OFTIMAL AVAILABILITY ALLOCATION IN
SERIES-PARALLEL MAINTAINED SYSTEMS

by

Chang Hoon Lie

B.S. (Nuclear Engineering), Seoul National University

Seoul, Korea, 1970

A MASTER*'S THESIS

submitted in partiasl fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering
Kansas State University
Mannattan, Kansas

1974

Approved by

Co-Major Professor Lo—hd] P?Ofbbbbr



Lp
2047
T

1174
L o3y ‘ TABLE OF CONTENTS
S

A

(_’ .
D@c,amemi’
LIST OF TABLES

LIST OF FIGURES

ACKNCWLEDGEMENTS
CHAPTER 1 INTRODUCT ION
CHAPTLER 2 BASIC CONCEPTS

2.1 Introduction

2.2 C(Corrective and preventive maintenance

2,3 Maintainability Indexes

2.4 Availability

2.5 Three concepts of availability

2.6 Profitability of preventive maintenance
CHAFPTER 3 LITERATURE SURVEY

3.1 Reliability and availability models for
the system with corrective maintenance

3.2 Reliability and availability models for
the system with both corrective and
preventive maintenance

3.3 Optimization of reliability and availabi-~
lity allocation problem in multistage

systems
3.4 Availability allocation problem in this
thesis
CHAPTER 4 - DEVELOPMENT OF THE MODEL

4,1 TIncrease in mean time between unscheduled
maintenance or mean life due to preventive
maintenance

L,2 Mean maintenance time for corrective and
preventive maintenance

4.3 Availability model Tor the n-unit redun-
dant system with exponential distribution

page
iv
vi
vii

VO N W e

10
12
21
21

25

32

35

38
38

48

51

ii



b4

h.5
L.6
CHAPTER 5

5.1
5.2

CHAPTER &
6'1
6.2

CHAPTER 7

REFERENCES

APPENDIX 1
-pl.lll

Al.2

AL.3
APPENDIX 2

AZ.1

AZ2.2

A2.3

Az.b

for failure and repair times

Availability model for the n-unit redun-

.dant system with failure and repair time

distributions other than exponential
Cost structure
Mathematical statement of problem

GENERALIZED REDUCED GRADIENT (GRG) METHOD
AND SEQUENTIAL UNCONSTRAINED MINIMIZATION
TECHNIQUE (SUMT)

Generalized reduced gradient (GRG) method

Sequential unconstrained minimization
technique (3UMT)

NUMERICAL EXAMPLES

Example 1 : Exponential distributions for
failure and repair times

Example 2 : Weibull fallure time and
general repair time distributions

DISCUSSION AND CONCLUSICNS

Glossary of terms in reliability and
maintainability

Markov processes
The trapezoidal rule
COMPUTER PROGRAM LISTINGS

GRG : User supplied subroutines for
example 1.

GRG : User supplied subroutines for
example 2.

SUMT : Lai's version with user supplied
subroutines for example 1.

SUMT : User supplied subroutines for
example 2,

1ii

. page

57

76
81
89

89
96

103
1.03

124

14k
149
157
157

162
167

172
172

179

186

202



Table
bh.1

5l
5: 2
6.1a

6.1b

6.2a

6l2b

6.3

6.4

6.5a

6.5b

6.6a

6.6b

LIST GF TABLES

Summary of the expressions for the MTBMu.

MTBMS, MTBM, Mct' Mpt’ ¥, and A for the

n-unit redundant system
Parameters
List of information

GRG solution for the first set of starting
values (numerical example 1)

GRG solution for the first set of starting

values (numerical example 1) : using

. and 1

A:'S 'S
j M3

GRG solution for the second set of starting
values (numerical example 1)

as original problem variables

GRG solution for the second set of starting
values (numerical example 1) : using
L and 1
AstS .'8
] By

SUMT solution for the first set of starting
values (numerical example 1)

as original problem variables

SUMP solution for the second set of starting
values (numerical example 1)

Summary of GRG and SUMT final results for
the first set of starting values (numerical
example 1)

Summary of GRG and SUNMT final results for
the second set of starting values (numerical
example 1)

GRG solution for the first set of starting
values (numerical example 2)

GRG solution for the first set of starting
values (numerical example Z) : using
1

1S
kJ

as original problem variables

iv

page

77

ok
102
113

118

120

121

122
123

125

126



Table
6.7a

6.7b

6.8

6.9

6.10a

6.10b

GRG solution for the second set of starting
values (numerical example 2)

GRG solution for the second set of starting
values (numerical example 2) : using
1
A.'S
Jd
SUMT solution for the first set of starting
values (numerical example 2)

as original problem variables

SUMT solution for the second set of starting
values (numerical example 2)

Summary of GRG and SUMT final results for
the first set of starting values (numerical
example 2)

Summary of GRG and SUMT final results for -
the second set of starting values (numerical
examples 2)

page
137

138

139

140

142

143



Figure
2.1
2.2

4.1

h,2

Al.1
Al.2

LIST OF FIGURES

Operational cycle

The failure rate r(t) versus time t when preven-
tive maintenance is performed at age T : (a)
increasing failure rate, (b) decreasing failure
rate, and (c) constant rate

Mean time between unscheduled maintenance of a
preventive maintained redundant system where
preventive maintenance period is T
Series-parallel system with N subsystem in
series where each subsystem consists of n.
identical units in parallel J
Markov graph for a two-unit redundant system

A function

vi

page
13
15a

b5

82

165
170



vii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation
to his major professors, Dr. F.A. Tillman and Dr. C.L. Hwang
for their valuable guidance and helpful advice in the course
of this work., He also acknowledges the support and encour-
agement from Dr. D.L. Grosh and Dr. N.D. Eckhoff.

The author wishes to extend his deep gratitude to his
parents for their constant help and inspiration ; to his wife,
Kyunghee, for her continued support and patience throughout

this worlk,



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH MULTIPLE
PENCIL AND/OR
PEN MARKS
THROUGHOUT THE
TEXT.

THIS IS THE BEST
IMAGE AVAILABLE.



Chapter 1
INTRODUCTICN

- Increasing complexity of modern-day equipment, both
“in the military and commercial areas, has brought with it
inew types of engineering problems involving high performance,
ireliability, and maintainability. Reliability engineering
appeared on the scene in the late 1940s and early 1950s and
Much of the early reliability work was confined to making
trade~offs between certain performance and reliability
aspects of systems. Ever since, reliability has always
been considered during system design. However, as systéms
have become increasingly complex, the reliability problem
has become more. acufg..
Despite the fact that the reliability programs were
effective in prolonging the life of systems, the concept
of maintainability was recognized as a result of the reliability
programs conducted in the late 1940s and early 1950s,
which indicated that 100% reliability of system was an
unobtainable goal. Therefore, although problems in
reliability continue, when maintenance is possible, another
aspect of system performance = that of maintenance and repair -
is now-becoming a major discipline from the point of view
of engineering design and management. _The objective of
@Eﬁntainability is to design and develop systems which can

be maintained in the least time, at the least cost, and with



a minimum expenditure of support resources, without adversely
affecting the each unit's performance or safety charateristics.

If maintenance is possible, reliability is an incomplete
measure for the system effectiveness in that it only considers
the mean time to failures. Thus, an appropriate single
measure for the system effectiveness which takes into account
the duration of repairs as well as the frequency of
failures are required. This single measure of effectiveness
for the maintained system is availability which is of primary
concern in this study.

Availability models for the series-parallel systems
consisting of subsystems in series, where each subsystem
has identical units in parallel are developed assuming
various probability density functions for failure and repair
times of each unit. In developing the avallability models,
two types of maintenance policies for each subsystem are
consldered : the corrective maintenance is performed when
the subsystem fails due to the failure of all redundant
units and the preventive maintenance 15 scheduled at a
fixed age of the subsystem and is actually performed only
if the subsystem has not failed before this fixed age.
Preventive maintenance action conslists of replacing or reparing
only the failed units if each unit has a constant failure
rate and replacing both failed and unfailed units if each
unit has an increasing failure rate with time,. Thus, each
subsystem is assumed to be fully restored after the completion

of either corrective or preventive maintenance, The cost



of the system consists of three cost components : the cost

for designing the mean time between maintenance and mean

corrective and preventive maintenance time, the cost for

corrective maintenance, and the cost for preventive maintenance,
The optimal availability allocation problem, then, is

to determine individual units' detailed availability specifi-

cations which Qill minimize the total cost of the system under

the constraint of meeting the system availability requirement,

Both, the cest funetion and the availability eqguation of the

system, are highly nonlinear, the optimization methods

employed to solve this problem are both generalized reduced

gradient (GRG) method and sequential unconstrained minimization

technigue (SUMT). This availability sllocation technigue

is applicable in the early stages of maintained system design

to determine individual units' detailed availability specifi-

cations that will achieve a specified level of system availe

ability with the least cost for the system, This technique

may also be applied in the latter stages of system design

when modifications and improvements for the initial specifi-

cations are required.



Charter 2
BASIC CONCEPTS

2.1  INTRODUCTION

Reliability is defined as the probability of a system
performing its purpose adequately for the period of time intended
under the operating conditions encountered. If £{t) is the
probability density function of failure times of a system or

a unit, then the reliability function R(t) is given by
o0
R(t) = P(T>%) = [, f(s)ds (2.1)

time to failure or life length

1]

where T

P = the probability

Reliability has always been considered during system
design. However, as the high degree of complexity is involved
in many of the modern large =- scale electronic systems which
are required to give continuous service, e.g., computing eguip-
ment used to monitor and regulate continuous processes such as
commercial power distribution, cerﬁain types of communication
systems, and military defense systems on continuous alert, etec.,
it is difficult even with the best design technigue to obtain
long mean operating periods between failures. Therefore
several practices have been adopted to offset the high fallure
rates. Redundancy is ordinarily employed in the various sub-
systems of the system so that a subsystem failure occurs only

vhen all units are down, However, when maintenance ig

possible, reliability is an incomplete measure



for the system effictiveness, thus other_appropriate measures
which take account of the duration of repairs as well as the
frequency of failures are required.

Dependability is an appropriate measure when a system is
assigned to a mission with a specified duration. It is
defined as the probability that a system either does not fail
or fails and ié repaired in an allowable time interval during
a mission periocd [947]. It considers operating time and active
corrective maintenance time during a mission period. If a
system is intended for continuocus use for a long period of
time and preventive maintenance is considered as well as
corrective maintenance, then availability or fractional uptime
is a better measure for the system effectiveness[?Q]. The
definition and concepts of availability will be discussed in the

later sections.

2.2 CORRECTIVE AND PREVENTIVE MAINTENANCE

All recoverable systems which are used for continuous or
intermittent service for some period of time are subject to
maintenance at one time or another. In general, maintenance
actions can be elassified in two categories : First, there is
unscheduled or corrective maintenance, necessitated by system
in = service failure or malfunction. Its purpose is to restore
system operation as soon as possible by replacing, repairing,
or adjusting the unit or units which cause interruption of
service, Second, there is scheduled or preventive maintenance

actions. Its purpose is to keep the system in



a condition consistent with its built - in levels of performance,
reliability, and safety. According to Bazovsky[lb], preventive
maintenance fdlfills this purpose by servicing, inspections,
and minor or major overhauls during which
"l. regular care is provided to normally operating
subsystems and units which require such attention
( lubrication,.réfueling, cleaning, adjustment,
alignment, ete. ),
2. failed redundant units are checked, replaced, or
repaired if the system contains redundancy, and
3. units which are nearing a wearout condition are
replaced or overhauled."
These actions are performed to prevent unit and system failure

rates from increasing over and above the design levels.

2.3 MAINTAINABILITY INDEXES

let's examine the maintainability indexes in some detail.
The following indexes are the means for determining whether or
not the maintainability requirement stated in the overall
specification for a system has been complied with, and are
defined in [1?] and [29].

Mean time to repair (MTTR)

Mean active corrective maintenance time (M,.) is often
construed as being synonymous with MI'TR. It is the statistical
mean of the times required to repair a unit or a system, and
as such, represents the summation of all repalr times, divided

by the total number of failures that occurred during a given



period, It is expressed by the following equation 1

f
= EC(Mct)l
MITR = Mct & =1 (2.2)
£
c
where fc = number of failures

il

number of corrective actions

i

ct active maintenance time per corrective maintenarice

task.

Mean Preventive maintenance time (ﬁpt)

In order to reduce the probahility that a system will
require corrective action, it normally is taken out of operation
from time to time for preventive action. Because the time
required for this type of action represents a portion of the
total period of a system's inoperability, it must be calculated
as contributing to total system down-time. Mean preventive
maintenance time thus is defined as the statistical mean of the
summation of periods required for preventive action, divided
by the total number of preventive actions scheduled for a

period as follows :

< I
Boo= ibyptd
pt Sy (2.3)
P
where fp = number of preventive maintenance actions
Mpt = active maintenance time per preventive maintenance.

Mean active corrective and preventive maintenance time (i)

This index is established to represent all system down-time



resulting from both corrective and preventive activities ; as
such, it represents active down-time, thereby excluding the
down-time for which administrative actions, unavailability of
tools, etc., are responsible. It is the statistical mean of
the periods during which corrective and preventive work is per-
formed on a system during a given period, divided by the total
number of all such maintenance actions. It is calculated by

use of the following equation :

M= Mogfo * 1

ptfp ' (2.4)
f, + :

P

Hhi =}

or

ﬁct(l/MTBMu) + Mpt(l/MTBMS) 3. 2}

1/MTBMu + 1/MTBMS

where MTBMu = mean interval of unscheduled or corrective

maintenance

n

MT BM mean interval of scheduled or preventive

s
maintenance

Mean down-time (MDT)

It is the sum of mean active corrective and preventive
meintenance time (M) and mean delay time for that system during
a specified period. Because delay time is determined by
administrative and supply factors that cannot accurately be
anticipated, they are beyond a designer's control, and accord-

ingly, can play little part in maintainability design.



2.4  AVAILABILITY

This is the principal measure of the effectiveness of
maintained syétems and is of primary concern in this work.
Availability is defined as the fraction of the total desired
operating time that the system is actually operable, or it

can be defined as the ratio of uptime to total time [26];

Uptime ‘ (2.6)

A = Total Time

This equation can be rewritten as

MI'BF (2.7)

A =
MTBF + MTTR

where MTBF = mean time between failures

Equation (2.7) is frequently called the inherent availability.
To examine how equation (2.6) can be written as equation

(2.7), let's introduce system utilization factor U defined as

follows [14].

i ki (2.8)
R R S

P

where ¢ = system operating time

To = total corrective maintenance time
Tp = total preventive maintenance time
Tr = downtime other than To and TP such as administrative

time, supply time, etc.
If the system is in an ideal support environment without
consideration for preventive maintenance action and Tr' then

we have
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t

’ = (2.9)

t + L
This is a measure of the system's availability because it
gives the percentage of time the system will be available for
operation, If for the system operating time we select its
mean time between failures MTBF, which may be some fraction
or some multipie of t+ in U, we can then derive the average
maintenance time MITR which is required for every MIBF system
operating hours.

MITR = T ﬂﬁ?ﬁ-— (2.10)
t

Now if we use MTBF and MITR instead of 1t and i in the utilization
factor, we obtain a value which is numerically identical with
U, which is by definition called system availability A as given
by equation (2.7). It gives the same percentage of average

time the system will be available for service as obtained from U.

2.5 THREE CONCEPTS OF AVAILABILITY
In general there are three concepts of availability, i.e.,
jinnerent availability, achieved availability, and operational

availability. Blanchard and Lowery [17] define them as follows.

Inherent availability (Ai)

The probability that a system or a unit, when used under
stated conditions, without consideration for any scheduled or
preventive action, in an ideal support environment (i.e.,
available tools, spares, manpower, data, etc.), shall operate

satisfactorily at a given point in time. It excludes ready
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time, preventive maintenance downtime, logistics time, and
waiting or administrative downtime. It is a function of the

reliability and the mean active corrective maintenance time

characteristics of the system. It can be expressed as

MTBF + MI'TR

Achieved availability (Aé)

The probability that a system or a uvnit, when used under
stated conditions in an ideal support environment, shall operate
satisfactorily at a given point in time. It excludes logistics
time and waiting or administrative downtime. It includes
active preventive and corrective maintenance downtime and iz

a function of the frequency of maintenance and the mean mainte-

nance time. It can be expressed as
. = MT BM (2.12)
& mrem +

where M is mean active corrective and preventive maintenance time
given in equation (2.5) and MTBM is the mean time between main-
tenance or mean interval of all maintenance requirements which
can be expressed as

1 (2.13)
1/M‘1‘Bl\fi‘u + 1/MIBM

MTBM =

Operational availability 1A0)

The probability that a system or a unit, when used under
stated conditions in an actual operational environment, shall

operate satisfactorily at a given point in time. It includes
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ready time, logistics time, and waiting or administrative

dovntime, It can be expressed as

1

MTBM + ready time (2.14)

(MTBM + ready time) + MDT

where ready time = operational cycle - (MTBM + MDT) .
The operational cycle is the total of all operating time,

ready time, and down-time, This is illustrated in Figure 2.1.

Now we have defined three concepts of availability.
0f the three concepts of availability, achieved availability
is the major concern in this work. The system considered
in this work is assumed to be used for continuous service for
some period of time. Hence both the corrective and preventive
maintenance actions are assumed to be taken during the duty
time, If the system is used for intermittent service for
gome period of time and the preventive or corrective mainte-
nance is done during off duty time, then this sould be

reflected in fc’ f_or MTBMu and MTBMS. In the later chapters,

p
achieved availability for the particular system will be de-
veloped assuming various probability density functions for
the failure and repair times of each unit,

For those terms not defined in this section, refer to

Appendix Al.1,

2.6 PROFITABILITY OF PREVENTIVE MAINTENANCE
Preventive maintenance isg described as a particular

category of maintenance designed to optimize the related
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concepts of availability and the costs associated with the
repair actions. By performing preventive maintenance it
is expected to reduce the operatidnal failures, thus it
may be possible either to increase the availability ol the
system or to reduce the total maintenance costs. To achieve
a balance between availability and maintenance costs for
any system, se;eral factors must be weighed simultaneously.
According to ARINC [84], the various factors to be considered
are 1
v 1, the reliability index and time duration desired
2. the cost of an in=-service failure ;
3. the cost of replacement before failure ;
L, +he most economical point in the egquipment life
to effect this replacement ; and
5, the predictability of the failure pattern of the
equipment under consideration. "

To make preventive maintenance worthwhile, the failure
rate of the systems and/or units must increase with time, or
the preventive maintenance of the system must cost less than
the corrective maintenance. The preventive maintenance is
also advantageous for those systems which exhibit probability
density functions with coefficient of variation of failure
times less than that of the exponential distribution.

With regard to the cost required for the maintenance
action, Bell, Kamins, and McCall [15] show three reasons for
expecting this cost to be higher for a corrective maintenance

than for a preventive maintenance. Because of the unexpected-
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ness of a corrective maintenance, the reaction to a demandis
not immediate, thus relatively long periods are spent awaliting
service in caée of a corrective maintenance, thereas this
waiting time can be reduced to a minimum in case of preventive
maintenance. The second reason is that actual repair or
replacement time is often greater for a corrective maintenance
than for a preventive maintenance because it is more difficult
to repair or replace a failed unit than to repair or replace

an unfailed unit, and the failure of a unit sometimes causes
damage to other units. Finally, since more resources required
to perform the maintenance action are needed for a corrective
maintenance than for a preventive maintenance the value per
unit time of the output foregone during a corrective maintenance
action often exceeds the same measure for a preventive main-
tenance action.

The profitability of preventive maintenance with regard
to the failure rate is discussed below : Let us assume that
the system can be restored to its original condition after
the completion of a preventive maintenance action and the
preventive maintenance is acheduled at age T. Then, for
a system having an increasing failure rate over time, the
failure rate r(t) drops back to the original level at age
P as a result of the preventive maintenance as illustrated
in Figure 2.2.(a). Hence, the actual failure of a system
can be reduced, thus an increase in the mean life or the mean
time between unscheduled maintenance can be attained. In

this situation, preventive maintenance is worthwhile.
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(a)
r(t)
| | 1
] | |
0 T 27 37 t
(b)
r{t)
] t [}
i | 1
0 T 27 37 t
(c)
r(t)
l ! I
] I |
| ] |
1 ] |
| ] |
| ) |
i 1 [}
' L :
0 T 2T 37 t

Figure 2.2. The failure rate r(t) versus time t when
preventive maintenance is performed at age
T1 (a) increasing failure rate, (b) decreasing
failure rate, and (c¢) constant failure rate.
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As shown in Figure 2.2.(b), if the failure rate of a system
decreases with time, the perforﬁance of the preventive main-
tenance makes 'a system more unreliable. In this case, since
the older system is more reliable, preventive maintenance

is not worthwhile. For a system having a constant failure
rate, the age of a system has nothing to do with its failure
rate as shown in Figure 2.2.(c). Thus, we gain nothing by
applying preventive maintenance to this system,

The coefficient of variation, JV(t)/E(t), is also closely
related to the failure rate., Barlow and Proschan [i1] show
that the coefficient of variation of a failure distribution
having an increasing failure rate over time is less than that
of the exponential distribution. For a distribution having
a decreasing failure rate over time, the inegquality is reversed.
Hence, the coefficient of variation can be used as an alterna-
tive criterion to test the profitability of the preventive
maintenance. In other words, the preventive maintenance
is worthwhile for those systems which exhibit probability
density functions with coefficient of variation of failure
times less than that of the exponential distribution, since
this implies that the systems have increasing failure rates
over time.

If the failure rate of system decreases with time,
preventive maintenance is not worthwhile, This corresponds
to the case of greater coefficient of variation than thst
of the exponential distribution. Examples of probability

density functions for failure times which belong to this



category are ;

1. Gamma distribution for g <1 and } =1

((t)"L g™AE

() = (a Lt >0 (2.15)

2. Weibull distribution for ¢« <1 and ) =1

. . - o
£(t) = (ha)td™t e T , t >0 (2.16)

where ) and g are scale and shape parameters respectively.

If the failure rate increases with time, the preventive
maintenance is worthwhile. This corresponds to the case of
smaller coefficient of variation than that of the exponential
distribution. Examples of probability density functions

for failvre times which belong to this category are

1. Normal distribution

2 (t-E(1))* o1m)
f(t) = e .
JEmeeny o 20
2. Gamma distribution for ¢« > 1 and A =1
3, Weibull distribution for o« > 1 and x = 1
, Erlang distribution for k > 1
) Kty lekA e
f(t) = (2.18)

(k=-1)1

If the failure rate of a system is constant, it presents the
border-line case for which preventive maintenance may be or

may not be advisable. The following distributions are

16



belong to this case ;i

1. Exponential distribution

£(t) = e At L ts 0

where ) = failure rate (constant)
2, Gamma distribution for g = 1, A =
3., Welbull distribution for a = 1, A
L, Erlang distribution for k = 1
The above four distributions are identical
feduce to exponential distribution for the

of parameters.

i}
|

(2.19)

because they

specified values

A few examples are shown below to illustrate this

coefficient of variation characteristics.

Now,

the coeffi=-

cient of variation of the exponential distribution is 1 as

shown below : Since exponential distribution is given by

equation (2.19), expected value of failure times E(t) is

E(t) = [ tf(t)dt = %—

and

E(t%) = J t°r(t)dt = i

A

Then the variability v(t) is

I

v(t) = B(+%) - (E(t)? = S

Hence, the coefficient of variation is

JV(Y /E(t) =1

(2.20)

(2.21)

(2.22)

(2.23)

17
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Let us consider a system with two identical units in parallel
whose failure times are exponentially distributed with parameter

y Then the reliability of each unit Ra(t) is
. 00 o oAt
Ra(t) = I3 f(s)ds = e (2.24)

thus the reliability of the system Rs(t) is

I

Rg() = R () + R_(£) = (R (%)) (Ry(t))

2e~At _ "2t (2.25)

n

The density function for failure times of the system fs(t) is

dRS(t)

Z(t
g(t) "

= 25e M o peEAt (2.26)

The expected value of failure times of the system E(t) is

E(t) = /2 tr (t)dt = & (2.27)

and

2y _ . |2 _ _Z_
E(t%) = fo t fs(t)dt = 2k2 (2.28)

Then the variability v(t) is

2 2 5
=k - {(E(1 = e 2.2
v(e) = E(8%) = (B(6)® = (2.29)

Hence, the coefficient of variation of the two-unit redundant

system is
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SV(EY / E(t) = LT%/%=J§—= 0. 743 (2.30)
Since the coefficient of variation of the two unit redundant
system, 0.743, is less than that of a single unit system with
the exponential failure distribution,l, the preventive main-
tenance would be worthwhile.

Let us now consider a system with k functional subsystems
connected in series, Each subsystem is assumed to have

approximately identical failure rate kA and individually

characterized by exponential failure distribution.
£(t) = kne At (2.31)

Then the Erlang k density function for this system is given

by

(0) (1) Lo
£(t) = LT (2.32)

Further we can obtain

} ()
= @ kit kzl

R(t) = (2.33)
n=0 n!
E(t) = & (2.34)
v(t) = 15 (2.35)
kX

Hence, the coefficient of variation of the system is

R A~ (220



Since

1 <. :
—=— < 1 for k> 1 (2.37)
fk '
i.e., the system coefficient of variaticn of failure times
is less than that of the exponential case, preventive main-

tenance would be worthwhile.

20
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Chapter 3
LITERATURE SURVEY

3.1  RELJABILITY AND AVAILABILITY MODELS FOR THE SYSTEM
WITH CORRECTIVE MAINTENANCE.

Reliability models for systems with repair have been
discussed in a number of articles [31, 36, 39, 46, 56, 67].
Exponential distributions are frequently assumed for failure
times and repair times, This assumption allows us to employ
a Markovian approach which, in turn, permits us to work with
linear homogeneous differential equations with constant coeffi-
cients as a result of Laplace transforms. The Markovian approach
in the formulation of reliability models of the system is
developed by Barlow and Hunter[8,9], Epstein and Hosford[31],
and Htun[50]. deMercado[28] develops methods for predicting
the reliability and moments of the first time to failure of
complex systems having many failed states by using discrete
Markov processes, He shows that once the matrix of the constant
failure and repair rates of the subsystems is known, and the
state assignment is made, then we can obtain the probabilistic
description of the complex system. Sandler[76] and Shooman[80]
also demonstrate the use of Markov process in developing both
reliability models for the non-maintained system and availability
models for the maintained system. They consider systems with
a single unit, units in series, units in parallel and standby
under various repair policies. To apply Markov processes in

formulating availability models, exponential distribution must
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be assumed for failure and repair times because it enables us
to0 have constant failure rate and repair rate, thus a lack of
memory properfy is satisfied.

To justify the use of exponentiaml failure law, experimental
and operational data have been collected. One of the earliest
reports of a statistical nature was made by Carhart[21], and
subsequent studies by Davis[27] and Boodman[18] indicate that
this distribution adequately fits failure experience. With
regard to repair times, Rohn[72] maintains that the essential
characteristic of repair times of complex electronic equipment
is stated as a high frequency of short repair times and a few
long repair times, thus this sort of behavior suggestis represent-
tation by an exponential distribution. Howard, Howard and
Hadden[ 48] presents the operational data of ground equipment
for surface-to-air missiles systems and heavy radar systems.

They show that there is a strong tendency for down times to follow
the log-normal distribution. Several other studies on airborne
radar equipment have also indicated observed repair time distri-
butions to fit the log-normal distribution best[90], but it has
been usuzlly approximated by an exponential distribution for
analytic convenience and computational purposes [91]. Since

it is not always possible to describe systems' failure and

repair times by an exponential distribution, this limits the
aepplicability of Markov processes.

McGregor [60] has developed an approximation formula for
reliability with repair for the system with n-~identical subsystems

in parallel. Arms and Gocdfriend [6] presents graphical infor-



23

mation for making reliability and maintainability analyses at
both unit and system levels. Myers [66] suggests the use of
Monte Carlo téehnique whenever the problem is extremely complex
and/or experimentation is desirable but costly. and illustrates

a few examples of this solution technique. However, Faragher
and Watson [33] maintains that availability analyses of complex
systems utilizing Monte Carlo simulation technigue has revealed
lack of realism because it is inflexible with respect to
configuration changes, thus making it unsuitable for study of
optimization of availability through unit redundancy. Some
other approaches concentrate on the mathematical aspects of the
gimulation and neglect the engireering aspects. By incorporating
engineering and mathematical analysis, he presents realistic
methodology which involves engineering description of the system,
formulation of the simulation model and programming it for the
computer, and computer exercises and engineering analysis.
Finkelstein and Schafer [36] and Wohl [g94] have developed models
for repairable systems using dependability as a measure of system
effectiveness instead of using availability.

For znalytic and computaticnal reason, not much work has
been done when failure and repair times are other than exponential.
Branson and Shah [197] demonstrate the reliability analysis of
two-unit redundant systems with exponential failure times and
general repair-time probability laws using a semi-Markov process.
Hall, Dubner, and Adler [45) have developed the reliability
formulae for redundant configurations when failure times and

repair times follow combinations of the exponential, Weibull
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and log~normal distributions. They illustrate the use of Fourier
series for evaluating the inverse Laplace transformation. wWhen
failure distribution is not of an exponential form, non-Markov

process or the usual definition of availability

Ao MT BF (3.1)
MT'BF "+ MITR
may be employed. This definition assumes a steady state

condition which is of an expected value function. Though
non~-Markovian processes have not been studied as widely as
Markov processes, Sandler [76] shows that it is often possible
to treat a stochastic process of the non-Markovian type by
reducing it to a Markov process by increasing the number of
states, each being described by a constant transition rate.

He illustrates an example for a single-unit system where the

failure distribution is Gamma function

-A.-t

F(t) =1 - e - ktenlt - (3.2)

and the repair distribution is exponential.
G(t) = 1 - e MF (3.3)

He assumes that the unit goes through two exponential phases

each of length _%_ since

T =
Io e dt X (3.4)

and

e -\t w L
fo Ate 7 dt =~ (3.5)
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Thus, he reduces this process to a Markov process by adding
one more state and obtains the steady state availability for
this system. " The definition given by equation (3.1) has been
used as a main design criterion for maintained systems [17, 29,
40], though there is no probabilistic guarantee that specified
availability value will ever be reached in practice except
roughly on the average [59]. Using the definition given by
equation (3.1), Wohl {94 ] has developed availability of a
single-unit system with Weibull-distributed time to failure
and repair. Martz [59] provides a definition of single-cycle
availability that incorporates a probabilistic guafantee that
the availability value will be reached in practice. Single-

cycle availability is defined as the wvalue Ay such that
P(A>4h,) =V (3.6)

where 0 < v <1 is specified, To illustrate the use of this
definition, he presents a few examples with exponential, uniform
and Rayleigh distributions for failure and repair times, and
shows that the median cycle availability Ay = 0.5 is equivalent
to the steady state availability given by equation (3.1) in all

his examples.

3.2 RELIABILITY AND AVAILABILITY MODELS FOR THE SYSTEM WITH
BOTH CORRECTIVE AND PREVENTIVE MAINTENANCE
So far, in the previous section literature on reliability
and availability models, only corrective maintenance has been

considered. The literature on the effects of preventive
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maintenance in the formulation of availability model and the
cost associated with it will now be discussed., . The earliest
approach to the planned replacement problem has been made by
Campbell [207], He has discussed the comparative advantages
of replacing a number of street lamps either all at once or

as they failed. Though his paper is of some interest as a
precursor of mény recent investigations, his problem differs
from most problems of current interest in that he does not
require immediate replacement to be made when a failure occurs.
Welker [89] is also concerned with mass replacement, and
develops a method for determining optimum replacement intervals
for certain vacuum tubes. Savage [77 ] studies optimum block
replacement policies for an infinite time span within a more
general setting. However, his formulation does not seem
readily applicable since he leaves the expression for the cost
as a function of the replacement interval in general form.
Barlow, Hunter and Proschan[10] treat a somewhat less general
version of this problem by specifying a form for the cost
function. The situation is described in terms of a checking
problem. The optimal checking times are chosen to minimize
the expected loss, given that a cost for a single check and

a cost for a failure in the system in the interval between
inspections. A theory of optimum sequential replacement policies
for the case of a finite ‘time horizon has been developed by
Barlow and Proschan [12]. They show that for a finite time
horizon there exists policies which require that after each

removal the next planned replacement interval is selected to
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minimize expected expenditure during the remaining time, and
that these policies will be more effective than a fixed
replacement pdlicy.

However, periodic or preventive maintenance policies
assuming an infinite usage horizon seems to have received the
most attentionvin the literature. When an optimum interval
exists, Morse [65] shows how to determine the replacement interval
minimizing expected cost per unit of time, Zzelen [95] discusses
that most of the periodic maintenance policies have the relaticn

for the expected cost as a function of time
C(t, 8) = CuE[Ny (%, 8)] + CLE[N,(%, 8)] (3.7)

where Cl is the cost of a replacement or preventive maintenance,
02 the cost of a corrective maintenance due to a failure,
Ni(t,b) the number of preventive maintenance actions or replacea-
ment in time t, Nz(t.é) the number of failures in time t, and

& is the maintenance period which must be determined. The

criterion usually chosen is to set dD/ds = O where

D(s) = lim C(t,8) / t (3.8)
$es00

The existence of the limit is guaranteed by the fundamental
theorems of renewal theory. A comprehensive study of this
‘type of theory is found in [7].

Renewal theory is an application of the analysis of
recurrent events to problems concerning the duration of life

"in aggregates cf physical system. Such aggregates are



sometimes referred to as self-renewing when the failure of
any unit results in its replacement, The renewal density,

m(t), is given by
m(t) = £(t) + f& m{t-x)f(x)dx (3.8a)

As shown by this egquation, the probability of a renewal
occurring in [t, t+dt], m(t)dt, is the sum of the probability,
f(t)dt, that the first renewal is in [t, t+dt] and the sum
over x of the probability that there is a renewal near

t-x followed by a failure-time of length x. Hence, the
process at time t is dependent of its past. A Markov processg
is defined as a stochastic process such that the conditional
probability distribution for the state at any future instant,
given the present state, is unaffected by any additional
knowledge of the past history of the system. Hence, the
future states of the process are independent of its past.
Moreover, the behavior of the entire process for all values

of the time parameter is studied in a Markov process, whereas

the study of renewal processes is restricted to renewal points.

One of the advantages of this restriction is that we do not
make any assumptions regarding the behavior of the process
during a renewal period. Whenever a process has the property

that its present state is independent of its past, this

implies that the exponential distribution describes the failure

process. Whenever the failure process follows some other
distribution and is time dependent, it sometimes can be

approximated by the exponential distribution and can be simply

27a
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analyzed as a Markovian process. If the process cannot be
approximated by the exponential distribution, the renewal
theory approadh must be utilized.

Earlier works on restricted forms of the periodic main-
tenance problems are found in [867]. In a8 series of report,
Weiss [85, 86,‘8?] considers the effects on system reliability
and on maintenance costs of both strictly periodic and random
pericdic maintenance or replacement policies for an essentially
jinfinite usagerperiod. The operating characteristic of random
periodic policies were determined by Flehinger [37]. Derman
and Saéks [30] obtain the optimal replacement policy for a
piece of equipment in which the decision to replace depends
on the observed state of equipment deterioration at specified
points in time. The derivation of an optimum periodic
maintenance interval corresponding to a given finite span
is basically much more difficult problem. Barlow and Proschan
'[13] prove the existence of such an optimal policy. Further,
they carefully expose the striétly periodic and random periodic
maintenance problems; and have shown that for an infinite
time horizon there always exists a strictly periodic maintenance
policy which is superior to a random policy [12].

In practice random preventive maintenance policy or r
sequential replacement policy may be quite difficult to find
analytically and it is therefore of some interest to restrict ;
our attention to the preventive maintenance policy such that
the preventive maintenance is scheduled at age T and preventive

maintenance is actually performed only if the system has not
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failed before age T. If the system has failed before age
T, the system is assumed to be restored to its original good
condition as a result of the corrective maintenance and the
preventive maintenance is rescheduled at time T from this
point. In this case, T is taken to be fixed, Bell, Kamins,
and McCall [15] have investigated replacement policies for
aircraft and missile parts, and have obtained specific
replacement policies for parts which fail according to one
of the feollowing probability distributions : normal, log-normal,
and Weibull. The relationship which gives the average
hourly costs in terms of two coests, Ky and K5, and the failure
distribution of the unit has been developed by Weissbaum [88].
His model is

Ky - (K1 “ KQ)G(T)

- (3.9)
FoG(t)at

C (1) =

i)

where CA(A) the average hourly cost,

K1 = the total cost of an in-service failure,

K, = the total cost of a preventive maintenance or
replacement,

the probability that a new unit will last at

op]

=]

St
]

least T hours before failure,

T = the fixed time between preventive maintenance

or replacement, and

i

jEG(t)dt mean interval of all maintenance requirements,
The ratio of K, to K, is the critical factor in arriving at

a decision regarding preventive maintenance or replacement



policy. As the ratio increases, the lowest average hourly
cost is realized by replacing the unit after a short life.
welker [89] has also considered policies which minimize the
average hourly operating cost on a single unit. The effects
pf scheduled maintenance on availability for a system composed
of a similar upits of which at least n out of m units must
operate for the system to be functioning have been studied

by Meyers and Dick [62]. Cho [25] has introduced distribu-
tion of prolongation U(x)
IS R(s)ds

.1
IZ R(s)ds 3:0)

U(x) =

where R(s) is the reliability function, and has formulated
a preventive maintenance objective function which maximizes
system availability.
If Ty = the mean interval of corrective maintenance

T = the mean interval of preventive maintenance

mean corrective maintenance time

)
)

mean preventive maintenance time

=3
|

is more likely to

then, in general, Ta < Tf, P = Tm. and T

p p
be nearly constant in duration than is T because of its

scheduled nature [25]. Morse [65] has shown that an optimum

Ta exists which will maximize the system availability A express-

ed as

p= 1+ 2Ry bi:g)-l (3.11)

where a = Tp/Tf and b = Tm/Tf. and has obtained optimum T

by using the chart with known T/ /T

30



31

Rosenheim [ 73] has developed an expression for mean life
or mean time between unscheduled maintenance of a renewable system
m(T) when preventive maintenance is scheduled every T hours.
STR(t)at

m({T) = ———— (3.12)
Q(T)

where T is the.fixed interval for preventive maintenance, R(t)

is the reliability function for the system, and Q(T) is the
probability of failure. It has been shown that if redundancy
exists the increase in mean life and reliability can be achieved
by a preventive maintenance policy even when all units have
constant failure rates [84]., According to Bazovsky [14],
equation (3.12) is valid regardless of the failure distribution
of units. If the renewal of the system is possible either by
corrective maintenance or preventive maintenance, equation (3.12;
can be applied to any failure time distributions. In this
thesis, equation (3.12) is used to find the mean time between
unscheduled maintenance of the system under the assumption of
the following maintenance policies : The corrective maintenance
policy is such that repair or replacement of units begins only
after the system has failed, thug the renswal of the system is
assumed to be possible as a result of the corrective maintenance.
The preventive maintenance policy is such that the preventive
maintenance is scheduled at age T and the preventive maintenance
is actually performed only if the system has not failed before
age T, If the system has failed before age T, the system is re-
stored to its original good condition as a result of the corrective

maintenance, thus the preventive maintenance is rescheduled at time

m Ffyam +hia naindt
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3.3 OPTIMIZATION OF RELIABILITY AND AVAILABILITY ALLOCATION
PROBLEM IN MULTISTAGE SYSTEMS

As & higﬁ degree of complexity is involved in many of
the modern systems, much interest have been shown in allocating
the reliability or availability parameters such as failure
rates, mean time to repair, and/or preventive maintenance
period to the various units that make up a system in the early
gtages of system design. The practical problem is to determins
those parameters from a design, redesign or operating point
of view such that some measures like cost or weight of the
system is minimized while a system reliability or availability
requirement is met.

A number of authors has discussed optimization of reli-
ability allccation problems in multistage systems. Among
them, Bellman and Dreyfus [16] applied dynamic programming for
solving the problem of maximizing reliability subject to the
two linear constraints of cost and weight. Kettelle [55]
has developed an algorithm which utilizes dynamic programming
for solving the problem of maximizing reliability subject to
a single cost constraint. By extending the work of Kettelle,
Proschan and Bray [?1] have developed a procedure for solving
the problem of maximizing reliability subject to multiple
linear constraints, which is a special case of the more
general problem treated by Tillman and Littschwager [83].

They investigzate the reliability optimization problems which
are subject to linear separable constraints by using integer

programming. Tillman [81] has again employed integer
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programming to determine the optimum number and location of
redundant units for the system which has subsystems with units,
where the subsystems and the units within the same subsystemn
are subject to more than two modes of failure.  Mizukami [64]
also demonstrates the applicability of convex and integer
programming to the problem of determiming optimum redundancy.
He describes a design method to maximize system reliability
subject to several constraints on total cost, weight, volume,
etc. Rudd [747] uses dynamic programming to determine the
optimal parallel redundancy of chemical processing system
which maximizes the profit of the system, and illustrates an
numerical example for the three-stage process system,

Fan, Wang, Tillman, and Hwang [32] develop the computational
procedure for the same chemical system considered by Rudd

by the use of discrete maximum principle, and present
numerical examples for the three-stage and eight-stage
systems. Whenever the redundant units cannot be reduced to

a purely parallel or series configuration in a complex system,
Tillman, Hwang, Fan, and Lai [82] use the Bayes*® theorem to
obtain the reliability of this system, then employ the seguential
unconstrained minimization technique (SUMT) for optimizing

the reliability with nonlinear constraint.

Some of the relatively recent papers have treated the
optimization of availability allocation problems. Goldman
and Whitin [417] discuss the trade-off technigue between
reliability and maintainability, and show how the availability

parameters consistent with minimum cost operation and the
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specified system availability can be calculated. Kabak [54]
has used geometric programming to determine the optimal design
parameters whiéh minimize total system cost. Johnson {53
presents a methodology for finding the optimum number of
redundant units. Dynamic programming is proposed for
optimizing the cost function under the predetermined availability
level. McNichols and Messer, Jr. [617] have developed a cost-
based procedure for allocating the availability parameters to
the various units of the system. The allocation problem is
expressed as the minimization of the total improvement cost,
subject to the constraint of meeting the system availability
goal, and is solved using lagrange multipliers method.
Shershin [?9] has dealt with maihematical means for optimizing
the simultaneous apportionments of reliability and maintainability
by means of Lagrange multipliers and dynamic programming.
Wilknson and Walvekar [92 ] have used dynamic programming for
allocating availability optimally to a multicomponent system.
They determine the MTBF and MTTR which minimize the system
cost under the minimum availability requirement. As an extension
of this study, Lambert, Walvekar, and Hirmas [58] present a
method for determining the optimum MTBF, MTTR, and the number
of redundant units to use in a multistage system to achieve
a given availability at minimum cost. A three-stage example
is illustrated by the use of dynamic programming.

Chatterjee [2&] has studied the problem of allocating f
the availability parameters which consist of failure and repair

rate of each unit and the preventive maintenance period to



each unit of the system consists of n subsystems in series
where each subsystem has_two identical units in parallel.
Assuming exponential distribution for failure and repair times,
he applied Markov process to obtain the availability expression
for the two unit redundant system. Since the expression
obtained by using Markov process reflects only the corrective
maintenance he, under the assumption made on an intuitive basis
that the decrease in the probability of the systems being down
as a result of the introduction of preventive maintenance is
directly proportional to the increase in the mean life achieved
by introducing preventive maintenance,has developed the avail-
ability model which reflects both the corrective and preventive
naintenance, His model may well be applied, however the
principal assumption is based on an intuitive basis and the

use of Markovian approach limits the applicability of the
model., Besides, the availability model does not include the
time required for the preventive maintenance. Therefore

some different approaches are desired which could eliminate

those difficiencies.

3.4 AVAILABILITY ALLOCATION PROBLEM IN THIS THESIS

No one in the literature reviewed has developed a mathe-
matical availability model for the general series-parallel
system, which reflects both the corrective and preventive
maintenance. If the system can be restored to its original
good condition after preventive maintenance action, the model

is applicable regardless of the failure time distribution of
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each unit, In addition,no one has treated the problem of
allccating the availability parameters which consists of
failure rate, 'mean corrective maintenance time, mean preventive
maintenance time, and preventive maintenance period to each
unit of the system. The system considered consists of N
subsystems in series and each subsystem has nj identical units
in parallel, The availability model which reflects both the
corrective and preventive maintenance has been developed for
the n unit redundant system which is equivalent to the
subsystem in this study using the definition given by equation
(2.12) assuming various probability distributions for the
failure and repair times of each unit. The corrective main-
tenance begins only when the system fails due to the failure of
all redundant units. The preventive maintenance 1s scheduled
at age T and is actually performed only if the system has not
failed before age T. If the system has failed before age T,
the system is renewed as a result of the corrective maintenance
and the preventive maintenance is rescheduled at time T from
this point. The cost structure of the system consists of
three cost components : cost for designing mean time between
maintenance and mean maintenance time, cost for corrective
maintenance, and cost for preventive maintenance, The
availability allocation problem is to determine the optimum
availability parameters which minimize the cost of the system
under the constraint of the specified availability requirement
for the system. Two numerical examples are shown for the

system with three subsystems in series where each subsysten



consists of two identical units in parallel. Exponential
distributions are assumed for failure and repair times in the
first example and Weibull failure time and general repair time
distributions are assumed in the second example. Since the
nature of both the objective function and the constraint is
nonlinear, theloptimization techniques used for solving these
problems are the generalized reduced gradient (GRG) method

and the seguential unconstrained minimization technique (SUNMT).
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Chapter &4
DEVELOPMENT OF THE MODEL

b.1 INCREASE IN MEAN TIME BETWEEN UNSCHEDULED MAINTENANCE
OR MEAN LIFE DUE TO PREVENTIVE MAINTENANCE
The effects of the preventive maintenance policy on the
mean life or mean time between unscheduled maintenance of
redundant systems will be considered. The mean life of the

system m, without preventive maintenance is defined as
m = fi tf(t)dt (h.1)

where f(t) is the failure density function of the system.

It can alternatively be defined as [80]
o
m = O R(t)dt (4.2)

where R(t) is the reliability function of the system. Thus,

on the average the system will fail once every m hours if failed
redundant units are not replaced until system failure. However,
if the preventive maintenance policy 1is adopted which allows

for the repair or replacement of failed redundant units before
the system fails, system failure can be postponed depending on
how often the system is inspected and maintained if inspection
reveals the presence of failed units. With this preventive
maintenance policy the system will fail less frequently than

it would without preventive maintenance because 1t 1is assured
that after every preventive maintenance action full redurdancy

is restored. The mean life or the mean time between unscheduled
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maintenance with preventive maintenance thus becomes longer
than m, and theoretically it will become infinitely long if
failed redundaﬂt units are immediately replaced, The relation-
ship between the preventive maintenance period T and the mean
time between unscheduled (corrective) maintenance when preventive
maintenance is scheduled at age T will now be derived.

Rosenheim [ 73] has shown that the mean life or the mean
time between unscheduled (corrective) maintenance of a system
having redundant units can be increased by scheduling preventive
maintenance. To derive the general reliability and mean life
equations, the following maintenance procedure is assumed :
Corrective maintenance policy is such that repair or replacement
begins only when the system fails due to failure of all redundant
units. Preventive maintenance is scheduled at age T, starting
at time 0, and is actually performed only if the system has
not failed before age T. Every unit is checked, and any one
which has failed is replaced by a new and statistically identical
unit if the exponential failure law is assumed for all units,
thus the system is restored to new condition after each
preventive maintenance action. To derive the reliability

function, a time period of t hours can be written as
t = jT + s j=0,1,2, «++ ; 08 <T (4.3)

Let us denote the reliability function of a redundant system
in which preventive maintenance is scheduled at age T by RT(t).

then for a time period such that J =1 and s = 0

Rp(t = 17) = R(T) (4.4)
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If j=2 and s=0, the system has to operate the first T hours
without fazilure of the system, After replacement of all
failed units, another T hours of failure-free system operation

is required. Hence,
Ry(t=27) = R(T)R(T) = [R(r) T (4.5)

If O<a<l, an additional s hours of failure~free system operation

is required, Hence,
Rp(t=21+8) = [R(1) T R(s) (4.6)

In general, the reliability function of a redundant system
in which preventive maintenance is scheduled at age T can

be written as
RT(t=jT+s) = [R(1)]? R(s) J=0,1,2,+++3 Oss<?  (4.7)

Therefore, the mean life of a redundant system in which

preventive maintenance is scheduled at age T, m(T), is
m(T) = J5 Ry (t)dt (4.8)

The integral over the range O<t<ew can be expressed as the sum
of integrals over intervals of T, or

00 (j+1)T
m(T) = . J - Rp(t)dt (4.9)

j=0 iT

Since t = JT + s, dt = ds and the limits of the integral become

0 to T.

Hence



J

-4

=

1
e 8
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0 Lo RT(t)ds

n
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J

f

oo ‘ » T
jgo [R(T)]? s, R(s)ds

When x < 1

. 1
xJ = (%.10)
0 1~-x

e 8

J

Substitution of R(T) in place of x gives

- . 1
 [REE) T = s : R(T) < 1 (4.11)
3=0 1=R(T)
Therefore
T
m(T) = fo R(s)ds (4.12)
1 - R(T)

If we denote the unreliability of the system by Q(T), then
Q(T) =1 - R(T) (4.13)
Using this notation, equation (4.12) can be rewritten as

j% R(s)ds
Q(T)

n(T) = (h.14)

This is the mean time between unscheduled maintenance of the

redundant system in which preventive maintenance is scheduled
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at age T. Now, let us denote the numerator of the equation

(4.14) by MTBM

[

MIBM = [T R(s)ds (4.15)

Then, equation (4.15) represents the mean time between both
scheduled ( preventive or periodic ) and unscheduled ( corrective )
mzintenance, in other words, it is the mean time at which

the system is restored to its original condition [14], 0f these
system maintenance actions which put the system back in a state
of fully restored redundancy, 100[Q(T)] percent are caused by
unscheduled or corrective maintenance, whereas lOO[R(T)] or

100 [1 = Q(T)7] percent are caused by scheduled or preventive
maintenance actions. Thus, the mean time between unscheduled
maintenance m(T) given by equation (4.14) is expressed as the
ratio of the mean time between both scheduled and unscheduled
maintenance MNTBM to the fraction of maintenance caused by actual
failure of the system Q(T). Similarly, since 100 R{T) percent
of maintenance actions are caused by preventive maintenance,

the mean time between scheduled maintenance MTBM_ can be written

as

i R(s)d
MTBM, = To o > (4.16)

An example which shows the increase in mean life that
can be achieved by a preventive maintenance policy is illustrated
in [84 ] for a system having two identical units in parallel.

Each individual unit is assumed to have an exponential failure



distribution with parameter ). Preventive maintenance is
scheduled at age T, starting at time O. The reliability

function of tHe two unit redundant system is
R(t) = 2e~AF _ o72M% (%.17)

Using equation (4.14), the mean life of the system with
preventive maintenance is

fg (2”25 - ™

1 - (ze"‘lT - e"ZA.T)

m(T)

(4.18)

If preventive maintenance is not performed, i.e., T=%, m(T)

becomes

3
m(T) = -~ (4.19)
2X)

which is egquivalent to m

3
LD (4.20)
2h

For the specified value of X, A= .01 failures/hour, the mean

life of the system with preventive maintenance for the various

values of T is compared below i

T = co 3 m(1) = 150 hrs

"

T 150hrs m(T) = 179 hrs

b3
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T = 100 hrs 1 m(T) = 208 hrs
T = 50 hrs : m(T) = 304 hrs
T = 10 hrs : m(T) = 1097 hrs

Figure 4.1[14] shows the mean time between unscheduled
maintenance or mean life m(T) of a system with preventive
maintenance as a function of the preventive maintenance
period T. The shorter is T, the longer will be the m(T).
Conversely, the longer T is made, the shorter becomes its

m(T), and in the limit, when T = infinity, m(T) reduces to m.
o0
m(T) = m = [_R(t)dt (4.21)

For the redundant system in which failure times of each
individual unit is exponentially distributed, the preventive
maintenance policy can achieve an increased mean life of the
system if the corrective maintenance policy is such that
repair begins only whern the system has failed due to failure
of all redundant units. When preventive maintenance is
scheduled under this corrective maintenance policy, the
system might have been working with some redundant units
in the failed state, and these failed units can be replaced
or restored to new condition. However, if the corrective
maintenance policy is to replace a failled unit the instant
it fails, then the system will be always in a state of fully
restored redundancy, thus the application of preventive

maintenance will not increase the mean life of the system.



m(T)

Figure 4.1.

5

Mean time between unscheduled maintenance
of a preventively maintained redundant

system where scheduled preventive maintenance
period is T,
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Since the exponential failure law is assumed for each of the redun-
dant units, each unit has a constant failure rate over time, i.e.,
the age of a unit has nothing to do with its failure rate.

An old unit and a brand new one are equally likely to Zo on
operating for some particular time period. Due to this

constant failure rate characteristic the system can be in a

state of its ofiginal good condition if only the failed units

are replaced. As discussed above, we gain nothing by performing
preventive maintenance for a single unit system having an
exponential failure law since the unit we install is no better
than the one we take out. This can be seen by comparing the
mean life of a system with and without preventive maintenance.

The reliability of a single unit system is
R(t) = e (b.22)

The mean life of a system without preventive maintenance is

=2 e ar = & (4.23)

The mean life of a system in which preventive maintenance is

scheduled at age T is

il

m(T) T

it
i
-
'%

i}

- ‘ (4.24)
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Thus, regardless of 7, m(7) is always constant and is equal to
m for‘a single unit system having an exponential failure law,

We have seen the effects of preventive maintenance on the
mean time between unscheduled maintenance of the redundant
system in which the redundant units have the exponential failure
distribution. Although equation (4.14) is derived under the
assumption of %he exponential failure law for each of the
redundant units, according to Bazovsky [14], it is valid
regardless of the failure distribution of the redundant units
if the system can be restored to its original good condition
after each preventive maintenance action. IFor the system
whose redundant units have increasing failure rates over time,
if the unit is known to fail because of wearout and if it
is not replaced on schedule, it will fail with a mean life
equal to its mean wearout life. However, if the units are
replaced on schedule before wearout can affect them, we can
expect an increase in the mean life or the mean time between
unscheduled maintenance. To apply equation (4.14) to the
system whose redundant units have increasing failure rates
over time, we assume that the corrective maintenance policy
is such that replacement begins only when system fails due
to failure of all the redundant units. When the redundant
units have constant failure rates, the system can be restored
to its original good condition only if failed units are replaced
or overhauled during the preventive maintenance action. However,
iT the redundant units have increasing failure rates over time,

we assume that the preventive mazintenance policy is such that
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both failed and unfailed units are replaced at age T

only if the system has not failed before age T,‘thus the
system is renewed after each preventive maintenance

action. In summary, the following maintenance policies
will be assumed throughout this thesis : Corrective
maintenance begins only when the system fails due to

failure of all redundant units, thus the system is renewed
after each corrective maintenance action. Preventive
maintenance is schéduled at age T and is actually

performed only if the system has not failed before age T.

If the system has failed before age T, the system is

renewed as a result of the corrective maintenance, thus the
preventive maintenance is rescheduled at time T from

this point, 1f the redundant units have constant failure
rates, only failed units are replaced or overhauled, whereas
if the redundant units have increasing failure rates over
time, both failed and unfailed units are replaced during the
preventive maintenance action. Under this preventive
maintenance policy, the system can be restored to its

original good condition regardless of the failure distribu-

tion of the redundant units.

L,2 MEAN MAINTENANCE TIME FOR CORRECTIVE AND FREVENTIVE

MAINTENANCE

In the previous section, we have obtained the express-



ions for the mean time between unscheduled (corrective)

maintenance M'I"BMu or m(T) and the mean time between scheduled

(preventive) maintenance MIBM for the redundant system in

which preventive maintenance is scheduled at age T, We also

have seen that the more frequently the system is scheduled

for preventive-maintenanqe. the longer will be the MTBMu.

Thus the probability that a system will require corrective

maintenance action is reduced. If the reliability is

éonsidered as a measure of system effectiveness, then more

frequent performance of the preventive maintenance will

give us a higher value of the reliability. However, if

the availability which takes account of the reliability

as well as the maintainability is a measure of primary

concern to us, then more a freguent schedule of the preventive

maintenance will not necessarily give us a higher value of

the availability. For the system intended for continuous

service, since both the corrective and preventive maintenance

actions must be taken during the duty time, the time

required for both the corrective and preventive maintenance

actions represents the period of a system's inoperability.
Now, let us consider the mean corrective maintenance

time of the system with n identical units in parallel.

If it takes tc hours for one revairman to repair a

failed unit and the corrective maintenance policy is such that

repair begins only when the system fails due to failure of
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all redundant units, then the mean corrective maintenance
time of the n unit redundant system, ﬁct’ with one repairman
is

ﬁct = nt, (#.25)
Under the same corrective maintenance policy, if n repairmen
are assigned to the n unit redundant system, then the
mean corrective maintenance time of the system ﬂﬁt is

o - l

Moy = To (4.26)
therefore, mean corrective maintenance time of the redundant
system Mct can be determined by the repair time distribution
of the unit and the number of repairmen.

Similarly, if the mean preventive maintenance time

of a unit is tp hours for one repairman, then the mean

preventive maintenance time of the system Mpt' with one
repairman, is
M. = nt (L.27)

If n repairmen are ssigned to the n unit redundant system,

then the mean preventive maintenance time of the system

Mpt is
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Moy = tp | (4.28)

In general, t_ is less than tc and is more likely to be

b
nearly constant in duration than is tc because of its
schedule nature [25]. In the following section, various
probability diétributions will be assumed for the repair
time of a unit requiring corrective maintenance,

However, for the preventive maintenance time of a unit, a

general repairtime distribution will be assumed.

4.3 AVAILABIﬁITY MODEL FOR THE n = UNIT REDUNDANT SYSTEM
WITH EXPONENTIAL DISTRIBUTION FOR FAILURE AND REPAIR
TIMES
Let us consider a redundant system with n identical
units in parallel, The system failure occurs only when
all units are down. The corrective maintenance policy is
such that repair or replacement begins only when the
system fails due to failure of all redundant units.
n repairmen are assigned to the system and every repairman
is assumed to be equally capable,. If the exponential
distribution is assumed for the failure and repair times of
each individual unit with a failure rate )\ and a repair rate
u respectively, then the probability density function (pdf)

for the failure time for each unit is given by

£(t) = re™rt >0 (4.29)
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where % > 0 is the constant failure rate

and the pdf for the repair times of each unit is

g(t) = pe M, t >0 (4.30)

where p > 0 is the constant repair rate.

The reliability of a unit Ra(t) is

R (t) = J5 f£(s)ds

-AsS -2t (‘,4'-31)

= f? L€ ds = e

The unreliability of a unit Qa(t) is

H

0 (t) = 1Y £(s)as

it}

1= R (t) =1 - o At (4.32)

Now, consider a system with two identical units in

parallel. Since a system failure occurs only when both units

are down , the reliability of a system R(t) is

R(t) = 1 - (Probability that both units will fail)

£ -, (%) Qy(%)

1 - [Q,(+)7?

tH
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=1 = 1 o= 8T o gghE L gn2NE (4.33)

The reliability of a two-unit redundant system given by equation
(4.33) can also be obtained by structuring it as a Markov process,
The general concepts of a Markov process are presented and equation

(¥.33) is obtained by the use of the Markovian approach in Appendix

A 1.2, Similarly, for a three-unit redundant system, R(t) is
R(t) =1 - [Q ()7
=1 - (1 -eh3 (4.34)

In general, the reliability of a n-unit redundant system R(t) is

R(t) =1 = [ (£)]"

i}

1 - (1 -eAHy? (4.35)
If we denote the unreliability of a system by Q(t), then

Q(t) = [o ()" = (1 - )" (4.36)
where R(t) + Q(t) =1
I1f preventive maintenance is scheduled at age T, then the

mean time between unscheduled (corrective) maintenance of the

n-unit redundant system MI'BM (or m(t) as defined in section 4.1)



is ( refer to equation (4.14) )

Jo R(t)at
MUEM, =
R Q(T)

oL - (1= e gy
(1 = e~ )1

(4.37)

L)

and the mean time between scheduled (preventive) maintenance

of the system MTBM, is ( refer to equation (4.16) )

5L OR(t)at
R(T)

MTBMS =

o= (- e ay
{1 = (1 = e""'A.T)n

(4.38)

Hence, the mean time between maintenance or mean interval of

both scheduled and unscheduled maintenance MTBM is

1

MPBM =
1/MTBMu + 1/MTBMS

= [T R(t)dt

=0T [ - (1 =) as (4.39)
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The mean corrective maintenance time of a unit tc is

obtained from equation (4.30)

— — OO
t, = E(t) = J7 te(t)dt
o [(2) 1
= 2 et at = = (4.40)
1 i
where E(t) is the expected value of repair time t. If the

corrective maintenance policy is such that repair or replacement
begins only when the system fails, and if n repairmen are
available, then the mean corrective maintenance time of the

- g
system Mct is

i
Mct =’EC =T (4.41)

If we assume & general repair-time distribution for the preventive
maintenance time of each unit and denote the mean preventive
maintenance time of a unit by tp. then the mean preventive

maintenance time of the system ﬁpt' with n repairmen, is

Mpt = tp (#.42)

Hence, the mean corrective and preventive maintenance time

M, which represents all the system down-time resulting from both

corrective and preventive maintenance is., (refer to eguation(2.5))
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M. (I/MTBMu) + MPt (1/MTBMS)

)

M
, 1/MIBM,  + 1/MIBM

i

ﬁct Q(T) + M_, R(T)

pt

n

1 "
() = e e - (1 - e (4.43)

Therefore, the achieved availability of the n-unit redundant

system A (which is defined as A in Chapter 2) is(refer to equation

(2.12) )

MTBM

A = =
MIBM + M

T R(t)at
- T b { IR
Lo R(t)dt + M+ Q{T) + Mpt R(T)
S~ (1-e"A ) M ag

£y [L=(1=e7)M gt + (32) (1= 4 £ [1-(1-e7M)1]

(4. 44)

Equation (4.44) represents the general expression of the achieved
availability for the n-unit redundant system with n repairmen
when the exponential distribution is assumed for the failure
and repair times of each individual unit.

Under the same corrective maintenance policy, if one

repairman is assigned to the system, then
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(4.45)

=1
i

nt
c

]
'::I::

et

and

Mo = Nty (4.18)

Thus, the achiéved availability of the system becomes

fEo-(1-e %M et

A =
folt=(1=e"2%)"Jat + ("::—)(l—e"m)n + nt_[1-(1-e7)"]

(4.47)

For the evaluation of the integral term in equations
(4%.44) and (4.47), it is possible to expand (1--e""t)n us ing
the binomial theorem.

However, especially when the failure time distribution is
assumed to be other than exponential, it is difficult, if
not impossible, to solve analytically. Therefore,
numerical integration by the use of trapezoidal rule will be

employed to evaluate this integral term (refer to Appendix Al.3).

L L AVAILABILITY MODEL FOR THE n=UNIT REDUNDANT SYSTEM
WITH FAILURE AND REPAIR TIME DISTRIBUTICNS OTHER
THAN EXPONENTIAL
Let us consider a n-unit redundant system whose redundant

units have increasing failure rates over time, The assumptions



on the state of system failure, corrective maintenance policy,
and number of repairmen are identical with those considered in
the previous éection. However, since the redundant units

have increasing failure rates over time, we assume that the
preventive maintenance policy is such that both failed and
unfailed units are replaced at age T only if the system hés

not failed before age T, The achieved availability of the
n~-unit redundant system is developed assuming the following
combinations of failure time - repair time distributions :
Gamma - Gamma, Weibull - Weibull, Rayleigh - Rayleigh, Normal «
Normal, and Weibull = general. For the preventive maintenance
time of each redundant unit, a general repair time distribution
is assumed. The mean time between maintenance MTBM and mean
corrective and preventive maintenance time ﬁ are derived for
each failure and repair time distribution, note that other
combinations can be used to derive the achieved availability

of the system. In this section, however, only the above

combinations will be considered.

Gamma distributions for failure and repair times

Let us consider Gamma distributicns for failure and
repair times of each redundant unit. The pdf for failure

times of each it is given by

N -1 =)t
F(t) = r'(a)(“)a e , t >0 (4.48)
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where ) > 0 1 scale parameter

> fq t shape parameter
o = L

Since we are interested in the increasing failure rate over

time, we will restrict our attention to the case where o > 1.

The pdf for repair times of each unit is

g(t) = —— ()Pl gHY , t

]

where ¢ > 0 1 scale parameter

g =>1 t shape parameter

The reliability of a unit Ra(t) is

1

R,(t) = JT £(s)ds

]

X
o a=1 _-as
Ji e (q) e ds

[M{a)

By transformation of variable, i.e., let

n
c

AS

the limits of integral become At to «.

o= =Uu
u 1 e

(ee]

[M(a)

>0 (4.49)

(4.50)

(4.51)

Hence

(4.52)
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If ¢ is a positive integer
Ma) = (o = 1)1 (4.53)

Thus, equation (4.52) becomes
(1) = g,
R (%) = [®, =~ du (4. 54)
& It (a-1)! °

Eguation (4.54) can be rewritten as
(a-1)1 Ry (%) = % u® ™t o™ gy (4.55)

The right hand side of equation (4.55) can be integrated by

parts by letting

x = utl , dy =e % du (4.56)
Then, we obtain
dx = (a-lﬁla_zdu ' y = - (4.57)

Hence, equation (4.55) becomes
(@-1)1R (1) = e ()%™ + (a-1)s%, e™ uPau (4. 58)

Continuing to integrate by parts, we obtain
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(«-1)1R_(t) = e M) + (@-1)(6)™ 72 + (a-1) (e-2) (A1)

+ creee * (U.'-i)!] (4.59)
Therefore
- (At)? (n )%
Ra(t) = 8T [i + Xt + % csess o ———
' 21 (a-1)1

w1 e Mtk
5 (4.60)
=() ki

|t}

Note that equation (4.60) represents the cumulative density
function (edf) of the Poisson distribution. The reliability

of the n-unit redundant system R{t) is

R(t) =1 - [1 - R (t)]"
=1 - [1 - % 'y (4.61)
k=0 k!

and the unreliability of the system Q(t) is

-2t k
o1 e ()
Q(t) = 1-R(t) = [ 1 - igg - T (4.62)

If preventive maintenance 1s scheduled at age T, the

mean time between unscheduled maintenance of the system is

( refer to egquation (4.14) )



7
R(t)dt
MrBM, = Io
()
-2t k
T a-1 € (xt) 7
_ _Jdoft - (g i )] at (4.63)
“AT k
. e "T(AT)
[1 - U-El :ll’l

k=0 k!

and the mean time between scheduled maintenance of the system

is ( refer to equation (4.16) )

o R(t)AY
MTBMS =
R(T)
-At k
a-1 e “Y(At)
T n
1 - (1 -, 2 ) dt
= "rC) [ k=0 e ] (}4’.6}-")
=AT k
a~1 e (A7) .
1= L1~y E T

k!

The mean time between maintenance MI'BM is

o o a-1 eMan®
MIBM = [0 R(t)dt = fo [ 1 - (1= F, - )7 Jat

(4.65)

The mean corrective maintenance time of a unit tc is
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t, = E(t) = J% tg(t)dt
_ W 12 Bemit gy (4.66)
re) °
If we let
X = p,'t (4.67)

equation (4.66) becomes

B
U 00 s-x
t, = S x"e ™ dx
c rg) uB-I-l o]

M(B+1)

(4.68)
[7(B)u

—
t—4

0
- fu»

The mean corrective maintenance time of the system, with n

repairmen, is

B
Moy = % =0 (4.69)

Since general repair time distribution is assumed for the
preventive maintenance time of each unit, the mean preventive

maintenance time of the system, with n repairmen, is
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M. =t ' (4.70)

Using equations (2.5), (4.63), (4.64), (4.69), and (&.70),
the mean corrective and preventive maintenance time of the

system M is

_ _4 .=AT .k n L omAT ok
W= @ - g ST v e [1- -t )]

(H.71)

Using equations (2.12), (4.65) and (4.71) the achieved avail-

ability of the system is obtained as

=

-At,, K
fgfl—(i-iﬁi 9——§fiﬁl—)n]dtl////

L1 "M k -1 ™M)k
[fg[l'(l'EE; . k!lt )" Jat (%)[1-2;2 ™ e

- *AT 1 k
+ tp[1-(1~§g; e -l ’ (h.72)

Equation (4.72) represents the achieved availability for the

n=unit redundant system with n repairmen when Gamma distributions
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are assumed for failure and repair times of each redundant
unit.

For comparison, the achieved availability of the system
with one repairman can be obtained by replacing {}-and £

P

by %Fm and ntp respectively in equation (4.72).

Weibull distributions for failure and repair times

Let us consider Weibull distributions for failure and repair
times of each redundant unit. The pdf for failure times of

each unit is given by

I ¢/

£(t) = (ag)t®™F 7 , t>0 (4.73)
where ) > 0 ! scale parameter
a >0 H shape parameter

The pdf for repair times of each unit is

- o
g(t) = (ug)tP™t e7M® , ot >0 (s 7lt)
where p > 0 : scale parameter
B >0 H shape vparameter

The reliability of a unit Ra(t) is

o

a
R, {t) = 5% (as)s% ! e gg = o7ME (4.75)



The failure rate r(t) is obtained as [11]

£(t)
r(t) = —— = 3qt*"! (4.76)

R, (t)

Thus, if ¢ > 1, the failure rate increases with time.

The reliability of the n-unit redundant system is

R(1) = 1 = (1 = ¢M¥)D (4.77)
and the unreliability of the system is

a(t) = (1 - e"AT)D (4.78)

The mean time between unscheduled maintenance of the system
in which preventive maintenance is scheduled at age T

is ( refer to equation (4.14) )

55 R(t)at
Q(T)

MTBMu =

yE [1 - (1 - e‘*ta)”]dt

kTa)n

(4.79)
(1 - e

and the mean time between scheduled maintenance of the system

is ( refer to equation (4.16) )



67

fg R(t)dt

b

MTBM
. R(T)

Jo [t - (- M) Mgy
= (4.80)

m&
1 - (1 -e")\.[‘ )n

The mean time between maintenance is
T T 2t%\n
MTBM = [ R(t)dt = J_ [1 - (1 - e ) Jdt (4.81)
The mean corrective maintenance time of a unit tc is

0 L
te =I5 te(t)dt = w78 (5= + 1) (4.82)

Thus, the mean corrective maintenance time of the system, with

n repairmen, is

1
gy =t = 0B T+ 1) (4.83)

The mean preventive maintenance time of the system, with n

repairmen, is

ﬁpt = %, (4.84)

Using equations (2.5), (4.79), (4.80), (4.83), and (4.84), the mean
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corrective and preventive maintenance time of the system M

is
1 | P
W= [uBr(G + 1)J(1-e"AT )R 4 tp[l-u-e‘““a)“]
(%.85)

Using equations (2.12), (4.81), and (4.85), the achieved avail-
ability for the n-unit redundant system with n repairmen when
Weibull distributions are assumed for failure and repair

times of each unit is

-t e |/

¢
§

o ’
J;[i-(i—e'“a)“]dt + [u“é"r‘(-is-+1)](1-e'ma)n +

\

tp[l-(l-e-ma)n] ] (4.86)

The achieved availability of the system with one repairman

can be obtained by replacing tc and t_ by ntc and ntp respec-

b
tively in equation (4.86).

Rayleish distributions for failure and repair times

Let us consider Rayleigh distributions for failure and

repair times of eéch'redundanﬁ unit with parameters A and p



respectively. The pdf for failure times of each unit is

2
£(t) = ateMt/2

tl)ontao (lhf‘)?)
and the pdf for repair times of each unit is

g(t) = ut.e"”t%/2 ' y g >0, 130 (4,88)
The reliability of a unit Ra(t) is

R, () = J: LS tsz"’\sz/2 ds & e—ktz/% (%.89)
The failure rate r(t) is

(1)

Ry(t)

r(t) = (%.90)

1]
>
ct

Thus, the failure rate linearly increases with time for ) > 0.

The reliability of the n-unit redundant system is
2
R(t) = 1 - (1 - e"AE/2)n (4.91)
and the unreliability of the system is

o(t) = (1 - e-kt2/2)n (4.92)
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If preventive maintenance 1s scheduled at age T, using

equations (4.14), (4#.16), and (4.15), MTBMu, MTBMS and MTBM of

the system are respectively

2
Fopi-(ame /2)P 44

MTBH =
u - (4.93)
(1-e xT /?)n
i ;ktg/h n
Jo [1-(1-e “) ot
MPBM, = ' " (4.9%)
1 - (1-e"M /L)n
di -kt?/@ n
mrBM = S [1-(1-e 7)) ]dt (k.95)

The mean corrective maintenance time of the system, with
n repairmen, is

M

ot = Bo T f? tg(t)dt = J n/(2p) (4.96)

The mean preventive maintenance time of the system, with n

repairmen, is

ot = by (4.97)

=1

Using equations (2.5), (4.93), (4.94), (4.96), and (4.97), the

mean corrective and preventive maintenance time of the system

M is
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2 m&
W o= 72T (1-e"M/2)n 5 [1=(1-e"M /2)09  (4.98)

Using equations (2.12), (4.95), and (4.98), the achieved
availability for the n-unit redundant system with n repairmen
when Rayleigh distributions are assumed for failure and repair

times of each unit is

(

=
i

2
IP1-(1me™M /2)n]dtJ///

( 2 % 4
[P (1me™ /2\0 s + JRTTETY(1-e~ /2

2
tp[l-(i—e'*T /2yn] J (4.99)

It is also possible to obtain the achieved availability
of the system with one repairman by replacing tc and tp by
nt, and ntp respectively.

Normal distributions for failure and repair times

Let us consider Normal distributions for failure and
repair times of each redundant unit. The pdf for failure

times of each unit is
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(4.100)

where a = mean and ¢ = standard deviation

and the pdf for repair times of each unit is

| t-p
g(t) = —— o H—=)? (4.101)

Jem o

where B = mean and ¢' = standard deviation.

The reliability of a unit Ra(t) is

n

R, (t) f: f(s)ds

1 - Ifm f(s)ds

]

t-a
1 - h(

) (4.102)

Hi

o

where h is the tabulated normal cumulative distribution function.

Thus, the reliability of the n-unit redundant system is

t-o -
R(t) =1 - [h(—"~—~)] (4.103)
(]

and the unreliability of the system Q(t) is

t-d ) (&.104)

Q(t) = [n
o]
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The MTBMu, MTBMS. and MI'BM of the system in which preventive

maintenance is scheduled at age T are respectively (refer to
equations (4.14), (4.16), and (4.15) )

7 - o
Jol1-[h ( )] at
MTBMu = (u'.los)
T~ "
[h ( )]
wfl
Li [h ( )M ]at (4,106)
MIBM, =
I- n
1 = [h ( )]
MIBM = U [1-[h ( )] Jdt (&.107)

The mean corrective maintenance time of the system, with n

repairmen, is

M, =1t =8 (4.108)

The mean preventive maintenance time of the system, with n

repairmen, is

Moy = tp (4.109)
The mean corrective and preventive maintenance time of the
system M is ( refer to equations (2.5), (#.105), (4.106), (4.108),
and (4,109))
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T-c T~
I ¢ 1= [R(—)1"] (4.110)

g

M =g[h (

Therefore, the achieved availability for the n-unit redundant

system with n repairmen is ( refer to equations (2.12), (4.107),
and (4.110) )

t-
FHRERICEON Y

T=q T-q T=q
Trq. __*\Th Ty an . R ¢!
Jol1-[a(—)1"at + pla(—)]" + £ [1-[n(-—)]"]

(4,111)

Weibull failure-time distribution and zeneral repair time

distribution,

If the Weibull distribution is assumed for failure times of
each redundant unit, from equations (4.79), (4.80), and (4.81),

the MTBMu, MTBMS. and MTBM are respectively

iy -x %
MTBM, = To 1 (1- )n]dt (4.112)
L (1_e"XTa)n
" - 84
5= (™M) Mt
MTBM, = Q (4.113)

- a
1= (1_e AT )n
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; o
MIBM = f0 [1- (1= )Mat (4.114)

If general repair-time distributions are assumed for both

corrective and preventive maintenance times of each redundant

unit, then ﬁct and ﬁpt of the system, with n repairmen, are
respectively
Moy = to (4.115)
Mot = ty (4.116)

Using equations (2.5), (4.1i2), (4.113), (#.115), and (%.116), the

mean corrective and preventive maintenance time of the system

M is
M = e AT (1= AT yn 4
M= tc(l e R [l (1-e ) ] (#.117)

Using equations (2.12), (4.114), and (4.117), when Weibull failure-
time and general repair-time distributions of each unit are assumed,
the achieved availability for the n-unit redundant system with

n repairmen is

fﬁ[1-(1-a*hta)“]dt

1! - (1 - ‘a ~ F'a
fé[l“(1~e M0t + t (1~ M) 4 & [1-(1-6 A%y n
(4.118)
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In addition to the combinations treated in this section,
it is possible to consider other combinations of failure time -
repair time distributions. By using the already derived

expressions for MTBM,, MIBM,, MIBM, M_., and Ept for various
distributions for failure and repair times, we can obtain M
and achieved availabilities for other combinations of failure
and repair time distributions. The expressions for the above
quantities are summarized in Table 4.1 for the combinations

treated in Sections 4.3 and 4.4,

k.5 COST STRUCTURE

A fundamental objective in the building of a system is
thot it be capable of performing its intended function at
minimum total cost. The primary reason for developing
mathematical availability models for maintained systems is
to compare alternate designs and select the cne that best
satisfies the objective. To make cost predictions, ARINC
[84] suggests " (1) break the expenditures down into rather
small categories, (2) collect as much past experience on
expenditures in each category as possible, and (3) predict
from this information how much is likely to be spent in each
category for the project being costed . Thereafter, all
the categories must again be put together to obtain the total
cost of the system, General cost information with regard

to the reliability and the maintainability is available in

[5] and [84].
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"Tfl-(l-e'“n)n]dt T -t%n T -xt%n
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a
-y ¢+ =AT "\n ym® - -1+ &
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? +t [1-(1-e"277)7]
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% Gereral repair-time distribution is assumed for mean preventive maintenance time,
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Let us divide the total cost of the n~-unit redundant
system into three components : the cost of design for the
mean time betwéen maintenance and the mean maintenance time,
the cost of corrective maintenance, and the cost of preventive
maintenance. Shershin [?9] suggests that such a breakdown
of the cost is justified since the data for each component
can be estimated. Thus; the cost functions for each component
can be stated as-follows 3
1. +the cost of design for the mean time between maintenance

and the mean maintenance time, Cd’ is

b

Cq = a(MIBM) + — = ¢ (4.119)
M

2. the cost of corrective maintenance,cc, is

A T TR -
C, = ( MTBMu )(ndt) (4.120)

3. the cost of preventive maintenance,cp, is

Z f—
Cp = ( ﬁfnﬁ_ﬂs' )(ul‘-.f[pt - V) (4.121)

1

where MIBM , MIBM_, MTBM, M_,, M ., and M are derived in the

previous section for the various probability distributions.



80

The parameters a, b, ¢, d, u, and v are cost coefficients
which must be estimated from the data, and z is the total
mission time of the system.

As the MTBM of the system increases, the system will
operate longer without either scheduled or unscheduled down
time of the system. Similarly, the decrease in I implies
that the system can be repaired in a shorter time, Hence,
the increase in MTBM and/or the decrease in i will require
more effort in the research and development of each unit of
the systemn. Thus, the design cost component is expected
to increase as the MTBM increases and/or the WM decreases.
The corrective maintenance cost component decreases as the
ﬁct decreases since the system can be repaired in a shorter
time asz ﬁct decreases, This cost component is weighted by
the nurber of system faillures during the total mission time
%y Z/MTBMU. The interrelationship between corrective and
preventive maintenance is reflected in this weighting factor
gince the length of MTBMu is affected by the preventive
maintenance period T. Similarly, the preventive maintenance
cost component decreases as ﬁpt decreases. This cost component:
is welighted by the number of preventive maintenance actions
during the total mission time %, Z/MTBMS. If the preventive
maintenance is scheduled more frequently, MTBMS will be
smaller, thus this cost component will increase. To avoid
duplication of the maintenance cost, it is assumed that the
overinpping of the maintenance acticns is negligible.

Now, consider a series-parallel system consisting of N
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subsystems in series where each subsystem consists of nj identical
units in parallel, Due to the series connection, the entire
system is down if any one of subsystems fails. Using the

th

subscript j, the three cost components of J subsystem can be

written as

: b,
= . f . '........ll_._ . .’
(cd)j aJ(MPBM)J + 5 ¢ (k.122)
j
(c.) : (i) P (h.123)
c). = (ML), 123
¢’ (MTBM. ) . La;{Me) ;
u’j
% . )
(c); = [u.(mpt)j - vy ] (b.124)

J L J
(MTBMS)j

Finally , the total cost of the s eries-—parall&l 8 ystem, CT ’ is
= " + - - . L]

.6 MATHEMATICAL STATEMENT OF PROBLEM

Consider a series-parallel system with N subsystems in
series where each subsystem consists of nj identiecal units in
parallel as shown in Figure 4,2. The subsystems are assumed
to be statistically independent of each other. Due to the

series connection, the entire system iz down if any one of
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subsystems fails. The corrective maintenance policy is such
that repair or replacement of each unit of the subsystem begins
only when the subsystem fails due to failure of all redundant
units. The preventive maintenance for the jth subsystem i=s

scheduled at age Tj and is actually performed only if the jth

subsystem has not failed before age Tj. If the jth subsystem
has failed before age Tj; this subsystem can be renewed as

a result of the corrective maintenaznce, thus the preventive
maintenance for this subsystem is rescheduled at time Tj from
this point on. The number of repairmen is eaqual to that of
units for each subsystem and they are assumed to work indepen-
dently of each cther. If we denote the achieved availability
of the jth subsystem by Aj, then the achieved availability

of the series-parallel system, A_, 1S expressed as
(=]

A= ﬁ A, (B.126)

The problem, then, is to determine Ti' (tp)j, j=1, 2, ***, N,
and some particular parameters of the probability distributions
for the failure and repair times of each unit for each subsystem

which minimize the total cost of the system

= N v .

°p = g, L0 (C)y + (€p)5] (4.127)
subject to

d B Ay (4.128)

where A is the system availability requirement to be met.



Additional constraints are boundary conditions for each of
the decision variables,

This eptimization problem is formulated below more
specifically for the combinations of exponential-exponential
and Weibull-general distributions for fallure time and repair

time distributions.

Exponential distributions for feilure and repair times

Using equations (4.39), (4.37), (4.38), (k.41), (4.42),

(4.43), and (4.44), the mean time between maintenance, the

mean time between unscheduled maintenance, the mean time

between scheduled maintenance, the mean corrective maintenance

time, the mean preventive maintenance time, the mean corrective

and preventive maintenance time, and the achieved availability

th

for the j subsystem can respectively be written as

T, 4y 4+ N
(B, = 73 [1 - (1 = 75" at (4.129)

(MTBM)j
(I\.’iTBTv'lu)j = = (4.1.30)
(1 - e Ty !
(i\"[TBM)i
(MTBMS)j = ST (4.131)
1 s (1 - e_'J\.jTj) J
W 1 (4.132)
(FP -) . T + . 3’
ct’ "

J
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- _ =T 5 ) 5 o M

() 5 = (M) (1me "39) S (Fip ) fa-(1-e © 3 9) 9] (4.134)
(MTEBM) .

A = . (4.135)

(MTBM)j + (M)j

By substituting equations (4.129), (4.,130), (&4.131), (4.132),

(4.133), and (4.134) into equations (4.122), (4.123), and

th

(4.124), the three cost components for the j~ subsystem (}d)j,

(Cc)j’ and (Cp)j can respectively be obtained, where a5 bj,
cj, dj’ u,, and Vj are cost coefficients for the jtn subsystem.

Then, for the known total mission time z, the problem may be
stated as follows:
Determine A ., . t. ).y and T, j =1, 2, «e¢y N

)\J Hge ( p)J’ 3 J ' '

which minimize the total cost of the system, CT

N
Cop :jzi L(Cd)j + (Cc)j + (Cp)j] (k.136)
subject to
N
A zjzl Ay 2 A (4.137)

and
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. & . = ? .
BJ EKJ "'DJ ’ :_] 1l ’ L} N
E. < . € B, =1, 2, '

(4.138)

G. < (t). <H., =1, 2, ¢

3 5 (tp)y = H; ¢ = 2 » N
L. < 7., < o 3 = , ‘e

j & 4y _MJ i=1, 2 , N

where B., D., E., vy @wg Ha ., and M. for j= 1, 2,r«
gu Wye Hye Fow Gy Heo g s J rotte N

and Ao are known constants.

Weibull failure-time distribution and general repair-tine

distribution

Similarly, using equations (4.114), (4.112), (4.113),

(4.115), (4.116), (4.117), and (4.118), MCBM, MTBM , MTBM,,
Mot
when the Weibull failure-time distribution and the general

ﬁpt‘ M, and the achieved availability for th jth subsystem,

repair-time distribution are assumed for each unit of each
subsystem, can respectively be given by

a -
“x.t Y n,

T,
(MTBM)i =01 - (1me 9 ) Jdt (4.139)
(MTBM) .
(MTBM,) . = — (4.140)
- -“x.T. 9 n,
(MTBM) .
(MrBM,) . = Jfai (B.101)
.| dn.

_lqu\‘
1 - (1-e J ) )J
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(Mog)y = (¥ (4.142)
(Mp‘t)s = (tP)J (17'"1”‘3)
L

_ _ “x3P39 n, _ , 1%
(Mg = (eg) g1 e 7070 9+ (i)l - (gee 37 )79)

(M%.144)

(MTBM) .

P J (4.145)
J

MTEM) . + (M) .
(MT )J (1)3

The three cost components for the jth

subsystem can be obtained
by substituting eguations (4.139), (&4.140), (4.141), (L.142),
(4,143), and (%&.144) into equations (4.122), (4.123), and (4,124).
Thern, for the known total mission time z and the known shape

parameters 050 j=1, 2, *«+, N, the problem may be stated as

follows:

Determine lj' (tc)j, (tp)j, and Ty , j=1, 2, ««+, N

which minimize
= § o1
Cp =321 [(Cd)j + (Cc)j +(Cp)j] (l+.146)

subject to

Ay > A (4.147)



and
R < A, <D. , .:?1|2|”'|
i B R J .
. . <
EJ = (tc)g - FJ ! j=i.,2, y N
(4.148)
G. < (t.). <H. , el gl
J_(p)s-ﬂ 3 3 N
IJ- < r.}_". <I\VT- [] .21 2,:--.
§=t =N i N

where Bj’ Dj’ Ej’ Fj’ Gj’ Hj, Lj, and Mj for j=1,2,***, N
and Ao are known constants.

"he optimizaticn technigues employed for solving <these
problems are both the generalized reduced gradient (GRG)
method and sequential unconstrained minimization technique

(SUMT) . The concepts and the computational procedures of

the GRG and SUNT will be discussed in the following Chapter.

88



89

Chapter 5
GENERALIZED REDUCED CRADIENT (GRG) METHOD AND

SEQUENTTAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SUMT)

5.1 GENERALIZED REDUCED GRADIENT (GRG) METHOD

The generalized reduced gradient (GRG) method has been
proposed by Abédie and Carpentier [4, 387] by extending the
Wolfe reduced gradient method [2, 42]. The Wolfe method
solves problems with a nonlinear objective function and linear
constraints, whereas the GRG methed concerns itself with the
case of nonlinesr constraints. The GRG method has been coded
in FORTRAN by Abadie [ '3 ], Abadie and Guigou [1], and Guigou
[43, 447, Three generations of programs have been developed.
The first is an experimental code called GRG 656 which is
followed by the second ccde, GRG 69, An improved code, GREG,
is the outgrowth of the first two codes and is regarded as
the highly promising nonlinear programming procedure.

The general nonlinear programming problem may be stated

in the form of maximize

fo(-_x_‘). X = (XJ l J = 1, 2, sev, M) (5‘1)

subject to the constraints

I:(X,)mol i“_:(f I i=1, 2, v+¢, nm) (5'2)
a-SX»‘C:b-. jmll 2| "'iM (5'3)

where the underbsr denotes a vector.
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Note that the inequality constraints can be reduced to the
equality constraints by the addition of slack variables,
thus any nonlinear programming problem may be put into this
form,

The GRG algorithm is based on a basic optimization procedure
which transforms a constrained optimization problem into one
that is unconstrained., This is accomplished by partitioning
the solution vector X into m-dimensional dependent variables,
y and (M-m)-dimensional independent variables, Xx. The dependent
variables, y, then, are solved in terms of the independent
variables, x, via the constraints. If a feasible point 50 bhe
given in such a way as to satisfy the non-degeneracy assumption,

i.e., there exists a partition of X into x and y such that
a.g_ycj,_c_b- ' =1, 2, -, m (5°l+)

and ai‘/ay_o iz non-singular, the GRG algorithm may, then,

be briefly summarized as follows [1,52]

Step 1. Compute the reduced gradient, go. and the projected

reduced gradient, p°, at the starting point LO= [go,
EO]. Then, the direction of movement for the
independent variable X, QO, may be QO = EO. It may

be modified by conjugate directicns, where the
restriction is that QO-EO > 0.
Step 2, Compute 0 which maximizes f0(§°+ego, x0+85°) by

applying a one-dimensional sesrch technique, where



91

g° represents the direction of movement for MO.
Step 3. Compute g1 = 50 + aﬂo and il = 10 w 950. and project

the values for the independent variables onto the
bounds, ajlg_xj < bj' j=1, 2, +«+, M-m, to obtain

51, Since il usually do not satisfy the feasibility
conditions, it is used as the starting point for
finding 11 iteratively at Step 4,

b

= 0 by an iterative methcd. If no speedy convergence

Step 4. A feasible solution is obtained by solving i(gl, ¥

is observed, decrease 6(for instance, set 6=6/2) and
go to Step 3. Otherwise, let 11 be the solution
obtained if the new solution, &1 = [&1, 11], improves
the objective funection,. If the objective function
is not improved, 8 is reduced by 6/2 and the procedure
is returned to Step 3.

Step 5. Set go = Ll and repeat the algorithm.

Theoretically, the stopping condition for the GRG algorithm

is when p? =0, j=1, 2, ***, M-m. In practice, the following

stopping criteria are employed:

¥ € (5.5)

° < g, j=1, 2, +v1, Mem (5.6)



Q2
l2,(x") -1 (x°)] < ¢ (5.7)

where ¢ > 10”7 are recommended.
Detaild of the GRG algorithm, computational procedures,
flow diagrams, and numerical examples may be seen in [1] and
[52). |

The GREG program developed by Abadie and hls associates
of Electricité de France has been coded in FORTRAN IV. It
consists of a main program, nine permanent or internal subroutines,
and four user supplied external subroutines, "he main program
and the permanent subroutines have been compiled and stored in
a partitioned data set. The Your user supplied subroutines
are called in the following order.

Subroutine PHIX

PHIX defines the objective function fo the GREG program,
This value is stored in the FORTRAN variable PHI, and is
described in terms of the FORTRAN vector array, XC(J), J =1,
2, vove, NV, Cnly the original problem variables are used
to describe PHI. The code is dimensioned with the constraint
of NV < 100,

Subroutine CPHT

CPHI defines the inequality and/or equality constraint
functions. The values are stored in the vector array vVC(I),

I =1, 2, ++¢+, NC, where NC < 50, and in terms of the original

i

problem variables, XC(J), J Ly 2, Wis, NV, The constraints

must be ordered with inequalities first and equalities second.



Subroutine JACOB

JACOB defines the gradients of the constraint functions.
The partial derivative af; / axj is stored in the matrix array
AL, j). The rows of the matrix represent each constiraint
funetion, fi(g), i=1, 2, +¢¢, NC, in the same order as
sequenced in CPHI,.

Subroutine GRADFI

GRADFI defines the gradient of the objective function in
terms of the array Xc(J), J = i, 2, +««¢, NV, The component
values are stored in the vector array C(J), J =1, 2, ¢+, NV,

To use the GREG program, values for nineteen parameters,

g starting point, a lower bound, and an upper bound must be
established. The list of parameters and their definitions are
given in Table 5.1 {817, Each parameter is given a default
valuve which is used if it is not changed in the parameter

input list. The stopping criterion is recommended to be
greater than 10-7. Details of the single precision arithmetic
and double precision arithmetic for GRG may respectively be

found in [93 ]and [78].

93
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B SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE(SUMT)
The sequential unconstrained minimization technique
(SUMT') was prdposed by Carroll [22, 23] and further developed

by Fiacco and FcCormick [ 34, 35]. This technique solves
a consirained minimization problem by transforming it into
a sequence of unconstrained minimization problems which, then,
can be solved by the use of any avalilable unconstrained
minimization techniques.

The general nonlinear programming problem with nonlinear
and/or linear inequality and/or equality constraints may be
formulated as the problem of finding the M-dimensional column

vector X, X = (Xl’ Xz. ey XM)T, which minimizes

F(X) (5.8)
subject to
gl(_)_{_)z*o- i=1,2, '+, m (5'9)
hj(ﬁ) = 0, i=1,2, ey 1 (5.10)

where superscript T denctes transposition.
The SUMT technigue for solving this problem is based

on the minimization of a function

S(X» rp) = £(X) + v T ——= 4 T

9]

over a strictly monotonic decreasing sequence {rk}.
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Under certain restrictions, the sequence of values of the S
funection, S(X, rk), is respectively minimized by a sequence
of {i(rk)} over a strictly monotonic decreasing sequence {rk},
converging to the constrained optimum values of the original
objective function, f{X). The essential requirement is the
convexity of the S function.

The intuitive concept of the S function can be described

25 Tollows:

m 1
The second term of the 5 function, rk T — y can
i=1 g4 (x)

be considered as a penalty factor attached to the objectiﬁe
function. By adding this penalty term, the minimization of

S function will assure a minimum to be in the interior of the
inequality constrained region. Since this term will approach
infinity as the value of X approaches any one of the boundaries
of the inequality constraints, gi(g) >0 for i=1, 2, +++, m,

the value of X will tend to remain inside the inequality

constrained feasible region. The third term of the S function,
- w J2 1 5 . P
rk / n hj(g), will appreoach infinity as rK approaches zero

=1

unless hj(g) =0 forall j=1, 2, «++, L. Hence, this

consideration will force all equality constraints to be zero.
Phe computational procedure is started by selecting

an arbitrary starting point inside the feasible region bounded

by the inequality constraints and selecting a value of Iy

either arbitrarily or using the formula. Minimization of

is made by the use of

e

49

< function for the current value of r}

any unconstrained minimization technique {e.g., the second-
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order gradient method or Hooke and Jeeves pattern search
method). After a minimum value of S function is reached,
the value of fk is reduced and a search 1g repeated starting
from the previous minimum point of S function. To obtain
any meaningful optimal solution, the procedure must satisfy
two stopping criteria. The first criterion is needed to
terminate the ﬁinimization of S function for each value of

r When Hooke and Jeeves pattern search method is used,

K
this eriterion is the predetermined limit, and if the step
"size is reduced below this limit convergence is assumed.
The criteria used for the second-order gradient method may
be seen in [491.

The second stopping criterion such as

fx(r )]
G[x(ry) ]

-1 < € {5:12)

is needed for terminating oversll minimization of f[i(rk)],

where the dual value, G[ﬁ(rk)], is defined as [34]

T 12 2
GLX(ry )] = f[x(r, )] - _1 N (xi“ b By jglhj(g) (5.13)

In general, € is ranging from 1073 4o 1072,
Ry employing a strictly monotonic decreasing sequence of
{rk}, a monotonic decreasing seguence {Smin (X, rk)} ingide

+the feasible region is obtailned. As I approaches zero the
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second term of S function approaches zero and the equality
constraints, h . (X) = 0 for j =1, 2, ++«, 1, are forced to

J
be satisfied, thus the third term of S function is forced to
approach zero, Therefore, as r) approaches zero S(X, rk)
approaches f(X), where X is the optimum point which yields
the minimum S(X. rk) as well as the minimum £(X). For
details of the SUMT algorithm, computational procedures,
flow diagrams, and numerical examples, refer to [4#9] and [57].
Currently available computer program for the SUMD is
"wRAC Computer Program Implementing the SUMT for Nonlinear
Programming®, IBM SHARE number 3189, developed by McCormick,
Mylander, and Fiacco, This computer ﬁrogram uses a second-
order gradient search method as the unconstrained minimization
technique, To use a second-order gradient search method,
one has to find the first- and second-order derivatives of
the converted objective function. This, often, arises
difficulties whenever the nonlirear programming problem is
a highly complex one, To bypass this difficulty, a modified
version was developed by Lai [57 1. The modified version
incorporates the Hooke and Jeeves pattern search method [&?.
517 which requires no derivatives. The direction of search
in the gradient method is the steepest descent direction,
whereas in the Hooke and Jeeves pattern search technigue it
is determined by a direct comparison of two values of the
objective function at two points separated from each other
by a finite step. For 1his reason, when the pattern search

jg close to the boundary of inequality constraints. it falls
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into the infeasible region. A heuristic technigue developed
by Paviani and Himmelblau [687] is then used to direct the
search back into the feasible region.
The program designed by Lai [93] consists of the following
routines:
Main Program
Subroutine BACK - ‘used to pull back infeasible point.
Subroutine FENAT - used to compute penalty terms.
Subroutine WEIGH - wused to compute the weight of violations.
Subroutine READIN ~ used to read in additional data if needed.
Subroutine OUTPUT -~ used to print additional information if
needed.
Subroutine OBRES - used to compute the objective function

and constraints.

Lai's original program uses the WATFOR compiler, however,
in this work some statements have been changed to use the
FORTRAN H level since this compiler is faster than WATFOR
compiler. The list of information which the program reguires
is shown in Table 5.2. If the objective function is considered
to be flat, the double precision precedure is recommended.

As discussed earlier the optimum X value 1s obtained when the
¢ functional value approaches the f funcitional value. The
program computes a final stopping criteria, YSTOP, at the end
of each stage of the monotonically decreasing sequence of R.
If YSTOP becomes less than THETA at any stage, the computation

stops, and the value of X at that stage is the final optimal
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point.

Details of Lai's modified version may be seen in [ 57].

1
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Table 5.2. List of information

FORTRAN Program Symbols Explanations

N total number of decision variables.
MG total number of ineguality congtraints.
MH totgl number of equality constraints.
R the penalty coefficient, Ty
RATIC reducing rate for reducing R.
INCUT stopping criterion for stopping each k-
iteration,
THETA final stopping criterion.
X(1) initial starting point,
D(1) step size in *the Hooke and Jeeves pattern
search,
0X (1) estimated optimum point,
NOPM number of input problem sets.
- ITMAX specified maximum number of calculating
f~functional values within each k-iteraticn.
MAXP specified maximum number of k-iterations.
ISIZE input option code for initial step size set-up.
1G0T input option code for the step size in each
of the stage.
Y function of X(I) for the objective function.
G(J) function of X(I) for the jth inequality

H{K)

constraint.

function of X(I) for the kU

! equality constraint:
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Chapter 6

NUMERICAL EXAMFLES

6.1 EXAMPLE 1 : EXPONENTIAL DISTRIBUTIOCNS FOR FAILURE
AND REPAIR TIMES

Problem Statement

Consider a seriegc-parallel system with three subsystems

in series where each subsystem consists of two identical

units in parallel. Due to the series connection, the entire
system is down if any one of subsystems fails. Let the
th

failure timeg and repair times of each unit of the j subsyeten

be exponentially distributed with failure rate Kj and repailir

S
ue

n

rate pj. Then, the following assumpticns are made to formul

the problem

1. The subsystems are statistically independent of each
other.

The number of repairmen is equal to that of units for

N

each subsystem. Every repairman is equally capable and
works independently of each other.

e The corrective maintenance policy is such that repair
or replacement of each unit of the jth subsystem begins
only when the jth subsystem failis due to failure of
both redundant units. Hence, the subsystem redundancy
is fully restored after the completion of the corrective
maintenance action.

h

I, The preventive maintenance for the jt subsystem is

scheduled at age Tj and is actually performed only if



the i*® subsy

h

em has not failed before age Tj' If

syst
the ;jJG ubsystem has failed before age Tj' this subsystem

]

can be renewad as a result of the corrective maintenance,
thus the preventive maintenance for this subsystem

is rescheduled at time Tj from this point. The preven-
tive maintenance action consists of replacing or over-
hauling only failed units. Since redundant units have
constant failure rate, the subsystem can be restored

to its original good condition under this preventive
maintenance policy.

5 General repair time is assuwmed for the mean preventive
maintenance time of each unit, (tp)j, for the jth
subsystemn,

The cost of each subsystem consists of three cost components:

the cost of design for the mean time between maintenance and

mean maintenance time, the cost of corrective maintenance,
and the cost of preventive maintenance. The total cost of
the serjes-parallel system 1s the summation of the cost of
each subsystemn,

The problem, then, is to determine the failure rate
A:, the repair rate uj, the mean preventive maintenance
time (tp)j. and the scheduled preventive maintenance period

T., for j =1, 2, 3, which minimize the total cost of the

de

system under the constraint of the system availablility
requirement.

Problem Formulation

The following values are assumed for the {ollowing constants:



Number of subsystems i

Total mission time

z = 1500,

System availability requirement ;

i}

i

il

|

1

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)
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Boundary values for each variable ;

B, = .001 D, = .02 L =1, 2, 3
Ej = ,02 Fj = 6667 , J =1, 2, 3

(6.6)
6y = .5 Hy = 25, L5 =1, 2, 3
Ly = 100. My = 800. L 5=1, 2, 3

By subétituting equations (4.129), (4.130), (4.131),
(4.132), (4.133), and (4.134) with equation (6.2) and (6.3)
into equations (4.122), (4.123), and (4.124), the three cost
components of each subsystem (Cd)j. (Cc)j' and (Cp)j' for

j=1, 2, 3, are respectively given by

T. -\ .t
. J 2
(c-d)j = a Jo [1=(1~e J Yy at +
b.
J
X T . =X T = ey
L vi1ae T34 (f-a I dy°
(uj)(l e )<+ (tp)j[l (1-e )< ]
r =1, 2, 3 (6.7)
1500 1 -0
(Cc)j = Tj _ljt 5 [da(a;)]
fo [1-(1~e )< at
“X .1
(1-e J J)2

» =1, 2,3 (6.8)
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( ) 1500 _'
c , = o [‘l.l.('t ) - V.l j=1_92!3
P T e gy S P
10 “j
=\ .T .
1-(1~e 9 42
(6.9)

where the values for the cost coefficients of each subsystem, aj,
bj' cj, d., u., and Vj' for j=1, 2, 3, are given by equation
(6.5). By substituting equations (4.129) and (4.134) with
equation (6.2) into equation (4.135), the achieved availability

of each subsystem, Aj' =1, 2, 3, is given by

IIl-
ot
; foa[l-(lwe 3)2]dt]/

"

=
4

T, SR LT,
£ 0-me ) 2Nat 4+ () (1me )
o ,

-x.T.
(t,) [1-(1-e "3 7] ] L =123

The total cost of the system, C., which is a function of hj'
i

P

5" (tp)j. and Tj' for j =1, 2, 3, is then given by

W

C

oy

jit(cd)j + (Cc)j * (Cp)j] (6.11)



where (Cd)j, (Cc)j' and (Cp)j are respectively given by
equations (6.7}, (6.8), and (6.9).

Since the three subsystems are in series, the system is
operational only when all three subsystems are operational.

Hence, the achieved availability of the systen, . is given

by

A= u A (6.12)

where Aj is given by eguation (6.10).
Then, for the total mission time z = 1500 hours, the

problem is to determine lj' ”j

which minimize the total cost c¢f the system, C

i (tp)j, and Tj' for j=1,2,3,

o given by

equation (6.11) under the constraint of the system avallability

requirement

AL 2 A = .97 | (6.13)

with the boundary conditions for each of variables

. 001 < )\j < 02 , J=1.,2,3
, 02 < uj < L6667 , 3=1,2,3
(6.14)
i < s B 25 , J=1.2
5 (tp),} = 5 J v 3
100, < g < 800, s 3=1:2,3
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Problem Definition for the GRG program

The nonlinear preogramming problem in the GRG format is

stated as follows

maximize - CT
subject to
97 - A's < 0
(6.15)
AS - 11 S O

As discussed in section 5.1, in order to use the CGREG
program the individual variables are described in terms cof

the FORTRAN vector array XC(j), ji=1,2,:.--,12, i.e.,

}\j = XC(j) ' j=1|2|3
b = XC(j+3) v 3=1,2,3
: (6.16)
i 5= j ’ '=1n23
(tp):J Xc(j+ ). J 3
Tj = XC(j+9) ] j=112r3

Using these original problem variables, the objective function
PHI is defined in the subroutine PHIX. Since the problem
must be defined in the form of maximizing the objective

function, we set

PHI = -G (6.17)

1
4

T

Constraints are defined in subroutine CPHI using vector
array Vve(i) , i=1,2, i.e.,

.97 - Ag (6.18)

B

ve(1)
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ve(2) = A - 1,

S

In subroutinelJACOB, the numerical partial derivatives of

the constraints with respect to each variable are defined
using the matrix array A(i,}]). The numerical partial deri-
vatives of the objective function with respect to each
variable are defined using vector array c({j), j=1,2,++4,12,

in subroutine GRADFI. The reason we take the numerical
partial derivatives is due to the fact that both the

objective function and the constrainis are of highly nonlinecar.

In the data cards, the following parameter values are specified;

NV = 12
NIN = 2
ISOLSR = 1

Other parameters not listed above are given default values
as shown in Table 5.1. After the parameter data, a starting
point, a lower bound, and a uppsr bound must follow. For
details of the user supplied subroutines, refer to Appendix 2.

Problem Definition for the SUM[I Prosram

The nonlinear programming problem in the 3SUMT format
is stated as follows :

minimize CT

subject to

E(j) = N - 001 > 0 |j=112=3



j:l'z’in

il.e.,

g(j+3)

g(Jj+0)

g(j+9)

g(j+iz)
E{J+15)
g(j+18)
g( j+a1)
g(25)

g(26)

To use the SUMT program,

",12,

—
ot
)
S
[
il

H| i1
=
o
[ae)

il
(@2
o~
(@)

—Q

i
==

13=1,2,3
»3=1,2,3
»3=1,2,3
»J=1,2,3
13%1,2,3
1 3=1,2,3

1 J=1,2,3

(6.19)

FORTRAN vector array X(j),

is used to represent the individual variables,

X(J)
X(j+3)
X(j+6)

X(j+9)

v 371,2,3
uj:152r3
yJ=1,2,3

»3=1,2,3

(6.20)
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The objective function and constraints are respectively defined

using the FORTRAN variable Y and vector array G(J), J = 1, 2,¢¢*,

26,

in subroutine OBRES.

In the data cards,

parameter values arc specified :

NOFM =

il

NAME

1

SUMTAV

the following



N = 12
MG = 26
MH = 0
R = 0
RATIO = O
ITMAX = 500
INGUT = &
THETA = 1077
MAXP = 30
ISIZE = 0
cuT = 1

AfTter the parameter data, a starting point, a step size, and
the estimated optimum values must follow. For details of
the SUNMT computer program, refer to Appendix 2,

GRG Results

A GRG solution obtained by starting from a set of initial
starting values, [kl, IR TR PYREY (tp)l. (tp)Z' (tp)j'
Ty Ty T3] = [ .005, .005, .005, .04, .04, .O4, 2., 2., 2.,
5004, 5004 500.], is shown in Table 6.l1a. The stopping

criterion used to terminate the program is

| £, (F°+eR°, yo+6K°) - £ (°, ¥°)| < 10“12[f0(§°, 7|
(6.21)

where f_, x°, ¥°, 1%, %°, and 6 are defined in section 5.1.

It is worth noting that the first six variables, Aj's and

L.'s, are more sensitive than the remaining variables.,

112



Table 6. 1a.

&

GRG solution for the first set of starting values (numerical example 1)

total cost

failure rate repair rate mean preventive scheduled preventive cost of design cost of corrective cost of preventive system
Tteration maintenance time maintenance period maintenance maintenance z.v?il-
No. ability
Ay A, Ay By vy My (p)y (tp), ()3 T4 T, T3 (cq)y  (Cq)p (G4l (c)y (c.); (c,)y (e)y (Cpy (Cr)y Cp A
22222135 .005 .035 .005 .04 .0k .0k 2; 2, Z 500. 500, 500. 174.k1 152.31 237.34  9555.39 117%56.80 8523.17 32.62 -22.92 86.40 20531.35 .79223
1 .001 . 001 .001 .Ct717 .0LB56 .0LES2 2. 2. 2. 50C. 500, 500. 368.67 346.87 505.95 526,99 567.39  k93.81 98.73 £9.38 261.50 391k.44 57217
2 .001 .001 .001 .05194 .05376 .05096 1.99998 1.99998 1.99996 500. 560. 500. 375.12 35G.41 515.36 418.86 L4 gk 394.59 98.73 69.38 261.49 3b45.60 .97336
3 .001 .001 .00220 .05154 .05376 .16299 1.95998 1.95958 1.99996 500. SC0. 500. 365.70 341.96 L76.83 566.36  676.%6  178.55 98.73 69.38 200.27 2994.83 L5766
L .001 .001 .00220 .0519% .03376 .25434% 1.99998 1.99998 1.99996 500. 5CO. 500. 365.70 341.96 6LL.72 568.96 £76.45 13.18 98.73 69.23 200.27 2933.16  .97539
5 .00t .001 .00392 .05231 .03417 .25484 1.99998 1.99998 1.99996 500. 500. 500, 366.26 342.72 L42.28 575.12  651.77 137.20 98.73 69.3%9 139.33 2823.05 .97128
6 .0c1 .001 .00685 .14557 .15676 .26059 1.99964 1.9997% 1.99964  500. 500. 5C0, 412.68 L403.31 333.62 116.17 124,99 269.13 98.72 69.37 ~52.38 1820.70 .97131
7 .001 .001 00642  .14557 .15676 .26059 1.99964% 1.9997% 1.99564  500. 500. 500. 425.33 419.28 334.89 %.73 79.56 26512 98,71 69.37 52.53  1819.52 .97247
B .Cc1 .C01 .00639  .14557 .15675 .26059 1.99964 1.99974 1.99964  500. 500. 500. 425.33 L19.28 335.31 .73 79.56  264.39 98,71 6¢.37 52.84 1819.51 .97251
9 .G01 .001 .00629  .14555 .13678 .2506%  1.95964 1.99974 1.99964  500. 500, 500, 425.33 419.28 337.1k 7%.72 79.55 261.20 98.71 6%.37 54.17 1819.46  .97267
10 001 .601 .00622  .14563 .15681 .26072 1.99964 1,99974 1.99963 500. 5C0. 500. 425.3% 419.29 339.28 74.69 79.52 257.51 98.71 69.37\ 55.71 1819.43  .g97286
11 .Go1 .001 .00594  .14606 ,15720 .26170 1.99963 1.99975 1.§9961 500. 500. 500. 425.52 U419.47 348.54 74,23 79.11 241,60 98.71 69.37 62.18  1818.7%  .973565
12 501 .001 00758 .15265 .16313 .2784%0 1.99951 1.$3596 1.99932  500. 500. 5C0. L427.98 L421.9% 317.99 67.96 73.47 251,60 93.71 69.38 234%.18  1793.68 97054
13 .001 .001 .00689  .15265 .16313 .27640 1.99951 1.99996 1.99932 500. 500. 500. 427.98 421.99 332.63 67.96 73.47  25L.77 98.71 69.38 LL4,1Lk 1791.03  .97227
14 .001 .001 .00684  ,15265 .16313 .276L0 1.99951 ~1.99996 1.99932  500. 500. 500. 427.98 421.99 333.37 67.96 73.47 253.50 98,71 69.38  Li4,46 ;791.02‘ .97254%
15 .001 .001 .00675 .15267 .16315 .27645 1.99951 1.999%6 1.$9932 500, 500, 500. 427.99 421.9% 335.17 67.95 73.456 250,42 98.71 69.28 45,92 1790.98  .97217
16 .001 .001 .00669  .15270 .16317 .27651 1.99951 1,99996 1.99931 500. 500. 500. 428.00 422.00 336.86 €7.93 73.44  247.s4 98,71 69.38 47.10  1790.56  .97237
17 .G01 .001 00653  .15284 ,16331 .27686 1.99951 1.99996 1.99931 500, 500. 500. 428.0k L22.05 340.30 67.83 73.35 241,71 5B.71 69.38 49,46 1790.80  .97313
15 .001 .00 00701 .15302 .16347 .27726 1.99950 1.99997 1.99930 500, 500. 500. 428,12 &422.13 330.42 67.64 73.17  257.9: ©¢8.70 69,38 L2.,23  178%.72 .9722¢
19 .001 .G01 .00681  .15305 .16349 .27735 1.99950 1,99997 1.99930 500. 500. 500. 428.12 k22.1% 333.60 67.62 ?3-15 252,37 98.70 69.38  LL.k4 1769.51  .97257
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Table 6.1a. (continued)
gg?ratzon Ay A, A3 By Hy ) (tp)y (t5), (tg)3 Ty  Tp Ty (cg)y (Cqlp (L4l (c.}y (c.), (Co)y (c)y (cp)y (Cy)5 0y K
20 .001 .001 .00675 .15307 .16351 .27737 1.99950 1.99997 1.99930 500. 500. 5C0. 428.13 422,14  335.96 67.60 73.16  2:3.3L 98.70 66.38 L45.C9 1785.49  ,9727%
21 .001 .001 00668  .15310 .1635k .27747 1.95950 1.99997 1.99930 500. 500. 500. L28.1k 422,16 337.67 63.57 73.11  245.4k 93.70 69.38 47.28 1785.5%5 57255
22 .001 .001 .00584  .15795 .16799 .28892 1.95941 2.00018 1,99907 500. 500. 500. 429.87 423.97 367.81 63.48 69.28 194.24 98.70 69.39 64.55 1781.29  .97549
23 .001 .001 L0135%  .25108 .24L28 .48495 1.99790 2.00366 1.99523 500. 500. 500, 451.68 L47.40 374.51 27.25 32.76 165.21 ©8.62 69.53 3.04 1671.00  ,§7215
24 .001 .001 .011k2  .2Gb62 .24752 .49328 1.99784 2.00383 1.99506 500. 500. 500. 452.37 448.16 395.68 26.Lk7 31.91  135.25 ©B.62 69.53 7.43 18635.L1 97520
25 .00266 .00211 .01060 .2uu462 .24752 49328 1.99784 2.00383 1.99506 500. 500. 500. 351.06 375,37 L403.53 115.58 101.0%  125.41 £6.B4 sh.47 10,39 16032,70  .$7099
26 - .00278 .00195 .01065 .24h6k ,24753 .49328 1.99784 2.00383 1.99506 500. 500. 500. 346,04 383.17 403.10 121.48 §2.01 125.62 £5.01 56.30 10.22 1603.23 .¢7038
27 ,00291 .00191 .01050 .2446B .24756 .#9327 1.99783 2.00383 1.99506 500. 500. 500. 339,08 387.65 404.50 129.64 §7.02 124.23 62.44% s7.33 10.80 1603.04 $7098
28 ,00251 .00191 .01050 .24468 .24756 49327 1.95783 2.00383 1.99506 500. 500. 500.  339.09 387.68 LO4.49 129.93° 86.99 124.2¢ 62.45 57.33 10.79 1£02.89 97033
Pinal .00291 .00191 .01050 .24468 .24k756 .4§327 1.99783 2.00383 1.99506  500. 500. 500. 337.85 387.67 404,50 130.67 87.00 12L.2¢ 62.80 57.33 10.79 1602.89 97093
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If we recall that the direction of movement in the GRG is
along the projected reduced gradient and the magnitude of

the reduced gradient for each independent variavle, i.e.,

the magnitude of the movement for each variable is determined
by the magnitude of the partial derivatives of both objective
function and constraints with respect to each variable, then
this phenomenon can be explained to be caused due te the
great differences between the magnitude of the numerical
partial derivatives of both objective function and constraints
with respect to each variable in this particular problem.

To illustrate these differences, let us investigate the
approximate values of the partial derivatives of objective
function (fo) and two constraints (f1 and fz) with respect

to0 each variable at one particular iteration, i.e., at 19th

iteration.

af
0 N 0 e 0 I
T = =0. A o T = «,28%10 , == = =0,
e 0.18x10 57, 0.28%1 5 0.15x10
of af 3f
3—9 = 0.46x10° gmﬂ = 0.42x10° , —2 = 0.11x10"
Hy By s
of af " of -
3~%97 = -0.83x10 , STTQT = 0,19%10° 3T€27 = -0,20%10°
Pl p’2 '3
af 3T af
e = =0.25 g g = ~Ha88 y yme = 0425
| By 3

(6.22)
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afi Bfi afi ’
— = 40,30x10 , —= = 40,28x10 , ——= = +0.22x10
8f _ _ af. _ - af . - o
—1 = Fo.13x07l, X = TFo.11a07Y, 1 = Fo,s3x107t
Oliq Olo ap3
of . af. of.
X — ' —2 1 Ly l""2 1 — ""3
= +0,17x10 -, —+ = +0,17X10 7, = +0,30x10
al. _ - 57, _ _ . _ p
—+ - Fo.s2x1073, =L = Fo.s4x107°, —=* = F0.15%107
Ty ol af3
(6.23)

where upper sign corresponds to the first constraint, 1=1,
and lower sign corresponds to the second constraint, i=2.
The values of the partial derivatives vary from one iteration
1o another, However, almost the same magnitude of difference
has been maintained throughout iterations. Note that the
magnitudes of the partial derivatives of both objective function
and constraints with reapasct to Tj's are negligible compared
with those with respect to xj's and uj's. This is why Tj's
are remained almost unchanged throughout iterations whereas
1j's and Hj's are relatively sensitive. This type of
difficulty sometimes makes the computation inefficient and
may lead the program terminated at a false optimun.

One possible alleviation from this difficulty is to
employ the inverse of those sensitive variables as original

problem variables, This approach is not guaranteed to work,
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but this has helped solve some prcoblems of this type. Since
A.'s and p.'s are sensitive, we employ . and - as
J J lj's > HaTH

original problem variables, thus we can expect to lessen the
differences between the magnitudes of the partial derivatives.

Using this method, the same set of starting points as used

in Table 6.1a is again tried. The converted initial
. ) 1 ¥ 1 1 1 1
starting values are ghee  pme gl AR SLw e t vy (B )
© |: }\-1' }\zr 'Xj’ Her Koo U«Br ( P)l ( P)d’

(tP)B, Tys Ty T4 1= [200:, 2004, 2004 255 25:5 25:5 244
2., 2., 500., 500,, 500.]. As shown in Table 6.1b, an
improved solution is obtained, However, the same difficulty
persists in this approach, i.e., E%TE and (tp)j's appear
as gensitive variables while others are remained almost
unchanged.

Therefore, the fundamental alleviation from this type
of difficulty ig to modify the direction of movement so
that each of the variables has about the same sensitivity
to a given movement, Since this modification must be made
within the main program stored in the computer and requires
a lot of time, this is not attempted in this study. Without
this modification, the only way to get an optimal solution
is to try both methods as we did for the first set of starting
values and select the best result as a global optimum.

To test whether or not further imeroved solution can
be obtained, another set of starting values, [11, kz, k3,
yo Bpe vy (B0 (8050 (B0)q, Tyy Tpy T4 ] = [ .005,

p
.C04%, .003, .4, .3, .4, 2., 2., 1.5, 400,, 300., 300,7, is



Table 6.1D.

118

GRG solutlon for the first s et of starting values (numerical examplo 1) i using I-:r'- and i—j,—.- as original

problem variables

T S

R t1 i « of £ cost o7 preventive  total cost 3ystem
fatlure rate rezatr rate b e S ey S e R i
Izeration ability
So. c <
° i Ay iy vy b2 "y () (s)), (%), T T, Ty (Gg); (Gl (Cqdy (G0 (Bdy [fG)y (G) fSx (G5 G
starting (200.)° 200. 200, (25.) {z5.) (25. ' X
point . .00s ' .éos : .%os .Gl "5.0u 5.%4 2. 2, 2. 500. 500, 500. 17441 152.31 237.3%  9555.39 11796.80 2323.17 32.62 22.52 86.40 30531.35  .7%%22
1 (201 -'-4*995) (201.70575) (201.32007) (5.39353) (1.5} (7.19529) ; 4
“leciss G095 .35&97 (es3e lgees? . 3337 1.06388 1.15855 .50i72 499.9809) 499.97580 499.98842 Ls8.42 506.86 662.31 33.45 §1.12 | 29.90  6.38 3.21 2,09  31i4.57  .98547
2 (201.45169) (201.70391) (201.33122) (3 uﬂ 9) (1.5) (&4.72349)
.Co435 . G0%56 G067 EE567 2117 .73915 1.08236 .50172 L99.97961 L99.97681 K99.96535 455.67 48s5.14 658.31 33.599 41.93 30.33 6.23 B.87 20.55 1673.20 .%Es502
3 {201.L515%) (201. 70991) (201.35122) (2 '-9503) (1.5) (4.72359) g
.G0L55 .G5LG .0C657 220 LGE66T 3 1 .73515 1.08236 .50172 L99.97951 499.97681 499.98535 330.%2 479.07 359.18 102. 6L 51.93 300.96 10.49 10.91 20.53 1654.87 F7i73
o {201.45143) (201.703%1) (20i.23122) (2.65333) (1.5) (&.72349)
LGoe3E .0Cs55 . 00457 L%3C35 .66657 .21171 .73915 1.08236 .50172 L499.97961 499,97681 459.98535 341.80 479.07 359.18 89.75 41.93 300.95 10.49° 10.91 20.53 163k.61  .9722%
5 (201.L9:1£9) (z:n 9551) (201.33122) (2.%51355) (1.5) " (4.72349)
03555 035 .00L97 whil25 .66667 21171 ,73915 1.08236 .50172 499.97961 L93.97681 499.98535 342.65 479.07 359.18 88.88 41,93 300.95 10.49 10.91 20.53 165%.59  .¢7227
6 (201.L3555) (201.70295) {201.33555) (1.92+Lk6) (2.24666) (3.13767) : ; -
.0Ch55 .CCL55 .00497 .51653 JAlsil .31671 .67998 1.40755 .50172 L499.98017 L499.97738 499.98539 396.51 357.39 4b46.92 52.34 102.35 115.93 9.28 15.83 20.53 15i5.73 .97:862
7 (201.43L57) (201.70250) (201.33521) (1.923C8) {2.15837) (3.07501) . : c
-ocass -60L36 .6cis? L1855 .4sk78 .32520 68278 1.51297 .L0172  L99.98025 499.97743 499.98553  388.43 371,36 b36.25 56.18 90.10 127.5¢  9.49 1533 20.53 1515.23 .97%%
3 (201.53425) (201.76233) (201.38541) (1.92903) {2.17792) (3.0L€9)3)
03498 ~6C595 .05ls7 51823 .4sgls  .32820 68653 1.5157) .50172  499.58030 499.97766 k99.98559 388.32 372,40 437.29  S6.23  69.22 126,35  9.50 15.35 20.52 1515.17 .97852
9 (201.43415) (201.70220) (201.32535) (1.92735) (2.17498) (3.0k281) -
0oL5s L6096 .CC457 T 5976 .52864 68680 1.41623 .5 499.98030 495.97747 499.98560 388.1% 373.66 438.59 56.29 £8.15 125,89 9.52 15.38 20.46 1515.12 97661
?inal (201. L—h.g) (zo..nzan (zo:. 32535)  (1.52985) {2.17456) (3.04281) 2 ' - : :
00455 00456 GoL57 .s:en L5975 L3286k 68480 1.51623 .5 499.58030 499.97747 499.98560 386.19 373.68 438.60 56.29 - 88.1%  124.87 9.52 15.38 20.46 1s15.12 .97651

® Pigures in zarentheses rssoectively represent ﬁ;

and

e
B’l

values
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and

tried. Table 6.2a shows the result. Using . .
J
E%%E- as variables in place of Ai's and uj's, the same set
j ! S

of starting points is again tried. The converted starting
values are [f— f& A1 1 4
1! o ?\.3' |J.19 {Lzy [J3

T2.,T3] = [200., 250., 333.3333, 2.5, 3.3333, 2.5, 2., 2.,

1.5, 400., 300., 300.] and the result is shown in Table 6.2b.
Since the results obtained in Table 6.la, 6.2a, and 6.2b are
inferior to that obtained in Table 6.1b, we conclude that
the solution obtained in Table 6.1ib is the global optimum,

SUNMT Results

To compare the SUMT results with the GRG results, the
identical two sets of starting values zs used for GRG are
used. The result for the first set of starting values is
shown in Table 6.3, Since this starting point is in
infeasible region, a new feaslible starting point is selected
by the computer program before the minimization of S-function
is started. Seven (k=7) iterations for the minimization
of S-function and 3481 calculations for the objective functional
values are required to reach the optimzl solution. when
the number of cut-down step-size operation is 4, the
ninimization of S-function at each k-iteration is terminated.

The final stopping criterion used to terminate the program

1

is € = 10-3. The result for the second set of starting
values is shown in Table 6.4, Five(k=5) iterations for
S-function minimization and 2223 calculations for the objective

functicnal values are required to reach the optimal solutiin.
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- >
Table 6.2a. GRG solution for the second set of starting values (numerical example 1)
failure rate repair rate mean Ppreventive scheduled preventive cost of design cost of corrective cost of preventive total system
maintenance time maintenance period maintenance maintenance cest avail=
;‘.ent:m ability
. i by Ay uy By My (t5); (tp)y (%), Ty T, T, (cg)y (Cglp (cyly (c)y (C)p (c)y fcr)y (e)), (c)y ¢ Ay
s=zr+inz .005 .04 .003 4 <3 ik 2. 2. 1.5 Lkoo. 300. 300. 312.12 301.47 524.15 91.68 138.10 37.20 55,54 8L.6§5 275.56 1822.47 .97247
—Din: .C0523 .00374 .00421 .40C00 .30001 .39599 2.00000 2.00000 1.50000 400. 300. 300. 308.00 308.25 479.20 96.41 12k.82 59.83 53.15 87.€2 228.3h 174541 .57133
2 .00539 .00355 .C0S504 .40COO .30002 .39999 2.00000 2.00000 1.50000 LOO. 300. 300. 298.42 321.91 410.36 107.42 99.12 109.34 45,77 95.22 1k7.11 1702.18 .G4E22
3 .00545 .G0349 .CO531 .40000 .30002 '.39999 2.00000 2.00000 1,50000 400, 300. 300. 301.%5 317.26 430.26 103.83 107.52 92,38 48.78 92.69 172.17 168%9.51 .96333
L .00553 .00349 .00618 .40000 .3G002 .3$599 2.0000C 2.00000 1.50000 &00. 300. 300, 323.15 314.18 422.15 80.76 113.27 98.96 63.26 90.98 142.10 1£L8.24 97051
5 L00357 .00100 .C0893 .L0CO5 .30012 .LOCO2 2.0G000 1.99999 1.49998 ko0. 300. 300. 287.65 382.08 409.73 121.07 15.14 109.93 3%.£8 123.09 142.27 161,58 .57001
) .00472 .00100 .0G323 .40006 ,30012 .40007 1.99999 1.99599 1.49997 400. 300, 300. 318.89 362.08 3B1.75 84.96 15.14 139.59 60.k2 123.09 109.17. 1615.08 .57001
7 .00552 .06100 .00835 .40010 .30013 .40012 1.99599 1.99999 1.49397 &oO. 300. 300. 321.98 382,08 379.8% 81.89 15.14 1L1.93 &2.49 123.09 105.54 1814.67 .970CL
E] .00578 .00100 00783 .41105 .30182 .41936 1.99893 1.99987 1.49715 400.00601 300.00001 300.000C4 301.50 382.24 395.57 102.62 14.97 119.78 4£6.22 123.08 118.11 1602.08 .47001
9 L0CE21  .050100 .01087 .55651 .32416 .60000 1.98492 1.99327 1.45976 400.00013 300.00011 300.00054 311.34% 383.9% 452.86 1.94 13.21 85.27 21.96 122.93 60.60 1553.57 .9VCOL
10 .C0732 .00100 .01236 .55653 .32417 .599%9 1.98492 1.99826 1.45976 U4060.00013 300.00011 30C.00054 329.71 384.18 &51.25 73.68 12,98 97.4k 22,99 122.96 43.93 1545.12 .57001
11 .00752 .0C1s2 .G1204 .5565% 32417 .S59997 1.98492 1.99827 1.45975 400.00013 300.00012 300.00054 329.7% 376.06 453.35 73.56 21.94% 95.07 30.27 119.22 46.79 1:45.87 .§7001
12 .00725 .0C135 .01215 .5565% .32418 .59997 1.98492 1.99827 1.45975 400.00013 300.00012 300.0005% 330.51 376 19 4s52.77 72.90 21.81 95.72 37.58 119.27 46,00 1545.7% .§70CO
13 .00725 .00133 .01217 .5565% .32418 .59597 1.96492 1.99827 1.45975 400.00013 300.00012 300.00054¢ 330.58 376.51 ks52.62 72.82 21.45 95.88 30.64 119.k2 45.80 1545.72 .97000
1k 60725 .00133 .01217 .5565% 32418 .59597 1.98492 1.99827 1.45975 400.00013 300.00012 300.0005% 330.59 376.57 bL52.60 72.81 21.38  95.91 30.65 119.k5 45.77 15k5.72 .970C0
Final .00725 .00133 .01217 .5565% .32418 .59997 1.93492 1.00827 1.45975 400.00013 300,00012 300.0005% 330.59 376.58 452,59 72.81 21.38  95.91 30.65 110.45 45.76 1545.72 .57000
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rable 6.2b. CRG soluticn for the second set of starting values (numerical example) using *j" ard -J— a8 origiral problem variables

= fatiare race s e St SRR Tl R SEESe W

to. ¥ a5 Ay ¥ uy By () (tp)p  (2)), R T, T, (Bahy  (e)y  (eg)y (g); (c), (C)y (ep)y (e, (e)y; ¢

:;:;:.n; (zcc. ) L (2s0.) u:):gggﬂ (2.5) (3_-333” (2.5 2, 3. 1.5 oo 300. 300. 3i2.12 301.47 526.15 91.66 138.1C 37.20 56.56 EL4.65 275.56 1222.47 .37zL7
1 ass.srmo) (2s0.00150) (9232330 (206080 (2ER) (OO o0 1 estoy .6wab 400,C0138 00.00201 300.00905 405,36 438.09 602,80 32.87 28.25 SI.16 uh.s2 63.15 E6.47 176040 3522

2 £0.40 .33

:  asgEo) (20.007) (%799 (72230 (D) OB | esus 17685t .5 400,00298 300.00026 300.01989 405.25 k30.57 553.52 3288 27.76 50.92 k5.00 67.20 6.k6 1729.43 .5ic5
2 “”293- i ‘2"’:22‘533’ ””Zggég? b 2"’9’ (11333.53) (“Z.z"{:?;) 1.80460 2.21253 .5 400,00675 300.01005 300.05537 336.12 344,33 421.99 68.36 27.79 27%.33 51.77 123.12 B6.63 1€3%.51 .57255
i (:99:332 (29.99539) (333‘55:75, u_t;!:foz) $. 5:233) (“:gifg? 1.7775% 2.35237 .5 400.00785 3C0.01061 300.06196 360.35 372.55 $03.29 51.19 25.57 132,15 &9.86 $E.52 86.45 1433.35 .37723
5 -uw:g;g;:gi tz'-'e:zgz;g; c:as:gégzg) u;gﬁ;}gi H:gﬁ;ggl ﬁ‘*:g‘;ggg’ T 2_39?6,'_, 400.00230 300.01108 300.05636  364.15 367.4% 505.B6 49.16 29.4% 129.59 49.39 102.38 86.45 1423.71 .37711
L 1199..?52;3;1 (269.95506)  (333.26527) u:g:s-'gg) u:gtsgsl "‘;22232’ 1.76392 2.42318 .S 400.00858 300.01127 300.0659%  365.70 365.1% SCB.7% 4B.37 29.4% 125,60 49.18 10L.03 . 86.85 1£83.68 57715
7 (:W:zézggl (zt-9 9:5 o) ()Jj:gg;ggi (1:?’;;%;) (1. suo;} ""29;33’ 1.76196 2.43511 .5 406.00872 300.01137 390.C6677  386.57 363.59 510.83 47.95 29.k8 124.55 L9.06 105.21 B6.45 1£23.6f 57712
2 H'y‘i:gggf:? (zWﬁgigﬁ;) (32 }g':tau (ﬁggggg) (1:2;-:;2;) lb.sgggz’ 1.76015 2.L463% .S 400,00886 300.01146 300.06756 366.75 363.22 511.32 47.86 29.46 124,08 49.03 105.48 &6.45 1£83.46 97713
s (19?23;) (hng::;) (333. 25%;'.' (1.:;3333) {i:aggﬂ (“01?995" 1.75832 2.45832 .5 400.00901 300.01358 300.06346  367.10 362.48 512.34 47.69 29.48 123.10 43.97 106.05 85,54 3633.65 .577:3

iead “99:323523) (- -2t “:‘;2383’ g3 ¢ .;iq;%) 1.75832 2.45832 .5 400,00901 300,C1158 300.06846 367.26 362.11 512.86 47.61 29.48 122.61 L5.%% 106.33 86.5k 1423.65 .97720

® Figures in parentheses respectively represent r?.'; and ;‘:‘-7“1“‘
i
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7Table 6.3. SUMT solution for the first set of starting values (numericsl example 1)

B "émup “‘:‘ e e i maintenance sine et pcich il maintemance T eaierarca 0 deat fweiival saiis
T to iteration k x iy L iy By iy by () (), {t5)5 T, £ cg)y  (cy), (cy)y  (cg)y ), (€dy (), (€, )y & i

ol .063  .003  .003 & & o 2. z 2. LCo. &00. 400,

initial L0003  .0003° .0003 .04 « 0k .0k .2 -2 .2 40, L0 40.

siep-cize

S S 0 Sl o A 508- 590- 530, 176.51 152.31 237.3% 9555.39 11796.80 8523.17 32.62 22.92  65.40 30521.35 3323C.0% | 73eiz

:3‘.:_-::.3:! E'Fibl' 6.86200 .CG32 .0C32 .0032 .28 .2 o2 1.2 1.2 1.2 340, 3%0. %0, 340.05 308.07 426.26 58,11 237.40  171.52 63.52 82.35 175.65 1562.£0 1££30.02 L 37nit

s 583 6.8-200 .00%31 .00%63 .00519 .39101 36141 .G4S91 1.12503 1.31907 1.48267 626.710 628.710 632.627 35%.45 337.15 4€9.39  B7.08  136.13  73.65 11.60 £.33 .28.93 1526.97 3335.25 3ot
2 1604 .85520 .00705 .00661 .00739 .58985 .57721 .S4788 1.51384% 2.06865 1.20387 768.710 7838.7i0 792.%27 357.47 395.72 LBS.07  65.84 79.01  71.0% 1.55 1.96 2,46 16£3.02 2307.75 .5k
3 1505 .2133C .007)5 .0C561 .00777 .S57460 ,56196 .53283 1.L3761 2.26442 1.12756 7BE.710 797.10 792.43  347.00 387.99 469.10  72.00 83.35  79.05 1.15  2.03  1.79 14&3.90 14£3.33 L37-ic
b 2006 .053%5 .0CB4G .CO6L5 .0G789 .5553% .s53722 .L90Sh 1.156405 2.25485 64409 796.52 797.10 796.65  340.32 378.33 k&1.77 76.7C 89.0k  GL.59 A2 2.2 1.19 1826.41 1&23.57 .F7230
s 2510 .01336 .00BS) 00645 .00792 .5913% .53633 .L9OSH  .98565 2.63252 .51B00 796.52 797.10 796.65 338.40 377.53 L41.39  7B.02 89.15  9k.93 .3  2.69 .69 1623.15 1LLO.LE .3723%
[ 2575 .G0334 .0084) .00645 .CO792 .59104 .53683 .L9OS6 .9BS565 2.63292 .51800 795.52 797.10 796.65 338.40 377.53 441.39 78.02 £9.15 94.%3 3 2.69 49 1423.15 1627.43 L3721

3421 -000B4 .00243 .00645 .00797 .59134 .53533 .49054 .95565 2.63292 ,51600 795.52 797.10 796.65 338.40 377.53 441.39  73.02 89.15/  3%.93 .35 2.69 69 1623.15 142%.23 57214

2
(Firal)
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Table 6.k. SUMT solution for the second set of starting velues (mumerical example 1)
cuculative jio. value of fallure rate rerair rate Eean preventive &cheduled preventive cost of design cost of correstiva cost of
of f-ualus raintenance time maintenance period . of preventive total z sysiea
i e‘giuﬂ:‘;;,,, =r . maintenance zaintenance cost m::i:;.u :;a ;7
1o iterat el
(-] erasion 11 ;z ls yl Ilz HJ (tp)l (tP)z ‘tP}J ,17 Tz TJ (cdjl (cd)z (cd)J ‘c¢)1 (cajz (ccia (cP)I ‘Cp)z (CPJJ Cr }-.
.C33 «003 .003 o & L 2 2. 2. 400. 400, Loo, L]
.0C03 .GJ03 L0003 .04 « 04 + 04 .2 2 .2 Lo, 4o. 4o.
x:g::.'ug 26220 .005 «004 .003 ol ] 4 2. 2. 1.5 Lgo. 300. 360. Ji2.12 301.47 524.15 91.68 128.10 37.20 $6.55 84.65 276.56 1822.47 2273.00 67257
Foin L 9. -
iy <01 +26220 .00562 .COkE2 .00514 .B3529 .40193 42633 1.23210 2.15813 ,99600 653.367 577.463 615.605 327.86 J47.54%  48L.58  94.k2 108.82 79.19 6.€2 19.25 2149 1529.65 1202.21 .37e3c
. . £9.€ =0z, -57525
z 810 .03277 .00592 .0Cu62 .00S14 .LWS29 .L401G) 62633 1.28B10 2.15813 «99600 653.367 577.463 615.305 320.20 3L7.44 484.58  99.79 1¢3.e2 79.19  S5.71 19.23 21.49 1425 LS 1373.37 o752 .
3 1316 -03319 .00532 .C3475 .0056k .kLE70 .LOS77 .L2692 1.01615 2.1678% 67764 667.157 591.398 629.595 316,28 346.59 L6E.ok 101.55 110.35 67.5% 3.26 17.17 10.57 1460,24 1470.13 .s73:c
- 1748 -00102 -.CO70B .00550 .GOSEk .4LE70 .LOS77 .k2692 1.0i615 2.16784  .6776k 667.157 551.356 629.595 301.15 329.31 466.9% 114.18 129.59 §7.5% 2.20 12,50  10.57 1456.37 1455.28 .57i77
5 . . . . 4o . . . . . . . .
5 2223 .00026 .CO708 .00550 .00564 .&k4670 577 .42692 1.01615 2.1678% .6776k 667.157 591.398 629.555 301.15 329.31 LS6.9% 114.18 129.99 87.56 2.20 12.50 10.57 1k54.37 1&5%.76 L5797
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The same stopping criterion ig applied to terminate the
program. Since the solution obtained in Table 6.4 is inferior
to that in Table 6.3, we conclude that the solution in Table
6.3 is the global optimum,

Comparison Between CRG and SUNMT Results

Both GRG and SUMT final results for the first and
gsecond sets of.starting values are respectively summarized
in Table 6.5a and 6.5b, There is approximately 6% difference
batween the global optimum values obtained by GRG and SUNT.
The difficulty persisted in CRG might have caused this diff-
erence., In the Lai's modified version of SUNMT which incor=-
porates the Hooke and Jeeves pattern search, the direction
of search is determined by a direct compariscn of two values
of the objective function at two points separated from each
other by a finite step. This requires a large number of
evaluation of functional values, thus increases the computing
time. However, such difficuliy as persisted in GRG can be
alleviated in SUNT, As far as the computing time is concerned,
GRG has an advantage over SUMT as shown in Table 6.5a and
6. 5b, In general, if some modifications in the main
program of GRG are provided to move each variable at about
the same rate, then GRG is expected to give us a further improved
soluticn which will converge to the SUMT solution with the

advantage of computing time.

6.2 EXAMPLE 2 : WEIBULL FAILURE TIME AND GENERAL REPAIR TIME

DISTRIBUTICNS
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Table 6.5a. Summary of GRG and SUMT final results for the first set of starting values (numerical example 1)

failure rate repair rate mean preventive scheduled preventive total St No. of +
maintenance time maintenance time cgsi f;i:raj.‘lEil i:e:‘::-.ion f,f;ﬁ}',;iﬁ")
ability o
Ay 8 Ag By (%Y By (tp)y (t,), (t5)5 T, T, 75 Cy Ag ;
starting point .005 .005 .005 .0k .04 SO 2. 2. 2. 500. 500. 500. 30581.35 .79422
ara .00291 .00191 .01050 .24468 24756 .49327 1.99783 2.00383 1.99506 500. 500, 500. 1602.89 .97093 23 .982
1
CRZ(using —=— and
13 e .00496 .00496 .00497 .51817 .L5978 .32864 ,.68480 1.41623 .= 499.98030 499.97747 499.68560 1515.12" .G7661 9 .523
1, as variables)
Fj s
SUrT .00843 .00645 .00797 .59134 .53683 .49054 ,98565 2.63292 ,51800 796.52 797.10 796.65 1423.15" . 97216 x=7 2.543
(3421)

# global cptimum obtained by GRG
#% gzlobal optimum obtained by SUNT



Table 6.5b.

Summary of GRG ard SUMT final results for the second set of starting values (numerical example 1)
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failure rate repair rate mean preventive scheduled preventive total system No. of execution
: maintenance time - maintenance ‘time cost avail- 4.0 o= time(min.)
ability :ion
Ay L Ay By o By (tp)1 (tp)2 (tp)3 T T, Ty Co Ag
starting point .GC5s . 004 .003 A 3 N . 2, 2, 1.5 400. 300. 300. i822.47 .g97247
GRG .00725 .C0133 .01217 .55654 .32418 « 59997 1.98492 1.99827 1.L5975 400.00013 300.00012 300.00054 1545.72 .97000 .14 714
GrRG{using 13;3 and
1 J .005 . 004 .003 .55400 .64723 .219<k 1.75832 2.45832 ] 400.00901 300.01158 300.06846 1683.65 .97720 9 502
—= @5 variables)
B3 s
SUNT .00708 .C0550 .00564% .L4670 40577 .L2692 1,01615 2.1678% .67?61&' 667.157 591.398 629.595 454,37 .97177 k=5 1.759

(2223)




Problem Statement

Consider the same configuration of the system as
considered in éection 6.1, Let Weibull fallure-time
distribution with scale parameter kj and shape parameter
aj and general repair-time distribution with mean corrective
maintenance time (tc)j be assumed for each unit of the jth
subsystem. Then, assumﬁtions 1, 2, and 5 are identically
made as in section 6.1, However, assumptions 3 and &% are
modified as follows :
3¢, Since the failure rats increases with time, for s > 1,

the corrective maintenance policy is such that the

replacement of each unit of the jth subsystem begins

h subsystem fails due to failure of both

only when the j
redundant units. Hence, the subsystem redundancy is
fully restored after the completion of the corrective
maintenance action.
hr, fThe same preventive maintenance policy as in section
6.1 is scheduled. The preventive maintenance action,
however, consists of replacing both failed and unfailed
units. Under this preventive maintenance policy, the
subsystem can be restored to its original good condition
even if each unit of it has a increasing failure rate
with time,
Then, using the same cost structure as in section 6.1,
for the known total mission time z and the known shape
pzrameter ., j=1,2,3, the problem is to determine the

scale parameter 1j' the mean corrective maintenance time
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(tc)j, the mean preventive maintenance time (tp)j, and the
scheduled preventive maintenance period Tj, for j=1,2,3,
which minimize the total cost of the system under the
constraint of the system availability requirement.

Problem Formulation

The values for N, nj. j=1,2,3, and z respectively given
by equations (6.1), (6.2), and (6.3) are also used in this
section with the following assumed values for the following

constants : Shape parameter ;
g, = 2 , j=1,2,3 (6.24)
System avalilability requirement ;

A, = .93 (6.25)

Cost coefficients for each subsystem ;

ay = 1.8 a, = 143 a3 = 2,
b1 = 200, b2 = 170. b3 = 250,
cy = o c, = 5 c3 = 5,
(6.26)
d1 = 2. d2 = 2.5 d3 = 3
uy = 4o, u, = 100, u3 = 50,
vy = 3 v, = L, vy = 2

Boundary values for each variable j
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By = 0001 D = 0007 , §=1,2,3
Ej = .5 Ps = 20, , §=1,2,3

(6.27)
G5 = .1 H = 10. , §=1,2,3
Ly = 50, My = 150 , §=1,2,3

By substituting equations (4.139), (4.140), (4.141),

(4.182), (4.143), and (4.144) with equations (6.2), (6.3),

and (6.24) into equations (4.122), (4.123), and (4.124), the

three cost components of each subsystem (Cd)j, (Cc)j, and

(Cp)j’ for j=1,2,3, are respectively given by

C,}). = a,. 1=(1-¢ Tjat +
(cg)y = ay & 1= )?)
b.
J
- - .
- _rlp'a - .T‘?‘ J

e 312 —(1-e 4 312
(tg)5(1~e )E A+ (5y) 5[1-(1-e )]

=1, 2, 3 (6.28)

ey 2
(CC}J - T -\ -t? [dr}(-tlc):]]
Poli(1me )% ]at
3
LT
(1-e 3 )%
y 4 F le 24 3 (6'29)
1500 i
Y R [ug(ty)y = vy
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where the valves for the cost ceefficients of each subsystem,
aj. bj' Cj' dj, uj, and vj, for j =1, 2, 3, are given by
equation (6.26). By substituting equations (4.132) and
(4.1044) with equations (6.2) and (6.24) into equation (4.1435),
the achieved availability of each subsysten, Aj’ j=1, 2, 3,

is given by
73 2t e 3 A
Ay = [0otm(1me )% at F 1= (1=e )< Jat +

2
-2:T. 5
(tp)j[l"(l"e J )d] ] ’ J =1, 2, 3

(6.31)

The total cost of the system, CT' which is a function of lj'

(tc)j. (tp)j, and Tj' for j i, 2, 3, is then given by

MW

C = “
T -

J [(cg)y + (c

where (Cd)j, (Cc)j’ and (Cp)j are respectively given by equations
(6.28), (6.29), and (6.30). Since the three subsystems are
in series, the achieved availability of the system, Ag, is

given by

= 3 6l 3
7_ Ag 3'15.1 Aj (6.33)

where Aj is given by equation ((.31).

Then, for the total mission time z=1500 hours and for
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the shape parameter aj =2, j=1,2,3, the problem is to

i o I
p’y’
minimize the total cost of the system, Copo given by equation

determine Kj' {tc)j, ( and Tj' for j=1,2,3, which

(6.32) under the constraint of the system availability requirement

Ag 2 A, = .93 (6.34)

with the boundary conditions for each of variables

0001 <« Aj < .0007 1 771,843
5 < (tc)j < 20. v 3=1,2,3
(6.35)
. < . 10, i=1,2,
1 = (tP)J = v d 3
50, < Tj < 150. yJj=1,2,3

Problem Defirition for the GRG Progsram

The problem in the GRG format is stated as follows

maximize - CT
subject to
93 - A, < O
(6.36)
A - 1., < 0

To use the GREG program, the individual variables are

described in terms of the array XC(j), j=1,2,-+, 12, i.e.,

Ay T Xxc(j) i 35132, 3
()5 = XC(3+3) ,571,2,3
(tP)j = KC(j+6) yd a2 4.3
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Tj = XC(j+9) » J=1,2,3 (6-3?)

Using these original problem variables, the objéctive function,
the constraints, the partial derivatives of the objective
function, and the partial derivatives of the constraints

are similarly defined as in section 6.1. The same parameter
values as specified in section 6.1 are used.

Problem Definition for the SUMNT Program

The problem in the SUMT format is stated as follows

minimize Co
subject to
g(j) =x, - .0001 > O ,§¥1,2,3
g(j+3) = .0007 - hj > 0 »3=1,2,3
g(J+6) = (t); - .5 > 0O »§=1,2,3
g(J#9) = 80, = (tc)j > 0 v 3=1,2,3 (6.38)
g(j+12) = (tp)j - .1 > 0 1 J=1+2,3
g(j+15) = 10. = (), > O  3=1,2,3
g( j+18) = Ty - 50. > 0  j=1,2,3
g(j+*21) = 150, =~ Ty > 0 551 ,2,3
g(25) = A, - .93 > 0
giat) = 1. =~ A, > 0

To use the SUMT program, Y(j), j=1,2,**', 12, is used

to describe the individual variables, i.e.,

A]- = X(j) ] j:1!2!3
(t); = X(3+3) . §71,2,3

(tp)j

i

I

X(j+6) y 3=1,2,3
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Tj = \{(j+9) ’ j == 1p 21 3 (6'39)

The same parameter values as specified in section 6.1 are
used. With these informations the problem can, similarly,
be defined in the SUMT format as in secticn 6.1,

GRG Results

A GRG solution for a set of starting valuecs, [11, *2'

Rt Kbdyn Chglys (das Ty Chdew Lhdas Tys By 73]

3’
= [.0002, .0002, ,0002, 2., 2., 2., 1., 1., 1., 100., 100.,
100.], is shown in Table 6.6a. This indicates that only

xj's are sensitive while others are remained unchanged.

This can be explained by the same reason as discussed in section
6.1, It is, therefore, highly procbable that this solution
might result in a false optimum. Since the same difficulty

as persisted in the previous section has been encountered,

the same approach as we did in section 6.1 will be followed
without repeating discussions. Using Il;— as variables

in place of 1.'3. the same set of starting points, [-Z Sé,

3 b (8)qe () (800 (20000 (8050 ($)50 Tys Ty 15]

= [5000. 5 5000., 5000, , 2oy 2vs Buw Lex Tos Ls0 1004, 100,

100.7], is tried. The solutions obtained and shown in Table

6.6b indicates much improvement. To test whether or not further
improved solutions could be obtained, another set of starting
points was tried. As we did for the first set of starting pointis,

we 1ried both methods. The solutions for a set of starting

values, [Ay0 doo Age (5000 (E)50 (B )50 ()y0 (B)o0 (b))
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.
TAURS 608, GRG 801 0i0n for the first set of siiling values (numsrioal exanple 2).
e liimanes the REMEDNUI Mimtemncs prted T SmnsNY cont of commective ol systes
Iteration J ability
e Ay ks b3 (%) (RlaR)y (t), (t), ()5 T Tz Ty (GG, (G (G)y (G Gy (o) (o, )y ¢ Ag

starting .0002  .0002 - .0002 2. 2, 2. 1. 1. 1. 100. 100. 100. 245.38 190.46 289.10 .237.59 -371.23 534.57 18545 431.16 2k0.58 2775.51 .93357
;oint .000215 ,000252 .000152 2, 2, Z2: 1. 1. 1. 100. 100. 100. 230.5% 160.69 301.51 285.21 588.02 L467.39 129.59 135,70 287.83 2611.38 .g2437
2 .000217 ,000257 .000191 2. 2, 2: s 1% 1. 100. 100. 100. 238.32 174.52 294,91 259.86 UL77.61 502.95 157.43 282.80 261 29 2663,7:  ,92934
‘3 .000217 .0C0257 .000191 2, 2, 2a st . . 1. 100. 100. 100. 239.61 176.61 293.87 255.79 462.61 508.68 162.13 307.32 257.10 2663.71 .93001
4 .G00217 .000257 ,000191 2. 2.00003 2. 1. .. 1. 1. 100. 100. 100. 239.59 176.57 293.91 255.85 462.90 508 47 162.05 30¢.87 257.25 2663.58 .92909
5 .000217 .0C0257 .000191 2. 2.C0004 2. 1. 1. .~ 1. 100. 1C0. 100. 239.60 176.56 293.90 255.83 L462.81 508.53 162.08 307.00 257.21 2653.56- .93000
é .000217 ,000257 .000191 2. 2.00004 2. 1. ° 1. 1. 100. 100. 100. 239.60 176.58 293.9C 255.83 462.79 508 55 162.08 307.04 257.19 2653.56 .53000
7 .CC0217 .000257 .C00151 2. 2.00004 2. 1. 1. ‘1. 100. 100. 100. 239.60 176.58 328.36 255.83 L462.78 339.47 162.08 307.04  391.26 2459.60 93402

8 .000217 .000257 .000159 2. 2.00004 2. 1. . 1. 1. 100. 100. 100. 239.60 176.58 310.25 255.83 &62.78 422.95 162.08 307.04 7322.48 2659.59 .93206
9 .C0C229 .C0C284 .000158 2. 2.00006 2. 1, 1, 1. 100. 100. 100. 232.16 186.91 312.05 279.81 535.78 L41L4.15 135.31 197.78 329.51 2626.81 ,c27:9
10 .000229 .000285 .000158 2, 2.00006 2. 1, - 1. 1. 100. 100. 100. 235.72 171.35 311.36 268.13 501.13 K17.k6 148.08 246,53 326.85 2626.71 .93002
11 .000229 .000284% .000153 2. 2.00007 2. 1. .~ 1. 1. 100. 100. 100. 235.73 171.36 311.36 268.12 501.10 417.48 148.09 246.57 326.8L 262448 .92002
12 .000229 .0C028% ,000158 2. 2.00008 2. 1, . 1. 1. 100. 100. 100. 235.73 171.36 311.36 268.12 501.10 417.48 148.09 246.57 326.84 2£26.46 .93002
13 .000229 .000284 .000158 2. 2.00008 2. 1. L 1. 100. 100. 100. 235.72 17:.35 311.35 268.1k 501.14 417.49 148.06 246.50 326,83 2626.63  .93001
14 -000229 .000284 .000158 2. 2.00008 2. 1. ° 1. *° 1. 100, 100, 100. 235.72 171.36 311.36 268.13 501.12 417.49 148.07 246.53 326.83 2625.52 .93002
15 -000229 .000284 .0C0158 2., 2.00008 2. 1. . 1. * 1. 100. 100. 100. 235.72 171.36 311.36 268,13 501.12 b17.49 148,08 245.54 326.83 2624 62 . 93002
16 -0C0229 .00C284 .000158 2. 2.06008 2. 1. - 1. . 1, 100. 100. 100, 235.72 171.26 311.36 268.13 501.12 417.L9 148,08 246.54 226.33 2626.62 .93002
17 .C00229 ,00028% .000158 2, 2.00008 2. 1. 1.+ 1. 100. 100. 100. 235.72 171.36 311.36 268.13 501.12 b17.49 148.08 246 34 326.83 2%26.62 ,93002

Final .C00229 .000284 .000158 2, 2.00008 2. 1. - 1. 1. 100. 100. 100. 235.72 171.36 311.36 268.13 501.11 417.49 148.08 2L46.5% 326.83 26256.€2 .93002




Table 6.6b. GRG solution for thefirst of starting values (numerical example 2) using =7
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j.s as original pr oblem variables

scale parameter mean correcti ve mean preventive scheduled preventive cost of deBign cost of corrective cost of preventive total systenm
maintenance t ime maintenarce time maintenance period maintenance maintenance cost avail-
Iteration ability
No. " =
* b Ay (%edy (%) ()5 () (), (£)); 1y T, T (Cady (Cqlp (Cq)y (C0)y (L), (C)y  (Cp)y (B, (C))3 o A,
starting (5000.)+ (5000.) (5000.) i
Foint .0002 . 0002 . 0002 2. 2. 2. S 1. 1, 100, 100, 100, 245.38 190.46 289.10 237.59 371.23 534.57 185.45 U4B1.16 240.S8 2775.51 ,93367
1 (4999 99992) (L999 99972) (5006.00004) :
.00020 1.34713 .87725 .5 41158 .1 26447 100.02010 100.05866 1060.02232 504,01 519,08 772.79 27.70 23.15 33.31 4.99 29.83 14.96 1733.41 .98259
2 (£599.99525) (4999.593969) (LS59. 59998) 7 i
\0ciz0 .0 ’o -C0C20  1.27891 .9233% 1.09035 .24294 .1 .32527 100.02289 100.06164 100.02678 358.77 310.07 284.59 77.29 95.45 687.22 4.99 29.89 101.47 1552.74 . 155585
3 (4999.95554) (‘4999 99902) (‘6';99 99991) "
; Ec 26 0C020 1,16180 .9803% 1.,07295 .1 of i 100.02842 100.06913 100.03551 386.68 301.94 455,02 59.89 103.29 146.85 L4.99 29.88 14,96 1453.38 ,G6394
L (4999 9 5 J (4999 99961) (4999.99590)
23 .00020  1.16340 .97807 1.06097 .1 oy W | 100.02863 100.06948 100,03620 354.79 318.09 4s1.90 80.15 8B8.54 149.99 4.99 29.89 14.96 1493.29 ,95809
5 (4999.63%323) (h199 999‘1) (h97? 9799u) 5
.Clozo 00020  1.16387 .97741 1,05751 .1 +1 .1 100.02370 100.06959 100.63629 354.75 318,16 L4s52.39 BO.18 88.48 149,49 4,99 29.89 1L.96 1493.29 ,95811
Pinal (4999.65%33) (%999 99951) (4939.59550)
.G Soce .00020 1,16387 .97741 1.05751 .1 d 1 100.02870 100.06959 100.03629 354.70 318.24 Ls2,91 80.21 88.42 148.97 4,99 29.89 1k4.95 1493.29 ,96812

* Pigures in parentheses respectively represent ~;1,—5 values

%
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Ty, T, T4 = [L00015, .00015, .00015, 2., 2., 2., 1.5, 1.5,
1.5, 110., 110., 110. }, and a set of converted starting

. i wj.:_, ,1__ ,_.1_ oL f N A
leues, f_ }Ll’ XQ’ h:}. (tC)l’ (‘-’c_)e! (tC}B, (tpjlr {’Lp}?l (Lp)"jr
Tyr Too T3] = [6666.667, 6666.667, 6666.667, 2., 2., 2., 1.5,

1.5, 1.5, 110., 110,, 110. ], are respectively shown in Table
6.7a and 6.7b.. The same stopping criterion given by equation
(6.21) is applied to terﬁinate the progran. The solutions
obtained in Table 6.6a, 6,7a, and 6.7b are inferior to that
obtained in Table 6.6b. Hence, we conclude that the solution
obtained in Table 6.6b is the global optimum.

SUMT _Results

To compare ‘the SUMT results with GRG results, the
identical two sets of starting values as used for the CRG
were tried. The SUMT results for the first set of starting
values and for the second set of starting values are
respectively shown in Table 6.8 and 6.9. Five (k=5) iterations
for S-function minimization and 2252 calculations for the
objective functional values, and k=4 iterations and 1729
objective functional value calculations are respectively
required for the first and second set of starting values
to reach the optimal solutions. In both cases, when the
number of cut-down slep-size operation is 4, the minimization
of S-function at each k-lilteration is terminated and the
final stopping criterion used to terminate the program is
Eﬁlouj. Since the optimum solution obtained inkTable 6.9

ig somewhal inferior to that in Table 6.8, we conclude that



Table 6.7a.

GRG solution for the second set of starting values (numerical example 2)
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scale parameter mean corrective mean preventive cost of design cost of corrective cost of preventive total system
SRt ive maintenance time maintenance time maintenance maintenance cost i;)?ﬂ;y
b A % ay () Ggiindy (B, (108 T, m el BRE (o), (0 (G, (g, (& (cy ey G &,
starting .00015 .0C015 .00015 2. 2 2, 1.5 1.5 1.5 110. 110. 110, 257.S4% 198.71 302.17 195.51 305.49 439.91 297.32 761.5¢ 380.77 3139.36 .93515
poi-nb .000166 .00C196 .000158 2. 2. 2. 1.5 1.5 1.5 110. 110, 110. 251.53 185.85 298.‘55 216.05 393.45 462.62 257.38 U496.2¢ 355.26 2916.95 .9341
2 .000179 .000227 ,000164 2, 2, 2, 395 235 1.5 110. 110, 110, 238.16 167.92 290.43 260.57 529.06 514.68 179.41 195.57 299.54 280%.36 .92527
3 .0C0185 .000240 .000167 2. 2. 2. 1.5 1.5 1.5 110. 110. 110. 241.84 173.24 292.75 246.06 u4B6.88 U459.60 200.04 273.79 315.27 2772.92 .92975
L .000185 .000z32 .000129 2, 2. 2, 1.5 1.5 1.5 110. 110. 110, 244.61 168.98 312.69 238.79 520.55 375.58 216.00 210.9z LsS6.69 2744.80 ,93C38
L .000165 .00G28S5 .000127 2. 2. 2. 455 25 1.5 110: 110. 110. 244.57 168.22 31L4.85 238.9L 526.67 362.66 215.73 200.57 L472.53 27uL.66 .93033
6 .000186 .000285 .000126 2. 2. 2. 15 2.5 1.5 110,7913110. 110. 244,31 168.54 314.31 239.79 52L.06 365.86 214.24 204.9- L46B8.60 2784.64 .93033
Final .000186 .C00285 .000126 2. 2. 2, 1.5 1.5 1.5 110. 110. 110, 244,18 168.57 314.44 2L0.23 523.86 365.12 213.48 205.25 UL69.51 2744.64 3038
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Table 6.7b. GRG solution for the second set of starting values (nunerical example 2) i using ﬁ;: as original problem variables
: 3 i

scale perazeter mean correct ive Eeéan preventive scheduled preventive cost of design cost of corrective cost of preventive total
maintenance time ° - malntenance time maintenance period rairtenance mainterznce cost
Jzeraticn :
9. . ~ c
L Ay Ay %)y (%) . (%) () (%),  (z)), 9] T, T3 (egdy  (cy), legdy  (egdy ey (el)y (o)) (cp),  (S), c-
searting (66€£.447)° (6666.667)  (6€66.667) L 2 ; -
oint .CCois .COG15 .000i5 2. 2. 2. 1.5 1.5 1.5 110, 110, i10. 257.9% 198.71 302.17 195.51 305.45 439.%1 297.31 761.56 3GZ.77 3139.24 .S331
1 (6£66.£4690) (6666.€£671) (6666.66595) ' EE
00015 .GLo1s -06015 1.57330 1.26411 .94284 1.01153 .2064% .88541 110.01975 110.05653 110.02097 364.79 $53.36 759.5% 61.66  19.:1 27.51 B86.57 31.17 51.60 1£59.31 .33C1e
2 (6656.6£52 6666.66C63) (6666.66650 g
.ucozg) ? .0GLi5 .oacgs) 1.38512 1.02166 ,6B208 .72709 .1 +58367 110,02922 110.07091 110.03138 362.51 414.70 761.48 66.9% 42.38 27.51 6B.1& 31.20 $0.58 1736.82 .37:13
3 (5556.6££72) (6666.66652) (6666.66681 .
.comsH .ocais; - .oaczs) 1.264018 1.04397 1.11245 ,29770 .1 +34691 110,03930 110.07706 110.04201 437.08 321.08 342,94 44,17 0.3 431.67 5.21  31.20  15.67 1550.€1 .54¢32
& (£665.65472) (6666.55651) (6666.65675) 7152
.occfs .cc::s} .oooxg 1.17902 1,05172 1.200031 .1 3 = 110,06677 110.08305 110.05090 386.07 327.95 449.30 65.36 64,23 163.5% 5.21  31.21 15.62 1523.6) .571%2
1 (E£86.6£570) (6666.66651) (6666.66673) 3 —
L00015 -GO01S «06015 1.21628 1.04674% 1.11267 .1 1 = 110,04839 110.0853% 110.05256 377.90 329.06 469.7% 71.38 B83.95 141.B1 S.21 31.21. 15.62 1525.62 .S7135
6 {6666.65£69) (6666.55550) (£666.66£72) - Ao
L0015 LGGILS .00G15 1.23000 1.06548 1.09493 .1 o % 1 110.04907 110.08639 .110.05349 374.89 329.46 478.35 73.37 83.63 133.73 s5.21  31.21 15.62 1525.51 .572:0
7 E665.6££59) (6666.66650) (6666.66672) e
g .GOU15 .ooo;s” L00015 1.23542 1.0L491 1.08920 .1 o1 | 110,04936 110.08685 110.05392 373.56 329.63 481.33 76.27 £3.50 131.16 S.2% 1.21  15.62 1525.4% .572Cs
8 6666.6£4£3) (6666.65550) (6666.65672) w2
- .G0u1S .oaafsl .00015  1.23725 1.04464 1,06576 .1 .1 % ¢ 110,04956 110.08717 110.05422 372.95 329,71 482.55 74.69 83.53 130.11  5.21  31.21  15.62 1525.48 -Gzt
Firal (6655.65563) (£666.£5550) (6666.66572) . e
.5GO15 L00aL S .00015 1.23725 1.04464 1.08576 .1 o1 .1 110.04956 110.08717 110.05422 372.44 329.77 4B3.52 75.05 B3.39 125.28  S.21 31.20 15.62 1525.62 .S725%

® Ppizures in parentheses respectively represent r};—.— va lues
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Table 6.8, 'SUxT solution for the first set of starting values (numerical example 2)

cumulative Jo. valus of scale rarameter mean corrective mean preventive &chaduled preventive cost of design ccst of corrective cost of preventive total 3 susten
of f-value maintenance time maintenance time maintenance period rmaintenance maintenance cost funs*®iznal avalil-
iteration calcuhti:nﬂ up Ty value sbilisy
i zion o —
Er U ReNCIE i A, A (g)y (8dy (%), (%)), (2, (v, T2 Ty (eg)y  (Ggdy (Cedy Gy (G, (Sly (e (e, (e, e 4
.00015 .00015 .00015 1.5 1.5 1.5 1. 1.  IE 110. 110. 110. :
1=1z1al .060015 .0G0015 .000015 .15 .15 .15 1 =1 ol i 31, 11.
step~size i
stating .01912 L0002 G062 .co02 2. 2. 2. 1. 1. 1 1co. 100, 100. 245.38 190.46 289.10 237.59 371.23 S3k.ST 185.45 4B1.26 260.58 2775.51 34E9.C0 .32
"'°;‘J'.' 501 -01912 .00623k .000234 .C00234 1.66452 1.66L52 1.66B52 .77635 .77635 .77635 124.602 131.185 132.233 252.2) 195.95 295.97 212.20 335.27 LB5.12 29.79 S2.80 24.75 182£.07 26bi.65 .33712
2 813 -00239 .0002k9 ~ .00023% .00023% 1.86452 1.66452 1.66L52 .77635 .77635 .77635 124.602 131.185 132.233 247.70 195.95 256.97 220.89 3356.27 LBS.12  2k.25  52.80 24.75 1E24.B1 1565.53  _g33%1
3 1314 -00060 .000268 .GO0253 .000215 1.27503 1.16458 1.23386 .39700 .39700 .39700 140.849 143.266 143.296 278.31 235.59 356.68 138,93 174,76 257.35 2.72 8.30 B.30 1461.29 1477.97 .§5172
[ 1769 -00007 000305 .0C0253 .000215 1.27503 1.16468 1.23386 .39700 .39700 .39700 140.849 143.268 143.296 265.80 235.59 356.68 169.12 174.76 257.65 138 8.30  B.30 1u461.57 1L43.5% .§5505%
2252 -00C02 .000305 .C00253 .000215 .67692 1.16468 .50380 .73807 .24353 .55048 140.845 135.946 143.296 L07.40 236.57 429.9% 62,02 173.66 138.26 2.83  7.93 11.86 1450.45 1L50.95 .9£311
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Table 6.9. SUKT solut ior for the second set of starting values (numerical example 2)

value - scale ;erazeter mean corrective mean preventive scheduled rreventive cost of design cost of correcsive ccst of preventive
of * maintenance time zmaintenance time raintenance time mainienance maintenance

- %o it tion k k - - -
‘ o iteration A 3, Ay $5.); ), (te,j (tp)l (tp)z (tp)J Ty T, Ty (Cg)y (S (cq); () (c), (ue)3 (cp)y (Cph (Eplj Cr Ay
.00025 .S0025 .G0025 1.5 1.5 1.5 1.5 1.5 1.5 110, 110, 110.
.00G02% .C0U025 .000625 .15 15 «15 W15 .15 «15 11. i1. ii.
szarting .C1156 .0003% .00O1lS .CGO1S 2. 2. 2. 1.5 1.5 1.5 110, 110, 110. 257.9% 198.71 302.17 195.51 305.49 L39.51 297,32 761.56 380.77 3139.35 393L.00 L5315
o 01 101156 .000206 .000206 .000206 1.66452 1.66452 1.66452 1.16452 1.16452 1.16452 134.602 136.161 134,255 259.2% 201.45 305.65 200.11 313.69 &459.91  39.14 92,60 S1.47 1913.3% 2326.33 .5-023
2 752 .G0150 .000222 ,00C205 .000206 1.66452 1.66652 1.66652 1.16852 1.16452 1.16452 134.602 136,161 134.255 256.09 201.45 305.65 209.65 313.69 Lk5.°1  30.5% 92.60 51.%7 1909.03 1955.54 .§3%5§
; 129% ,03037 .00G316 .0G0262 .000237 1.25019 1.1725G 1.16948  .39780 59780  .59780 144,319 24L.B9S 1kL.415 271.16 232,49 353.66 145.17 180.8) 245.13 1.35 9.7 7.58 1L55.6% 16£2.67 .955i2
i 1729 .G060S .000379 .050262 .009237 1.25019 1.1729% 1.16946 .59760 .59780  .59780 1L4.319 144.895 14b.k15 260.95 232.49 358.66 159.26 180.83 205.33 4o 5.7 7.96 1455.55 1456.72 .5a3LS
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the solution obtained in Table 6.8 is the global oplimum.

Gomparison RBetween GRG and SUMT Results

Both GRG'and SUMT final results for the first and second
set of starting values are respectively summarized in Table
6.10a and 6.10b. There is approximately 2.9% difference
between the global optimum values obtained'by GRG and SUMT.
This differencé might have been caused by the difficulty
discussed in section 6.1. Since other comparisons between
the results can, similarly, be made as was done in section

6,1, these will not be repeated in this section.
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Table 6.10a. Summary of GRG and SUMT final results for the first set of starting values (numerical example: 2)
scale parameter mean corrective mean preventive scheduled preventive total system No. of execution
mazintenance time maintenance time maintenance period cost avail- iteration time(min.)
ability
Ay 2, Ay By (%) (%) (8, (¢, (t5)4 T, T, T, Cp Ag :
starting point .0002 . 0002 .0002 2, 2. 2, 1. 1. 100, 160. 100. 2775.51  .933567
GRS .000229 .000284 .000158 2. 2.00008 2. 1. 1. 100. 100, 100. 2626.62 . 93002 17 1.061
GRS (using r%:; .
J . 0002 .0002 . 0002 1.16387 97741 1.05751 .1 .1 100.02870 100.06959 100.03629 1493,.29 . 96812 5 439
as variables)
SUFT -000305 .C00253 .000215 .67892 1.16468 .90380 .73807 24353 .55048 140.849 135.946 143,296 1450.45"" 96311 (z:s 1.681
2252)

*

&

glotal optimum obtained by GRG
global optimum obtained by SUMT
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Table 6.10b. Summary of GRG and SUMT final results for the second set of starting values (numerical example 2)

scale parameter mean corrective mean preventive scheduled preventive total system No. of execution
maintenance time maintenance time maintenance period cost avail- teration time(min.)
ability
Ay Ay Ay %)y (%) (%)3 (), (2, (tp), Ty T, T4 Cp Ag _
starting point .0001§ '.00015 .00015 2, 2. 2. 1.5 1.5 1.5 i10. 110. 110. 3139.36 .93515
GRS .000186 .000285 .000126 2, 2. 2, 1.5 1.5 1.5 110. 110, 110, 2764.64  .93033 6 LB13
= A 1
GRG(using :\—,—s—
i -00015 .00015 .00015 1,23725 1.04464 1.08576 .1 o1 s 110.04956 110.08717 110.05422 1525.48 57204 8 L2
as variables)

suMT -000379 .000262 .000237 1.25015 1.1729% 1.169%8 .59780 .59780 .359780 1kk.319 144,895 144,415  1455.56 .5LS4s k=t 1,292
: (1729)
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Chapter 7

DISCUSSTION AND CONCLUSIONS

This study deals with the optimal'availability allocation
problem for maintained systems. The introducition of avail-
ability a2s a single measure of system effectiveness is of
primary concern in this étudy. Since availability reflects
both the reliability and maintainability of a system, it appears
to be an appropriate measure from an engineering design and
management viewpoint,

Availability models are developad for systems which
contain subksystems in series where each subsystem has identical
units in paralliel. The definition of availability employed
in this study assumes a steady state condition. The models
developaed herein enable us to assume various probability
density functions for failure and repair times, whereas the
normal Markovian approach uses only exponential fallure
distributions.

In developing the availability models, the corrective
maintenance policy assumed 1is such that repair or replacement
for the subsystem begins only when the subsystem fajils due
to‘the fajlure of 2ll redundant units. This assumption
requires the suboystem to be fully restored after the completion
of corrective maintenance. This pclicy, however, is applicable
to thoze subsystems where the subsystem's output is monitored.
For those subsystems in which the status of individual units

can be monitored, some variations of the corrceiive maintenance



policy may also be considered. Under a policy such as to
repair each individual unit as it fails, the cost associated
with correctiée maintenance is expected to increase due to
the increased frequent maintenance. Hence, the latter policy
might be preferrable only if the reduction in the costs
associated with both design and preventive maintenance exceeds
the increase in the cost‘of corrective maintenance. In this
thesis, however, only the former policy has been considered
because it seems to be preferred from an administrative point
of view and seems to be the case most often encountered in
practice,.

The preventive maintenance policy assumed in this study
is more realistic than strictly periodic maintenance policy
in that preventive maintenance action for each subsystem
need not necessarily be performed every Tj' Thus, the number
of actual preventive maintenance actions under this policy
is expected to be less than that under a strictly periodic
maintenance policy. In this respect, the cost associated
with preventive maintenance will be reduced with this policy

The proposed model is inadeguate if a sequentially
determined preventive maintenance policy is assumed. The
development of model with a segquentially determined preventive
maintenance policy seems to be much more complex and is not
attempted in this study. However, if such a study is
condﬁcted at a ister date a similar conceptual approach used
in this study may be employed.

Under both corrective and preventive maintenance policies

145
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assumed in this thesis, each subsystem redundancy can be

fully restored after the completion of either corrective or
preventive maintenance. These assumptions enable us to develop
availability models which reflect the effects of both corrective
and preventive maintenance as proposed in this thesis, 1f
subsystem redundancy cannot be fully restored either by
corrective or preventive maintenance, the problem of developing
availability models analytically is much more complex. The
simulation approach, however, is expected to solve this type

of problem and is suggested for further work.

The number of repairmen assigned to each subsystem is
assumed to be either one or equal to that of redundant units.
It is possible, however, to develop models under the assumption
of various number of repairmen.

The availability equations contain a integral term.

If exponential failure distribution is assumed, this can be
evaluated analytically with the use of binomial theorem,
However, when the failure time distribution is other than
exponential, it is difficult, if not impossible, to evaluate
it analytically. Therefore, numerical integration by the
use of trapezoidal rule is employed to evaluate this integral
term in numerical examples.

In numerical examples, the number of redundant units
assumed for each subsystem is two, but different number of
units for each subsystem can be assumed. Although this is
treated as a given constant, future study on this subject

will be able to treat it as a variable.
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The cost function for the system consists of three cost
components : the cost for design, the cost for corrective
maintenance, and the cost for preveniive maintenance. Each
of the individual cost components are interrelated and are
an approximation of real world situations. In numerical
examples, a typical set of constants 1s assumed for the cost
coefficients, however, they can be estimated if operational
data is available for any particular system.

Both GRGC and SUMT are employed to solve availability
allocaticn problems, The results obtained by these two
methods are compared, In GRG, the direction of mevement
is along the projected reduced gradient and the magnitude
of movement for each variable is determined by the magnitudes
of the partial derivatives of both the objective function

-and the constraints. Due to the great differences between

the values of the partial derivatives, only some variables
having large values of partial derivatives have significant
movement to improve the value of the objective function while
the others with small values of the partial derivatives remained
unchanged, One possible alleviation from this difficulty

is to employ the inverse of those variables having large values
of the partial derivatives as wvariables in the problem.

This, scmetimes, enables us to lessen the difference between
the values of partial derivatives. As shown in the numerical
examples, this method has helped to obtain improved solutions,
however, fundamental alleviation from this type of difficulty

g8till remains unsolved. In Lei's modified version of SUMT
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which incorporates the Hooke and Jeeves pattern search, the
direction of search is determined by a direct comparison of
two values of the object function at two points. This requires
a large number of evaluations of the functional values, thus
increasing the computing time.

The availability models developed in this thesis are
more general and extensive than any others developed in the
prast in that they reflect the effects of both corrective and
preventive maintenance. This study provides the basis for
a procedure to allocate the availability parameters to the
individual units of the subsystem, The availability allocation
is treated as a cost minimization problem, subject to the
constraint of satisfying the system availabllity requirement.
This allocation technique is valuable in the early stages
of maintained system design. This technigue is also useful
in the latter stages of system design when modifications and

improvements for the initial specifications are reguired.
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APPENDIX 1

Al.ll GLOSSARY COF TERMS IN RELIABILITY AND MAINTAINABILITY
This glossary is intended to clarify those technical

terms and definitions used throughout this thesis and other

related literatures on reliability and maintainability.

These terms are defined in [17, 63, 75, 847.

Active Repair Time

That portion of down time during which one or more
repairmen are working on the system to effect a repair.
mhis time includes preparation time, fault-location time,
fault-correction time, and final check~out time for the system.

Chance Fajilure

A chance failure is a failure which occurs at random
within the operational time of & system after all efforts have
been made to eliminate design defects and unsound units, and
before wearout becomes predominant.

Dependability

According to Peterson [70], dependability accounis for
relisbility, maintainability, and alternate operaticnal modes.

{ Tﬂe méthematicai'defznition of dependability can be written as
D =R+ M(1 ~R) (A1.1)

where D is +he dependability which is the probability that a
gystem's mission will be successfully completed within the

mission time tl' provided that a down time per failure not
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exceeding a given time t2 will not adversely affect the
overall mission. R is the reliability which is the probability
that a system will operate without failure for the mission
time t,. M, is the operational maintainability of the system
- the probability that when a failure occurs it will be
repaired in a time not exceeding the allowable downtime tso
Down Time

The total time during which the system is not in accepta-
ble operating condition. This can be subdivided into active
repair time, logistics or supply time, and wait or administra-
tive time.
Failure

The iﬁability,qf a system to perform within previously
specified limits.

Tailure Rate

' The failure rate or hazard rate r(t) associated with
the random variable T is defined as
£(t)

(3] = — - 1.2
E e (41.2)

where f(t) is the pdf of T and R(t) is the reliability function.
To interpret r{t), consider the conditional probability, i.e.,
the probability that the system will fail during the next &t
time units, given that the system is functioning properly at
time t. Applying the definition of.condifional probability,

we may write this as



Pt <7< t+ 6t)

P(t €T <1t + 8t |D>1t) =
P{T > t)

jE+6t f(x)dx sLi(e)
= = (A1.3)
P(T > %) R(t)

where t < ¢ < t + 61T,

For small st and supposing that f is continuous at O+. the last
expression in equation (Al.3) is approximately equal to &tr(t).
Thus, §tr(t) represents the approximate probability of failure
pceurring between time t and t + 0t. Note that the pdf of T,
f, uniquely determines the failure rate r(t), or conversely,
r{t) uniguely determines the pdf f by the following equation i

~j§ r(s)ds

£(t) = r(t)e (AL.4)

Logistics or Supply Time

That portion of down time during which maintenance is
delayed solely because a required item is not immediately
available.

Mean Time Between Failures (MTBF)

The total measured operating time of a population of
equipments divided by the total number of failures within the
population during the measured period of time, Alternatively,

mean time between failures of a repairable equipment is
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defined as the ratio of the total operating time to the total
number of failures. The measured operating time of the
equipments of the population which did not fail must be
included. This measurement is nermally made during that
period of time between the early life and wearout failures,.

In the case of exponentially distribution time between failures
this ratio is the reciprocal of fallure rate.

Meam Time to Failure (MI'TF)

The measured operating time of a single piece of equipment
divided by the total number of failures of the egquipment during
the measured period of time. This measurement is normally
made.during that periodhof time between the early life and
wearout failures.

Mean Time to First Failure (MITEF)

The average time to first faillure of several equipments.
It is used to determine the apparent approach of the equipment
life characteristic to its random failure rate and is
accomplished during the manufacturing phase of a progfam.

Mission Time

The period of time in which a device must perform specified
nission task in a specified environment.

Lime

Operating
The time during which the system is operating in a manner

acceptable to 1the operator. This includes the time when the

operator may be somewhat dissatisfied with the manner of

operation, but is not sufficiently dissatisfied to shut the
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system down and request repair action.

Operational Readiness

The probability that a product will perforn satisfactorily
at any point in calendar time.

Probability of Survival

The probability of a given system of performing its
intended function for the given Use Cycle.

Redundancy

The existence of more than one means for accomplishing
a given task, where all means must fall before there is an
over-all failure to the system. Parallel redundancy applies
t0 systems where both means are working at the same time to
accomplish the task, and either of the systems is capable of
handling the job itself in case of faillure of the other system.
Standby redundancy applieé to a system where there is an
alternate means of accomplishing the task that is switched
in by a malfunction sensing device when the primary system
fails.

Repair Time2

The time measured from the beginning of correction of
a malfunction to the completion of such correction. It is
ascumed that the cause of malfunction is known, Repair time
ig distinguished from repair effort which is measur=sd in
man-hours.

Sysiem Effectiveness

A measure of the degree to which a system can be

expected to achieve a set of specific mission requirements,
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and which may be expressed as a function of availability,
dependability, and capability.
Uptime

That elements of active time during which a system is
either alert, reacting, or performing a mission.

Uptime Ratio

The gquotient of uptime, divided by uptime plus downtime.

wWait or Administrative time

That portion of down time not included in active repair
time and logistics or supply time. This includes both
necessary administrative actions and unnecessarily wasted time.
Wearout

The process of attrition which regults in an increase
of the failure rale with increasing age.

Wearout Faillures

Those failures which occur as a result of deterioration
processes or mechanical wear, and whose probability of

occurrence normally Jincreases with time.

Al.2 MARKGV PROCESSES
When a seguence of experiments or trials constitutes
a Karkov process, it is assumed that the outcome on any

trial depends on the outcome of the directly preceding

trial, Hence a conditional probability associated with every
pair of outcomes is regquired to be introduced. Space and

time concepts are also needed to be introduced,. For

example, we may define the states of a machine as operating
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or failed, and consider hcw transitions are made back and

forth from each of the possible states. It is possible to
consider processes discrete in both space and time, processes
diserete in space and continuous in time, and processes
continuous in both space and time. Most reliablility and
availability problems are of processes discrete in space

and continuous in time. The important feature of a Markov
process is that the future states of the process depend only
on'its immediate past history, therefore we say that there is

a lack of memory. If the conditional transition probability

is constant, a process is called statioary. If the conditional
probabilities vary with time, a process is called non-stationary
or-non-Markovian. To apply Markov processes in the formulation
of reliability and availability models, exponential distribution
is assumed for failure times. This assumption enables us

to have a constant failure rate, thus a lack of memory property
of a Markov process is satisfied.

To illustrate the use of Markovian approach, the
reliability function for a two-unit redundant system given by
equation (4.33) is obtained below by applying Markov process
[31]. Under the same assumptions assumed in section 4.3, the

possible states of the system are defined as

state 0 ¢ both units operating
state 1 ¢ one unit failed and is not repalired, the
other operating

state 2 1+ both units failed.
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The Markov graph for this system is shown in Figure Al.1.

The transition matrix in this case is

0 1 2
¢ 3
0 1=-21d% 2idt 0
state 1 0 1-Adt Adt (A1.5)
2 | o 0 1

To develop the system of differential eguations we must

first enumerate the probabilities of being in each state at

time t+dt.

These are
P4 (t + dt) = P, (t)(1 - 2id%)
Py (t,+ dt) = Py (t)(2ndt) + P (£)(L - rdt) (A1.6)
P, (t + dt) = Py (t){ndt) + Pz(t)

where Pi(t) represents the probability of being in ith state

at time t. From equation (A1.6), we obtain

Py(t) = ~2aPy(t)
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N,
= -
—
ot
g
!

= 2AF,(t) = APy (%) | (A1.7)

Py(t) = APy (%)

1 (

where P;(t) denotes the first derivative.
If the system is in state 0 at time 0, the initial conditions

become
Po(0) =1, P (0) =0, P,(0) =0 (a1.8)

Taking Laplace transforms of equation (A1.7) we have

(s + 20)qq(s) w
~2rgg(s) + (s + x)a (s) = 0 (A1.9)
—kql(s) + sqz(s) = 0
Solving equation (Al1.9) for'qz(s) we obtain
2k2
q,(g) = (A1.10)
= s{s + x){s + 2)) -

By partial fraction expansion
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+ (A1.11)
S+ SO

o1
q,(s) m-—s— -

Taking inverse transforms of qz(s) gives

Po(t) =1 - 2e™F 4 o7ME

(A1.12)
Therefore, the reliability of the system at time t is
R(t) =1 - Pz(t)
& -\t -2)0t
= 2e - e (A1.13)
Al1.3 THE TRAPEZOIDAL RULE
let y = f(x) be a function defined between X = a
and x = b. Now divide the interval a < x < b inton
subintervals by the poiﬁts 8 <X <X, <ttt <Xy g <Xy <
vee <X < b and set
Xy = Xy v Xy (AL.14)
If we consider the following sum
n . _ B
5 f‘yijbxi (A1.15)

i=1
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whgr?_?i be any POint between X4 and X then as the number
of iﬁtervals n approaches infinity in such a manner that all
the lengths of the intervals 65Xy approach tero, the quantity
given by equation(Al.15) approaches a limit.. This limit

is called the definite integral of f(x) from a to b and is

denoted by
b ra
ja f(x)dx _ (AL1.16)

Equation (A1.16) can be considered to be the area lying
between the curve f(x) and the x axis, and between the lines
x=a and x=b. 1f the function f(x) is éufficiently simple
that its antiderivative F(x), whose derivative F'(x) is equal
to f(x), can be determind analytically, then equation(Al.16)

can be avaluated by using the following equation :
2 f{x)ax = F(b) - F(a) (A1.17)

However, if it is difficult or impossible to find the F(x)
analytically, as is often the case, it is necessary to employ
the trapezoidal rule or some other numerlcal method of appro-
ximaticn to evaluate equation (LLe1B), Such methods are
guite natural and useful when digital computers are available
(691,

The numerical integration by the use of trapezoidal
rule can be made by dividing the interval a to b into n egual
parts of length ox = (b-a)/n, erecting an ordinate line to

the curve at each of the points of division, and connecting
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the end points of these ordinate lines to form trapezoids,
g5 in Figure Al.Z2. The areas of n trapezoids, Al. A2 e,

An' are
A, = Ff(a) + f(xl)]éx

Ay, = 3[f(xy) + £(x,) Jox (A1.18)

A, = 3f(x,_y) + £(b) Jox
The sum of the areas of n trapezoids, A, 1is

A=Ay + Ayt oo A

it

sx[f(a)/2 + f(xl) + f(xz) + e f(xn_l) + £(b)/2]
(41.19)

This can be seen to approximate the area under the curve,
in other words, this approximates the definite integral of
f{x) between a and b. Therefore

oL .

ja flx)dx = & {Al.20)

The approximation can be made as' close as desired by taking

a sufficient number of intervals. The FORTRAN subroutine
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INTEG which employes the trapezoidal rule to evaluate definite
integral terms in both equations (4.47) and (4.118) is listed

in Appendix 2.
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APPENCIX 2

COMPUTZR PROGRAM LISTINGS

A2.1 GRG ‘¢ USZR SUPPLIED SUBROUTINES FOR.EXAMPLE 1

These subroutines use Aj's, by

as original problem variables. To use

rs, (t .'s, and T.'s
( P)J J

1 1
and

rL.'8 18

j K3

variables, only a few modifications within these listed

as

subroutines are required.
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DIUAL Y PRECISTION  TRBy T2, 122 TOXaT 2ot g VL VO V24, VIp VY3V VT 4 VIL XTI
iXNV,X“U,XSB,Xﬂﬂ,XNﬂQM{XHER,X[HQRMqXN&J;XSC,XSBI;XS&Z,XMK,X151|XI:2 o
D XSl XS 2 XTR L XTRy XTRZyXT o XIT o Yo YSORTyYSURTL , YHORM, YSCRTO» YRO YR
g2l T Xy X e KEy X2 X2 Xy B

pCUsSL' PRICISION DIT.DISCGLE

DOUBL S PRECTHICH DOMODLSQHRT,0ABS,DMINL,,DMAXL

GOUALY PRECISION CCyRTeAV AVD, DaSIGN,CORRCTy PREVNT yOESyCOR 3 PRE,
1SUG,UNATLpUNR LT UN =L 2y KLy RizLL ¥ Dy RMTBMy PHMTEML S RMTBHZ,, UMTBM
EUWTBHI;UﬂTBFZgSﬂTEMySMTBHI:@MTBM21ETH,CTM1,P]HyPTHl,RTH,PTMl,
ERTHZ’RT“.3’RTH{}’V."‘VD,ﬁ.U,Uﬁl,UCZ’DﬁXP

CoOMHINALIRL/CO

coMaINsLIR2/0T

CCVL”'I{ N B,A,."SL FL,X, XC,XI,XS,Y,C,VC;U:LTFI:ETQ

CoMuay FILePHIZPSI P33, 7By 10 TCyLPLILsTPSILO, i PSIL2,YSCRY

CuMiaN NV,NC,NK,NEG,N;N,N?VTMVl9H3V1NEVLyNTGaHINlgNTHZgNIN3,NIGkGQ 50
ll,}fv’f.va,‘)‘\l'i sNVRTNZ NVNTINZ, 10X 11 IF\, inl ] 15!1511 IT, I RP IC{JE‘!;JCDa;KCG':GA« 60
IOB KFTLyKLI My TN KDy IBAS, IHR, TV o IV, IVB

CoMM Iy KFBNC,KGQAU,KCGHT,KINVl,KiHVZ;KCUBﬁ.KdACD;KMAKl,KMﬂXZ'KGEGQ 8d
ARANLyKRSNZ G KINV  KEHAAY yKR2NLL yKRENZ2L yIDIREC»JKO4LL

IFLITIL00,101.101

DIl1)=.0004

DT{r1=.01

DT13)1=.09

DT{4) =15,

Vavn=l.

DA 150 J=1,3

C=J¢3

JP=JC 3

JR=4pP+3

UMRTL = e =D0XPA-XC(JP=XC LU0 ) 352

S=1 ~UNREL

CALL INTIGUEC ey JR,RMTBRMY

Cru=i./XC(JC)

PTM=X_{JP}

FY M0 M UNE CLEPTHMERT L

VL) =0 MTaSSARTEM HLTM)

VAVL)szV”“J’-\V(J)
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WL =0 1Y +DTHLY
U L L=l a1 XP{=XC{ I ¥XC(JRY Y ) x¥2
RILi=) =imiel :
CALL INTOGIYO v J ) JU,MTHRML)
RYMI=LIMeME LI PTM*REL]
VDL Y= TR s/ (EMTAME+RTMLY
XC{IY =L L) =07 (1)
XCOJo ) =X tJe)+07(02)
CIML=1 . /XCLJ)
S RTM2=LiML¥UNKTL+PT MR L
EUN(JO)=FHATLM (DMTRIAHRTM2 )
XCOJ2=Xe (dC )01 (2}
Xﬁ!JP}EXﬂjJP!+DTI3!
PTML=XCLJP]
BYMA=TYEORA-L+PTMLI+RTL
AVGLIP )= MTAM/(RMTBM+LTMI)
XC{IO)=XL(JE)=DT(3)
XSS =Xr a1+ 07{4)
U3l 2501 =00 XP{-XClI)=XC(JQY) p3xy
RELS=1a=UNRIL2Z
CALL INTSG(XCsJydQeRMTEMZ)
RTR4=LTMaINR - L2+PTMERTLZ
INDLIQY=’RMTRM2/{RMTBM2 +RTM4]
XCLJIN)=XT{JN}=-DT(4&)
150 CUNTINUT
UG l=,5T=VAV]
Uo2=vayi-i.
AL =l oT-aVN( L) =a V{2 *aV (3 )=UCLI/DT (1)
BUYy 2 =l o OT=aViL)BAVDI2)#aVI3)-UCL}/OV (1}
A2 )= G7=-AVI ) =AVIZ2)RAVOLA)I-ULLY/0T(L)
AlLsd )=l ST-nVIIEIRAVIZ)VAMI3)-UCLY/OT 1 2)
LU,5)=(.,97=aAVILY*AVOLIS) %AV 3]-UCI)/DTI2)
ALY ,6)=0 . SGT-AVILIFAV (21 5aYyD1S6)=-UCL /DT (2)
ALYy Tyl T A0 T EAVIZ)RAVIZI~UCTY /D (3D
AL1 4850 LOT=AVILIFAVR(B)*AV(3I-UCTI/DT(3)
B8 ,2)1=1.97=-rV IV +AVI2 ) =LVut 9 ) ~UCt 1 /DT L3)
ALY 1 0 =, 97—~V {10) 2aV 21 =aV{3)=-UCL}/DT(4)
APLLp 21 =0 97=AVILI*=AVD(L2I+LVI3I-UCLYI/0T(4)
AlLy12)=0 7=V £V (2) =y (12U /0T (4D
A2 VY= CavDOLY =AVIZ2)RAVI3)-L.-ULl2) /07 (1)
A 2y 2 ra{av{i v {2 =av{ 3~ LU 2)/LT(L)
AO2y3 =0V 2aVIi2)32VE(3) -1 ~Ul2) /LTI
AU2,4)=0AYN (&) a2 av({3) -1 .-UC2)/07(2)
L1245 = oV =AY TS I=AVIAL~1.-UL2) /DT (2)
AC240 (VLI AYIZIEAVE(6)Y=1.-UC2H/DT L)
LA2, T =t e (T7IeaVE2) 2oV {3)-L~UCZY/ T {3)
A2, 8Y=EaviLY#avD{B) *aVI3)~-1.-UL2Y/ DT (3)
20y @)=laVII)=AVI2)FAVDI9)-1.~UC2)/LT{3)
B2, 0¥ (AVDIIMARVI2IAAVI3)-1.~UL2}/0T(4)
Al crtiV=0aVia) maVO(L LI2AVIZ -1 UC2)/0T (L)
ALy 2= (a2 20WO(ID -1 =l 2Y/DT14)
WRITT (5,200 00501 d)yd=1,i2),1=1,2) )
23 ERMaY LY 1, t*THT PARTIAL DoRIVATIVES OF THE: CONATRAINTS ARSYS
10 460,561}
RCTUS Y
“ND
DIMTAST (Tlhe3)
DIM NIDOY DT(4)
CIsonstiay 800



CIM NSTON  A(50,100),ALFA(S0,50), Yli;ul,(Q[‘SU}.YI!150! XZ{150) GoGF
TeYUI52,2(L5CH,V C(%)).Inpa(JUJ.IHHI'Uul,IVLI Gy IVALLIOD) G 6F
DOUSL s PEICISTUH Ay ALFAg AL o f LAy ALL 1 kg OB LTFT Do LT R4 BTP, T UL TA

LX) 30y FSIL e POILDy " PEIl 2t Thet FEILL PS8 LE,cPS lL%q[PolLﬁf PSILT,
2 FclLHg'PalLb,"—’\ILG,'FS'_PSIlgrI.l. -u";D Flps..y Uy AW Aeta L |f‘rJKSI
SCK g PHI P53 I3 FST3,FLPHIL ,PHT Ly PHIL D, nbllrlJP PS iyl kL y P____‘P 2P T3,
4rRAPG, . nr:‘|u'.37[‘u1'.-l| »L,-'L|ir$,1_;,rl_g|l g TR TR, I;Q‘_v]---rp-l‘--.l-"TQ-EQ.‘GfI'Q
BTG LT YAy T Ty T Ty T e TS g e T TN AL s TQe TR, 7Dy TeT1,T1

DoBLs PRELELISINN T'”1TL'T2?;I{Y,WL,U,VC,VU,VEyVI3V3|VyVC[fVCL!XI,
XAV X g X SR XS Ay XR UM XL Ry X IS M XA s XU s XERBL X5 B2 XHK XTIl XI02
2 RS L XL T ATRY KT Ry XTR 2y X Ty XTI 1Y ¥5URT s YSERT Ly YNIRMy YSURTOy YRO YR
BpZ el o Xe XU XS4 X1 X2,4X7,B

DAURLY PRSCEISTON DIT,.DISGLS

oYL PR Lluld\ DATDZUSORT s DABS yUMINL o CHAXKY

fLUF‘. R FI,JI ) L(fD HV I\Vi,hl[_ qICuv';u} PCT pf‘; VH',IZ-S,C'JP,PP:,
13UB UM L gUkR ngUl\”l? L g RELT GREL D g S MTRMRMTEML  RMTAMZ yUNTEM,
ZUMTEML S UMTBMZ y 5T OMy SMIOML SHTONZ yC T, CTHT yPTM, PTMLyRTMRTML
IRTMZ, 2TMZ sF T4, VAVO, ALy, ULl UC240cXP

CaMmON/LI=1/CC

CoMMON/LITZ/INT

LC."‘-:L_II {".,A'ALF/‘,X,XC,X].XS;Y,C,VC,ULLTFI,CTA
GMUNN FI13FHIZPSIPSI3,TheTOyT1CyFaTLyTPSILG, =P3ILZ, YIUPT )
COMMIY MV g MK g NGy NI NT Vg NV MUV g MV o BT O NINL g HINZ yNIN3 o MGt GA

1“4'WVNIHEIWVW144,\V\I 12 THDEX Ty IRy IR s IS oIS, 1T IBP,ICOE,JCUB,KLGGA
200, KETLyKLIM pK“H,KJyI(‘"“.lH?,IVC IvA,1va

COaMMIN KFDNu,KGTAJ,Kfaﬂi,KIFVl,KI“chhCDE,.*Jﬂuu,KMuxl.xMAXZ.KGFG\
JE NI g KRENZ JKINV KCCIAL 4K F e NI KAENZ2L 41 DIREC,JKT,LL

Lo Lun J=1,3

JC=J+3

Je=J0+3

~JQ=JdP+3

UMARYL = (1 =DIXP[=XC{JV=XC(IQ}) )*=*2

R=L=1 .~UNKTL

CALL IMNIEZGUAC s J 5 JQ,RVTREM)

UMTEM=RMTHMSUNREL

SHTRN=0MTBM/DEL

THM=1./XC1J8)

PTM=XC{JP)

KTM=C TV UNE L L+ PTMEREL

XE{J)=XC{J1+DY (1)

UMRLLI=(1 ~0EXP{=XClJ)*XT(JQ) ) )=*2

RoLl=1,~UNRTLL

Call INTOGUXCedyJRRMTRMY)

UMTEH =H‘TFN]fUNﬂuL1

S’IBHl—'foMI/RELl

RTMI=CTARUNRLLLEPYMERS-LL

ClIF =l i g J) R (AMTRM=RIATEMI #0022, )5 (L /RTHME=LL /RTN) #1500 *L
lLC(fth!‘ﬁ‘CTr"-!"':;‘Z*’(1./[""]""‘1"‘./’[}“’11" MY+ 500.5(CC(54d1) P|'-‘.-C[ (6441))
2R L /ST BNMI-1 . /3MTRY)

ClH==CLI/N7T (L}

XCCJY=XC LS} =0TLd

XC{JLy=XC(Jey+nu7(2}

CrMi=1./%01J0)

RUME=CTRL«UNRTL4PTMYR IL

ClJCY 2000y J) Y (L a/PT 21 ZRTMY+{1E00, FUNTEMIA{{CC L4, J)#THML}*%2
L={CChed ) "CTHIR22)

ClIC)==Ctac)y/nrtez)

XCOJL =X (JC)=07(2)

XCLIP) =X (aP)enT(3)

ETMI=XC(JF)

177

5Q
&0

80



178

RIMZ=C T sUNRL LAPTMLNR I _

CUArY =002, DV /0TH3=Y Q/RTH) 01800, /SHTRMISLC IS, JIH(PTMI=-PTHM)
LR ==L 4P /0T {3) ‘
XCLAP Y =xr {JP)-0T 21

XC D) =0 (I DT { %)

UNQ'L"17.~G'XP(“XC!J)*XC(JQ!})*$2

ek 2=L-UNETLR

vLALL I.I-G(XL.!.JG,QVTBME!

uMInMz=seyedt2 /UNRIL2

SATRMZ=an el /RTL2

RTMG=T¥JlacL2+PTHER L2

COIN) =L 0y d )i RMi N2 =-aMTEM) +LC{ 23 I Lo FRTMG-T o FRTR)+]1 520 4% (
LCC {4y IV VTN e s}, fUTEM2~1, /U’lﬂl)+1DJO.W(LL(5.J)*PTM~LC(O J1)
2ROV SMTBME-T . FINTBH)

Clamy =-C4 a1/ 07 (4)

XTI =X0 (JQI-DT (4]

100 CONTINUS

WALTE1h,20300(C011),1=1,22)

200 TaRMATLY v ' THD PAaRTTIAL DERIVATIVIS CF THE GRJ. FiNe. ARIRALY 1,

16005.6)1)

RTTURN
.-.ND
SURKJUTINT TNTEG(%A, 3,10, FSUBY

CDIMTRETO XA(I50)
CDUUBLT PRUCTISION XAy ZPRO,RI$DINVVL4RM,RFyFSUB,DEXP

fHat=0,

?-S "-)

DINTVL=(XA(INY~-ZRROY/100.
22a0=20uDeCINTYL

Pzl o~ (1 ~DEXPL-AA{ T Y R2TRO) ) =%2
RI=RI#RH ’

1F {2000 LT IXA{IN -DINTVLYY GD T 10
NFE=le={1l.- -rX°(~Xﬁ(Ei*XA(IQ)Il“ b
FSUN=DTNTVL#{RTI+RF/2.)

R=TURY

END
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A2.2 GRG ¢ USER SUPPLIED SUBROUTINES FOR EXAMPLES 2
these subroutines, A.'s '8 t_ ).'s, d T.va’
In u i r '8y pJ s P-)J an TJ s

are used as original problem variables,



10

SURE BITING: PHIX

DIM NSTLUYN LCLa3)

DIMTNSION  RITIOD)

Did BT80N A{S 047 00) g ALFALSGE0) o XTI LB UCI2SD) y XIL180) 4 X5(15G) - GIGF
LeYE2ODY 01501 4 VCUSB2) yI0NELS0 Yy IHPLLOIY,IVCISQ)y IVA{LIT) G. GF
NOUSL - FROCIST . Ay LFA AL g 2Ly AL B TR C e L LTFI L LLTFRFALMPLULLTA
XY e PSIL T POILs T PRI LGy (TEy PLILLy P34 PSILSi PIILGS,, PSILT,
(2-p.);'-L'Jy'“PL"}L.ﬁy-:;’l'.iILg1.‘.:p.).|:"ps..11|FI11FLJ1| D,*—;gr‘.gﬁ ')Ah’i G'\'J}M f;r\"‘_\'
BGK P 3PS T o FST39PUPHIC, FHIT G FHIZ 4 PST TP PLLA G PURAL s PL Ly P 2,3PF 3,
41-\PF,'\'WB;H(;F\B;n!\,SCr_.[r,T ,Tr,l 5f\flr“tThgay"‘l?‘TujlLlfigiﬁiliy gal

S GL e T i T2 e T3y T T IO T Ty T TH2eTRTOL TG TI'TL T

cuusL ¢ P".:(..T.'ilij.".' T?ﬁ,T?,TZE,TEX,l s Ug VL Ve V24 VI V34V VCT yVOLy K]y

1XuVy, X"'HX‘-&;X‘!“ DMy XNUR g XTNUE M g XFAD g X320 p XS L o XSE2 g XKy XTI Ly XTI 2
ZaXST L XETT Xlllnx‘ » RTHR2. X7y x!lyY Ybu\Tiv LnTLgYwu&l,YSGRTO YO YR
B2 7L g K X Fe XSy X1y %24 XA 4D

nAUBL:. PFEC{rIq“ Dl7,0150LS

DOJRLE P CTSTON DMAD,ESQATyDABS s UMINT 4 DMAXY,

LONBLE PRCCISTINN LCH0V AV VD, D SIGN) CORRET y PREVNT ) BUS  COKPRYE,
15','@ Iv]\!D_,':I_‘U!}F‘::L;_,Uf\‘:{:[_?,ﬁ L| it L.L,I S’th!"“'lh?’ rM!u ;.|YMTRP2§UMTBH,
ZUMTOMY JUMYBM2  SMTEMy SUTBML y SMTEM2 s CT M CTMLyPTM, PTML,RTMsRTML,
ERTMZ ATMIGRTMAGVAVG,, LU, UCL UL 23D XP

COMMInN/LIvI/CC

ComMyIN By A ALFA s Xg XO 9 XT 9 XS YLy VU HLTLTFIL O

COMMON  FLL,PHI RSl 4PST3,THyTD,TCyIPSI L|—P51LOrFP'IL? YSORT

COMMIN RV g MO g MK g NFGe NI Ny TV e NV gV NIVL s T Opin LML 9 HINZ yNIN3 yNIGEGA
TG e WVIINT g RVEINZ g NVHTINA IND "X E 2 IRy 1L o IS, TSy ITIBP,ICOB,JCOB4KCGLGA
2DB'KFIL1KLIE’\"K:{:'N,KojIE"‘HS;IHE'IVC'IVR,IVB
Copm N KEONE KGR AD g KUONT s KINVY o KINVIZ KCDBASKJACDy KMAXL ,KMAXZ 4 KGLGA
LRONLT g KREMZ yKINV KCDBAL yKREMI L KRENZ2L 4 IDIANC,JKO,LC

IFLIT) 10,110,111 ]

Ch{1,1)=1.8

CCli,2)=143
ccli,2)=2.

CC(2,1)=200.

CCl2,2)1=1T70.

CCc{2,2)=250.

(2(34101=5.

CC{342)=5,

CC(342)=5.

CCl4,1)=2.

CL{%92)=2.5

(C{4y3)=3.

CC(S.II'—'frJ.

CC{5,2)=100.

CC{5+31=50.

CLl6e1)=2

CCU5,2)=4,

CR{6y3i=2.

D.SIGN=0,

CNFHCY =0.

PR VEIT=0

na 1049 J 1'3

J=J3

JP=]T+1

JI=JdP+3

UNTTL=(la=D XPI=XCUJIRI*x22XC{IN) ) 5%2

Rol=1=tIFt L

CALL iV GUXC g dy JRyRNTEM)

U TaMam=TaM /0GR CL

CMTBY =R RAM AR L
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CivM=XC{JIC)

PrM=X{()P) )

PrM=L Pl LePTM R L

VEIT L6, 130 ATHN IIMTAM, SMTAM,KTH

FORMAT{LY 9,4015,58)

DoS=Co il ) =Ry 8 eCo{ 2, JI/RIM=-CL (3,41

CUr= 01300, AAMTRY e fucl G II=CTH) x2

FOo=015000/0M 0B+ {lC(54)2PT - C{byJ))

SUR=DRLS+C IR #PR™

WETT: 6,140 0:5,,CGRL PRI 4SUB

GHMATIY 1,401 5.6)

D: SI6N=L SICNYDLS

CAC =0 T +C0x

PraVHT=PRTVHNT+PRE

canTing:

WRITELO IEQIDESIOHLNARCT p PREVNT

FArMATLY 18X,V THE THROEZ COoT COMPONENTS ARt v/' ',3024,16)

PHI=OLSEGN+LUORRUT #PAEVNT ‘

PHI==-PHI

PiTTURN

KD

SURROUTING CPHI

DIM MNSICM CCUE,3)

DIMANSTON DLYLOD)

DIMIHSION  A(50,102) yALFAIBG,50) 4 X1150) s XCL{150) %1 (L503),X5(15Q0) G-GF 20
La¥YTi50 )}, LI250)yVa(52),18AS{ED),1HS (202}, 1VC(50),IVvALL201) GLGF 30

CaUNL = PREGCTISTION  ApALFA AL s ALAYALB,y TRAZC oy DT LTFIS O LTFALOT2, DL TA
LXyDig Dy PEILsuPSILO o PLIL24TA PLTILT s PSTL3,IPSTL4+PSILE,LPSILT,
2ERPIIL Uy PG IL e PSS L0y P Sy tPS Tl s FlL s FLQsF2CsF14F2 16y GAMAGMNIRMEGKS,
FOK ¢PHI PSP 3 ) PLPHIOyPHII,PHIZ y PSIT 2T AP aPEY4yPuNAL, P L FLZ2yP 23y
GRAPGeADR Ry E By A SCAL p T3y T 0 a WOy THEN TRy TR TRE, TLYASTOIAT » 0 QTG, TR
BTG L g YU TA L s T T e T T3 T Gy VT 5y 1T TR TR2y TRy TN T, TT1,T1

DOUBLT PRECISIDY TRB,TZ23T22, 71X e Ve s U Vo VO V2e VI V34V VCI s VEL XTIy
IXMV X g X S8 p XEA p YNGR s X NOR g XTI My XML Sy XS0 y X GH1L 1 X5B2y XMK RIFL XIT2
2 XSl g XE T2 W XTA L s X TRy XTREZ 4 XT o XIT 2 Y s YSORT W YSORTL y YRURM, YSORTOy YRO, YR
B'Z.ZI;X,XC;XSfK‘-_;X?fx‘?vB

DOoURl S FELISTON DITLDISHLS

DOURLY PROCLSICH DMOD,DSORT ZDARS 4 OMTINL,, OMAX]

CAURLT PRICISION Loy T AV aVE s DuSIGN LORNCT 4 PREVRT ¢ DES 1 LOL s PRE,
LSUBR R TL GUR LY g UNELL 2o REL gy AL Ly b ol 2y AMTBM, RMTBML  RMTBM2, UNTE M,
JUNTOML  UNTHEZ G SHTRM SR ML , SMTEM2 ) CTALCTHML,PIMyFTHL RTM,RTML,
FETM2 U TV, L TrGy VAVO AU LULL,UC 2, DIXP

COMMONILTR1/CC

CoHMOIL B Ag ALFA s Xy XC o X1y XS Y C e VL ,LELTFE o£T A

CrMm FIL PHL PSYy PSI3,1 By T s i et PSILuPSILOAPSILZ,YSORT

COMMNN ke ,’JC;NK,N‘.'Gtﬂi[‘-:"ilf\l"‘\:\/l1?:.;V1HL:VL,:"i"ny-'w'II‘i.l.|"'III\:ININB!“IGEGA 50
1r.'.q.,»‘:‘.f-\¢1-'\?;,I;Vf\‘IPTB'NVh‘IJE,IHE.;X,Il,TR,I‘z-Z.‘.dS,!Sl,1?;13?’,ICE:R;JCNF‘.;KCGLG'\ 60
PR FIL g KLY Ny KETN KDy TBASy IHE, IVCiVA, [VE

Cotasi KFEOMD s KGE A KOOM T g K1IMVE g KINVE s KOLBAZKJAL D, KMAXY fKMAXZ ¢ KGLGA  BUO
e M g KALN p KTV g KEDRAY pKACNLI L oKt d N2 2 TG IR LGy RO LE

VAivid=l,.

nee 100 J=1,3

Jui=d+3

JP=J0+3

JU=JP+3

(IARNRE NER & BT AN SR o0 (O VR 0B R A0S (Ol UE B I I )

Fol=le=itli®t L

CALL THNTTG{XL g Je JOLAMTRM)

Crr=Xe{Jo)

PrM=xXitspy
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e

182

RT M=C Ty (50 L+ PTM®RCL
IU" diish f{F1T3“*R1“3
YN =V AVIDRLU

CJWlTNUL

WETT(6,y1501VAVY)

FLummaT{r 1,0, PYSTEN AVAILABILITY=*+D.4.16)

VolL)=,93-ViV] '

Voiz)=vLavo-1,

RetueN

EMD

SHARDUTING JACODS

DI " RSinn CCla43)

CLMINSION DTS}

DI -NSEON AVIE3),AVE(L12])

DIMoNSION E(IOO}

DIMENSIGN  A{SG.I00) ALFALSO, 50 o XIT50) 4 XL{150),X1{150),X5{150} GrLGF 20
ta¥(: bO),L!15O) &L(SJi';t«a(JO],‘H“(LOJl;IVC(:CI;ivﬂilOGl GIGFE 30
DUUBLE PRUECISTON AsPLFAZALCyALAsALBy TRASCyDzLTFIyBzLTFL,DTP,BLLTA
1x¢._,(].‘prLg'pJILU!'DbiL)!t!A;rpSIL‘yri"i}ZL:, PSIL4i=PSIL5,cP3 IL?,
2 PcILU,‘priLé TPSILS r..p51LP...\IJ.1FIJ.gI']O!rZO,FJ_,’:2'13'CHM,\,U'\'U:\.N'GK&.j

30K, PHI PQI,P‘IJ, CrPHIGCyPHIL PHIZ2 P31V TOP4PELALPLIAL g PVTL,PEZ,PL3,
f}f’ﬁu\), N3 e \Er'rng‘.ﬁ\ SC lL||8'st"CgT[L'\i9]FUyleT 1,}__ .J.,T.r:l!AT,TQTGyTO
ETGL e TrTAl 3 T2 VT3 T T4, TETSTIT, TUTAZ, TR T, TR0, T:T1,TH

poURL:y PRUCISTIN TQb:T a T2 TaX e TH U VC e VO VZ VT VI3V YCT W VCL s X
XNV, XlJ,XS%,XCi;AHH My XN LRy XTHDEM, XA X5C Y’Bl AEB2y XMK XTI 1, XIE2
XLl g XS 2 XTAL TR, XTP&,XT XITs Yo YSURT (YSORYL B YNIRMy YSORTO YRO 4 YR
3,2,7I,X XC e X5 X1 g X249 X4, 3

nousLy PRICISION DIT.DIS0OLS

COUBLY PRECISION DMIND,DSORT,DABRS +DMINL yOMAX]

DUURL T PRICTISIGH CCyOT sAV AV DS 16, CORKET y PREVNT 4 BFE Sy COR,FRF,
lSUdeiw“Linﬁ'LliuqluLtjﬁ,L,H‘LifﬁmL¢1“iTB‘,F4T%Alp*“1RH-jUMTBM,
ZUMTEMY pUMTRNZ f SMTEN e SMITBML, SMTBM2 LM CTMLyPTH,PTHL RTMRTML
SHRTM2 G RTH3  RTHG ,VAVO, AULUCLUC2 4D XP

CoMman /LT 21 /CC

CameausLIE2/ov

CaMaan Byl g ALFA s Xe XC 3y XT3 XS, Y, Cy YO oDCLTFILFTA

COMMUUN  FILYoPHI 4 PST 408 i3, T8y TN VS EPSILiiPSILO4:PSIL2 2 YSGRT

COW¥IN MY N NK N TGy NI MYV NV g NV o NE VLo NTO 1 INT s NINZ oNIN3 ¢ NIGIGA  BC
IRG GHVUNTIWN L pNVE T2y NVNTNZ S INCU X T g FRp TR IS5, I3, 1T IEP,ICDE,JCORyKUGTGA &0

I3 KEILyKLTR KA N D TEASyTHEp IVL » IVALIVE

COMIMON KEINCyKGRAD  KCUNT o KINVI KINV2,KEDEL y KIJACOD, KMAXL,,KMAX2 , KGUGA BC
TRIHL s KE N2 o KINVKCDBAL JKRENTLJKARN2L s TDIREC, JKO4LC :
IFCITILO0.101 4101
DT(1)=.G00012
0r(2)=.4
CVi3t=a2
UTl41=2.
VAavd=1.
DY 150 J=1,3
C=Jd+3
JP=JC+3
JI=J0+3
U L=l =De XP{=XCLI0Y b2 XC L)) F¥*2
oLzl o=l L
CALL INTTGUXC s Jp AR MTENM)
CrM=X_2{JC1}
PTM=XL (JP)
PTM=l VI UNRILEPTHMARTL
ML) =M TAMI{SMTAMERTTM)
Vavhi=y v avied)



150

XTUH =0 tarexr )
URNA L L=(h o= R =-XC M) v # 24 X0 (J) ) ) e
K-Ll=1.-UMNP L1
CALLL INTTGIXCeJda JIyAMIRML)
RYMI=L M, LLePTMcRALL
VL= MTERTALANTRML+RTML)
XC{AP=Yo 0l =1L
XCEao =XTtackelT(2)
CiMi=1a/XC(a0)
P Me=CTPt »UNIFLePTHERTL
GUSS)I=AHTUR/ (SHTRMERTM2)

X"lJ )=XC(JCI=NT ()
Xfflgl'XLfJ°!+Jv(3}
PYML -VL(JP)
Ry M3I=LT % \hw SE+PTMY "-{'—L
AVO(SPY=0MTRA (RHATBMrATM3)
XC{Je)=xXC (3P )-DT(3)
X602 =XCT{JQ)+0T (4)
UN&‘L’—(L.“D KP[“XC(JQI**Z*XC!J]?!*¥L

RUELZ=1.~IHRTL?2
CALL INT GLAC, e JORMTEMZ])
RTMa=CTMEUNRLL2+PTMaEL2
AVO{JRYI=S MTEM2 F{EMTEM2+iiTHS )
XC A0 =X JQ)-07 (&)
CONTINUS
UCi=.%3~VAVD
UL z=valys~1,
ALy i )=0a923=AVOl )=V 2Y»aVI3)I-UCL) /DT (Y)
A iy )={.93=AVIL)RAVI(2)2LV(3)-UCL)/OT (1)
Ally 330922V { Y =AY 2144V 3I-UCLY /007 (1)
Y BY¥={ G FEAVILS ) #aV{2 ) +aV 3 Y- UC Y /0T (21}
ElLly5)=la93=AV (L #AVDIS )2 VI3 --UTLY/OT ()
AlL,01=2(33-aV{1)HAVI2) =Dl e=UuCz /0T 2)
u\-q7]ﬁ{.Jﬁ“*V'lT)“1V(() UV =-UCIY /BT (3D
Al 8130 O2=AVIT)I*AVD(BYSAY(3I)}-UCIYI /0T (3}
Ally9)—(.JJ AV PAEAV {2 Eaviie)y=-uC ) /0r{(3})

ALl 1 0=(G3-AV0 (L0 =V {2 +AVI31-UCli/DT7(4)
AL d=0a93=AVIL ) =avD{ il J¥aVI3)=UCL)/DT(4)
AL,y i2)= 093 -aV ()T aVIe)= V0L -U01) /07 (4]

AL2,03=02V0{] 22V {2)%AVI3)=1.~UCZI/OT (1)
ALZy2 V=0V {2y FaviI2)*AVEI 3 -2 «~UL23/DT( 1)
B2 31—(ivtzlﬂ;vczlfav313:—1.~UC2:/D?(ll
A(2,4)=thD(4)*bV(?)*ﬁV!31~l.4UC2)/DT[21
{245 =05V II2avn(5)tavi3 -1 .~uL 2 /nTi2)
A2y =0a VI avizieavilel~1,~Uc2) /07t 2)
B2, 7= laVlTIF eV {2 5AV(5)~1.~UC2V1/DTL(3)
L2 Bi"th[*l#ﬁ 3 #AV(3)~1.-UL2) /DT 3)
P20 = AV Y (2 RAVE(9)=1.=1C2) /LT 2)
LU, 0)=LAVD {1d!‘”H?)*AVKH—l.-UCZ!hﬂ(ﬁ‘
atz,lilct\vtll«:vct11)»th31~1.—uc2:/Urt4)
A2, 12 = 0oVl erVi2)vaVI(LE)=La=02) /0T (4)
quT::a,zooltfn(I,J}.J 1412V 0=142)

200 FURMa7(1 Y 0TH PARVTAL CARIVATIVLS OF THE

1ty v, 6U15.6))

f=TURA

C LMD

SUBKIUTING GRFADTT
OI tisirt CU{E,2}
DT NSION DT(4)

CIM NGTON  BLLOD)

183



LIM MSION AUGBC, 100 yALFALSO,00) o X150 XCL102) X1 LLEQ ), XS5 (150) G GF
YT IBDYCHYITG) oV UBG Ty IRLSIED) y IHB(LCOY s IVLL5T) , IVALLIND) GUGF
DIUELY FRACISTCH  AptLFAp ALy AL g AL TR, Cy B LTFLy NCLTFA DYPLLILTA
XUl g D PSIL 7P L0y PLIL2 y U TRy 0 PEIL Lt PSRIL2y JPS1L4Ay PSTLE PSILT,
ZePET LU POILG s =PETLS g TPy IFS T Pl rtGaF2Ue T 256G BaMALGHIRY, AKE,
:GK ’;'H.i. |L"\I [p:JI:)'F‘(.: pF'HICgPH[l' PHIE; i:.".\ [f ] fQP,Pﬁi-},P'JuL, P‘, ;.' PL.:’:‘-”,?B'
GRAPGy RO gLy PR i sy SO L IRy T T C y Tha e TRy T T e i TAZTETAV TOVG 410
BTGy T Ty T T H 20T 7Y 34T M TLiS T T et TA2p TN INLyTO0,TITL,71

LOUBLS PRACISTINN T8, T2, 722410 X 1 ala VO VI W VI VI V3,V VT VUL e XTI,
XV g X XEP p XAl XMy Xed i p XINO My XA g XU o XS Lo XU B I g ¥MK X123y X2
2 XS L o XS 2Tl g KT Ry XThe g KTy X T o ¥V YSURT oYL CET L g YR My YR T D, YO, YR
gl a7 {aXe XC 4 X5 9 XL 1 X2 X148

LOUSBLE P CISICH DIT,0I50LS

DAOURL: PHECILION DMODLUSORTyDABS , CMINL s IHAXY

COUGL PRICISION CCaCT AV AVD DS 10K ) CURRCT y PREVNT 407 S 005, PRE,
ISURZUNPLL gUMP ZLL g UNR L2y ME Ly RUL T RCL 2y EMTBM w MTOML , RMTB M2, UMNTEM,
PUMTREM L UMIP A2 o SMTB M, SUTIRML y SMTBMZ 4 LT CTRL 4P M PTML pRTH AT ML,
.DHT 7‘121 AT 5 ,!"l l'"i-'1-1V»4Vr.3tJ:U’U‘:lQLJC.?.fD‘iXP

CrMmnN/L T2 /CC

COMMINALT Z2/DT

COMM M i-.u My ALFA ¢ Xy XC 4 YT, X&g YeC VLo DULTFI fETf\

COMMION  FLLPHY G PST RS 2,18, 7070y 2Pl Lel PEILOyPSTIL2,YSORY

COMMEN NV NC g K p Mo G MEN g RTV g NVE g NEV aNT VL g NT O i INTL y HINZ o MINI 3 HIGEGA
TG g NV TN g VTN G NN Ty TN X g Tl IRy IR L IS, I8 1, 1T IBP, ICDR,,JOUB KC G GA
EDRGKFIL g KL I g KraM KO I BAL THB IV, IVA,IVR

COMmGl KFDNC g KGRAD g KCLUHT g KIMVE o KINVZ g KCUB A KIACD KMAXL ) KMAXZ , KGEGA
IR“MIpKR=N2y KINV,KCOR AL yKRINLL y KR M2 IDIREC, KD, LC

DL00 J=143

JO=J+3

JP=JC+3

JN=JP+3 :

UNRUIL =1 oD XPU~XC{ID )% e25 X0 (J) ) ) %2

Fil=i.=UNRIL

CALL INTEGIXCsJd,yJQ,RMTBM)

UMYaM=RMTAM/UNREL

SHTAM=RMYBM/RTL

CTM=XxC(I0)

PTa=XC(JP)

ErM=CTMRUIR-L+PTHFREL

XC(J)=XC{))+DT (1}

UNMRLZLL= e o= XP{=XC L JQ) #% 25X {J) ) ) %52

EfLi=1.-UMNKoeL]

CALL INTEGIXCdy JRLRMTRMLY

UMTAMI=FSTRM, JUNRELL

SHTB®Y=RM¥B"L/RLL

RTI#i=CT9sUnRLL+PTM®RTLL

COT=iClny JYH(AMTRMI-NMISMIECCI 2y 12 (L /RTML=3 . /RTMI+15C00.%
L(CCLA, I CaMIRa2n (], ST AMI=-1 . /UM BRI 1500, CCUB,, J1*PTM~-CL{6,J)})
Sl L /OMTAML~1 /54 THRMY)

Cldy=~Ltdir/ni(li

XCI) =XS (=671}

X0 =X LI +DT(2])

CTMl=XC0{J4C)

ATU2=CTHLAUND TLEPT MR

ClUCYI =002y )+ (L /0T M2 W /RTA LS QG /UMTBENM IS ({4 J)* THML)R%ER
TllLlae J)#0THYe=2)

CLaLy==CLICY/TI2]

XA ¥=XO 0 -0702)

XKOOJP)Y=XT(JP}+DT (3]

PTHL=XL(JP)
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ZC0

i0

185

RIMI=CUHUNLCL+PTMIAR L

CAIRY=CC Ul Y i L o FRTHI=TL W /BT I L1500 /SMTHRM )OO (S, )= PTHi~PTN]

LIJP) ==L (JP)/DT (2] :

XC(Jdp)=x {Jr}-DT(3)

XCLJIN) =X {JRI+FOT (&)

UNRLLI= 1L a=SL XPI=XC{JN)Ex2%XC(J)} ) )+=2

R-LZ=ae=t)il L':f

CALL IMT Oy Jp i BMTRYUE)

UWAT2M2 =R MTRMZ/UIRLL 2

SUTRM 2= MY RML/RTLZ ‘

ETMa=CTH Uk - L 2#PTHFRTL2 .

CLJMI =00l Ly M IRAMTBNZ<RYMTUMIACCL 2, Lo /RTHG=L cARTVIHLH00 0% (
LGy I U R2 3 (1 /UATBME=1 J/UMTOM P+E500. > (CLIS ) »PTU-CL6,J))
20T S SMIEH2-1, F3MTBM) o

CLIM == TN /DT14)

Xo{JQ1=XC (I3 =DT (&)

CONTINYE

WITTo (6 2000{C{T),1=1,12)

FORMAT(Y 9, *THE PﬂQTIAL D=RIVATIVLS CF THE J8J. Fre ARZVALY T,
TeN15.6))

8.TURM

£3D

SUBAJUTINT INTIGIXA,I,1G,FSUB)

PIMNETIN XA{150)

DOUARLE PRECISTION XAy ZRERUGRIZODINTVL ¢ RM,KF,FSUR, DL XP

Z’: F-‘J""ﬂ-

RI=.5 :

OIHTVL=(XALI0)Y-2%R0O} /100,

2EANUTERGHDINTVL

PHM=l o~ (] =D XP [« T RANERZ2AXA(T )Y ) H02

RI=2T4+FHM

IF(ZERDLLTL(XATIO)=-S1MTYLE) GO TO 10

REZLe=(la=-DIXP{XA(TOQ)¥=22XA(L1)) )2 %2

FLUa=DIMYVLF{RTI+RF/24)

RETURN

FMD
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AZ.3 SUMT : LAI*'S VERSION WITH USER SUPPLIED SUBROUTINES

FOR EXAMPLE 1
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HISNCL10

WAy b A AR ARy R SRR HJISIGE DY

HJSuwa30

THIS PROGEAM IS FCY SPTIMTIZLNG CONSTAAIN L MINIREZATLION PEOOLEMHIZILLED

RY A COMATNATIOCHAL UST NF HOGK: AND JULVES PATT AN SeACH TUOMETONL Hdhldiso
LMD SURMT FISMULATION o WHER THD S:2R0F Gl U DF Ho FEASTBLG HJSI0UEY
PIGTY 4 BT WILL B2 FLLL“D ALK BY A MUOURLISTIC PROGRAMMING TULHNIDMILHIL 30T
X CUTITD RY THC SURIIOYTIED ALCK . : HJSQLLED
THS SEIGIMAL IDZALS CAML FrlM e AR RVIVIVE TS

SCPECH TZCHNIOG o e
SUMT FODHULATIUN see FIAOCO AN ROCCORMICK
PULL BACK TRUMNIQUD s oo PAVIANT ANE HIMULELAY
THS MECoSSARY ROFLERLNGE DOCUMIETS LAN BR SRIN IN MY
REPOART o '

HOUK ARD Je7VIS .

HaSTER
- Ks Cuo LAL 4 1& 4 KSU &
oot g ook o e e ge ok ek b ot e ok ook o A e ot e o e e Rkt o o T oK e e e ke

CUTPUT VARILZBLES v
SUBPROSLI NS

RN NPLIT -

MaPM .. NO. OF

INPUT

HJSJ100
HJu20L10
HJS001z)
HJ330130
HJS5:301450
HJQUGISO
HJS 50
HJLJGL(C
HJ520.80
HJS2C190
HJS30290

NaMUL g MANEZeNAVES oo 3 PRAATYS OF PROBLTM NAMmy USEil MY USHHISICZLO
ANY 6 CHARACTLURS TO NAME THz PROBLEM.HISIC220

M oee NTO, OF VARIABL=S OF TH: PHAOBLEM HJSILZ20Q
MO oee NG OF IMIQURLITY ”Luai.!T‘T" GLJ) +Gl e Co & HJSJ0z4& 0
MH .. hu. OF ZQUALIYY Ln TRATHTS HIKY 0. Ou o HJS3Gz50
R . SJALTY COJFFICT o NT Fqﬁ SURY FUFPMULATIUN . H18JGe6&0
“P.I N o~ WLbe Ly WILL USs A CONPUTLD VAELUD o HJST02T70
RATIM e RLDUCING ELTH FUR R FROM STAGE 13 STAGE . HJS u;Z%u
OPTION —— RATIO JLE. 0.0 WILL US: KATIO=4.0 . HJSOLZ30

ee INPUT WITHIN=-STAGS ITERATION MANTHUM NJ.
STUPPING CRITTZRIUN FUR STAG: L1uKATION, KO. CF
CUT=DRLWN 871:52-512¢ SPERATIUN .

FIMAL STOPPING CEITERION, SUJESTED VaALUE
QR ABCOUT

ITHaX
INCUT s

THETA o

MAXP .. TNPUT MAXINMUIM MNO. GF S AGUS o 1IF TXCEEDCOD, STOP .
X{I) ow {TYTH DIMIASION GF LECISION VARIADLE .
DUTY o0 (DMYH CIMeKIiON DOF STVP SI78 o
DX(IY o0 (IVTH DIMUNSTIGN DOF (ISZTIMATLED VALUZSY OPTIMUM.
153140 <« QPTION COGS FGROINITIAL STEP-51Z: 55T UP ..

O —== USc INPUT DUI) VALUTS.

1 —— Ust CcoMPuUrsD Dli) =0.u2=T0X(1).
ICUT o« OPTICN L0ODe FOR STAGY STARTING SVIP-E£12¢

SUT UP e 0 == ALL Usz INPUT D(T) ¥aALUY,
1 == UST IMITIAL ZUIN/K FOR [KITH SY4G

P aa P FIMCTION VALUZ
Y e FOFUNCTION VALUCD o
¥ST0P .. CPN?U1qD Ve LUt CF FINAL=STOPPING SLYIR¥INATOR
IDPM o0 33QUINCT: KO. CF SUBPROELEMES CUTPUY
NOR oo Mde OF STAGLS UR TO LURRCKNT STEGT o
B ., TOLILANTT LEMIT FOR VIGLATIONS
FY .o MINIMUM ¥ GOT 50 FoR o
FPoww MINIBOY P GUT S0 FAR .
GEJY oo (J)TH DNTQUALTTY CONSTRATNY VaLUZ
HEK) aa (KITH (USLETY CORLIRAINT VALUS o
I7eR o WITHIN 3TAGT ITuagTIAN NI,
MOTE o0 CUMULAT LD TTRAT0N NJa
NoLUY wa w7l DF QUT DOWYY STOP=5T7 0 OPTRATION WITHIN
MOTMP s. 7. OF SUCCRSFUL v XPLURATORY MOVIE.
MOPLT s NOe TOF SUCCRSIFUL PLTTIEN MOYES,
W .. MG, UF TIMUES OF PULLIANG 840K PRYILGURE.

HJSaO
HJ302510

HJL3D200
HA 530510
HJTI0320

105543 HJS50D320

HJSdu340
JEIAS50
H15303aC
HJ53337C
HJ53J380
HJS5:03587
HJI530460
HISQO41 G

- HJS3C420

HJ3J043 0

W HISACALT

HJS 20450
HJ320646C
HJ5Hdoadu
HJ52C480
HAE 0463
IJ\JS

HJ%2g32C

HISIOE30

HJ3J5aC
HJ530350
HJS L BEG

SToGy o HIS D570

HJSODEED

HJS00598
HJL3Cs00
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; ‘ HJSMCG10
EZ 22 EE R RIS EE R RS EE 2 2 HJISJICL 20

HJ5OG030

THIS 2R0NNRaM IS5 SCR IPTIMTIZING CUNSTRAINIC MINIMIZAVION FROBLIMHIZIGLAEO

AY A COMATNIYIC AL UST NF HOOKe ARND Jo VIS PATTCAM S&aRCH TICHANERUE HASI0S50

L0 SUMT FOaMULATICN o WHEN THT SHeidk GO1S RUT OF Tie FOASIBLL HJS2a0o60
PIGINN 5 IT WILL CF PULLID BALK RY & HIURISTIC PROGRAMMING TLUHNIQUEMIS 30070
eXsTUTTD /Y Y7 SUBTOUTIRS A2CK . : HJSJUCHD
TH SEIGINAL IDIILS CAMc FPUM oW HJS000S0
SEEECH TECHIIOUC «ee HOUK ARD JEFVES . HJSLOLOU

SUMT FNIMULATLIN eee FISCCU AND MCCORNICK . HJ>00110

PULL BACK TECHNTOUD «aoPAVEANT £ND HIMMOLALAU o HJSO0120

JTHE NECESSARY ROFLRINCE DOCUMILTS LAN BE SESN DN MY MASTCR HJI50136
REPORT HJ500140
' Ke Co LAI 4, 1E , KSU . HISO0150

HJS00L60

Aok & ok okoncorh sl e ook okl e o de e ol e el oy ko ok Rk ok et kA ek R kR ek ok h HJLI01TC
 HJS00180

#% [ NPUT=CUTPUT VAFTABLLS aus HJSIC190

MUPH o4 KO, OF SUBPRUBLEMS INPUT , HJ500200

NAMEDL g NAMEZ, NAMES oo 3 PARYS OF PROALIM NAMZ, USERl MAY LSFHISOO21C
ANY 6 CHAKACTERS TO NAME THe PROBLIM.HISICZ220

N .o ND. OF VARIABLES CF THz PROBLEM . HJ$236z20
MG se NG OF IMCQUALITY CONSTRAINTS GUJ) GL. 0. & HISJuz4&0
MH o2 NCo OF LOQUALTIY CONSTIAAINTS HIK) J:tRe Do @ HJSDUZE50
B ee PIMALTY COSFFICI:NT FOK SUMT FUFMULATIUN o HJSJ0260
OPTICN ==3 WLbe D0y WILL US: & CuMPUTWD VALUE HJS20270
RATIO oo KRLOUCING RKATE FLUR R FROM STAGE 13 STAGE HIS0G280
OPTION == RATIC JLi. 0.0, WILL USE R2TI10=4.0 . HJIS30ZSO

ITHAX o INPUT WITHIN=STAG: TTLRATION MAXTMUM Nue HJ520300
INCUT e STUPPLIG CRITERICN FUOR STAGD ITzkATION, KO OF HJ53G310
CUT-DCWN STAEP=-SIZe OPERATION o HJSQC320

THETA oo FINAL STCPPING CRITERIGH, SUJESTED VALUE 10%%({-4)HJSO00330
OR 4B80UT . HJSJAu340

MAXP . INPUT MAXIMUM NOL OF STAGHS 4 IF TXCEZDID, STOP o+ HJSDI0250
X{I) ae (T)TH DIMZNSION CF CACISION VARIAGLE . HJS30360
DI{I) oo (I)TH CTIM-KSION NF STEP SIZE HJSJ0237C
OX({1) «e (IJTH DIMINSIGH OF (ZSTIMATED VALUS) OPTIMUMG HJS03B80
IAT20 o« QOPTION CUDS FOR OINITILAL STEP-=312c ST UP s HJS5a0ast
0 —— USz IHNPUT DIT} VALULS. HJ 533400

1 == USE COMPUTLD (I} =0.02=0X(1}). HJSU041C

ICUT o« OPTICN CNOc FOR STAGE STARTING STOP-SI22 HJS2G420
SCT UP 46 O == ALL Us: INPUT C(I) VALUL. ) HJSCO0&34Q

1 —-= USE INITIAL DOI)/K FTR (K)TH $TAG=.HJ520440

P oo P FURCTION VALUE . HJS$30450
Y oo F FUNCTION VALUZ . HJ530460
YSTOPM oo COMFUYLD VALULY OF FINAL-STOPPING UUTZRMIMATOR o HJISIUGTY
IDPM .. SCEQUINCY K0e GF SUBPROLLEYMS OUTPUT . HJ500480
NOR ae MO OF STAGLS UP TO CUARINT STAGE . HJE$D0430
B .. FTOLFLANCT LIMIT FOR VIULATIONS o HJSQ0500
FY oo MINTMUM Y OOT ST FAR HJSOG510
FP .. MIRIMOM P GOV SG FAR o HJS)352C
GlJ) e (JITH INTQUALITY CORSTIALINT VALUZ » HJS2G530
HIK) oa (K)TH LQUALTITY CORNSTHAAINT VALUE HJSIU54C
ITES o8 WITHINY 3TACT ITLRATTJIN SO, HJS50L 390
MOTT we CUMULAT L TTOHATTIUN N2, HJS ILSEL
NLCUT ee 0. TF CUT DOWH OSTIP=SI7: DPUFRATVION WITHIN STeGCLHIS0Q5T0
TP ae Mo NF SUCCHSEFUL BXFLURATORY MOVES. HJS500%580
MuP2l ee KDe OF LBCCRESTIFUL PATT 2P R MOYES, HJS500530
ROR . MU, UGF Ti™M. % OF PULLING BALK FRACTLURY. HJSJITa0

188



zEsiakalsReNaFaEeRalasEalaRaislels ReRalsRelial o EaloRalaslaRaReleNala e Ta e ke Fu e Ne FeRaNaals e Rala s Na e e Ra R n ia i nla L n]

NP oo N0 GF SUCCRSSFUL MOVCS INSTRL FOASIRLE RIGILN,
NOITB oo NO. OF SUCCTSSFUL M0¥L S LUT CF FEASIBLE moGIOH.

ER RS ST F IS S I EE S A TR EFE ISR RS LR RS X RN R RTE AR L

#RRINUSNCE OF INOUT DICK ...
{1) PRORLEM 10 CARD +o UNE CARDy FORMAT 1600 .
PLRAMUTIRS —= Nul# NAME( COPPUSID BY 3 PARTIS )
Ry iG ARD MM,
{2) FRCBLEM ADCITIONAL DATA CARDS ., SPRCIFIED TN THE
SURSIUTINDG REAQTIN BY USER HIMITLFy ( OPTIONAL ).
{3) suBPRiAL=M 1 INRITIAL OATA CARDS ..
- FIRST —— Uk< LARD, FOLMAT 1002 .
ARAMETERS = RyRae¥YIO, ITHAX,INCUT, THETA
M XPy 15120, AND ICUT.
SECOND == N CARDS, FJAMAT 1004 .
PARAMUTERS — JeX{T),001),AND OX(T}.
*NOTY -~ 1. J IS DKLY FOR USER TO

. b

HISICHLD
HISD0LZ0
HISILEDD
HIZSH0040
HJIS 50850
HJISOCH6C
HISI0670
HASAG680
HJS0U6S%0
HIS20T00
HJSQ0T7L0
HJ5C0T720
HJS2073D
HJS0CT40
HJSADTS0
HJSACT60
HJ5030770
H.ISOC789

CHUCK THS SAQUENCE AF CARDS.HJISD0790

2, CaRCS SHOULD &Y IN QRDER
{ SUQUINMCE OF DIMEINSION )

3. DOI) MAY Bz ANY VALLUL

3. DII) MAY 8E USE ANY VALUE
WHEN ISTIZE USE 1 .

Ly GXIT) MAY USE ANY VALUL
WHEN ISTZI: USE 0 .

{4} SUBPRAOBLEM 2 INITIAL CATA CARCS .

{ eee UP T2 THE LAST SUEPROBLEM IMHITIAL DATA CARDS s..)

o oo RN R A R R e ok ke Rt RO R SRR R R R Rk R o ok R

FESLBRGUTINES NERDHD w4 .
8ACK —w= USIED TO PULL BACK INFREASIBLE POINT .
PoNAT == D5:0 TI COMPUTL PSNALTY TCKMS .
WL IGH = USSR TO COMPUTT VIOLATICH WoIGHT .
KEADIN == A USIR SUPPLITC SUBRGUTIND, USED TO RLAD IN
ADOITICONAL DATE N&IDCD .
ORR:S e A USER SUPPLICD SUBROUTING, USTD TO CIMPUTE
COTHS JBJECTIVE AMO CONSTRAINTS o
OUTPUT  =— A US:K SUPPLIzD SUBROUTINE, US:D TO GUTPRUT
ADDITIONAL INFORKMATIGN DULSIRED .

Wbk xfek gk bk kR ke kg w kR R R E RS R bk R vk Rl Rk

%3 IMENSICHS wua
THIS PIOGRAM 15 OFSIGNeD FPB e "H.LE. 20 AND MG.LA.50.
TH: DIMcNSIONS AKE ONLY DEFIRD IN MATN PROGKAM, WHEN N,
O MH.GT .20 ANDZOR NMG.GT.5UyMAKL FRLPER CHENGIS. THD KEY OF

CHMIGS 4

X FXyPXoPX X, 0y PO =~ N DIMINSIONS

Gy FG e MG DIMENSTONS

HyFil =~ M DIMNSIONS .

R LT TR P S PR E R TR T M I R R T T A PR P R A YA P L T LR S

IMPLICIT RTALEBLA-H, =7
LLMrNS N XU Z0) 2 FX(ZC) o BXL20) o PXUZT)aIX{20),FT0L00,00230,GL(50),

HJS00800
HJS00810
HJIE00220
HIS20850
HISO0840
HJSILB50
HISA0860

189

HJSIGETG

HJE0G880
HJIS20860
HJIS520%00
HJI5I0%50
HI500920
HJ5COS30
HJS0C940
HIS00950
HJS508%60
HJSO697Q
HJ530980
HJS0C990
HJ521G00
HJS31010Q
HJSI1Q20
HJ301030
HJ$31040
HJ531050
HJSJI1060
HJS3107Q
HJI501C80
HJS21390
HJS0L100
KJSJUL110
HJI32112¢C
HJSA1123D
HJSJ1140
HI5231150
HJ5J1160
HJSJ117¢
HJ531180
HJ$116¢C
HJL01249



fm i |

(e

LFOLISO) HI20 4 FHI20)
CoiMieNy JCHAY/S POL G PE2 PO 3P4+ PRCPLGIPLT,PUS,PLY,POLO,PDY1,PD1Z
CuMYLN JBLIGY S N,"G;FH111%K,ITHG¥,ICH,CF [Py LUST
oMMy FRLOGES MOITE gMGT TR L, ISKTP

S0 13). ARD BUT NCEBFD FUR SUNNIRG THIS PROGRAMy USSR MAY TAK:
THM AWa¥.
CoMMYY RLOGEZ R(10)
#EEGIZ0) IN RLLAQ ARE UStD FOR QUTPUT AGOITIGNAL DATA CONCFeN
FOEZD) AT SUA=UPTIMUM, USrk MAY TAKe THEM AWAY.
COMuT JRLOGO/ FG
1000 FUSHATIIS , 5X, 42 £24429315)
1301 FORAAT (3L A tHE JAL 44292425 10HE PROBLEMS/

LROXy 230 * )/ /725%,"N0e OF XUI) eea' s 14/25X,

2UM. TF GLA) waa?yT4/25X 000 OF HIK) seaty

AT4 72T NU. OF PROBLENMS .ao%y4)

1002 FOPMATIODIS5.49215,005.4,215)

3OU3 FURMAT(IHL s EXG THPFOALI M 1AL L7 )

LOD4 FOURMAT(IS5432015.4) .

1005 FOAMATIZOX 13HINITIAL PUINY/SX,4HY = yDll.4,THy P = 4D1Lla4,

17THy R = ,N11.4421Hy PRATIO = 40114452He FSX,4HR 2011a%,

213H,  INGUT = o1&, L1H, IHZTA = 011,424 .}

L0005 FOMMATILOX 2HX (4 I344H) = 4DI4.0647H, D0 132,4H) = Dldety2H o)
1007 FAOKMATI3X,TS5(1H=))
1008 FURMAT(3X,15H% 4P OPTIMUMe,. (514,1H)

HIED123G
HI%5J1e40
HAIZCS1260
HJ531260
HJSSL2T70
HJSO1e80
HI501e9G
HJ§21300
HJS5J1210
HJSI1320
HJ501330
HJSI1340
HJ531350
HJ501360
HJISGLI37C
HJS2i380
HJ501390
HJ531400
HJSJ1410
HJ531420

FSX35HFY = 3D13.648HJ501430

1H9FP = 1&13.6|7H| R o= |D11-4110H1 ITCR = rl le /JXQ?HQJET =.|15HJ501440

2¢9H,  NUOB = 1éeGH, HNIP = 4144,10H, HNEOBP = ,[4/5X,BHNGRXP = , 14

HJ301450

TIHy NOPAT = 314,114y NOLUT = 31442H o/5X,8HYSTOP = 4D13.63iHYHISI 460

JOLL FORMATISX/SR, LEHEHCONSTRAINTS 440

1a12 FOAMATIION, 21l o 1344H) = ,Di&eb,2H 1)

1913 FORMATEIOX CHH (I3 44H) = y015.642H o}

1918 EORMAT{IX,aCR I SveuTHT ABNVE RATSULTS aRe THE FINAL DPTIMUM )
1016 EXOMAT(3X ;23R %0, JF F GPTIMUM IXCLedID 415,2H o)

1020 PUOBMATISXS /BN 4THY#S LLCTeD FEASTSLe STARTING POINT «.

1021 FURMATIL LILArir?relilririrsrrsx)

1022 FARMATILH SX,46H%#THE FROSLEM MIGHT BE TOO FLAT, CHECK TIMES:Ié4,

HJS2147C
HJSI1480
HJ5D1490
HJS$J1500
HM50.510
HJ501520

5315390
HJ53].540

127H, R AND RPATID Bk ADJUSTED, /TX,42HPROBAELY A COUBLE PRUCISION WHJSGL550

21LL BE NoUDIRG)

*=READ T PAOBLEM NUMAIYR, PROBLEM NAMzy, AND GIMENSIONS .
cA48 I‘D{ 5|; O'JO} N'LJPM,NAH;‘:IyNAM::Z'NL\“‘LBM\i.f"ﬂ‘;’NH
WRI15(641321)

WRITTES,LUCT) NAML Ly NAVZZ2,NAMED y Ny MGy MHNCPM
INPK=}

wiRoals [N OADDITICHAL DATA | USZE FOP ALL S5UB~PROBLIMS ).

CALL BTADEN(N, MGy MH)

YR TAL T O INITEAL PARAMTT-RS AND STOPPING CRITURIA
1 R7AM S, L002) 7o iATIO ITMAX g INCUT ¢ THIVA yMaXP,IST 70, ICUT

NQIFA(&;!&OJ’ I10PHM :

¥Pp=1

MULT =1

N XP=0

RUPAT =0

MOCUT =0

o R=1

Fhdn=H00

AP =D

MOTTP=]

MOITTR =0

TitR=9

HJS801560
HJ501570
HJSC01580
HJSG1590
HJ50160C
HJ521610
HJ5Q31620
HI521630
HJS0Q1640
HJSO1650
HJ50L660
HJS2L6TO
HJS01680
HJ521690
HJSQET700
HAS501710
HI501720
HJISIL1T 3G
HJS21749
HISD1T4AS
HJSDYTED
HJS31760
HJ53177C

331760

190



[aXu el

(]

OO0

P40

FRVALT AL

2
3

4

NIT=0
Lisr=9
LLU3T=D
1 R=0

ICH CK=D
f=0.0 10
Fh=¢

INOTHITIAL POINT,
1 4 [=l, M
ROEDL5,1304) JeXUTh 001 0X1
(J]
U320 HIMSELF, AMD HAS NJ
UST LNY O INTFLGE NUMBRR FUR
1F€TSTZ5) 343,2

LTI =1X111%0.02

RX{]Y=X(1}

FX{Li=%(T1)

eolll=001}

OX{I¥=X(L}

B=B+0.5D0%DI(T)

INITIAL

1)

IS ULED FLT CHICKING THI S:NUTNCE
IRF

FRROUCE T3
(a} 1.

£%DFCIDE THE STARTING VALUT OF TOLERENCE

B=B/FN

B=2.000+8

PR=8

CALL TRECZS{FXsFY,FC,rH)

CALL Wi IGH(STGHMG,FGy MH,FHE
JIrR=3

11 Call PINATIFG FHyPPNALPUNAZY

wx(AMPITT AN

12

*EUSY

13
14

TMIT AL VALULD OF
IFIPY 12,152,123
FeDAESTFYAIPT AL +PENA2Y)
=G L0000

EaTi0=4,0 WHTN INPUT
1FIRATIONI S 14415
RAVION=4.0

RETIO VALUE

{OWHON INPUT R

Is

15 FP=FY+R#PINAT+¥#(~-0.5)*PENA2

#5S-LFCT AFFASIELL

WETT = {61 005)
WRIT-ta,10006)
WRITE (A, 1007}
IFILT51=2) 50,16416

STARYING

MO FRALTHLY SURJLCT
#RMAKT JXPLIRATORY MOVE
16 MUF=0

18
20

O 28 1=1,N
FXE3=X{1)+2,.000%0(T}
CALL ORF=S(FXFY,FG,FH]
Call WUIGH{TOM "Gy PGy MH, FH)
TE(LDA3T-2) 44,106,418
TELARTON-TRHY 25,20,26
FXOTP=FX0T )4, 0N3+ 0T}

POINT
TU INEQUALITY CONSTRAINTS .

WHEN TN

STLP-51275

AbD CSTIMATED OPVIMUM,

OF CAarDS BY THE

THIF PRUGRAM ( ULTR MAY

LIMIT FOR G{J} «LT. C. o«

VALu: IS +ik. 0o &

slba Q6 o

FYrFPy Ry EATTIO o 8, INCUT ; THETA
{I|FX‘I]1[|D‘I,|ITIIN1

PUT INITLAL POINT IS

FOR SELTCTING A FEASIBLE SVARTING PUINT .

ALt
catL
IF (L
TF{%

MUF=
Ga T

AR SIFX G FY W FG
WELGHOTOH ¢ M0y
UST=2) &4,22422
(ER-TGHE 24424,

1aF+l
28

 FHY

Gy ME FHI

26

4 FXUDY=FX{1de2,00090(])

HIS0LTI0
HJE21E00
Hisildlo
HJSDLB2GC
HJi531a5C
HJSOLb40
HJd5018%0
HJSUl860
HISCL1ETD
HJSC18R0
HJI3IL890
HJ5%1800
HJSJ3191 0
HA501520
H4531930
HJ301940
HJSJ19520
HIS21960
HJd33L972
HJsJ1980
HJ5319350
HJ3223G0
HJaS53z010
HJ592320
HJS02030
HJ50204%G

191

HGSC2350

HJS020¢&0
HJS020670
HJ3u2060
HJ3522050
HJI502100
HJ5C2110
HJ502120
HJ302130
HJ50:140
HJ502150
HJS02160
HJ502170
H4502180
H1502120
HIZ02200
He802210
HJ502220
HJ502230
HJ532240
HJ302250
HJS022460

S H3S02270

HJ3022E0
HJS22290
HJIS50230C
HJ532310
HJ502320
HJSJ2230
HI502340
HJ52225

HJ5325%60
HJS12370
HISde 300



C

[aEg el

26 STGH=TGH
XtI)=Fx(1)
2B CuMNTINUY
IFtHAE=-") ?4,36130
el UT S1opP=51205 FOR ACLECTING A FLASIRLE STASTING POINT .
20 £ 32 I=1,N
3z T(I)="{1¥*C.500
G0 1) 16
RepAK PaTTIRN MOVFE FOR SZLICTING A FhASIBLE STARVIRG PCINT .
34 DM 35 I=leN
36 PXLTV=FXUIMS(EX{I)=-RX(1))
ALL GORRSIPX,FY,FGyFHY}
CALL WU IGHITGH MGy FGy¥H, FH)
TFCSTGH=-THHY 16416440
&0 DO 42 I=],N
X{I)=Px(1)
42 FX(I)=PX{1}
IFILOST-2) S4p432443
43 STGH=1GH
GO T3 16
44 00 46 I=1,M
ICORENHISE |
OX{1Y=rxil)
45 RXLI)=FX{1)
LOST=
wEITPUT THE MSSSAGT OF THF SCLECTED FUaSTBLE STARTING FOINT .
WRIT=(6,:0201
GO 7O 1l
48 DO 459 T1=14N
43 X{I}=FX(1}
LLOST=108T
FESTART YO MINIMIZE THE CURRENT P—-FUNCTION

#FMAKD T XAPLORATORY MOVE FOR MIMIMIZING THE P~FUNCTION
50 INIFF=0
MIUT=1
51 NOF=0
GO TGO {529102452), MCUT
52 INIEF=IDIFF+]Y
DO IGL [=1,N
X{Il=FX{[ID(T])
LOSY =0
Lv‘\LL :.-JF.F\'- S(X,Y ,G'H’
IFILOST=L) 62,62,53
53 IFLY=FY}) 55%,55,68
55 CALL RACKIX ;XY 45 eH)
E1 A =NIITRE
MIBP=NIRe]
YECHUCK THY ITMAX IS [XCLEDHED OR NOT JIN (RACK) [ LOST=i MEANS THE
ROTURNTD PRINT I8 [MF-ASIBLCO )
IFLNST=1) SAH,150,55
56 LUS1I=0
¥AOH=CK THe TTHAX TS JXCOZDED OR NOT IN (BACKY (O LOST oME. 1 MuANS
TH{ “NY-v D PUINT TS NeAb-FeaSTdLe )
62 [FUICH-CK=1) €4314G,140
Gh CALL P THATL O PUNAL P L NAZ)
Pyt =P Aol e 2n{=],8 %P KA
JFEP=50) E846%,68
68 X{IF=FXtIi-0(1)

HJI302230
HJS$)25%00
HI53241Q

192

HIS0e420 .

HJS532450
HJS$22440
HJSIIAE0
HJS22460
HI5I2470
BJSQ24E0
HJS02430
HJSQ25C0
H4502510
Ht502520
HISJI2530
HJ5I2540
HJSI2E50
H3502560
HJSQZ570
HJ502580
HJS02590
HJI502600
HJS8G2810
HJSO2620
HIS02&30
HJI5232640
HJISOZE50
HISD2650
HJSQ2670
HJ532680
HJS02690
HJS02700
HJSDZ7190
H3S0272Q
HJ5302730
HJISO2740
HJE02750
HJS502760
HJS327T0
HJSQZTEQ
HISOZT9C
HJ502zB00
HJS50Z010
HJ502820
HJS0Z330
HJS$02640
HJA502850
HJS0ZE86D
HISOZBT0
HISQZeu0
HJS22850
HJ522900
HJ502910
HI5G2927
HJS2%30
HISJ2940
HJ5232650
HJ532960
HJS522970
HJLHJ2%814



C
c

L1S1=72

CaLh TRTSEX Y eGaH)

IFILT30~1) CUy80,70
T IFIY-FY) 73,713,286
T3 CALL Affe X)Xy YaGyH)

ML= I ThE+]

I8 P=NIRP+1

ALHICK THE TTMAX TS CXCLEOPD ub KDY TN (BACK) L LUST=1 MEANS THe

RITURMED POINY IS THFOASIBLED )
IFELOST-1L) T44150,74%
T4 LN5T=9
*ACHCK THT ITMAX IS :XCFI0FD OR MOY IN (BACK)( LDST NE.
FH TNTEReD PUOINT IS MUAR-FCASIBLE )
80 IF(ICHTCK-1) 324140,140
nL2 CﬁLt PINATLG HaPONATL PENAZ)
PoY+R¥PINAL FREX (=05 )P 1A2
IF{P=FP} 35,485,86
86 X{I)=7X(1}
NEF=niF+l
GO 1O 99
88 FY=Y
FP=P
NILITP=N1IITP+]1
FX{TY=X{I)
LLCST=LOST
IF(MGY 94,944,930
90 00 22 JJ=L4MG
32 FG{JS1=6(d4)
G4 1F{4AH]) 59499, 96
a6 [0 38 KK=1,"H
93 FH{KK}=H{KK]

#*CHECK THS STAGE STOPPING CRITERIUN 15 SATISFIcO OR NOT
89 IF(MOLUT-INCUT) 100,150,150
100 [F(ICHECK=1) 101,150,1C1
10y CONTINUS

IF{=)F-H) 111,1C4,104
102 DG 103 I=1,K
103 X{I)=FX(13+0(1])
CALL OBRIESIX,Y,G,H)
1IF(LO4T-1) 1iCT41107,1104
1104 IF(Y=-FY) 1105,1:05.,11080
1105 CALL BALKIX X, ¥ yGyH)
NIITB=NULTR+L
hOEP=NIRP+]
IFILOST=1) 11064150,1106
1106 LOST=D
IFEFCH_CY=11 1107.14C,140
1107 CALL PoMATIGeM pPTNAL P MNAZ)
P=Y+R#*P NAL+R &6 [=0,5 ) *PINAZ
IF(P-FP} [115,1108,1108
1108 77 L1909 T2
1109 X{I)==x{i)-n0I}
CARLL O3305(X, Y yGeH]
TF{LOST-1) 11l13,1013,1110
LI1Q IFCY=FY) Y1lLeliltedlis
L1l ULL PALKIXeXeYeGoH)
Ml TR T TRl
MOEP=NLP ]
FRILOST-0)F Y1.2415Q421012

HA5 12590
HJSZ37U)
HJE35210
HISS3370
t4J523030
HI523349
HJ533350Q
HJ5030692
HJ5 32070

HASGZIGED .

HJE23050
HJ533100
HJ553.10
HJ533120
HJIS03130
HJ503140
HJS33150
HJ5231¢&0
HJ503170
HJ523180
HJ533190
HJ5032300
HJ833210
HJIS03220
HJ503230
HJIE03240
HJI533250
HJS02260
HJ532270
HJI503280
HJ503250
HJ502300
HJ8233310
HJ5023320
HJ503130
HI1532340
HJ80335Q
HJS333460
HJ50337¢C
HJ3503300
HJ5(3390
HJ3533400
HJS503410
HJS23420
HJS523430
HJ522440
HJ5034%0
HJ5034460
HJ503470
HJ53334870
HISN 3452
HJ5035040
HJS503%10
HJ5335%20
HJS33530
HJS$33540Q
HJI5232550
HJ503560
HJ52325749
Hd5u3560

193



¥

1112 L0ST=¢
1F{ILRM K~

1113 CALL PomAT
P=Y4#8 5D b,y

1} 1113414C,y 140
(OaH,PaNAL  PENAZ)

T+8%7(=0.5)=P NAZ

IE(P~-FF) 1115,111441114

114 MOUT=3
G2 17 51

1115 FP=p
FY=Y
FLUT=1

DA 1116 I=l,N

1316 FXCLY=X(T]}

IF(4G) :119,1119,1117
1117 DO 1113 J=1,M5

1113 FGLUI=GLYY

1119 IF{MH) 50,5C,1120
1120 DO 1121 K=1,MH

11210 FHIK)I=H{K)]
GO T3 5&

*=CHT STAP=5112F5

104 0O 108 T=1

o N

155 DU11=3.502%D4{1)
KUCUT=NOTUT+1 '
TF{IDLFF=INCUT) 51,41C%,1306

106 TFLACUT-i)
197 MCUT=2
108 P=R/2.500

CALL P:NATUFG,FH,PENAL,PENA2)
FP=FY+R=DEHAT+RE4(~0.5) *PENA2

107,107,110

INCUT=TNCUT+]

NICUT=0

0D 129 1=

POLT ) =P(T
129 D(I¥=rD(1}

o
144 .90D0

WRITE{6,3022) MCUT
IFLISI2YY 21U9,2106,51

2109 DO 21:.0 1=
2110 Gi11=0(1)/
6L T 51

110 TR(NISUT~INCUTY 111441504150

111 NOEXP =Nl X
MCUT= 3

Dy 112 1
PX{i)= I
112 RX(1)= I
’ LAST=2
CALL OR7%:-S
IFLLDST~4)
113 IFiY=FY) 1
114 Call Bagk(
NI TH=t0 T

*EMAKL PATT
I=

EX A
FXA

1,N

FANGIL

P+

Rid 40Vv= FUR MINIMIZING TH:
W N

JH(FXET)I=-BX(1}}

)

(PXsY,GyH)

12441244113
144114:+51
pK.pr|G|H,
B+l

NuIGP =y P ]
ITMax IS UxcicfeD QF

P CHLK TH.

foEMISNTY POLNNT IS INFLUASIRLY

JFLLA5T-L1)

115 LusSr=0

115,15904115%

NOT

IN

FOR MINIMEZING THE P-FUNCTIGN

P=FUNCTION «

(PaCx)(

LS F=1 MzaNs Y KO

HJSD35%0
HRJ303500
HJ5$22610
HJGG 3020
HJIS13630
HISU3640
HJED24690
HJS03660
HJ5334570
HISU2680
HiS33060
HASO3TCU
HJS32710
HJ533720
HJA503730
HJSO2740
HJS0375Q
HIST3T60
HJSA377C
HJSG378C
HIS502749Q
HJISA3800Q
HJSA3510
HJSJ3520
HJ503E30
H.J 803840
HJE3ZR850
HJ52338450
HJS03870
HJS03830
HIS03A90
HJ333200
HJS03910
HJS03920
HJS503930
HJ523940
HJS53942
HA1803944
HJS33946
HJ$23950
HJI$3356Q0
HJ503370
HJ50398(
HJ5§J2990
HJISO400C
HJ524010
HISI4020
HISJ4030
H1504240
HJ 324G50
HJ504060
HJ5I4070
HJISJ4u B0
HJI5J4090
HJS524100
HJSD4 .10
HISIELLG
HJSIGL3T
HESD4140
HJIS04158

194



(el eEgl

195

ICHECK THT O FTMAX I8 X0 -0FD uk NGT IN (BACKY( LOST Jhie. L MIENS HJIS341060

TH, =NT7- 2D PIENT IS traf=FUASIBLE ) HJASOR1TU

122 IFrlilH7CK=1) L23,140,14¢ EJ504LED
122 TFLISKIP-1) 124,488,488 HJ4a1B5
124 CHLL PUlanTlGaH,00NAT fPINAZ) . HJSQals0
P=Y+b 2Poal 407 £ {0,522 PLNAZ HdSN oS )
iF(P=FR) L23,45,48 HIS 34210

128 KWIPAT=NUPATHY HJ5U4220
MOITP=NCITPe] HIL4230

MY 129 11=1+N HJASW4240

129 FXLI1Y=pXU11) HJI534250
LLAST=LNST RJSJ42E0

139 !‘FC‘“.‘!, T3341323,131 HJSSOA2TO
131 D19 152 J=l.¥6 HJSD428C
172 FGLUd =6Ed) HJS0%2 O
133 [F(MH] 136,126,134 . HJS04300
124 DN 135 K=lgaMH HJS504310
135 FHIKY}=H{K) HJ4504320
136 F¥=Y HJS243350
Fp=p HJISIAZ4L0
HJSO04350C

#*CHECK THT STAGE STRPPING CRITIRION IS SATISFIZD OR NOT . HJ504360
FROMNOCUT-EMCUTY 128,150,150 HJS04370

138 IF{ICHICK=1) 5C,150,150 HJSN43840
HJ504390

RECHECK THT TTMAX CXCALOED PLINTC WHEN IT IS RETURN:D FROM RACK ) HJ5244G0
I> BATYTR CR ONOT AND SLT PROPEZR STAGI-OPTIMUM o HJS 34410

140 CALL MBRTS{X Y 4GeH]) HJIS504420
CALL PUNAT(G HPENAYL,PIMNAZY HJ404430

=Y FREPENALHR ¥ F (-0, 9 ) EPENAZ HJIS2445Q
IF(P=FP) 142,150,150 HJIS50&450

42 D0 L44 1=1,4H HJS504406C
144 FX{I)=X(1) HIS534470
LLOST=LUST HJSG4450

GO 7O 130 CHJL0ESs O
®esTT THY SUB-NDTIMUM G137 BEFQORE ENIER«D TD BACK BF THE HJSJ4500
STAGE=GFTIMUM HJS04510

150 RIPULL=0 HJS52452C
PULL=0.63D0D HJSO4530
IF(0) 15,415,151 HJS04540

151 09 1532 Jd=1.MG HJ504550
IF(FGLIY) 162,162,152 HJS 34560

152 CONTINUL HJI52457C
; HJSD45860

$#{ HE(Y THE STAGE NPTIMUM IS FEASIGLe OR NOT . HJS24550
160 IE{LLOST-1) 170,162,152 HJS24600
A PULL 3ALK TS INFEASIAL: STAGT-OPTIMUM INTO TH: FIASIBLY RIGION H.J534510
162 D7 163 1=l HJ524620
163 FXOI)Y=FULL={FX{I)-0XIT)I+0X{1]) HJIS04630
NIPULL=10PHLL + 1 . HJ504644
Coll D285 3(FX,FYeFGFH) HJIL 24650
LLOST=LO8T HJISJ48660
PpITE=ROTTR+L HJISG40670
TF{HOPULL—8) 160,164,164 HJ$2468Q0

164 UOPULL=D HAS8Y46 2
65 D 16s [shyN HJS24TC0
166 FXLI)=0X(T) HJSJATLC
fall OB TSIFXeFY s FGy FH) HJI524720

170 LDST=7 HJ50473G

CALL PUNATIFG, FH,PTNAL,PLYAZ) HJI574T40



[a] [ gl

FP=FY #39PNET FRe# (=0, 5) %P NA2
203 NOIT=10iT+I IR
Yo P ko (rY/{FY=REPELAL IR * 3 (~045) ~P(K3Z))
YSTOO=D M S YSETIR=-1.0)
CHLL TRRTSITFXeFYy FGyFIH)

WALTE LB I208) NeM g FY PPy Ry ITeRyNOIT pNIRPy NITTPy MUIT B, i1 XP,y

IRNUPAT g NUCUT (Y5702
WaTT 06,0 000) (s FXEL) o081 )el=1sti)
WRITIt6,1011)
[F{™3) 21a49215,215
215 WirIT O 062 Cl2) (JLFGLU) »J=1,4G])
216 IF(MHY 218,214,4217
207 YAEIT(E,1013) (KyFHIK] 3K=14MH)
#EOUTPUT ACDITI2NAL THMFOTMATICN,.
218 CALE CUTPUTIN MG gFH)
WEITE{6,10CT)

2%CilcCK THS FINAL STOPPING CREITIRICGN 1S SATISFIED OR NROT.
IF(YSTOP=TH:TA) 230,23C,220

FFCHYCH IHE MAXP IS EXCocb=2 CR NCOT .

220 LF(NOR-MAXP) 221,232,232
e S&TOAT LACT SUB-GPTIYUM POINT .
221 0 222 1=1,H
nEYI=pP0I(I}
222 OX(IV¥=FX(T}

E2SHIFT 79 THo NTXT STAGC SLARCH &
R=k/RATIN
FP=FY+R#PENAL %8 (=0, 5) %PENAZ
MOR=NN+ T
1F(NIR=5%MP) 224,224,223

223 INCUT=IRCUT+L
Mp=MpPi]
224 IF{H8P) 22642264225
225 INCUT=[NCUT+L
226 NOAD=Q
MULT=1
NITTE=0
NiITP=0
ICH:CK=0
NOTXP=0
MUPAT=0
NOCUT=0
ITA=0
I13=3
FHri=8N0R
a=0,900
MoUT=1
IVDIFEFE=Q

£¥Us0I0s THE INT

TFCICUTY 229,2

227 07 228 1=1,M
NEI)=PO(INZFNTR

228 LR+, 500%G(1)
R=R/FN
Go T7 50

229 f=pp
61 TO S50

233 WRIT (6,1015)
GO TO 234

TIAL STLP-SIZEs AND TOLRZRSNCL LIMIT,
29,227

HISO4TED
HA524760
HI334770
HJ326760
HISI4TES
1id50a?50
HJ5C4 200
HIS04816
HJS04320
HJISC4H4630
HJS5U4840
HISD4B50
HJ504860
HISU457Q
HJS04B80Q
HISI48BS0
HJS04900
HJ53451C
HI504920
HI594930
HI504940
HJS524950
HJIS 34960
HJSO045TD
HJS04580
HIS)4590
HJS55000
HJSO5010
HISDSI20
HJS$25530
HISI504G
H1505050
HJ505360
HISO50TU
HJ505083
HJ505090
HJSI5100
HI535310
HJSJ5120
HJ505139
HJ325140
HESDS150
HISOS5160
HJS$I5170
HJ525180
HJSO5L4G
HJ5I5.200
HJS35210
HJS05220
HJS05230
HJ$)5240
HI505250
HIS05250
HJSIS2705
HJSIS2RC
HJSO5250
HJSI5300
HJSI5310
HISIEI20
HJ$25330
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[siglglaNesNalaNe

c

232
234

236

WRTT {64 1C160 MAXP

0Pz §NPM ¢

TELIGPH-NOPM) 1,1,236

S{"\D

rin

SUBRIUTING BZCKIXD4X53Y 36,H)

THIS SURTNUTNINF PIMLLS TNFEIASIBLL PDINTS BACK INTM TH:
FRASTELLD OF KNIAC=FPASIBLE REGINN .

®EDEFINTVION o
Feafinlh o. ALL GII) 4GTe Do , .

- B AR-FzASTBLTee (B=TGH) GF. 0.

IMPLICIT RrAL*B{A=H,0=Z)

CIATME5INN XB(Z0) 2 X{20)1,G(50,HIZ0D),0(20)

CUMMTY JCHAY/ Pl .PD2,FN3,F04,P05sPLE,PD7sPOB,PLS,PCLO,PL11,FD12

CUMYGY JOLOAYS NgMGaMH, ITERy ITMAX,ICH CKe IR, LGSY

COAMMTN FBLGGRS NCITP o NOITE By Da1SKIP

IV :rB=1TER

I5KIP=0

FRAC=0.5

CALL WETGH{TGH MG 4Gy MH,H)

TFL{TGH) 843,44

#4N.CRIFLSE THE VALUEZ OF B IN REITURN .

4
6
a
19

iz

IFLE-TGH) 1Z+1246
IF{0.TONOEB-TGH) 104+848
R=0. 7500+7

Lasr=a

R:TURN

FTGH=TGH

#aMAK: - TXPLURATIRY MOVE FOR MINIMIZING TGH .«

£2

-
o

2

[V~

26
27
28

32

34

35
306

g

NIF=0

DO 38 NB=1,H
X3(NB)=XDB (KB -FRAC*D(NB)
cALL GE‘.—‘.FSIKB' Yl' GIH,
CALL WIIGH(TGH MGG, MH4H]
IF(LOST-2) Z244,26,26
NITTP=NIITP+1

L25T=9

GO TO 46

NAITB=NOITB+1
IF(ICHTCK~1) 27445445
IFITGH-FTGH] 28,32432
FIGI=TGH

IFIR-T0H) 338,28,25

XBANBY =X NRY+O(NSI*2,0%FREC
CALL T8 L7 L(X0, YehiaH)

CALL v IGHITOH ¢MG oGy MHH)
IFILNSI=2) C4y34y3h
FJETBR=NALTR L
IFLLCHECK=1) 35,45,45
[FIIGH=-FTGH] 28436436
XA Y=XE{KE)-FRAC*D{NB}
N iF=*TUF+]

CNrINyn

[R(NIF=N) 22,42442

HI505340
HA32%350
HJLI52610
HISuGATD
RIS 35289
HJ5935350
HJ335400
HJ5u5410
HJS05420
HJSD5430
HJS25440
HJS505450
HJS254560
HJISA54T0
HJI355480
HJIS05490
HJSN5495
HJS05500
HJIS35510
HJS3bh20
HJS05525
HJ$05520
HJS0545490
HJS$05550
HJS5J5560
HJSJI5570
HJSUS53

HJ5355940
HJ$95600
HJSS53610
HI595620
HJ$35630
HJS15640
HJS15650
HJS2556¢C
HJ150587C
HJSO056E0
HJ$15690
HJ5057C0
HJIS25710
HAS25720
HJSUS730
HJS5C5740
HI535150
HJSUSTGa

HIS0577€

HJS25780
HJS05750
HJ543%400
HJ$35810
HJ5Q5820
HJSDEGZQ
HI505084C
HJI5 25850
HJISGS5660
HJS0%57C
HJISJ5ELD
HJ5056%90
HJSGEYOQT
HJ535%910
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Oy

OO O&

sSeae

#EADL JYLP=L12TS FOE MINGIMIZING TGH o

o2

42

4%

1=t
e

61

Fiv &

GO

1172=IT(+R=4=N) 44443459
LEFAICI5,.00D

T 2z

S=ERIG¥LLE

Ty 22

45 LiST=1

®e ST RAST PCIMT TO R:TURN o

45

*E=CR

L

59 NE=1,Y

DINI)=0(NR)¥0, 8500
50 X{13) =XB{NG)

1F{

TAST THS WALUT OF B OIN RZ
NLTDI*B=TGH) 50,53,58

58 bB=U.7500%3
R=THAN
59 LIST=0

[5K

Ip=1

&0 RTTIRY

£

TURN

SUBROUTIENT PENATIG ;H,PLNAL, PEMAZY

THI

iMp
DIM

COMMNINY fCHAY/ PUL.PL2,PD3,Pli4,PD5,PDE,PLT,PLE,P09,P010,PO11,Pl12

S LURRDUTING COMPUTIES TH:

PERNALYY TERMS FOR SUMT FORMULATICON

PINal FOR INFQUALTTY CONSTRAINIS o
PIMAZ FOR ¢QUALTITY CONISTRAINTS o

LICIT RiIAL*B(A=-H,0-2)
SNETUN G5O ,HL20)

CuMM ity FRLOOGY/S NeMGyMHa ITFRy ITMAX,, ICHICK, IR, LAST

PN
PN
IF(

Al=0.00
A2=0.00
MG) 5951

1094 1I=1,M6G

IR

GIIIY 44204

kST G(I)=0.3ib=48 WH:Y GUI)=0

DI D@ WmP

GL1

1=0.1D-42

PoHAL =P NAL+DABS(1.009/G(1))

[

M) 10'1‘0'6

DO 9 K=1,MH _

PO

AT=PEHIAZ #H (K P %2

COMTINY-
TeTURN

MND

« { OCN THE BOUHDARY )

SHBROUTINT WoEGH{TGH MGy GyMH 1)

THI
T1

1P
DM

CYM» o fLHAYZ PNYL,PNZ,PD34PD&,PUSPLL,PDT,PI6,PC9,PDLO,PDLL,PDL2

S SURROUTIMNG COMPUTLS THe
THT IN:NUALITY CUONZIRAINTS

LICITV AWWAL=8A-H,T~17]
FNNION GISO)H2D)

TGH=0,

IFL
an

IFL
TGH
R
IF{

a0

MG) Gy%,)

3 1X=1,4M6
GUIRY) 24243
STGHeGIIR) =2
T

MY Te8,.5

T 10=]4MH

TOTAL W=IGHT GOF VIJILATICN

HJSJI5220
HJILEG563G
IS )559H 0
HJES5550
HJILI5560
HSZ05370
HISCS%E0
HJ515590
HJSCEL000
HJS536310
HJ4S526020
HJS3&030
HAISDECAD
HJS506050
HJ526060
HJSAE062
HJ5Q6G64
HJISDLIAE
HJSCa0T0
HJLOLAED
HJS360720
H1IS06100
HJ536110
HJUS36120
HJSTEL130
HJSGA140
HJSC6LS0
HISRELED
AJSI6LE5
HASQ&YTC
HJ5J6150
HJEG6190
HJSG&200
HJ506210
HJSU&220
HJI506220
HJS26240
HJS5G6250
HISQE2H60
HJS062TG
HJS06280C
HJS506290
HJS06300
HJ556310
HJSY6320
HJS506330
HISDE340
HJS26350
HJS5563E0
HJSJ63TC
HJSJ638C
HAS34368
HJSY6290
HJ506400
HJS)6410
HJIS816420
HJ300430
HJSJ0440
HJSJeE450
HJISOE4H0
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IF(HUIND) 64796
6 (RHSTOHEHL IR %y
7 CONYINUP
B TGH=TAHE~) 500

2TTURN

FND

SURFIUTIHI: RV GDINI My MG4YH)

HJS36470
HlS30480
HIS 6490
HJS26L5¢0
HJS 36510
HISN6520
HJS 3530

C FTHIS SUSRGUIINT 1S FrA Rzad IN ARDIVION/L CATA . HIZ2654 G
C JSTEM OSURFLYICNS HIS CAb H0AD STATTMUAT AND FLaMAT HJYTA550
( ARGUMITHNT S MyMGy¥H ART NUMDERS GF VARTAULCS GF IHoOUALITY CONSTRATNHISIOHSAHO
c AND ©F SQUALTTY CUNSTRAINTS . HISU65T0
¢ COMMAN FHLOGR/, seewesa STATEMINT 15 FOR TRAMSFSR DATA USE . HJ5U6580
C - HJISJL550
IMOLICET RzaL¥B(A-H,0~2) HJSJGH00
COMYY SALLGRS NIO) HJISU66L10
RETURN HISICH20
FND . HI50663C
SUBKAUTINT NUTPUT(K,MG, MH) HJ5064640
C THIS SURRDUTINE 1S FUR USHR TG PRINT OUT ADDYTIONAL INFUAMATIONHISNELS5D
c WANT = De AHGURSNTS NeMG,eH 4RT KUME=AS OF VARIABLES,OF INCQUALITY HJISO6G660
c CONSTRAINIS, LMD OF FQUALITY CCRSTRAINTS . HJS065670
C TH: NFMDLD CATA INFLAMATION HJSD6680
C COMMIN FL0OG3ewees IS FUR TRANSFER NETGED DATA IN-MAIN TO HI506a50
c THE SUBROUTING DUTPUT . HJS06TCO
C USE R SUFLLIFS alL NECCSSARY FORMATS . HJS06T10
c HI52672¢
IMPLICIT REAL=B{A-H,0-1) HJ$06730
COMMO™ /THAY/ PDL4PDZ,PL34PD44PLS,PLGPDTPUB,PLIyPOI0,PDLLFDL2 HJISGET3S
COMMIN JBLOGD/ G50} HIS506740
. WAITI(6,9C20 0L, P 02 +PL34PCGyPDSPOELPDT+PLB,PDY
9020 FIORMATIY ', 0THT COST COMPLMFRNTS COF THZ SUBSYSIEMS ARFET/([e t,
13015.6)) -
WeITe(6,$021) PN10,PDL1,PDL2
21 FORMAT(! *,tCAOST=?,3015.4/)
RETURN HISCETSD
END HJS06760
SUSROUTINY DGRESIX Y54} HJSJ6TTG
C ‘ ' HJSJ6T760
o THIS SUBRCUTINT COMPUTTS 084, AND COMNSTRAINT VALUZS . H450679Q
C USSR SHOULD SHePLY ALL NTOUSSARY STaATUMENTS IM THE FUORM .. - HIS0L300
C ¥=eerner FUMCTION JF X(I1 , FOR URJCCTIVE FUNCTIUN . HJI$06810
c Gldl=eaeway J FROM 1 §O MG 4 FOH CouMATHKAINITS G(J) oGT. 0.0 .+ HJS506820
c HIK)}=poouey K FROM 1L TO MH 5 FCR CGNSTRAINTS HUKD) o30. 0.0 < HJISDES30
C INSERT THeESL STATeMEMTS IN THY BLOULK BolOW LINCD BY ¥2xsdrsyxxs , HJ506940
C HJSOEB50
IMPLICIT ReAL¥8(A~H,0~2) HISOER60
DIHT9EYEN X{20),6(5C),HI201,Q(10) HJS06870
DIMIMSINN CL05,30,CUMP(3,3)
COMATIY FRLUGY/. NeMBaMH, L Tel, ITMAX, TOHTCK, [E,LOST HJS06880
COMM Tt JUHLY/S PUL4PD2, PO, P&y PD T, PLG. P07, FLE,PD3, PLIO,PLYIL,PDL2 HISJI6885
CLAMIN FRLOGRZS 0 HJSJ&G90
P00 FORMATIOX,Z5HETHE ITIAAYION UXCeiDRD 415¢1H.) . MJISu6I00
c ‘ HJSI&510
¢ whethSbxckhadpkd kA thE Rk e Rkt kR R RanE xR TR F REx eI Rk T Aw b Wk HA536520
¢ WENNT e e STATEM-NT NUMRZRS 192939405:8¢758,100 HAV: BiLn USTD. HJ526930

CC(1e3)=06
Cillyil=es
COtLy3)=.8
CC{2410=40<,
LOl292)=000.
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50

CCrze2)=500,.
CCi3,1)=5.
CC{2,21=5.
CLt3,3)=5,
Cll%yil=1.B
CClsp2i=2.

CCl5s20=15,
COLl5,2)=50,
Cctb'l,:3o
I:Ct6|2'::bc
CC£6'31*2.
ST=1500.

120,
Y2=0.
¥3=0.
VAVG=1.
D7 S0 I=143

IM=1+3 .

IC=I"+3

I =1C+3

1G=1F+3

IH={G+3

1J=1H+3

iK=114+3
UNMRIL=(1«=DIXP{-X{II*X{IED) i%%2
R L=1 « =URRFL
Call. THYEG(XsI 1L RMTBM)
UMTRM=PFTRMIUNREL
SMTBM=UMTBM/RTL
CiM=1./X{IM)
PTM=X(IC)
RTM=CT M3 UNREL+PTMRREL
COMP L, ) =COlL T *2MTBMeCCL2, 11/3TM-CCI2,1)
COMPL2, 1 Y={ST7URTRMY * ((C 4y [ PECTH ) =%2
COMPL R, [ )=(ST/STBMI S {CCUB, 11 *PTH-CCl6,411)
LY =ENT RV (IMTEM+RTMY
Yi=Y1+CuMP{l,T}
Y2sY24LOMP{2,1)
Y3=¥3+CN¥R(2,1)
Va VD= VAVOFAY
GiI)=xX{1}-.C01
GLIMI=.02=-X{1)
fOlL)=X(IMI=-.02
G{l=)=.660T=-X{I")
G{I1G)=X(T1C)=.5
G{IH)=25.-X(1C)
G{IJy=X{)1r}i=100.
CUIK}=R03,~-X(IZ2)
CONT N
GL2EI=VAVI-.9T
GE26)=1.VAV]
Y=Y14+YI4Y 3
PO1=C¥P{1,1}
PUr=C P 241}
Pr3=CoMpPi{2, 11
PC4=CLMPlL,2)
PIS=CSMP{242)
PRG=CIMP (3,21}
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C
C

POT=C0MPL1,3)
PUB=CTMP2,2)
POG=CCMP{3,2)
PD1J=Y1
PRIY=Y2
PLL2=Y3

T N e S Il T AT FE LW e TP EARL S E LY e P

LOET=0
ITZ2=0T7A+]
IF(ITER-TTMAX) 3,1,2

*=QUTP T TH: MISSAGE OF I¥MaX EXCOFEDED.

1
2

WRITS 16,1000 TTMAX
10 K=1

FECHECK FOR THY VIOLATION 10 INCCUALITY CONSTRAINTS.

3
4

5

@ =~ O

10

13=0

TF{MG) ByBy 4

DI 7 1=1+MG

IFIGLL)Y S46,7

LOST=2

GO T2 7

18=1

CONT INUE

RZITURN

END

CUBCOUTING INTHG(XA, JyJE,FSURYT
IMPLICIT RT/SL#B(A-H,C-2)

LI NSION XAL20)

COMMGN ZCHAY/ PDL,PD2,PD3,PD4,PD5,PDG6, PDT,PD8,PD9,PL10,PDIL,PD12
I RO=0,

HI=u5

DINYVL={XA{JT)-25R0OI /100,
FURO=ZTRGHDINTVL

AM=le=()=DEXP I=XALI)*ITRA) Y R%Z
RI=RT+RM
TF{ZERTWLETIXALIE)-DINTVL)) GC TO 20
RE=1e={le=DoXP{=XA(J)EXACIC) ) IRH2
FSUR=LINTVLE(RI+RF/2,.])

R TURK

END

201

HJS0694G
HISOL950
HJSQ6GE0
HJ50697C
HIS3698C
HI5069593
HI50700¢C
HJSOTC10
HJEQTC2

HJS537030
HI5237C4C
HJ507050
HJSI73EG
HJSOTCTO
HIS079380
HJISI70640
HJ3071CO
H1507110
HJSIT7120
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A2l SUMT + USER SUPPLIED SUBROUTINES FOR EXAMPLE 2
The following listed subroutines may be inserted in

place of corresponding subroutines listed in Appendix AZ2.3.



OSSO0

OO0

203

Slaal DT IR, —.‘H"\:‘(-‘:'YDI.;|H’ [ T i A
His. &7
THES SUSIIUTTRL CON2PUTLS SbkJa &8 CuhsTre T Valu, o . Y LT

GRLT BHIILE SULLLY JLL it hiasY TaTodiavs 1P THe FoRn o, [N S ARV
Y= auawey FUMTION F X(1) o FI2 00 UTIV-. FURCTION LB R o B
GlIdZewnway | FROM L T MO, 808 CULLT ET00E Gl oBTe e o HISCok2D
HiX)zaaawwy K FR7TM L T 4y FLUF CON w0805 MIK) GE0. ., o HJIL LT

[50FT TH2Sc 31aie™et TS I e CLECK cbelw LTl wY #etsesyoznd . HYLoro4)

" HdvLeiaqd
IMPLICIT SE4L=8(0=k,0=2) | HIS 6 e
OIS RS IT XLZC)p RG24 HIZD) 4202 0) HJSCHLUT 2
DIMNST YN (O (/e )4 COMP{5,3)

Crd' it FILCHY /S MylGyMH TTRE g ITHI X 1CHICK Ly LTAT HISLeERG
CUAAIM JTHAY S PULgPUL g PUS b E PSPl e UL Ty FLB FLOPT 12y Pl 1l ¥ile  HISTLDLESD

iy FRLCGRS T Hd 5 667

BULTUZXy 25kww THE TTemATICN WXCoinuld 31543H,) HA2CELC S
HISL6SL S

B LRt A T L b R TS A RAY ARREN bR N i
B L ae STATUMENT l,:|3|415'01?|bfl:;ﬂ Havl FieN USio. HJSCEs3)

WClle2)=240
CCUZ41)=000.
Cli2ya)=1Tda
SClZe31=2540.
CClosld=
CCtzs21=

.

Y2=Ce
Vayii=la

N 5C [=143
=143
IC=1¥+3
Ti=1C+s
if=Ti+3
TH=174+3
Td=z1H+3

TP LIES TS RER TS A PN DRSS

'8 Yy Le !l g HTLM)
LR S 4 CR -
AT Ve f RN |

CTr=X0)



C

51

¥

&
g

P R eSS VENS VETLATR R
T57=0
[T-P=TT 2 ¢]
IR r=]T25X%)
REOUTRUY Tro M
1 k[T (6,100

i

a
2

¢

ERIES S Eh
N Y Ry

STl T Ee 1 T e T L2 ) =l
A gy )

Fliyi)=ln

)

34 -L

BETMRRL

LT e

(291)

COrb (2 1) (0T /0 TEM L5, ) se TY=-00 L, 110}

AVERMTE

ey

HURR T M)

Yi=Y1#IUMDLL,1)
=YD TP,
Y3z Y¥3+C ME(S,7)

Vi

s Ay
Cel)=X{(T}-,

AV

1)

itk

LI =, 2J0T7-X(01)
CLTILA=X{T")=.5

1=
GlIuk=x{TC)-.1
AL RS D
GEIJY=X(1_)=5C.
GUIKP=150a=X1{10)
CUNTINUG
CI23)=Vevi=,53

flZ6r=1.-veave

¥

pn:

FLA=CIMHL L2
PLS=CNp(Z2,7

L]

(1

]

X1y

=YL1eY2+Y3
2hL=

1

ci
=(.

Pl

IRSEN v

{.

1)
o)
Pl 3= Lr“mﬁ[q )
)
)
X

PLS=CUMP(Z
9ﬁ?=£0““(1,Jl
POS=CIMP {243}
PER=COMP(5,43)
PNinH=Yl
POLL=Y

PLlE=Y3

2

iCHLCK =2
FECHOGK F ook
1a3=C

1R(*2)
o7 F=1,.Y5

IF
L
"o
1

{5
S

%]

i
LRR
l

7

a

CeHT TN

kN

RSN N

gy

THF

Byt

PEESE F L T DR e

Syigl

S5RGL CF O TTHMAX CXQEDLD,
TimMeXx

VICLETION T3 INZQUALITY CURSITRALINTYS,

rl" "')17

HJ S & 54,
HIG 6607
HJZLAE2
| U L e
HJ5 sy
HJS (66,
HJLL7ICa
HISUTuly
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In designing maintained systems, availability is used
as a single measure for the system effectiveness, The series-
parallel system which has subsystems in series, where each
subsystem has identical units in parallel, is considered.
Considering both corrective and preventive maintenance,
availability models for the series-parallel systems are
developed undef the assumption of various probability density
functions for failure and repair times of each unit. The
cost of the system consists of three cost components :
the cost for designing mean time between maintenance and
mean corrective and preventive maintenance time, the cost
for corrective maintenance, and the cost for preventive
maintenance.

The optimzl availability allocation problem, then, is
to determine individual units' detailed availability specifi=-
cation that will allow a system availability reguircecment to
be met with a minimum cost for the system. Both the general-
ized reduced gradient (GRG) method and sequential unconstrained
minimization technique (SUMT) are employed to solve this
yroblemn, The results obtained from these two different
optimization methods are compared. This availability alloca-
tion technique is applicable in the early stages of maintained
system design as well as in the latter stages of system design
when modifications and improvements for the initial specifica-

tions are required.



