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Abstract
Acoustic scattering by a cylindrical scatterer comprising isotropic acoustic and orthotropic

elastic layers is theoretically solved. The orthotropic material is used for the scattering prob-

lem because the sound speeds along radial and tangential axes can be different; which is

an important property for acoustic cloaking design. A computational system is built for

verifying the solutions and conducting simulations.

Scattering solutions are obtained based on two theoretical developments. The first one is

exact solutions for elastic waves in cylindrically orthotropic elastic media, which are solved

using Frobenius method. The second theoretical development is a set of two canonical

problems for acoustic-orthotropic-acoustic media.

Based on the two theoretical developments, scattering by three specially selected sim-

ple multilayer scatterers are analyzed via multiple-scattering approach. Solutions for the

three scatterers are then used for solving a “general” multilayer scatterer through a recur-

sive solution procedure. The word “general” means the scatterer can have an arbitrary

number of layers and each layer can be either isotropic acoustic or orthotropic elastic. No

approximations have been used in the process. The resulting analytically-exact solutions

are implemented and verified.

As an application example, acoustic scattering by a scatterer with a single orthotropic

layer is presented. The effects on the scattering due to changing parameters of the or-

thotropic layer are studied. Acoustic scattering by a specially designed multilayer scatterer

is also numerically simulated. Ratios of the sound speeds of the orthotropic layers along

r and θ directions are defined to satisfy the requirement of the Cummer-Schurig cloak-

ing design. The simulations demonstrate that both the formalism and the computational

implementation of the scattering solutions are correct.
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Chapter 1

Introduction

In this chapter, the background, motivation, research objectives and methods, and or-

ganization of the thesis are presented.

1.1 Background

The topic of cloaking has attracted significant attention in recent years. Cloaking devices

are designed to cause an object to become invisible under certain conditions. Figure 1.1

(Pendry et al., 2006) illustrates a cloaking device in an electrostatic displacement field.

The core is the cloaked object, and the shell is the cloaking device. A point charge is

located nearby. The cloaking shell smoothly bends the field lines around the cloaked object.

Observing from outside of the cloaking shell, it is as if nothing were there.

The theory of transformation optics was the basis for the design of electromagnetic

cloaking, pioneered by Pendry et al. (2006) and Leonhardt (2006). In transformation optics,

through a coordinate transformation, the original space is transformed to a new space. Based

on the form-invariance of Maxwell’s equations in both the original and the transformed

spaces, the material properties in the new space can be obtained through the coordinate

transformation. Figure 1.2 (Pendry et al., 2006) (A) shows a field line in the electric field

1



Figure 1.1: A cloaking device near a point charge (from Pendry et al. (2006)). Orange
core: cloaked region. Blue shell: cloaking shell.

against a background of the Cartesian mesh. Figure 1.2 (B) shows the distorted field line,

as well as the distorted mesh in the new space. Based on the transformation optics for the

cloaking design, if a point in the original space can be transformed into a region in the new

space, then anything in the region is cloaked. This is illustrated in Figure 1.3, where (A)

shows a point located in the original space; and (B) shows that after transformation, the

disk in Figure 1.3 (A) is transformed into an annulus, called the cloaking shell. The point

at the center in the original space is transformed into the circle in the new space, which is

the cloaked region.

In Pendry et al. (2006)’s study, the permittivity (ε) and permeability (µ) tensor compo-

nents in the new coordinate system vary as the following

εr
ε0

=
µr
µ0

=
r − a
r

,
εθ
ε0

=
µθ
µ0

=
r

r − a
,

εz
ε0

=
µz
µ0

=

(
b

b− a

)2
r − a
r

(1.1)

where εr, εθ, and εz are the permittivity in the radial, tangential and axial directions,

respectively; µr, µθ and µz are the permeability in the radial, tangential and axial directions,

respectively; ε0 is the vacuum permittivity, and µ0 is the vacuum permeability; a and b are

the radii of the cloaked region and of the exterior of the cloaking shell, respectively; r is the
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radius. Eqn. 1.1 shows that anisotropic properties are required for the cloaking design.

Figure 1.2: Pendry et al’s illustration of transformation optics: a field line in electric field
(A) before the transformation and (B) after the transformation (Pendry et al., 2006).

Figure 1.3: A view of transformation process. A: a point located in a free space (the
orange disk) before transformation. B: transmitted space. White circle: cloaked region.
Orange annulus: cloaking shell.

Since then, many cloaking designs for electromagnetic fields have been reported, such

as Schurig et al. (2006a,b); Cummer et al. (2006); Miller (2006); Ruan et al. (2007); Chen

et al. (2007); Chen and Chan (2008); Li and Pendry (2008); Kwon and Werner (2008); Rahm

et al. (2008); Jiang et al. (2008); Liu et al. (2008); Hu et al. (2009). Cummer and Schurig

(2007) found that the transformation optics can also be used for acoustic cloaking. They

showed that via a variable exchange, the acoustic equations in a fluid are identical in form

to the single polarization Maxwell equations in two-dimensions (2D). The variable exchange

between electromagnetics and acoustic fields in two dimensions is given by
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[
p, vr, vθ, ρr, ρθ, K

−1]↔ [−Ez, Hθ,−Hr, µθ, µr, εz] (1.2)

where the left group is for the acoustic case and the right group is for the electromagnetic

case, respectively; p is the acoustic pressure, vr, vθ, ρr and ρθ are the velocities and mass

densities in the radial and tangential directions, K is the bulk modulus; Ez is the electric

field intensity in the axial direction, Hθ, and Hr are the magnetic field intensities in the

tangential and radial directions, respectively. The relations between H and µ are shown as

the following

iωµr(−Hr) = −1

r

∂(−Ez)
∂φ

, (1.3)

iωµφHφ = −∂(−Ez)
∂r

, (1.4)

iωεz(−Ez) = −1

r

∂(rHφ)

∂r
− 1

r

∂(−Hr)

∂φ
(1.5)

where ω is angular frequency and i =
√
−1.

The Cummer-Schurig acoustic cloak consists of a cylindrical shell with radially varying

acoustical properties. The mass density and bulk modulus of the cloak have to satisfy the

following relationships

ρr
ρ0

=
r

r − a
,

ρθ
ρ0

=
r − a
r

,
K

K0

=

(
b− a
b

)2
r

r − a
(1.6)

properties with a subscript 0 are those of the host material. Figure 1.4 (Cummer and

Schurig, 2007) shows three acoustic pressure fields obtained through numerical simulations.

The left image shows the pressure field without a scatterer. The center image shows the

pressure field with the uncloaked rigid scatterer. The right image shows the pressure field

with the cloaked rigid scatterer. Figure 1.4 shows the good performance of the Cummer-

Schurig cloak. The acoustic wave scattered by the rigid scatterer was significantly reduced

by using the acoustic cloak.
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Figure 1.4: Cummer and Schurig’s illustration of the acoustic pressure field (Cummer and
Schurig, 2007). Left: without a scatterer. Middle: with an uncloaked scatterer. Right: with
a cloaked scatterer.

Figure 1.5: Pressure field with planar incident wave (Cai and Sanchez-Dehesa, 2007).
Left: Cummer-Schurig’s design; Right: Cai and Sánchez-Dehesa’s analysis

Cai and Sanchez-Dehesa (2007) further analyzed the Cummer-Schurig acoustic cloak

design. In their study, the Cummer-Schurig cloaking shell is approximated by a series of

uniform anisotropic fluid layers. Figure 1.5 shows a comparison of the results of the Cummer-

Schurig simulation (Cummer and Schurig, 2007) (left image) and Cai and Sánchez-Dehesa’s

analysis (right image). The left image has the planar acoustic Gaussian beam as the incident

wave, while the right image has the planar incident wave.
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Figure 1.6: Pressure field with scatterer surrounded by 3D cloaking shell designed by Chen
and Chan (2007)

1.1.1 Acoustic Cloaks Based on Cummer-Schurig Design

Based on Pendry et al. (2006)’s study, Chen and Chan (2007) obtained the three dimen-

sional acoustic cloaking by mapping the acoustic equations to the conductivity equation,

and confirmed the perfect cloaking. The material properties needed for three dimensional

acoustic cloaking are as follows

ρr =
b− a
b

r2

(r − a)2
, ρθ =

b− a
b

, K =

(
b− a
b

)3
r3

(r − a)3
(1.7)

According to Eqn. 1.7, the materials required for the three dimensional acoustic cloaking

design have radially varying properties. Figure 1.6 shows the pressure field in the x-z plane

(y = 0) with the scatterer surrounded by the three dimensional cloaking shell designed by

Chen and Chan (2007). Good performance of this three dimensional cloak can be observed

in Figure 1.6.

Cummer et al. (2008) derived the three dimensional acoustic cloaking shell in a different

way, but arrived at the same set of properties as shown in Eq. (1.7). In their study, acoustic

scattering by an arbitrary object covered by a spherical shell is investigated. The mass

6



Figure 1.7: Plane wave diffraction by square cloak filled with 256 sectors obtained by Farhat
et al. (2008b).

density and bulk modulus of the spherical shell which is the cloaking shell are derived to

cancel the scattering from the arbitrary object. There is no scattered wave in any direction.

Farhat et al. (2008b) designed a square acoustic cloak through a geometric transform.

Figure 1.7 shows the simulation result of a plane wave diffraction by a square cloak which

is filled with 256 sectors.

There are two significant difficulties in realizing Cummer-Schurig cloaks. The first is

that the design requires mass-anisotropic materials which do not exist in the natural world.

Cheng et al. (2008) and Torrent and Sánchez-Dehesa (2008) designed acoustic cloaking shell

by approximating Cummer-Schurig’s anisotropic cloaking shell with multiple isotropic fluid

layers. In Cheng et al. (2008)’s study, to approximate Cummer-Schurig’s inhomogeneous

anisotropic cloaking shell with homogeneous fluid materials, a two-step procedure is applied.

First, the ideal acoustic cloaking shell is approximated by N homogeneous anisotropic layers.

Next, each anisotropic layer is replaced by a pair of isotropic layers, denoted as layers A

and B. Figure 1.8 shows the structure of the ideal acoustic cloak and the procedure for the

approximation. The isotropic-anisotropic equivalence relations are expressed as
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Figure 1.8: Structure of cloak illustrated by Cheng et al. (2008). (a) Structure of acoustic
layered system. (b) Structure of cloak. (c) Design procedure for multilayered cloak.

ρr =
1

1 + η
(ρA + ηρB) (1.8)

1

ρθ
=

1

1 + η

(
1

ρA
+

η

ρB

)
(1.9)

1

K
=

1

1 + η

(
1

KA

+
η

KB

)
(1.10)

where η is the thickness ratio of layer B to A. Acoustic scattering by a scatterer coated with

the designed cloaking shell is simulated using the finite element method. The simulation

results showed good performance of the cloak when dA � λ and dB � λ, such as λ = 40dA.

Here dA and dB are the thicknesses of layers A and B, and λ is the wavelength. When the

frequency increases, the thickness of each layer needs to be reduced to maintain favorable

of the cloak.

In Torrent and Sánchez-Dehesa (2008)’s study, numerical experiments were applied to

demonstrate the performance of the cloaking shell. It was shown that good performance
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Figure 1.9: Schematic view of cloaking shell built by Torrent and Sánchez-Dehesa (2008)

Figure 1.10: Pressure field for planar incident wave impinging on a rigid scatterer sur-
rounded by cloaking shells designed by Torrent and Sánchez-Dehesa (2008). Left: cloaking
shell with 50 layers; Right: cloaking shell with 200 layers. Note that R1 is the radius of the
core.

of the cloaking shell can be achieved by using a large number of layers, for example 200

layers. Figure 1.10 shows the pressure field for an incident planar wave impinging on rigid

scatterer surrounded by cloaking shell of Torrent and Sánchez-Dehesa (2008). The cloaking

shell shown in Figure 1.10 (left) has 50 layers, while the cloaking shell shown in Figure 1.10

(right) has 200 layers. Figure 1.10 shows that the cloaking shell with a larger number of
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layers is more effective than those with a smaller number of layers. The limitation of this

cloak is that it only works at low frequency range and needs a large number of layers.

In-depth analyses of Cheng et al. (2008)’s acoustic cloak which is comprised of multiple

isotropic layers are presented by Cheng and Liu (2008a,b) and Cheng et al. (2009). Cheng

and Liu (2008a) theoretically analyzed the frequency response of the multilayered acoustic

cloak. When cloaking a penetrable object, the performance of the cloak is strongly influ-

enced by the resonances excited by different order penetrated waves around the resonant

frequencies. The theoretical results were verified through numerical simulations using fi-

nite element method. Cheng and Liu (2008b) further demonstrated the performance of the

acoustic cloak when the cloaked objects have a wide range of material parameters. Cheng

et al. (2009) analyzed and obtained the details of pressure field distribution in each cloak

layer. Their results show that the cloak’s macroscopic scattering characteristics are deter-

mined by the microscopic material distribution and structural details in the multilayered

structure.

Cai and Sánchez-Dehesa (2012) studied the equivalence between a single mass-anisotropic

layer and two isotropic layers. Mass densities of two isotropic layers ρA and ρB can be easily

found using Eqns. (1.8) and (1.9). To determine the bulk modulus of the two isotropic

layers (KA and KB), having only one equation (Eqn. (1.10)) is not sufficient. Cai and

Sánchez-Dehesa (2012) explored a few popular choices for the additional condition for K’s,

such as two layers having the same bulk modulus or the bulk modulus of the two layers are

proportional to their respective mass densities. They concluded that the particular choices

are not as important as the proper placement of layers. Also, according to Cai and Sánchez-

Dehesa (2012), the proper layer placement requires the heavier layer to be placed closer to

the cloaked region to maintain better cloak performance. Figure 1.11 shows the simulated

normalized total scattering cross section of a rigid cylinder cloaked by cloaks comprising 5

pairs of isotropic layers. Each pair has the same sound speed and wave number. The total

scattering cross section is defined as the total scattered energy transmitted through a closed
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Figure 1.11: Normalized total scattering cross section of a rigid cylinder cloaked by cloaks
comprising 5 pairs of isotropic layers by Cai and Sánchez-Dehesa (2012). Solid curve:
anisotropic cloak. Dot dashed curve: the heavier layer of each pair was placed closer to the
object. Dashed curve: the softer layer of each pair was placed closer to the object.

surface enclosing the scatterer. The normalized total scattering cross section is obtained by

normalizing the total scattering cross section by the diameter of the cloaked region. It is a

scalar quantity that represents the scattering strength of a scatterer. It vanishes when the

scatterer is completely hidden. In Figure 1.11, two cloaks which have properly placed layers

and improperly placed layers are compared with the anisotropic cloak. The cloak with the

heavier layer of each pair placed closer to the object has better performance compared to

the cloak with the soft layer of each pair placed closer to the object.

The second significant difficulty of the Cummer-Schurig design is material singularity.

Eqn. (1.6) shows that at the interface between the cloaking shell and the cloaked region,

ρr and K approach to infinity while ρθ approaches to zero. Chen et al. (2008) proposed a

reduced acoustic cloak comprising of isotropic layers. The reduced acoustic cloak is obtained

by loosening the requirement of the properties for the Cummer-Schurig design. In this way,

the required mass is in a realizable range. The expressions for the parameters in this study

are given as
ρr
ρ0

=
b

b− a
ρθ
ρ0

=
b

b− a

(
r − a
r

)2
K

K0

=
b− a
b

(1.11)

According to Eqn. (1.11), ρr and K are constants, while only ρθ varies along radial direction.
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Figure 1.12: The simulation results of the scattering by the coated scatterer obtained by
Chen et al. (2008). f : the scattering amplitude. σ: total scattering cross section.

Based on the expression for the parameters given in Eqn. (1.11), the cloak is designed by

alternating multiple isotropic layers using the procedure presented by Cheng et al. (2008).

Figure 1.12 (a) and (b) show the simulation results of scattering amplitude f(θ) and the

total scattering cross section σ when the cloaks have different numbers of layers (2N).

Scattering amplitude can be defined as the amplitude of the outgoing wave normalized

by the amplitude of the incoming wave, since the incoming wave is assumed to have unit

amplitude. It is defined as the following (Cai and Sanchez-Dehesa, 2007) when the incoming

plane wave has unit amplitude:

f(θ) = lim
r→∞
|pscr|

√
πkr/2 (1.12)

where pscr is the pressure due to the scattered wave.

The circles in Figure 1.12 denote the reduced case while the squares denote the ideal

case. For the ideal case, when the number of layers 2N is large enough, the scattering

amplitude f(θ) and the total scattering cross section σ approach to zero. It can be observed

12



from Figure 1.12 that by reducing the requirement of the properties, the performance of the

cloak is also reduced. Also the cloak has better performance if the number of the layers is

large, for example when 2N = 200.

Cai (2012) explored the question of whether the material singularity is a requirement for

perfect cloaking, and concluded that a perfect cloaking without material singularity can be

achieved by fine-tuning material properties using various optimization schemes. The initial

design is based on the Cummer-Schurig design, with each anisotropic layer replaced by a pair

of isotropic layers using the isotropic-anisotropic equivalence relations. Then the material

properties of each isotropic layer are fine-tuned through optimization schemes. Figure 1.13

shows the normalized total scattering cross section of both the initial design (blue dashed

line) and optimized design (red solid line). These designs have 10 isotropic layers. For the

optimized design, the optimization is run at frequency ka = 3. It can be observed from

Figure 1.13 that the cloaking effect is perfect at the optimized frequency. Figure 1.13 also

shows that both the initial and optimized designs have strong frequency dependency. The

initial design effect deteriorates when frequency increases, which starts at frequency ka = 1.

The optimized design effect is perfect at the optimized frequency ka = 3, but deteriorates

at other frequencies, for example, at frequency ka = 1.

Urzhumov et al. (2012) presented a three dimensional unidirectional acoustic cloak com-

prising isotropic acoustic materials. It was shown in their study that the unidirectional

acoustic cloak with isotropic materials can be achieved when the positions of the source and

detector were given. The simulated pressure distribution inside the cloak of Figure 1.14,

shows nearly ideal cloaking. Unlike the omnidirectional cloaks, the unidirectional cloak can

only reduce visibility of the object for a very limited range of observation angles.
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Figure 1.13: The normalized total scattering cross section of the cloak with 10 isotropic
layers designed by Cai (2012). Blue dashed line: initial design. Red solid line: optimized
design.

1.1.2 Experimentally Realized Acoustic Cloaks Based on Cummer-

Schurig Design

Acoustic cloaks for linear liquid surface waves were presented by Farhat et al. (2008a).

In Farhat et al. (2008a)’s study, a cylindrical acoustic cloak was constructed with curved

rigid sectors. The performance of the cloak was demonstrated theoretically and numerically.

Figure 1.15 shows the numerical results. A concentric surface wave was used as the incident

wave. The cloaked object is a rigid cylinder. The cloak in Figure 1.15 (left) has 256 curved

sectors; while the cloak in Figure 1.15 (right) has 100 curved sectors. Both cloaks have

good performance. Figure 1.16 shows the measured diffraction of surface waves by a rigid

cylinder surrounded by the structured cloak (left) and the rigid cylinder on its own (right).

The structured cloak is comprised of 100 curved sectors. The experimental results showed

that the wave backscattered by the rigid cylinder covered by the cloaking shell is greatly

reduced. However, the reduction of the wave scattered by the cloak in all directions was not

experimentally provided in this paper.
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Figure 1.14: The three dimensional unidirection acoustic cloak presented by Urzhumov
et al. (2012). (a) Acoustic pressure distribution on the cross-section of the cloak; (b) The
picture of the three dimensional cloak.

Figure 1.15: Numerical results obtained by Farhat et al. (2008a) for a rigid cylinder covered
by two cloaks under concentric surface wave. Left: cloak with 256 curved sectors; Right:
cloak with 100 curved sectors.
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Figure 1.16: The measured diffraction of surface waves obtained by Farhat et al. (2008a).
Left: diffraction by a rigid cylinder surrounded by the structured cloak. Right: diffraction
by the rigid cylinder on its own.

Figure 1.17: Structure of the 2D cloak fabricated by Zhang et al. (2011) with a network
of serial inductors and shunt capacitors. The cavities with large volume work as shunt
capacitors. The narrow channels which connect the cavities act as serial inductors.

Zhang et al. (2011) was the first to realize an acoustic cloak for underwater ultrasonic

waves. This cloak is fabricated with a network of acoustic circuit elements which are serial

inductors and shunt capacitors. The structure of the cloak is shown in Figure 1.17. The

two dimensional acoustic cloak comprises 16 homogenous concentric cylinders. Figure 1.18

shows the measured averaged visibility (γ̄) over the frequency range from 52 kHz to 64 kHz.

γ̄ is a parameter used for characterizing the performance of the cloak. It is defined as (Zhang

et al., 2011)

γ̄ =
1

n

n∑
j=1

Pmax,j − Pmin,j

Pmax,j + Pmin,j

(1.13)

where Pmax,j and Pmin,j are the maximum and minimum peak values of the pressure along

the wave front numbered by j. According to Eqn. 1.13, when Pmax,j = Pmin,j, the minimum
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Figure 1.18: The averaged visibility γ̄ plotted by Zhang et al. (2011) for three cases: 1.
with the object which is a steel cylinder and covered by the cloak (magenta circles); 2. with
only the steel cylinder (green squares); no object (blue triangles).

value of γ̄ can be obtained, which is γ̄min = 0. When Pmin,j = 0, the maximum value of γ̄ can

be obtained, which is γ̄max = 1. When the averaged visibility vanishes, the cloaked object is

totally invisible. This means that the cloak is perfect. A wave front is a surface representing

corresponding points of a wave that have the same phase. It is usually perpendicular to the

direction of propagation. The comparison of the three cases in Figure 1.18 shows that the

cloak is effective in a broad frequency range.

Garćıa-Chocano et al. (2011) realized a two dimensional directional acoustic cloak in air.

The cloak is comprised of 120 aluminum cylinders of 1.5 cm diameter. The positions of the

cylinders were determined through optimization approaches at the frequency of 3061 Hz.

Figure 1.19 shows the distribution of the cylinders designed to cloak a rigid cylinder of 22.5

cm diameter. Figure 1.20 shows the simulated total pressure fields for two cases: (a) with

only the rigid object and (b) with the object covered by the cloak. The simulation results

show that the strong scattering produced by the rigid object is significantly reduced by using

the cloak. An experiment was also conducted to verify the performance of the constructed

cloak. An aluminum cylinder was employed as the object to be cloaked in the experimental

setup. A series of measurements around the selected operating frequency (3 kHz) of the
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Figure 1.19: Distribution of the cylinders designed by Garćıa-Chocano et al. (2011) to
cloak a rigid body displaced at the center. The positions of the cylinders are represented by
blue solid circles.

cloak were conducted to quantify the reduction of scattering by using the cloak. Figure 1.21

shows the measured averaged visibility around the selected operating frequency (3 kHz) for

three cases: 1. with no object (black circles), 2. with only the object; an aluminum cylinder

(blue squares), and 3. with the object covered by a cloak (red triangles). The experimental

results show that the averaged visibility (γ̄) of the object is very close to that measured for

the empty space (no object) near the operation frequency (3 kHz). However, it also has a

strong frequency dependence.

Sanchis et al. (2015) designed and fabricated a directional three dimensional acoustic

cloak in air, which is shown in Figure 1.22. Figure 1.22 (a) shows the schematic of the

designed cloak and the central spherical object. Figure 1.22 (b) shows a photograph of the

fabricated cloak. The cloak is comprised of 60 rigid tori which are positioned concentrically

around the 4 cm radius cloaked sphere. Experimental measurements show that the averaged

visibility (γ̄) of the bare sphere was reduced from 0.25 to 0.10 by using the cloak at the
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Figure 1.20: Total pressure fields for two cases simulated by Garćıa-Chocano et al. (2011)
at 3 kHz: (a) with only the rigid object; (b) with the object covered the cloak. The impinging
sound has a plane wavefront.
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Figure 1.21: The averaged visibility obtained by Garćıa-Chocano et al. (2011). Black: free
space. Blue: with only the object (an aluminum cylinder). Red: with the object covered by
the cloak. The symbols represent the measured results. The continuous lines represent the
calculated results by using finite element method.

frequency of 8.55 kHz. Figure 1.23 shows the real part of the total pressure measured on

the horizontal XZ plane (left-hand panels) and vertical YZ plane (right-hand panels) for

three cases: (a) free space, (b) bare rigid sphere object, and (c) sphere object covered by

the cloak. It can be observed from Figure 1.23 that the wave reflections due to the object

are significantly reduced by using the fabricated cloak.

1.1.3 Carpet Cloaks

“Carpet” or “ground” cloaks are devices that are used to hide objects positioned on re-

flecting surfaces. An acoustic ground cloak comprised of easily-found materials was designed

by Popa and Cummer (2011). In their study, a two dimensional triangular shaped object

is hidden under a triangular shaped “carpet”. Figure 1.24 shows the simulation results of

the acoustic fields. Figure 1.24 (a) and (b) show the acoustic fields after the incident beam

impinges at 45◦ on both the ground and the rigid object not coated by the cloak. Figure
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Figure 1.22: (a) Schematic representation of the designed cloak and the central spherical
object. (b) Photograph of the fabricated cloak. (Presented by Sanchis et al. (2015))

1.24 (c) and (d) show the acoustic fields when the same incident beam encountered the

same object which is coated with the theoretical cloak and the physically realized cloak,

respectively. Figure 1.24 (e) is similar with (d); the only difference is that the incident

beam impinges on the object at different directions. Figure 1.24 (f) is also similar with (d),

but the incident beam has different frequency. Through comparison of the acoustic fields

provided in Figure 1.24, the effectiveness of the ground acoustic cloaks is demonstrated.

A broadband acoustic ground cloak in air was experimentally realized by Popa et al.

(2011). Figure 1.25 shows the two simulated acoustic pressure fields: with a triangular

object (top) and with the object covered by the cloak (bottom). Figure 1.25 shows that the

strong scattering from the object was significantly reduced by using the cloak. The acoustic

pressure fields in the dashed square region were experimentally measured. Figure 1.26 shows

the measured scattered fields of three cases with only the ground plane (left), with an object

placed on the top of the ground plane (middle), and with an object covered by the fabricated

cloak placed on the top of the ground plane (right). The good performance of this cloak was

experimentally demonstrated through measurement of the acoustic pressure fields around

the cloak.

Ren et al. (2011) designed a petal-shaped acoustic carpet cloak. This cloak has two

open windows, through which the communication between the inner and outer side of the
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Figure 1.23: Real part of the total pressure measured at 5.55kHz on the horizontal (left)
and vertical (right) planes by Sanchis et al. (2015). (a) Free space, (b) bare sphere rigid
object, (c) the object covered by the cloak.
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Figure 1.24: The simulated acoustic fields plotted by Popa and Cummer (2011).

Figure 1.25: The simulated acoustic fields plotted by Popa et al. (2011). Top: with a
triangular object. Bottom: with the same object but covered by the cloak. The pressure field
in the region within the dashed rectangle were measured experimentally.
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Figure 1.26: The measured acoustic fields plotted by Popa et al. (2011). Left: with only
the ground plane. Middle: with the object placed on the ground plane. Right: with the object
which covered by the cloak placed on the ground plane.

Figure 1.27: The simulated acoustic fields plotted by Ren et al. (2011). (a) without the
cloak; (b) with the cloak

cloak can be carried out. Favorable performance of the cloak was demonstrated through

simulations. Figure 1.27 shows the simulated acoustic fields by Ren et al. (2011). A strong

scattering from the object can be observed from Figure 1.27 (a) when the object was not

covered by the cloak. Figure 1.27 (b) shows that the scattering was significantly reduced

by using the designed petal-shaped acoustic carpet cloak. These designs avoid the material

singularity, but do rely on the availability of a “ground”.

A three-dimensional omnidirectional acoustic ground cloak was designed and experimen-

tally realized by Zigoneanu et al. (2014). Figure 1.28 (a) shows a snapshot of the fabricated

cloak and the unit cell. One quater of the cloak is not shown, so that the cross-section of

the cloak could be displayed. Figure 1.28 (b) shows a photograph of the cloaked object.
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Figure 1.28: Snapshots of the fabricated cloak and cloaked object by Zigoneanu et al. (2014).
(a), The fabricated cloak and the unit cell. (b), Photograph of the cloaked object, placed on
the ground.

Figure 1.29 shows the experimental set-up (a) and the measured and mirrored results (b).

The cloak shows a good performance under the incident sound, a short Gaussian pulse of

600 µs half-amplitude duration modulated with a 3 kHz sinusoidal.

1.1.4 Cloaks with Solid Pentamode Materials

Materials with anisotropic mass densities do not physically exist in the natural world.

Approximations of these materials are challenging and cause imperfect cloaking perfor-
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Figure 1.29: (a) The experimental set-up of carpet cloak by Zigoneanu et al. (2014). (b)
The measured and mirrored pressure fields for three cases. From top to bottom: with nothing
on the ground; with the object on the ground; with the object covered by the cloak on the
ground.
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mance. Additionally, cloaks designed with materials which have anisotropic mass densities

may only be effective at a limited frequency range, due to their discrete nature (Scandrett

et al., 2011). More recent, Norris (2008a,b, 2009) showed that the transformation optics

used by Pendry et al. (2006) and Cummer and Schurig (2007) is in fact a special case of a

general class of transformations for acoustic cloaking design. Norris (2008a)’s study shows

that in both two and three dimensions, the effective cloaking which has finite mass can be

realized by appropriately choosing material properties of the cloaking shell. Norris (2008b)

formulated the acoustic cloaking which can be achieved using either anisotropic densities

and isotropic bulk moduli or isotropic densities and anisotropic bulk moduli. The general

class of the elastic anisotropic materials is called pentamode materials. Norris (2009) also

presented the possibility for designing broadband cloaking using pentamode materials.

Pentamode metamaterials are artificial structures that have anisotropic elastic prop-

erties. Pentamode metamaterials have finite bulk modulus but vanishing shear modulus,

which is one of the important properties for acoustic cloaking design. The effect of shear

modulus for the Cummer-Schurig acoustic cloak design is investigated by Smith and Verrier

(2011). It is shown that the shear modulus limits the effectiveness of acoustic cloaks to

a small frequency range. The frequency range can be widened while reducing the shear

modulus. Shear modulus can also cause the coupling of compression and shear waves which

can cause imperfect cloaking. The pentamode materials are first structured theoretically

from specific microstructures by Milton and Cherkaev (1995).

In building pentamode materials, the bulk modulus B should be much larger than the

shear modulus G (Milton and Cherkaev, 1995; Kadic et al., 2012). Pentamode materials

are first experimentally realized by Kadic et al. (2012). In this study, the bulk modulus

is 1000 times larger than the shear modulus. Figure 1.30 (a) illustrates the pentamode

metamaterial structure suggested by Milton and Cherkaev (1995). As shown in Figure 1.30

(a), deal pentamode materials require truncated cones to meet at their strictly point-like

tips. In order to obtain realizable and stable pentamode materials, the point-like tip at the
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Figure 1.30: Kadic et al’s illustration which shows the structures of the pentamode meta-
material designed by (a) Milton and Cherkaev and (b) Kadic et al. (2012).

connection is changed to a connection region having a finite diameter d (shown in Figure

1.30 (b)). Figure 1.31 shows the structures of the pentamode which can be experimentally

achieved.

Scandrett et al. (2010) proposed an acoustic cloaking design using layered pentamode

materials. In their study, three cloaks that are designed with different materials are ana-

lyzed and compared with the continuous cloak. They are cloaks comprised of anisotropic

density and isotropic bulk modulus materials which is so-called inertial cloak (IC), isotropic

density and anisotropic bulk modulus materials which are pentamode materials (PM), and

anisotropic density and anisotropic bulk modulus materials, which is the combination of

IC and PM cloaks (PMIC). The continuously cloak was designed based on the coordinate

transformation with continuous varying anisotropic materials. An optimization approach

is adopted to improve the performance of the cloaks at a certain frequency, for example,

ka = 4.34. The scattering coefficient which is also called the total scattering cross section,

σc, is defined as objective function, and the material properties are defined as optimization

parameters. Scattering coefficient presents the ratio of the total scattered energy to the total

energy due to the impinging of the waves on an object. In this study, the covered object

is a rigid sphere. Figure 1.32 shows the scattering coefficients for the optimized discrete

three-layer cloaks. The optimization was run at frequency ka = 4.34. The scattering coeffi-
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Figure 1.31: Kadic et al’s experimentally achievevable pentamode material structures
(Kadic et al., 2012).
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Figure 1.32: The scattering coefficients from a rigid object which covered with continuous
and three-layer cloaks obtained by Scandrett et al. (2010). Blue solid line: PMIC cloak.
Red dashed line: PM cloak. Green dot dashed line: IC cloak. Black dotted line: continuous
cloak.

cient for a continuous cloak is also provided for reference. Figure 1.32 shows that the three

discrete cloaks all have good preformance at the optimized frequency. The three-layer PMIC

cloak has almost the same performance as the continuous cloak, while the performance of

IC and PM cloaks are also close to that of the continuous cloak.

In their later study, Scandrett et al. (2011) focused on designing cloaks comprised of

pentamode materials which have anisotropic bulk moduli and isotropic densities. The reason

is that materials with anisotropic densities do not physically exist in the natural world and

are much more challenging for engineering realization. Figure 1.33 shows the scattering

coefficients for the layered cloaks over a wide frequency range, from ka = 1 to 10. Figure

1.33 shows that the cloaks with more layers have better performance.

Chen et al. (2015) designed an acoustic cloak with a latticed pentamode material, shown

in Figure 1.34. Figure 1.34 (a) shows the continuous material properties of the cloaking

shell (solid lines) and their layered approximation (dashed lines). Figure 1.34 (b) shows

a schematic of the recursive implantation of lattices into cylindrical layers. The layout of

the cloak is shown in Figure 1.34 (c). The performance of the cloak which shields a rigid

object under plane acoustic wave was numerically verified. Figure 1.35 shows the simulated
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Figure 1.33: The scattering coefficients from a rigid object which covered with continuous
and layered cloaks obtained by Scandrett et al. (2010).

scattering pressure fields at two frequencies: ka = 1.57 (top panel) and ka = 2.51 (bottom

panel). At both frequencies, compared with the uncloaked cases (left panel), a significant

reduction of scattering can be found from the cloaked cases (right panel).

1.1.5 Our Previous Work: Acoustic Cloaks with Mixture of Con-

ventional Isotropic Fluid and Isotropic Solid Layers

Cai (2012) introduced optimization to acoustic cloaking design, and concluded that a

perfect cloaking without material singularity can be achieved by fine-tuning material prop-

erties using various optimization schemes. The initial design to be optimized in his study is

based on the Cummer-Schurig prescription. The optimization is run at a frequency selected

a priori. Perfect cloaking with all fluid layers can be achieved through the optimization at

a given frequency. However, it is also observed that, sometimes, the cloaking effect may

deteriorate at other frequencies.

Bao and Cai (2012) attempt to minimize such deterioration by using multi-objective

optimization methods such that the cloaking performance will be maintained over a wide
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Figure 1.34: Latticed pentamode acoustic design by Chen et al. (2015). (a) Profiles of
continuously varying material properties of the cloak (solid lines), and their layered ap-
proximation by the pentamode lattice (dashed lines). (b) The schematic illustration of the
recursive implantation of lattice cells into cyindrical layers. (c) The layout of the latticed
cloak.
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Figure 1.35: Simulated acoustic pressure fields by Chen et al. (2015). (a) Uncloaked case
at ka = 1.57. (b) Cloaked case at ka = 1.57. (c) Uncloaked case at ka = 2.51. (d) Cloaked
case at ka = 2.51.

range of frequencies. In their study, two examples are presented. The first cloak comprises

all conventional acoustic layers, and the second comprises a mixture of conventional acoustic

and elastic layers.

The initial design is based on Cummer-Schurig prescription, discretized into 5 anisotropic

layers. Each anisotropic layer is then replaced by a pair of isotropic layers, denoted as layers

A and B. The isotropic-anisotropic equivalence relations (Cheng et al., 2008; Torrent and

Sánchez-Dehesa, 2008) are given in equations 1.8 through 1.10. In this study, η = 1 because

all ten isotropic layers have equal thickness. The following relation is used in their study,

KA/KB = ρA/ρB, when combined with Eqn. (1.10) this gives (Cai, 2012)

KA =
1

2
K

(
ρA + ρB
ρB

)
(1.14)

KB =
1

2
K

(
ρA + ρB
ρA

)
(1.15)
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Figure 1.36: Normalized total scattering cross section of the cloak with 10 isotropic fluid-
solid mixture of layers designed by Bao and Cai (2012). Dot dashed curve: initial design.
Dashed curve: optimized design at ka = 3. Solid curve: optimized design at kia = 1, 2, 3.

The odd-numbered isotropic layer A uses the lighter density and the even-numbered isotropic

layer B uses the heavier density. To obtain the initial design with fluid-solid mixture of lay-

ers, the odd-numbered layers remain the same while the even-numbered layers are converted

to elastic layers. The material properties of the elastic layers are based on the original acous-

tical properties, with the addition of an assumed Poissons ratio of 0.33. The optimization

is ran at three discrete frequencies, kia = 1, 2, and 3, where i = 1, 2, 3. The mass density

ρ of all layers, Lamé constants λ and µ of the elastic layers, and the sound speed c of the

acoustic layers are defined as the optimization variables.

Figure 1.36 shows the normalized total scattering cross section of three designs over the

frequency range from ka = 0 to 6: the initial design based on Cummer-Schurig prescription

(dot dashed curve); the single-objective optimized design at ka = 3 (dashed curve); and

the multi-objective optimized design at kia = 1, 2, 3 (solid curve). The dashed curve shows

that the value of the normalized total scattering cross section at ka = 3 is very small, as

this is the frequency at which the optimization is run. But the normalized total scattering

cross section over the frequency range between ka = 1 and 3 is much higher. The solid

line shows that the normalized total scattering cross section is much flatter from ka = 0 to
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Figure 1.37: Total acoustic pressure distribution due to impinging of a planar incident
wave onto a rigid cylinder cloaked by the design of Bao and Cai (2012).

3. Figure 1.37 shows the amplitude of the acoustic pressure when a planar wave impinges

onto the initial design ((a1)-(a3)), the single-objective optimized cloak ((b1)-(b3)), and the

multi-objective optimized cloak ((c1)-(c3)) at kia = 1, 2, 3.

From Bao and Cai (2012)’s study, we find that the cloaks have strong frequency de-

pendency because the equivalence relation between a single anisotropic layer and a pair of

isotropic layers is valid only at low frequency range. Through multi-objective optimization,

the performance of the cloak could be maintained at a wider frequency range. The limi-

tation of this study is that the frequency dependency cannot be avoided, even though the

multi-objective method was applied. The performance of the cloaks could be maintained at

a lower frequency range. If the wider and higher frequency range is chosen to be optimized,

then it is harder to get good results. In addition, the optimization process takes a huge

amount of computation. The advantage of this study is that it proved the conventional

35



isotropic elastic materials could be used for a perfect acoustic cloaking design.

1.2 Motivation for the Thesis

Through the introduction of the cloaks in Section 1.1, it is apparent that there are

limitations for practical realization of cloaking materials. Fluid materials with anisotropic

mass densities are not real world materials. The approximation of anisotropic mass densities

reduces the effectiveness of the cloaks. In addition, it is difficult to mix two fluids while

requiring each to maintain a shape of a thin shell for the layered acoustic cloaking designs

(Cai and Sanchez-Dehesa, 2007; Cheng et al., 2008; Chen et al., 2008; Torrent and Sánchez-

Dehesa, 2008; Cai, 2012). There are also challenges for physically realizing pentamode elastic

materials. Perfect pentamode materials are not stable, because the vanishing shear modulus

implies that they are hard to compress yet easy to deform. The deformation would change

the structure of the material, which would lead to destruction of the material. So the ideal

pentamode materials only exist conceptually. They can only be realized approximately.

Kadic et al. (2012) approximately realized the pentamode material which was suggested

by Milton and Cherkaev (1995) with a three-dimensional microstructure. Their pentamode

material is built to have a finite shear modulus for stability. The ratio of bulk modulus

to shear modulus is made to be 1000. Smith and Verrier (2011) investigated the effect

of shear modulus for cloaking design. Their study showed that the non-vanishing shear

modulus will couple the compression and shear waves which could cause imperfect acoustic

cloaking. Thus, the approximately realized pentamode materials which have non-vanishing

shear modulus would inevitably lower the effectiveness of the cloaks.

This current work is to investigate conventional orthotropic materials for acoustic scat-

tering problems, which will be helpful for the study of practical realization of acoustic

cloaking. According to Norris (2008b)’s study, materials required for cloaking design need

to have either anisotropic mass densities and isotropic bulk moduli or isotropic mass den-
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sities and anisotropic bulk moduli. The conventional elastic orthotropic materials investi-

gated in this study have isotropic mass density and anisotropic bulk modulus which satisfy

the requirement for cloaking design. In addition, compared with the materials that have

been used for acoustic cloaking design, the conventional elastic orthotropic materials have

some advantages for practical realization. First, compared with fluid cloaking materials

with anisotropic mass densities, the conventional elastic orthotropic materials which have

isotropic mass densities are easier to construct. In addition, by using conventional elastic

orthotropic materials, the difficulty of holding layered fluid materials together is solved.

Second, conventional elastic orthotropic materials have non-vanishing shear moduli, which

overcomes the limitation of pentamode materials. Even though pentamode materials also

have isotropic mass densities and anisotropic bulk moduli, it is difficult to practically realize

pentamode materials because of their vanishing shear moduli properties.

1.3 Research Objectives and Methods

In the author’s previous study (Bao and Cai, 2012), acoustic cloaks with a mixture of

conventional isotropic fluid and isotropic elastic layers are numerically designed through

optimization approaches. It is shown that the perfect acoustic cloaking can be successfully

designed by using a mixture of fluid and solid layers. The objective of this research is to

study acoustic scattering by cylindrical scatterers with a mixture of conventional isotropic

fluid and elastic orthotropic layers. A computational system will also be built to verify and

conduct the numerical simulations of the scattering problem solutions.

There are two main tasks in this research. The first task is to obtain the general solu-

tion for waves in cylindrical, linear elastic orthotropic media. Frobenius method is applied

to accomplish this task. Frobenius method is a powerful technique for finding solutions

of second-order ordinary differential equations in the form of power series. It gives ex-

act analytical solution. The second task is to solve the problem of acoustic scattering by
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multi-layer cylindrical scatterer which comprises both isotropic fluid and linearly ealstic

orthotropic materials. To accomplish this task, a set of two canonical problems is first

defined. Each canonical problem involves two isotropic acoustic media and one linearly

elastic orthotropic medium which are separated by two interfaces. The linearly elastic or-

thotropic medium is in the middle. Canonical problems describe the interactions of the

waves at the interfaces for scattering in the multilayered scatterer. Scattering by three

multilayered scatterers is analyzed based on the canonical problems. The three scatter-

ers comprise: acoustic-orthotropic-acoustic layers, orthotropic-acoustic-orthotropic-acoustic

layers, and orthotropic-acoustic-acoustic layers, respectively. Then the solution for a mul-

tilayer scatterer with an arbitrary number of layers, each layer being either linearly elastic

orthotropic or isotropic acoustic, is obtained by recursively using the solution for the three

basic multilayer scatterers.

1.4 Organization of Thesis

The organization of the thesis is as follows:

Chapter 1 gives an introduction to the background and objectives of this research. The

approaches to achieve the objectives are also briefly introduced.

In Chapter 2, Frobenius method is used for solving elastic waves in cylindrically linearly

elastic orthotropic media.

Chapter 3 explores the procedure to solve acoustic scattering by cylindrical scatterers

which have both conventional isotropic acoustic and elastic orthotropic layers.

Chapter 4 provides the verification of the solutions through two approaches.

In Chapter 5, acoustic scattering by various scatterers are studied through numerical

simulations. A computational system is built for conducting simulations of scattering by

the multilayer scatterers which were solved in the earlier chapters.

The conclusions of this thesis are presented in Chapter 6.

38



Chapter 2

Waves in Cylindrically Orthotropic

Elastic Media

2.1 Introduction

The general solutions for elastic wave propagation in a cylindrically orthotropic elastic

media are explored in this chapter. Using the Frobenius method, exact analytical solutions

of elastic waves in cylindrical elastic orthotropic media are obtained. Possibilities when

orthotropic media have special properties are also considered to ensure the completeness

of the solutions. Only the two dimensional problem known as the plane-strain problem is

considered.

2.2 Equations of Motion for Orthotropic Medium

In this section, the equations of motion for cylindrically orthotropic elastic medium in

terms of displacements for two dimensional problems are obtained.

For a plane-strain problems, the strain along the azimuthal direction is zero. This

means that εzz = εrz = εθz = 0. As a result, σrz = σθz = 0. The stress-strain relations of
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orthotropic materials in stiffness form are


σrr

σθθ

σrθ

 =


C11 C12 0

C12 C22 0

0 0 C44




εrr

εθθ

2εrθ

 (2.1)

where Cij are four independent elastic constants, r is the radius, θ is the angle, σrr and σθθ

are the normal stresses along the radial (r) and tangential (θ) directions, respectively; εrr,

and εθθ are the normal strains along the radial (r) and tangential (θ) directions, respectively;

σrθ and εrθ are the shear stress and shear strain in direction θ on the plane whose normal

is in direction r, respectively. For a plane-strain problem, the equations of motion in terms

of stresses are

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r
(σrr − σθθ) = ρür (2.2)

∂σrθ
∂r

+
1

r

σθθ
∂θ

+
2

r
σrθ = ρüθ (2.3)

where ur = ur(r, θ) and uθ = uθ(r, θ) are the displacements along r and θ directions,

respectively; ür and üθ are the accelerations along r and θ directions, respectively; ¨(•)

represents the second derivative with respect to time. Recalling the strain-displacement

relations

εrr =
∂ur
∂r

(2.4)

εθθ =
1

r

(
ur +

∂uθ
∂θ

)
(2.5)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(2.6)

stresses in terms of displacements are, by substituting Eqns. (2.4) through (2.6) into Eqn.
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(2.1),

σrr = C11εrr + C12εθθ

= C11
∂ur
∂r

+ C12

(
ur
r

+
1

r

∂uθ
∂θ

)
(2.7)

σθθ = C12εrr + C22εθθ

= C12
∂ur
∂r

+ C22

(
ur
r

+
1

r

∂uθ
∂θ

)
(2.8)

σrθ = C44(2εrθ)

= C44

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(2.9)

By substituting the Eqns. (2.7) through (2.9) into Eqns. (2.2) and (2.3), the equations of

motion in terms of displacements for the orthotropic medium are obtained,

C11
∂2ur
∂r2

+ C11
1

r

∂ur
r

+ C44
1

r2
∂2ur
∂θ2

− C22
ur
r2

+(C12 + C44)
1

r

∂2uθ
∂r∂θ

− (C22 + C44)
1

r2
∂uθ
∂θ

= ρür (2.10)

(C12 + C44)
1

r

∂2ur
∂r∂θ

+ (C22 + C44)
1

r2
∂ur
∂θ

+C22
1

r2
∂2uθ
∂θ2

+ C44

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
= ρüθ (2.11)

2.3 General Solutions for the Equations of Motion Us-

ing Frobenius Method

In this section, Frobenius method is used to solve the equations of motion in terms of

displacements (Eqns. (2.10) and (2.11)) for the orthotropic media.

The displacements ur and uθ in Eqns. (2.10) and (2.11) are assumed to be expressible

in the variable-separated form (Misky, 1965; Markus and Mead, 1995; Martin and Berger,
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2001; Shuvalov, 2002)

ur =
∞∑

n=−∞

Un(r)einθeiωt (2.12)

uθ =
∞∑

n=−∞

Vn(r)einθeiωt (2.13)

where i =
√
−1 is the unit of imaginary numbers, ω is the angular frequency, n runs from

−∞ to ∞. Substituting Eqns. (2.12) and (2.13) into Eqns. (2.10) and (2.11), gives

∞∑
n=−∞

[
C11U

′′
n + C11

1

r
U ′n +

(
ρω2 − n2C44 + C22

r2

)
Un

+in(C12 + C44)
1

r
V ′n − in(C22 + C44)

1

r2
Vn

]
einθeiωt = 0 (2.14)

∞∑
n=−∞

[
in(C12 + C44)

1

r
U ′n + in(C22 + C44)

1

r2
Un

+C44V
′′
n + C44

1

r
V ′n +

(
ρω2 − n2C22 + C44

r2

)
Vn

]
einθeiωt = 0 (2.15)

Since einθ are orthogonal functions, each bracketed term within the summations of Eqns

(2.14) and (2.15) has to be equal to zero, which gives

C11U
′′
n + C11

1

r
U ′n +

(
ρω2 − n2C44 + C22

r2

)
Un

+in(C12 + C44)
1

r
V ′n − in(C22 + C44)

1

r2
Vn = 0 (2.16)

in(C12 + C44)
1

r
U ′n + in(C22 + C44)

1

r2
Un

+C44V
′′
n + C44

1

r
V ′n +

(
ρω2 − n2C22 + C44

r2

)
Vn = 0 (2.17)

Following Martin and Berger (Martin and Berger, 2001), for simplicity in notation, the
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following dimensionless stiffness ratios are introduced as

c11 =
C11

C44

, c12 =
C12

C44

, c22 =
C22

C44

(2.18)

Then, the set of ordinary differential equations in Eqns. (2.16) and (2.17) for Un(r) and

Vn(r) becomes

c11
(
r2U ′′n + rU ′n

)
+
(
k2r2 − n2 − c22

)
Un + in(c12 + 1)rV ′n − in(c22 + 1)Vn = 0 (2.19)

r2V ′′n + rV ′n + in(c12 + 1)rU ′n + (k2r2 − n2c22 − 1)Vn + in(c22 + 1)Un = 0 (2.20)

where k is the wave number and k2 = ρω2/C44.

2.3.1 Frobenius Series

Assuming that Un(r) and Vn(r) have solutions in the following Frobenius series form,

Un(r) =
∞∑
m=0

amnr
m+αn , Vn(r) =

∞∑
m=0

bmnr
m+αn (2.21)

where index αn and the coefficients anm, bnm are as yet undetermined. Substituting expres-

sions Eqn. (2.21) into Eqns. (2.19) and (2.20) gives

∞∑
m=0

{
c11 [(m+ α)(m+ α− 1) + (m+ α)] + (k2r2 − n2 − c22)

}
amnr

m+αn

+
∞∑
m=0

{in(c12 + 1)(m+ α)− in(c22 + 1)} bmnrm+αn = 0(2.22)

∞∑
m=0

{in(c12 + 1)(m+ α) + in(c22 + 1)} amnrm+αn

+
∞∑
m=0

{
(m+ α)(m+ α− 1) + (m+ α) + (k2r2 − n2c22 − 1)

}
bmnr

m+αn = 0(2.23)
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2.3.2 The Index and the Indicial Equations

Eqns. (2.22) and (2.23) need to be satisfied for all powers of r. Dividing the common

factor rαn , for the 0-th power, they become the following set of indicial equations

a0n[c11α
2
n − (n2 + c22)] + b0n(in)[(c12 + 1)αn − (c22 + 1)] = 0 (2.24)

a0n(in)[(c12 + 1)αn + (c22 + 1)] + b0n[α2
n − (n2c22 + 1)] = 0 (2.25)

which can be written in the matrix form as c11α
2
n − (n2 + c22) (in)[(c12 + 1)αn − (c22 + 1)]

(in)[(c12 + 1)αn + (c22 + 1)] α2
n − (n2c22 + 1)


 a0n

b0n

 =

 0

0

 (2.26)

To have non-vanishing an0 and bn0, the determinant of the system matrix should vanish,

that is

D = [c11α
2
n − (n2 + c22)][α

2
n − (n2c22 + 1)]

− (in)[(c12 + 1)αn − (c22 + 1)](in)[(c12 + 1)αn + (c22 + 1)] = 0

(2.27)

For simplicity, Eqn. (2.27) is written as (Markus and Mead, 1995)

D = A0α
4
n − A1α

2
n + A2 = 0 (2.28)

with

A0 = c11, A1 = c11 + c22 + n2(c11c22 − c212 − 2c12), A2 = c22(n
2 − 1)2 (2.29)

So the solutions for Eqn. (2.28) are

α2
n =

A1 ±
√
A2

1 − 4A0A2

2A0

(2.30)
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The sign of the discriminant D determines whether the solution will be real or complex,

which can be expressed as

D =A2
1 − 4A0A2

=(c11 − c12)2 + n4∆[∆− 4(1 + c12)]

+ 2n2[∆(c11 + c22) + 4∆ + 2c12(2c12 − c11 − c22)]

where

∆ = c11c22 − c212 (2.31)

Martin and Berger (2001) concluded that D will be positive when the following relation is

satisfied

∆ ≥ 4(1 + c12) (2.32)

So α can have real solutions if the stiffness constants can satisfy the following relation

c11c22 − c212 ≥ 4(1 + c12) (2.33)

When D ≥ 0, Eqn. (2.30) gives four real solutions of α, which can be written as

α(1,2)
n = ±

√
A1 +

√
D

2A0

, α(3,4)
n = ±

√
A1 −

√
D

2A0

(2.34)

There are two special cases that will need to be considered when using Frobenius method:

1) when αn has repeated roots and 2) when αn has two roots differ by an integer. Details

of these two special cases are discussed in Sections 2.4, 2.5, and 2.6.
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2.3.3 The Recurrence Relations

Eqns. (2.22) and (2.23) can also be written as

∞∑
m=0

{
c11 [(m+ αn)(m+ αn − 1) + (m+ αn)]− (n2 + c22)

}
amnr

m+αn

+
∞∑
m=2

k2a(m−2)nr
m+αn +

∞∑
m=0

{in(c12 + 1)(m+ αn)− in(c22 + 1)} bmnrm+αn = 0 (2.35)

∞∑
m=0

{in(c12 + 1)(m+ αn) + in(c22 + 1)} amnrm+αn +
∞∑
m=2

k2b(m−2)nr
m+αn

+
∞∑
m=0

{
(m+ αn)(m+ αn − 1) + (m+ αn)− (n2c22 + 1)

}
bmnr

m+αn = 0 (2.36)

Eqns. (2.35) and (2.36) need to be satisfied for all powers of r. Dividing the common factor

rαn , for the 0-th power, they become the set of indicial equations Eqns. (3.28) and (2.25).

For the 1-st power, they become

a1n[c11(αn + 1)2 − (n2 + c22)] + b1n(in)[(c12 + 1)(αn + 1)− (c22 + 1)] = 0 (2.37)

a1n(in)[(c12 + 1)(αn + 1) + (c22 + 1)] + b1n[(αn + 1)2 − (n2c22 + 1)] = 0 (2.38)

which can be written in the matrix form as c11(αn + 1)2 − (n2 + c22) (in)[(c12 + 1)(αn + 1)− (c22 + 1)]

(in)[(c12 + 1)(αn + 1) + (c22 + 1)] (αn + 1)2 − (n2c22 + 1)


 a1n

b1n


=

 0

0


(2.39)

Since the determinant D of the system matrix in Eqn. (2.26) vanishes, the determinant of

the system matrix in Eqn. (2.39) does not vanish. Thus, a1n and b1n have to be zero. For
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the m-th power, where m goes from 2 to ∞, they become

{c11[(m+ αn)(m+ αn − 1) + (m+ αn)]− (n2 + c22)}amn + k2a(m−2)n

+{in(c12 + 1)(m+ αn)− in(c22 + 1)}bmn = 0 (2.40)

{in(c12 + 1)(m+ αn) + in(c22 + 1)}amn

+[(m+ αn)(m+ αn − 1) + (m+ αn)− (n2c22 + 1)]bmn + k2b(m−2)n = 0 (2.41)

Eqns. (2.40) and (2.41) can be written in matrix form as

 c11(m+ αn)2 − (n2 + c22) in[(c12 + 1)(m+ αn)− (c22 + 1)]

in[(c12 + 1)(m+ αn) + (c22 + 1)] (m+ αn)2 − (n2c22 + 1)


 amn

bmn


= −k2

 a(m−2)n

b(m−2)n


(2.42)

The recursive relationship shown in Eqn. (2.42) is a two step recursion which starts with

a0n and b0n. Following the Frobenius method, the initial value of a0n can be assumed as an

arbitrary non-zero value. By setting a0n = 1, Eq. (2.25) gives

b0n = −in[(c12 + 1)αn + (c22 + 1)]

α2
n − (n2c22 + 1)

(2.43)

Through Eqn. (2.42), even numbered real coefficients amn and bmn can be obtained with

the defined initial values of a0n and b0n, while odd numbered coefficients are set to zero.
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2.3.4 The General Solutions

For each real α
(σ)
n (σ = 1, 2, 3, 4) from Eqn. (2.34), coefficients a

(σ)
mn and b

(σ)
mn can be

calculated from Eqn. (2.42). The resulting displacement Un and Vn can be written as

U (σ)
n (r) =

∞∑
m=0

a(σ)mnr
m+α

(σ)
n , V (σ)

n (r) =
∞∑
m=0

b(σ)mnr
m+α

(σ)
n , (2.44)

Thus, the general solution of displacement for the waves in a cylindrically orthotropic

medium can be written as

ur =
∞∑

n=−∞

[
anU

(1)
n (r) + bnU

(2)
n (r) + cnU

(3)
n (r) + dnU

(4)
n (r)

]
einθeiωt (2.45)

uθ =
∞∑

n=−∞

[
anV

(1)
n (r) + bnV

(2)
n (r) + cnV

(3)
n (r) + dnV

(4)
n (r)

]
einθeiωt (2.46)

Or the general solution can be written in a compact form as

uruθ
 =

∞∑
n=−∞

an
U

(1)
n

V
(1)
n

+ bn

U
(2)
n

V
(2)
n

+ cn

U
(3)
n

V
(3)
n

+ dn

U
(4)
n

V
(4)
n


 einθeiωt (2.47)

where an, bn, cn and dn are constants to be determined.

2.3.5 Special Cases in the General Solutions

According to Eqns. (2.29) and (2.30), we have αn = α−n. Since a0n = 1, the relation in

Eqn. (2.42) gives amn = am(−n). According to Eqn. (2.43), we have b0n = −b0(−n). Then,

Eqn. (2.42), gives bmn = −bm(−n). Therefore, Eqn. (3.43) gives Un = U−n and Vn = −V−n.

So without any loss in generality, only when n >= 0 is discussed. There are three special

cases that need to be further considered.

The first special case is when αn has two roots which differ by an integer at mode n > 0.

If αn has two roots that differ by an integer, to obtain the second linearly independent
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solution, if the first solution corresponding to α1 is y1(r), the second solution has the form

(Edwards and Penney, 1996; Campbell and Haberman, 1996; Riley et al., 2006; Farlow,

2006; Patnaik, 2009)

y2(r) = cy1(r) ln r +
∞∑
m=0

Bmr
m+α2 (2.48)

where c is a constant. Constant c and coefficients Bm can be obtained by substituting the

Eqn. (2.48) into the original ordinary differential equation.

The second special case that will be discussed is when α has repeated roots. If α has

repeated roots, it will lead to two identical solutions. So the second solution needs to be

considered specially. According to Campbell and Haberman (1996); Farlow (2006), if the

first solution corresponding to α1 is y1(r), the second solution has the form

y2(r) = y1(r) ln r +
∞∑
m=0

Bmr
m+α1 (2.49)

where Bm can be obtained by substituting the second solution into the original ordinary

differential equations.

The third special case is when n = 0, in which case, Eqns. (2.19) and (2.20) are

decoupled. The process of obtaining the general solutions for the decoupled case is different

from that of the coupled case. So this case is discussed as a special case.

The first two special cases are due to Frobenius method for solving ordinary differential

equations. The third special case is due to the specific situation for the problem at hand. In

the following sections, each of three special cases for solving the equations of motion (2.19)

and (2.20) is discussed.
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2.4 Special Case 1: Two α’s Differ by an Integer

In this section, the special case when n > 0 and α
(1)
n and α

(2)
n differ by an integer is

solved. One numerical example is used for verifying the solutions. Other possibilities follow

the same solution approach. Some examples are when α
(1)
n and α

(3)
n differ by an integer or

α
(1)
n and α

(4)
n differ by an integer. Therefore, only the situation when α

(1)
n and α

(2)
n differ by

an integer is considered in this section.

Let α
(1)
n − α(2)

n = N , where N is an integer. The first solution is given as (Edwards and

Penney, 1996; Campbell and Haberman, 1996; Riley et al., 2006; Farlow, 2006; Patnaik,

2009),

U (1)
n =

∞∑
m=0

a(1)mnr
m+α

(1)
n (2.50)

The second solution can be given as

U (2)
n = cU (1)

n ln r +
∞∑
m=0

a(2)mnr
m+α

(2)
n (2.51)

Similarly we have

V (1)
n =

∞∑
m=0

b(1)mnr
m+α

(1)
n (2.52)

and

V (2)
n = cV (1)

n ln r +
∞∑
m=0

b(2)mnr
m+α

(2)
n (2.53)

where the constant c and coefficients a
(2)
mn and b

(2)
mn can be obtained by substituting the

assumed solutions (2.50) through (2.53) into the original pair of ODEs. For easier reference,
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the pair of ODEs, is repeated here

c11
(
r2U ′′n + rU ′n

)
+
(
k2r2 − n2 − c22

)
Un + in(c12 + 1)rV ′n

−in(c22 + 1)Vn = 0 (2.54)

r2V ′′n + rV ′n + in(c12 + 1)rU ′n + (k2r2 − n2c22 − 1)Vn

+in(c22 + 1)Un = 0 (2.55)

Substituting the assumed solutions (2.50) through (2.53) into Eqns. (2.54) and (2.55) gives

∞∑
m=0

2c11c
(
m+ α(1)

n

)
a(1)mnr

m+N +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+N

+
∞∑
m=0

[
c11
(
m+ α(2)

n

)2 − (n2 + c22)
]
a(2)mnr

m +
∞∑
m=0

k2a(2)mnr
m+2

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ α(2)

n

)
− (c22 + 1)

]
b(2)mnr

m = 0 (2.56)

∞∑
m=0

2c
(
m+ α(1)

n

)
b(1)mnr

m+N +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+N

+
∞∑
m=0

[(
m+ α(2)

n

)2 − (n2c22 + 1)
]
b(2)mnr

m +
∞∑
m=0

k2b(2)mnr
m+2

+
∞∑
m=0

[
in(c12 + 1)

(
m+ α(2)

n

)
+ in(c22 + 1)

]
a(2)mnr

m = 0 (2.57)

Setting r = 0, the only non-vanishing terms are those with m = 0, giving the following set

of indicial equations

[
c11
(
α(2)
n

)2 − (n2 + c22)
]
a
(2)
0n + in[(c12 + 1)α(2)

n − (c22 + 1)b
(2)
0n = 0 (2.58)

in
[
(c12 + 1)α(2)

n + (c22 + 1)
]
a
(2)
0n +

[(
α(2)
n

)2 − (n2c22 + 1)
]
b
(2)
0n = 0 (2.59)
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which can be written in the matrix form as c11

(
α
(2)
n

)2
− (n2 + c22) (in)[(c12 + 1)α

(2)
n − (c22 + 1)]

(in)[(c12 + 1)α
(2)
n + (c22 + 1)]

(
α
(2)
n

)2
− (n2c22 + 1)


 a

(2)
0n

b
(2)
0n


=

 0

0


(2.60)

According to Eqn. (2.27), the determinant of the system matrix in Eqn. (2.60) must vanish.

Thus, a
(2)
0n and b

(2)
0n are non-zero. Choose a

(2)
0n = 1, then b

(2)
0n can be obtained through above

relations (2.58) and (2.59).

b
(2)
0n = −

in
[
(c12 + 1)α

(2)
n + (c22 + 1)

]
a
(2)
0n(

α
(2)
n

)2
− (n2c22 + 1)

(2.61)

Since the terms for 0-th power of r equal to zero, Eqns. (2.56) and (2.57) can be written as

∞∑
m=0

2c11c
(
m+ α(1)

n

)
a(1)mnr

m+N +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+N

+
∞∑
m=0

[
c11
(
m+ 1 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2a(2)mnr
m+2

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ 1 + α(2)

n

)
− (c22 + 1)

]
b
(2)
(m+1)nr

m+1 = 0 (2.62)

∞∑
m=0

2c
(
m+ α(1)

n

)
b(1)mnr

m+N +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+N

+
∞∑
m=0

[(
m+ 1 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2b(2)mnr
m+2

+
∞∑
m=0

[
in(c12 + 1)

(
m+ 1 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
(m+1)nr

m+1 = 0 (2.63)

In Eqns. (2.62) and (2.63), the exponents of r for the third and fifth series start from

m+ 1, and the fourth series starts from m+ 2. Since integer N ≥ 1, three situations of the
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exponents of r for the first and second series need to be considered: 1: when m+N = m+1,

2: when m + N = m + 2, and 3: when m + N > m + 2. Therefore, the following three

situations will be discussed in details: 1: when N = 1, 2: when N = 2, and 3: when N > 2.

2.4.1 When N = 1

Eqns. (2.62) and (2.63) can be written as

∞∑
m=0

2c11c
(
m+ α(1)

n

)
a(1)mnr

m+1 +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+1

+
∞∑
m=0

[
c11
(
m+ 1 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2a(2)mnr
m+2

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ 1 + α(2)

n

)
− (c22 + 1)

]
b
(2)
(m+1)nr

m+1 = 0 (2.64)

∞∑
m=0

2c
(
m+ α(1)

n

)
b(1)mnr

m+1 +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+1

+
∞∑
m=0

[(
m+ 1 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2b(2)mnr
m+2

+
∞∑
m=0

[
in(c12 + 1)

(
m+ 1 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
(m+1)nr

m+1 = 0 (2.65)

Eqns. (2.64) and (2.65) should be satisfied for all powers of r. Dividing the factor r, for

m = 0, they become

2c11cα
(1)
n a

(1)
0n + in(c12 + 1)cb

(1)
0n +

[
c11
(
1 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
1n

+in
[
(c12 + 1)

(
1 + α(2)

n

)
− (c22 + 1)

]
b
(2)
1n = 0 (2.66)

2cα(1)
n b

(1)
0n + in(c12 + 1)ca

(1)
0n +

[(
1 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
1n

+
[
in(c12 + 1)

(
1 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
1n = 0 (2.67)
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Since N = 1, 1 + α
(2)
n = α

(1)
n , Eqns. (2.66) and (2.67) can be written in matrix form

 c11

(
α
(1)
n

)2
− (n2 + c22) (in)[(c12 + 1)α

(1)
n − (c22 + 1)]

(in)[(c12 + 1)α
(1)
n + (c22 + 1)]

(
α
(1)
n

)2
− (n2c22 + 1)


 a

(2)
1n

b
(2)
1n


= −c

 2c11α
(1)
n a

(1)
0n + in(c12 + 1)b

(1)
0n

2α1b
(1)
0n + in(c12 + 1)a

(1)
0n


(2.68)

According to Eqn. (2.27), the determinant of the system matrix in Eqn. (2.68) must

vanish, which gives c = 0. a
(2)
1n and b

(2)
1n can be chosen as arbitrary values. After setting

a
(2)
1n = b

(2)
1n = 0, Eqns. (2.64) and (2.65) can be written as

∞∑
m=0

[
c11
(
m+ 2 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
(m+2)nr

m +
∞∑
m=0

k2a(2)mnr
m

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ 2 + α(2)

n

)
− (c22 + 1)

]
b
(2)
(m+2)nr

m = 0 (2.69)

∞∑
m=0

[(
m+ 2 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
(m+2)nr

m +
∞∑
m=0

k2b(2)mnr
m

+
∞∑
m=0

[
in(c12 + 1)

(
m+ 2 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
(m+2)nr

m = 0 (2.70)

Eqns. (2.69) and (2.70) need to be satisfied for all different power of r. For the m-th power,

they become

[
c11
(
m+ α(2)

n

)2 − (n2 + c22)
]
a(2)mn + k2a

(2)
(m−2)n

+in
[
(c12 + 1)

(
m+ α(2)

n

)
− (c22 + 1)

]
b(2)mn = 0 (2.71)[(

m+ α(2)
n

)2 − (n2c22 + 1)
]
b(2)mn + k2b

(2)
(m−2)n

+
[
in(c12 + 1)

(
m+ α(2)

n

)
+ in(c22 + 1)

]
a(2)mn = 0 (2.72)
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where 2 < m < ∞. The coefficients a
(2)
mn and b

(2)
mn can be obtained through the above

recurrence relations. The relations can be written in matrix form as c11

(
m+ α

(2)
n

)2
− (n2 + c22) in[(c12 + 1)

(
m+ α

(2)
n

)
− (c22 + 1)]

in[(c12 + 1)
(
m+ α

(2)
n

)
+ (c22 + 1)]

(
m+ α

(2)
n

)2
− (n2c22 + 1)


 a

(2)
mn

b
(2)
mn


= −k2

 a
(2)
(m−2)n

b
(2)
(m−2)n


(2.73)

2.4.2 When N = 2

Eqns. (2.62) and (2.63) can be written as

∞∑
m=0

2c11c
(
m+ α(1)

n

)
a(1)mnr

m+2 +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+2

+
∞∑
m=0

[
c11
(
m+ 1 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2a(2)mnr
m+2

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ 1 + α(2)

n

)
− (c22 + 1)

]
b
(2)
(m+1)nr

(m+1)n = 0 (2.74)

∞∑
m=0

2c
(
m+ α(1)

n

)
b(1)mnr

m+2 +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+2

+
∞∑
m=0

[(
m+ 1 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
(m+1)nr

m+1 +
∞∑
m=0

k2b(2)mnr
m+2

+
∞∑
m=0

[
in(c12 + 1)

(
m+ 1 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
(m+1)nr

m+1 = 0 (2.75)

Dividing by the common factor rm+1, for the 0-th power, the equations become

[
c11
(
1 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
1n + in

[
(c12 + 1)

(
1 + α(2)

n

)
− (c22 + 1)

]
b
(2)
1n = 0 (2.76)[(

1 + α(2)
n

)2 − (n2c22 + 1)
]
b
(2)
1n + in

[
(c12 + 1)

(
1 + α(2)

n

)
+ (c22 + 1)

]
a
(2)
1n = 0 (2.77)
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which can be written in matrix form as c11

(
1 + α

(2)
n

)2
− (n2 + c22) (in)[(c12 + 1)

(
1 + α

(2)
n

)
− (c22 + 1)]

(in)[(c12 + 1)
(

1 + α
(2)
n

)
+ (c22 + 1)]

(
1 + α

(2)
n

)2
− (n2c22 + 1)


 a

(2)
1n

b
(2)
1n


=

 0

0


(2.78)

Since 1 + α
(2)
n 6= α

(1)
n , the determinant of the system matrix in Eqn. (2.68) is non-zero.

Therefore, this gives a
(2)
1n = b

(2)
1n = 0. Then Eqns. (2.74) and (2.75) can be written as

∞∑
m=0

2c11c
(
m+ α(1)

n

)
a(1)mnr

m+2 +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+2

+
∞∑
m=0

[
c11
(
m+ 2 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
(m+2)nr

m+2 +
∞∑
m=0

k2a(2)mnr
m+2

+
∞∑
m=0

in
[
(c12 + 1)

(
m+ 2 + α(2)

n

)
− (c22 + 1)

]
b
(2)
(m+2)nr

m+2 = 0 (2.79)

∞∑
m=0

2c
(
m+ α(1)

n

)
b(1)mnr

m+2 +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+2

+
∞∑
m=0

[(
m+ 2 + α(2)

n

)2 − (n2c22 + 1)
]
b
(2)
(m+2)nr

m+2 +
∞∑
m=0

k2b(2)mnr
m+2

+
∞∑
m=0

[
in(c12 + 1)

(
m+ 2 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
(m+2)nr

m+2 = 0 (2.80)
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Dividing by the common factor rm+2, for the 0-th power of r, the equations are

2c11cα
(1)
n a

(1)
0n + in(c12 + 1)cb

(1)
0n +[

c11
(
2 + α(2)

n

)2 − (n2 + c22)
]
a
(2)
2n + k2a

(2)
0n

+in
[
(c12 + 1)

(
2 + α(2)

n

)
− (c22 + 1)

]
b
(2)
2n = 0 (2.81)

2cα(1)
n b

(1)
0n + in(c12 + 1)ca

(1)
0n +[(

2 + α(2)
n

)2 − (n2c22 + 1)
]
b
(2)
2n + k2b

(2)
0n

+
[
in(c12 + 1)

(
2 + α(2)

n

)
+ in(c22 + 1)

]
a
(2)
2n = 0 (2.82)

Since 2 + α
(2)
n = α

(1)
n , the above Eqns. (2.79) and (2.80) can be written in matrix form

 c11

(
α
(1)
n

)2
− (n2 + c22) (in)[(c12 + 1)α

(1)
n − (c22 + 1)]

(in)[(c12 + 1)α
(1)
n + (c22 + 1)]

(
α
(1)
n

)2
− (n2c22 + 1)


 a

(2)
2n

b
(2)
2n


= −

 2c11cα1a
(1)
0n + inc(c12 + 1)b

(1)
0n + k2a

(2)
0n

2cα1b
(1)
0n + inc(c12 + 1)a

(1)
0n + k2b

(2)
0n


(2.83)

Since the determinant of the system matrix in Eqn. (2.83) vanishes, a
(2)
2n can be chosen as

arbitrary value. Now let a
(2)
2n = 1. Then c and b

(2)
2n can be obtained through the following

relation 2c11α
(1)
n a

(1)
0n + in(c12 + 1)b

(1)
0n in[(c12 + 1)α

(1)
n − (c22 + 1)]

2α
(1)
n b

(1)
0n + in(c12 + 1)a

(1)
0n

(
α
(1)
n

)2
− (n2c22 + 1)


 c

b
(2)
2n


=

 −[c11

(
α
(1)
n

)2
− (n2 + c22)]a

(2)
2n − k2a

(2)
0n

in[(c12 + 1)α
(1)
n + (c22 + 1)]a

(2)
2n − k2b

(2)
0n


(2.84)

After obtaining the value of constant c and coefficients a
(2)
0n , b

(2)
0n , a

(2)
2n , and b

(2)
2n , the coefficients
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a
(2)
(m+2)n and b

(2)
(m+2)n can be obtained through the following recurrence relations

[
c11(m+ α(1)

n )2 − (n2 + c22)
]
a
(2)
(m+2)n

+in
[
(c12 + 1)(m+ α(1)

n )− (c22 + 1)
]
b
(2)
(m+2)n =

−c
[
2c11(m+ α(1)

n )a(1)mn + in(c12 + 1)b(1)mn
]
− k2a(2)mn (2.85)[

in(c12 + 1)(m+ α(1)
n ) + in(c22 + 1)

]
a
(2)
(m+2)n

+
[
(m+ α(1)

n )2 − (n2c22 + 1)
]
b
(2)
(m+2)n =

−c
[
2(m+ α(1)

n )b(1)mn + in(c12 + 1)a(1)mn
]
− k2b(2)mm (2.86)

where 2 6 m <∞. The above two equations can be written in matrix form as

 c11(m+ α
(1)
n )2 − (n2 + c22) in

[
(c12 + 1)(m+ α

(1)
n )− (c22 + 1)

]
in(c12 + 1)(m+ α

(1)
n ) + in(c22 + 1) (m+ α

(1)
n )2 − (n2c22 + 1)


 a

(2)
(m+2)n

b
(2)
(m+2)n


=

 −c
[
2c11(m+ α

(1)
n )a

(1)
mn + in(c12 + 1)b

(1)
mn

]
− k2a(2)mn

−c
[
2(m+ α

(1)
n )b

(1)
mn + in(c12 + 1)a

(1)
mn

]
− k2b(2)mn


(2.87)
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2.4.3 When N > 2

Eqns. (2.79) and (2.80) can be written as

∞∑
m=0

2c11c(m+ α(1)
n )a(1)mnr

m+N−2 +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+N−2

+
∞∑
m=0

[
c11(m+ 2 + α(2)

n )2 − (n2 + c22)
]
a
(2)
(m+2)nr

m +
∞∑
m=0

k2a(2)mnr
m

+
∞∑
m=0

in
[
(c12 + 1)(m+ 2 + α(2)

n )− (c22 + 1)
]
b
(2)
(m+2)nr

m = 0 (2.88)

∞∑
m=0

2c(m+ α(1)
n )b(1)mnr

m+N−2 +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+N−2

+
∞∑
m=0

[
(m+ 2 + α(2)

n )2 − (n2c22 + 1)
]
b
(2)
(m+2)nr

m +
∞∑
m=0

k2b(2)mnr
m

+
∞∑
m=0

[
in(c12 + 1)(m+ 2 + α(2)

n ) + in(c22 + 1)
]
a
(2)
(m+2)nr

m = 0 (2.89)

For 0 6 m < N−2, coefficients a
(2)
mn and b

(2)
mn can be obtained through the following relations,

[c11(m+ 2 + α(2)
n )2 − (n2 + c22)]a

(2)
(m+2)n + k2a(2)mn

+in[(c12 + 1)(m+ 2 + α(2)
n )− (c22 + 1)]b

(2)
(m+2)n = 0 (2.90)[

(m+ 2 + α(2)
n )2 − (n2c22 + 1)

]
b
(2)
(m+2)n + k2b(2)mn

+in[(c12 + 1)(m+ 2 + α(2)
n ) + (c22 + 1)]a

(2)
(m+2)n = 0 (2.91)

which can also be written as

[c11(m+ α(2)
n )2 − (n2 + c22)]a

(2)
mn + k2a

(2)
(m−2)n

+in[(c12 + 1)(m+ α(2)
n )− (c22 + 1)]b(2)mn = 0 (2.92)[

(m+ α(2)
n )2 − (n2c22 + 1)

]
b(2)mn + k2b

(2)
(m−2)n

+in[(c12 + 1)(m+ α(2)
n ) + (c22 + 1)]a(2)mn = 0 (2.93)
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where 2 6 m < N . Then Eqns. (2.88) and (2.89) can be written as

∞∑
m=0

2c11c(m+ α(1)
n )a(1)mnr

m+N−2 +
∞∑
m=0

in(c12 + 1)cb(1)mnr
m+N−2

+
∞∑
m=0

[
c11(m+N + α(2)

n )2 − (n2 + c22)
]
a
(2)
(m+N)nr

m+N−2 +
∞∑
m=0

k2a
(2)
(m+N−2)nr

m+N−2

+
∞∑
m=0

in
[
(c12 + 1)(m+N + α(2)

n )− (c22 + 1)
]
b
(2)
(m+N)nr

m+N−2 = 0 (2.94)

∞∑
m=0

2c(m+ α(1)
n )b(1)mnr

m+N−2 +
∞∑
m=0

in(c12 + 1)ca(1)mnr
m+N−2

+
∞∑
m=0

[
(m+N + α(2)

n )2 − (n2c22 + 1)
]
b
(2)
(m+N)nr

m+N−2 +
∞∑
m=0

k2b
(2)
(m+N−2)nr

m+N−2

+
∞∑
m=0

[
in(c12 + 1)(m+N + α(2)

n ) + in(c22 + 1)
]
a
(2)
(m+N)r

m+N−2 = 0 (2.95)

Dividing by the common factor rN−2, for the 0-th power of r, gives

2c11cα
(1)
n a

(1)
0n + in(c12 + 1)cb

(1)
0n +

[
c11(N + α(2)

n )2 − (n2 + c22)
]
a
(2)
Nn + k2a

(2)
(N−2)n

+in
[
(c12 + 1)(N + α(2)

n )− (c22 + 1)
]
b
(2)
Nn = 0 (2.96)

2cα(1)
n b

(1)
0n + in(c12 + 1)ca

(1)
0n +

[
(N + α(2)

n )2 − (n2c22 + 1)
]
b
(2)
Nn + k2b

(2)
(N−2)n

+
[
in(c12 + 1)(N + α(2)

n ) + in(c22 + 1)
]
a
(2)
Nn = 0 (2.97)

Since N + α
(2)
n = α

(1)
n , the above relations can be written in matrix form

 c11(α
(1)
n )2 − (n2 + c22) in

[
(c12 + 1)α

(1)
n − (c22 + 1)

]
in(c12 + 1)α

(1)
n + in(c22 + 1) (α

(1)
n )2 − (n2c22 + 1)


 a

(2)
Nn

b
(2)
Nn


=

 −c
[
2c11α

(1)
n a

(1)
0n + in(c12 + 1)b

(1)
0n

]
− k2a(2)(N−2)n

−c
[
2α

(1)
n b

(1)
0n + in(c12 + 1)a

(1)
0n

]
− k2b(2)(N−2)n


(2.98)
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Since the determinant of the system matrix in Eqn. (2.98) vanishes, a
(2)
Nn can be an arbitrary

value. By setting a
(2)
Nn = 1, c and b

(2)
Nn can be obtained through the following relation,

 2c11α
(1)
n a

(1)
0n + in(c12 + 1)b

(1)
0n in[(c12 + 1)α

(1)
n − (c22 + 1)]

2α
(1)
n b

(1)
0n + in(c12 + 1)a

(1)
0n (α

(1)
n )2 − (n2c22 + 1)


 c

b
(2)
Nn


=

 −[c11(α
(1)
n )2 − (n2 + c22)]a

(2)
Nn − k2a

(2)
(N−2)n

in[(c12 + 1)α
(1)
n + (c22 + 1)]a

(2)
Nn − k2b

(2)
(N−2)n


(2.99)

When N < m <∞, a
(2)
mn and b

(2)
mn can be obtained through the following recurrence relations

[
c11(m+ α(1)

n )2 − (n2 + c22)
]
a
(2)
(m+N)n +

in
[
(c12 + 1)(m+ α(1)

n )− (c22 + 1)
]
b
(2)
(m+N)n =

−c
[
2c11(m+ α(1)

n )a(1)mn + in(c12 + 1)b(1)mn
]
− k2a(2)(m+N−2)n (2.100)[

in(c12 + 1)(m+ α(1)
n ) + in(c22 + 1)

]
a
(2)
(m+N)n +[

(m+ α(1)
n )2 − (n2c22 + 1)

]
b
(2)
(m+N)n =

−c
[
2(m+ α(1)

n )b(1)mn + in(c12 + 1)a(1)mn
]
− k2b(2)(m+N−2)n (2.101)

The above two Eqns. (2.100) and (2.101) can be written in matrix form as

 c11(m+ α
(1)
n )2 − (n2 + c22) in

[
(c12 + 1)(m+ α

(1)
n )− (c22 + 1)

]
in(c12 + 1)(m+ α

(1)
n ) + in(c22 + 1) (m+ α

(1)
n )2 − (n2c22 + 1)


 a

(2)
(m+N)n

b
(2)
(m+N)n


=

 −c
[
2c11(m+ α

(1)
n )a

(1)
mn + in(c12 + 1)b

(1)
mn

]
− k2a(2)(m+N−2)n

−c
[
2(m+ α

(1)
n )b

(1)
mn + in(c12 + 1)a

(1)
mn

]
− k2b(2)(m+N−2)n


(2.102)
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Table 2.1: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 1.11114 0.740763 4.85 1.17705 3.0 2.35410 2.0

2.4.4 Verifying the Solutions for Special Case

In this section, three numerical examples are used to verify the solutions for three situ-

ations when the indicies differ by an integer: N = 1, N = 2, and N > 2.

For the first example, n = 1, the indicies differ by an integer; N = 1. The material

properties are listed in in Table 2.1. The wave number k = ω
√
ρ/C44 = ω

√
ρ/Gxy =

0.699856, where ω = 1350. For this case we have α
(1,2)
n = ±1

2
. Back substitute the numerical

solutions of U
(1)
n (r), V

(1)
n (r), U

(2)
n (r), and V

(2)
n (r) into the original pair of ODEs in Eqns.

(2.54) and (2.55). Then define the numerical values of the left side the Eqns. (2.54) and

(2.55) as

F1 = c11

(
r2U (1)′′

n + rU (1)′

n

)
+
(
k2r2 − 1− c22

)
U (1)
n + i(c12 + 1)rV (1)′

n − i(c22 + 1)V (1)
n

F2 = r2V (1)′′

n + rV (1)′

n + i(c12 + 1)rU (1)′

n + (k2r2 − c22 − 1)V (1)
n + i(c22 + 1)U (1)

n

F3 = c11

(
r2U (2)′′

n + rU (2)′

n

)
+
(
k2r2 − 1− c22

)
U (2)
n + i(c12 + 1)rV (2)′

n − i(c22 + 1)V (2)
n

F4 = r2V (2)′′

n + rV (2)′

n + i(c12 + 1)rU (2)′

n + (k2r2 − c22 − 1)V (2)
n + i(c22 + 1)U (2)

n

(2.103)

Table 2.2 shows that the numerical results of F1, F2, F3, and F4 are very close to zero under

different radii r. The errors are considered as computing errors. Note that in Eqns. (2.50)

through (2.53), the solutions are expressed as infinite series. To implement a numerical

computation, the infinite series needs to be truncated to a finite number of terms to ap-

proximate the exact value. The largest term is denoted as M, which is called the truncation

term. In Eqns. (2.50) through (2.53), the values of a
(1)
mnrm+α

(1)
n , a

(2)
mnrm+α

(2)
n , b

(1)
mnrm+α

(1)
n ,

and b
(2)
mnrm+α

(2)
n get smaller when m gets larger. When m > M, the values are too small
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to be added to the summation. Thus they can be truncated. Table 2.8 also provides the

truncation numbers under different radius. Table 2.2 shows that U
(1)
n (r), V

(1)
n (r), U

(2)
n (r),

Table 2.2: The numerical results of F1, F2, F3, and F4 under different radii r
r M F1 F2 F3 F4

0.2 11 −8.88178× 10−16 + 0i 0 + 2.22045× 10−16i −4.44089× 10−15 + 0i 0 + 8.88178× 10−16i
1.2 20 0 + 0i 0 + 4.44089× 10−16i 0 + 0i 0− 8.88178× 10−16i
2.1 24 −4.44089× 10−15 + 0i 0 + 1.77636× 10−15i −1.33227× 10−15 + 0i 0− 8.88178× 10−16i
10.2 44 2.01617× 10−13 + 0i 0 + 6.91003× 10−13i 3.88698× 10−13 + 0i 0− 4.18776× 10−13i

and V
(2)
n (r) are solutions of Eqns. (2.54) and (2.55).

To prove that two functions are linearly independent, the Wronskian of two functions

can be calculated. If the Wronskian of two functions is non-zero, the two functions are

linearly independent. The Wronskians of U
(1)
n (r), U

(2)
n (r) and V

(1)
n (r), V

(2)
n (r) are defined as

WU(r) and WV (r), respectively, which are given as (McQuarrie, 2003)

WU(r) = U (2)′

n (r)× U (1)
n (r)− U (1)′

n (r)× U (2)
n (r) (2.104)

WV (r) = V (2)′

n (r)× V (1)
n (r)− V (1)′

n (r)× V (2)
n (r) (2.105)

The numerical solutions of U
(1)
n (r), U

(1)′
n (r), V

(1)
n (r), V

(1)′
n (r), U

(2)
n (r), U

(2)′
n (r), V

(2)
n (r), and

V
(2)′
n (r) can be obtained by using the material properties listed in in Table 2.1. Table 2.3

shows the numerical results of WU(r) and WV (r) under different radii r. Since WU(r) and

Table 2.3: The numerical results of WU(r) and WV (r) under different radii r
r 0.2 1.2 2.1 10.2

WU(r) −4.96931 + 0i −0.665689 + 0i −0.235756 + 0i 0.0496441 + 0i
WV (r) 3.99496 + 0i 0.156908 + 0i −0.362892 + 0i 0.0204908 + 0i

WV (r) are non-zero, U
(1)
n (r), U

(2)
n (r) and V

(1)
n (r), V

(2)
n (r) are linearly independent solutions.

For the second example, n = 2, the indicies differ by an integer; N = 2. The material

properties are listed in Table 2.4. The wave number k = ω
√
ρ/C44 = ω

√
ρ/Gxy = 0.699856,

where ω = 1350. For this case we have α
(3,4)
n = ±1. Back substitute the numerical solutions
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Table 2.4: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 13.2504 8.83363 4.85 0.366 3.0 0.732051 2.0

of U
(3)
n (r), V

(3)
n (r), U

(4)
n (r), and V

(4)
n (r) into the original pair of ODEs in Eqns. (2.54) and

(2.55). Then define the numerical values of the left side the Eqns. (2.54) and (2.55) as

H1 = c11

(
r2U (3)′′

n + rU (3)′

n

)
+
(
k2r2 − 1− c22

)
U (3)
n + i(c12 + 1)rV (3)′

n − i(c22 + 1)V (3)
n

H2 = r2V (3)′′

n + rV (3)′

n + i(c12 + 1)rU (3)′

n + (k2r2 − c22 − 1)V (3)
n + i(c22 + 1)U (3)

n

H3 = c11

(
r2U (4)′′

n + rU (4)′

n

)
+
(
k2r2 − 1− c22

)
U (4)
n + i(c12 + 1)rV (4)′

n − i(c22 + 1)V (4)
n

H4 = r2V (4)′′

n + rV (4)′

n + i(c12 + 1)rU (4)′

n + (k2r2 − c22 − 1)V (4)
n + i(c22 + 1)U (4)

n

(2.106)

Table 2.5 shows that the numerical results of H1, H2, H3, and H4 are very close to zero

under different radii r. The errors are considered as computing errors. Table 2.5 shows that

Table 2.5: The numerical results of H1, H2, H3, and H4 under different radii r
r M H1 H2 H3 H4

0.2 11 −2.22045× 10−16 + 0i 0 + 0i −1.38794× 10−10 + 0i 0− 3.42347× 10−10i
1.2 20 −2.66454× 10−15 + 0i 0 + 8.88178× 10−16i −7.39721× 10−10 + 0i 0− 2.48433× 10−9i
2.1 24 −1.77636× 10−15 + 0i 0 + 5.32907× 10−15i −2.02540× 10−10 + 0i 0− 3.67832× 10−9i
10.2 44 9.13047× 10−13 + 0i 0− 7.01661× 10−13i 9.00742× 10−9 + 0i 0 + 2.81449× 10−9i

U
(3)
n (r), V

(3)
n (r), U

(4)
n (r), and V

(4)
n (r) are solutions of Eqns. (2.54) and (2.55).

The Wronskians of U
(3)
n (r), U

(4)
n (r) and V

(3)
n (r), V

(4)
n (r) are defined as WU(r) and WV (r),

respectively.

WU(r) = U (4)′

n (r)× U (3)
n (r)− U (3)′

n (r)× U (4)
n (r) (2.107)

WV (r) = V (4)′

n (r)× V (3)
n (r)− V (3)′

n (r)× V (4)
n (r) (2.108)

Numerical solutions of U
(3)
n (r), U

(3)′
n (r), V

(3)
n (r), V

(3)′
n (r), U

(4)
n (r), U

(4)′
n (r), V

(4)
n (r), and
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V
(4)′
n (r) can be obtained by using the material properties listed in in Table 2.4. Table 2.6

shows the numerical results of WU(r) and WV (r) under different radii r. Since WU(r) and

Table 2.6: The numerical results of WU(r) and WV (r) under different radii r
r 0.2 1.2 2.1 10.2

WU(r) −10.0004 + 0i −1.66235 + 0i −0.924726 + 0i −0.0686259 + 0i
WV (r) 3.77546 + 0i 0.739945 + 0i 0.441632 + 0i 0.197156 + 0i

WV (r) do not vanish, U
(3)
n (r), U

(4)
n (r) and V

(3)
n (r), V

(4)
n (r) are linearly independent solutions.

For the third example, n = 1, the indicies differ by an integer; N = 4. The material

properties are listed in in Table 2.7. The wave number k = ω
√
ρ/C44 = ω

√
ρ/Gxy =

0.699856, where ω = 1350. For this case we have α
(1,2)
n = ±2. Back substitute the numerical

solutions of U
(1)
n (r), V

(1)
n (r), U

(2)
n (r), and V

(2)
n (r) into the original pair of ODEs in Eqns.

(2.54) and (2.55). Then define the numerical values of the left side of Eqns. (2.54) and

(2.55) as

F1 = c11

(
r2U (1)′′

n + rU (1)′

n

)
+
(
k2r2 − 1− c22

)
U (1)
n + i(c12 + 1)rV (1)′

n − i(c22 + 1)V (1)
n

F2 = r2V (1)′′

n + rV (1)′

n + i(c12 + 1)rU (1)′

n + (k2r2 − c22 − 1)V (1)
n + i(c22 + 1)U (1)

n

F3 = c11

(
r2U (2)′′

n + rU (2)′

n

)
+
(
k2r2 − 1− c22

)
U (2)
n + i(c12 + 1)rV (2)′

n − i(c22 + 1)V (2)
n

F4 = r2V (2)′′

n + rV (2)′

n + i(c12 + 1)rU (2)′

n + (k2r2 − c22 − 1)V (2)
n + i(c22 + 1)U (2)

n

(2.109)

Table 2.8 shows that the numerical results of F1, F2, F3, and F4 are very close to zero

under different radii r. The errors are considered as computing errors. Table 2.8 shows that

U
(1)
n (r), V

(1)
n (r), U

(2)
n (r), and V

(2)
n (r) are solutions of Eqns. (2.54) and (2.55).

The Wronskian of U
(1)
n (r), U

(2)
n (r) and V

(1)
n (r), V

(2)
n (r) are defined as WU(r) and WV (r),

Table 2.7: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 13.21 13.21 4.85 0.3618 3.13402 1.13402 3.13402
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Table 2.8: The numerical results of F1, F2, F3, and F4 under different radii r
r M F1 F2 F3 F4

0.2 14 −3.55271× 10−15 + 0i 0 + 6.52256× 10−15i −2.27373× 10−13 + 0i 0 + 7.10543× 10−14i
1.2 22 5.68434× 10−14 + 0i 0− 8.88178× 10−16i 1.30740× 10−12 + 0i 0− 2.57749× 10−12i
2.1 26 2.27374× 10−13 + 0i 0 + 2.44693× 10−13i 4.54747× 10−12 + 0i 0− 6.65423× 10−12i
10.2 48 −3.51292× 10−11 + 0i 0 + 9.12678× 10−10i 1.27557× 10−10 + 0i 0 + 1.87515× 10−9i

respectively.

WU(r) = U (2)′

n (r)× U (1)
n (r)− U (1)′

n (r)× U (2)
n (r) (2.110)

WV (r) = V (2)′

n (r)× V (1)
n (r)− V (1)′

n (r)× V (2)
n (r) (2.111)

The numerical solutions of U
(1)
n (r), U

(1)′
n (r), V

(1)
n (r), V

(1)′
n (r), U

(2)
n (r), U

(2)′
n (r), V

(2)
n (r), and

V
(2)′
n (r) can be obtained by using the material properties listed in in Table 2.7. Table

2.9 shows the numerical results of WU(r) and WV (r) under different radii r. Since WU(r)

Table 2.9: The numerical results of WU(r) and WV (r) under different radii r
r 0.2 1.2 2.1 10.2

WU(r) −20.1116 + 0i −2.59316 + 0i 3.48920 + 0i −8.04834 + 0i
WV (r) −1229.01 + 0i −74.6142 + 0i 67.9769 + 0i −26.4469 + 0i

and WV (r) are non-vanishing, therefore, U
(1)
n (r), U

(2)
n (r) and V

(1)
n (r), V

(2)
n (r) are linearly

independent solutions.

2.5 Special Case 2: When α is a Repeated Root

In this study, the only situation when α has repeated roots is when n = 1. Following

Martin and Berger (2001), D is expected to be positive-definite. Recalling Eqn. (2.30), if

αn has repeated roots, the only possibility is α2
n = 0. This requires

A1 ±
√
A2

1 − 4A0A2 = 0 (2.112)
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Recalling Eqn. (2.29), Eqn. (2.112) can be written as

A0A2 = c11c22(n
2 − 1)2 = 0 (2.113)

Since c11 and c22 cannot vanish, n2 = 1. Only n ≥ 0 is considered in this study, so only

n = 1 will be discussed.

2.5.1 Solutions When α is a Repeated Root

At n = 1, Eqns. (2.19) and (2.20) can be written as

c11
(
r2U ′′1 + rU ′1

)
+
(
k2r2 − 1− c22

)
U1 + i(c12 + 1)rV ′1 − i(c22 + 1)V1 = 0 (2.114)

r2V ′′1 + rV ′1 + i(c12 + 1)rU ′1 + (k2r2 − c22 − 1)V1 + i(c22 + 1)U1 = 0 (2.115)

where k2 = ρω2/C44. Recalling Eqns. (2.29) and (2.30)

α2
1 =

A1 ±
√
A2

1 − 4A0A2

2A0

(2.116)

where

A0 = c11, A1 = c11 + c22 + n2(c11c22 − c212 − 2c12), A2 = c22(n
2 − 1)2 (2.117)

When n = 1, Eqn. (2.117) gives

A0 = c11, A1 = c11 + c22 + c11c22 − c212 − 2c12, A2 = c22(1− 1)2 = 0 (2.118)

Eqn. (2.118) shows that A2 = 0, therefore Eqn. (2.116) can be written as

α2
1 =

A1 ±
√
A2

1

2A0

(2.119)
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which gives the roots of α

α
(1,2)
1 = ±

√
A1

A0

, α
(3,4)
1 = 0 (2.120)

Recalling Eqn. (2.33), A1 can be expressed as

A1 = c11 + c22 + c11c22 − c212 − 2c12 ≥ c11 + c22 − 2c12 + 4(1 + c12) > 0 (2.121)

So α
(1,2)
1 6= 0 and α1 only has repeated roots: α

(3)
1 = α

(4)
1 = 0. Thus, the solutions cor-

responding to α
(3,4)
1 will be solved. The first solution corresponding to root α

(3)
1 is written

as

U
(3)
1 (r) =

∞∑
m=0

a
(3)
m1r

m+α
(3)
1 =

∞∑
m=0

a
(3)
m1r

m (2.122)

According to Campbell and Haberman (1996) and Farlow (2006), the second solution cor-

responding to α
(4)
1 can be written in the form

U
(4)
1 (r) = U

(3)
1 ln r +

∞∑
m=0

a
(4)
m1r

m+α
(3)
1 (2.123)

Similarly we have

V
(3)
1 (r) =

∞∑
m=0

b
(3)
m1r

m+α
(3)
1 =

∞∑
m=0

b
(3)
m1r

m (2.124)

and

V
(4)
1 (r) = V

(3)
1 ln r +

∞∑
m=0

b
(4)
m1r

m+α
(3)
1 (2.125)
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where a
(4)
m1 and b

(4)
m1 are coefficients to be determined. Substituting the assumed solutions

(2.122) through (2.125) into the pair of ODEs (2.114) and (2.115) gives

∞∑
m=0

2c11ma
(3)
m1r

m +
∞∑
m=0

i(c12 + 1)b
(3)
m1r

m +
∞∑
m=0

[c11m
2 − (1 + c22)]a

(4)
m1r

m

+
∞∑
m=0

k2a
(4)
m1r

m+2 +
∞∑
m=0

i[m(c12 + 1)− (c22 + 1)]b
(4)
m1r

m = 0 (2.126)

∞∑
m=0

2mb
(3)
m1r

m + i(c12 + 1)
∞∑
m=0

a
(3)
m1r

m +
∞∑
m=0

[m2 − (c22 + 1)]b
(4)
m1r

m

+
∞∑
m=0

k2b
(4)
m1r

m+2 +
∞∑
m=0

i[m(c12 + 1) + (c22 + 1)]a
(4)
m1r

m = 0 (2.127)

Dividing by the common factor rm and setting r = 0, the only non-vanishing terms are

those with m = 0. This gives the following set of indicial equations

i(c12 + 1)b
(3)
01 − (1 + c22)a

(4)
01 − i(c22 + 1)b

(4)
01 = 0 (2.128)

i(c12 + 1)a
(3)
01 + i(c22 + 1)a

(4)
01 − (c22 + 1)b

(4)
01 = 0 (2.129)

Recalling Eqn. (2.43) with n = 1

b
(3)
01 = −i[(c12 + 1)α

(3)
1 + (c22 + 1)]a

(3)
01

(α
(3)
1 )2 − (2c22 + 1)

= ia
(3)
01 (2.130)

Substituting Eqn. (2.130) into (2.128) gives

− (c12 + 1)a
(3)
01 − (1 + c22)a

(4)
01 − i(c22 + 1)b

(4)
01 = 0 (2.131)

It can be found that Eqns. (2.131) and (2.129) are identical. Setting a
(4)
01 = 1 gives

b
(4)
01 = i

(c12 + 1)a
(3)
01 + (c22 + 1)

(1 + c22)
(2.132)
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Table 2.10: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 11.32 5.81 0.66 0.705 23.0303 8.3333 11.8182

By requiring that the coefficients of rm vanish in Eqns. (2.126) and (2.127), we can obtain

the following recurrence relations

[
2c11ma

(3)
m1 + i(c12 + 1)b

(3)
m1

]
+ [c11m

2 − (1 + c22)]a
(4)
m1 + k2a

(4)
(m−2)1

+i[m(c12 + 1)− (c22 + 1)]b
(4)
m1 = 0 (2.133)[

2mb
(3)
m1 + i(c12 + 1)a

(3)
m1

]
+ i[m(c12 + 1) + (c22 + 1)]a

(4)
m1

+[m2 − (c22 + 1)]b
(4)
m1 + k2b

(4)
(m−2)1 = 0 (2.134)

Written in matrix form c11m
2 − (1 + c22) i[m(c12 + 1)− (c22 + 1)]

i[m(c12 + 1) + (c22 + 1)] m2 − (c22 + 1)


 a

(4)
m1

b
(4)
m1

 =

 −k2a(4)(m−2)1 −
[
2c11ma

(3)
m1 + i(c12 + 1)b

(3)
m1

]
−k2b(4)(m−2)1 −

[
2mb

(3)
m1 + i(c12 + 1)a

(3)
m1

]


(2.135)

According to Eqn. (2.135), even numbered real coefficients a
(4)
m1 and b

(4)
m1 can be obtained

with the defined initial values of a
(4)
01 and b

(4)
01 . Odd numbered coefficients are set to zero.

2.5.2 Verifying the Solutions When α is a Repeat Root

An numerical method is applied to verify the solutions obtained above. The orthotropic

material properties applied for this verification are listed in Table 2.10. The wave number

k = ω
√
ρ/C44 = ω

√
ρ/Gxy = 1.89717, where ω = 1350. Under this case α

(3,4)
1 = 0.

Substitute the numerical values of U
(3)
1 (r), U

(4)
1 (r), V

(3)
1 (r), and V

(4)
1 (r) into Eqns. (2.114)
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and (2.115), and define the numerical values of the left sides of the two equations as

G1 = c11

(
r2U

(3)′′

1 + rU
(3)′

1

)
+
(
k2r2 − 1− c22

)
U

(3)
1 + i(c12 + 1)rV

(3)′

1 − i(c22 + 1)V
(3)
1

G2 = r2V
(3)′′

1 + rV (3)′

n + i(c12 + 1)rU
(3)′

1 + (k2r2 − c22 − 1)V
(3)
1 + i(c22 + 1)U

(3)
1

G3 = c11

(
r2U

(4)′′

1 + rU
(4)′

1

)
+
(
k2r2 − 1− c22

)
U

(4)
1 + i(c12 + 1)rV

(4)′

1 − i(c22 + 1)V
(4)
1

G4 = r2V
(4)′′

1 + rV
(4)′

1 + i(c12 + 1)rU
(4)′

1 + (k2r2 − c22 − 1)V
(4)
1 + i(c22 + 1)U

(4)
1

(2.136)

Table 2.11 shows numerical results of G1, G2, G3, and G4 under different radii r and values

of M. The values of G1, G2, G3, and G4 in Table 2.11 under different radii r are all close

Table 2.11: The numerical results of G1, G2, G3, and G4 under different radii r
r M G1 G2 G3 G4

0.2 15 1.77636× 10−15 + 0i 0− 1.77636× 10−15i −1.04361× 10−14 + 0i 0 + 8.88178× 10−16i
1.2 35 −5.32907× 10−15 + 0i 0 + 1.77636× 10−15i 7.10543× 10−15 + 0i 0− 3.55271× 10−15i
2.1 33 6.21725× 10−15 + 0i 0− 1.95399× 10−14i 3.90799× 10−14 + 0i 0− 1.42109× 10−14i
10.2 80 5.29076× 10−7 + 0i 0− 1.43608× 10−6i 1.12914× 10−6 + 0i 0− 4.79253× 10−6i

to zero. Thus, U
(3)
1 (r), U

(4)
1 (r), V

(3)
1 (r), and V

(4)
1 (r) are proved to be the solutions for Eqns.

(2.114) and (2.115).

The Wronskian WU(r) of U
(3)
1 (r) and U

(4)
1 (r) is given as WU(r) = U

(4)′

1 (r) × U (3)
1 (r) −

U
(3)′

1 (r)×U (4)
1 (r). The WronskianWV (r) of V

(3)
1 (r) and V

(4)
1 (r) is given asWV (r) = V

(4)′

1 (r)×

V
(3)
1 (r) − V (3)′

1 (r) × V (4)
1 (r). Table 2.12 shows the numerical results of WU(r) and WV (r)

under different radii r. Since WU(r) and WV (r) are non-zero, U
(3)
n (r), U

(4)
n (r) and V

(3)
n (r),

Table 2.12: The numerical results of WU(r) and WV (r) under different radii r
r 0.2 1.2 2.1 10.2

WU(r) 5.04251 + 0i 0.965482 + 0i −0.476737 + 0i 0.0558213 + 0i
WV (r) −5.38539 + 0i −2.20883 + 0i −1.26622 + 0i −0.536510 + 0i

V
(4)
n (r) are linearly independent solutions.
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2.6 Special Case 3: Mode n = 0

When n = 0, Eqns. (2.19) and (2.20) can be written as

c11
(
r2U ′′0 + rU ′0

)
+
(
k2r2 − c22

)
U0 = 0 (2.137)

r2V ′′0 + rV ′0 + (k2r2 − 1)V0 = 0 (2.138)

For this special case, the two equations are decoupled. So the two equations can be solved

individually with the Frobenius method.

2.6.1 Solution for U0

Assume that U0(r) has a solution in the following Frobenius series form,

U0(r) =
∞∑
m=0

am0r
m+α0 (2.139)

substituting Eqn. (2.139) into Eqn. (2.137) gives

∞∑
m=0

{
c11(m+ α0)

2 + (k2r2 − c22)
}
am0r

m+α0 = 0 (2.140)

Dividing by the common factor rα0 , then setting r = 0, the only non-vanishing terms are

those with m = 0, giving the following indicial equation

(
c11α

2
0 − c22

)
a00 = 0 (2.141)

Then α0’s can be obtained as

α
(1,2)
0 = ±

√
c22/c11 (2.142)
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Eqn. (2.140) needs to be satisfied for all powers of r. When m = 1, it becomes

[c11(1 + α0)
2 − c22]a10 = 0 (2.143)

If c11(1 + α0)
2 − c22 6= 0, a10 has to equal to zero. If c11(1 + α0)

2 − c22 = 0, a10 can be an

arbitrary value. Therefore, let a10 = 0. For the m-th power, where m goes from 2 to ∞,

the equation becomes

[
c11(m+ α0)

2 − c22
]
am0 + k2a(m−2)0 = 0 (2.144)

According to Eqn. (2.142), α
(1)
0 and α

(2)
0 may or may not differ by an integer. Both cases

need to be considered.

1. When α
(1)
0 and α

(2)
0 do not differ by an integer

If α
(1)
0 and α

(2)
0 do not differ by an integer, through Eqn. (2.144), the even numbered

real coefficients am0 can be obtained by arbitrarily selecting real values of a00. Let a00 = 1.

The odd numbered coefficients are set to zero. Then, the resulting special functions for

displacement U0 can be written as, for σ = 1 and, 2,

U
(σ)
0 (r) =

∞∑
m=0

a
(σ)
m0r

m+α
(σ)
0 , (2.145)

Thus, the general solution of displacement ur can be given as

ur =
∞∑
n=0

[
anU

(1)
0 (r) + bnU

(2)
0 (r)

]
einθeiωt (2.146)
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2. When α
(1)
0 and α

(2)
0 differ by an integer

If α
(1)
0 and α

(2)
0 differ by an integer, which is denoted as N = α

(1)
0 − α

(2)
0 = 2

√
c22/c11,

the first solution is assumed as

U
(1)
0 =

∞∑
m=0

a
(1)
m0r

m+α
(1)
0 (2.147)

where a
(1)
m0 can be obtained through the recurrence relation (2.144) by setting a

(1)
00 = 1. The

second solution is assumed as the following

U
(2)
0 = cU

(1)
0 ln r +

∞∑
m=0

a
(2)
m0r

m+α
(2)
0 (2.148)

where c is constant and a
(2)
m0 are coefficients. Substituting the solution (2.148) into the ODE

(2.137), gives

∞∑
m=0

2cc11(m+ α
(1)
0 )a

(1)
m0r

m+N +
∞∑
m=0

[
c11(m+ α

(2)
0 )2 − c22

]
a
(2)
m0r

m +
∞∑
m=0

k2a
(2)
m0r

m+2 = 0

(2.149)

By setting r = 0, the only non-vanishing terms are those with m = 0. This yields the

following equation [
c11(α

(2)
0 )2 − c22

]
a
(2)
00 = 0 (2.150)

Recalling Eqn. (2.141), gives c11

(
α
(2)
0

)2
− c22 = 0. So in Eqn. (2.150), a

(2)
00 can be chosen

as an arbitrary value. Now let a
(2)
00 = 1. Since the terms for 0-th power of r equal zero, Eqn.

(2.149) can be written as

∞∑
m=0

2cc11(m+ α
(1)
0 )a

(1)
m0r

m+N +
∞∑
m=0

[
c11(m+ 1 + α

(2)
0 )2 − c22

]
a
(2)
(m+1)0r

m+1

+
∞∑
m=0

k2a
(2)
m0r

m+2 = 0

(2.151)
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Three situations need to be considered: 1) when N = 1, 2) when N = 2, and 3) when

N > 2. Since the solution process is similar to the special case when n > 0, some details

will be skipped.

• When N = 1, c = 0, and the coefficients a
(2)
m0 can be obtained through the following

recurrence relation[
c11(m+ α

(2)
0 )2 − c22

]
a
(2)
m0 + k2a

(2)
(m−2)0 = 0 (2.152)

where m goes from 2 to ∞. Then, the resulting special functions for displacement U0 can

be written as

U
(1)
0 (r) =

∞∑
m=0

a
(1)
m0r

m+α
(1)
0 , U

(2)
0 (r) =

∞∑
m=0

a
(2)
m0r

m+α
(2)
0 (2.153)

Eqn. (2.153) shows that the second solution can also be written in Frobenius series form.

The general solution of displacement ur can be written as

ur =
∞∑
n=0

[
anU

(1)
0 (r) + bnU

(2)
0 (r)

]
einθeiωt (2.154)

• When N = 2, the constant c and coefficient a
(2)
20 have the following relation:

2cc11α
(1)
0 a

(1)
00 +

[
c11

(
α
(1)
0

)2
− c22

]
a
(2)
20 + k2a

(2)
00 = 0 (2.155)

Since we have

c11

(
2 + α

(2)
0

)2
− c22 = c11

(
α
(1)
0

)2
− c22 = 0 (2.156)

a
(2)
20 in Eqn. (2.155) can be chosen as any value. Now let a

(2)
20 = 1. Constant c can be

obtained through Eqn. (2.155),

c = − k2a
(2)
00

2c11α
(1)
0 a

(1)
00

(2.157)

The coefficient a
(2)
m0 can be obtained through the following relation

2c11c
(
m− 2 + α

(1)
0

)
a
(1)
(m−2)0 +

[
c11

(
m− 2 + α

(1)
0

)2
− c22

]
a
(2)
m0 + k2a

(2)
(m−2)0 = 0 (2.158)
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where m goes from 2 to∞. Since the constant c and coefficients a
(2)
m0 were obtained in Eqns.

(2.157) and (2.158), the second solution U
(2)
0 is solved.

• When N > 2, for 0 6 m < N − 2, a
(2)
00 through a

(2)
(N−2)0 can be obtained through the

following equation:[
c11

(
m+ 2 + α

(2)
0

)2
− c22

]
a
(2)
(m+2)0 + k2a

(2)
m0 = 0 (2.159)

The above equation Eqn. (2.159) can also be written as

[
c11

(
m+ α

(2)
0

)2
− c22

]
a
(2)
m0 + k2a

(2)
(m−2)0 = 0 (2.160)

where 2 6 m < N . When m = N , the constant c and coefficient a
(2)
N0 have the following

relation

2cc11α
(1)
0 a

(1)
00 +

[
c11

(
α
(1)
0

)2
− c22

]
a
(2)
N0 + k2a

(2)
(N−2)0 = 0 (2.161)

Since c11

(
α
(1)
0

)2
− c22 = 0, a

(2)
N0 can be an arbitrary value. Setting a

(2)
N0 = 1, constant c can

be obtained by the following relation

c = −
k2a

(2)
(N−2)0

2c11α
(1)
0 a

(1)
00

(2.162)

Finally, the problem can be solved through the following recurrence relation

2cc11(m+ α
(1)
0 )a

(1)
m0 +

[
c11

(
m+ α

(1)
0

)2
− c22

]
a
(2)
(m+N)0 + k2a

(2)
(m+N−2)0 = 0 (2.163)

where 2 6 m <∞.

2.6.2 Verifying Solution for U0

In this section, three numerical examples are used to verify the solutions of U
(1)
0 (r) and

U
(2)
0 (r). The solutions for three situations when the indicies differ by an integer (N = 1,
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Table 2.13: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 59.994 14.9985 0.66 0.2303 92.1212 5.30303 23.0303

N = 2, and N > 2) are all verified.

For the first example, the indicies differ by an integer N = 1. The orthotropic material

properties considered in this example are listed in Table 2.13. The circular frequency ω is

1350. The wave number k can be obtained through the following equation,

k = ω
√
ρ/C44 = ω

√
ρ/Gxy = 1.89717 (2.164)

For this example, the indicies α
(1)
0 =

√
c22/c11 = 1

2
and α

(2)
0 = −

√
c22/c11 = −1

2
. The

numerical solutions U
(1)
0 (r) and U

(2)
0 (r) can be obtained by substituting the properties of

the orthotropic medium into Eqn. (2.153). Note that in Eqn. (2.153), the solutions are

expressed as infinite series. To implement a numerical computation, the infinite series needs

to be truncated to a finite number of terms to approximate the exact value. The largest

term is denoted as M, which is called the truncation term. In Eqn. (2.153), the value of

am0r
m+α0 gets smaller when m gets larger. When m > M, the values of am0r

m+α0 are too

small to be added to the summation. Thus they can be truncated.

Now the numerical solutions U
(1)
0 (r) and U

(2)
0 (r) are back-substituted into Eqn. (2.137).

Define the numerical values of the left side of Eqn. (2.137) as

E1 = c11

(
r2U

(1)′′

0 + rU
(1)′

0

)
+
(
k2r2 − c22

)
U

(1)
0 (2.165)

E2 = c11

(
r2U

(2)′′

0 + rU
(2)′

0

)
+
(
k2r2 − c22

)
U

(2)
0 (2.166)

Theoretically, the left side of of Eqn. (2.137) should vanish. For numerical computation,

E1 and E2 can get close to zero but are not exactly due to computing error. Table 2.14

provides the values of E1, E2, and the truncation numbers M under different radii r. Table
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Table 2.14: The numerical results of E1, E2 under different radii r
r M E1 E2

0.2 9 0 + 0i 2.84217× 10−14 + 0i
1.2 13 −3.55271× 10−15 + 0i −8.88178× 10−15 + 0i
2.1 15 −2.4869× 10−14 + 0i −7.10543× 10−15 + 0i
10.2 25 −1.13687× 10−13 + 0i −2.13163× 10−14 + 0i

2.14 shows that E1 and E2 are very close to or equal to zero. The errors are small which

are considered as computing errors. Thus, it is verified that both U
(1)
0 (r) and U

(2)
0 (r) are

solutions for Eqn. (2.137). The Wronskian WU(r) of U
(1)
0 (r) and U

(2)
0 (r) is given as WU(r) =

U
(2)′

0 (r)×U (1)
0 (r)−U (1)′

0 (r)×U (2)
0 (r). Table 2.15 shows the numerical results of WU(r) and

WV (r) under different radii r. Since WU(r) does not vanish, U
(1)
0 (r) and U

(2)
0 (r) are linearly

Table 2.15: The numerical results of WU(r) under different radii r
r 0.2 1.2 2.1 10.2

WU(r) −5.00000 + 0i −0.833333 + 0i −0.476190 + 0i −0.0980392 + 0i

independent solutions.

For the second example, the indicies differ by an integer; N = 2. The orthotropic

material properties applied for this example are listed in Table 2.16. The wave number

k = ω
√
ρ/C44 = ω

√
ρ/Gxy = 1.89717, where ω = 1350. For this case, we have α

(1,2)
0 = ±1.

The numerical solutions U
(1)
0 (r) and U

(2)
0 (r) are back-substituted into Eqn. (2.137). The

numerical values of the left side of Eqn. (2.137), E1 and E2, are defined in Eqns. (2.165)

and (2.166). Table 2.17 shows numerical values of E1 and E2 under different radii r. Table

2.17 shows that E1 and E2 are very close or equal to zero. The small errors are considered

as computing errors. Thus, it is verified that both U
(1)
0 (r) and U

(2)
0 (r) are solutions for Eqn.

(2.137). Table 2.18 shows the numerical results of WU(r) under different radii r. Since

WU(r) is not vanishing, therefore, U
(1)
0 (r) and U

(2)
0 (r) are linearly independent solutions.

Table 2.16: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 13.20987 13.20987 0.66 0.3618 23.0303 8.33333 23.0303
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Table 2.17: The numerical results of E1 and E2 under different radii r
r M E1 E2

0.2 11 0 + 0i 0 + 0i
1.2 18 3.55271× 10−15 + 0i 0 + 0i
10.2 35 −1.25056× 10−12 + 0i −1.10845× 10−12 + 0i

Table 2.18: The numerical results of WU(r) under different radii r
r 0.2 1.2 10.2

WU(r) −10.0000 + 0i −1.66667 + 0i −0.196078 + 0i

For the third example, the indicies differ by an integer; N = 4. The orthotropic material

properties applied for this example are listed in Table 2.19. For this example, we have

α
(1,2)
0 = ±2. The circular frequency ω is the same as in the last two examples. The

numerical values of U
(1)
0 (r) and U

(2)
0 (r) are back substituted into Eqn. (2.137). The values

on the left side of Eqn. (2.137), E1 and E2, are defined in Eqns. (2.165) and (2.166). Table

2.20 shows numerical results of E1, E2, and truncation numbers M under different radii

r. The results of E1 and E2 shown in Table 2.20 are very close to zero. The errors are

considered as computing errors.

Table 2.21 shows the numerical results of WU(r) under different radii r. Since WU(r)

does not vanish, U
(1)
0 (r) and U

(2)
0 (r) are linearly independent solutions.

2.6.3 Solution for V0

The general solutions for the second ODE (2.138) will be solved in this section. Assume

that V0(r) has a solution in the following Frobenius series form

V0(r) =
∞∑
m=0

bm0r
m+α0 (2.167)

Table 2.19: Material properties of the orthotropic medium

ρ (kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ c11 c12 c22
1303.44 14.702467 58.80987 0.66 0.0905 23.0303 8.3333 92.1212
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Table 2.20: The numerical results of E1 and E2 under different radii r
r M E1 E2

0.2 11 −4.44089× 10−16 + 0i 1.33241× 10−10 + 0i
1.2 20 0 + 0i 4.57078× 10−9 + 0i
10.2 35 −1.81899× 10−11 + 0i −8.72069× 10−8 + 0i

Table 2.21: The numerical results of WU(r) under different radii r
r 0.2 1.2 10.2

WU(r) −20.0000 + 0i −3.33333 + 0i −0.392159 + 0i

Substituting Eqn. (2.167) into Eqn. (2.138), gives

∞∑
m=0

{
(m+ α0)

2 + (k2r2 − 1)
}
bm0r

m+α0 = 0 (2.168)

After dividing by the common factor rα0 , and then setting r = 0, the only non-vanishing

terms are those with m = 0. This gives the following indicial equation

(
α2
0 − 1

)
b00 = 0 (2.169)

Then α’s can be obtained as

α
(3,4)
0 = ±1 (2.170)

Eqn. (2.168) need to be satisfied for all different powers of r. For the m-th power, it becomes

[
(m+ α0)

2 − 1
]
bm0 + k2b(m−2)0 = 0 (2.171)

where m goes from 2 to ∞. According to Eqn. (2.170), α0 has two roots that differ by

integer; N = α
(3)
0 − α

(4)
0 = 2. When α

(3)
0 = 1, the first solution can be given as

V
(3)
0 =

∞∑
m=0

b
(3)
m0r

m+α
(3)
0 =

∞∑
m=0

b
(3)
m0r

m+1 (2.172)
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Coefficients b
(3)
m0 can be obtained through Eqn. (2.171). The even numbered real coefficients

b
(3)
m0 can be obtained by setting b

(3)
00 = 1; the odd numbered coefficients are set to zero. When

α
(3)
0 = −1, the second solution can be given as

V
(4)
0 = cV

(3)
0 ln r +

∞∑
m=0

b
(4)
m0r

m+α
(4)
0 = cV

(3)
0 ln r +

∞∑
m=0

b
(4)
m0r

m−1 (2.173)

where c is a constant, and b
(4)
m0 are the coefficients that need to be determined. The solving

procedure is the same as when solving the first ODE. So most details of the solving process

will be skipped.

By substituting Eqn. (2.173) into Eqn. (2.138), the recurrence relation is given as

2c(m+ 1)b
(3)
m0 + k2b

(4)
m0 +

[
(m+ 1)2 − 1

]
b
(4)
(m+2)0 = 0 (2.174)

where m goes from 0 to ∞. When m = 0, the above Eqn. (2.174) can be written as

2c(0 + 1)b
(3)
00 + k2b

(4)
00 +

[
(0 + 1)2 − 1]

]
b
(4)
(0+2)0 = 2c(0 + 1)b

(3)
00 + k2b

(4)
00 + 0b

(4)
20 = 0 (2.175)

which gives

c = −k
2b

(4)
00

2b
(3)
00

= − k2

2b
(3)
00

(2.176)

Here b
(4)
00 = 1. Eqn. (2.175) also shows that b

(4)
20 can be chosen as an arbitrary value. Let

b
(4)
20 = 1. Then for m ≥ 2, b

(4)
m0 can be obtained through the relation

[
(m+ 1)2 − 1

]
b
(4)
(m+2)0 = −

[
2c(m+ 1)b

(3)
m0 + k2b

(4)
m0

]
(2.177)

The odd numbered coefficients are set to zero. Thus, the general solution for Eqn. (2.138),

can be given as

vr =
∞∑
n=0

[
cnV

(3)
0 (r) + dnV

(4)
0 (r)

]
einθeiωt (2.178)
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2.6.4 Verifying Solution for V0

The solutions are verified by back substituting V
(3)
0 (r) and V

(4)
0 (r) into the second ODE

(2.138) using numerical methods. The orthotropic material properties applied for this ex-

ample are listed in Table 2.13. Under this case, we have α
(3,4)
0 = ±1. The wave number k

and frequency ω are the same with those in the last example. The numerical results of the

left side of Eqn. (2.138) are defined as

E3 = r2V
(3)′′

0 + rV
(3)′

0 +
(
k2r2 − 1

)
V

(3)
0 (2.179)

E4 = r2V
(4)′′

0 + rV
(4)′

0 +
(
k2r2 − 1

)
V

(4)
0 (2.180)

The results of E3 and E4 shown in Table 2.22 verified the solutions V
(3)
0 (r) and V

(4)
0 (r). The

numerical values of E3 and E4 are both close to zero under different radius r. The errors are

very small which is considered as computing errors. Table 2.22 also shows the truncation

numbers M that are taken under different radii r.

Table 2.22: Numerical results of E3 and E4 under different radii r
r M E3 E4

0.2 15 2.77556× 10−17 + 0i 0 + 0i
1.2 29 −8.88178× 10−16 + 0i 8.88178× 10−16 + 0i
2.1 34 −3.9968× 10−15 + 0i 3.55271× 10−15 + 0i
10.2 79 −1.14778× 10−7 + 0i 1.18119× 10−6 + 0i

The Wronskian WV (r) of V
(3)
0 (r) and V

(4)
0 (r) is given as WV (r) = V

(4)′

0 (r) × V (3)
0 (r) −

V
(3)′

0 (r)× V (4)
0 (r). Table 2.23 shows the numerical results of WV (r) under different radii r.

Since WV (r) is not vanishing, V
(3)
0 (r) and V

(4)
0 (r) are linearly independent solutions. Figure

Table 2.23: The numerical results of WV (r) under different radii r
r 0.2 1.2 2.1 10.2

WV (r) −10.0000 + 0i −1.66667 + 0i −0.952381 + 0i −0.196078 + 0i

2.1 and 2.2 show the numerical values of V
(3)
0 (r) and V

(4)
0 (r) at α

(3,4)
0 = ±1, respectively.

The second ODE (2.138) is actually a Bessel’s differential equation. So the solutions of
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Figure 2.1: Solutions of V
(3)
n (r) at n = 0 with α

(3)
0 = 1

Figure 2.2: Solutions of V
(4)
n (r) at n = 0 with α

(4)
0 = −1
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Eqn. (2.138) are Bessel functions. Figure 2.1 and 2.2 show that the solutions of V
(3)
0 (r) and

V
(4)
0 (r) are Bessel functions of the first and second kind, respectively. From 2.2 we can find

that when radius r gets close to 20, the curve has some oscillation. This is because when r

increases, the errors also increase, as shown in Table 2.22.
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Chapter 3

Acoustic Wave Scattering by

Cylindrical Scatterer Comprising

Isotropic Acoustic and Orthotropic

Elastic Layers

3.1 Introduction

In this chapter the general solutions for elastic waves in cylindrically orthotropic elas-

tic media, which were obtained in Chapter 2, are used for defining a set of two canonical

problems. Then, based on the canonical problems, acoustic scattering by a “general” multi-

layer cylindrical scatterer is solved. The word “general” means that the number of layers is

arbitrary and the medium of each layer can be either orthotropic elastic or isotropic acoustic.
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3.2 Basis Equations and Field Expressions

3.2.1 Acoustic Field

Following the standard methods of theoretical acoustics, the basic equations for linear

acoustics include (Pierce, 1991)

v = −5 φ, p = −iωρφ (3.1)

where ρ is density, p is acoustic pressure, v is the fluid particle velocity vector, and φ is the

amplitude of acoustic pressure. Noting that in the steady state, all waves in the field have

a same temporal factor eiωt. In polar coordinates, φ = φ(r, θ). The amplitude of acoustic

pressure can be obtained by solving the Helmholtz equation,

52 φ+ k2φ = 0 (3.2)

where k = ω/c is the wavenumber, c is the sound speed. The general solutions to the

Helmholtz equation are called cylindrical wave functions Jn(kr)einθ and Yn(kr)einθ (Pao

and Mow, 1971). Jn(kr) and Yn(kr) are the Bessel functions of the first and the second

kinds, respectively. Since the Bessel function of the first kind is non-singular throughout

the plane, Jn(kr)einθ can be used in any problem domain. The Bessel function of the second

kind is singular at the origin, therefore Yn(kr)einθ is only suitable for describing waves in

regions which do not include the origin. Hankel functions which are combinations of Bessel

functions are alternatively used for describing waves. Waves represented by H
(1)
n (r, θ)einθ

and H
(2)
n (r, θ)einθ are called incoming waves and outgoing waves, respectively. H

(1)
n (r, θ)einθ

and H
(2)
n (r, θ)einθ are Hankel functions of the first and second kinds, respectively.

A general expression for a wave can be written as the inner product of wave expansion

basis with the wave expansion coefficient matrices. The wave expansion basis includes: the

regular wave expansion basis {J(k, r)} and the singular wave expansion basis {H(k, r)},
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which are column matrices. Their entries at the n-th row can be expressed as

J(r, θ)n = Jn(kr)einθ, H(r, θ)n = H(1)
n (kr)einθ (3.3)

where n runs from −∞ to ∞.

For all the cases to be discussed, which are acoustic scattering by multilayer scatterers

having isotropic acoustic and orhotropic elastic solid layers, the incident wave is assumed to

be regular throughout the entire plane. Incident wave is an incoming wave that impinges

onto a scatterer. The expansion of the incident plane wave propagating in the fluid medium

has the form

φinc =
∞∑

n=−∞

AnJn(kr)einθ = {A}T{J(k, r)} (3.4)

where {A} is the incident wave expansion coefficient column matrix whose row index runs

from −∞ to ∞. When the incident wave impinges onto the scatterer, a scattered wave will

be generated. The scattered wave is an outgoing wave, so the expansion of the scattered

plane wave propagating in the fluid medium has the form

φscr =
∞∑

n=−∞

BnH
(1)
n (kr)einθ = {B}T{H(k, r)} (3.5)

where {B} is the scattered wave expansion coefficient column matrix whose row index runs

from −∞ to ∞.
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3.2.2 Orthotropic Medium

The general expression for the wave in the orthotropic medium in cylindrical coordinates

was obtained in the last chapter, which is

ur =
∞∑

n=−∞

[
anU

(1)
n (r) + bnU

(2)
n (r) + cnU

(3)
n (r) + dnU

(4)
n (r)

]
einθ (3.6)

uθ =
∞∑

n=−∞

[
anV

(1)
n (r) + bnV

(2)
n (r) + cnV

(3)
n (r) + dnV

(4)
n (r)

]
einθ (3.7)

where an, bn, cn and dn are constants to be determined by the physical problems. Using the

obtained general solutions in Eqns. (3.6) and (3.7), the displacement and stress in medium

q can be obtained through a unified expression as

ℵiq(r) =
∞∑

n=−∞

[
anqX

1
iq(n, r) + bnqX

2
iq(n, r) + cnqX

3
iq(n, r) + dnqX

4
iq(n, r)

]
einθ (3.8)

= {a}Tq {X1
iq(r)}+ {b}Tq {X2

iq(r)}+ {c}Tq {X3
iq(r)}+ {d}Tq {X4

iq(r)} (3.9)

where {a}, {b}, {c} and {d} are the constants column matrices whose row index runs from

−∞ to ∞, ℵi is a displacement, strain or stress component defined in the following order

{ℵ} =

{
εrr, rεθθ, σzz, σrr, σθθ,

r

C44

σrθ or 2rεrθ, ur, uθ

}
(3.10)

and Xσ
iq(n, r) (σ = 1, 2, 3, 4) is a series of functions defined in this study. {ℵ} is a vector. In

this series of functions, i denotes the component, and q denotes the medium in which the
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Figure 3.1: Canonical problems defined by Cai (2004): (a) first canonical problem; (b)
second canonical problem

expressions are to be evaluated. The definitions are given as:

Xσ
1q(n, r) = [U (σ)

nq (r)]′ (3.11)

Xσ
2q(n, r) = U (σ)

nq (r) + inV (σ)
nq (r) (3.12)

Xσ
3q(n, r) = C13[U

(σ)
nq (r)]′ + C23U

(σ)
nq (r)/r + inC23V

(σ)
nq (r)/r (3.13)

Xσ
4q(n, r) = C11[U

(σ)
nq (r)]′ + C12U

(σ)
nq (r)/r + inC12V

(σ)
nq (r)/r (3.14)

Xσ
5q(n, r) = C12[U

(σ)
nq (r)]′ + C22U

(σ)
nq (r)/r + inC22V

(σ)
nq (r)/r (3.15)

Xσ
6q(n, r) = inU (σ)

nq (r) + r[V (σ)
nq (r)]′ − V (σ)

nq (r) (3.16)

Xσ
7q(n, r) = U (σ)

nq (r) (3.17)

Xσ
8q(n, r) = V (σ)

nq (r) (3.18)

3.3 Canonical Problems

The fundamental elements for solving acoustic scattering by multilayer scatterers having

a mixture of isotropic fluid and orthotropic elastic layers are two sets of two canonical

problems.

The first set of two canonical problems were defined by Cai (2004). They include two

acoustic media i and j, which are separated by a closed interface Γ as shown in Fig. 3.1.

In the first canonical problem, the incident wave encounters the interface Γ from medium i

which generates the reflected wave in medium i and the transmitted wave in medium j. In
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Figure 3.2: First Canonical Problem

the second canonical problem, the incident wave encounters the interface Γ from medium j,

which generates the reflected wave in medium j and the transmitted wave in medium i.

The second set of two canonical problems were defined in this study. In this study,

each canonical problem involves three media that are separated by two closed interfaces.

The layer in the middle is orthotropic and it is denoted as medium 2. The outermost and

innermost media are acoustic, which are denoted as media 1 and 3, respectively. The closed

interface between media 1 and 2 is denoted as Γ1 and the closed interface between media

2 and 3 is denoted as Γ2. The first canonical problem is the inward problem in which the

incident wave impinges onto Γ1 from medium 1 as shown in Fig. 3.2. The second canonical

problem is the outward problem, in which the incident wave impinges onto the interface Γ2

from medium 3 as shown in Fig. 3.3. The details of the two canonical problems are discussed

in the following sections.

3.3.1 First Canonical Problem

The first canonical problem is the inward problem. A refected wave in acoustic medium 1,

a transmitted wave in acoustic medium 3, and waves in orthotropic medium 2 are generated.

In this problem, the incident wave in medium 1 and the transmitted wave in medium 3
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Figure 3.3: Second Canonical Problem

are incoming waves, and the scattered waves in medium 1 is an outgoing wave. Therefore,

they are expressible as

pinc =
∞∑

n=−∞

AnJn(k1r)e
inθ = {A}T{J(k1, r)} (3.19)

pscr =
∞∑

n=−∞

BnH
(1)
n (k1r)e

inθ = {B}T{H(k1, r)} (3.20)

ptrm =
∞∑

n=−∞

CnJn(k3r)e
inθ = {C}T{J(k3, r)} (3.21)

where p is the acoustic pressure, k1 and k3 are wave numbers in media 1 and 3, r is the

radius, and {A}, {B} and {C} are the wave expansion coefficient column matrices for the

respective waves whose row index runs from −∞ to ∞. Column matrices {J(kj, r)} and

{H(kj, r)} are the regular and singular wave expansion bases in medium j, respectively.

According to Eqns. (3.8) and (3.9), the displacements ur and uθ in medium 2 are given
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as

ur =
∞∑

n=−∞

[
an2X

1
72(n, r) + bn2X

2
72(n, r) + cn2X

3
72(n, r) + dn2X

4
72(n, r)

]
einθ (3.22)

= {a}T2 {X1
72(r)}+ {b}T2 {X2

72(r)}+ {c}T2 {X3
72(r)}+ {d}T2 {X4

72(r)} (3.23)

uθ =
∞∑

n=−∞

[
an2X

1
82(n, r) + bn2X

2
82(n, r) + cn2X

3
82(n, r) + dn2X

4
82(n, r)

]
einθ (3.24)

= {a}T2 {X1
82(r)}+ {b}T2 {X2

82(r)}+ {c}T2 {X3
82(r)}+ {d}T2 {X4

82(r)} (3.25)

where {a}, {b}, {c}, and {d} are the constants column matrices whose row index runs from

−∞ to ∞.

In media 1 and 3, wave expansion coefficient matrices of the reflected and transmitted

waves can be related to those of the incident wave as

{B} = [R123]{A} {C} = [T 123]{A} (3.26)

where the subscripts “123” denote the first canonical problem in which the incident wave is

in medium 1 and travels toward media 2 and 3.

In medium 2, the constants column matrices can also be related to those of the incident

wave as

{a}2 = [A123]{A} (3.27)

{b}2 = [B123]{A} (3.28)

{c}2 = [C123]{A} (3.29)

{d}2 = [D123]{A} (3.30)

where [R123], [T 123], [A123], [B123], [C123], and [D123] are characteristic matrices.

The characteristic matrices can be obtained by considering the boundary conditions at

the interfaces Γ1 and Γ2. These boundary conditions include: the continuity of normal fluid
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and solid velocities, the continuity of radial normal stress on the orthotropic side, which is

the negative of the acoustic pressure on the acoustic side, and the vanishing of the tangential

stress at r = r1, and r = r2 (since inviscid acoustic media can not support tangential stress).

Mathematically, the boundary conditions are written as

(−iω)ur|r=r1 = vr|r=r1 (3.31)

(−iω)ur|r=r2 = vr|r=r2 (3.32)

σrr|r=r1 = −p|r=r1 (3.33)

σrr|r=r2 = −p|r=r2 (3.34)

σrθ|r=r1 = 0 (3.35)

σrθ|r=r2 = 0 (3.36)

The parameters on the left hand side are for the orthotropic solid case and the parameters

on the right hand side are for the isotropic fluid case. According to Eqn. (3.1), the fluid

particle velocity vector v can also be written as

v =
1

iωρ
5 p (3.37)

where ω is circular frequency. According to Eqn. (3.37), the expression for the normal fluid

velocity can be expressed as

vr = − i

ωρ

∂p

∂r
(3.38)

The total acoustic pressure at r = r1 is written as

p =
(
pinc + pscr

)∣∣
r=r1

=
∞∑

n=−∞

[AnJn(k1r1) +BnHn(k1r1)] e
inθ (3.39)
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The boundary conditions (3.31) through (3.36) require,

an2X
1
72(n, r1) + bn2X

2
72(n, r1) + cn2X

3
72(n, r1) + dn2X

4
72(n, r1) =

k1
ω2ρ1

[AnJ
′
n(k1r1) +BnH

′
n(k1r1)] (3.40)

an2X
1
72(n, r2) + bn2X

2
72(n, r2) + cn2X

3
72(n, r2) + dn2X

4
72(n, r2) =

k3
ω2ρ3

CnJ
′
n(k3r2) (3.41)

an2X
1
42(n, r1) + bn2X

2
42(n, r1) + cn2X

3
42(n, r1) + dn2X

4
42(n, r1) =

−[AnJn(k1r1) +BnHn(k1r1)] (3.42)

an2X
1
42(n, r2) + bn2X

2
42(n, r2) + cn2X

3
42(n, r2) + dn2X

4
42(n, r2) = −CnJn(k3r2) (3.43)

an2X
1
62(n, r1) + bn2X

2
62(n, r1) + cn2X

3
62(n, r1) + dn2X

4
62(n, r1) = 0 (3.44)

an2X
1
62(n, r2) + bn2X

2
62(n, r2) + dn2X

3
62(n, r2) + dn2X

4
62(n, r2) = 0 (3.45)

Denote

[m1] =



X1
72(n, r1) X2

72(n, r1) X3
72(n, r1) X4

72(n, r1) − k1
ω2ρ1

H ′n(k1r1) 0

X1
72(n, r2) X2

72(n, r2) X3
72(n, r2) X4

72(n, r2) 0 − k3
ω2ρ3

J ′n(k3r2)

X1
42(n, r1) X2

42(n, r1) X3
42(n, r1) X4

42(n, r1) Hn(k1r1) 0

X1
42(n, r2) X2

42(n, r2) X3
42(n, r2) X4

42(n, r2) 0 Jn(k3r2)

X1
62(n, r1) X2

62(n, r1) X3
62(n, r1) X4

62(n, r1) 0 0

X1
62(n, r2) X2

62(n, r2) X3
62(n, r2) X4

62(n, r2) 0 0


(3.46)

Eqns. (3.40) through (3.45) can be solved as



[A123]n

[B123]n

[C123]n

[D123]n

[R123]n

[T 123]n



= [m1]
−1



k1
ω2ρ1

J ′n(k1r1)

0

−Jn(k1r1)

0

0

0



(3.47)
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Through the above Eqn. (3.47), the characteristic matrices can be obtained. In addition,

through the relations (3.26) to (3.30), the wave expansion coefficient column matrices for

the respective waves in the acoustic medium and the constants column matrices for the

orthotropic medium can be obtained.

3.3.2 Second Canonical Problem

The second canonical problem is the outward problem, in which the incident wave im-

pinges onto the interface from medium 3.

The incident wave in medium 3 and transmitted wave in medium 1 are outgoing waves

and the scattered waves in medium 3 is the incoming wave. Therefore they are expressible

as

pinc = {A}T{H(k3, r)} (3.48)

pscr = {B}T{J(k3, r)} (3.49)

pscr = {C}T{H(k1, r)} (3.50)

In medium 2, the expressions for displacements are listed in Eqns. (3.22) through (3.25).

The characteristic matrices are defined as

{B} = [R321]{A} (3.51)

{C} = [T 321]{A} (3.52)

{a}2 = [A321]{A} (3.53)

{b}2 = [B321]{A} (3.54)

{c}2 = [C321]{A} (3.55)

{d}2 = [D321]{A} (3.56)

The boundary conditions at each interface include: the continuity of normal fluid and
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solid velocities, the continuity of the radial normal stress in the orthotropic side, which is

the negative of the acoustic pressure in the acoustic side, and the vanishing of the tangential

stress r = r1, and r = r2.

(−iω)ur|r=r2 = vr|r=r2 (3.57)

(−iω)ur|r=r1 = vr|r=r1 (3.58)

σrr|r=r2 = −p|r=r2 (3.59)

σrr|r=r1 = −p|r=r1 (3.60)

σrθ|r=r1 = 0 (3.61)

σrθ|r=r2 = 0 (3.62)

Here the parameters on the left hand side are for the orthotropic solid case, and the param-

eters on the right hand side are for the isotropic fluid case. Eqns. (3.57) through (3.62) are

expressible as

an2X
1
72(n, r2) + bn2X

2
72(n, r2) + cn2X

3
72(n, r2) + dn2X

4
72(n, r2) =

k3
ω2ρ3

[AnH
′
n(k3r2) +BnJ

′
n(k3r2)] (3.63)

an2X
1
72(n, r1) + bn2X

2
72(n, r1) + cn2X

3
72(n, r1) + dn2X

4
72(n, r1) =

k1
ω2ρ1

CnH
′
n(k1r1) (3.64)

an2X
1
42(n, r2) + bn2X

2
42(n, r2) + cn2X

3
42(n, r2) + dn2X

4
42(n, r2) =

−[AnHn(k3r2) +BnJn(k3r2)] (3.65)

an2X
1
42(n, r1) + bn2X

2
42(n, r1) + cn2X

3
42(n, r1) + dn2X

4
42(n, r1) = −CnHn(k1r1) (3.66)

an2X
1
62(n, r1) + bn2X

2
62(n, r1) + cn2X

3
62(n, r1) + dn2X

4
62(n, r1) = 0 (3.67)

an2X
1
62(n, r2) + bn2X

2
62(n, r2) + cn2X

3
62(n, r2) + dn2X

4
62(n, r2) = 0 (3.68)
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Denote

[m2] =



X1
72(n, r2) X2

72(n, r2) X3
72(n, r2) X4

72(n, r2) − k3
ω2ρ3

J ′n(k3r2) 0

X1
72(n, r1) X2

72(n, r1) X3
72(n, r1) X4

72(n, r1) 0 − k1
ω2ρ1

H ′n(k1r1)

X1
42(n, r2) X2

42(n, r2) X3
42(n, r2) X4

42(n, r2) Jn(k3r2) 0

X1
42(n, r1) X2

42(n, r1) X3
42(n, r1) X4

42(n, r1) 0 Hn(k1r1)

X1
62(n, r1) X2

62(n, r1) X3
62(n, r1) X4

62(n, r1) 0 0

X1
62(n, r2) X2

62(n, r2) X3
62(n, r2) X4

62(n, r2) 0 0


(3.69)

Eqns. (3.63) through (3.68) can be solved as



[A321]n

[B321]n

[C321]n

[D321]n

[R321]n

[T 321]n



= [m2]
−1



k3
ω2ρ3

H ′n(k3r2)

0

−Hn(k3r2)

0

0

0



(3.70)

3.4 Acoustic Scattering by Multilayer Scatterers

The set of two canonical problems defined above is used for solving acoustic scattering

by multilayer scatterers in this section.

3.4.1 Special Multilayer Scatterers

Three special cases are solved first. Based on the solutions of the three special cases,

the solution for a general multilayer scatterer can be obtained through a recursive solution

procedure. The multilayer scattering problem is analyzed following the approach proposed

by Cai (2004). The solving process of three special multilayer scatterers is introduced as

follows.
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Figure 3.4: Acoustic-Acoustic-Orthotropic-Acoustic

Acoustic-Acoustic-Orthotropic-Acoustic

The scatterer solved in this section has three layers. Denote the host as medium 1, the

intermediate layers as media 2 and 3, and the core of the scatterer as medium 4, as shown in

Fig. 3.4. Media 1, 2, and 4 are acoustic materials, and medium 3 is an orthotropic material.

Denote the radii of the interfaces between media 1 and 2, media 2 and 3,and media 3 and

4 as r1, r2, and r3, respectively. The incident wave in medium 1 is expressible as

φinc =
∞∑

n=−∞

AnJn(k1r)e
inθ = {A}T{J(k1, r)} (3.71)
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Figure 3.5: Scattering process in scatterer with acoustic-orthotropic-acoustic layers

The total waves in acoustic media 1, 2, and 4 are expressible as

φ1 = φinc + {B}T{H(k1, r)} (3.72)

φ2 = {D}T{J(k2, r)}+ {E}T{H(k2, r)} (3.73)

φ4 = {C}T{J(k4, r)} (3.74)

where {B}, {C}, {D}, and {E} are the wave expansion coefficient column matrices for the

respective waves whose row index runs from −∞ to ∞.

The different waves are numbered in the multiple scattering process to be easier to follow

(Cai, 2004). The multiple scattering process is shown in Fig. 3.5. Wave 1© is the incident

wave, which is expressible as

φ 1© = {A}T{J1(r, θ)} (3.75)

The incident wave impinges onto medium 2, producing reflected wave 2© and transmitted

wave 3©. These are

φ 2© = ([R12]{A})T{H1(r, θ)} (3.76)

φ 3© = ([T 12]{A})T{J2(r, θ)} (3.77)
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When wave 3© impinges onto medium 3, producing the reflected wave 5© in medium 2 and

transmitted wave 4© in medium 4, the process is described by the first canonical problem

introduced above with wave 3© as the incident wave. According to Eqn. (3.26), the trans-

mitted wave 4© in medium 4 and reflected wave 5© in medium 2 can be related to the

incident wave 3© in medium 2, by linear transformations

φ 4© = ([T 234][T 12]{A})T{J4(r, θ)} φ 5© = ([R234][T 12]{A})T{H2(r, θ)} (3.78)

where subscript “234” signifies the first canonical problem in which the incident wave in

medium 2 and travels toward media 3 and 4. The process continues with a similar procedure.

The waves can be expressed as

φ 6© = ([T 21][R234][T 12]{A})T{H1(r, θ)} (3.79)

φ 7© = ([R21][R234][T 12]{A})T{J2(r, θ)} (3.80)

φ 8© = ([T 234][R21][R234][T 12]{A})T{J4(r, θ)} (3.81)

φ 9© = ([R234][R21][R234][T 12]{A})T{H2(r, θ)} (3.82)

φ 10© = ([T 21][R234][R21][R234][T 12]{A})T{H1(r, θ)} (3.83)

φ 11© = ([R21][R234][R21][R234][T 12]{A})T{J2(r, θ)} (3.84)

φ 12© = ([T 234][R21][R234][R21][R234][T 12]{A})T{J4(r, θ)} (3.85)

φ 13© = ([R234][R21][R234][R21][R234][T 12]{A})T{H2(r, θ)} (3.86)

φ 14© = ([T 21][R234][R21][R234][R21][R234][T 12]{A})T{H1(r, θ)} (3.87)

φ 15© = [R21][R234][R21][R234][R21][R234][T 12]{A}T{J2(r, θ)} (3.88)

The total waves in each medium can be obtained by adding up all the waves that appear

in the medium. For medium 1, the total wave consists of the incident wave φinc, the total

scattered waves 2©, 6©, 10©, 14© and subsequent waves. For medium 2, the total wave consists

of waves 3©, 5©, 7©, 9©, 11©, 13©, 15©, and subsequent waves. Similarly for medium 4, the total
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wave consists of waves 4©, 8©, 12©, and subsequent waves. In medium 1, the total scattered

wave can be written as

φs = [([R12] + [T 21][R234][T 12] + [T 21][R234][R21][R234][T 12]

[T 21][R234][R21][R234][R21][R234][T 12] + · · · ) {A}]T {H1(r, θ)}
(3.89)

Following the same manner introduced by Cai (2004), define

[E] = [I] + [R21][R234] + [R21][R234][R21][R234] + · · · (3.90)

Recalling the Taylor expansion

(1− x)−1 = 1 + x+ x2 + · · · (3.91)

Eqn. (3.90) can be written as

[E] = ([I]− [R21][R234])
−1 (3.92)

By defining

[S] = [E][T 12] (3.93)

Eqn. (3.89) can be written as

φs = [([R12] + [T 21][R234][S]) {A}]T {H1(r, θ)} (3.94)

The total wave in medium 1 can be written as

φ1 = φinc + [([R12] + [T 21][R234][S]) {A}]T {H1(r, θ)} (3.95)

101



Waves in medium 2 and 4 can be obtained following the same manner, which gives

φ2 = ([S]{A})T{J2(r, θ) + ([R234][S]{A})T{H2(r, θ)} (3.96)

φ4 = ([T 234][S]{A})T{J4(r, θ)} (3.97)

Define

[R] = [R12] + [T 21][R234][S] (3.98)

[F ] = [R234][S] (3.99)

[T ] = [T 234][S] (3.100)

The total waves in medium 1, 2, and 4 can be written as

φ1 = φinc + ([R]{A})T{H1(r, θ)} (3.101)

φ2 = ([S]{A})T{J2(r, θ) + ([F ]{A})T{H2(r, θ)} (3.102)

φ4 = ([T ]{A})T{J4(r, θ)} (3.103)

In Eqns. (3.101) though (3.103), matrices [R] and [T ] are called reflection and transmis-

sion matrices, respectively. They represent the scattered wave in medium 1 and transmitted

wave in medium 4, respectively (Cai, 2004). The characteristic matrices [R12], [R21], and

[T 21] can be obtained by applying the two canonical problems defined by Cai (2004); while

[R234] and [T 234] can be solved by using the first canonical problem defined in this study.

To solve the waves in an orthotropic medium, the essential task is to obtain the constants

column matrices which are related to those of the incident wave. When wave 3© impinges

onto medium 3, it is an incident wave for medium 3 so the constants column matrices can

102



be written as

{a} 1©
3 = [A234][T 12]{A} (3.104)

{b} 1©
3 = [B234][T 12]{A} (3.105)

{c} 1©
3 = [C234][T 12]{A} (3.106)

{d} 1©
3 = [D234][T 12]{A} (3.107)

When wave 7© impinges onto medium 3, the constants column matrices can be given as

{a} 2©
3 = [A234][R21][R234][T 12]{A} (3.108)

{b} 2©
3 = [B234][R21][R234][T 12]{A} (3.109)

{c} 2©
3 = [C234][R21][R234][T 12]{A} (3.110)

{d} 2©
3 = [D234][R21][R234][T 12]{A} (3.111)

When wave 11© impinges onto medium 3, the constants column matrices are expressible as

{a} 3©
3 = [A234][R21][R234][R21][R234][T 12]{A} (3.112)

{b} 3©
3 = [B234][R21][R234][R21][R234][T 12]{A} (3.113)

{c} 3©
3 = [C234][R21][R234][R21][R234][T 12]{A} (3.114)

{d} 3©
3 = [D234][R21][R234][R21][R234][T 12]{A} (3.115)

When wave 15© impinges onto medium 3, the constants column matrices are expressible as

{a} 4©
3 = [A234][R21][R234][R21][R234][R21]][R234][T 12]{A} (3.116)

{b} 4©
3 = [B234][R21][R234][R21][R234][R21][R234][T 12]{A} (3.117)

{c} 4©
3 = [C234][R21][R21][R234][R21][R234][R21][R234][T 12]{A} (3.118)

{d} 4©
3 = [D234][R21][R21][R234][R21][R234][R21][R234][T 12]{A} (3.119)
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So in medium 3, the total constants column matrix {a}3 can be summed to give,

{a}3 = {a} 1©
3 + {a} 2©

3 + {a} 3©
3 + {a} 4©

3 + · · ·

= [A234][T 12]{A}+ [A234][R21][R234][T 12]{A}

+ [A234][R21][R234][R21][R234][T 12]{A}

+ [A234][R21][R234][R21][R234][R21][R234][T 12]{A}+ · · ·

= [A234][T 12]{A}
{

[I] + [R21][R234] + ([R21][R234])
2 + ([R21][R234])

3 + · · ·
}

(3.120)

Recalling the Taylor expansion

(1− x)−1 = 1 + x+ x2 + · · · (3.121)

Eqn. (3.120) can be written as

{a}3 = [A234][T 12]{A} ([I]− [R21][R234])
−1

= [A234][E][T 12]{A}
(3.122)

Similarly,

{b}3 = [B234][E][T 12]{A} (3.123)

{c}3 = [C234][E][T 12]{A} (3.124)

{d}3 = [D234][E][T 12]{A} (3.125)
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According to Eqn. (3.93), the above total constants column matrices can also be written as

{a}3 = [A234][S]{A} (3.126)

{b}3 = [B234][S]{A} (3.127)

{c}3 = [C234][S]{A} (3.128)

{d}3 = [D234][S]{A} (3.129)

So, the constants column matrices {a}3, {b}3, {c}3 and {d}3 can be solved using Eqns. (3.126)

through (3.129). Then, the displacement and the stress in medium 3 can be obtained through

Eqns. (3.8) and (3.9).

Acoustic-Orthotropic-Acoustic-Orthotropic-Acoustic

The scatterer solved in this section has four layers. Denote the host as medium 1, the

intermediate layers as media 2, 3 and 4, and the core of the scatterer as medium 5, as shown

in Fig. 3.6. Media 1, 3, and 5 are acoustic and media 2 and 4 are orthotropic. The radii of

the interface between media 1 and 2, 2 and 3, 3 and 4, and 4 and 5 are denoted as r1, r2,

r3, and r4, respectively.

Following the same procedure as in the last case, the total waves in acoustic media 1

(host), and 3 and 5 (innermost) can be expressed as

φ1 = φinc + ([R]{A})T{H1(r, θ)} (3.130)

φ3 = ([S]{A})T{J3(r, θ) + ([F ]{A})T{H3(r, θ)} (3.131)

φ5 = ([T ]{A})T{J5(r, θ)} (3.132)

For the previous case, media 1 and 2 are acoustic. For this case, media 1, 2 and 3 are

acoustic, orthotropic, and acoustic. So the first and second canonical problems for acoustic-

acoustic interface in the previous case become the first and second canonical problems for
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Figure 3.6: Acoustic-Orthotropic-Acoustic-Orthotropic-Acoustic
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acoustic-orthotropic-acoustic interfaces in this case. Subscripts “12” and “21” become “123”

and “321” in this case. For the previous case, media 2, 3, and 4 were acoustic, orthotropic,

and acoustic. For the current case, media 3, 4, and 5 are acoustic, orthotropic, and acoustic.

Therefore, the subscripts “234” become “345”. According to Eqns. (3.92), (3.93), (3.133),

(3.134), and (3.135), the following corresponding matrices are defined:

[R] = [R123] + [T 321][R345][S] (3.133)

[F ] = [R345][S] (3.134)

[T ] = [T 345][S] (3.135)

[S] = [E][T 123] (3.136)

[E] = ([I]− [R321][R345])
−1 (3.137)

To obtain the constants column matrices for orthotropic medium 2, the wave expressions

in Eqns. (3.78) to (3.88) for the previous case can be used for this case by updating the

subscripts “12”, “21”, and “234” to “123”, “321”, and “345”, respectively. When the

incident wave 1© impinges onto medium 2, the constants column matrices can be given as

{a} 1©
2 = [A123]{A} (3.138)

{b} 1©
2 = [B123]{A} (3.139)

{c} 1©
2 = [C123]{A} (3.140)

{d} 1©
2 = [D123]{A} (3.141)
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When wave 5© impinges onto medium 2, the constants column matrices can be given as

{a} 2©
2 = [A321][R345][T 123]{A} (3.142)

{b} 2©
2 = [B321][R345][T 123]{A} (3.143)

{c} 2©
2 = [C321][R345][T 123]{A} (3.144)

{d} 2©
2 = [D321][R345][T 123]{A} (3.145)

When wave 9© impinges onto medium 2, the constants column matrices can be given as

{a} 3©
2 = [A321][R345][R321][R345][T 123]{A} (3.146)

{b} 3©
2 = [B321][R345][R321][R345][T 123]{A} (3.147)

{c} 3©
2 = [C321][R345][R321][R345][T 123]{A} (3.148)

{d} 3©
2 = [D321][R345][R321][R345][T 123]{A} (3.149)

When wave 13© impinges onto medium 2, the constants column matrices can be given as

{a} 4©
2 = [A321][R345][R321][R345][R321][R345][T 123]{A} (3.150)

{b} 4©
2 = [B321][R345][R321][R345][R321][R345][T 123]{A} (3.151)

{c} 4©
2 = [C321][R345][R321][R345][R321][R345][T 123]{A} (3.152)

{d} 4©
2 = [D321][R345][R321][R345][R321][R345][T 123]{A} (3.153)
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So in medium 2, the total constants column matrix {a}2 can be summed to give,

{a}2 ={a} 1©
2 + {a} 2©

2 + {a} 3©
2 + {a} 4©

2 + · · ·

=[A123]{A}+ [A321][R345][T 123]{A}+ [A321][R345][R321][R345][T 123]{A}

+ [A321][R345][R321][R345][R321][R345][T 123]{A}+ · · ·

=[A123]{A}+ [A321][R345]
{

[I] + [R321][R345] + ([R321][R345])
2

+([R321][R345])
3 + · · ·

}
[T 123]{A}

=[A123]{A}+ [A321][R345] ([I]− [R321][R345])
−1 [T 123]{A}

(3.154)

Recalling Eqn.(3.137), Eqn. (3.154) can be written as

{a}2 = [A123]{A}+ [A321][R345][E][T 123]{A} (3.155)

Similarly,

{b}2 = [B123]{A}+ [B321][R345][E][T 123]{A} (3.156)

{c}2 = [C123]{A}+ [C321][R345][E][T 123]{A} (3.157)

{d}2 = [D123]{A}+ [D321][R345][E][T 123]{A} (3.158)

Recalling Eqns. (3.136) and (3.134), the above total constants column matrices can be

written as

{a}2 = [A123]{A}+ [A321][F ]{A} (3.159)

{b}2 = [B123]{A}+ [B321][F ]{A} (3.160)

{c}2 = [C123]{A}+ [C321][F ]{A} (3.161)

{d}2 = [D123]{A}+ [D321][F ]{A} (3.162)
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where [E] and [F ] are defined in (3.137) and (3.134). According to Eqns. (3.120) to

(3.129), by updating the subscripts “234” to “345”, the total constants column matrices in

orthotropic medium 4 can be obtained as

{a}4 = [A345][E][T 123]{A} = [A345][S]{A} (3.163)

{b}4 = [B345][E][T 123]{A} = [B345][S]{A} (3.164)

{c}4 = [C345][E][T 123]{A} = [C345][S]{A} (3.165)

{d}4 = [D345][E][T 123]{A} = [D345][S]{A} (3.166)

All the characteristic matrices can be solved by the first and second canonical problems.

After obtaining the constants column matrices, the displacement and stress in orthotropic

media 2 and 4 can be obtained through Eqns. (3.8) and (3.9); and the waves in acoustic

media 1, 3 and 5 can be obtained through Eqns. (3.130) and (3.132).

Acoustic-Orthotropic-Acoustic-Acoustic

The scatterer solved in this section has three layers, as shown in Fig. 3.7. Denote the

host as medium 1, the intermediate layers as media 2 and 3, and the core of the scatterer

as medium 4. Media 1, 3, and 4 are acoustic and medium 2 is orthotropic. Denote the

radius of the interface between media 1 and 2, 2 and 3, and 3 and 4 as r1, r2, r3, and r4,

respectively.

Following the same procedure in the Acoustic-Acoustic-Orthotropic-Acoustic case, the

total waves in acoustic media 1 (host), 3 and 4 (innermost) are expressible as

φ1 = φinc + ([R]{A})T{H1(r, θ)} (3.167)

φ3 = ([S]{A})T{J3(r, θ) + ([F ]{A})T{H3(r, θ)} (3.168)

φ4 = ([T ]{A})T{J4(r, θ)} (3.169)
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Figure 3.7: Acoustic-Orthotropic-Acoustic-Acoustic
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The subscripts “12”, “21”, and “234” in the Acoustic-Acoustic-Orthotropic-Acoustic case

are updated to “123”, “321”, and “34”, respectively in this case, giving the following matrices

[R] = [R123] + [T 321][R34][S] (3.170)

[F ] = [R34][S] (3.171)

[T ] = [T 34][S] (3.172)

[S] = [E][T 123] (3.173)

[E] = ([I]− [R321][R34])
−1 (3.174)

Following the same procedure in the Acoustic-Orthotropic-Acoustic-Orthotropic-Acoustic

case, the total constants column matrices in medium 2 can be given as,

{a}2 = [A123]{A}+ [A321][F ]{A} (3.175)

{b}2 = [B123]{A}+ [B321][F ]{A} (3.176)

{c}2 = [C123]{A}+ [C321][F ]{A} (3.177)

{d}2 = [D123]{A}+ [D321][F ]{A} (3.178)

3.4.2 Solutions for a General Multilayer Scatterer

In this section, acoustic scattering by a general multilayer cylindrical scatterer is solved.

A general multilayer scatterer means this scatterer can have an arbitrary number of lay-

ers and each layer can be arbitrarily chosen as isotropic fluid or orthotropic elastic. The

structure for the multilayer scatterer is shown in Fig. 3.8 (Cai, 2008).

The scatterer consists of N layers, The radius of each layer is denoted as ri (i =

1, 2, . . . N), where i increases when the layer is nearer toward to the core. The radius

of the innermost layer (core) is rN . The host is called layer 0, the outermost layer is denoted
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Figure 3.8: Layer structure of the multilayer scatterer (Cai, 2008)

as layer 1, the layer bounded by ri and ri+1 is denoted as layer i, and the inner most layer

is denoted as layer N .

General Solution for the Acoustic Layers of the General Scatterer

In acoustic medium 0 which is the host, the incident wave and the scattered wave are

expressible as

φinc = {A}T{J(k, r)}, φscr = {B}T{H(k, r)} (3.179)

The transmitted wave in the innermost layer is

φtrs = {C}T{JN (k, r)} (3.180)

If layer i (1 ≤ i ≤ N − 1) is acoustic, the wave in layer i is expressible as

φi = {Di}T{Ji(k, r)}+ {Ei}T{Hi(k, r)} (3.181)

where

{B} = [R]{A}, {C} = [T ]{A}, {Di} = [Si]{A}, {Ei} = [Fi]{A} (3.182)

The waves in acoustic media will be solved if these characteristic matrices are obtained. To

solve these characteristic matrices, the strategy introduced by Cai, which is used for solving

the general scatterer comprising all acoustic layers (Cai, 2008), is followed. In this study

the materials of different layers need to be identified, because the layer can be orthotropic
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or acoustic.

Recursive Procedure

A brief introduction of the recursive procedure introduced by Cai (2008) for solving

general acoustic scatterers will be given first. The same recursive procedure is adopted in

this study.

For the all acoustic scatterer, the solving process starts from the innermost two layers,

N and N − 1, which are treated as media 3 and 2; layer N − 2 is treated as medium 1. The

solution of this step is directly given by the dual-layer case (Cai, 2008). Then, the innermost

two layers are treated as a composite medium 3, layer N − 2 and layer N − 3 are treated

as media 2 and 1, respectively. An intermediate series [Li] is introduced to represent the

incident wave into the composite medium 3 when layer i is treated as medium 2. The same

procedure is adopted until the host is actually medium 1, layer 1 is medium 2, and layers 3

through N are treated as medium 3. The recursive equations are (Cai, 2008),

[Li] = ([I]− [Ri(i−1)][Ri+1])
−1[T (i−1)i] (3.183)

[Ri] = [R(i−1)(i)] + [T i(i−1)][Ri+1][Li] (3.184)

[Si] =
i∏

j=1

[Lj] (3.185)

[F i] = [Ri+1][Si] (3.186)

where i starts from i = N − 1 to i = 1. The matrix [Ri] is defined to represent the total

reflection into the host from the composite layer which includes layers i, i+ 1, . . . until the

innermost layer N . The total scattered wave in medium 1 and the transmitted wave in the

core (layer N) are given as

[R] = [R1], [T ] = [T (N−1)N ][SN−1] (3.187)

In this study, the waves in the acoustic layers of the mixed scatterer are also obtained
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through the recursive equations. But these recursive equations will need to be redefined

according to the media of the layers which are adjacent to acoustic layer i. Four cases will

be discussed.

Case 1. When layer i+1 and layer i−1 are both acoustic media, the recursive equations

are the same with the all acoustic scatterer case (Cai, 2008), which are shown in Eqns.

(3.183) through (3.186).

Case 2. When i+ 1 is orthotropic and layer i− 1 is acoustic, the recursive equations can

be given according to the solution for the Acoustic-Acoustic-Orthotropic-Acoustic case:

[Li] = ([I]− [Ri(i−1)][Ri+1])
−1[T (i−1)i] (3.188)

[Ri] = [R(i−1)(i)] + [T i(i−1)][Ri+1][Li] (3.189)

[Si] =
i∏

j=1

[Lj] (3.190)

[F i] = [Ri+1][Si] (3.191)

Case 3. When layer i+1 is acoustic and layer i−1 is orthotropic, the recursive equations

can be given according to the solution for the Acoustic-Orthotropic-Acoustic-Acoustic case,

[Li] = ([I]− [Ri(i−1)(i−2)][Ri+1])
−1[T (i−2)(i−1)i] (3.192)

[Ri] = [R(i−2)(i−1)(i)] + [T i(i−1)(i−2)][Ri+1][Li] (3.193)

[Si] =
i∏

j=1

[Lj] (3.194)

[F i] = [Ri+1][Si] (3.195)

Since layer i− 1 is orthotropic, for this step we set [Ri−1] = [Ri]

Case 4. When layer i + 1 and layer i − 1 are both orthotropic media, the recursive

equations can be given according to the solution for the Acoustic-Orthotropic-Acoustic-
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Orthotropic-Acoustic case,

[Li] = ([I]− [Ri(i−1)(i−2)][Ri+1])
−1[T (i−2)(i−1)i] (3.196)

[Ri] = [R(i−2)(i−1)(i)] + [T i(i−1)(i−2)][Ri+1][Li] (3.197)

[Si] =
i∏

j=1

[Lj] (3.198)

[F i] = [Ri+1][Si] (3.199)

Again, since layer i− 1 is orthotropic, for this step we set [Ri−1] = [Ri].

Since the recursive procedure starts from i = N − 1 to i = 1, [RN ] needs to be solved

first to enable the recursive procedure. The medium of layer N − 1 needs to be identified

to obtain [RN ]. If layer N − 1 is acoustic,

[RN ] = [R(N−1)N ] (3.200)

If layer N − 1 is orthotropic,

[RN ] = [R(N−2)(N−1)N ] (3.201)

The characteristic matrices [R(N−1)N ] and [R(N−2)(N−1)N ] can be obtained by using the

first canonical problem for acoustic-acoustic interface and the first canonical problem for

the acoustic-orthotropic-acoustic interfaces, respectively. By substituting [Si] and [F i] into

Eqn. (3.182), the waves in acoustic intermediate layer i are solved.

To solve the waves in the host and the innermost layer (core), the reflection matrix [R]

and the transmission matrix [T ] are defined as following,

[R] = [R1] (3.202)

if layer N − 1 is acoustic,

[T ] = [T (N−1)N ][SN−1] (3.203)
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if layer N − 1 is orthotropic,

[T ] = [T (N−2)(N−1)N ][SN−1] (3.204)

General Solution for the Orthotropic Layers of the general scatterer

If layer i (1 ≤ i ≤ N − 1) is orthotropic, the constants column matrices are denoted as

{a}i, {b}i, {c}i, {d}i. The expressions for these constants column matrices will need to be

defined according to the materials of the layers which are adjacent to the orthotropic layer

i.

Case 1. If layer i + 1 is core, and layer i− 1 is the host, the first canonical problem for

the acoustic-orthotropic-acoustic case gives

{a}i = [A(i−1)i(i+1)]{A} (3.205)

{b}i = [B(i−1)i(i+1)]{A} (3.206)

{c}i = [C(i−1)i(i+1)]{A} (3.207)

{d}i = [D(i−1)i(i+1)]{A} (3.208)

Case 2. If layer i + 1 is core and layer i − 1 is not the host, then the solutions for the

acoustic-acoustic-orthotropic-acoustic case and acoustic-orthotropic-acoustic-orthotropic-acoustic

case are used to give

{a}i = [A(i−1)i(i+1)][Si−1]{A} (3.209)

{b}i = [B(i−1)i(i+1)][Si−1]{A} (3.210)

{c}i = [C(i−1)i(i+1)][Si−1]{A} (3.211)

{d}i = [D(i−1)i(i+1)][Si−1]{A} (3.212)

Case 3. If layer i+1 is not the core and layer i−1 is the host, the solutions for the acoustic-

117



orthotropic-acoustic-orthotropic-acoustic case and acoustic-orthotropic-acoustic-acoustic case

are used to give

{a}i = [A(i−1)i(i+1)]{A}+ [A(i+1)i(i−1)][F i+1]{A} (3.213)

{b}i = [B(i−1)i(i+1)]{A}+ [B(i+1)i(i−1)][F i+1]{A} (3.214)

{c}i = [C(i−1)i(i+1)]{A}+ [C(i+1)i(i−1)][F i+1]{A} (3.215)

{d}i = [D(i−1)i(i+1)]{A}+ [D(i+1)i(i−1)][F i+1]{A} (3.216)

Case 4. If layer i + 1 is not the core and layer i − 1 is not the host, solutions of case 2

and case 3 (obtained above), are used to give

{a}i = [A(i−1)i(i+1)][Si−1]{A}+ [A(i+1)i(i−1)][F i+1]{A} (3.217)

{b}i = [B(i−1)i(i+1)][Si−1]{A}+ [B(i+1)i(i−1)][F i+1]{A} (3.218)

{c}i = [C(i−1)i(i+1)][Si−1]{A}+ [C(i+1)i(i−1)][F i+1]{A} (3.219)

{d}i = [D(i−1)i(i+1)][Si−1]{A}+ [D(i+1)i(i−1)][F i+1]{A} (3.220)

After the total column matrices in orthotropic medium i are obtained, the displacement

and stress can be solved through Eqns. (3.8) and (3.9).

118



Chapter 4

Solution Verification Through Two

Approaches

In this Chapter, the solutions of acoustic scattering by multilayer scatterer which com-

prise a mixture of isotropic acoustic and orthotropic elastic layers are verified through two

approaches. The first approach is to verify the solutions obtained in Chapter 3 via the exact

analytical solutions that are obtained in this Chapter through considering the appropriate

boundary conditions imposed at the surfaces of the multilayered shell. The second approach

is to verify the solutions through comparison of the scattering by two pairs of scatterers.

The first pair of scatterers are single layer scatterers. The second pair of scatterers are

multilayer scatterers. For both pairs of scatterers, the first scatterers comprise isotropic

acoustic and orthotropic elastic media, while the second scatterers are based on the first

scatterers but the orthotropic elastic layers are replaced by isotropic elastic layers. The

material properties of the orthotropic elastic media of the first scatterers are defined to be

very close to the isotropic elastic media of the second scatterers.
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4.1 Verification Via Exact Analytical Solution

4.1.1 Problem Statement

In this section, the exact analytical solutions for the acoustic-acoustic-orthotropic-acoustic

case, which were solved using multiple scattering method in Chapter 3, are solved using sin-

gle scattering method. For the acoutic-acoustic-orthotropic-acoustic case, media 2 and 4 are

acoustic, and medium 3 is orthotropic, as shown in Fig. 3.4. Acoustic medium 1 is the host.

Denote the radii of the interfaces between media 1 and 2, media 2 and 3, and media 3 and

4 as r1, r2, and r3 respectively. The single scattering method is used to solve the scattering

problem by considering the appropriate boundary conditions imposed at the interfaces which

separate the acoustic-acoustic media, acoustic-orthotropic media, and orthotropic-acoustic

media.

4.1.2 Obtaining the Exact Analytical Solution Using Single Scat-

tering Method

The incident wave in medium 1 and the total waves in acoustic media 1, 2, and 4 are

expressed in Eqns. (3.71) to (3.75). For easy reference, the expression of waves in acoustic

media 1, 2, and 4 are repeated here

φ1 = {A}T{J(k1, r)}+ {B}T{H(k1, r)} (4.1)

φ2 = {D}T{J(k2, r)}+ {E}T{H(k2, r)} (4.2)

φ4 = {C}T{J(k4, r)} (4.3)

Four characteristic matrices [R], [T ], [S] and [F ] are introduced to relate the wave expansion

coefficient matrices of the generated waves {B}, {C}, {D} and {E} to the incident wave

120



{A}, which are

{B} = [R]{A}

{C} = [T ]{A}

{D} = [S]{A}

{E} = [F ]{A}

(4.4)

According to Eqns. (3.8) and (3.9), the displacements ur and uθ in orthotropic medium

3 are given as

ur =
∞∑

n=−∞

[
an3X

1
73(n, r) + bn3X

2
73(n, r) + cn3X

3
73(n, r) + dn3X

4
73(n, r)

]
einθ (4.5)

= {a}T3 {X1
73(r)}+ {b}T3 {X2

73(r)}+ {c}T3 {X3
73(r)}+ {d}T3 {X4

73(r)} (4.6)

uθ =
∞∑

n=−∞

[
an3X

1
83(n, r) + bn3X

2
83(n, r) + cn3X

3
83(n, r) + dn3X

4
83(n, r)

]
einθ (4.7)

= {a}T3 {X1
83(r)}+ {b}T3 {X2

83(r)}+ {c}T3 {X3
83(r)}+ {d}T3 {X4

83(r)} (4.8)

The constants column matrices {a}3, {b}3, {c}3, {d}3 are related to those of the incident

wave,

{a}3 = [A234]{A}

{b}3 = [B234]{A}

{c}3 = [C234]{A}

{d}3 = [D234]{A}

(4.9)

The exact analytical solutions can be obtained by considering the boundary conditions

at the three interfaces which separate media 1 and 2, media 2 and 3, and media 3 and 4.

The boundary conditions at the acoustic-acoustic interface (r = r1) which separates media

1 and 2 include: the continuity of acoustic pressure and radial component of the partial
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velocity, which are

AnJn(k1, r1) +BnHn(k1, r1) = DnJn(k2, r1) + EnHn(k2, r1) (4.10)

− ik1
ωρ1

[AnJ
′
n(k1, r1) +BnH

′
n(k1, r1)] = − ik2

ωρ2
[DnJ

′
n(k2, r1) + EnH

′
n(k2, r1)] (4.11)

The boundary conditions at the acoustic-orthotropic interface (r = r2) which separates

media 2 and 3, and the orthotropic-acoustic interface (r = r3) which separates media 3 and

4 include: continuity of normal fluid and solid velocities, continuity of acoustic pressure and

the negative of the radial normal stress in the orthotropic side, and vanishing of tangential

stress, which are

(−iω)ur|r=r2 = vr|r=r2 (4.12)

(−iω)ur|r=r3 = vr|r=r3 (4.13)

σrr|r=r2 = −p|r=r2 (4.14)

σrr|r=r3 = −p|r=r3 (4.15)

σrθ|r=r2 = 0 (4.16)

σrθ|r=r3 = 0 (4.17)
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The boundary conditions Eqns. (4.12) through (4.17) require,

an3X
1
73(n, r2) + bn3X

2
73(n, r2) + cn3X

3
73(n, r2) + dn3X

4
73(n, r2) =

k2
ω2ρ2

[DnJ
′
n(k2r2) + EnH

′
n(k2r2)] (4.18)

an3X
1
73(n, r3) + bn3X

2
73(n, r3) + cn3X

3
73(n, r3) + dn3X

4
73(n, r3) =

k4
ω2ρ4

CnJ
′
n(k4r3) (4.19)

an3X
1
43(n, r2) + bn3X

2
43(n, r2) + cn3X

3
43(n, r2) + dn3X

4
43(n, r2) =

−[DnJn(k2r2) + EnHn(k2r2)] (4.20)

an3X
1
43(n, r3) + bn3X

2
43(n, r3) + cn3X

3
43(n, r3) + dn3X

4
43(n, r3) = −CnJn(k4r3) (4.21)

an3X
1
63(n, r2) + bn3X

2
63(n, r2) + cn3X

3
63(n, r2) + dn3X

4
63(n, r2) = 0 (4.22)

an3X
1
63(n, r3) + bn3X

2
63(n, r3) + cn3X

3
63(n, r3) + dn3X

4
63(n, r3) = 0 (4.23)

Denote

[Mc1] =



X1
73(n, r2) X2

73(n, r2) X3
73(n, r2) X4

73(n, r2)

X1
73(n, r3) X2

73(n, r3) X3
73(n, r3) X4

73(n, r3)

X1
43(n, r2) X2

43(n, r2) X3
43(n, r2) X4

43(n, r2)

X1
43(n, r3) X2

43(n, r3) X3
43(n, r3) X4

43(n, r3)

X1
63(n, r2) X2

63(n, r2) X3
63(n, r2) X4

63(n, r2)

X1
63(n, r3) X2

63(n, r3) X3
63(n, r3) X4

63(n, r3)

0 0 0 0

0 0 0 0



(4.24)
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and

[M]c2 =



0 0 − k2
ω2ρ2

J ′n(k2r2) − k2
ω2ρ2

H ′n(k2r2)

0 − k4
ω2ρ4

J ′n(k4r3) 0 0

0 0 Jn(k2r2) Hn(k2r2)

0 Jn(k4r3) 0 0

0 0 0 0

0 0 0 0

Hn(k1r1) 0 −Jn(k2r1) −Hn(k2r1)

k1
ρ1
H ′n(k1r1) 0 −k2

ρ2
J ′n(k2r1) −k2

ρ2
H ′n(k2r1)



(4.25)

Next denote

[M]c =

[
[M]c1 [M]c2

]
(4.26)

Then Eqns. (4.4), (4.9), (4.10), (4.11) and (4.18) through (4.23) can be solved as

[A234]n

[B234]n

[C234]n

[D234]n

[R]n

[T ]n

[S]n

[F ]n



= [M]−1c



0

0

0

0

0

0

−Jn(k1r1)

−k1ρ1 J
′
n(k1r1)



(4.27)

4.1.3 Comparison of the Solutions Obtained with Two Methods

A comparison of the solutions obtained above through single scattering method and

the solution obtained by using the method introduced in this study is presented in this

section. One numerical example is used for solution verification. In this example, the

material properties for acoustic media 1(host), 2, and 4 are listed in Table 4.1. The material
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Table 4.1: Material properties for acoustic media 1, 2, and 4

Property Medium 1 Medium 2 Medium 4
Density(kg/m3) 1000 76.7201 76.7201

Sound speed(m/s) 1350 1475 1475

Table 4.2: Material properties of the orthotropic medium 3

Medium 3 Density(kg/m3) Er(GPa) Eθ(GPa) Grθ(GPa) νrθ
Property 1303.44 11.32 5.81 0.66 0.705128

properties of the orthotropic layer are listed in Table 4.2. Denote the radii of the interfaces

between media 1 and 2, media 2 and 3, and media 3 and 4 as r1 = 1.2(m), r2 = 1.06(m),

and r3 = 1(m), respectively.

Two sets characteristic matrices are obtained through two methods. The computation is

performed at frequency ka = 1, where k is a wavenumber, and a is the radius of innermost

layer, a = r3 = 1(m). The modulus of the characteristic matrices obtained through both

methods are compared in Tables 4.3 and 4.4. Table 4.3 shows the results at n = 0. Table

4.4 shows the results at n = 7. The computation results have 14 significant figures.

Table 4.3: The results and comparison for each pair of matrices at n = 0
Characteristic Matrices Single Scattering Method Multiple Scattering Method
|[A234]n| 1.4560747696338e− 010 · · ·
|[B234]n| 0 · · ·
|[C234]n| 2.4406703777947e− 010 · · ·
|[D234]n| 0 · · ·
|[R]n| 0.85157161769649 · · ·
|[T ]n| 0.13119554059894 · · ·
|[S]n| 0.21350410606697 · · ·
|[F ]n| 0.045582669470002 0.045582669470003

In Tables 4.3 and 4.4, the dots · · · are used to identify the values which are identical

to those of the analytical solutions for all 14 significant figures that are calculated using

the stated boundary conditions. By comparing the other results shown in the two Tables,

it can be found that the values obtained by the two methods only have small differences

at the 13th or 14th significant figure. The small differences are considered as computation

error. So the results shown in Tables 4.3 and 4.4 verify that the two solutions give identical

125



Table 4.4: The results and comparison for each pair of matrices at n = 7
Characteristic Matrices Single Scattering Method Multiple Scattering Method
|[A234]n| 1.1253814162661e− 015 · · ·
|[B234]n| 4.3288816995692e− 014 4.3288816995693e− 014
|[C234]n| 3.3751493747214e− 015 3.3751493747215e− 015
|[D234]n| 4.6661790072655e− 014 4.6661790072656e− 014
|[R]n| 6.9068849846919e− 010 6.906884984692e− 010
|[T ]n| 2.1739166880954 2.1739166880955
|[S]n| 0.029524374236251 0.029524374236245
|[F ]n| 4.8870447795789e− 011 4.887044779579e− 011

results.

4.2 Verification Via Solutions for Scatterer which Com-

prises Both Isotropic Acoustic and Elastic Media

Acoustic scattering by scatterer which comprises both isotropic elastic and isotropic

acoustic media were solved in the author’s previous work and has been used for acoustic

cloaking design (Bao and Cai, 2012). To verify the solutions of scattering by scatterers which

comprise both isotropic acoustic and orthotropic elastic media which were obtained in this

study, comparison between two pairs of scatterers are applied. The first pair of scatterers

are single layer scatterers, and the second pair are multi-layer scatterers. For both pairs of

scatterers, the first scatterers comprise isotropic acoustic and orthotropic elastic media. The

second scatterers are based on the first ones but the orthotropic elastic layers are replaced by

isotropic elastic layers. The material properties of the orthotropic elastic media of the first

scatterers are defined to be very close to the isotropic elastic media of the second scatterers.

Numerical simulations are implemented for the comparison. Details are provided in the

following subsections.
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Table 4.5: Material properties for the media of the host and the core.

Property Host Core
Density(kg/m3) 1000 76.7201

Sound speed(m/s) 1350 1475

4.2.1 Single Layer Scatterer

In this example, numerical simulations of scattering by two single layer scatterers are

performed. The first scatterer comprises an orthotropic elastic layer. The inner and outer

radii of the scatterer are defined as a = 0.6(m), and b = 1(m), respectively. The core is

denoted as acoustic material. The host is assumed as water. The material properties for

the host and the core are listed in Table 4.5. The second scatterer is based on the first

scatterer, but the orthotropic elastic layer is replaced by an isotropic elastic layer. The

material properties of the orthotropic elastic medium of the first scatterer are defined to be

very close to the isotropic elastic medium of the second scatterer.

For a plane-strain problem, the stress-strain relations of the orthotropic materials in

stiffness form are 
σrr

σθθ

σrθ

 =


C11 C12 0

C12 C22 0

0 0 C44




εrr

εθθ

2εrθ

 (4.28)

where Cij are four independent elastic constants. The stress-strain relations of the isotropic

materials in stiffness form are
σrr

σθθ

σrθ

 =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ




εrr

εθθ

2εrθ

 (4.29)

where λ and µ are Lamé constants. According to the Eqns. (4.28) and (4.29), if C11 =

C22 = 2µ+λ, C12 = λ, and C44 = µ, the orthotropic elastic material is actually an isotropic
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Table 4.6: Material properties of the orthotropic medium

Er(GPa) Eθ(GPa) Grθ(GPa) νrθ C11(GPa) C12(GPa) C22(GPa)
13.2098684 13.2098684 4.85 0.361842 15.2 5.5 15.2

elastic material.

At first, the material properties of the orthotropic elastic layer of the first scatterer are

defined to have the same properties with the isotropic elastic layer of the second scatterer.

The mass densities of the orthotropic layer (ρo) and the elastic layer (ρe) are assumed to be

the same, which are

ρo = ρe = 1303.44(kg/m3) (4.30)

The Lamé constants of the isotropic elastic material are defined as

λ = 5.5(GPa), µ = 4.85(GPa) (4.31)

The material properties of the orthotropic material are listed in Table 4.6. So we have

C11 = C22 = 2µ+λ = 9.7+5.5 = 15.2(GPa), C12 = λ = 5.5 and C44 = Grθ = µ = 4.85(GPa),

which means the orthotropic elastic medium is defined to be the same as the isotropic elastic

medium. Then the numerical simulation of acoustic scattering by the two scatterers are

implemented at frequency ka = 0.6. To verify the solutions, the value of 0-th mode of the

characteristic matrices [T ] from both methods are obtained. The modulus of [T ]0 for the

orthotropic case is

|[T ]0| = 0.28960048500297 (4.32)

The modulus of [T ]0 for the elastic case is

|[T ]0| = 0.28960048500296 (4.33)

The two solutions only have a slight difference at the 14th significant figure, which is con-

sidered as computing error. Thus, the two solutions are identical.
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Table 4.7: Modulus of [T ]0 for the orthotropic scatterer, when the value of Young’s modulus
along axis r is changing.

Er (GPa) 13.2098684 13.2198684 13.2398684 13.3098684 14.3098684 19.3098684
|[T ]0| 0.2896 0.28958 0.289538 0.289395 0.287495 0.28093

Figure 4.1: Modulus of [T ]0 for the orthotropic-acousitc case at different Er

Then, for the orthotropic elastic medium, the Young’s modulus along the radial direction

(Er) is increased incrementally, while the other properties are held constant. Table 4.7 shows

the different values of Er that are taken and the simulation results of |[T ]0| under different

Er. From 4.7 it can be found that when Er = 13.2098684, which is the situation when

the orthotropic elastic medium is the same as the isotropic elastic medium, the simulation

results of |[T ]0| for both cases are identical. When Er is chosen larger and larger, |[T ]0| gets

smaller and smaller. Fig. 4.1 also shows the modulus of [T ]0 when Er is chosen differently.

Fig. 4.1 is plotted based on the data listed in Table 4.7. It is easy to see from Fig. 4.1 that

when the value of Er gets further from the original value of 13.2098684 (GPa), the modulus

of [T ]0 also deviates further from its original value of 0.2896. The curve is smooth without

a rapid fluctuation, which can be a verification of the solutions obtained in this study.

Fig. 4.2 shows the total acoustic pressure distribution due to impinging of the pla-
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Figure 4.2: Total acoustic pressure field. Left: orthotropic scatterer; Right: elastic scat-
terer.

nar incident wave onto the scatterers comprising orthotropic (left) and elastic (right) lay-

ers. The Young’s Modulus of the orthotropic layer along r direction is taken as Er =

13.30986842(GPa) which is slightly different with the original value 13.209868(GPa). Other

properties of the orthotropic elastic medium are kept the same with those listed in Table

4.6. So in this case, the orthotropic elastic medium of the first scatterer is defined to be

very close to the isotropic elastic medium of the second scatterer. Fig. 4.2 shows that the

total acoustic pressure field of both cases are almost identical. So the solutions are further

verified.

Another way to verify the solutions obtained in this study is the continuity of the pressure

amplitude distributions. The boundary conditions at each interface define the canonical

problems. One of the conditions is the continuity of radial normal stress in the orthotropic

side and the negative of the acoustic pressure in the acoustic side. The continuity should

be satisfied at all the interfaces. Fig. 4.2 shows the continuity of the pressure amplitude

distributions and the radial normal stress distributions in acoustic layer and orthotropic

layer of the scatterer. The white circles are used to show the exterior boundary of the

scatterer and the boundary of the core. Thus, the continuity of the pressure field shown in
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Fig. 4.2 is also a verification of the solutions.

4.2.2 Multiple Layer Scatterer

In this example, scattering by two multilayer scatterers are solved through numerical

simulation. Both scatterers have ten layers of the same thickness. For the first scatterer,

the even numbered layers are orthotropic elastic media and the odd numbered layers are

isotropic acoustic media. For the second scatterer, the even numbered layers are isotropic

elastic media and the odd numbered layers are isotropic acoustic media. The inner-most

and outer-most radii of both scatterers are a = 1(m) and b = 1.2a, respectively.

The material properties of the host, core, acoustic layers, orthotropic elastic layers, and

isotropic elastic layers of both scatterers are the same as those in the example shown in

Fig. 4.2.

The simulations are run at frequency ka = 1 and 3. Both scattering simulations use the

same planar incident wave. Fig. 4.3 shows the simulation results of the total acoustic field.

Fig. 4.3 (a1)-(a2) show the results of the scattering by the first scatterer which comprises

orthotropic elastic layers at frequency ka = 1 and 3, respectively. Fig. 4.3 (b1)-(b2) show

the results of the scattering by the second scatterer which comprises isotropic elastic layers

at frequency ka = 1 and 3, respectively.

It is apparent from Fig. 4.3 that the simulation results of both cases obtained with

different methods are almost identical. This further verifies the solutions for multi-layer

scatterers obtained in this study. Another verification is the continuity of acoustic pressure

inside the 10 layer scatterer. It is easy to find from Fig. 4.3 that the pressure field is

continuous at both the inside and outside of the scatterer.

For a more in-depth view, the modulus of acoustic pressure p along radial direction

(θ = 0) for both cases at frequency ka = 1 and ka = 3 are shown in Fig. 4.4 and Fig. 4.5,

respectively. The calculation pitch of the point along radial direction is r = 0.005. The

values of modulus of acoustic pressure for both cases are different. But the values are too
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Figure 4.3: Total acoustic pressure field. (a1)-(a2): scattering by the scatterer having
orthotropic elastic layers at frequency ka = 1, 3, respectively; (b1)-(b2): scattering by the
scatterer having isotropic elastic layers at frequency ka = 1, 3, respectively.
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Figure 4.4: Modulus of acoustic pressure along radial direction (0.98 < x/a < 1.2,
y/a = 0) for both cases at frequency ka = 1.

close to show different curves in Fig. 4.4 and Fig. 4.5. Both figures show the continuity of

acoustic pressure along radial direction from x/a = 0.98 to x/a = 1.2 (y/a = 0) .

Table 4.8 provides the values of modulus of acoustic pressure along radial direction

(0.98 < x/a < 1.2, y/a = 0) of both cases. The first column shows the values of r around

interfaces of all the layers, the second and third columns show the modulus of pressure of

both cases at frequency ka = 1, and the fourth and fifth columns show the modulus of

pressure of both cases at frequency ka = 3. In Table 4.8, O and E stand for the scatterer

having orthotropic elastic layers and isotropic elastic layers, respectively. The values in

Table 4.8 show that the results for both cases are very close to each other. The difference

of the results of both cases start from around the fifth significant figure.
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Figure 4.5: Modulus of acoustic pressure along radial direction (0.98 < x/a < 1.2,
y/a = 0) for both cases at frequency ka = 3.

Table 4.8: Modulus of acoustic pressure along radial direction (0.98 < x/a < 1.2, y/a = 0)
for both cases

|p|
x/a O(ka = 1) E(ka = 1) O(ka = 3) E(ka = 3)

0.97922403 0.187349661 0.187353236 0.627828691 0.627941587
1.000250313 0.189293152 0.189296586 0.638898554 0.639014488
1.021276596 0.301762207 0.301771641 0.785981826 0.786104438
1.039299124 0.302147948 0.30215724 0.792808124 0.792932953
1.060325407 0.409861799 0.409876662 0.910574367 0.910694279
1.08135169 0.417181161 0.417196218 0.921981232 0.922101718
1.099374218 0.509801476 0.509821416 0.993940522 0.994043885
1.120400501 0.5152033799 0.515223526 1.00145534 1.001558855
1.141426783 0.611911319 0.611936767 1.03757957 1.037649289
1.159449312 0.611966543 0.611991943 1.03966472 1.039735142
1.180475594 0.7069115441 0.706942465 1.02870718 1.028727155
1.201501877 0.706569391 0.706600245 1.02831336 1.028333493

134



Chapter 5

Scattering Numerical Simulations

Theoretical solutions of scattering by multilayer scatterers which include orthotropic

materials were solved in Chapter 3, and solutions were verified in Chapter 4. A computa-

tional system is built in this study based on the theoretical solutions obtained in Chapter 2

and Chapter 3. In this Chapter, numerical simulations of acoustic scattering by different

scatterers are applied through the computational system.

5.1 Simulations of Acoustic Scattering by an Orthotropic

Pipe

In this section, acoustic scattering by an orthotropic pipe are calculated. The incident

wave is a planar incident wave, which is specified in the following form:

pinc =
∞∑

n=−∞

AnJn(kr)einθ = {A}T{J(r, θ)} (5.1)

The idea of the simulations in this section is to maintain the material properties of the

orthotropic pipe while varying the material properties of the host and core of the scatterer

for different examples. Then scattering phenomena of different examples will be observed
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through the simulation results.

The material properties of the orthotropic pipe include (Young’s and shear moduli being

in GPa): Er = 3.132, Eθ = 2.081, Grθ = 0.66, νrθ = 0.205128, and ρo = 1303.44(kg/m3).

The inner and outer radii of the pipe are a = 1(m) and b = 1.2a, respectively.

The following two examples are analyzed in this section: 1) the host and core (innermost

layer) are both defined as water and 2) the host and core are both defined as air. Material

properties of air at 10 ◦C include: mass density ρa = 1.24664(kg/m3) and sound speed

ca = 337.31(m/s). The material properties of water at 10 ◦C include: ρw = 999.7281(kg/m3)

and cw = 1447.29(m/s).

In the computations, the infinite series of summations (
∑n=∞

n=−∞) is not realizable. So the

number of n needs to be truncated at the Ntth term, which we call the truncation number.

The results get smaller when term n is increased. When n > Nt, the results are too small to

be added to the summation. In this case, the summation will not change when n > Nt. For

both examples, the truncation numbers are chosen as 14, 24, and 36 at frequency ka = 2,

4, and 6, respectively.

Fig. 5.1 shows the total acoustic pressure distribution when a planar incident wave

encounters the orthotropic pipe. Fig. 5.1, (a1)-(a3) show the case when the host and core

are both water at ka = 2, 4, and 6, respectively; (b1)-(b3) show the case when the host and

core are both air at ka = 2, 4, and 6, respectively.

Fig. 5.1 shows that when the planar incident wave impinges onto the orthotropic pipe,

some pressure beams form. Both cases reveal that when frequency is increased, the beams

get narrower and the number of beams increases. It also can be found that the beams in

Fig. 5.1 (a1)-(a3) are not as clear as those in Fig. 5.1 (b1)-(b3), especially at lower frequency

(ka = 2, and 4). Clearly, if the host, scatterer, and core are made of the same material, the

pressure should be the same everywhere which means no pressure beams will be found in

the pressure field. For the first case, the mass densities of the host and the orthotropic pipe

are fairly close. The sound speeds of the pipe along radial and tangential directions can be
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Figure 5.1: Total acoustic pressure field due to impinging of a planar incident wave onto
a orthotropic pipe. [(a1)-(a3)]: the case which has the host defined as water and the pipe is
filled with water at frequency ka = 2, 4, 6, respectively. [(b1)-(b3)]: the case which has the
host defined as air and the pipe is filled with air at frequency ka = 2, 4, 6, respectively.
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given as the following (Aauld, 1973; Dahmen et al., 2010)

cr =

√
C11

ρo
= 1572.52(m/s), cθ =

√
C22

ρo
= 1281.8(m/s) (5.2)

where C11 and C22 are the independent elastic constants along r and θ directions. Eqn.

(5.2) shows that the sound speeds of the orthotropic pipe along two directions are both

fairly close to the sound speed of water. For the second case, the host and core are both

air; which has significantly different material properties compared to the orthotropic pipe.

5.2 Scattering Simulation Study Through Parametric

Changing of Orthotropic Medium

As discussed in the earlier chapters, having different sound speeds along axes r and θ

is important for designing acoustic cloaks. For orthotropic medium, we have (Aauld, 1973;

Dahmen et al., 2010)

cr/cθ =
√
Er/Eθ (5.3)

Therefore, different Young’s moduli of the orthotropic layer along radial (Er) and tangential

(Eθ) directions would be helpful for the future design of acoustic cloaks. In this section,

some numerical simulations of scattering by scatterers which have single orthotropic layer

are studied. For each scatterer, the Young’s moduli of the orthotropic layer are defined

differently. The simulations are started from the case when Er and Eθ of the orthotropic

medium are about the same. Then more simulations are implemented with Er > Eθ and

Er < Eθ. The incident wave is the same as for the simulations of the previous section.

The core of the scatterer is assumed as acoustic medium, whose material properties

include: mass density ρa = 76.7201(kg/m3) and sound speed ca = 1475(m/s). The host

is assumed to be water, whose material properties include: ρw = 1000(kg/m3) and sound
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speed cw = 1350(m/s). The material properties of the core and the host are kept the same

through all the simulations in this section.

5.2.1 Young’s Modulus Along Radial Direction (Er) Greater Than

That Along Tangential Direction (Eθ)

Simulation 1: Er/Eθ ≈ 1

For this example, the material properties of the orthotropic layer are defined as (Young’s

and shear moduli being in GPa): Er = 13.309868, Eθ = 12.2, Grθ = 6.3, νrθ = 0.01, and

ρo = 1303.44(kg/m3). The independent elastic constants of the orthotropic medium are

given as (in GPa): C11 = 13.31, C22 = 12.2, C12 = 0.122, C44 = Grθ = 6.3. For this case,

the Young’s moduli Er and Eθ are about the same, which has the ratio Er/Eθ = 1.091. The

simulation is run at frequency ka = 2, 4, and 6. The radius of the core is a = 1(m), and the

outer radius of the scatterer is b = 1.2a.

The sound speeds along r and θ directions are given as

cr =

√
C11

ρo
= 3196.2(m/s), cθ =

√
C22

ρo
= 3059.44(m/s) (5.4)

The above Eqn. (5.4) shows that the sound speeds cr and cθ are very close. The truncation

numbers Nt are chosen as 14, 24, and 33 at frequency ka = 2, 4, and 6, respectively.

Table 5.1 provides the the entries of coefficient matrix {R} which represents the scat-

tered waves. In Table 5.1 the Nt denotes the truncation numbers 14, 24, and 33 for three

frequencies ka = 2, 4, and 6, respectively. Table 5.1 shows that the value of |R| decreases

when the terms n gets higher. At lower frequency the decreasing of |R| is faster, while at

higher frequency the decreasing of |R| is slower. So the value of the truncation number

Nt needs to be chosen larger at higher frequency. Table 5.1 also shows that at frequency

ka = 2, 4 and 6, the values of |R| are very small at the terms of 14, 24, and 33, respectively.
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Table 5.1: The entries of coefficient matrix {R} at different terms (shown in modulus) for
the Er/Eθ ≈ 1 case

|[R]nn|
n ka = 2 ka = 4 ka = 6
0 0.06641936962334 0.99930784471137 0.71115871340874
1 0.4322323720724 0.41621241690061 0.45648199404495
2 0.3831892812302 0.99977358576407 0.90210915516909
3 0.092604051921764 0.84953554395498 0.52125198567453
4 0.018601256055423 0.4560484737499 0.74058077954076
5 0.0062296600947761 0.17491766960125 0.88061247947373
6 0.00064479295075777 0.07145010379986 0.5403408940378
7 1.1006744387488 ×10−5 0.038068031945226 0.28900243200937
8 2.4310709871511 ×10−7 0.1057271903407 0.17568692076832
9 4.6543374844228 ×10−9 0.00087603019751202 0.12659138840631
10 7.378263871253 ×10−11 4.4411847857065×10−5 0.4710494769391
Nt 7.9398155089316 ×10−19 2.2030190312324 ×10−28 3.3366305542292 ×10−36

Figure 5.2: Total acoustic pressure field for the Er/Eθ ≈ 1 case, at frequency ka = 2
(left), 4 (middle), and 6 (right).

When n > Nt, the value of |R| become small enough that it can be truncated. The error is

assumed in the order of the term Nt.

Fig. 5.2 shows the total acoustic pressure field at frequency ka = 2, 4, and 6, respectively.

In Fig. 5.2, the scatterer is too small to observe the acoustic pressure inside of it. Fig. 5.3

provides the enlarged view of the pressure field near the scatterer. It can be found from

Fig. 5.3 that the pressure is continuous everywhere in the pressure field, which includes the

inside and outside of the scatterer. The continuity of the pressure field is a validation of the
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Figure 5.3: Enlarged view of pressure field around scatterer for the Er/Eθ ≈ 1 case, at
frequency ka = 2 (left), 4 (middle), and 6 (right).

solution and simulation.

Simulation 2: Er/Eθ ≈ 10

For this example, the Young’s modulus of the orthotropic layer along radial direction is

taken as Er = 133.09868 (GPa). Since Er is changed, the corresponding independent elastic

constant C11 is also changed. Here C11 = 133.1 (GPa). Other properties of the orthotropic

layer are kept the same as those in the last example. The inner and outer radii of the

scatterer are also the same; these are a = 1(m) and b = 1.2a, respectively. The ratio of

Young’s Moduli along radio an tangential directions is: Er/Eθ = 133.09868/12.2 = 10.91.

The simulation is run at frequency ka = 2, 4, and 6.

The sound speeds along r and θ directions are given as

cr =

√
C11

ρo
= 10105.16(m/s), cθ =

√
C22

ρo
= 3059.44(m/s) (5.5)

The truncation number Nt of this case at ka = 2, 4, and 6 are the same as for the previous

simulation, which are 14, 24, and 33, respectively.

Table 5.2 provides the the entries of coefficient matrix {R} which represents the scattered

waves. By comparing the entries of the coefficient matrix {R} shown in Table 5.1 and Table
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Table 5.2: The entries of coefficient matrix {R} at different terms (shown in modulus) for
the Er/Eθ ≈ 10 case

|[R]nn|
n ka = 2 ka = 4 ka = 6
0 0.066475033414755 0.99796507280763 0.73178282337258
1 0.45895672330272 0.42398529407813 0.44376491934169
2 0.38706167972956 0.99997888420932 0.91474948225914
3 0.09400193999563 0.86287657469474 0.4828172453602
4 0.018810439728244 0.46964722085198 0.7264414168943
5 0.006247349601539 0.18186725301678 0.90081713559685
6 0.00063676615892458 0.072896128100458 0.56603142495105
7 1.0896410560018 ×10−5 0.038199331559288 0.30278376546104
8 2.4081475231618 ×10−7 0.080680810543282 0.17826928558071
9 4.6133147519763 ×10−9 0.0008360679809522 0.12781828619718
10 7.3177890391773 ×10−11 4.2743881619159×10−5 0.92970220593882
Nt 7.89118388 ×10−19 2.1740482713822 ×10−28 3.2759768093569 ×10−36

Figure 5.4: Total acoustic pressure field for the Er/Eθ ≈ 10 case, at frequency ka = 2
(left), 4 (middle), and 6 (right).

5.2, it can be found that the entries of the coefficient matrix {R} are not very different at

lower frequency ka = 2 and 4. The biggest difference is 0.02. At frequency ka = 6, the

entries of the coefficient matrix {R} for the case Er/Eθ ≈ 10 are bigger.

Fig. 5.4 shows the total acoustic pressure field at frequency ka = 2, 4, and 6, respectively.

Fig. 5.5 provides a enlarged view of the pressure field near the scatterer. It can be observed

from Figs. 5.4 and 5.5 that at lower frequency ka = 2 and 4, the pressure fields are similar

with those shown in Figs. 5.2 and 5.3. At frequency ka = 6, the acoustic pressure around
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Figure 5.5: Enlarged view of pressure field around scatterer for the Er/Eθ ≈ 10 case, at
frequency ka = 2 (left), 4 (middle), and 6 (right).

the interface between the host and the scatterer is obviously higher than the one for the

previous case when Er/Eθ ≈ 1. In Fig. 5.5 (right), there are some places that are bright

pink which is because the acoustic pressure there is higher than the maximum value (2.5)

for the color bar. The same pressure field is shown in Fig. 5.6 but with the maximum value

of the pressure for the color bar increased to 3.5. The continuity of the acoustic pressure

field shown in Figs. 5.5 and 5.6 can validate the simulation results.

Simulation 3: Er/Eθ ≈ 100

For this example, the material properties of the orthotropic layer are the same with

those of the previous example, except that Er = 1330.9868 (GPa). The corresponding

independent elastic constant C11 is also changed; C11 = 1331 (GPa). The inner and outer

radii of the scatterer are still the same; a = 1(m) and b = 1.2a, respectively. The ratio of

Young’s Moduli along radial and tangential directions is: Er/Eθ = 1330.9868/12.2 = 109.1.

The simulation is run at frequency ka = 2, 4, and 6. The truncation numbers at the three

frequencies are the same as for those of the last two cases. The sound speeds along r and θ
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Figure 5.6: Same pressure with shown in Fig. 5.5 (right), while increasing maximum
value of the pressure for the color bar increased to 3.5.
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Figure 5.7: Total acoustic pressure field for the Er/Eθ ≈ 100 case, at frequency ka = 2
(left), 4 (middle), and 6 (right).

directions are given as

cr =

√
C11

ρo
= 31955.2(m/s), cθ =

√
C22

ρo
= 3059.44(m/s) (5.6)

Fig. 5.7 shows the total acoustic pressure field at frequency ka = 2, 4, and 6, respectively.

It can be found that the pressure fields in Fig. 5.7 are quite similar with those in Figs. 5.4

and 5.2. The acoustic pressure is higher when Er increases while the other properties are

held constant, which is easier to observe at higher frequency ka = 6.

Simulation 4: Er/Eθ ≈ 107

For this example, the ratio of the Young’s moduli of the orthotropic material along r

and θ direction is Er/Eθ ≈ 107. This example shows that the ratio of the Young’s moduli

can be higher by increasing the value of shear modulus, while the other properties are kept

the same.

The material properties of the orthotropic layer are the same as those in the previous

example, except that Er = 13.309868 × 107 (GPa) and Grθ = 6300 (GPa). The ratio

of Young’s Moduli along radial and tangential directions is: Er/Eθ = 1.091 × 107. The

independent elastic constants of the orthotropic medium are give as (in GPa): C11 = 1.331×
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Table 5.3: The entries of coefficient matrix {R} at different terms (shown in modulus) for
the Er/Eθ ≈ 107 case

|[R]nn|
n ka = 2 ka = 4 ka = 6
0 0.066481232420553 0.99778018629739 0.73394137033288
1 0.46168091058588 0.42493971739573 0.44220183630868
2 0.38757939857614 0.99994665451973 0.91619727424358
3 0.095027044886687 0.86445538067188 0.47702852052348
4 0.020448785838989 0.47387363174547 0.72341282281814
5 0.0095281737657016 0.1930137439373 0.9049690454997
6 0.00045020601543243 0.09165979210499 0.58602031625161
7 9.7539390672951 ×10−6 0.078783970227281 0.35653704761994
8 2.2686388256284 ×10−7 0.012454036708584 0.28019965297289
9 4.4418664380569 ×10−9 0.00060443710169708 0.50278319062474
10 7.1287595972197 ×10−11 3.6221652039026×10−5 0.051344555445278
Nt 7.8202409614933 ×10−19 2.1564236987475 ×10−28 3.2491688052501 ×10−36

108, C22 = 12.2, C12 = 0.122, C44 = Grθ = 6300. The sound speeds along r and θ directions

are given as

cr =

√
C11

ρo
= 10105117.29(m/s), cθ =

√
C22

ρo
= 3059.44(m/s) (5.7)

Therefore, for this example, the ratio of the sound speeds along radial and tangential di-

rections is 3302.9. The simulation is run at frequency ka = 2, 4, and 6. The truncation

numbers are chosen as 14, 24, and 33 at three frequencies, respectively.

Table 5.3 provides the the entries of coefficient matrix {R}. In Table 5.3, Nt = 14, 24,

and 33 at frequency ka = 2, 4, and 6, respectively. The values provided in Table 5.3 show

that the truncation numbers chosen are large enough. When n > Nt, the results are small

enough to be truncated.

Fig. 5.8 shows the total acoustic pressure field at frequency ka = 2, 4, and 6, respectively.

Fig. 5.9 shows the enlarged view of the pressure field around the scatterer in Fig. 5.8. Fig. 5.9

clearly shows the continuity of the pressure field, which includes both inside and outside of

the scatterer.
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Figure 5.8: Total acoustic pressure field for the Er/Eθ ≈ 1× 107 case, at frequency ka =
2 (left), 4 (middle), and 6 (right).

Figure 5.9: Total acoustic pressure field for the Er/Eθ ≈ 1× 107 case, at frequency ka =
2 (left), 4 (middle), and 6 (right).
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Table 5.4: The values of b0, Un, and Vn for the orthotropic medium when index α = α1 at
term n = 30 (shown in modulus).

Er/Eθ |b0| |Un(r)| |Vn(r)|
1 (Grθ = 6.3 GPa) 1.2784659055059 18.398666658824 23.513525222316
10 (Grθ = 6.3 GPa) 29.844441147778 50.295716786913 1500.3859317444
100 (Grθ = 6.3 GPa) 308.75216896391 52.714472850934 16268.350415454
107 (Grθ = 6.3 GPa) 30987487.730903 48.819137091501 1506600504.1521

107 (Grθ = 6300 GPa) 2913.9041811694 1.1685740439733 3404.1920818544

In this simulation, the shear modulus of the orthotropic layer is increased so that Er

can be chosen about 107 times greater than Eθ. In this way, the accuracy of the solutions

for the orthotropic medium can be ensured. Table 5.4 provides the values of coefficient b0,

and displacements Un(r), and Vn(r) when α = α1 for the orthotropic medium of the cases

computed above. The term n is randomly chosen as n = 30. The radius r is assumed as

r = 1.1. In this study, the coefficient a0 is assumed as a0 = 1 for every example. Table 5.4

shows that when Er becomes much larger than Eθ, the value of b0 increases. The difference

between displacements |Un(r)| and |Vn(r)| increases rapidly when Er/Eθ increases. For the

example when Er/Eθ = 107 while the shear modulus is kept the same with the previous

cases (Grθ = 6.3 GPa), |Vn(r)| is so much larger than |Un(r)| that errors are expected to

occur for the mathematical operations, This is called loss of significance. Table 5.4 also

shows that for the case Er/Eθ ≈ 107 by increasing the value of shear modulus Grθ, |b0| is

reduced, as well as the difference of |Un(r)| and |Vn(r)|. Using this approach, the accuracy

of the solution for the orthotropic medium during the numerical simulation can be ensured.

5.2.2 Young’s Modulus Along Radial Direction (Er) Smaller Than

That Along Tangential Direction (Eθ)

Simulation 5: Er/Eθ ≈ 10−1

In this example, the material properties of the orthotropic material include (Young’s

and shear moduli being in GPa): Er = 1.3309868, Eθ = 12.2, Grθ = 1.3, νrθ = 0.01, and
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Table 5.5: The entries of coefficient matrix {R} at different terms (shown in modulus) for
the Er/Eθ ≈ 10−1 case

|[R]nn|
n ka = 1 ka = 3 ka = 5
0 0.3188202795966 0.71419548774304 0.44528726628225
1 0.2779062720334 0.22197397517724 0.84988636578111
2 0.047077690437927 0.6124722306012 0.16834919270872
3 0.0042561875942602 0.31344336926491 0.97296285294819
4 0.00080850859956977 0.074763218951917 0.40599622021585
5 1.3213369469612 ×10−5 0.017807077091543 0.04236837357114
6 9.7544982253749 ×10−8 0.0055682511547072 0.075875988224313
Nt 7.3078949909829 ×10−10 1.724872802234 ×10−21 3.6059534710933 ×10−35

ρo = 1303.44(kg/m3). The ratio of Young’s Moduli along radial and tangential directions is:

Er/Eθ ≈ 10−1. The independent elastic constants of the orthotropic medium are given as

(in GPa): C11 = 1.331, C22 = 12.2, C12 = 0.122, C44 = Grθ = 1.3. The inner and outer radii

of the scatterer are a = 1 and b = 1.2a, respectively. The simulation is run at frequency

ka = 1, 3, and 5. The truncation number Nt at three frequencies are taken as 7, 18, and

30, respectively.

Table 5.5 provides the the entries of coefficient matrix {R}, which represents the scat-

tered waves. Table 5.5 shows that the truncation numbers at three frequencies are large

enough to ensure the accuracy of the results. Fig. 5.10 shows the total acoustic pressure

field at frequency ka = 1, 3, and 5, respectively. Fig. 5.11 shows the enlarged view of the

total acoustic pressure field at frequency ka = 1, 3, and 5, respectively. The continuity of

the pressure field can be observed from Fig. 5.11.

Simulation 6: Er/Eθ ≈ 10−2

For this example, the ratio of the Young’s Moduli of the orthotropic material along r

and θ directions is: Er/Eθ ≈ 10−2, where Er = 1.3309868 (GPa) and Eθ = 122 (GPa).

Compared with the previous example, the shear modulus Grθ is increased to 5.8 to be able

to reduce the ratio of the Young’s Moduli Er/Eθ from 10−1 to 10−2. Mass density and
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Figure 5.10: Total acoustic pressure field for the Er/Eθ ≈ 10−1 case, at frequency ka =
1 (left), 3 (middle), and 5 (right).

Figure 5.11: Enlarged view of total acoustic pressure field for the Er/Eθ ≈ 10−1 case, at
frequency ka = 1 (left), 3 (middle), and 5 (right).
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Table 5.6: The entries of coefficient matrix {R} at different terms (shown in modulus) for
the Er/Eθ ≈ 10−2 case

|[R]nn|
n ka = 1 ka = 3 ka = 5
0 0.5048135930979 0.69912061206557 0.90003047407033
1 0.30969480701464 0.94801784089994 0.48026829316544
2 0.072749000644758 0.66932369855269 0.43435982449345
3 0.045225383464889 0.40244032429088 0.89857212756527
4 0.00040407528193242 0.33943060762603 0.49362328761546
5 6.4444523272227 ×10−6 0.60651607869972 0.61909918703873
6 7.5405312157044 ×10−8 0.040226107118862 0.69050262403842
Nt 6.4310865461953 ×10−10 1.5959588636729 ×10−21 3.1776196053986 ×10−33

Figure 5.12: Total acoustic pressure field for the Er/Eθ ≈ 10−2 case, at frequency ka =
1 (left), 3 (middle), and 5 (right).

Poisson’s ratio are kept the same as those in the previous example. The truncation numbers

Nt at frequencies ka = 1, 3, and 5 are taken as 7, 18, and 29, respectively.

Table 5.6 provides the the entries of coefficient matrix {R}. Table 5.6 shows that the

truncation numbers at three frequencies are large enough to ensure the accuracy of the

results. Fig. 5.12 shows simulation results of the total acoustic pressure field at frequency

ka = 1, 3, and 5, respectively. Through comparison between Tables 5.5 and 5.6, Figs. 5.10

and 5.12, it can be found that when Er < Eθ, modifying Er/Eθ can cause larger changes

for pressure fields compared with the case when Er > Eθ. The acoustic pressure in the host

for this case (with a larger Eθ) is higher than that of the previous case (with a smaller Eθ).

Fig. 5.13 provides a enlarged view of the pressure field around the scatterer in Fig. 5.12.
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Figure 5.13: Enlarged view of pressure field around the scatterer in Fig. 5.12.

The continuity of pressure field can be observed in Fig. 5.13.

For the situation when Er < Eθ, the index ασ, where σ = 1, 2, 3, and 4 are very large.

For this simulation, when Er/Eθ ≈ 10−2, the values of the index are α1,2 = ±113.55 and

α3,4 = ±70.82. Recall the expressions of the Un(r) and Vn(r) in Frobenius series form:

Un(r) =
∞∑
m=0

amr
m+α, Vn(r) =

∞∑
m=0

bmr
m+α (5.8)

In Eqn. (5.8), the coefficients am and bm will decrease when m increases, while rm+α will

increase when m increases. If α is too big such that the increase of rm+α is faster than the

reduction of am and bm, then Un(r) and Vn(r) will increase and finally will go to infinity.

In this case, the Frobenius method fails. Two methods can be used to solve this problem:

1) try to reduce α and 2) reduce the value of r. Both methods can work for reducing the

increasing speed of rm+α. In this simulation, the shear modulus is increased to reduce the

value of α.

Simulation 7: Er/Eθ ≈ 10−4

In this section, by increasing the shear modulus and reducing the thickness of the or-

thotropic layer, the ratio of the Young’s moduli along r and θ directions can be reduced to

Er/Eθ ≈ 10−4. The Young’s Moduli along r and θ directions in this example are defined as:
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Figure 5.14: Total acoustic pressure field for the Er/Eθ ≈ 10−5 case, at frequency ka =
1 (left), 3 (middle), and 5 (right).

Figure 5.15: Enlarged view of the pressure distribution of Fig. 5.14 .

Er = 1.3309868 and Eθ = 1.22003459 × 104. The other properties of the orthotropic layer

are kept the same with those in the last example. The shear modulus Grθ is increased to

18.5 (GPa). The inner radius of the scatterer is kept the same with that in the last example

(a = 1), while the outer radius of the scatterer is reduced to b = 1.02a.

Fig. 5.14 shows simulation results of the total acoustic pressure field at frequency ka =

1, 3, and 5, respectively. To observe the pressure field inside the scatterer, an enlarged view

is provided in Fig. 5.15. Since for this case the thickness of the orthotropic layer is very

small, it is hard to observe the pressure inside the entire scatterer. Fig. 5.16 shows a very

small part of the pressure field which is −1.03 < x/a < −0.99 and 0 < y/a < 0.06. It

is apparent from Fig. 5.16 that the pressure is continuous in the host, orthotropic layer,
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Figure 5.16: Enlarged view of the pressure distribution of Fig. 5.14 and Fig. 5.15.

core, as well as at the interfaces between the host and orthotropic layer, and the core and

orthotropic layer.

5.2.3 Remarks

The simulations carried out above successfully show that the difference of the Young’s

moduli along r and θ directions can reach a large range from Er/Eθ ≈ 107 to Er/Eθ ≈

10−5. These simulations also show that the difference of Er and Eθ can be increased by

increasing the value of shear modulus of the orthotropic layer or reducing the thickness of

the orthotropic layer, while the other properties are kept the same. This factor would be

helpful for future study.

5.3 Simulation of Acoustic Scattering by a Specially

Designed Multilayered Scatterer

In this section, the numerical example of the acoustic scattering by a multilayered scat-

terer which comprises a mixture of isotropic acoustic and orthotropic solid layers is im-
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plemented. The scatterer has ten layers (N = 10) of equal thickness, which include five

isotropic acoustic layers and five orthotropic solid layers. The innermost radius of the scat-

terer, which is the radius of the core, is a = 1(m). The outermost radius of the scatterer

is b = 1.2a. The host is water with a sound speed of 1350 m/s and a mass density of 1000

kg/m3. The core is an acoustic medium with a mass density of 76.7201 kg/m3 and a sound

speed of 1475 m/s.

A Cummer-Schurig cloak requires the mass density and bulk modulus to satisfy the

following relations

ρr
ρ0

=
r

r − a
,

ρθ
ρ0

=
r − a
r

,
K

K0

=

(
b− a
b

)2
r

r − a
(5.9)

In an acoustic medium, the sound speed is given by

c =
K

ρ
(5.10)

By combining Eqns. (5.9) and (5.10), the sound speeds required by the Cummer-Schurig

cloaking design are given as

cr =
K

ρr
=
b− a
b

√
K0

ρ0
, cθ =

K

ρθ
=
b− a
b

r

r − a

√
K0

ρ0
(5.11)

where cr and cθ are the sound speeds in radial and tangential directions, respectively. Ac-

cording to the above Eqn. (5.11), the ratio of the sound speeds along r and θ directions can

be given as
cr
cθ

=
r − a
r

(5.12)

For the five orthotropic layers of the scatterer, the ratios of their sound speeds along r

and θ directions are determained based on the Cummer-Schurig cloaking design which has

five anisotropic layers. The radii of five anisotropic layers of the Cummer-Schurig cloaking
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Table 5.7: Material properties of the orthotropic medium

ri Er(GPa) Eθ(GPa) Grθ(GPa) νrθ
layer 1 1.02 1.330986842 3461.905 18.5 0.01
layer 3 1.06 1.330986842 415.4159389 6.85 0.01
layer 5 1.10 1.330986842 161.0494079 5.85 0.01
layer 7 1.14 1.330986842 91.35428384 4.85 0.01
layer 9 1.18 1.330986842 57.20034592 3.85 0.01

design are given as ri = 1.02, 1.06, 1.10, 1.14, and 1.18, where i = 1, 2, 3, 4, and 5. The inner-

most and outer-most radii of the Cummer-Schurig cloaking shell are a = 1 and b = 1.2a,

respectively. According to Eqn. (5.12), for each anisotropic layer, the ratio between cr and

cθ can be given as: cr1/cθ = (r1 − a)/r1 = 0.0196, cr2/cθ = (r2 − a)/r2 = 0.0566, cr3/cθ =

(r3 − a)/r3 = 0.09091, cr4/cθ = (r4 − a)/r4 = 0.1228, and cr5/cθ = (r5 − a)/r5 = 0.15254,

respectively.

To satisfy the relations between cr and cθ required by Cummer-Schurig cloaking design,

the Young’s moduli Er and Eθ of the orthotropic solid layers need to satisfy the following

relation (Aauld, 1973; Dahmen et al., 2010)

cr
cθ

=

√
Er
Eθ

(5.13)

The material properties of the five orthotropic solid layers of the scatterer are provided in

Table 5.7. The table shows that the radii of the orthotropic solid layers of the scatterer are

the same with those of the anisotropic layers of the Cummer-Schurig cloaking design. The

Young’s moduli along the radial direction (Er) are defined to be the same, while those along

the tangential direction (Eθ) are defined differently at each layer. The relations between

cr and cθ required by Cummer-Schurig cloaking design are satified in these five orthotropic

solid layers. The even numbered layers of the scatterer are all acoustic layers which have

the same material properties as the core. Fig. 5.17 shows the simulation results of the total

acoustic pressure field at frequency ka = 2, 4, and 6, respectively.

To watch the continuity of the pressure inside and outside the scatterer, the case when
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Figure 5.17: Total acoustic pressure field distribution due to impinging of a planar incident
wave onto the multi-layer scatterer at frequency ka = 2 (left), 4 (middle), and 6 (right).

frequency ka = 4 is used as an example. Fig. 5.18 shows the enlarged view of the acoustic

pressure field around the scatterer at frequency ka = 4. Two white circles in Fig. 5.18 show

the inner-most and outer-most radii of the scatterer. Fig. 5.18 provides useful information

about the continuity of the pressure. However, in some points of the pressure field, the

continuity of the pressure is not clearly observable. To get a better view, Fig. 5.19 (left)

shows the right upper corner of Fig. 5.18. Fig. 5.19 (right) shows the enlarged view of

the field inside of the red square shown in Fig. 5.19 (left). So through these figures, the

continuity of the pressure can be easily observed.

Figs. 5.20 and 5.21 provide the modulus of acoustic pressure inside the scatterer along

the radial direction (y/a = 0): −1.2 < x/a < −0.98 and 0.98 < x/a < 1.2, respectively.

The calculation pitch of the point along radial direction is x/a = 0.003. It is easy to tell

from Figs. 5.20 and 5.21 that the pressure is continuous at all the surfaces of the ten layers.

Fig. 5.20 shows the acoustic pressure inside the core (−1 < x/a < −0.98) is low, around

0.2. Then starting from the first layer of the scatterer, the pressure eventually increases.

In the orthotropic layers, the pressure increases more than in the acoustic layers. There is

a slight drop of the pressure in layers 7 and 8. Then a large increase happens in layer 9,

which is an orthotropic layer. The same phenomenon can also be observed from Figs. 5.17

and 5.18.

157



Figure 5.18: Enlarged view of total acoustic pressure field distribution around the scatterer
of Fig. 5.17 at frequency ka = 4.

Figure 5.19: Enlarged view of total acoustic pressure field distribution around the scatterer
of Fig. 5.18 at frequency ka = 4.
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Figure 5.20: Modulus of acoustic pressure |p| along radial direction (−1.2 < x/a <
−0.98, y/a = 0) at frequency ka = 4.

Figure 5.21: Modulus of acoustic pressure |p| along radial direction (0.98 < x/a <
1.2, y/a = 0) at frequency ka = 4.
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In Fig. 5.21, the modulus of the pressure inside the core where 0.98 < x/a < 1 is around

0.7. In the first layer, the pressure has a slight drop and then increases. In the orthotropic

layer 9, the pressure has a significant decrease. The pressure has a larger change in the

orthotropic solid layers and a smaller change in the isotropic acoustic layers. The same

phenomenon can be observed in Fig. 5.19.

From Figs. 5.18 to 5.21, the continuity of the pressure both inside and outside the

scatterer can be seen. The continuity of the pressure is a validation of the simulation

results. This numerical example verified the analytically exact solutions for scattering by the

multilayered scatterer which comprises a mixture of both isotropic acoustic and orthotropic

solid layers. It also demonstrates that the computational system built in this study has

the capability to simulate the scatterer solutions obtained in this study. In addition, the

numerical example also shows that the difference of the sound speeds along radial and

tangential directions required by Cummer-Schurig design can be realized at the orthotropic

layers of the multilayered scatterer. This work is ready to support future study of acoustic

cloaking design.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, analytically exact solutions for waves in cylindrically orthotropic elastic

media, and acoustic scattering by multilayered scatterer which has a mixture of isotropic

acoustic and orthotropic elastic layers are derived. A computational system is built and

proven capable of conducting numerical simulations of the acoustic scattering problems

presented in this study. The major achievements of this thesis are summarized in the

following paragraphs.

1. The analytically exact solutions for waves in cylindrically orthotropic elastic media

are derived. The equation of motion in terms of displacement are solved using Frobenius

method. Three special cases are discussed in detail in the solving process to give complete

solutions, which include: 1) two α’s differ by an integer, 2) when α is repeated root, and 3)

when n=0.

2. A new set of two canonical problems are defined. Each canonical problem involves

one incident wave and three media which are separated by two interfaces. The media

are acoustic-orthotropic-acoustic. They are solved by considering appropriate boundary

conditions at each interface.
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3. Analytically exact solutions for acoustic scattering by a “general” multilayered scat-

terer are derived, implemented and verified. The solutions are capable of handling scatterers

which have an arbitrary number of layers and each layer can be either acoustic fluid or or-

thotropic elastic.

4. A computational system is built and demonstrated to be capable of conducting the

numerical simulations of the scattering by general multilayered scatterers.

6.2 Future Work

In our previous work, optimization approaches were adopted for designing acoustic cloaks

(Bao and Cai, 2012). This work showed that perfect cloaking design can be obtained by

using a mixture of isotropic fluid and isotropic elastic layers. In the current study, acoustic

scattering by scatterers which have a mixture of isotropic fluid and orthotropic elastic layers

are solved and implemented. Future work is to apply optimization approaches for the design

of acoustic cloaks which comprise isotropic fluid and orthotropic elastic layers.
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