unit redundant system.

$$P_{1}'(t) = 2\lambda P_{0}(t) - \lambda P_{1}(t)$$
 (A1.7)
 $P_{2}'(t) = \lambda P_{1}(t)$

where Pi(t) denotes the first derivative.

If the system is in state 0 at time 0, the initial conditions become

$$P_0(0) = 1$$
, $P_1(0) = 0$, $P_2(0) = 0$ (A1.8)

Taking Laplace transforms of equation (A1.7) we have

$$(s + 2\lambda)q_0(s) = 1$$

$$-2\lambda q_0(s) + (s + \lambda)q_1(s) = 0$$

$$-\lambda q_1(s) + sq_2(s) = 0$$
(A1.9)

Solving equation (A1.9) for $q_2(s)$ we obtain

$$q_2(s) = \frac{2\lambda^2}{s(s+\lambda)(s+2\lambda)}$$
(A1.10)

By partial fraction expansion

$$q_2(s) = \frac{1}{s} - \frac{2}{s+\lambda} + \frac{1}{s+2\lambda}$$
 (A1.11)

Taking inverse transforms of q2(s) gives

$$P_2(t) = 1 - 2e^{-\lambda t} + e^{-2\lambda t}$$
 (A1.12)

Therefore, the reliability of the system at time t is

$$R(t) = 1 - P_2(t)$$

= $2e^{-\lambda t} - e^{-2\lambda t}$ (A1.13)

A1.3 THE TRAPEZOIDAL RULE

Let y = f(x) be a function defined between x = a and x = b. Now divide the interval $a \le x \le b$ into n subintervals by the points $a < x_1 < x_2 < \cdots < x_{i-1} < x_i < \cdots < x_{n-1} < b$ and set

$$\delta x_{i} = x_{i} - x_{i-1} \tag{A1.14}$$

If we consider the following sum

$$\sum_{i=1}^{n} f(\gamma_i) \delta x_i$$
 (A1.15)

where γ_i be any point between x_{i-1} and x_i , then as the number of intervals n approaches infinity in such a manner that all the lengths of the intervals δx_i approach zero, the quantity given by equation(A1.15) approaches a limit. This limit is called the definite integral of f(x) from a to b and is denoted by

$$\int_{a}^{b} f(x) dx \qquad (A1.16)$$

Equation (A1.16) can be considered to be the area lying between the curve f(x) and the x axis, and between the lines x=a and x=b. If the function f(x) is sufficiently simple that its antiderivative F(x), whose derivative F'(x) is equal to f(x), can be determind analytically, then equation(A1.16) can be evaluated by using the following equation:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 (A1.17)

However, if it is difficult or impossible to find the F(x) analytically, as is often the case, it is necessary to employ the trapezoidal rule or some other numerical method of approximation to evaluate equation (A1.16). Such methods are quite natural and useful when digital computers are available [69].

The numerical integration by the use of trapezoidal rule can be made by dividing the interval a to b into n equal parts of length $\delta x = (b-a)/n$, erecting an ordinate line to the curve at each of the points of division, and connecting

the end points of these ordinate lines to form trapezoids, as in Figure A1.2. The areas of n trapezoids, A_1 , A_2 ..., A_n , are

$$A_{1} = \frac{1}{2}[f(a) + f(x_{1})]\delta x$$

$$A_{2} = \frac{1}{2}[f(x_{1}) + f(x_{2})]\delta x$$

$$\vdots$$

$$A_{n} = \frac{1}{2}[f(x_{n-1}) + f(b)]\delta x$$
(A1.18)

The sum of the areas of n trapezoids, A, is

$$A = A_1 + A_2 + \cdots + A_n$$

$$= \delta x [f(a)/2 + f(x_1) + f(x_2) + \cdots + f(x_{n-1}) + f(b)/2]$$
(A1.19)

This can be seen to approximate the area under the curve, in other words, this approximates the definite integral of f(x) between a and b. Therefore

$$\int_{a}^{b} f(x) dx \approx A \tag{A1.20}$$

The approximation can be made as close as desired by taking a sufficient number of intervals. The FORTRAN subroutine

Figure A1.2. A function

INTEG which employes the trapezoidal rule to evaluate definite integral terms in both equations (4.47) and (4.118) is listed in Appendix 2.

APPENCIX 2

COMPUTER PROGRAM LISTINGS

A2.1 GRG : USER SUPPLIED SUBROUTINES FOR EXAMPLE 1

These subroutines use λ_j 's, μ_j 's, $(t_p)_j$'s, and T_j 's as original problem variables. To use $\frac{1}{\lambda_j$'s and $\frac{1}{\mu_j$'s as variables, only a few modifications within these listed subroutines are required.

ILLEGIBLE DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN
THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

```
SUBROUTINE PHIX.
   DIM: 45 ION CC (6,3)
   DIMENSION BOLDON
              1.(50,100), ALFA(50,56), X(150), XC(150), XT(150), XS(150)
                                                                       G. G.
   DIMINICION
                                                                             20
  %,Y(150),C(150),VC(50),1BAS(50),IHR(200),IVC(50),IVA(100)
                                                                       GLGF
                                                                             30
   COUBLE PRECISION A, ALFA, ALC, ALL, ALB, TRA, C, OLLTF1, BELTF4, DIP, BELTA
  1x,01,0,0,0PSIL,5PSILO,6PSIL2,ETA, PSIL1,5PSIL3,&PSIL4,EPSIL5, EPSIL5,
  2~PSILU,(PSIL6;RPSILO,TPS,RPSIL,FII,FIO,F2O,F1,F2,G,GAMA,GNORM,GKS,
  3GK.PHI.PST.PST3.PC.PHIC.PHII.PHI2.PSTT.TOP.PST4.PCMAL.PS1.P62.P63.
  4R4PG,ROB,RG,RB,RA,SCAL,TB,TD,TC,TREN,TRE,TR,TR1,TLT4,TETAT,TOTG,TQ
  5161,75741,7572,7573,7574,7575,757,757,42,30,701,400,1571,71
   DOUBLE PROCESSON TRB, T2, T22, TCX, Th, U, VC, VO, V2, VI, V3, V, VCI, VCL, XI,
  2,XSP1,XSE2,XTR1,XTR,XTR2,X1,XIT,Y,YSORT,YSORT1,YNORM,YSORTO,YRO,YR
  3, Z, ZI, X, XC, XS, X1, X2, XR, B
   DOUBLE PRECISION DIT, DISULS
   DOUBL: PRECISION BMOD, BSQRT, DABS, DMINI, DMAXI
   DUUBLE PRECISION CC. DT.AV. AVD. DESIGN, CORRCT, PREVNT, DESICOP, PRE,
  ISUB, UNREL, UNPELE, UNRELE, REL, REEL, RELE, RMTBM, RMTBM1, RMTBM2, UMTBM,
  2UMTRMI, UMTBM2, SMTBM, SMTBM1, SMTBM2, CTM, CTM1, PTM, PTM1, RTM, RTM1,
  3RTM2, RTM3, RTM4, VAVO, AU, UC1, UC2, DEXP
   COMMON/LIEI/CO
            B, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, ETA
   COMMUN
   COMMON
           FIL, PHI, PSI, PSI3, T8, T0, TC, EPSIL, EPSILO, EPSIL2, YSORT
              NV, NC, NK, NEG, NIN, NTV, NV1, NEV, NEVL, NTO, NIN1, NIN2, NIN3, NICFGA
   MEMBOO
  60
  205, KFIL, KLIN, KREN, KD, IBAS, IHB, IVC, IVA, IVB
              KFONC, KGRAD, KCONT, KINVI, KINV2, KCDEA, KJACO, KMAXI, KMAX2, KGEGA
  1REM1, KREN2, KINV, KCDB41, KREN11, KREN21, IDIREC, JKO, LC
   1F(IT) 10,11,11
10 \ CC(1,1) = .60
   CC(1,2)=.50
   CC(1,3)=.80
   CC(2,1)=400.
   CC(2,2)=500.
   CC(2,31=600.
  CC(3,1)=5.
  CC(3,2)=5.
  CC(3,3)=5.
   CC(4.1)=1.8
  CC(4,2)=2.0
  CC(4,3)=1.7
  CC (5, 11=20.
  CC(5, 2)=15.
  CC(5,31=50.
  CC (6,1)=3.
  CC(6,2)=4.
  CC(6,3)=2.
11 D'SIGN=O.
  CORRCT=0.
  PREVNT =0.
  no 100 J=1,3
  J(=J+3
   JP=JC+3
  JQ=JP+3
  UN..:L=(1.-DcXP(-XC(J)*XC(JQ)))**2
  FIL=1.-UNRIL
  CALL INTEG(XC, J, JQ, RMTBM)
  UNTRH=RMTBM/UNKEL
   SMTDM=RMTBM/REL
```

```
CTM=1./XC(JC)
    PEM=XC(JP)
    RIMECIMEUNROL+PIMEROL
    WRITE (6.130) FHT PM, UNTBM, SMTAM, RTM
130 FORMAT(/! !,4015.6) >>
    UPS=CC(l,J) YP MTBM+CC(2,J)/RTM-CC(3,J)
    CHR={1500./UMTRM]*(CC(4,J)*64M]**2:
    PRT=(1500./54784)*(CC(5,J)*PTM-CC(6,J))
    SUB=DOS+CUR+PRE
    WRITE(6,140) DES, COR, PRE, SUB
140 FORMAY(* ', 4015.6)
    DASIGN=DESIGN+Des
    CORRCT=CORRCT+COR
    PREVNT=PREVNT+PRE
100 CUNTINUE
    WRITE(6,1501DESIGN, CORRCT, PREVNY
150 FORMAT(' ',5X, THE THREE COST COMPONENTS ARF!/! ',3024.16)
    PHI=DISIGN+CORRCY+PREVNT
    PHT=-PHT
    RETURN
    FND
    SUBROUTINE CPHI
    DIMENSION CC(6.3)
    DIMENSION
                B(100)
    DIMENSION
               A(50,100),ALFA(50,50),X(150),XC(150),XI(150),XS(150)
                                                                              GUGF
                                                                                     20
   1,Y(150),C(150),VC(50),IBA5(50),IHS(100),IVC(50),IV4(100)
                                                                              G:GF
                                                                                     30
    DOUBL # FRECISION A, ALFA, ALC, ALA, ALB, TRA, C, DELTFI, DELTFA, DTP, DELTA
   1X,D:,O:FPS1L,:PSILO:FPSIL2;LTA;EPSIL1;FPSIL3;:PSIL4;EPSIL5;EPSIL7;
   2EPSILU, FPSIL6, EPSIL9, EPSIL, FII, FII, FIO, F20, F1, F2, G, GAMA, GNUKM, GKS,
   36K,FHI,PSI,PSI3,PC,PHIC,PH11,PHI2,PS17,TQP,PS14,PHNAL,PC1,FC2,PE3,
   4KAPG, ROB, RO, RB, RA, SCAL, TB, TD, TC, TREN, TRE, TR, TR1, TETA, TETAT, TQTG, TQ
   5TG1, TETA1, TC12, TET3, TET4, TET5, TCT, TETA2, TO, TO1, TQ0, TET1, T1
    DOUBLE PRECISION TRB,T2,T22,TEX,TE,U,VC,V0,V2,V1,V3,V,VC1,VC1,X1,
   1XMV, XMO, XSB, XSA, XMORM, XMCR, XINORM, XMAJ, XSC, XSB1, XSB2, XMK, XIE1, XIE2
   2,XSC1,XSE2,XTR1,XTR,XTR2,XT,XIT,Y,YSURT,YSURT1,YNDRM,YSURTO,YRD,YR
   3, Z, ZI, X, XC, XS, X1, X2, XR, B
    DOUBLE PRECISION DIT, DISOLS
    DOUBLE PRECISION DWOD, DSORT, DABS, DMIN1, DMAX1
    DOUBLE PRECISION CC, DT, AV, AVD, Dasigh, CGRRCT, PREVNY, DES, COR, PRE,
   1988, UMREL, UMRELI, UNRELE, REL, RELI, PELE, RMTBM, RMTBML, KMTBME, UMTBM.
   2UMTBM1, UMTBM2, SMT8M, SMT8M1, SMT8M2, CTM, CTM1, PTM, PTM1, RTM, RTM1,
   3RTM2, PTM3, RTM4, VAVO, AU, UC1, UC2, DEXP
    COMMON/LIE1/CC
              B, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, ETA
    COMMON
             FIL, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, LPSIL2, YSO T
    COMPINE
    COMMON
                NV, NC, NK, NEG, NIN, NTV, NVI, MEV, NEVL, NTO, NINI, NINZ, WINZ, NIG! GA
                                                                                     50
   ina, kvaimi, nvmine, nvmine, inomx, ii, ir, iri, is, isi, it, ibp, i cob, jceb, kcgc ga
                                                                                     60
   208, KEIL, KLIN, KRIN, KD, IGAS, IHB, IVC, IVA, IVB
   COMHON
                KFUNC, KGRAD, KCUNT, KIRVI, KINVZ, KCDBA, KJACO, KMAXI, KMAXZ, KGEGA
   IE:N:,KRTN2,KINV,KCDBAL,KREN11,KBLN21,IDIREC,UKO,LC
    VAV0=1.
    DO 100 J=1,3
    JC = J + 3
    JP=JC+3
    JO=JP+3
    UVR^*L = (1.-DTXP(-XC(J)+XC(JQ)))+*2
    REL=1.-UNREL
    CALL INTEG(XC, J, JQ, EMTEM)
    CTM=1./XC(JC)
    PTM=XC(JP)
```

```
RTM=CTM+UNRSL+PTM+RSL
    AU=RMIBM/(FMTBM+RIM)
     UAMOVAV=EVAV
100 CONTINUE
     CV/V(061,6)1774W
150 FORMAT( ',5X, 'SYS FOR AVAILABILITY=',024.16)
    VC(1)=.97~VAVD
    VC(2)=VAVO-1.
    F.F.TUKN
    CHD
    SUBPOUTING JACOB
    MANSION CC(6,3)
    DIM, NS 109 DY (4)
    DIMINGION AV(3), AVD(12)
    DIM MSION B(100)
    pimension = A(50,100), ALFA(50,50), X(150), XC(150), XI(150), XS(150)
                                                                                       20
                                                                                 GEGF
   1,Y(150),C(150),VC(50),1BAS(50),TH8(100),TVC(50),TVA(100)
                                                                                       30
                                                                                 GLGF
    DOUBLE PRECISION A, ALFA, ALC, ALA, ALB, TRA, C, DELTFY, DELTFA, DTP, DELTA
   1x.ol.o., PPSIL, SPSILO, EPSIL2, STA. SPSIL1, SPSIL3, SPSIL4, EPSIL5, SPSIL7,
   27PSILU, EPSILO, EPSILO, EPS, EPSII, FII, F10, F20, F1, F2, G, GAMA, GNORM, GKS,
   3GK, PHI, PSI, PSI3, PC, PHIC, PHI1, PHI2, PSIT, TQP, PSI4, PCNAL, PG1, PE2, PS3,
   48APG, ROB, RO, RB, RA, SCAL, TE, TD, TC, TREN, TVE, TR, TR1, TCTA, TETAT, TQTG, TQ
   5TG1, TETA1, TET2, TET3, TET4, TET5, TET, TET42, T0, T01, TQ0, TET1, T1
    DOUBLE PRECISION TRB,T2,122,TEX,TE,U,VC,V0,V2,VI,V3,V,VCI,VCL,XI,
   Y XNV, XND, XSB, XSA, XNDRM, XNDR, XINDRM, XMAJ, XSC, XSB1, XSB2, XMK, XIC1, XIC2
   2, XS:1, XSE2, XTR1, X1R, XTR2, XT, XIT, Y, YSGRT, YSGRT1, YNGRM, YSCRTO, YRO, YR
   3, Z, ZI, X, XC, XS, X1, X2, XR, B
    DOUBL'S PRECISION DIT.DISCLS
    DOUBLE PRECISION DMOD, DSORT, DABS, DMINI, DMAXI
    DOUBLE PRECISION CC, DT, AV, AVD, DESIGN, CORRCT, PREVNT, DES, COR, PRE,
   1508, UNRTH, UNR HELL, UNRHELZ, ROL, REEL, PLLZ, RMTSM, PMTSM1, RMTBM2, UMTBM,
   2UMT6M1, UMT8M2, SMT6M, SMT8M1, SMT8M2, CTM, CTM1, P1M, PTM1, RTM, RTM1,
   3RTM2, RTM3, RTM4, VAVO, AU, UC1, UC2, DEXP
    COMMON/LIGI/CC
    COMMON/LIF2/DT
               B, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, ETA
    COMMON
             FIL, PHI, PSI, PSI3, TB, TD, TC, LPSIL, EPSILO, EPSIL2, YSORT
    KCMMQQ
                 NV, NC, NK, NEG, NIN, NTV, NV1, NEV, NEVL, NTO, HIN1, NIN2, NIN3, NIGEGA
                                                                                        50
    COMMON
   1N4, KVNIN1, NVNIN2, NVNIN3, INDEX, II, IR, IR1, IS, IS1, IT, IRP, ICDB, JCDB, KCGEGA
                                                                                        60
   2DB, KFIL, KLIN, KREN, KD, IBAS, IHB, IVC, IVA, IVB
                                                                                        80
                 KEONG, KGRAD, KCONT, KINVI, KINV2, KCOBA, KJACO, KMAXI, KMAX2, KGEGA
   IRENI, KRENZ, KINV, KCDBAI, KRENII, KRENZI, IDIREC, JKO, LC
    IF(IT)100,101,101
100 \text{ DI(1)} = .0004
    DT(2)=.01
    OT (3) = +09
    DT(4)=15.
101 VAVO=1.
    Da 150 J=1,3
    JC = J + 3
     JP=JC+3
     .10 = .19 + 3
    UNRIL = (1.-DEXP(-XC(J)*XC(JO)))**2
    PEL=1.-UNREL
    CALL INTEGIXC, J, JQ, RMTBM)
    CIM=1./XC(JC)
     PYM=X3(JP)
    RYM=CIMWUNFFL+PTM*RCL
    (MTS+MBTMF)\MBTMS=(t)VA
     (L)VA×OVAV=CVAV
```

```
(1) TG+(L) 3X=(L) 3X
    UBREL1 = (1.-(EXP(-XC(J)*XC(JQ)))**2
    RILL=1.-UNRILL
    CALL INTEGENCY J. JO'S WALD
    RTM1=CTMAUMR"L1+PTM*REL1
    AVD(J)=RMTBM1/(RMTBM1+RTM1)
    XC(J) = YC(J) + CT(I)
    XC(JC) = XC(JC) + DT(2)
    CIME=I./XC(UC)
    RTM2=UTM1=UNRFL+PTM*REL
    AVD(UC)=FMT6M/(RMT8M+RTM2)
    (S) TC-(3t) 3X=(2t) 3X
    XC(JP)=XC(JP)+DT(3)
    PTM1 = XC(JP)
    RIM3=CIMATONREL+PIM1+REL
    AVD(JP)=MMT8M/(RMT8M+RTM3)
    XC(JP)=XC(JP)-DT(3)
    XC(JQ)=XC(JQ)+DT(4)
    USRSEL 2=(1.-01 XP(-XC(J)*XC(JQ)))**2
    RELETI-UNREL2
    CALL INTEGIXC, J, JO, RMTBM2)
    RTM4=CTM#UNREL2+PTM#RFL2
    AVD(JQ)=RMTBM2/{RMTBM2+RTM4}
    XC(JQ)=XC(JQ)-DI(4)
150 CONTINUE
    UC1=.97-VAVO
    UC2=VAV3-1.
    A(1,1)=(.97-AVD(1) #AV(2) #AV(3)-UC1)/DT(1)
    A(1,2)=(.97-AV(1)*AVD(2)*AV(3)-UC1)/DY(1)
    A(1,3)=(.97-AV(1)*AV(2)*AVD(3)-UC1)/DT(1)
    A(1,4)=(.97-AVD(4)*AV(2)*AV(3)-UC1)/OT(2)
    A(1,5)=(.97-AV(1)*AVO(5)*AV(3)-UC1)/DT(2)
    \Delta(1,6)=(.97-AV(1)*AV(2)*AV(6)-UC1)/OT(2)
    A(1,7)=(.97-AVD(7)*AV(2)*AV(3)-UC1)/DT(3)
    A(1,8)=(.97-AV(1)*AVD(8)*AV(3)-UC11/DT(3)
    A(1,9)=(.97-AV(1)+AV(2)*AV(19)-UC:1/DT(3)
    A(1,10)=(.97-AVO(10) #4V(2) #4V(3)-UC1)/DT(4)
    A(1,21)=(.97-AV(1)*AVD(11)*4V(3)-UC1)/DT(4)
    A(1,12)=(.97-AV(1)*AV(2)*AVD(12)-UC1)/DT(4)
    A(2,1)=(AVD(1) *AV(2) *AV(3)-1.-UC2)/DT(1)
    A(2,2)=[AV(1)*AVD(2)*AV(3)-1.-UU2)/DT(1)
    A(2,3) = (AV(1) * AV(2) * AVD(3) - 1. - UC2) / UT(1)
    A(2,4)=(AVD(4)*AV(2)*AV(3)-1.-UC2)/DT(2)
    £(2,5)=(AV(1) *AVD(5) *AV(3)~1.-UC2)/DT(2)
    A(2,6) = (AV(1) \times AV(2) \times AVD(6) + 1 - UC2)/DT(2)
    L(2,7) = (6 \text{VO}(7) * A \text{V}(2) * A \text{V}(3) - 1. - \text{UC}(2) / \text{OT}(3)
    £(2,8)=(AV(1)*AVD(8)*AV(3)-1.-UC2)/DT(3)
    L(z,9) = (AV(1)*AV(2)*AVD(9)-1.-UC2)/DT(3)
    \Delta(2,10) = (\Lambda VD(10) \times AV(2) \times AV(3) - 1. - UC2) / DT(4)
    A(2,11)=(AV(1) \times AVO(11) \times AV(3)-1.-UC2)/DT(4)
    4(2,12)=(4V(1)*4V(2)*AVO(12)-1.-UC2)/DT(4)
    WRITE(5,200)((4(1,J),J=1,12),I=1,2)
200 FORMATICE THE PARTIAL PERIVATIVES OF THE CONSTRAINTS ARE'
   1( 1,6015.6))
    RETURN
    SND
    SUBCOUTING GRADEL
    DIMERSIAN (CTG,3)
    DIMINITIAN DY(4)
    CIM VISION B(100)
```

```
DIMENSION A(50,100), A(FA(50,50),X(150),XC(150),XI(150),XI(150))
                                                                           GEGF
                                                                                  20
                                                                           G, GF
1,Y(150),C(150),VC(5)),IPAS(50),IH8(100),IVC(50),IVA(100)
 DOUGLE PRICISION A, ALFA, ALC, ALA, ALB, YEA, C, DELYFI, DELIFA, DTP, CELTA
EX, D1, D, PSIL, PSILO, PSILZ, GTA, CPSILL, GPSILS, CPSIL4, CPSIL5, CPSIL7,
24PS1LH,4P31L6,APS1L9,EPS,EPS11,F11,F10,F20,F1,F2,G,GAMA,G10xM,GKS,
3GK.PH1.PS1.PS13.PC.PH1C.PH11.PH12.PS1T.TQP.PS14.PANAL.PA1.PL2.PE3.
4KAPG, 3CB, RO, RB, SA, SGAL, TB, TD, TC, WRCG, TKJ, TR, TR1, TL TA, LIL AT, TOIG, 10
5TG1,T. TA1,T.T2,T773,T774,TE75,TE7,T1TA2,T0,T01,T00,Te11,T1
 DOUBLE PRICISION TRB, T2, T22, TEX, TE, U, VC, VO, V2, VI, V3, V, VCI, VCL, XI,
_XNV,XND,XSB,XSA,XNGRM,XNGR,XINGRM,XMAJ,XJC,XSB1,XSB2,XMK,XIE1,XIC2
2,XSLl,XSF2,XTR1,XTR,XTR2,XT,XI1,Y,YSCRT,YSCRT1,YNORM,YSERTO,YRO,YR
3, Z, 71, X, YC, XS, X1, X2, X2, B
 DOUBLE PRECISION DITEDISCLS
 DOUBLE PRICISION DMOD, DSORT, DABS, DMIN1, DMAXI
 COUBLE PRACISION CC, DT, AV, AVO, CESIGN, CORRCT, PREVNT, DES, COR, PRE,
1508, UNRAL, UNRALI, UNRALI, REL, REL, RELI, RELI, RELI, RMTBM, RMTBM1, RMT3M2, UNTBM,
2UMTBM1, UMTBM2, SMTBM, SMTBM1, SMTBM2, CTM, CTM1, PTM, PTM1, RTM, RTM1,
3RTM2, RTM3, PTM4, VAVO, AU, UC1, UC2, DEXP
 COMMON/LIEI/CC
 CGMMON/LIB2/DT
           B, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, ETA
 COMBOIL
 COMMON FIL, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, EPSIL2, YSORT
             NV, NC, NK, NEG, NIN, NIV, NVI, NEV, NEVL, NTO, NIMI, NIMZ, NIM3, NIGEGA
                                                                                  50
 COMMON
1N4.NVNIME, NVNINE, NVNIME, INDEX, II, IR, IRI, IS, IS, IT, IBP, TCDB, JCDB, KCGAGA
                                                                                 60
208, KFIL, KLIN, KREN, KD, IBAS, IHB, IVC, IVA, IVB
             KEONC, KGRAD, KCOUT, KINVI, KINVZ, KCDBA, KJACO, KMAXI, KMAXZ, KGFGA
IRENI, KRENZ, KINV, KCDBAI, KRENLI, KRENZI, IDIREC, JKO, LC
 DO 100 J=1,3
 JC = J + 3
 JP=JC+3
 JQ = JP + 3
 UNREL = (1.-DEXP(-XC(J) \neq XC(JQ)))**2
 REL=1.-UNREL
 CALL INTEG(XC, J, JQ, RMTBM)
 UMTBM=RMTBM/UNREL
 SMTRM=RMTBM/RHL
 CTM=1./XC(JC)
 PTM=XC(JP)
 RTM=CTM*UNRLL+PTM#REL
 XC(J) = XC(J) + OY(I)
 UNELL1=(1.-DEXP(-XC(J)*XC(JQ)))**2
 REL1=1.-UNRCL1
 CALL INTEG(XC,J,JQ,RMTBM1)
 UMTBM1=K"TEM1/UNRCL1
 SMTBM1=RMTBM1/REL1
 RTML=CTM*UNRLL1+PYM*RFL1
 C(J)=CC(1,J)*(RMYBM1-RMTBM)+CC(2,J)*(1./RTM1-1./RTM)+1500.*(
1CC(4, J)*CTM)**2*(1./UMT8M1-1./UMT8M)+1500.*(CC(5, J)*PTM-CC(6, J))
2*(%./SMTBM1-1./SMTBM)
 (I) TRV(L)3-=(L)3
 XC(J) = YC(J) - OT(I)
 XC(JC) = XC(JC) + DT(2)
 CTM1=1./XC(JC)
 RYM2#CTM1#UNRTL#PTM*RIL
 C(JC)=CC(2,J)*(1./RTM2-1./RTM)+(1500./UNTBM)*((CC(4,J)*CTM1)**2
1-(CC(4,J)*CTM)**2)
 C(JC) = -C(JC)/T(2)
 XC(JU)=XU(JU)=DT(2)
 XU(JP)=XU(JP)+DU(3)
 PTM1 = XC(JF)
```

```
RIM3=CTM*UNRLL+PTMI*KEL
    C(JP) =CC(2,J) *(1./TTM3-1./RTM)+(1500./SMT8M)*CC(5,J)*(PTM1-PTM)
    C(JP) = -C(JP)/DT(3)
    XC(JP)=XC(JP)-CT(3)
    XC(J0) = XC(J0) + DY(4)
    UNR 1 L 2=(1.-01XP(-XC(J)*XC(JQ)))**2 ...
    THE 2=1.-UNKTL2
    CALL INTEG(XC, J, JO, RYTEM2)
    UMTBM2=KMT8M2/UMRCL2
    SMTRM2=RMTRM2/RFL2
    RTM4=CTM+UNREL2+PTM+REL2
    C(JO)=CC(1,J)*(RMTBM2-RMT8M)+CC(2,J)*(1./RTM4-1./RTM)+1500.*(
   £CC(4,J)+CTM)**2*(1./UNTBM2~1./UMTBM)+1500.*(CC(5,J)+PTM~CC(6,J))
   2*(1./SMTBM2-1./SMTBM)
    C(JQ) = -C(JQ)/DT(4)
    XC(JQ)=XC(JQ)-DT(4)
100 CONTINUE
    WAITE (6,200) (C(1),1=1,12)
200 FORMAT( ' , THE PARTIAL DERIVATIVES OF THE OBJ. FN. ARE'/( ',
   16015.6))
    RTTURY
    CMS
    SUBROUTING INTEG(XA, I, IQ, FSUB)
   DIM NSION XA(150)
    DOUBLE PRECISION XA, ZERO, RI, DINTYL, RM, RF, FSUB, DEXP
   CERPOS
  R.1 = . 5
    DINTVL=(XA(10)-ZERO)/100.
 10 ZERD=ZERO+CINTVL
    PM=1.-(1.-DEXP(-XA(I))*ZERO))**2
    RIHRIFRM
    1f(ZERO.LT.(XA(IQ)-DINTVL)) GO TO 10
    RF=1.-(1.-DEXP(-XA(I)*XA(IO)))**2
    FSUR=DINTVL*(RI+RF/2.)
    RETURN
    END
```

A2.2 GRG: USER SUPPLIED SUBROUTINES FOR EXAMPLES 2 In these subroutines, λ_j 's, μ_j 's, $(t_p)_j$'s, and T_j 's are used as original problem variables.

```
SUB! DUTING PHIX
   DIMINSION CC(6,3)
   DIMINSION
              R(100)
   DIM MSIGN A(50,100),ALFA(50,50),X(150),XC(150),XI(150),XS(150)
                                                                                   20
  1,Y(150),C(150),VC(50),IBAS(50),YHP(1001,IVC(50),IVA(100)
                                                                            GUGF
                                                                                   30
   DOUGLE PRECISION ATTLEATALCTALATALBTRATCTOLLTFITDULTFATDIPTORLTA
  ±X,D1,D,-PSIL, TPSILO, FPSIL2, ETA, LPSIL1, EPSIL3, LPSIL4, FPSIL5, EPSIL7,
  2 PoilUyPPS1L6, TPSIL9, SPS, FPSI1, FII, F10, F20, F1, F2, G, GAMA, GNORM, GKS,
  3GK, PHI, PSI, PSI3, PC, PHIC, PHII, PHIZ, PSIT, TOP, PSI4, PUNAL, PUL, PEZ, PR3,
  4RAPG, KOB, KO, RB, RA, SCAL, TE, TD, TC, TREN, TRETE, TRETELA, TELAT, TOTG, TO
  5) G1, Y = 141, Y = 72, Y1 (3, Y1) Y4, Y1 (5, Y1), T1 T42, T0, T01, T00, T0 T1, T1
   DUUBL : PRICISION TRB, T2, T22, TEX, TE, U, VC, VO, V2, VI, V3, V, VCI, VCL, XI,
  1XKV,XMU,X5B,XSA,XMORM,XMGR,XIMMKM,XMAJ,XSC,XSB1,XSB2,XMK,XIF1,XIL2
  2,XSTl,XSTZ,XTR1,XTR,XTR2,XT,XIT,Y,YSORT,YSORTL,YNORM,YSORTO,YRO,YR
  3, Z, Z1, X, X3, X5, X1, X2, X2, B
   DOUBLE PRECISION DIT, DISOLS
   DOUBLE PRICISION BMOD, DSQAT, DABS, DMIN1, DMAX1
   DOUBLE PRECISION CC, DT, AV, AVD, D/SIGN, CORRCT, PREVNT, DES, COR, PRE,
  isub.umrce.umrati.umratz.rat.acti.actz.amtbm.amtbm2.amtbm2.umtbm.
  2UMTRM1,UMTBM2,SMTEM,SMTBM1,SMTBM2,CTM,CTM1,PTM,PTM1,RTM,RTM1,
  3RTM2, RTM3, RTM4, VAVO, AU, UCI, UC2, DEXP
   COMMON/LIEI/CC
   NCMMOD
             B, A, ALFA, X, XC, XI, XS, Y, C, VC, BTLTFI, ETA
   NCMMCO
           FIL, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, EPSIL2, YSORT
   NCMMOD
               NV,NC,NK,NEG,NIN,NIV,NVI,NEV,NEVL,NTO,RINI,NIN2,RIN3,NIGEGA
                                                                                   50
  1N4,NVHIN1,NVHIN2,NVHIH3,IHDTX,II,IR,1R1,IS,IS1,IT,IBP,ICDB,JCDB,KCGGGA
                                                                                   60
  2DB.KFIL,KLIN,KRUN,KD,IBAS,IHB,IVC,IVA,IVB
               KEONC, KGRAD, KCONT, KINVI, KINVZ, KCOBA, KJACO, KMAXI, KMAX2, KGLGA
   NEMMOD
  IRANI, KRENZ, KINV, KCDBAI, KRENII, KRENZI, IBIREC, JKO, LC
   IF(IT) 10,11,11
10 CC(1,1)=1.8
   CC(1,2)=1.3
   CC(1,3)=2.
   CC(2,1)=200.
   CC(2,2)=170.
   CC(2,3)=250.
   (C(3,1)=5.
   CC(3,2)=5.
   CC(3,3)=5.
   CC(4,1)=2.
   CC(4,2)=2.5
   CC (4,3)=3.
   CC(5,1)=40.
   (.0(5,2)=100.
   CC (5,31=50.
   00(6.1)=3.
   CC (5,2)=4.
   CC(6,3)=2.
11 DUSIGN=O.
   COPRCT =0.
   PREVNI=0.
   na 100 J=1,3
   JC=J+3
   JP=JC+3
   J-7=JP+3
   UNRIL=(1.-0).XP(-XC(JQ)**2*XC(J)))**2
   RAL=1.-UNEIL
   CALL INFOG(XC, J, JQ, RMTRM)
   UMTRM=RMTRM/UNRIL
   SMTBM=RMTBM/RPL
```

```
CIM=XC(JC)
    PTM=XC(JP)
    FTM=CTM#UPL" L+PTM*RLL
    VEITT (6,130) RATBM, UMTAM, SMTBM, RTM
130 FORMAT(/! 1,4015.6)
    DIS=CC(1,J) *RMT8M+CC(2,J)/RTM+CC(3,J)
    CUR=(1500./UMT3M)+(UC(4,J)=CTM) >#2
    FF (= () 500./SM (BM) + (CC(5, J)*PT M-CC(6, J))
    SUB#DUS+COR+PRE
    WPITHI6,14010ES, CGR, PRE, SUB
140 FORMAT( 1,4D15.6)
    DESIGN=DESIGNEDES
    CONTENUE TO CONTENUE THOOK
    PREVNT = PRGVNT + PRE
100 CONTINUE
    WRITE(6,150)DESIGN,CORRCT,PREVNT
150 FORMAT(' ',5X, 'THE THREE COST COMPONENTS ARE'/' ',3D24.16)
    PHI=DESIGN+CORRCT+PREVNT
    PHI = - PHI
    RITTURN
    THD
    SUBROUTING CPHI
    DIMONSION CC(6,3)
    DIMENSION B(100)
    DIMENSION - A(50,100), ALFA(50,50), X(150), XC(150), XI(150), XS(150)
                                                                                G: GF
                                                                                      20
   1,Y(150), C(250), VC(50), IBAS(50), IHB(100), IVC(50), IVA(100)
                                                                                G_GF
                                                                                      30
    DOUBL - PRECISION A, ALFA, ALC, ALA, ALB, TRA, C, DELTFI, DYLTFA, DTP, DELTA
   lx,D1,D,CPSIL,dPSILO,GPSIL2,GTA,EPSIL1,CPSIL3,CPSIL4,EPSIL5,EPSIL7,
   2EPSILU, MPSIL6, MPSIL9, CPS, EPSII, FII, FIO, F2O, F1, F2, G, GAMA, GNORM, GKS,
   3GK,PHI,PSY,PSI3,PC,PHIO,PHII,PHI2,PSIT,TQP,PSI4,PENAL,PF1,P52,PE3,
   4FAPG, ROB, ROBERS, RAS SCAL, TB, TD, TC, TREN, TRESTRESTRESTRESTEDAT, FOTG, TQ
   5TG1.YFTA1.TET2.TET3.YET4.YET5.TET,TETA2.TQ.TQ1.TQ0.TET1.T1
    DOUBLE PRECISION TRB, T2, T22, TEX, TE, U, VC, VO, V2, VI, V3, V, VCI, VEL, XI,
   IXMV,XHO,XSB,XSA,XMGRF,XNGR,XINDEM,XMAJ,XSC,XSB1,XSB2,XMK,XIE1,XIE2
   2,XSL1,XSE2,XTR1,XTR,XTR2,XT,XIT,Y,YSORT,YSORT1,YNORM,YSORTO,YRO,YR
   3, Z, ZI, X, XC, XS, X1, X2, XR, 8
    DOUBLE PRECISION DIT, DISOLS
    DOUBLE PRICISION DMOD, DSORT, DABS, DMINI, DMAXI
    DOUBLE PRECISION CC, DT, AV, AVD, DESIGN, CORRCT, PREVNT, DES, COL, PRE,
   isua, unral, unrall, unrall, rel, rel, rell, kall, kall, katem, rmtemi, rmtemi, umtem,
   2UMTBM1, UMTBM2, SMTBM, SMTBM1, SMTBM2, CTM, CTM1, P1M, PTM1, RTM, RTM1,
   3RTM2, KTM3, KTM4, VAVO, AU, UCI, UC2, DEXP
    COMMON/LIE1/CO
    COMMON
              8, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, 6TA
             FIL, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, EPSIL2, YSORT
    MENMOD
                NV, NC, NK, NGG, NIN, NTV, NVI, NEV, NEVL, NTO, NINI, NINE, NINE, NINE, NIGEGA
    COMMON
   in4.nv.qimi.nvnin2.nvnin3.inc.x.ii.ir.ikl.is.is1.it.iBp.ico8.JcoB.kcGLGA
                                                                                      60
   2D3, KF1L, KLIN, KFIN, KD, IBAS, IHB, IVC, IVA, IVB
                KEONC, KGEAU, KCONT, KINVŁ, KINVŁ, KCCBA, KJACO, KMAXI, KMAXZ, KGCGA
   IKENI, KRENZ, KINV, KODBAJ, KRONII, KRONZI, IDIREC, JKO, LO
    V/V0=1.
    D(: 100 J=1,3)
    J0=J+3
    JP = JC + 3
    JQ=JP+3
    U^{+}(X, T) = (1.-T) \times P(-XC(JO) * *2 * XC(J)) + *2
    R L=1.-UNREL
    CILL INT"G(XL, J, JQ, RMTRM)
    CIM=XU(JC)
```

PTM=XC(JP)

```
RTM=CTM+UNALL+PTM*RCL
    LU=PH/BM/(RMIBM+RTM)
    リスキにマスト
100 CONTINUE
    WRITE(6,150)VAVO
150 FORMAT(* ',5X, 'SYSTEM AVAILABILITY=',024.16)
        1)=.93-VAVO
    VC(2)=V4V0-1.
    RETURN
    FNO
    SUBROUTINE JACOS
    DIMONSION CC(6,3)
    DIMINSION DT(4)
    DIMENSION AV(3), AVD(12)
    DIMINSTON B(100)
    DIMENSION = A(50,100), ALFA(50,50), X(150), XC(150), XI(150), XS(150)
                                                                               GEGE
                                                                                      20
   1,Y(150),C(150),VC(50),IBAS(50),IHB(100),IVC(50),IVA(100)
                                                                               GEGF
                                                                                      30
    DOUBLE PRECISION A, ALFA, ALC, ALA, ALB, TRA, C, DELTFI, DELTFA, DTP, DELTA
   lx.p:.n.tpsil,rpsilo,rpsil2,uTA,rpsili,dPSIL3,dPSIL4,tpsil4,tpsil5,tpsil7,
   20PS(LU, EPS(L6, MPS(L9, MPS, CPS(1, FIL, F10, F20, F1, F2, G, GAMA, GNORN, GKS,
   3GK, PHI, PST, PSI3, PC, PHIC, PHI1, PHI2, PSI1, TOP, PSI4, PENAL, PFI, PE2, PE3,
   4RAPG, RO3, RG, RB, RA, SCAL, TB, TD, TC, THEN, TRE, TR, TRI, TETA, TETAT, TQTG, TQ
   STG1, TGTA1, TET2, TET3, TET4, TET5, TET, TETA2, TQ, TQ1, TQ0, TET1, T1
    DOUBLE PRECISION TRB, T2, T22, TEX, T0, U, VC, VO, V2, V1, V3, V, VC1, VCL, X1,
   1 XNV, XMJ, XSB, XSA, XNORM, XNUR, XINORM, XMAJ, XSC, XSB1, XSB2, XMK, XIE1, XIE2
   2,x5%1,x302,xTR1,XTR,XTP2,XT,XIT,Y,YSORT,YSORT1,YNORM,YSORT0,YR0,YR
   3,7,71,X,XC,XS,X1,X2,X4,B
    DOUBLE PRECISION DIT, DISOLS
    DOUBLE PRECISION DMOD, DSORT, DABS, DMIN1, OMAX1
    DUURLE PRECISION CC, DT, AV, AVD, DESIGN, CORRCT, PREVNT, DES, COR, PRE,
   1SU8,UNRCL,UNRELI,UNRELZ,RFL,RELL,RELZ,RMTBM,RMTBML,RMTBMZ,UMTBM,
   2UMTBM1,UMTBM2,SMTBM,SMTBM1,SMTBM2,CTM,CTM1,PTM,PTM1,RTM,RTM1,
   3RTM2, RTM3, RTM4, VAVO, AU, UC1, UC2, DEXP
    COMMON/LIEI/CO
    COMMUNICITIES/DT
              B, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTEI, FTA
    NUMBER
             FIL, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, EPSIL2, YSORT
    COMMUN
                 NY, NC, NK, NEG, NIN, NYV, NV1, NEV, NEVL, NTO, NIN1, NIN2, NIN3, NIGEGA
                                                                                     50
    COMMON
   1M4, NVNIN1, MVNIM2, NVNIM3, INDEX, II, IR, IR1, IS, IS1, IT, ISP, ICDB, JCDB, KCGGGA
                                                                                     60
   203, KFIL, KLIN, KPIN, KD, IBAS, IHB, IVC, IVA, IVB
                KFONC, KGEAO, KCOHT, KINVI, KINV2, KCDEA, KJACO, KMAXI, KMAXZ, KGEGA
                                                                                     80
   IRTNI, KRTNI, KINV, KCDBAL, KRENII, KRENZI, IDIREC, JKO, LC
    IF(IT)100,101,101
100 DT(1)=.000012
    DT(2)=.4
    CY (3) = .2
    UT(4)=2.
LOI VAVO=1.
    DO 150 J=1,3
    JC = J+3
    JP=JC+3
    JQ=J0+3
    UMR "L=(1.-D. XP(-XC(JO)**2*XC(J)))**2
    RELEI.-UNATL
    CALL INTEGENCY JUNG RATEM)
    CTM=XC(JC)
    PTM=XJ(JP)
    PIMECIMAUMREL+PIMARIL
    (MTS+MCTMS) VMSTMS=(L)VA
    (L)VA*HVAV=OVAV
```

```
XC(J)=XC(J)+DY(l)
    UNIX. FF = (7 *-1) X5(-X5(30) **2*X6(3))) **5
    RELIEI .- UNR LI
    CALL INTIG(XC, J, JO, RMIBME)
    RTMI=UTM+UER, LI+PTM*RELI
    AVO(J)=RMTEMI/(AMT8M1+RTM1)
    XC(J) = XC(J) - DT(L)
    XC(30)=XC(30)+07(2)
    (DU)DXX.[=IMTD
    RTM2=CTM2=UMRFL+PTM*RCL
    AVD(JC)=RMTBM/(RHTBM+RTM2)
    (S) TO-(DU) DX=(BU) DX
    XC(JP)=XC(JP)+UY(3)
    PIMI = XC(JP)
    RYM3=CTM*UNAEL+PYM1*REL
    AVD(JP)=RMTBM/(RMTBM+RTM3)
    XC(JP)=XC(JP)-DT(3)
    XC(JO)=XC(JQ)+DT(4)
    UNRFL2=(1.-DLXP(-XC(JQ)**2*XC(J)))**2
    REL2=1.-UNREL2
    CALL INTEGIXC, J, JQ, RMTBM2]
    RTM4=CTM*UNREL2+PTM#R=L2
    AVD(JQ)=RMTBM2/(RMTBM2+RTM4)
    XC(JO)=XC(JO)-DT(4)
150 CONTINUE
    UC1=.93-VAVO
    UC 2= V A VO- 1.
    A(1,1)=(.93-AVO(1)*AV(2)*AV(3)-UC1)/DY(1)
    A(1,2)=(.93-AV(1)*AVD(2)*AV(3)-UC1)/DT(1)
    A(1,3)=(.93-AV(1) AV(2)*AVD(3)-UC1)/DT(1)
    A(1,4)=(,93~AVD(4)#4V(2)#AV(3)~UCi)/OT(2)
    A(1,5)=(.93-AV(1)*AVD(5)*AV(3)-UC1)/DY(2)
    A(1,6)=(.93-AV(2)*AV(2)*AVD(6)-UC1)/DT(2)
    A(1,7)=(.93-AVD(7)*AV(2)*AV(3)-UC1)/OT(3)
    A(1,8)=(.93-AV(1)*AVD(8)*AV(3)-UC1)/DT(3)
    A(1,9)=(.93-AV())*AV(2)*AVD(9)-UC))/OT(3)
    A(1,10)=(.93-AVO(10)*AV(2)*AV(3)-UC1)/DT(4)
    A(1,11)=(.93-AV(1)*AVD(11)*AV(3)-UC1)/DT(4)
    A(1,12)=(.93-AV(2)*AV(2)*AVD(12)-UC1)/DT(4)
    A(2,1)=(AVD(1)+AV(2)+AV(3)+1.+UC2)/DT(1)
    A(2,2)=(AV(1)*AVD(2)*AV(3)-1.-UC2)/DT(1)
    A(2,3)=(AV(1)*AV(2)*AVD(3)-1.-UC2)/DY(1)
    A(2,4)=(AVD(4)*AV(2)*AV(3)-1.-UC2)/DT(2)
    A(2,5)=(AV(1) *AVD(5) *AV(3)-1.-UC2)/DT(2)
    A(2,6)=(AV(1)*AV(2)*AVE(6)-1.-UC2)/DT(2)
    A(2.7)=(AVD(7)*4V(2)*AV(3)-1.-UC2)/DT(3)
    L[2,8]=(AV[]) *AVD[3] *AV[3]-1.-UC2]/DY[3]
    A(2,9)=(AV())*AV(2)*AVE(9)-1.-UC2)/ET(3)
    £(2,10)=(AVD(10)*AV(2)*AV(3)-1.-UC2)/DY(4)
    A(2,11)=(AV(1) *AVC(11)*AV(3)-1.-UC2)/DT(4)
    A(2,12)=(AV(2)*AV(2)*AV(2)-1.-U(2)/OT(4)
    WRIT: (6,200)((A(I,J),J=1,12),I=1,2)
200 FORMATO ", THE PARTIAL BERIVATIVES OF THE CONSTRAINTS ARE!
   1(' ',6015.6))
    RETURN
    CMS
    SUBRUUTING GRADEI
    DIM MS104 CC(6,3)
    DIWRSION DT(4)
    DIMINSION
               B(100)
```

```
DIM: NSION A(50,100),ALFA(50,50),X(150),XC(150),XI(150),XS(150)
                                                                         GHGF
                                                                               20
%,Y(150),C(150),VC(50),I8AS(50),IHB(100),IVA(50),IVA(100)
                                                                         GUGE
                                                                               30
 DOUBLY PROCISION A, LEFA, ALC, ALA, ALB, TRA, C, DELTEI, DELTEA, DTP, DELTA
%X,D1,O,CPSIL,TPSILO,TPSIL2,T1A,6PSIL1,tPSIL3,IPSIL4,FPSIL5,TPSIL7,
2:PSILU,(PSIL6,:PSIL9,:PS,:PSIL,F(1,F10,F20,F1,F2,G,GAMA,GMORM,GKS,
3GK,PH1,PSI,PSI3,PC,PHI0,PHI1,PHI2,PSIF,FOP,PSIA,PNAL,Pc1,Pc2,P33,
48^PG, ROB, RO, RB, RA, SC/L, TB, TO, TC, THEN, TRE, TE, TRI, TETA, TETAT, TO, G, FO...
5161, TETAL, TET2, TET3, TET4, TET5, TET, CETA2, TO, TO1, TO0, TET1, T1
 FOURLY PRECISEDN TRB.T2.T22.TCX.Te.U.VC.VC.VC.VI.V3.V.VC1.VC1.XI.
1X4V,XNO,XSB,XSA,XNORM,XHOR,XINOMM,XMAU,XSC,XSBI,XSBZ,XMK,XIE1,X1E2
2,XSC1,XSC2,XTR1,XTR,XTR2,XT,XIT,Y,YSCRT,YSCRT1,YdGRM,YSCPTO,YRO,YR
3,7,71, X, XC, XS, X1, X2, XK, B
 COUBLE PARCISION DIT, DISOLS .
 DOUBL: PRECISION OMOD, DSORT, DABS, DMIN1, DMAX1
 DOUBLE PRICISION CC. DT.AV.AVD. DESIGN.CORRCT, PREVNT.DES.COR.PRE.
ISU8,UNREL,UNRELL,UNREL2,REL,RELI,RELZ,RMTBM,KMTBM1,RMTBM2,UMTBM,
2UNTEM1, UM1842, SMT8M, SMT8M1, SMT8M2, LTM, CTM1, PTM, PTM1, RTM, RTM1,
SKTM2, KTM3, KTM4, VAVO, AU, UC1, UC2, DEXP
 COMMON/LIE1/CC
 COMMUNICATES/DT
 COMMON
           5, A, ALFA, X, XC, XI, XS, Y, C, VC, DELTFI, STA
 COMMON
         FII, PHI, PSI, PSI3, TB, TD, TC, EPSIL, EPSILO, EPSIL2, YSORT
 COMMON
             NV, NC, NK, NEG, NIN, NTV, NVI, NEV, NEVL, NTO, MINI, MIN2, MIN3, HIGEGA
                                                                               50
IN4.NVMIN1.NVMIN2.NVMIM3.INDEX.II.IR.IR1.IS.IS1.IT.IBP.ICD8.JCDB.KCGAGA
                                                                               60
2D8,KFIL,KLIH,KREM,KD,IBAS,IHB,IVC,IVA,IVB
             KFONG, KGRAD, KCONT, KINVI, KINVZ, KCOBA, KJACO, KMAX1, KMAX2, KGEGA
 COMMON
1RHN1, KRENZ, KINV, KCOBAL, KREN11, KREN21, IDIREC, JKO, LC
 DO 100 J=1,3
 JC=J+3
 JP=JC+3
 JQ=JP+3
 UNRIL=\{1.-DCXP(-XC(JQ)++2+XC(J))\}+*2
 Fil=1.-UNRFL
 CALL INTEG(XC,J,JQ,RMTBM)
 UMY8M=RMT8M/UNREL
 SMYBM=RMTBM/REL
 CTM=XC(JC)
 PTM=XC(JP)
 FITM=CIMAUNAFL+PIM#REL
 XC(J) = XC(J) + DT(1)
 UNRELI=(I.-DLXP(-XC(JQ)**2*XC(J)))**2
 RELIEU.-UNRELI
 CALL INTEGIXC, J, JO, RMTBM1)
 UMTRM1=EMTBM1/UNREL1
 SMTBM1 = KMTBM1/RIL1
 RTM1=CTM#UNRFL1+PTM#RTL1
 C(J)=CC(1,J)*(RMTBM1-RMTBM)+CC(2,J)*(1./RTM1-1./RTM)+1500.*
1(CC(4,J)*C)M)**2*(1./UM)BM1-1./UM)BM)+1500.*(CC(5,J)*PTM-CC(6,J))
2*(1./5MT8M1-1./SMT8M)
 C(3) = -C(3)/07(1)
 XC(J) = XC(J) - DT(I)
 XC(JC)=XC(JC)+DT(2)
 CTML=XC(JC)
RTM2=CTM1+URPIL+PTM*RFL
 C(JC)=CCT2,J)*(1./RTM2-1./RTM)+(1500./UMT6M)*((CC(4,J)*CTM1)**2-
1(CC(4,J)*CTM)**2)
 (C)TCV(OL)O=(UL)O
 XC(JC)=XC(JC)-DT(2)
 X((JP)=XC(JP)+DT(3)
 PYM1 = XC(JP)
```

```
RTM3=CTM*UNRFL+PTM1*R9L
    C(JP) =CC(2,J) *(1.7RTM3-1.7RTM)+(1500.7SMTBM)+CC(5,J)*(PTM1-PTM)
    C(JP) = -C(JP)/DT(3)
    XC(JP)=XC(JP)-DY(3)
    XC(JO)=XC(JQ)+DT(4)
    UNRLL2=(1.-DLXP(-XC(JQ)**2*XC(J)))**2
    R-L2=1.-UUR L2
    CALL INTEGIXC, J, JQ, 2MTRM2)
    UMTRM2=RMTBM2/UNRLL2
    SMTBM2=RMTBM2/REL2
    RTM4=CTF +UNK -L2+PTM +RTL2
   C(JQ)=CU(1,J)=(RMT8H2+RMT8M)+CC(2,J)=(1./RTM4+1./RTM)+1500.*(
   100(4,J)*(TM)**2*(1./UMTBM2-1./UMTBM)+1500.*(CC(5,J)*PTM-CC(6,J))
   2*(1./SMf@M2-1./SMTBM)
    C(JQ) = -C(JQ)/DT(4)
    XC(JQ)=XC(JQ)-DT(4)
100 CONTINUE
    WRITE (6,200) (C(I), I=1,12)
200 FORMAT(' ', THE PARTIAL DERIVATIVES OF THE DBJ. FN. ARE!/(' !,
   16015.611
    RETURN
    END
    SUBROUTINE INTEG(XA, I, IQ, FSUB)
    DIMENSION XA(150)
    DOUBLE PRECISION XA, ZERO, RI, DINTVL, RM, RF, FSUB, DEXP
    ZCRO=0.
    RI=.5
    DINTVL=(XA(IQ)-ZFRO)/100.
10 ZEAU=ZERO+DINTVL
    RM=1.-(1.-DEXP(~ZERO**2*XA(I)))**2
    IF(ZERG.LT.(XA(IO)-DINTVL)) GO TO 10
    RF=1.-(1.-DEXP(-XA(IQ)**2*XA(I)))**2
    FSU8=DINTVL*(RI+RF/2.)
    RETURN
    FND
```

A2.3 SUMT : LAI'S VERSION WITH USER SUPPLIED SUBROUTINES FOR EXAMPLE 1

```
HJS00010
C
                        *****************************
                                                                          HJ$00020
                                                                          HJ$00030
C
         THIS PROGRAM IS FOR OPTIMIZING CONSTRAINCD MINIMIZATION PROPERMISSUUGO
C
    BY A COMBINATIONAL USE OF HOOKE AND JELVIS PATTERN SEARCH TECHNIQUE HUSDOUSD AND SUME FURMULATION. WHEN THE STARCH GUTS OUT OF THE FEASIBLE. HUSDOUGU
C
C
    PIGION , IT WILL BE PULLED BYCK BY & HOURTSTIC PROGRAMMING TECHNIQUEHUSDOOTS
€
    EXECUTED BY THE SUBSCOUTING PACK .
                                                                          HJ500080
         THE DEIGNAL IDEALS CAME FROM ..
                                                                          HJ500090
C.
              STARCH TECHNIQUE ... HOCK AND JERVES .
C
                                                                          HJS00100
              SUMT FORMULATION ... FIXCOU AND MCCORMICK .
                                                                          H7200F10
C
              PULL BACK TECHNIQUE ... PAVIANT AND HIMMCLBLAU .
                                                                          HJS00120
C
         THE NECESSARY REFURENCE DOCUMENTS CAN BE SEEN IN MY MASTER
C
                                                                          HJ500130
                                                                          HJS00140
    REPORT .
                                        K. C. LAI , IE , KSU .
                                                                          HJS00150
                                                                          HJS00160
         HJ$36170
C
                                                                          HJ500180
         **YNPUT-CUTPUT VARIABLES ...
                                                                          HJS00190
              NUPM .. NO. OF SUBPROSLEMS INPUT .
              NAME1, NAME2, NAMES .. 3 PARTS OF PROBLEM NAME, USER MAY USERUSO0210
C
                                    ANY 6 CHARACTERS TO NAME THE PROBLEM. HJS00220
C
              N .. NO. OF VARIABLES OF THE PROBLEM .
C
              MG .. NO. OF IMEQUALITY CONSTRAINTS G(J) .GC. O. .
                                                                          HJS00240
C
              MH .. NO. OF EQUALITY CONSTRAINTS H(K) .EQ. O. .
C
                                                                          HJ$06250
              R .. PENALTY COSFFICIENT FOR SURT FORMULATION .
                                                                          HJ$00260
(
                   OPTION -- ? .LE. O.O, WILL USE A COMPUTED VALUE .
                                                                          HJS00270
              RATIO .. REDUCING RATE FOR R FROM STAGE TO STAGE .
                                                                          HJ$06286
                       OPTION -- RATIO .LE. O.O, WILL USE RATIO=4.0 .
                                                                          HJS0C290
              ITMAX .. INPUT WITHIN-STAGE ITERATION MAXIMUM NO.
                                                                          HJ500300
              INCUT .. STUPPING CRITERION FOR STAGE ITERATION, NO. OF
                                                                          HJ$00310
C
                       CUT-DOWN STEP-SIZE OPERATION .
                                                                          HJS00320
              THETA .. FINAL STOPPING CRITERION, SUJESTED VALUE 10**(-4)HJS00330
C
C
                       OR ABOUT .
                                                                          HJ$00340
              MAXP .. INPUT MAXIMUM NO. OF STAGES , IF FXCEEDED, STOP . HJSJ0550
C
              X(I) .. (I)TH DIMENSION OF DECISION VARIABLE .
C
                                                                          HJ$30360
              D(I) .. (I)TH DIMERSION OF STEP SIZE .
                                                                          HJ$30370
C
              OX(I) .. (I)TH DIMENSION OF (ESTIMATED VALUE) OPTIMUM.
                                                                          HJS 30380
              ISIZE .. OPTION CODE FOR INITIAL STEP-SIZE SET UP ..
                                                                          0.0500 SCH
C
                         O -- USE INPUT D(I) VALUES.
                                                                          HJ500400
C
                         1 -- USE COMPUTED D(1) =0.02*5X(1).
                                                                          HJ500410
C
              ICUT .. OPTION CODE FOR STAGE STAFTING STEP-SIZE
                                                                          HJS00420
C.
                      SET UP .. 0 -- ALL US= INPUT D(I) VALUE.
                                                                          HJ $00430
C
                                1 -- USE INITIAL D(I)/K FOR (K)TH STAGE.HJS00440
C.
                                                                          HJS30450
              P .. P FUNCTION VALUE .
              Y .. F FUNCTION VALUE .
                                                                          HJS00460
              YSTOP .. COMPUTED VALUE OF FINAL-STOPPING DETERMINATOR .
                                                                          HJ$30470
C
              IDPM .. SEQUENCE NO. OF SUBPROBLEMS OUTPUT .
                                                                          HJS00480
C
              NOR .. MO. OF STAGES UP TO CURRENT STAGE .
                                                                          HJ500490
C
              8 .. TOLFLANCE LIMIT FOR VIOLATIONS .
                                                                          HJS00500
              FY .. MINIMUM Y GOT SO FAR .
                                                                          HJS00510
              FP .. MINIMUM P GUT SG FAR .
                                                                          HJS00520
              G(J) .. (J)TH INTQUALITY CONSTRAINT VALUE .
                                                                          HJ$00530
              H(K) .. (K) TH EQUALITY CONSTRAINT VALUE . .
                                                                          HJS00540
                                                                          HJ$30356
              ITER .. WITHIN STAGE ITERATION NO.
              MOTE .. CUMULATED ITERATION NO.
              NOCHE .. NO. OF CUT DOWN STEP-SIZE OPERATION WITHIN STAGE . HUSDG570
              NETYP .. NO. OF SUCCESSFUL EXPLURATORY MOVES.
                                                                          HJS00550
              NOPAL .. NO. OF SUCCESSFUL PATTERN MOVES.
                                                                          HJS00590
              NOR .. MG. OF TIMES OF PULLING BACK PROCEOURS.
                                                                          HJ530500
```

```
C
                                                                             HJS90010
                                                                             HJS56670
                                                                             HJ$00030
         THIS PRIMARAM IS FOR OPTIMIZING CONSTRAINED MINIMIZATION PROBLEMHUSUGGEO
Č
    BY A COMBINATIONAL UST OF HOCKE AND JELVES PATTERN SEARCH TECHNIQUE HUSDOSSO
C
    AND SUME FORMULATION . WHEN THE SEARCH GETS BUT OF THE FEASIBLE
                                                                             HJS30060
    REGION , IT WILL BE PULLED BACK BY A HEURISTIC PROGRAMMING TECHNIQUEHUS 30070
c
                                                                             HJ$00080
    EXECUTED BY THE SUBTOUTINE PACK .
C
                                                                             HJ500090
         THE OFIGTHAL IDEALS CAME FROM ..
c
               STARCH TECHNIQUE ... HOUR AND JERVES .
                                                                             HJ500100
               SUMT FORMULATION ... FIACCU AND MCCORMICK .
                                                                             HJ500110
               PULL BACK TECHNIQUE ... PAVIANI AND HIMMELBLAU .
                                                                             HJ500120
0000000
         THE NECESSARY REFERENCE DOCUMENTS CAN BE SEEN IN MY MASTER
                                                                             HJ500130
    REPORT .
                                                                             HJ500140
                                                                             HJS00150
                                         K. C. LAI , IE , KSU .
                                                                             HJ500160
                                                                             HJ530170
         泰米 泰安水 未就以过出水 淡水冷水 未准 犹太 不会 阿尔林宁 水水 计冷定作 计水水流 未未 水水水 表 表 水水水 表 不 本 水 平 本 安 平 安 平 本 本
                                                                             HJSJ0180
                                                                             HJ500190
         **INPUT-CUTPUT VARIABLES ...
0000
               NUPM .. NO. OF SUBPROBLEMS INPUT .
                                                                             HJ300200
               NAMEL, NAMEZ, NAMES .. 3 PARTS OF PROBLEM NAME, USER MAY USEHJS00210
                                     ANY 6 CHARACTERS TO NAME THE PROBLEM. HJS00220
               N .. NO. OF VARIABLES OF THE PROBLEM .
                                                                             HJS06230
0000
               MG .. NO. OF INCOURLITY CONSTRAINTS G(J) .GE. O. .
                                                                             HJS00240
               MH .. NO. OF EQUALITY CONSTRAINTS H(K) .EQ. O. .
                                                                             HJ$00250
               R .. PENALTY CORFFICIENT FOR SUMT FURMULATION .
                                                                             HJS30260
                    OPTION -- R .LE. 0.0, WILL USE A COMPUTED VALUE .
¢
                                                                             HJ$30270
C
C
               RATIO .. REDUCING RATE FUR R FROM STAGE TO STAGE .
                                                                             HJ500280
                        OPTION -- RATIO .LE. O.O, WILL USE RATIO=4.0 .
                                                                             HJS00290
               ITMAX .. INPUT WITHIN-STAGE ITERATION MAXIMUM NO.
С
С
С
                                                                             HJ230300
               INCUY .. STOPPING CRITERION FOR STAGE ITERATION, NO. OF
                                                                             HJS00310
                        CUT-DOWN STEP-SIZE OPERATION .
                                                                             HJS00320
               THETA .. FINAL STOPPING CRITERION, SUJESTED VALUE 10##(-4)HJS00330
C
                        OR ABOUT .
                                                                             HJ5J0340
               MAXP .. INPUT MAXIMUM NO. OF STAGES , IF FXCEEDED, STOP . HJS00350
c
               X(I) .. (I)TH DIMENSION OF DECISION VARIABLE .
D(I) .. (I)TH CIMENSION OF STEP SIZE .
                                                                             HJS30360
                                                                             HJS00370
0000000
               OX(1) .. (1)TH DIMENSION OF (ESTIMATED VALUE) OPTIMUM.
                                                                             HJ$ 30380
               ISIZE .. OPTION CODE FOR INITIAL STEP-SIZE SET UP ..
                                                                             HJS00390
                          0 -- USE IMPUT D(I) VALUES.
                                                                             HJ500400
                           1 -- USE COMPUTED D(I) =0.02*0X(I).
                                                                             HJS00416
               TOUT .. OPTION CODE FOR STAGE STARTING STEP-SIZE
                                                                             HJS20420
                       SET UP .. 0 -- ALL USE INPUT D(I) VALUE.
c.
c
                                  1 -- USE INITIAL D(1)/K FOR (K)TH STAGE.HJS00440
                                                                             HJ$30450
               P .. P FUNCTION VALUE .
                                                                             HJ$30460
00000
               Y .. F FUNCTION VALUE .
               YSTOP .. COMPUTED VALUE OF FINAL-STOPPING DETERMINATOR .
                                                                             HJS 30470
               IDPM .. SEQUENCE NO. OF SUBPROBLEMS OUTPUT .
                                                                             HJS00480
                                                                             HJ$20490
               NOR .. NO. OF STAGES UP TO CURRENT STAGE .
               B .. TOLFLANCE LIMIT FOR VIULATIONS .
                                                                             HJS00500
C
               FY .. MINIMUM Y GOT SO FAR .
                                                                             HJS00510
               FP .. MINIMUM P GGT SG FAP .
                                                                             HJS00520
               G(J) .. (J) TH INFQUALITY CONSTRAINT VALUE .
C
                                                                             HJ$30530
               H(K) .. (K)TH LQUALITY CONSTRAINT VALUE .
                                                                             HJS00540
               ITER .. WITHIN START ITERATION NO. NOTE .. CUMULATED ITERATION NO.
                                                                             HJSJC550
               NUCUE .. NO. OF OUT DOWN STEP-SIZE OPERATION WITHIN STAGE-HUSO0570
               NETYP .. NO. OF SUCCESSFUL EXPLURATORY MOVES.
                                                                             HJS00580
               MUPAL .. NO. OF SUCCESSFUL PATTERN MOVES.
                                                                             HJS00590
                                                                             HJ$30600
               NOR .. MO. OF TIMES OF PULLING BACK PROCEDURE.
```

```
HOP .. NO. OF SUCCESSFUL MOVES INSIDE FEASIBLE REGION.
                                                                           HJ500610
C
C
              NOITE .. NO. OF SUCCESSFUL MOVES OUT OF FEASIBLE REGION.
                                                                           HJ500620
000000000000000000
                                                                           HJS00630
         HJ500640
                                                                           HJS50650
         ##SEQUENCE OF INPUT DECK ...
(1) PROBLEM ID CARD .. ONE CARD, FORMAT 1000 .
                                                                           HJSOCOEG
                                                                           DYGOCZUH.
                     PARAMETERS -- NUPM, NAME ( COMPUSED BY 3 PARTS ).
                                                                           HJS00680
                                    NING AND MH .
                                                                           HJ500690
              (2) PROBLEM ADDITIONAL DATA CARDS .. SPECIFIED IN THE
                                                                           HJ$00700
                      SUPROUTINE READIN BY USER HIMSCLE, ( OPTIONAL ).
                                                                           HJS00710
              (3) SUBPRUBLEM 1 INITIAL DATA CARDS ..
                                                                           HJSC0720
                     FIRST -- UNE CARD, FORMAT 1002 .
                                                                           HJ$30730
                                PARAMETERS - R, RATIO, ITMAX, INCUT, THETA
                                                                           HJS00740
                                            MAXP, ISIZE, AND ICUT.
                                                                           HUS00750
                     SECOND -- N CARDS, FORMAT 1904
                                                                           HJS00760
                                PARAMETERS - J,X(I),D(I),AND DX(I).
                                                                           HJS00770
                                 *NOTE -- 1. J IS ONLY FOR USER TO
                                                                           C87002LH
                                             CHECK THE SEQUENCE OF CARDS. HJS00790
                                          2. CARDS SHOULD BE IN ORDER
                                                                           HJS00800
000000000000000
                                              ( SEQUENCE OF DIMENSION )
                                                                           HJ500810
                                          3. D(I) MAY BE ANY VALUE
                                                                           028003LH
                                             D(I) MAY BE USE ANY VALUE
                                                                           HJSJ0830
                                              WHEN ISIZE USE 1 .
                                                                           HJS00840
                                             GX(I) MAY USE ANY VALUE
                                                                           HJS00850
                                              WHEN ISIZE USE O .
                                                                           HJ500860
               (4) SUBPROBLEM 2 INITIAL DATA CARDS .
                                                                           HJS20876
                                                                           HJ505880
                                                                          HJS00890
                                                                           HUSBORDO
               ( ... UP TO THE LAST SUBPROBLEM INITIAL DATA CARDS ...)
                                                                           HJS00910
                                                                           HJS00920
         HJ500930
                                                                           HJS00940
0000
         *#SUBROUTINES NEEDED ...
                                                                           HJ500950
                      -- USED TO PULL BACK INFEASIBLE POINT
                                                                           0960CSTH
              BACK
                      -- USED TO COMPUTE PENALTY TERMS .
-- USED TO COMPUTE VIOLATION WEIGHT .
-- A USER SUPPLIED SUBROUTING, USED TO READ IN
              PENAT
                                                                           HJS00970
C
                                                                           HJS30980
              W-IGH
                                                                           HJS00990
              READIN
C
                          ADDITIONAL DATA NEEDED .
                                                                           HJ$31000
C
              OBRES
                       --- A USER SUPPLIED SUBROUTINE, USED TO COMPUTE
                                                                           HJ$31010
                          THE DBJECTIVE AND CONSTRAINTS .
                                                                           HJS91020
C
                       -- A USER SUPPLIED SUBROUTINE, USED TO OUTPUT
                                                                           HJ501030
                          ADDITIONAL INFORMATION DESIRED .
                                                                           HJ$31040
c
                                                                           HJS01050
         本希 沙古矿 水水冷布林 女 衣食油 水 投冷 传典 香烛 春水传珠 攻 水水 多尔 年 年 安 本 本 安 春 女 木 年 宋 汝 汝 安 春 安 安 永 水 米 北 安 朱 安 春 安 春
                                                                          HJ501060
C.
                                                                           HJS01070
C
         ... ZMOIZW3MIC**
                                                                           HJSOIGBO
C,
           THIS PROGRAM IS DESIGNED FOR Nº MH.LE. 20 AND MG.LE. 50.
                                                                           HJS31390
              THE DIMENSIONS ARE ONLY DEFIND IN MAIN PROGRAM, WHEN N.
                                                                           HJS01100
C
C
      OR MH.GT.20 AND/OR MG.GT.50, MAKE PRUPER CHANGES. THE KEY OF
                                                                           HJ501110
C
         CHANGES ..
                                                                           HJS01120
              X, FX, PX, PX, DX, D, PD -- N DIMENSIONS
                                                                           HJS01130
                                  -- MG DIMENSIONS
                                                                           HJ5J1140
0000
              G.FG
                                  -- MH DIMENSIONS .
                                                                           HJS01150
              H, FH
                                                                          H7201190
         HJS01170
C
                                                                           HJ501180
      IMPLICIT REAL +8(A-H, G-Z)
                                                                          HJS01190
      DIMENSION X(20), FX(20), 8X(20), PX(20), 0X(20), PO(201, D(20), G(50),
                                                                          HJ501200
```

```
1FG(50),H(20),FH(20)
                                                                              HJS01210
      CIMMIN /CHAY/ PU1, PD2, PD3, PC4, PD5, PC6, PC7, PD8, PC9, PD10, PD11, PD12
                                                                              HJ501215
      COMMON /BLOGY/ N.MG. MH. TIER, ITMAX, ICHTCK, IB, LUST
                                                                               HJS01220
      COMMON / PLOGP/ NOITE, NOITE, B, D, ISKIP
                                                                              HJS01236
                                                                               HJS31240
C
    *#O(10) ARE NOT NOEDED FOR KUNNING THIS PROGRAM, USER MAY TAKE -
C
      THUM AWAY.
                                                                              HJS01250
      COMMON /BLOGR/ 0(10)
                                                                               HJS01260
    *#FG(20) IN BLEGO ARE USED FOR OUTPUT ADDITIONAL DATA CONCERN
r
                                                                              HJ531270
      EG(20) AT SUB-SPTIMUM. USER MAY TAKE THEM AWAY.
                                                                               HJS01280
      COMMON /BLOGG/ FG
                                                                              HJS01290
 1000 FURMAT(15,5X,42,A2,42,315)
                                                                              HJS01300
 1001 FORMAT(31X, 1H*, AZ, 42, 42, 10H* PROBLEMS/
                                                                              HJS01310
     130x,20(14*)///25x, NO. OF X(11 ..., 14/25x,
                                                                              HJSJ1320
     2'MO. OF G(J) ...', [4/25X, 'NO. OF H(K) ...',
                                                                              HJS01330
     314,7//, NO. OF PROBLEMS ... , 14)
                                                                              HJ5J1340
 1002 FORMAT(2015.4,215,015.4,315)
                                                                              HJSJ1350
 1003 FURMAR (1H1,5X,7HPROBLEM,14////)
                                                                              HJ501360
1004 FGRM4T(15,3015.4)
                                                                              HJS01370
 1005 FDRMAT(20X, 13H1NITIAL PUINT/5X, 4HY = ,D11.4,7H, P = ,D11.4,
                                                                              HJ$01380
     17H, R = D11.4,11H, RAY10 = D11.4,2H, /5X,4HB = D11.4,
                                                                              HJS01390
            INCUT = ,14, 11H, 1HdTA = ,011.4,2H .1
                                                                              HJS31400
     211H.
 1005 FORMAT(10X,2HX(,15,4H) = ,D14.6,7H, O(,13,4H) = ,D14.6,2H.)
                                                                              HJS31410
 1007 FORMAT(3X,75(1H*))
                                                                              HJS01420
 1008 FORMAT (3X,15H*4P OPTIMUM.. (,14,1H)
                                                         /5X,5HFY = ,D13.6,6HJS01430
     1H,FP = ,013.6,7H, R = ,011.4,10H, TTER = ,15,1H,/5X,7HN017 = ,15HJS01440 2,9H, NOB = ,14,9H, NOP = ,14,10H, NOBP = ,14/5X,8HN0EXP = ,14 HJS01450 3,13H, NOPAT = ,14,11H, NOCUT = ,14,2H ./5X,8HYSTOP = ,013.6,1H.1HJS01460
 1011 FORMAT(5X/5X,15H##CONSTRAINTS ...)
                                                                              HJS01470
 1012 FORMAT(10X, 2HG(, 13, 4H) = ,D14.6,2H ,)
                                                                              HJS-01480
 1013 FORMAT(10x, 2HH(,13,4H) = ,014.6,2H ,)
                                                                              HJS01490
 1015 FORMAT(3X, 46HA4778#THE ABOVE RESULTS ARE THE FINAL OPTIMUM .)
                                                                              HJS01500
 1016 FORMAT(3X, 28H**MO. OF P OPTIMUM EXCLEDED , 15, 2H .)
                                                                              HJS0.510
 1020 FORMAT(5X//5X,47H**SILLCTED FEASIBLE STARTING POINT ..
                                                                            ) HJS01520
 HJS01530
 1022 FORMAT(IH 5X,44H**THE PROBLEM MIGHT BE TOO FLAT, CHECK TIMES,I4,
                                                                              HJS01540
     127H, R AND RATIO BE ADJUSTED, /TX,43HPROBABLY A COUBLE PRECISION WHUSO1550
     211L BE NACOFD. 1
                                                                              HJS01570
    **RIAD IN PROBLEM NUMBER, PROBLEM NAME, AND DIMENSIONS .
                                                                              HJS01580
      STAD(5,1000) NUPM, NAMEI, NAMEZ, NAMES, N, MG, MH
                                                                              HJS01590
      WRITE(6,1021)
                                                                              HJS0160C
      WRITE(6,1001) NAME1, NAME2, NAME3, N, MG, MH, NOPM
                                                                              HJS01610
      Inpm=1
                                                                              HJS01620
    **READ IN ADDITIONAL DATA I USED FOR ALL SUB-PROBLEMS 1.
C
                                                                              HJS31630
      CALL READEN (N. MG. MH)
                                                                              HJS01640
                                                                              HJS01650
    **FFAD IN INITIAL PARAMITERS AND STOPPING CRITERIA .
                                                                              HJ501660
    1 RTAD(5,1002) F, RATIO, ITMAX, INCUT, THEYA, MAXP, ISIZE, ICUT
                                                                              HJ501670
      WRIT: (6,1003) IDPM
                                                                              HJS01680
                                                                              HJS01690
      MP=1
      MULT=1
                                                                              HJS01700
      N(EXP=0
                                                                              HJS01710
      NIPAT = 0
                                                                              HJS01720
      NCCUT = 0
                                                                              HJS01730
                                                                              HJS31740
      N. R=1
      FNOR=HOS
                                                                              HJS01745
      N. RP= 7
                                                                              HJS01750
      MULTP=0
                                                                              HJ501760
      MULTBEO
                                                                              H.IS01770
      1 ( R = 0
                                                                              HJS31780
```

```
NITT = O
                                                                           HJS01790
                                                                           008102LH
      LOSI = 0
      LLUST=0
                                                                           HJS01810
      13=0
                                                                           HJSOL820
      ICH.CK=0
                                                                           HJS01830
      B=0.000
                                                                           HJS01640
                                                                           HJ$31850
                                                                           098105FH
C.
    **PEAD IN INITIAL POINT, INITIAL STEP-SIZES AND ESTIMATED OPTIMUM.
                                                                           HJ$01870
      DO 4 I=1.N
                                                                           HJS01880
      READ(3,1904) J,X(I),E(I),DX(I)
                                                                           H1501890
    **VAKIABLE (J) IS USED FOR CHECKING THE SEQUENCE OF CARDS BY THE
C
                                                                           HJ591900
      USER HIMSELF, AND HAS NO INFFERENCE TO THE PROGRAM I USER MAY
                                                                           H72010JO
      USE ANY INTELGER NUMBER FOR (J) ).
                                                                           HJS01920
      IF (ISIZE) 3,3,2
                                                                           HJ501930
    2 0(I)= 9X(I)+0.02
                                                                           HJS01940
    3 BX(1)=X(1)
                                                                           HJS01950
      FX([]=X(])
                                                                           HJS91960
      [1]0=[1]G9
                                                                           HJS31973
                                                                           HJ$31980
      DX(I)=X(I)
    4 B=B+0.500*D(I)
                                                                           HJS01990
    **DECIDE THE STARTING VALUE OF TOLFRENCE LIMIT FOR G(J) .LT. O. .
                                                                           HJ302000
      B=B/FN
                                                                           HJS02010
      B=2.000#B
                                                                           HJ502020
                                                                           HJS02030
      B=BG
      CALL DBRESIEX, FY, FC, FH)
                                                                           HJ502040
      CALL WEIGH (STGH, MG, FG, MH, FH)
                                                                           HJS02350
      ITER=3
                                                                           HJS02060
   11 CALL PENAT(FG, FH, PENAL, PENAZ)
                                                                           HJ$02670
    **COMPUTE AN INITIAL VALUE OF R WHEN INPUT R VALUE IS .LE. O. .
                                                                           HJ$02080
      IF (P1 12,12,13
                                                                           HJS02090
   12 R=DASS(FY/(PUNAL+PENA2))
                                                                           HJS02100
      R=R/4.000
                                                                           HJSC2110
    **USY RATIO=4.0 WHEN INPUT RATIO VALUE IS .LE. O. .
                                                                           HJS02120
   13 1F(RATIO)14,14,15
                                                                           HJ502130
   14 RAYID=4.0
                                                                           HJS02140
   15 FP=FY+R*PENA1+R**(-0.5)*PENA2
                                                                           HJ502150
      WEIT-(6,1005) FY, FP, R, RATIO, B, INCUT, THETA
                                                                           HJS02160
      WRITE (6,1006) (I,FX(I),I,D(I),I=I,N)
                                                                           HJS02170
      WEITE (6, 1007)
                                                                           HJ502180
      IF(LOS1-2) 50,16,16
                                                                           HJS02190
    **SalfCT AFFASIBLE STARTING POINT WHEN INPUT INITIAL POINT IS
C
                                                                           HJ502200
      NOT FEASIBLE SUBJECT TO INEQUALITY CONSTRAINTS .
C
                                                                           HJS02210
C.
                                                                           HJ502220
   **MAKE EXPLORATORY MOVE FOR SELECTING A FEASIBLE STARTING POINT .
                                                                           HJS02230
   16 NUF=0
                                                                           HJ502240
      CO 28 I=1.N
                                                                           HJS02250
      FX(1)=X(1)+2.000*D(1)
                                                                           HJS02260
      CALL OBERS(EX.EY, EG. FH)
                                                                           HJS02270
      CALL WEIGH (TGH, MG, FG, MH, FH)
                                                                           HJS02280
      IF(L057-2) 44,16,18
                                                                           HJS02290
                                                                           HJ502300
   18 IF(SIGH-TOH) 20,20,26
   20 FX([]=FX(])-4.000*U(])
                                                                           HJS02310
      CALL DERLS(FX, FY, FG, FH)
                                                                           HJS02320
      CALL REIGH (TGB, MG, FG, MP, FH)
                                                                           HJS02330
      IF(LUST-2) 44,22,22
                                                                           HJS02340
   22 IF(STOP-TGH) 24,24,26
                                                                           HJSJ2350
   24 FX([]=FX([])+2.080*D([]
                                                                           HJ502360
      MUF='10F+1
                                                                           HJS32370
      GO TO 28
                                                                           HJS02380
```

```
26 STGH= TGH
                                                                           HJS02390
      X(1)=FX(1)
                                                                           HJS02400
   28 CONTINUS
                                                                           HJSJ2410
C
                                                                           HJ$02420 .
      IF(NOF-N) 34,30,30
                                                                           HJS02430
    **CUT SELP-SIZES FOR SCLECTING A FEASIBLE STARTING POINT .
                                                                           HJS02440
   30 CO 32 I=1,N
                                                                           HJS02450
   32 D(1)=D(1)*0.500
                                                                           HJS02460
      60 TO 16
                                                                           HJ502470
    ** MAKE PATTERN MOVE FOR SELECTING A FEASIBLE STARTING POINT . .
                                                                           HJS02480
   34 DO 36 I=1,N
                                                                           HJS02490
   36 PX(I) = FX(I) + (FX(I) + 8X(I))
                                                                           HJS02500
      CALL GBRES(PX, FY, FG, FH)
                                                                           HJS02510
      CALL WEIGHTTGH, MG, FG, MH, FH)
                                                                           HJS02520
      IF(STGH-19H) 16,16,40
                                                                           HJS02530
   40 DO 42 I=1,N
                                                                           HJ502540
      X(I)=PX(I)
                                                                           HJS02550
   42 FX(I)=PX(I)
                                                                           HJ$02560
      IF(LOST-21 44,43,43
                                                                           HJS02570
   43 STGH=1GH
                                                                           HJS02580
      GO TO 16
                                                                           HJS02590
   44 DO 46 I=1.N
                                                                           HJ$02600
      D(I)=PD(I)
                                                                           HJS02610
      OX(I)=FX(I)
                                                                           HJS02620
   45 PX(I)=FX(I)
                                                                           HJS02630
      LOST=0
                                                                           HJS02640
    **OUTPUT THE MESSAGE OF THE SELECTED FEASIBLE STARTING POINT .
                                                                           HJS02650
      WRIT= (6, 10201
                                                                           HJS02660
      GO YO 11
                                                                           HJS02670
   48 DO 49 I=1,N
                                                                           HJ$02680
   49 X(I)=FX(I)
                                                                           HJ$02690
      LLOST = LOST
                                                                           HJ$02700
C
    **START TO MINIMIZE THE CURRENT P-FUNCTION .
                                                                           HJS02710
                                                                           HJS02720
    **MAKE EXPLORATORY MOVE FOR MINIMIZING THE P-FUNCTION .
                                                                           HJ302730
   50 IDIFF=0
                                                                           HJ502740
      MCUT=1
                                                                           HJS02750
   51 NOF=0
                                                                           HJS02760
      GO TO [52,102,52], MCUT
                                                                           HJ502770
   52 IDIFF=IDIFF+1
                                                                           HJS0Z760
      DO 101 1=1.N
                                                                           HJS02790
      X(I)=FX(I)+D(I)
                                                                           HJS02800
      LOS1 = 0
                                                                           HJS02610
      CALL DERTS(X,Y,G,H)
                                                                           HJS02820
      IF(LOS1-1) 62,62,53
                                                                           HJS02830
   53 IF(Y-FY) 55,55,68
                                                                           HJS02840
   55 CALL BACK (X, X, Y, G, H)
                                                                           HJS02850
      NOTTB=WITTB+I
                                                                           C98ZOSTH
      NOBP=NUBP+1
                                                                           HJS02870
    **CHECK THE ITMAX IS EXCLEDED OR NOT IN (BACK) ( LOST=1 MEANS THE
                                                                           HJ$02880
      RETURNED POINT IS INFEASIBLE 1
                                                                           HJ$02890
C
      IF(LDST-1) 56,150,56
                                                                           HJS02900
                                                                           HJ502910
   56 LOS1=0
    **CH-CK THE ITMAX IS EXCLEDED OR NOT IN (BACK) ( LOST .NE. 1 MEANS
                                                                           HJ502920
C
      THE ENTREED POINT IS NEAR-FRASIBLE )
                                                                           HJS02930
   62 IF(ICH-CK-1) 64,146,140
                                                                           HJ5J2940
   64 CALL PINATIGHAPENAT, PENAZ)
                                                                           HJ$02950
      P=Y+K-P"Na1+"**(-0.5]*P1 NA2
                                                                           HJ532960
      IF(P#5P) 88,68,68
                                                                           HJ$02970
   68 X(I)=FX(I)-U(I)
                                                                           HJ502980
```

```
LOST=0
                                                                           HJ502990
     CALL DERT S(X,Y,G,H)
                                                                            HJS03000
     IF(LUST-1) 80,80,70
                                                                            010E03UH
  70 IF(Y-FY) 73,73,86
                                                                            PJ$33320
  73 CALL MACKIX, X, Y, G, H)
                                                                            HJS03J30
     NATIO = NOTIO + 1
                                                                            HJ$03040
     N38P=N38P+1
                                                                            HJS03050
   **CHECK THE ITMAX IS EXCHEDED UN NOT IN (BACK) ( LOST=1 MEANS THE
                                                                            HJ503060
     RETURNED POINT IS INFRASIBLE 1
                                                                            HJS03070
     IF(LOST-1) 74,150,74
                                                                            HJS03080.
  74 LOS(=)
                                                                           HJ$33090
   **CHECK THE ITMAX IS EXCEEDED OR NOT IN (BACK)! LOST .NE. 1 MEANS
                                                                           HJ3J3100
     THE ENVERED POINT IS MEAS-FEASIBLE 1
                                                                            HJS03:10
  80 IF([CHTCK-1] 32,140,140
                                                                           HJS03120
  82 CALL PENAT(G, H, PENA1, PENA2)
                                                                            HJS03130
     P=Y+R*PENAL+R**(-0.5)*PENA2
                                                                           HJ503140
     IF(P-FP) 88,85,86
                                                                           HJ$03150
  86 X(I)=FX(I)
                                                                           HJS03160
     NCF=NJF+1
                                                                           HJS03170
     GO TO 99
                                                                           HJS93180
  88 FY=Y
                                                                           HJS03190
     FP=P
                                                                           HJ503200
     NGITP=NGITP+1
                                                                           HJS33210
     FX(I)=X(I)
                                                                           HJS03220
     LL CST=LOST
                                                                           HJS03230
     IF(MG) 94,94,90
                                                                           HJS03240
  90 DO 92 JJ=1,MG
                                                                           HJ$03250
                                                                           HJS03260
  92 FG(JJ)=G(JJ)
  94 IF (MH) 99,99,96
                                                                           HJS03270
                                                                           HJ503280
  96 00 98 KK=1,MH
  98 FH(KK)=H(KK)
                                                                           HJS03290
                                                                           HJ$03300
  **CHECK THE STAGE STOPPING CRITERION IS SATISFIED OR NOT . 99 IF(MOCUT-INCUT) 100,150,150
                                                                           HJS03310
                                                                           HJS03320
 100 IF (ICHECK-1) 101,150,101
                                                                           HJS03330
 101 CONTINUE
                                                                           HJS03340
                                                                           HJS03350
     IF(NOF-N) 111,104,104
                                                                           HJS03360
 102 DO 103 I=1,N
 103 X(I)=FX(I)+D(I)
                                                                           HJS03370
     CALL OBRES(X,Y,G,H)
                                                                           HJS03380
     IF(LOST-1) 1107,1107,1104
                                                                           HJ563390
1104 IF(Y-FY) 1105,1105,1108
                                                                           HJ503400
1105 CALL BACK(X,X,Y,G,H)
                                                                           HJS03410
     N-TITB=NUITB+1
                                                                           HJS03420
     NGBP=NGBP+1
                                                                           HJS03430
                                                                           HJ503440
     IF(LOST-1) 1106,150,1106
                                                                           HJS03450
1106 LOST=0
                                                                           HJS03460
     IF(ICHLCK-1) 1107,140,140
                                                                           HJS03470
1107 CALL PENATIG, M, PENAL, PINAZI
     P=Y+R*P: NA1+R**(-0.5)*PENA2
                                                                           HJS03480
     IF(P-FP) 1115,1108,1108
                                                                           HJ503490
1108 DO .109 I=1.N
                                                                           HJ303500
                                                                           HJSJ3510
1109 X(I)=FX(I)-D(I)
     CALL OBRES(X,Y,G,H)
                                                                           HJS03520
                                                                           HJS03530
     IF(tosT-1) 1113,1113,1110
                                                                           HJ$03540
1110 IF(Y-FY) 1111, 1111, 1114
TILL CALL BACK (X, X, Y, G, H)
                                                                           HJS03550
                                                                           HJS03560
     NOTES = TOTABLE
                                                                           HJS03570
     MC6P=M-36P+1
                                                                           HJ503580
     JF(LOST-1) 11.2,150,1112
```

```
1112 LOST=0
                                                                           HJ503590
       1F(10HHCK-1) 1113,140,140
                                                                           HJ503500
  1113 CALL PUMAT(G, H, PENAL, PENAL)
                                                                            HJ$03610
       P=Y+R*PDMAI+R**(-0.5)*PDNA2
                                                                           HJS03620
       IF(P-FP) 1115,1114,1114 -
                                                                           HJS03630
  13.14 MCUT=3
                                                                           HJS03640
       GO TO 51
                                                                           HJS03650
  1115 FP=P
                                                                           HJS03660
       FY=Y
                                                                           HJS03670
       MOUTER.
                                                                           HJS03680
       DO 1116 I=1,N
                                                                           HJ$3369C
 1116 FX(1)=X(I)
                                                                           HJS037C0
       IF (MG) 1119,1119,1117
                                                                           HJS03710
 1117 DO 1118 J=1,MG
                                                                           HJ5J3720
 1113 FG(J)=G(J)
                                                                           HJS03730
 1119 IF (MH) 50,50,1120
                                                                           HJS03740
 1120 DO 1121 K=1,MH
                                                                           HJS03750
 1121 FH(K)=H(K)
                                                                           HJS03760
       GO TO 50
                                                                           HJS03776
C
                                                                           HJ$6378G
    **CUT STEP-SIZES FOR MINIMIZING THE P-FUNCTION .
                                                                           HJS03790
   104 DO 105 I=1.N
                                                                           HJS03800
   105 D(I)=0.5D0*D(I)
                                                                           HJS03810
      NUCUT=NCCUT+1
                                                                           HJS03820
       IF(101FF-INCUT) 51,106,106
                                                                           HJ$03830
   106 IF (MCUT-1) 107,107,110
                                                                           HJS03640
   107 MCUT=2
                                                                           HJ503850
  108 R=R/2.000
                                                                           HJ503860
      CALL PENAT(FG, FH, PENAI, PENAZ)
                                                                           HJS03870
      FP=FY+R*PENA1+R**(-0.5)*PENA2
                                                                           HJS03880
      INCUT = INCUT+1
                                                                           HJS03890
      NOCUT=0
                                                                           HJ$33900
      DO 109 I=1.N
                                                                           HJS03910
      PD(I)=PD(I)*4.0D0
                                                                           HJ$03920
  109 D(I)=PD(I)
                                                                           HJ$03930
      WRITE (6, 1022) MCUT
                                                                           HJ503940
       1F(ISIZE) 2109,2109,51
                                                                           HJS03942
 2109 DO 2110 I=1,N
                                                                           HJS03944
 2110 D(1)=D(1)/FNGR
                                                                           HJS03946
      GO TO 51
                                                                           HJ503950
  110 IF(NOCUT-INCUT) 1114,150,150
                                                                           HJS03960
  111 NOTXP=NOTXP+1
                                                                           HJS03970
      MC UT = 3
                                                                           HJS03980
C
                                                                           HJ$J3990
· C
    **MAKE PATTERN MOVE FOR MINIMIZING THE P-FUNCTION .
                                                                           HJS04000
      DJ 112 T=1, N
                                                                           HJ504010
      PX(1) = FX(1) + (FX(1) - BX(1))
                                                                           HJ$34620
  112 BX(I)=FX(I)
                                                                           HJS04030
      LOST= 3
                                                                           HJS04040
      CALL dages(PX,Y,G,H)
                                                                           HJ 504050
      IF(LOST-1) 124,124,113
                                                                           HJ504060
  113 [F(Y-FY] 114,114,51
                                                                           HJ504070
  114 CALL BACK (PX, X, Y, G, H)
                                                                           HJSJ4080
      NOTES=MAITE+1
                                                                           HJSJ4090
      NUSP= VIBP+1
                                                                           HJ504100
    **CHICK THE ITMAX IS EXCERDED OF ACT IN (PACK) ( LOSE=1 MEANS THE
C
                                                                           HJS04110
C
      KATHANED POINT IS INFLASIBLE !
                                                                           HJS 14120
      IF(LOST-1) 115,150,115
                                                                           HJS04130
C
                                                                           HJ504140
  115 LUS (=0
                                                                           HJS04150
```

```
**CHECK THE ITMAX IS FXC EDED OR NOT IN (BACK) ( LOST .NE. 1 MEANS THE ENTERED POINT IS NEAR-FEASIBLE )
                                                                            HJS34160
                                                                            HJS04170
                                                                            HJ504160
  122 IF (ICHTCK-1) 123,140,140
  123 IF(15KIP-11 124,48,48
                                                                            HJS04185
                                                                            HJS04190
  124 CALL POMATIG, H. PENAT, PENAZI
      P=Y+K*PCNA1+F**(-0.5)*PCNA2
                                                                            HJS04.00
      IF(P-FP) 128,48,48
                                                                             HJS94210
                                                                            HJS04220
  128 NOPATENCEPATEL
      NOITP=NoITP+1
                                                                            HJ504230
                                                                            HJS04240
      DU 129 II=1.N
                                                                            HJS04250
  129 FX(II)=PX(II)
                                                                            HJS34260
      LUOST = LOST
                                                                            HJS04270
  130 IF (MG) 133,133,131
                                                                             HJ504280
  131 DO 152 J=1, MG
                                                                            HJS042 0
  132 FG(J)=G(J)
                                                                            HJ $04300
  133 IF(MH) 136,136,134
                                                                            HJS04310
  134 DO 135 K=1, MH
  135 FH(K)=H(K)
                                                                            HJ$04320
  136 FY=Y
                                                                            HJS04330
                                                                            HJS34340
      FP=P
                                                                            HJS04350
C
                                                                            HJS04360
    **CHECK THE STAGE STOPPING CRITERION IS SATISFIED OR NOT .
C
                                                                            HJS04370
      IF(NOCUT-INCUT) 138,150,150
                                                                            HJS04380
  138 IF (ICHTCK-1) 50,150,150
                                                                            HJS04390
C
    **CHECK THE ITMAX EXCELDED POINT( WHEN IT IS RETURNED FROM BACK )
                                                                            HJS04400
C
      IS BETTER OR NOT AND SLT PROPER STAGE-OPTIMUM .
                                                                            HJ5J4410
  140 CALL OBRES(X,Y,G,H)
                                                                            HJS04420
                                                                            HJ504430
      CALL PENAT(G.H.PENAL, PENAZ)
                                                                            HJS04440
      P=Y+R*PFNA1+R**(-0.5)*PFNA2
                                                                            HJS04450
      IF(P-FP) 142,150,150
                                                                            HJS0446C
  142 DO 144 I=1.N
                                                                            HJS04470
  144 FX(I)=X(I)
                                                                            HJSC4480
      LLOST=LUST
                                                                            HJ5044 0
      GO TO 130
    **SIT THE SUB-OPTIMUM GOT BEFORE ENTERED TO BACK BE THE
                                                                            HJ$04500
C
                                                                            HJS04510
      STAGE-GPTINUM .
                                                                            HJ504520
  150 NOPULL=0
                                                                            HJS04530
      PULL=0.63D0
                                                                            HJS04540
      IF (MG) 15,15,151
                                                                            HJS04550
  151 EO 152 J=1, MG
                                                                            HJS 34560
      1F(FG(J)) 162,162,152
                                                                            HJ504570
  152 CONTINUE
                                                                            HJ$34580
C
    **CHECK THE STAGE OPTIMUM IS FEASIBLE OR NOT .
                                                                            HJS04590
  160 IF(LLOST-1) 170,162,162
                                                                            HJ504600
                                                                            HJSJ4610
    **PULL BACK THE INFRASIBLE STAGE-OPTIMUM INTO THE FEASIBLE REGION
                                                                            HJS04620
  162 D7 163 I=1.W
                                                                            HJS04630
  163 FX(I)=PULL+(FX(I)-OX(I))+OX(I)
      NOPULL=HOPULL+1
                                                                            HJ504640
                                                                            HJ534650
      CALL DARAS(FX, FY, FG, FH)
      LLOST=LOST
                                                                            HJSJ4660
                                                                            HJS04670
      NOITE=NUITE+1
                                                                            HJ534680
      IF(MOPULL-5) 160,164,164
                                                                            HJ$346 Z
  164 UPPULL=0
                                                                            HJ534700
  165 DH 165 I=1.N
  165 FX(I)=0X(I)
                                                                            HJS34710
                                                                            HJ504720
      CALL OBCES(FX, FY, FG, FH)
                                                                            HJ504730
  170 LOST=0
                                                                            HJS34740
      CALL PUNATIFG, FH, PINAL, PLNA2)
```

```
FP=FY+R*PHNAT+R**(-0.5)*PFNAZ
                                                                           HJS04750
  203 NOIT=NOIT+ITER
                                                                           HJS34760
      YUTHP=D:65(FY/(FY-R*PEHA1+R**(+0.5)*PENA2))
                                                                           HJ504770
      YSTOP=DABS(YSTOP-1.0)
                                                                           HJ354780
   - CALL OBRESTEX, FY, FG, FH)
                                                                           HJ534785
      WAITE (6,1005) NUC, FY, FP, R, ITER, NOIT, NOBP, NOITP, NOITB, NOEXP,
                                                                           HJS04790
     INOPAT, NOCUT, YSTOP
                                                                           HJS04806
      WRITH(6,1000) (1,FX(1),I,O(1),I=1,N)
                                                                           HJ504816
      WRITE(6,1011)
                                                                           HJS04820
      IF(MG) 216,216,215
                                                                           HJS04030
  215 WPIT((6,1012) (J.FG(J),J=1,MG)
                                                                           HJS04840
  216 16("H) 218,218,217
                                                                           HJS04850
  217 VRIJ = (6,1013) (K,FH(K),K=1,MH)
                                                                           HJ504860
   ***OUTPUT ADDITIONAL INFORMATION.
                                                                           HJS04670
  218 CALE CUTPUT(N,MG,MH)
                                                                           HJ504830
      WRITE(6,1007)
                                                                           HJS74890
C
                                                                           0065CSFH
    **CHECK THE FINAL STOPPING CRITERION IS SATISFIED OR NOT.
C
                                                                           HJSJ4910
      IF(YSTOP-THETA) 230,230,220
                                                                           HJS04920
    **CHECK THE MAXP IS EXCEEDED OR NOT .
C
                                                                           HJ$94930
  220 IF(NOR-MAXP) 221,232,232
                                                                           HJS04940
    **STORE LAST SUB-OPTIMUM POINT .
                                                                           HJS04950
  221 DO 222 1=1,N
                                                                           HJ534960
      (1) \text{ OQ} = (1) \text{ O}
                                                                           HJS04970
  222 0X(I)=FX(I)
                                                                           HJS94980
    **SHIFT TO THE NEXT STAGE SEARCH .
                                                                           HJS 14990
      R=R/RATIO
                                                                           HJ505000
      FP=FY+R*PENA1+R**(-0.5)*PENA2
                                                                           HJ$35010
      MOR=MOR+1
                                                                           HJS05020
      1F(NJR-5*MP) 224,224,223
                                                                           HJS05030
  223 INCUT=INCUT+1
                                                                           HJSJ5046
      MP=MP+1
                                                                           HJ$05050
  224 TF (NOBP) 226,226,225
                                                                           HJ505060
  225 INCUT=INCUT+1
                                                                           HJS05070
  226 NOBP=0
                                                                           HJS05080
      MULT=1
                                                                           HJS05090
      NOITE=0
                                                                           HJS25100
                                                                           HJS05110
      NJITP=0
      ICHECK=0
                                                                           HJS35120
      NOT XP=0
                                                                           HJ305130
      MI PAT = O
                                                                           HJ335140
      NOCUT=0
                                                                           HJS05150
      ITTRE O
                                                                           HJ$05160
      19=0
                                                                           HJS05170
      FNCR=NOR
                                                                           HJS05180
      8=0.0D0
                                                                           HJS05190
      MCUT=1
                                                                           HJ$35200
      IDIFF=0
                                                                           HJSJ5210
C
                                                                           HJS05220
   **DECIDE THE INITIAL STEP-SIZES AND TOLERENCE LIMIT.
                                                                           HJS05230
     IF(ICUT) 229,229,227
                                                                           HJ$ 05240
 227 00 228 1=1,5
                                                                           HJS05250
      D(I) = PO(I) / FNOR
                                                                           HJS05260
  228 6=8+0.500+D(1)
                                                                           HJ$35270
                                                                           HJS05280
      B=3/FN
      GU TT 50
                                                                           HJS05290
 229 M=PR
                                                                           HJSJ5300
     GJ TO 50
                                                                           HJS05310
  230 WRITT(6,1015)
                                                                           HUS05320
     GC TO 254
                                                                           HJS 35330
```

```
232 WETTER6, 10161 MAXP
                                                                            HJS05340
  234 IDPM=IDPM+1
                                                                            HU305350
      IF (IOPM-NOPM) 1,1,236
                                                                            HJSJSB6U
  236 SIDP
                                                                            HJ505370
                                                                            HJ535380
      SUBROUTINE BACK(X9,X,Y,G,H)
                                                                            HJ505390
C
                                                                            HJS05400
         THIS SUBPOUTINE PULLS INFEASIBLE POINTS BACK INTO THE
C
                                                                            HJSJ5410
      FEASIBLE OF NEAR-FEASIBLE REGION .
C
                                                                            HJ505420
C
                                                                            HJS05430
         **OMFINITION ..
C
                                                                            HJS05440
               FEASIBLE .. ALL G(I) .GF. O. ,
C
                                                                            HJS05450
              MEAR-FEASIBLE .. (B-TGH) .GE. O. .
C
                                                                            HJS:05460
                                                                            HJS05470
      IMPLICIT ROAL*8(A-H,O-Z)
                                                                            HJS05480
      DIMINSION XB(20),X(20),G(50),H(20),D(20)
                                                                            HJS05490
      CUMMON /CHAY/ PO1, PD2, FD3, F04, PD5, PC6, PD7, PD8, PD9, PD10, PD11, FD12 HJS05495
      COMMON /8LOGY/ N,MG,MH,ITER,ITMAX,ICHECK,IB,LOST
                                                                            HJS05500
      COMMON /BLOGB/ NOITP, NOITB, B, C, ISKIP
                                                                            HJS05510
      ITER8=ITER
                                                                            HJ$35520
      ISKIP=0
                                                                            HJS05525
      FR4C=0.5
                                                                            HJSJ5530
      CALL WEIGH (TGH, MG, G, MH, H)
                                                                            HJS05540
      IF (TGH) 8,8,4
                                                                            HJS05550
    #ADECREASE THE VALUE OF B IN RETURN .
C
                                                                            HJS05560
    4 IF(E-TGH) 12,12,6
                                                                            HJ$05570
    6 IF(0.70D0*B-TGH) 10,8,6
                                                                            HJS05580
    8 R=0.75D0*8
                                                                            HJS05590
   10 LOST=0
                                                                            HJS05600
      RETURN
                                                                            HJS05610
   12 FTGH=TGH
                                                                            HJS35620
                                                                            HJ$05630
C
    **MAKE EXPLORATORY MOVE FOR MINIMIZING TGH .
                                                                            HJS05640
   22 NOF=0
                                                                            HJS05650
      DO 38 NB=1,N
                                                                            HJS05660
      XB(NB)=XB(NB)-FRAC*O(NB)
                                                                            HJS05670
      CALL GRAFS (XB, Y, G, H)
                                                                            HJ$05680
                                                                            HJ$05690
      CALL WEIGH (TGH, MG, G, MH, H)
      1F(LOST-21 24,26,26
                                                                            HJS05700
                                                                            HJS05710
   24 NOITE=NUITE+1
   25 LOST=0
                                                                            HJS05720
                                                                            HJS05730
      GO TO 46
   26 NOTTB=NOTTB+1
                                                                            HJSC5740
      IF(ICHCCK-1) 27,45,45
                                                                            HJS05750
   27 IF(TGH-FTGH1 28,32,32
                                                                            HJS05760
   28 FIGH-TGH
                                                                            HJS05770
      IF(8-TGH) 38,38,25
                                                                            HJS05780
                                                                            HJS05790
C
   32 XB(NB) = XR(NB) + O(NB) * 2. O * FRAC
                                                                            HJS05800
      CALL DBRASS(XP,Y,G,H)
                                                                            HJS35810
      CALL WIGHLIGH, MG, G, MH, H)
                                                                            HJS05826
                                                                            HJS05830
      IF(LUS1-2) 24,34,34
   34 MUITB=NUITB+1
                                                                            HJS05840
      IF(1CH=CK-1) 35,45,45
                                                                            HJ$05850
   35 IF(TGH-FTGH) 28,36,36
                                                                            HJS05860
   36 XR(NB)=XE(NE)-FRAC*D(NB)
                                                                            HJS0587C
      N IF = NOF+1
                                                                            HJSJ5EBO
                                                                            HJS05890
   38 CHALLARL
      IF(N)F-N) 22,42,42
                                                                            HJS05900
C
                                                                            HJ505910
```

```
**ADD SYCP-SIZES FOR MINIMIZING TOH .
C
                                                                            HJ505920
   42 IF(11TR-IT(FR-4-N) 44,43,59
                                                                            HJS05930
   43 FTAU= F11 615.013
                                                                            HJ505740
      GO TO 22
                                                                            HJ505950
   44 FRAUSFRAUST.5
                                                                            HJS 15960
      GG TO 32
                                                                            HJ305970
   45 LUST=1
                                                                            HJS05980
C
                                                                            HJS-05990
    **SET BASE POINT TO RETURN .
                                                                            HJSC6000
C.
   46 GO 50 NB=1, N
                                                                            HJS06010
      D(N3)=D(NB)+0.5500
                                                                            HJS06020
   50 \times (N3) = XB(N8)
                                                                            HJS05030
    **CECRIASE THE VALUE OF B IN RETURN .
                                                                            HJS06040
      IF(0.700%8-TOH) 60,53,58
                                                                            HJ$06050
   58 B=0.7500+3
                                                                            HJS06060
      R-THRN
                                                                            HJ506062
   59 LOST=0
                                                                            HJS06664
                                                                            HJS06066
      ISKIP=1
   60 RETURN
                                                                            HJS06070
      CMD
                                                                            HJ506080
      SUBROUTINE PENAT(G,H,PENA1,PENA2)
                                                                            HJS06090
                                                                            00190SfH
C
      THIS SURROUTING COMPUTES THE PERALTY TERMS FOR SUMT FORMULATION . HUSDELLO
         PENAL FOR INEQUALITY CONSTRAINTS .
C
                                                                            HJS06120
         PENAS FOR EQUALITY CONSTRAINTS .
C
                                                                            HJS06130
                                                                            HJ$06140
C
      IMPLICIT REAL #8 (A-H, C-Z)
                                                                            HJ506150
      DIMENSION G(50), H(20)
                                                                            HJS06160
      COMMON /CHAY/ PD1,PD2,PD3,PD4,PD5,PD6,PD7,PD8,PD9,PD10,PD11,PD12 HJS36165
      COMMUN /BLOGY/ N.MG. MH. ITER, ITMAX, ICHECK, IB, LOST
                                                                            HJS06170
      PCNA1=0.00
                                                                            HJS06180
                                                                            HJ506190
      PENA2=0.00
      IF (MG) 5,5,1
                                                                            HJS06200
    I 00 4 I=1, MG
                                                                            HJS06210
      IF(G(I)) 4,2,4
                                                                            HJS06220
    **SET G(I)=0.18-48 WHEN G(I)=0. ( ON THE BOUNDARY )
                                                                            HJS06230
    2 G(1)=0.10-43
                                                                            HJS06240
     PTM41=PTNA1+DABS(1.000/G(1))
                                                                            HJS06250
    5 IF(MH) 10,10,6
                                                                            HJS06260
                                                                            HJS06270
    6 DJ 9 K=1,MH
                                                                            HJS96280
    8 PTNA2 = PENIA2 +H(K)**2
                                                                            HJS06290
    9 CHNTINUE
                                                                            HJS06300
   10 RETURN
      - ND
                                                                            HJS06310
      SUBROUTINE WLIGH(TGH, MG, G, MH, H)
                                                                            HJSJ6320
                                                                            HJS06330
C
      THIS SUBROUTING COMPUTES THE TOTAL WEIGHT OF VIOLATION
                                                                            HJ506340
C
      TO THE INEQUALITY CONSTRAINTS .
                                                                            HJS06350
C
                                                                            HJS06360
      IMPLICIT REAL#8(A-H, C-Z)
                                                                           HJS06370
      DIMENSION 6(50).H(20)
                                                                            HJSJ638C
      COMM NO ZCHAYZ PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PC9, PQ10, PO11, PO12 HJS06365
                                                                            HJ$76390
      TGH= 0.
      IF(MG) 4,4,1
                                                                            HJS06400
    1 00 3 IR=1,MG
                                                                            HJS06410
      IF(G([4]) 2,3,3
                                                                            HJ$76420
    2 TGH=TGH+G(IF) **2
                                                                            H.1506430
                                                                            HJSJ6440
    3 CONTINUE
                                                                            HJS06450
    4 IF(MH) 8.8.5
                                                                            HJS06460
    5 DO 7 18=1,MH
```

```
IF(H(IR)) 6,7,6"
                                                                      HJSJ6470
    6 IGH=TGH+H(IR)**2
                                                                      HJ536480
    7 CONTINUE
                                                                      HJSJ6490
    8 TGH=TGH+#0.500
                                                                      HJS26500
      RETURN
                                                                      HJ536516
      FND
                                                                      HJ306520
      SUBFOUTINE READIN(N, MG, MH)
                                                                      0.636 (2LH
      THIS SUBROUTING IS FOR READ IN ADDITIONAL DATA .
C
                                                                      HJC06546
      USER SUPPLIES HIS OWN BEAD STATEMENT AND FURMAT .
€.
                                                                      HJ$56550
      ARGUMENTS NIMGIMH ARE NUMBERS OF VARIABLES, OF INEQUALITY CONSTRAINHUSD6560
C
                       AND OF EQUALITY CONSTRAINTS .
C
                                                                      HJS06570
      COMMON VBLOGRY ..... STATEMENT IS FOR TRANSFER DATA USE .
C
                                                                      HJ306580
C
                                                                      HJS06590
      IMPLICIT REAL #8(A-H, O-Z)
                                                                      HJSJ6600
      COMMON /ALOGE/ 0(10)
                                                                      HJS06610
      RETURN
                                                                      HJS06620
      END
      SUBROUTINE OUTPUT(N.MG,MH)
                                                                      HJS06640
         THIS SUBBOUTING IS FOR USER TO PRINT OUT ADDITIONAL INFORMATIONHUS96650
C
      WANTED. ARGUMENTS N. MG. MH ARE NUMBERS OF VARIABLES, OF INEQUALITY HISO6660
      CONSTRAINTS, AND OF FOUALITY CONSTRAINTS .
C
                                                                      HJS06670
        THE NEEDED DATA INFORMATION
                                                                      HJS06680
C
        COMMON /BLOGO/.... IS FOR TRANSFER NECDED DATA IN MAIN TO
                                                                      HJS06690
      THE SUBROUTINE DUTPUT .
                                                                      HJS06700
C
        USER SUPLLIES ALL NECESSARY FORMATS .
                                                                      HJS06710
C
C
                                                                      HJS36720
      IMPLICIT REAL*8(A-H, D-Z)
                                                                      HJS06730
      CCMMON /CHAY/ PD1,PD2,PD3,PD4,PD5,PD6,PD7,PD8,PD9,PD10,PD11,PD12
                                                                      HJS06735
      COMMON /BLOGG/ G(50)
                                                                      HJS06740
     WRITE (6,9020) PD1, PD2, PC3, PD4, PD5, PD6, PD7, PC8, PD9
 9020 FORMATI' ', THE COST COMPONENTS OF THE SUBSYSTEMS ARE!/(' ',
     13015.611
      WPIYE(6,9021) PD10,PD11,PD12
 9021 FORMAT(' ','COST=',3015.6/)
     RETURN
                                                                      HJS06750
                                                                      HJS06760
      SNO
      SUBROUTINE OBRES(X,Y,G,H)
                                                                      HJS06770
                                                                      HJS06780
     THIS SUBROUTINE COMPUTES OBJ. AND CONSTRAINT VALUES .
                                                                      HJ$06790
      USER SHOULD SUPPLY ALL NECESSARY STATEMENTS IN THE FORM ..
                                                                      HJS06300
        Y=...., FUNCTION OF X(I) , FOR UBJECTIVE FUNCTION .
                                                                      HJS06810
Ç
     C
                                                                      HJ$06820
C
                                                                      HJS06830
C
                                                                      HJS06850
    IMPLICIT REALES(A-H, N-Z)
                                                                      HJS06860
     DIMPOSION X(20),G(50),H(20),Q(10)
                                                                      HJS06870
     DIMENSION CC(6,3), CUMP(3,3)
     COMMON /BLOGY/ N,MG,MH,ITER,ITMAX,ICHECK,IE,LOST
                                                                      088302LH
     COMM DN /CHAY/ PD1,PD2,PD3,PD4,PD5,PD6,PD7,PD8,PD9,PD10,PD11,PD12
                                                                      HJ$36885
      CLIMMON IRLOGRA O
                                                                      0639CSFH
  100 FRAMATISX, 25H* THE ITERATION EXCEPDED , 15, 14.)
                                                                      HJSu6900
C
                                                                      HJS06910
   HJS06920
    WANDTO. STATEMENT NUMBERS 1,2,3,4,5,6,7,8,100 HAVE BEEN USED.
                                                                      HJ506930
     CC(1,1)=.6
     CU(1,2)=.5
     CC(1,3)=.8
     CC(2,1)=400.
     CC12,21=500.
```

```
CC12,31=500.
   CC(3,1)=5.
   CC(3,2)=5.
   CC(3,3)=5.
   CC(4, 1)=1.8
   CC (4, 2)=2.
   CC(4,31=1.7
   CC(5,1)=20.
   CC(5,2)=15.
   00(5,3)=50.
   CC(6,1)=3.
   CC(6,2)=4.
   CC(6,3)=2.
   ST=1500.
   Y1=0.
   Y2=0.
   Y3=0.
   VAVO=1.
   DO 50 I=1.3
   IM=I+3
   IC=IM+3
   12=1C+3
   IG=IF+3
   IH=1G+3
   IJ=IH+3
   1K=1J+3
   UNRIL = (1.-DFXP(-X(I)*X(IE)))**2
   REL=1.-UNRFL
   CALL INTEG(X,I,IE,RMTBM)
   UMTRH=PFTBM/UNREL
   SMTBM=RMTBM/REL
   C1 M=1./X(IM)
   PTM=X(IC)
   RTM=CTM+UNREL+PTM*RFL
   COMP(1,1)=CC(1,1) *9 YT8M+CC(2,1)/RTM-CC(3,1)
   COMP(2,1)=(ST/UMTBM)*(CC(4,1)*CTM)**2
   COMP(3,1)=(ST/SMTBM)*(CC(5,1)*PTM-CC(6,1))
   AV=RMTBM/(RMTBM+RTM)
   Y1=Y1+COMP(1,!)
   Y2=Y2+COMP(2,1)
   Y3=Y3+COMP(3,I)
   VAKOVAV=GVAV
   G(1)=X(1)-.001
   G(IM) = .02 - X(I)
   C(16)=X(IM)-.02
   G(12)=.6667-X(I4)
   G(1G1=X(TC)-.5
   G(IH)=25.-X(IC)
   G([])=Y(]E)-100.
   G([K)=800.-X([S]
50 CONTINUE
   G(25)=VAVO-.97
   G(26)=1.-VAVO
   Y=Y1+Y2+Y3
   PD 1=C 32P(1,1)
   PD2=C@MP(2,1)
   Pf 3=CUMP(3,1)
   PC4=CUMP(1,2)
   POS=COMP(2,2)
   PD6=COMP(3,2)
```

```
PD7=C5MP(1,3)
PD8=C5MP(2,3)
     PD9=CCMP(3,3)
     P010=Y1
     PO! 1 = Y2
     PD12=Y3
C
                                                                      HJS06940
   HJS06950
C
     LOST=0
                                                                       HJ$06960
      11 ER= (TFR+1
                                                                      HJS06970
     IF(ITER-ITMAX) 3,1,2
                                                                      HJS06980
   **OUTPUT THE MESSAGE OF ITMAX EXCEEDED.
Ċ
                                                                      HJS06990
   1 WRITE (6,100) ITMAX
                                                                      HJ507000
    2 IGHTCK=1
                                                                       HJ507010
   ** CHECK FOR THE VIOLATION TO INCOUALITY CONSTRAINTS.
                                                                      HJS07020
   3 13=0
                                                                      HJS37030
      IF(MG) 8,8,4
                                                                      HJS07040
   4 DO 7 I=1,MG
                                                                      HJS07050
     IF(G(1)) 5,6,7
                                                                      HJS07060
   5 LOST=2
                                                                      HJS07070
     60 TO 7
                                                                      HJS07080
   6 IB=1
                                                                      0602CSFH
   7 CONTINUE
                                                                       HJS07100
   8 RETURN
                                                                      HJ507110
     END
                                                                      HJS37120
     SUBMOUTINE INTEG(XA, J, JE, FSUB)
     IMPLICIT REAL #8(A-H, G-Z)
     DIMENSION XA(20)
     COMMON /CHAY/ PD1,PD2,PD3,PD4,PD5,PD6,PD7,PD8,PD9,PD10,PD11,PD12
     ZFRO= 0.
     RI=.5
     DINTYL=(XA(UE)-ZERD)/100.
  10 ZERO=ZERO+CINTVL
     RM=1.-(1.-DEXP(-XA(J)*ZERO))**2
     RI=RI+RM
     IF(ZERO.LT.(XA(JE)-DINTVL)) GO TO 10
     RF=1.-(1.-DEXP(-XA(J)*XA(JC)))**2
     FSUS=DINTVL#(RI+RF/2.1
     RETURN
     END
```

A2.4 SUMT: USER SUPPLIED SUBROUTINES FOR EXAMPLE 2

The following listed subroutines may be inserted in place of corresponding subroutines listed in Appendix A2.3.

```
SIMEKEDTING BRAGG(X,Y,G,H)
                                                                             HJ556773
C
                                                                             HJS. 670
C
      THIS SUBROUTING COMPUTES AND CONSTRUINT VALUES .
                                                                            H3.166795
C
      DSEN SHOULD SUPPLY THE MICHOLARY STATEMENTS IN THE FORM ..
                                                                             HUSCEBOU
         Y=...., FUNCTION OF X(1) , FGP (PULCTIVE FUNCTION .
000
                                                                            HJ506810
         G(J)=...., I FROM 1 10 MC , FOR CONST. 414.15 G(J) .CT. U.U
                                                                            HJ506820
      H(K)=...., K FROM 1 TO MH , FOR CONSTRUINTS H(K) .EQ. t... . INSERT THESE STATEMENTS IN THE BECCK RELOW LIBER BY ######## .
                                                                            HJ5.693.
Ĺ
                                                                            HJSGER40
C.
                                                                            HUSCEE50
      IMPLICIT PSALS8(1-H,C-Z)
                                                                            HJ506363
      DIMENSION X(20),6(50),H(20),6(10)
                                                                            HJS16870
      01M655139 00(4,3),00M0(3,3)
      COMMON /BLOGY/ N.MG.MH.ITER.ITM/X.ICHTCK.IE,LEST
                                                                            HJ566883
      COMMON /CHAY/ PO1, PO1, PO3, PO4, PO5, PC6, PC7, FC8, PO9, PC10, PC11, PO12
                                                                            HJS06855
      COMMUN /ALOGR/ C
                                                                            HJ5: 6597
  100 FORMATISX, 25FW#THE ITERATION EXCELOSO , 15, 1H.)
                                                                            HUSCESCO
C
                                                                            HJSC6910
C
   HJ5: 652.
    ** HOTE.. STATEMENT NUMBERS 1,2,3,4,5,6,7,8,100 HAVE REEN USED.
C
                                                                            HJS(653)
      CC(1,1)=1.8
      00(1,2)=1.3
      00(1,3)=2.0
      00(2,1)=000.
      Cu(2,2)=170.
      CC(2,31=250.
      CC(3,1)=5.
      CC13,21=5.
      CC(3.31=5.
      CC(4,1)=2.
      CC(4,2)=2.5
      CC(4,3)=3.
      CC(5,1)=43.
      CC(5,2)=1JU.
      50(5,3)=5 ...
      CC(6,11=3.
      CC16,21-4.
      CC(6,3)=2.
      ST=1500.
      Y1=0.
      Y2=C.
      Y3=C.
      VAVO=1.
      DC 50 I=1.3
      14=1+3
      IC=14+3
      IL=1C+3
      10=1L+3
      IH= IG+3
      11=1+1+3
      1K = 1J + 3
      UMR: L=(1.-0:XP(-X[]]+X([])+=2))**2
      RELET. -Use El
       THE THE SEX.L. D. PRICE.
      INTOMER MT: MILLIE, L
      SMILMERSTONIELL
      (NI)X = YI)
```

```
Pla=x(IC)
      KIMELING GATE THERE
      CC *F(1,1)=3.(),1)*A*T(*+CC(2,1)/A)*-3.(3,1)
      CL OF (2,1) = (ST /UMT GM)* (CC (4,1) (CTM) **-2
      CERP(3,1)=(51/5/16M)*(CC(5,1))****-CC(6,1))
      AV=FMTET/(ENTPH+FTM)
      Y1=Y1+C(MP(1,1)
      Y2=Y1+C7"P(2,1)
      Y3= Y3+C (4F (3+1)
      V4VL=V4V2*4V
      C(1)=X(I)-...1
      G(It*)=.COC7-X(I)
      G(IL4=X(I")-.5
      G(1 1=10. Y(14)
      G(1G)=X(1C)-.1
      COMMETC: XCICA
      G(1J)=X(1_)-5C.
      G(IK)=150.-X(IL)
   50 CONTINUE
      C[25]=V4VU-.93
      G(26)=1.-V4VC
      Y=Y1+Y2+Y3
      PD1=COMP(2,1)
      PD2=COMP(2,1)
      P[3=COMP(3,1)
      FU4=COMP(1,2)
      PD5=COMP(2,2)
      PDS=CUMP(2,2)
      PC7=CUMP(1,3)
      PU8=COMP(2,3)
      PE9=COMP(3,3)
      PD10=Y1
      P511=Y2
      PC12=Y3
C
                                                                        HJ516941
   HJ506951
      LOST=0
                                                                        HJSL6960
      [7:P=!T:3+1
                                                                        HJuce570
      IF(ITLK-ITMAX) 3,1,2
                                                                        HJS16981
    ** TOTPUT THE MCSSAGE OF ITMAX EXCERCIO.
C
                                                                        HJS (-99)
    1 WRITE (6,100) ITMAX
                                                                        HJ5C7000.
    2 ICHLCK=1
                                                                        HJS07.15
C
    **CHack FOR THE VIOLATION TO INQUALITY CONSTRAINTS.
                                                                        HJS.7: 2,
    3 I 3 = C
                                                                        HJ517.53
      IF(MG) 8,8,4
                                                                        HJ507640
    4 00 7 1=1,49
                                                                        HJSC7C50
     IF(S(1)) 5,5,7
                                                                        HJ507160
    5 LCST=2
                                                                        HJS. 7 7.
     00 76 7
                                                                        HUSC7083
    6 In=1
                                                                        HJS67(9)
    7 CONTINUE
8 FIGURE
                                                                        µJ⊆ 71 →
                                                                        HJS07.10
      : NO
                                                                        HJ56712J
```

by

Chang Hoon Lie

B.S. (Nuclear Engineering), Seoul National University
Seoul, Korea, 1970

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

Kansas State University

Manhattan, Kansas

In designing maintained systems, availability is used as a single measure for the system effectiveness. The seriesparallel system which has subsystems in series, where each subsystem has identical units in parallel, is considered. Considering both corrective and preventive maintenance, availability models for the series-parallel systems are developed under the assumption of various probability density functions for failure and repair times of each unit. The cost of the system consists of three cost components: the cost for designing mean time between maintenance and mean corrective and preventive maintenance time, the cost for corrective maintenance, and the cost for preventive maintenance.

The optimal availability allocation problem, then, is to determine individual units' detailed availability specification that will allow a system availability requirement to be met with a minimum cost for the system. Both the generalized reduced gradient (GRG) method and sequential unconstrained minimization technique (SUMT) are employed to solve this problem. The results obtained from these two different optimization methods are compared. This availability allocation technique is applicable in the early stages of maintained system design as well as in the latter stages of system design when modifications and improvements for the initial specifications are required.