IDNS QUERY LANGUAGE
William E Shea

B.S., University of Tampa, Tampa Florida, 1972

A MASTER'S REPORT
submitted in partial fulfillment of the

requirements for the degree
MASTIER OF SCIENCE

Department of Cosputer Science

KABSAS STATE UNIVERSIIY
Banhattan, Kansas
1977

Approved by:

L
AL6F
R 1
1977
3S5¢
(e TABLE QF CONTERTS
Documend
CEAHER OIB I“nonuc!lon ® 55 S8 509 20D 6O PSP e ST IS Ee ORPEE SRS 2
SECTION 1.1 INTBCLUCTIOR cceuvnscsansesesscsncessnacvscnss 3
SBCTIOn 1.2 DBSIG’ nanla!“nrs f...."--"...-..-...-. 5
SECTION 1.3 TIDHMS TERMINOLOGY ..ccescccccevsscccccccnnane 7
CHAPTER TWO MAJOR NMCDULES .ccoceccencessncsacsacsaccnvnssnas 9

SBCTIOl 2-1 OVBRVIEH or QII1 ...-......---.......l-'...l10
SECTION 2.2 MAIN EOUTINE DESCRIPTION .ccevecessanccncasl3
SECTION 2.3 BENTER ROUTINE DESCRIPTION ..ccccccccccccsceld
SECTIOHN 2.4 DELET BHOUTIRE DESCRIPTION ..cccccecccascces 1B
SECTION 2.5 MODIFY ROUTINE DESCRIPTION ..ccceccccevasces22l
SECTION 2.6 TINFORMATION RETRIEVAL ROUTINE DESCRIPTION .23
CHAPTER THREE PILES AND SUPPORT ROUTINES AND PROGRAMNS ...24
SBCTIOH 3.1 GB'BB!L ll-.-.....-.........l..--..'...ll.-25
SECTIOR 3.2 PILE STRUCTURE AND MAINTENANCE .ccccccaceea2b
SBCTIOH 3.3 S!uBIID‘.....I.......'.II..'..I30
SECTIOR 3.4 AD_COMP .ccccscccecccacsccscsunssssscncacnnaanl?
SBCTIOH 3.5 AD_CLIC I.O.......---.I'-..D.....‘--'-l.-..3q
SBCTIOH 3.6 ID’FIED .-...l...'-.....-.C.I.........I.-..35
SECTIOH 3.7 SIB—SEIBCB ..-..II...‘...-.-.....-..'.'..'.37
SBCEIOH 3‘8 R!c-!lnn ...---l.......‘....I...............ag
SBCTIO‘ 3-9 CODECK I....l-..I..Cl..l..l.l.........I..IOQZ
SBCTIG' 3.10 Bnnon -C....’-.'.-......-.‘..........--..-Iu3
SECTION 3.%1 PTH_ALJUST ..ecccccvevscccsssccsnssnsosnceaslil

CBAPTBR roun tBsT BEOCBDHBBS ..-...'...I..........I.-.‘.-u6
SECTION 4.1 DATA EASE DESCRIPTION cccccccccccsscsccscosll?
SECTION 8.2 TEST SENARIO ccceccsescsssccscsscssacnsnseansadl

CHAPTER FIVE EVALUATION AND CORCLUSIONS cccccccescscssacesdl
SBCrIOU 5.1 OBJECIIVBS ..-............-.....---...--...5n
SECTION 5.2 EVALUATION OF THE PROTOTYPE LANGUAGE55
SECTION 5.3 CONCLUSIONS ccevcccccvsnvsscccsasnvcssancasesdl

APPENDIX A.cccvccossccncosscssacansscssasansaeseSOURCE LISTINGS

APPENDIX B..scccccscssacocccscsscsccosesSANPLE TEST LISTINGS

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

CHAPTER ONE INTRCDUCTION
Section 1.1 Intrcduction 8 9 99 99 ¢ 99 09 A OO SO RS 2OPFe S eDe
Section 1.2 Design RequirementS cccvceveccccscsccccascscas

section 1.3 Inas te:.inolog’ S 20 8 e adawe eSO e OOS SO ESaa0e

Section 1.1 Introduction

In this day of credit cards, instamt loan processing, and
high speed order processing for business , a vast amount of
data is required to keep each of these application programs
running smoothly. The use of data bases containing the
required information is becoming more and more a part of our
society. In fact, James Martin commented,'The development
of corporate data bases will be one of the most important
data-processing activities for the rest of the 1970's."' (1).
Data bases take on many forms, but one thing they all have
in common is complexity. Record storage and retrieval
techniques, set definitions, and data manipulation
languages (DBL) are tut a few of the things that a person
must thoroughly understand in order to use the information
in the data base.

The purpose of this report is provide a description of a
prototype gquery language (QL1) to be wused with Cullipnane
Corporation's Integrated Database Management System(IDMS).
QL1 is designed tc relieve the user of wmost of the
requirements for understanding the structure of the data
base and yet interactively manipulate the data base as
desired.

The project was prompted by the growing use of on-line
systems as well as the need for a less complex =means of
accessing data base elements. In order to relieve the user

of much of the regquirement of knowing the structure of the

(1) James Martin, COMPUTER- DATA-BASE ORGANIZATIOE
, (PRENTICE-HALL,1975),P. 2.

4
data base, QL1 uses a computer-prompted method of execution.
That is to say that the user supplies information that he is
asked for; rather than having to know in advance what
information is going to be required next. A sample session
is shown in Appendix B. Implementation of this type of
man—computer dialog gives the impression that QL1 knows the
structure of the data base when , in fact, evem that is not

required.

Section 1.2 Design Bequirements

In designing the guery language for this project, certain
requirements were specified; these were:
1. The language had to be interactive.
2, The user should not be required to know the
structure of the data base.
3. Manipulation of the data base had to include:
a. Entering new occurrences of any record type.
b. Deleting 0l1d occurrences of any record type.
c. Modifying the data items in any record type.
d. Retrieving information contained in any record
type.
The above requiresents wvere satisfied although some
assumptions were necessary and some restrictions had to be
placed on the design of the data hase. The following
assumptions were made:
1. Set membership inclusion would be Mandatory
Automatic in all cases.
2. Formas would be available to users 1listing the
elementary data item names for each record type. (2)
3. Once compiled, all of the IDMS files as well as the
QL1 files would be stored permanently on disk for use
by the query language as well as other application
prograes that might be called by QL1, .i.e. report
producing programs.

The only restriction placed on the design of the data

(2)See figure 1.2.1 for a sample user form.

6
base was on the type of attribute that could be given an
elementary data item. Attributes that are acceptable are:
character, and the X, V, and 9 formats of the picture
specification. The reason for this restriction is that
data-structure mapring is extremely difficult and
complicated except when limited to the type of attrikutes
that are byte aligned. There would be considerable
difficulty in obtaining addresses for data items whose
attribute type was pnot byte aligned. The reasons for the
assumptions and the restriction are discussed in more detail

in chapters two and three.

LIFB-REC
POLICY-ID[JI[[[]][] ISSUE-DATE
PACB-VALOE [[T11[.|

E-NAME [T ULOTINT i i el pinm
seeee [TT[010L LTt L0 I
cxey [TTTIETITOITEATET]

STATE[[] : zIP-coDE || .|}

fig. 1.2.1 Sample user fora.

Section 1.3 IDES Terminology

The following definitions are provided to assist the
reader in understanding the terminology used throughout the
report. (3)

1. SCHEMA. This is a complete description of the data
base. It includes the names and definitioms of all records,
sets, and data items. The schema DATA DESCRIPTION
LANGUAGE (DDL) is used to describe the schena.

2. SUBSCHEMA. This is the user's view of the data base.
Only those records, sets, and areas that are used within a
specific application progras are defined in the subschesa.
fhile there is only one schema to define the data base,
there may be several subschemas to provide different views
of that data base tc differenmt users. The subschema DDL is
used to describe the subschena.

3. BECORD. A record may be thought of as a COBOL or PL/1
like structure, with the level 1 name being the reord type.
It is important to ncte that when referencing a record type,
one might have several occurrences of that record type.

4, SET. A set is a 1logical relationship between two or
more record types. Each set comsists of one or more record
types declared as members of the set, but only one record
type declared as the owner of the set.

S. DATA ITEM. This is the smallest unit of data which has

(3)2 more thorough understanding of IDMS may be obtained by
reading, DATA- HMANIPULATION LANGUAGE PROGRAMMER'S
REPERERCE GUIDE (Cull inane Corporation) ,release
3-1,april, 1975. Hereafter this is cited as DML
programmer's guide.

8
a pame. This is analogous to the elementary data-element in
a structure.

6. CALC. A method of determining the location to be used
vhen storing a record in the data base. The CALC identifier
is the name of an elementary data item wvithin the record.
#hen the record is stored, a procedure within the DBMS uses
the value of the CALC identifier to determine the specific
page in the data base on which the record will be stored.

7. VIA. This is another method by which to determine the
location of a record. VIA specifies a set-name in which the
cbject record participates as a meaber. When the record is
stored VIA, it is placed on the same page, or a nearby page,
as the owner of the set-name indicated.

8. MANDATORY AUTOMATIC. This refers to the manner in
vhich a record is established as the member of a set. The
"Mandatory' portion means that once the nmembership of a
record has been estaklished, it's participation as a member
of the set is permanent. The !'Automatic' portion means that
membership in a set is established automatically by the IDMS
system anytime an occurrence of the record type is stored in

the data base.

CHAPTER
Section
Section
Section
Section
Section

Section

THO
2.1
2.2
2.3
2.4
2.5
2.6

MAJOR MODULES

Overviev Of QL1 coiensssnenenonvennwnnnanenes 10
Main Boutine Description ...cececoceaans T
Enter Boutine DesScription .cceeccccccsncaceaald
Delete Routine Description ...cseveccscnssss18
Modify Boutine Descriptiol ..cccccecccccccea2l
Information Retrieval

noutine Descriptiﬂn- Te a9 8608 se dsaewm ----.0--23

10
Section 2.1 Overview of QL1

QL1 wvas designed as a computer-prompted language. This
simply means that the user is asked for specific information
and then the various routines use that information to
perform the function the user desires. (See appendix E for
examples of this type of interaction) A computer-prompted
method of implementation was considered most appropriate for
this type of gquery language since it was felt that the user
might often be just a casual user rather than a dedicated
user(4). For such users the slightest problem commumicating
with the data base could cause considerable irritation.
This can be readily seen if a manager of some type, not
being familiar with the system, were to try to access the
data base without any help from the computer. Not being used
to the required commands, a lack of knowledge of a specific
syntax, or a number of other problems could cause the
manager to become hopelessly frustrated. With the
computer-prompted method these problems are somewhat
alleviated and the manager now only has to respond to the
gquestions posed by the computer.

The query language itself has been implemented in PL/1.
Interaction between the user at the terminal and the varioaus
executing routines is provided by the EFEL/1 'DISPLAY' and

"REPLY' statements. (5). The reader may wish to consult

—— —— -

(4) The term casual is used to describe a user who only
occassionaly uses the language, and a dedicated user as
one who works constantly with the language. See James
Martin, DESIGN OF MAN-COMPUTER DIALCQUES
s (Prentice-Hall,1973) ,PP. 25-26.

(5) PL/1(F) LANGUAGE-REFERENCE MANUAL (IBM Corporation),5th

1
appendix A for examples of the display and reply statements
used in the source listings. QL1 is modular in design(see
fig. 2.1} with the major modules being the d4river, ENTER,
DELET,MODIPY, and 1INFO routines. A fifth routine, REPORT,
has been provided fcr but not implemented. This would be
used to call specific report generating programs. Should
this routine be desired, the user's Data Base Administrator
{DBA) would be required to insure the routine was properly
coded.

Several other modules and programs, which are described
in detail in chapter three, handle such things as address
calculation, retrieval of records into working storage,
checking the validity of security codes and personnel
numbers, and verifing data item names. The modules are

called by the major modules and by each other as needed.

ed.,December,1972,P.373.

ENTER

AD-CONP

MAIR

12

v

ID-FIRD

]

‘uon:rxl

Y

EODBCK\
BBC-FIHD,

IRFO EEPORT

-

]
Bnnong

™
SYM-SEARCH

HIEBARCHY OF QL1 COMPONEBNTS

FIG 2.1

Section 2.2

The main routine, or

typing QL1. All reguired file

that time. The terminal,
information will respond with
CODE."'.

At that time the user should
code that was provided by the
next response by the terminal
After the

personnel number.

entered, a call

driver, of QL1

13

Description of main routine

is activated by
definitions are provided at
miscelleneous

after some

YPLEASE ENTER YOUER SECURITY

enter his six digit security

Data Base Administrater. The

is for the user to enter his

personnel number has been

CODECK verifies the

is made to CODECK (6).
security code and personnel number of the user and returns

to the main routinme. It should be noted, that for security

reasons a mask field has been provided in which the user

types his security code and personnel number; however, due

to the way in which 'DISPLAY' and *REPLY' statements work in
PL/1, a carraige return and line feed are placed in the data

stream and the user must manually roll back the paper in

order to type the codes in the field provided. While this is
no problem on the 2741 terminal, some other method such as a

display erase would have to be used if a CRT were being

used.

After verification of the security code and personnel

number, a 1list of functions available to the user is

displayed with instructions to emter the line number of the

function desired. The desired routine is then called and the

(6) See section 3.9 for a complete description of CODECK.

"
appropriate function performed. Return to the main routine
is provided by two =means. First, vwhen the user specifies
that he is through with a given routine, and second, if any
type of error is detected during execution of the routine.

Upon return of control to the main routine, the user is
asked if he wishes toc continue. This is so he might execute
other functions or in the case of an error such as a
misspelled record name he might wish +to reenter the last
routine and enter the correct name. If his reply is yes then
the 1list of functions is again displayed and execution
continues. Otherwise, 'END OPF JOB' 1is displayed and the

Frogram terminates.

15

Section 2.3 Description of the ENTER routine

The purpose of the ENTER routine is to place a new
cccurrence of a record into the data base. The routine is
called from the wmain routine by the user entering the line
nusber for the ENTER NEW DATA function.

When control is passed to this module, the user is asked
to enter the record name of the record type to be entered.
OUnder 1IDMS requirements, current set occurrences for all
involved sets must ke established prior to attempting to
place the record in the data base(7). If the record is to
be stored and it is the member of a set, the owner record
must have been estalblished to be the current of set before
the first member record is stored. If an attempt is made to
store a record which is the member of a set and the current
of set is null, an IDMS error will occur. QL1 assumes that
vhenever an entire record is being entered, the cwner
record, if there is one, will bhave been entered during the
same terminal session. The problem of the user attempting to
enter a record, which is the member of a set, without first
establishing the proper currency could be prevented by
including the set name for all sets in which the record is a
member in a file and checking to insure that the current of
set was not null. The user could also be asked if the owner
record for the set bhad been entered immediately prior to
entering this record or if the owner had been stored during

a previous terminal session. If it was stored during

(7) DML- PROGRAMMER'S REFERENCE GUIDE ,(Cullinane
Corporation) ,release 3-1,April,1975,F. 100.

16
aprevious terminal session, then the user would be asked to
enter a value for the owner's calc identifier. That
particular record could then be obtained.

After the record name has been entered by the user,
control is passed to AD-COMP(8) and a pointer is set to the
beginning address of where the record type is located in
working storage. Control then returns to the ENTER routine.
At this time the sysbol table, SYMFILE, is accessed using
the key(9). Each elementary data item npame is retrieved
from SYMPILE, one at a time, and a pointer is set to the
beginning address of the data item. The user is asked to
enter the value for each item as it is displayed. W®hen the
last data item has received a value the record is stored in
the data base using the IDMS routine, IDENSCOM (42). The DML

format is:

STORE record-name:

If the store was successful, the error-status is set to
0000, and the record is made: current of run-unit, current
of area, current of it's record type, and curremt of all
sets in which it is specified as an owner or a member. It
should be noted that if the object record is the owner of a
set, the successful store of the record will establish a new
set occurrence. The successful store will also cause

‘record-name RECORD STORED...' to be displayed at the

(8) See Section 3.4 for a complete description of the
AD-COMP routine.
(9) See Sectiom 3.2 for a description of the key.

17
terminal, and the user will be asked if he desires to enter
additional records. If he responds with yes, execution
cycles back to the teginning of the ENTER routine. If his
response is no or if the store attempt was unsuccessful,

control returns to the main routine.

18

Section 2.4 Description of DELET routine

The DELET routine is used to remove various records from
the data base. It is important to note +that the previously
mentioned assunption that set menbership inclusion by
H@RDATDRI AUTOMATIC in all cases(10) is of great importance
ih understanding the <function of this routine. The DML
siatelent used by the DELET routine to delete a given record

is:
ERASE RECORD (record-name) PERMANENT; (11) (12)

The permanent verb on the end of the statement specifies
that the object record as well as all of it's mandatory
members are deleted from the data base. Fig 2.2 shovs that
if an INSURED-REC were being deleted from the test data
-ﬁase(15), the following records:

1. LIFE-REC

2. HEALTH-REC

3. FINANCIAL-REC
would also be deleted since they are MANDATORY AUTOMATIC in
the +three sets in which INSURED-REC is specified as the

owner record.

(10) Refer to Section 1.2

(1) IDMS DBEL- HANUAL SUPPLEMENT ¢« (Cullinane
Corporation) ,June,1976,P. 16.

{12) For a complete description of the ERASE statement,
refer to the DELETE statement in the IDMS DML
PROGRAMMER'S REFERENCE GOUIDE.

(13) See Section 4.1 for a complete description of the test
data base.

L ey _ 19

OCCUPATION-| | FINANCIAL-
BEC B REC
T __,--’0
1 & P o
g S ’
2 =
~“INSURED>" | /
REC . |/
- LIPE-REC
»
- v . T
" PINANCIAL ynnxrn— HEALTH-|
-~ BBG | nxg l REC |
-]

Shaded records indicate those deleted
FIG 2.2

Opon entering the DELET routine, the user is asked for
the name of the record type to be deleted. Control is passed
to REC-FIND which brings into working storage the
appropriate occurrence of the desired record. The record is
deleted and the user is asked if there are additional
records to delete. If the answer is yes, control cycles back
to the beginning of the DELET routine; otherwise control
returns to the main routine.

It is not necessary that the object record be placed into
working storage prior to deletion. The only requirelent is
that the object record be made current of the run-unit{14).
This could be accomplished by a successful find; however, to
rrevent having to write a considerable amount of redundant
code, REC-FIND was used and that routine always places the

object record into working storage.

T i T e i —

(14) DML PROGRAMERR'S gzrngnggg GUIDE , (Cullinane
Corporation) ,release 3-1,April,1975,p. 87.

20

After an object record has been deleted, the space and
the database key are available for reuse. This also applies
to any records which wvere deleted because they vwere
MANDATORY AUTOMATIC members of a set which was owned by the

deleted obiject record.

21

Section 2.5 Description of MODIFY routine

The MODIFY routine is used to change the value of a given
data item in a record which has been previously stored in
the data base. Contrcl is passed to the MODIFY routine from
the main routine. Opon entry into the MODIFY routine, the
user is asked to enter the name of the record type to be
modified. REC-FIND is called which brings the correct object
record into working storage.

Once the correct record is in working storage, the user
is asked to provide the data item name for that data ites
which is to be modified. SYM-SEARCH is called and a pointer
to the address in working storage for the data item is
returned. the user is then asked to input the new value for
that data item. The new value is placed into workimg storage
and the user is asked if there are anymore data items to be
modified. If there are, These items are modified. After all
data items for that record which are to be modified have

been changed, the statement

EODIFY record-name;

causes the values of all data items of the object record to
be replaced with the values from like-named data items from
working storage(15) .

If the data item which is to be modified is a CALC

identifier then the object record may be found, after

(15) Refer to DML PRCGERAMMER®S EEFERENCE GUIDE.

22
execution of the modify statement, by refering to the new
CALC value. If the data item to be modified is defined as an
ascending/decending control item, execution of the modify
statement will cause the intra-set occurrence position of
the object record to be examined and read justed 1if

necessary.

23

Section 2.6 Description of INFO routine

The INFO routine is used to retrieve information from a
given record. The user has the option of displaying a single
item of information or an entire record. Current
implementation uses a routine named REC-DISPLAY to display
entire records. It is assummed that if more than one or two
items were going to be displayed, the user would have a
report routine which would format the information to be
displayed. REC-DISPLAY was included only as a temporary
routine to be used during testing and debugging.

'As with the other major modules, the first action upon
entry into the INFO routine is to ask the user for thek
record name. REC-PIND is called and the desired record is
brought into working storage. The user is thenm asked if he
vants the entire record displayed. If so, control is passed
to the REC-DISPLAY routine and each data item along with
it's current value is displayed. If the user indicates that
only a single item is to be displayed, he is asked for the
data item name he wishes displayed. SYM-SEARCH is used to
set a pointer to the data item desired, and both the data
item name and it's current value are displayed.

After displaying a single data item the user is asked if
there is another data iteam imn this record he wishes to have
displayed. If there are no more items from the current
record to be displayed, the user is asked if there are any
other records vhich contain information to be displayed. 1If
so, control cycles kack to the beginning of the routine;

otherwise, control returns to the main routine.

CHAPTER THREE

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

Seciton

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

FPiles and Support Routines and Prograas

GeneIradl.cccecseccccnsnnccncsnsencssnnonaedd
File Structure and Maintenance..........26
SYMBILD .cscecsccncescacacansncsensacensaldl
B0 BHED & o e o wis o Eeemes BRI G SN DD
AD_CBLC ..iccececcsanccacccacnccccnaosasasdl
ID_PIED c.csvcscssnssacssassscsasassssnsne3d
SIN._ERRRCH s ws ws o om o ws sio ko 5 & oine a3
BEC FIRD oy wronm wown iw on mowoms wim 0w wown's wum w39
CODECK ccveccsscssssecscoonsassnsssnnnealld

Banon ...l...-.....-...-..'I.-....-..-..ﬂa

PTR-!DJUST “......‘....‘-.'...'l..-."'“u

24

25

Section 3.1 General

This chapter will explain in detail the various files
used by QL1 which are not part of the IDMS file system, the
various support routines mentioned in previous chapters.
SYMBILD, a program used to build SYMPILE, will be discussed
in depth.

26

Section 3.2 File Structure and Maintenance

In addition to the normal files provided by the IDMS
routines, QL1 has need for several files containing such
information as reccrd structures, data item attributes,
record names, set relationships, and security codes and
Fersonnel numbers.

The major f£file used isr SYMFILE. SYMFILE is basically a
symbol table, and is implemented as a direct access,
regional 2 (16), keyed record. Having been implemented in
IBM's Conversational Monitoring Systenm (CHS) (17)
environment, the keys are located in a directory at the end
cf the file(18). The key is derived from a sixteen
character record name concatenated with a fixed binary (15)
integer. The integer is converted into character (9),
thereby giving a keylength of 25 characters. Each time an
access is wpade into SYMPILE the key must be provided. If
that particular key is not found an OR KEY condition will
prevail (19) . Information contained in SYMNFILE is:

1. An elementary data item nanme.

2. A character, C or F, tc designate whether the data
item attribute is character or numeric.

3. The number of bytes of storage reguired to store the

iten.

(16) For further information on this type of record the
reader should consult PL/1{F) PROGRAMMER'S GUIDE (IBM

CORPORATION) ,September, 197 2,Chapter 1t.

(17) IBM Virtuwal Machipe PFacility/370: CMS User's Guide
» (IBA Corporaticm),release 3,1st ed.,February, 1976.

(18} Refer to Sectiomn 3.3

(19) PL/1(F)- LANGUAGE BEFERENCE MANUAL , (IBM
Corporation) ,5th ed.,December,1972,P. 314,

27
4. The offset, in bytes, from the beginning address of
the record structure itself, to the beginning address

of the data item. See fig 3.2.1.

| data item name] c| no of bytes | offset]

fig. 3.2.1 SYMFILE data structure

The program used to build SYMFILE is SYMBILD(20). Input
required is the name of the record type, the record
structure, and an ‘'end' card (see fig. 3.2.2). This is

required for each record type.

A(& CITY PIC IS X (15)
4{5 STREET PIC IS X(20)
(ﬁ I-ADDRESS
INSURED-REC
fig. 3.2.2

SYMBILD is required to be run anytime there is a change to
the structure of an existing record or a new record is added
to the data base. See Appendix A for the source listing for

SYMBILD.

{20) Refer to section 3.3.

28

IDLIST is a file which is used by various routinmes
needing to retrieve a specific record. Information contained
in IDLIST (see fig's. 3.2.3 and 3.2.4) is the record name,
if the record has a location mode of CALC(21) then the CALC
identifier is given; otherwise +this field is left blank.
The next two fields are only used if the record does not
have a CALC identifier, i.e. records which are members of a
set and stored using the VIA(22) location mode. These two
fields would then contain first, the record name of the
owner of the set and second, the set name. The reason for
this type of information will become apparent as soon as the
reader sees the calling foramats to the various 1IDNMS

"routines.

T

[INsuRED-REC SSAN-ID | 3

fig. 3.2.3 Record with a CALC identifier.

LIFE-REC | "INSURED-REC A INSURED-LIFE-SET

fig. 3.2.4

IDLIST only needs to be updated if a new record is added to

(21) DML PROGRAMEER'S REFERENCE GUIDE , (Cullinane
Corporation) ,release 3-1,April,1975,P.16.
(22) Op. Cit.,P.18.

29
the data base or a new set is defined. The current method of
updating is by using the edit commands in CMS. If this file
vere to be maintainped in an 0S dataset, then other means
would have to be taken to update the file when necessary.

SECHAT is the file containing the security codes and
personnel numbers for all users. See figure 3.2.5. It is a
sequential file which contains a six digit personnel code
folloved by a six digit security code. This file would be
updated any time a new user is to be authorized access to
the data base or an authorized user were no longer allowed
access to the data base. For security reasons, this file
should have very limited access. Updating is currently the
same for this file as for IDLIST, using the CHES edit

commands.

[PCODE | SCODE | PCODE |, SCO ; § . BCODE | SCODE |

fig. 3.2.5 SECHMAT data structure,

The 1last file required by QL1 is the RECNAMNS file.
BRECNAMS is used by a PL/1 preprocessor routine to generate
text for the AD-COMP routine. RECHNAMS contains a list of all
record names and is updated whenever a record type is added
or deleted in the SCEEMA. To be used in the AD-COMP routine,
RECNAMS had to be a member of a partitioned dataset. The
dataset name is MACLIB and only has one member which is the

BECNANS file.

30
Section 3.3 Description of SYMBILD Program

The program SYMBILD is a separate program used to tkuild
SYMPILE (23) As with QL1, SYMBILD is implemented in PL/1. The
program consists of a main routine and three subroutines.

The hierarchy is shown in fig. 3.3.1.

MAIN

ROUTIRE
FPIXGEN ATRIGEN SORTS
ROUTINE ROUTINE ROUTINE

fig. 3.3.1 Hierarchy of SYMBILD Progras.

SYMFILE is a reqgional(2), direct access, keyed record.
The key is comprised of two items: the name of the record ,
and a fixed binary(15) counter. The record name is input by
card. As each data item is input, various computations are
performed and the information is writtem into SYMFILE. The
counter is incremented for each data itea. This gives the
unique key for each item. The counter is converted into a
character string of length nine(24) and is concatenated onto
" the end of the record name, which is a character string of
length sixteen, to give a keylength of twenty-five, Figure

3.3.2 shows the SYNFPILE key fors,

(23) Refer to Appendix A for the source listing,

{28) PL/1{F)- LANGUAGE BEFERENCE BANUAL » (IBM
Corporation) ,5tbh ed.,December,1972,PP.270-280.

31
character length 16 character length 9

e .

VA
1

RBCORL NAME . COUNTER

fig. 3.3.2 SYMFILE key description.

SYMBILD reads in a card which contains the name of the
record whose data items follow that card. Each data items
name is neﬁd into tbhe variable 'NAME'. The item is checked
to determine vwhether it is character or numeric, and the
variable 'ID* is set to either a 'C' or 'P' respectively.
The next variable,'VALUB', is calculated by determining the
number of bytes of storage that the data item requires. The
last variakle, 'OFPFSET', is the numher of bytes from the
teginning address of the structure to the beginning address
of the data itenm.

The routine SORTS is a bubble sort and was included so
that a binary sgatch technique could be used in the
SYN-SEARCH routine. 1his technique was not implemented, but
by baving SYMFILE sorted the capability for a binary search

is there.

32

Section 3.4 Description of AD-COMP routine

The AD-COMP routine is rather unique in that it allows
the beginning address of each record type to be calculated,
even if different record structures are implemented, without
explicitly re-writing the source code. This is done by means
of the PL/1 preprocessor. The source code for QL1 utilizes a
Freprocessor macro, AD-CALC(25) , to generate the code for
AD-CONP.

In order to be akle to calculate the address of a given
data item, the beginning address of the structure =sust be
known. PL/1 has a builtin <function, ADDR, which returns the
tventy-four bit address of a variable. To get the beginning

address of INSURED-REC, the following code is used:

IF RECNAM = 'INSUBRED-REC' THEN RPIR =
ADDR (INSURED—-REC) ;

BPTR will then contain the tventy-four bit address of
INSURED-REC. It should be noted that RPIRE must be declared
as a pointer variable; otherwise an error will occur when an
atteap is made to assign the address of INSURED-REC to it.
AD-CONP, after having statements generated for it by
AD-CALC, conmsists of a series of TF-THEN-ELSE statements for
each record name. The list of record names is contained in
the RECHANS file. BRECHAMS is INCLUDED text in the AD-COMP

routine (26) . Input into AD-COMP is the name of the record

{(25) Refer to sectiom 3.5
(26) Por a complete discussion of IKCLODED text, the reader

33
whose address is to ke found. Output from the routine is the
address of the record anmd a return code., The returm code is
set to one if the record wvas found; othervise the return

code is set to five.

——

may wish to refer to PL/1(F) PROGRAMMER'S GUIDE , (IBN
Corporation) ,9th ed.,September,1972,P.61.

38

Section 3.5 Description of AD-CALC routine

The AD-CALC routine is a preprocessor routine used to
generate code for the AD-COMP routine. The calling format
is:

AD-CALC (NANES) ;

The argument, NAMES, comes fros the INCLUDED text RECNANS
which is the file containing a list of all record names to
be used. Where XINCIUDE RECHAMS is 1located in the source
code, the following type of code is inserted by the AD-CALC

routine:

XNAMES='INSURED-REC,O0CCUPATION-REC,...,*';

Output from AD-CALC is a character string of unspecified
length which is the IFP-THEN-ELSE statements for AD-CONP.
AD-CALC searches the input string for a record name and
then using that name builds the string, 'IF BRN='record-name’
THEN RPTR=ADDR (record-name);BLSE IF ...;. The asterisk is
used to denote the end-of-file. When the asterisk is found
the entire output string is returned and placed in the
AD-COMP source code. This is the source code for the PL/1

compiler.

35
Section 3.6 Description of ID-FIND routine

The ID-FIND routine 1is used to find the CALC identifier
for a given record. If the object record does not have a
CALC identifier the owner record is found and its CALC

identifier is returned. The calling format is:
CALL ID-FIND;

ID-FIND takes +the current record pame and 4using a
sequential search attempts to find the record name in
IDLIST. If the record name is not found, the return code is
set to three; otherwise, a check is made to see if the
object recode bhas a CALC identifier., If the object record
does have a CALC identifier thenm the variable, ID, is given
the value of the CAIC identifier. For exaample, INSURED-REC
has a location mode of CALC and the CALC identifier is
SSAN-ID. If ID-FIND were called and the current value of BN
vere 'INSURED-REC', then AD-COMP would return the variable,
ID, with the value of 'SSAR-ID'.

If the object record does not have a CALC identifier, one
may assume that it is a member of a set. IDLIST contains
the owner record name and set name for all records which do
not have CALC didentifiers. iﬁen it is deteramined that the
object record does not have a CALC identifier a flag is set
to indicate that the value of BRE has been changed. RN gets
the value of the owner record name of the set. SN gets the
value of the set name. ID-FIND then begins the seguential

search again, this time with the owner record pase(27).

36

The search will nov result in ID getting the value of the
CALC identifier for the owner record.

BREC-FIND is the only routine which calls ID-FIND and the

object record name is stored in a temporary varIable prior

to calling AD-COMP. if the record name is changed by the

AD-CONMP routine, the original record name will not be lost.

(27) The reader is reminded of the assumption that all
records designated as owners would have CALC
identifiers. '

37
Section 3.7 Description of SYN-SEARCH routine

The SYM-search routine is an internal procedure used to
find a data item in the file SYMFILE and return the address
of wvhere the data item is 1located in working storage.
SYM-SEARCH can be called by the MODIFY, INFO, and REC-PIND

routines, and the calling format is:

CALL SYN-SEARCH;

Input values for SYM-SEARCH are: RN, ID, and RPTR. BN is
is the name of the record which contains the name of the
data item being searched for. ID is the name of the data
item, and RPTR is the beginning address of the structure for
the object record.

Output values for SYM-SBARCH ARE: S, N, P, and RCODE. S
will contajin either a character 'C* or 'F' depending on the
attribute of the data item. N will contain the nuaber of
bytes of storage reguired for the item. P is the beginning
address, P=ADDR(id), of the data item, and RCODE returms a
value of one if the data item was found or a value of two if
the data item was not found.

When control is passed to SYM-SEARCH the value of ID is
searched for in SYMFILE, using the key ‘RN || CHT'. CRT is
simply set to one and then incremented each time the data
item name for that specific key does not match ID. If ID is
not found for that record name then RCODE is set to two;
otherwise, the value of offset is taken from SYMFILE and

added to the value of RPIR. The nev address is assigned to

38
the base pointer, P. P nov points to the beginning address
of the data item desired. Pig's 3.7.1 thru 3.7.3 show this

pointer assignment for the following structure:

1 INSURED-REC

2 SSAR CHAR (9)
2 AGE CHAR (2)
2 HAME CHAR (25)

assumming the following input:

RN="INSURED-REC"

ID='AGE"

RETE=ADDR (INSURED~-REC)

HAME JID VALUE OFFSET

AGE C 2 9
NAME C 25 1
SSAN C 9 0

fig. 3.7.1 Contents of SYMFILE for INSURED-REC

RPTR

fig. 3.7.2 Position of RPTR upon entry to SYM-SEARCH

39
Note that P now points to the beginning address of the data

item, AGE.
SSAM AGE NAME
e ———— . "'"\f""h‘\,r g
Pyl [L " Ty T T T T l?
[A T P T | 1*1 IS O TS NV U U TS U TN W LU G N UONN R O
RPTR P

fig. 3.7.3 Position of P after offset added to EPTR

After the base pointer P is set, S is set to the value of ID
from SIBFILE #nd N is set to the value of VALUE froa
SYNPILE. In the above example, S would be set to 'C', and N
would be set to '2'. This would terminate the SYN-SEARCH

routine and control would return to the calling routine.

80
Section 3.8 Description of REC-FIND routine

The BEC~PIND routine is an internal procedure designed to
bring into working storage a specific record from the data
base. REC-FPIND may Le called by the DELET, MODIFY, or INFO

routines, and the calling format is:
CALL REC-FIND;

The only input to REC-FPIND is RN which contains the name
of the object record. Upon returning to the calling routine,
BN will not have been changed, and a return code of either
one, two, or three will have been set. A return code of omne
indicates the object record was retrieved from the data base
and placed into working storage. A return code of two
indicates that the unique identifier required to retrieve a
record which is the member of a set or a CALC identifier
could not be found. The most likely cause for a return code
of two would be a misspelled identifier. A return code of
three indicates that the object record name could not be
found. This could be caused by a misspelled record name or
if the particular record is not included in the subschena.

Upon entering BREC-FIND the record name is stored in a
temporary variable. This is due to the possibility that BN
might be changed in the ID-FIND routine. After the record
pame is stored, calls are made to the ID-FIND, AD-CONP, and
SYN-SEARCH routines. Upon returning from SYM-SEARCH the CALC
identifier for the okject record or the owner of the set if

the object record does not have a CALC identfier will have

41
been found, and the based pointer, P, will be pointing to
the beginning address of the CALC identfier. The user is
then asked to enter a value for the CALC identifier. The
value is then stored and the record with that CALC
identifier is obtained. If this record is the object record
the routine terminates.

If the record placed into working storage was not the
object record, the otject record must still be obtained from
the data base. This is determined by checking the variable,
FLAG. If FLAG = 1 then RN was changed. At this point BN is
set to the value of TEMP, which is wvhere the object record
name was saved. The user is then asked to enter a data itenm
pame which may be used to uniquely identify the desired
record. AD-COMP and SYM-SEARCH are then called to set the
based pointer, P, to the data item name that the user
supplied. The user is asked to provide a value for the data
item name. Using the value supplied, each record in the set
is obtained and checked to see if the data item value
matches the one provided by the user. When a match is fouand,
the routine terminates. If a match is not made, the user is

so notified and the routine terminates.

42
Section 3.9 Descrirtion of CODECK routine

The CODECK routine is an internal procedure designed to
verify the security code and personnel code entered by the
user. The main routine is the only routine which calls

CODECK, and the calling format is:
CALL CODECK;

CODECK uses two variakles: SCODE and PCODE. SCODE is the
security code for the user, and PCODE is the wuser's
personnel code. Both codes must match those contained in the
file SECHAT.

The operation of CODECK is very straight forwvard. Since
SECMAT is a sequential file, CODECK takes PCODE and
sequentially searches the file SECMAT looking for a match.
If a match is made, then the next six digits in SECHAT must
match SCODE.

If either PCODE or SCODE do not match in the file SECMAT,
a message is sent to the user telling him which code did not
match. The user has three tries to match PCODE and SCODE
before the CODECK routine returns to the main routine and

execution of QL1 is terminated.

83
Section 3.10 Description of ERROR routine

The BERROR routine is an internal procedure designed to
produce a specific error message based on the value of the
return code, RCODE. The routine consists of several
IF-THER-ELSE statements. The return code is checked and if
it matches one of tbe IP-THEN-ELSE statements the error
message is displayed; otherwise the message ‘'RETURNING TO

MAIN ROUTINE...'" is displayed and the routine terminates.

44

Section 3.1% Description of PTR-ADJUST routine

The PTR-ADJUST rcoutine is very sisiliar to the pointer
setting used in the SYM-SEARCH routine. The main difference
is that PTR-ADJUST is used to right-justify numeric values
vhile SYM-SEARCH always left-justifies the values it points
to. PTR-ADJUST may be called by the ENTER, MODIFY, and
REC-FIND routines.

When character data is entered into working storage it is
left-justified. By using the SYM-SEARCH routine the based
pointer, P, points to the appropriate byte to enter the
first character. However, when entering numeric data it must
be entered right-justified. This means the length of the
data being entered must be determined, the amount of storage
for the item must be determined, and if the number of Lbytes
of storage is greater than the number of bytes the data
consists of, then the based pointer, P, must be adjusted.
Pig. 3.01.1 shous the storage location for a data item,

AMOUNT-DUE. The picture attribute for this item is 9(3) v99.

"AMOUNT-DUE

SII'IF'T}—IS
| N N R | | | [|

fig. 3.11.1 Storage location for AMOUNT-DUE

The picture character, V, indicates that an assummed decimal
point belongs between the third and fourth digits. If the
value 1000 were entered left-justified as showvn in figure

3.11.2, it's numeric value would be 100.0;

45
AMOUNT-DUE

10000 ¥ | 1}

1]

r
¥

.
P

fig. 3.11.2 AMOURT-DUE left-justified

However, it's proper value, 10.00 is obtained when it is
placed into storage right-justified as shown im figure

3.11.3.

AMOUNT-DUE

e,

s Al
T— T T 1T T 1 | T *
2 1 %“ltlolotol tgj

P
£ig.3.11.3 AMNOUNT-DUE right-justified.

The adjustment of P is made by subtracting the number of
bytes the input value contains from the amount of storage
reserved for the iteam. This difference is added to the value
of P. In the above example, there were five bytes reserved
for lHOUIT?DUB. but the input value only consisted of four
bytes. The difference of one byte was added to P so that it

would point to the appropriate first byte of storage.

CHAPTER !'Oﬁl TEST PROCEDURES
Section 4.1 Data Base Description ..ccceccceaccceccsll?

section “.2 T“t senatio ...I........It...'...000.052

a6

87
Section 4.1 Data Base Description

The data base, DATATEST, represents some of the
information that might be contained in the data base of a
small insurance corporation. Designed only for testing
purposes, DATATEST lacks mapny of the features and design
concepts that might ke expected in a data base of this type.
Figure 4.1.1 shows a graphic representation of <the various
records and set relationships of DATATEST.

INSURED-REC is the main record of the data base: the
record on which all others afe based. It contains
information directly related to the dinsured, i.e. name,
address, social security number, age,.... INSURED-REC is the
owner of four sets:

1. FIN-DATA-SET.

2. INSURED-LIFE-SET.

3. INSUR-HEALTH-SET.

4, INSURED-MED-SET.
and a member of the OCC-DATA-SET. Current implementation
requires, for currency purposes, that the user knmov if a
record is both the owner of a set and a member of one or
more sets. At the time the data base was designed it was
not realized the amount of difficulty that would be involved
in implementing a system that would properly store and
retrieve records which are both owners and members of
various sets. Consequently, when an INSURBD-REC is placed in
the data base, a new OCCUPATION-REC must also be placed in
the data base. Pigure 4.1.2 shows one OCCUPATION-REC for

each INSURED-REC. ¢This is the way QL1 is currently

implemented.

Pigure

4.1.3 shovs

several INSURED-RECs.

This is the

48

one OCCUPATION-REC for

way the records should be

stored if the record is both an owner and a member.

Ot ubPAY o -REL
\O2 | tALC

AINSURE D - REL

OLLUbhTIO |
TN U@ANCS ARSA

EwANGAL=-B3C
lod | care
POLILY -1D

ThSuRANGL AR

Pigure 4.1.1

\e1 | ehe

SSAN-1D

MEDVCLAL~ REC

TNSURANCE AREA

o

LAEE-REC

106 | VIA

INSURAD -L\F € - 88T

TCaRANCE ARTA

> 103 | eae
SSAN-ID
LNSURANCS MRSA

WEALT M-REC
leb | VIA
LN SR HEA LT H-SET

DATATEST Data Base

Insulact ACIA

as
The reason for making OCCUPATION-REC the owner of the
OCC~-DATA-SET was so the user could have a report generated
wvhich would be able to efficiently search the data base and

list all of the insured by occupation.

OLlurNT oDy -
Tie
[.]
L
TNSURED -
REC
1

fig. 4.1.2 Current implementation of QL1.

&LUPAT 0N-
RECL
INSURED -
REL
l
|
INSVMRED -
REC.

fig. 4.1.3 Fossible implementation of QL1t.

OCCUPATION-REC should only contain the occupation, but

currently shows the place of employment also.

50

The INSURED-LIFE-SET <consists of INSURED-RBC and
LIFE-REC, LIFB-REC contains information relating to a
specific life insurance policy. Figure 4.1.4 shows how the

members of the INSURED-LIFE-SET are stored.

TANSURED -
REC

LACE -
REC

fig. 4.1.4 Implementation of INSURED-LIPE-SET.

One insured may own several life policies. The policy number
is the unique identifier to a specific LIFPE-REC record.

The INSUBR-HEALTH-SET is similiar to the INSURED-LIFE-SET
except it is for health insurance policies, The policy
nusber is the unique identifier and the set is implemented
the same as shown in figure 4.1.4.

The INSURED-MED-SET contains information relating to the

medical status of the insured. The record is stored CALC

51
using the SSAN-ID as the CALC identifier. The reason for not
storing this record VIA was because it was not expected to
be utilized as wuch as LIFE-REC and HEALTH-REC.

The FIN-DATA-SET contains <the PFIHANCIAL-REC as it's
member and shows the <financial information for each 1life
policy and each health policy. FINANCIAL-REC is stored CALC
on a policy number so that it might be easily retrieved wvhen

financial information for a specific policy is desired.

52

Section 4.2 Test Separio

Testing of QL1 consisted of entering and deleting entire
records, modifing specific data items, and retrieving data
from various records.

Appendix B shows a sasple of the final testing session.
The test was conducted as followus:

1. A1l of the records for a given insured vere entered
into the data base.

2. 1 member of a set was deleted then all of the
records for a given insured were deleted.

3. Specific data on a member of a set was modified.

4. Information was displayed throughout the test to
show that data wvas properly entered, deleted, or
podified as the case may be.

Considerable other testing was conducted as each
individval module was implemented. This testing is not shown

in the report.

CHAPTER FIVE EVALUATION AND CONCLUSIONS
section 5.& objGCtivesl....I.......I.l.....l.‘.I.I.Sn
Section 5.2 BEvaluation of the Prototype language ..55

Section 5.3 CONClUSIiONS cevccccessscscaascccansccesdB

53

54
Section 5.1 Objectives

The objective of this project was to design and implement
a prototype gquery language which could be used with the
Integrated Database Management System (IDMS). This chapter
discusses how well tke design and implementation of QL1 met
that objective.

The evaluation will consider such points as portability,
extensibility, and efficiency. Since this is a truly
subjective evaluation, I will attempt to cover both the good
and bad features of the language. Numerous observations made
during both the implemantation and and testing phases caused
thought to be given to major design changes. However, since
this project was limited mainly by a time factor the changes
vere not implemented. Rather, a discussion of the possible

changes is included in the evaluation.

55

Section 5.2 Bvaluation of the Prototype Language

As computer networks and distributed data bases come more
and more in to use, the portability of software which
interfaces with the network or data hase becomes a greater
concern. In the initial design phase of QL1 it vas felt that
the language should be portable to as many systems as
possible. This decision immediately ruled out using an
assembler language as the isplementation language. Of the
high level 1languages suitable for use, COBOL and PL/1
appeared to be the two most likely candidates. COBOL,
because of it's wide spread usage throughout <the Lbusiness
world would be the most likely choice, but because of the
time limitation and the fact that I was not familiar with
COBOL, it was decide to go with PL/1. In addition to the
fact that PL/1 is not as widely used as COBOL, another major
drawvback is that some of the PL/1 features used ip QL1 are
only available on versions of the PL/1 compiler that have a
preprocessor available.

Being a computer-prompted language and modular in design
allows considerﬁhle roos for expanding and improving the
features of QL1. As previously mentioned, numerous ideas for
improveent came during the testing and implementation
phases. One such improvment could be wade in the ENTER
routine. Since IDMS requires that the owner of a set be the
current of set when the object record is stored, the
sequence in which the user enters records becomes extremely
important. The potential problem of a user atteapting to

enter a record without first bhaving the proper currency

56
status could be alleviated by including the owner and set
pamnes for all records, not djust those without CALC
identifiers, in the file IDLIST. At the time the user
entered the name of the record to be entered, IDLIST could
be checked to see if the record was a member of a set or
not. If it wvwas, the owner record's name could be retrieved
and the user asked to provide the value of the CALC
identifier for the owner. The owner could then be obtained
and proper placement of the object record insured. If the
owner had not yet been stored, the IDMS error-status could
be checked and the user advised to store the owner record
prior to storing the object record. This procedure would
cause considerable cverhead for the storing of wmultiple
records; however, the security provided in storing
individual records would be greatly enhanced. Also, the
probability of multiple records being stored through the
facilities of QL1 is less than the probability of individual
records being stored. If an entire series of records were
being stored it would more 1likely be done in a batch mode
rather than interactively.

In considering the efficiency of QL1, it can be
considered far more efficient, even in its present fora,
than a batch operation, since it allows for immediate access
to the data base. However, a major modification that should
be iade wvould be to convert the sequential search technigue
used in the SYM-SEARCH routine into a binary search
technique. SYMFILE is sorted alpabetically within each
record type. This was done with the idea of implementing the

binary search.

57

One problem peculiar to IDMS was the use of READY and
FINISH statements. A READY statement must be issued before
any DML command can be given. After the READY statement is
issued data is passed back and forth between the user's
working storage and the Data Base Management System (DBMS)
buffers. However, +tbe journal, which maintains changes to
the data base, is not closed until a PINISH statement is
encountered. Therefore, in an interactive environment
abnormal termination of the program could cause a loss of
all the records which had been entered, deleted, or
podified. It was considered that for the sake of security
that a READY and FINISH would be placed in the three
routines wvhich performed the previously mentioned functioms.
This would insure that in the event of an adnoraal
termination of the ﬁrogral. only those records being
manipulated by the current routine would be affected. This
vas, hovever, considered to have too high an overhead for
the small amount of security which it provided. Therefore,
only one READY statement is issued at the beginning of the
main routine and one FINISH statement just prior to the

teraination of the progranm.

58

Section 5.3 cOhclnsions

The purpose of this project was to design and isplement a
prototype query langquage which would interface with the
Integrated Database Banagement Systen. The design
requirements were specified in chapter 9one. Several
assulptioné vere made concerning the design of the data
base; @mainly due to the fact that the language is a
prototype. Host of the assumptions could be changed through
expansion and modification of the prototype.

As the features of the language begamn to emerge, the need
for considerable information not readily available became
apparent. Most of +this information can bel obtained and
placed in files which may be accessed by QL1 anytime. This
includes information required when data items are added or
deleted and nev record types are created. A major area of
further consideration is the probles of data-structure
sapping. It was this area that <caused considerable
consternation wvhen attempting to develop address pointer
algorithas,

The problems encountered during the development of QL1
vere many and varied. However, it is hoped that the
preceeding pages have shown the benefit of such a language
to potential users of IDMS. Although limited in
sophistication, QL1 does meet it's basic design reguirements
and hopefully provides the framework for further research in

the area of query language design.

APPENDIZ 1A

SYMBITD: PRCC CPTIONS (MAIN):

START:

CQONT1

DECIARE (NUMVAL, TUMVAL, TEMP) FIXED BIN (15),
CHARVAL CHER (16) VARYING:
DECLARE 1 SYMTAB (50),
2 ID CHAR (1),
2 VALUE FIXED BIN,
2 OFFSET FIXED BIN;
DRCLARE (I. L, P) FIXED BIN,
CCUNT FIXED BIN (15) INIT (1),
RECNAM CHAR (16},
CARD CHAR (80): /* INFUT VARIABLE*/
DECLARE SYMFILE RECORD DIRECT KEYED
ENV (REGIONAL (2)):
OPEN FILE (SYMFTLE) OUTPUT:

GET FILE {SYSIN) EDIT (RECNAM) (A({16)):
CFN END FIIE (SYSIN) BBGIN:
CLOSE FILE (SYMFILE);
30 TO TFRM;
END:
COUNT = 1:
TOTVAL, NUMVAL = 0O:
GET FILE (SYSIN) EDIT (CARD) (COL (1), A(80)),
/* THE CHARACTERS 'END' INDICATE THE END OF A
RECORD TYPE */

o YEOE (SUBSTR{CARD, 1, 3) ='ED');

/* CONT1 TO LAB1 SFARCHES ACROSS THE INPUT TO
FIND */

/* THE DATA ITEM NAME. AT THE START OF IAB1,
THE I */

/* POINTER POINTS TO THE FIRST CHARACTER IN THE
DATA */

/* TTEM NAME. P POINTS TO THE FIRST BLANK FOI~
LOWING THE */

/*THE DATA TTEM NAME. */

DO WHILE (L 2):

DO WHIIE (SUBSTR(CARD, I, 1) =' ');
I=1I+1;
END;

P =1:

Al

CK: DO WHILE (SUBSIR(CARD, P, 1= ¢ !):

P=P+];

END;

IF I, = 0 THEN DO;
I=0Pp;
L=1;
END;
EISE L = 2;
END CONT1;

IABl: NAME (COUNT') = SUBSTR (CARD,I,P-I);

.R = VERTFY (SUBSTR(CARD,P), ' '):
/*¥ IF R = 0 THEN THIS IS NOT AN ELEMENTARY DATA ITEM.*/

IF R = O THEN DO;

ELSE DO;
P = INDEX(CARD,'(');
IF P== O THEN DO;
I = INDEX(CARD,'FIXED');
IF I= O THEN DO;
ID(COUNT) = 'F';
CALL FIXGEN;
VALUE (COUNT) = NUMVAL;
END;
ELSE DO;
CALL ATRIGEN;
IF SUBSTR(CARD,I+l)==" ' &
SURSTR (CARD, I+1,1) == ',1!
THEN DO;
TEMP = NUMVAL;
NIMVAL, = O;
I=1+1;
IF SUBSTR(CARD,I,1) = 'V' THEN
I=I+1;
DO WHILE ((SUBSTR(CARD,I,1)~=' ") &
(SUBSTR (CARD, I,1)~= '."));
NUMVAL = NOMVAL + 1;
I=I+1;
END;
NUMVAL = NUMVAL + TEMP;
ID(COUNT) = 'F';
VALUE (CCUNT) = NUMVAL;
TOIVAL = TOTVAL + NUMVAL;
END;
ELSE DC;
ID{COUNT) = 'C';
VALUE (COUNT) = NUMVAL;
END;
END;

END;
ELSE DO;
= INDEX(CARD,'9');
NUMVAL = 0;
DD WHILE ((SUBSTR{CARD,I,1)~=' '} &
(SUBSTR(CARD,I,1)v="."));
NUMVAL NUMVAL + 1;
= I+1;
END'
ID(COUNT) = 'F';
VALUE (COUNT) = MMIAL,
OFFSET (COUNT) = TOTVAL;
TOTVAL = TOTVAL + NUMVAL;
END;
END;
COUNT = CCUNT + 1;
GET FILE(SYSIN) EDIT (CARD) (CCL(1),A(80));

END COMP;
CALL SORTS;
GO TO START;
FIXGEN: PROC;
P = P+1;

DO WHILE((SUBSTR(CARD,P,1)=="',"')& (SUBSTR(CARD,P,1)m=")"));
CHARVAL = CHARVAL ! SUBSTR(CARD,P,1);
P = P+i;
END;

NUMVAL = CHARVAL; :

OFFSET (QOUNT) = TOTVAL;

TOTVAL = TOITVAL + CEIL((NUMVAL+1)/2);

FEND FIXGEN;

A3

ATIRGEN: PROC;

I=P+1;

IC WHILE (SUBSTR(CARD,I,1}=='}"');
CHARVAL = CHARVAL SUBSTR(CARD,I,l):
I=I+1;

BD;

NUMVAL = CHARVAL;

OFFSET (OOUNT) = TOIVAL;

TOIVAL = TOIVAL + NUMVAL;

END ATRIGEN;

SORTS: PROC;
DECIARE 1 TEMP,
2 NAME CHAR (1§),
2 ID CHAR(1),
2 VALUE FIXED BIN,
2 OFFSET FIXED BIN;
SORTED = 0;
J,K = COUNT - 1;
BUBBLE: DO WHILE((SORTED=0)& (J)=2));
SORTED = 1;
DOTI=2T0J;
IF SYMTAB,NAME (I-1) > SYMTAB,NAME({I)
- THEN DO;
TEMP = SYMTAB(I-1);
SYMIAB(I-1) = SYMIAB(L);
SYMIAB(I) = TEMP;
SORTED = 0;
END;
END;
J=J-1;
END BUBBLE;
RITE: DO COUNT = 1 TO K;
TEMP = SYMTAE (COUNT) ;
WRITE FILE (SYMFILE) FROM (TEMP)
KEYFROM (RECNAM i\ COUNT);
PUT SKIP FILE {SYSPRINT) LIST (TEMP);
END RITE;
FEND SORTS;
END SYMBIID;

i

Ad

DATATST:

PROC CPTIONS (MAIN);
DCL SYMFILE RECORD DIRECT KEYED UPDATE
ENV (REGIONAL (2)) ;

DECLARE (I,J,CNT,CONT,TEST1,TESTZ2,FLAG,RCODE)
FIXED BIN,

(s,NUM) CHAR (1),

(PCCDE,SCODE)} CHAR (6),

BNS CHAR (3) VARYING,

(K,L) FIXED BIN (31),
(RN,SN,ID,TEMP) CHAR (16),
(INPUT,QUTPUT) CHAR (50) VARYING,
(2DJ,LEN) FIXED BIN (15),

CVAL CHAR (50) RASED (P),

NVAL FIXED BIN (31) BASFD (P),
(T, RPTR) POINTER,

MASK BIT (32) INIT('000000001111111

1111111111111111°B),

1 TARLE (50),
2 NAME CHAR(16),
2 ID CHAR(1),
2 VALUE FIXED BIN,
2 PTR FIXED BIN,
1 BUFF,
2 NAME CHAR(16),
2 I CHAR(1),
2 VALUE FI¥ED BIN,
2 PTR FIXED BIN,
FUNCTION(5) CHAR (25) VARYING
INIT('1l. ENTER NEW DATA.',
'2. DELETE DATA.',
'3, MODIFY DATA.',
‘4. INFORVATION RETRIVAL.',
'5. REPORT GENERATION.');

2DCL AD CALC ENTRY (CHAR) RETURNS (CHAR);
SAD CAIC: PROC (NAMES) RETURNS (CHAR);

DECIARE (NAMES, RSTR,C,TEMP1,TEMP2) CHAR,
(I,J,K) FIXED;
Tiw

had

I,
J

=
< i

RSTR,TEMPL, TEMP2 = '';
DO I =2 70 500;
C = SUBSTR(NAMES,T,1);
IFf J = 1 THEN DO; ,
IF C+= '*° THEN RSTR + RSIR Il ';';
ELSE I = 500;
J=0;
END;
IF C = '-' THEN DO:
TEMPl = TavPl | C;

C= |_|;

A5

-

o =

Ir K = 1 THEN DO;

. ELSE IF C = '.' THeN DO;
i

RSTR = 'IF ®¥ = ''' || TEMPL |
*! THEN RPTR = ADDR(' W\
TeMp2 Y| 1)1
K= 0;
END;
ELSE RSTR = RSTR || 'ELSE
IPRN = """ || TeMP1 \| *'' THEN RPTR = ADDR(’ \\
=2 | ') ';
TEMP1, TEMP2 = '';
END;
ELSE LCO;
el = TPl | C;
TEMP2 = TEMP2 \| C;
END; ;
END;
RETURN (RSTR);
SEND AD CAIC;

DCL (CUSTOMER SUBSCHEMA.DATATEST SCHEMA.DATATST
PROGRAM) MODE (KSU) DEBUG; |
INCLU E IDMS (GENERIC); -
INCLUDE IDMS (SUBSCHEMA DESCRIPTION) ;
INCLADE IDMS (SUB SCHEMA BINDS);

READY UPDATE;

IDMS STATUS: PROC;
IF ERROR STATUS = '0000' THEN RETURN;
DISPIAY ('****IDMS FRROR DETECTED**%*1) .
DISPIAY ('DROGRAM NAME = ' || PROGRAM);
DISPIAY ('ERROR STATUS = ' || ERROR STATUS);
DISPIAY ('ERROR RECORD = ' |i ERROR RECORD);
DISPIAY ('ERROR SET = ' !!| ERROR SET);
DISPIAY {('ERROR ARFA = ' || ERROR AREA);
DISPIAY ('IAST GOOD REORD WAS ' || RECORD NAME);
DISPIAY ('LAST GOOD ARE WAS ' || AREA NAME);
DISPIAY ('DMI, SEQUENCE NUMBER IS ' || DML SEQUENCE);
ERROR STATUS = '1400'; -
ROODE = 4;
END TDMS_STATUS;

1ABl: RCODE = 2;
I=1;
DO WHILE (ROODE = 2);
DISPLAY ('PLEASE ENTER YOUR SECURITY CODE.');
DISPIAY ('MVMMMM SSSSSS KKKKEX ")
REPLY (SCUDE) ;
DISPLAY ('PLEASE ENTER YOUR PERSCNNEL NUMBER, ');
DISPLAY (' MMM S5S38S KKKKKK Yz
REPLY (PCODE) ;
CALL CODECK;
I=1I+1;
END;

A6

/* ROODE = 5 INDICATES THAT THREE AITEMPTS WERE MADE TO
ENTER THE SYSTEM WITH THE WRONG SECURITY CCDE CR PER-
SONNEL NUMBER*/

IF RCODE = 5 THEN GO TO TERM;

IAB2: DISPIAY ('ENTER NUMBER FCR FUNCTICM TO EE
PERFORMED') ;
D0I=1T05;
DISPIAY (FUNCTION(I));
END;
IAB3: DISPIAY (' ') REPLY (NUM) ;

IF NUM = '1l' THEN CALL ENTER;
ELSE IF NUM = '2' THEN CALL DELET;
ELSE IF NUM = '3' THEN CALL MODIFY;
ELSE IF NUM = '4' THEN CALL INFO;
ELSE IF NUM = '5' THEN CALL REPORT;
ELSE DO;
DISPIAY (' INVALID COMMAND'):
DISPIAY ('RE-ENTER FUNCTION
NUMBER') ;
G0 TO LAB3;
END:
IF RCCDE » 1 THEN CALL ERROR;

/* THE ABOVE IS AFTER RETURN FROM CNE OF THE MODULES */
DISPIAY('DO YOU WISH TO CONTINUE? (YES/NO)');

DISPLAY (* 7} REPLY(ANS);
IF ANS = 'YES' THEN GOTO LAB2;

/***/

o */
/* ENTER ROUTINE */
* £/

/***ﬁ***/

ENTER: PROCEDURE;
DECLARE TEST BIT(1);
OFEN FILE (SYMFILE);

/* ON KEY CONDITION WILL INDICATE THE LAST DATA ITEM */

/* FOR THAT PARTTCULAR RECORD HAS BEEN ACCESSED. */
ON XEY (SYMFILE) GOTO E4; -
TEST = *1'B;
El: DO WHILE (TEST = '1'B);
CNT = 1;
RCODE = 1;

DISPIAY ("ENTER RECORD NAME') REPLY (RN);

/* ED COMP RETURNS THE BEGINNING ADDRESS FOR THE RECORD */
/* IN STORAGE. */

A7

CALL 2D,COMP (RN,RPTR,RCODE) ;
II' RCODE = 1 THEN DO;
ALLOCATE CVAL;
I=P;
E3: DISFLAY ('PLEASE ENTER THE FOLLOWING INFORMATION');
DO WHIIE ('1'B);
READ FILE (SYMFILE! INTO (BUFF)
KeY (RN \\ ouT);

IF BUFF.NAME "= 'FIT ' & BUFF.ID== ' ' TiEN DO;
/* THIS SBECTION OF CODE SETS THE POINTER FOR CVAL AND NVAL TO THE i
/* THE BEGINNING ADDRESS OF THE DATA ITEM TO BE ENTERED. */

UNSPEC (RPTR) = UNSPEC (RPTR) + MASK;
K = BIN(UNSPEC (RPTR) ,31,0);

L = BIN(UNSPEC (BUFF.PTIR),31,0);
UNSPEC (P) = UNSPEC (BIN(¥+L,31,0));
N = BUFF.VALUE;

I00P: DISPIAY ('ENTER' |\ BUFF.NAME) REPLY {INPUT);
IF BUFF.ID = 'C' THEN SUBSTR(CVAL,1,LEN) =
INPUT;
ELSE DO;

CALL PTR ADJUST;
IF RCODE = 1 THEN SUBSTR (CVAL,l,LEN) =
’ INPUT;
ELSE DO;
DISPLAY ("LENGTH OF ' 1D \\
'CONTAINS' \\ ADJ \\| 'CHARACTERS'

'T00 MANY.'};
GO TO LCOF
END;
END;
END;
CNT = ONT + 1;
END;
E4: P =7
FREE CVAL;

/* STORE RN */
SUBSSCHEMA CTRL.DML, SEQUENCE = 0008;
CALL IDMSPIF (ADDR (IDEBMSCONM({42)) ,RN);
CALL IDMS STATUS;
IF RCODE = 1 THEN DC;
DISPIAY (RN !!'RRCORD STORED...');
DISPIAY ('DO YOU WISH TO ENTER ANYMORE RECORDS?');
, REPLY (2NS);
IF ANS = "NO' THEN TEST = '0'B;
END;
ELSE TEST = '0'B;
BEND El;
E6: CLOSE FILE (SYMFILE);
END ENTER;

A8

/**/

/% */

/* DELETE ROUTTNE x/
x 3 *

/**/

DELET: PROCEDURE;

ROCDE = 1;
ALIOCATE CVAL;
T =P;
D1: DISPIAY('ENTER THE NAME OF THE RECORD TO BE DELETED')
REPLY (RN);
/* REC FIND PIACES THE RECORD TO BE DELETED INTO WORKING 74
/* STORAGE. x/

CALL REC FIND;
IF ROCODE = 1 THEN DO;
SUBSCHEMA CTRL.DML SBEQUENCE = 0013;
CALI, IDMSP1F (ADDR (IDBMSCOM(03)),RN);
CALL IDMS STATUS; :
IF RCODE = 1 THEN DO;
DISPLAY ('ARE THERE ANYMORE RECORDS TO DELETE?')

REPLY (ANS) ;
If 2NS = 'YES' THEN GO TO D1;
END;
FND;

P=1;

FREE CVAL;

END DELETE;
JEREERIRERRRRFIEERRRELEERERRRRXIRRIERRRRRIAEIRRIRAIRRRIIAIRIARARK /
/* *
/* MODIFY ROUTIME L7 4

%

/***#*********t#*******/

MODIFY: PROCEDURE;
RCODE = 1;
TEST1,TEST2 = 1;
ALIOCATE CVAL;
T = P; .
START: DO WHILE(TEST2 = 1);
DISPLAY ('ENTER NAME OF RECORD TO BE MODIFIED')REPLY (RN);

/* REC FIND PLACES THE RECORD TO BE MODIFIED INTO WORKING */
/* STORAGE. i

CALL REC FIND;
IF ROODE = 1 THEN DO;

A9

DO WHITR(TESTL = 1);
DISPLAY {'ENTER NAME OF ELEMFNT TO');
DISPIAY {'BE MODIFIED,') REBPLY({ID);
/ SET A POINTER TO THE ACDRESS CF TIE DATA ELEMANT */
/* T0 BE MODIFIED, */

C2IL SYM SEERCH;
IF RCODE = 1 THEN DO;
Z=20;

1COP: DISPIAY {'ENTER NEW VALUE FOR ' \\ ID)
REPLY (INPUT) ;
Z=2+1; .
'C' THEN SUBSTR(CVAL,1,N) = INPUT;

CALL PTR ADJUST;
IF BROODE = 1 THEN SUBSTR(CVAL,1,IEN) =
INPUT;
FLSE DO;
© DISPLAY ('IENGTH OF ' \ ID \\ "OONTAINS');
DISPLAY (ADJ \! 'TO0 MANY CHARACTERS.'):;
IF Z< = 2 THEN GOUIO LOOP;
ELSE GOTO Ml;
END;
BEND;

/* MODIFY (RECORD-NAME) */

SUBSCHEMA CTRL.DML, SEQUENCE = '0017';
CALL IDMSPIF (ADDR {IDEBMSCOM(35)),BN);
DISPLAY ('ARE THERE RANYMORE DATA__]:TLE.."VENI‘S');
DISPIAY ("TO BE MODIFIED? (YES/NO)')
REPLY (ANS) ;
IF ANS = 'NO' THEN TEST1 = 0;
END; '
END;
DISPIAY ('ARE THERE ENYMORE RECORDS TO BE MODIFIED?');
DISPIAY (' (YES/NC)') REPLY (ANS);
IF ZNS = "NO' THEN TESTZ = 0;
oND;
FLEE TEST2 = (;
END START;
Mi: P=1T;
FRER CVAL;
2D MODIFY;

AlQ

./*********************************tt******ﬁ**********************/

/’ *) *,/

7 INFORMATTION EETRIEVAL ROUTINE L7
- ®*

/**t*f

T = P;
RCODE = 1;
TESTL = 1;
Il: DO WHILE (TEST1 =1);
TEST2 = 1;

DISPLAY ('ENTER THE NAME OF THE RECORD WHICH ');
DISPLAY (*CONTAINS THE INFORMATION TO BE DISPLAYED')
REPLY (RN} ;

/* REC FIND PLACES THE RECORD TO BE DISPIAYED INTO WORKING */
/* STORAGE. H

CALL REC FIND;
IF RCCDE== 1 THEN TESTIL = 0;
ELSE DO;
DISPLAY ('DO YOU WANT THE ENTIRE RECORD DISPIAYED?')
REPLY (ANS) ;
IF ANS = 'YES' THEN CALL REC DISPIAY;
ELSE DO;
DO WHILE(TESTZ = 1);
DISPIAY ('ENTER THE NAME OF THE DATA ELEMENT’);
DISPLAY (' TO BE DISPLAYED.'); -
DISPLAY ('ELR-GNT =') REPLY(ID);

7 i SYM_SEZ!RCHSEPAPOINI‘ERTOTHEBEEH{NEGAEJRESSOFIHE*/
/* DATA ITEM TO BE DISPLAYED. */

CALL SYM SEARCH;
IF ROODE-\= 1 THEN GOTO I2;

ELSE DO;
CUTPUT = SUBSTR(CVAL,1,N);
DISPIAY(ID i\ ' = ' \\ OQUTPUT);

DISPIAY ('IS THERE ANYMORE INFORMATION');
DISPIAY {'IN THIS RECORD TO BE DISPIAYED?');
DISPIAY (' (YES/NO) ') REPLY (ANS);
IF 2ZNS = 'NO' THEN TEST2 = 0;
END;

END;
DISPIAY ('IS THERE INFORMATION IN ANOTHER');
DISPIAY ('RECORD YOU WISH DISPIAYFD? (YES/NO)')

REPLY (ANS);

All

IF ANS = NG 1HEN TESTL = 03

END I1;

I2: P=T;

FREE CVAL;

END INFO;
JREEERRREEERERFRIHAEIHXXRERIRIR AR ERRERRATRLFRRREI RS ETRIEIRARATKR [/
7 */
Vil REC FIND ROUTINE */

& - *

/** kkkkkkkhkkkkkkkkkhkkir **ﬁ*t************************************/

REC_FIND: PROCEDURE;
RCODE = 1;

/* TEMP = RN IS USED SO THAT IF RN IS THE MEMBER CF A SET AND */
/* DOES NOT HAVE A CALC IDENTIFIER, THE CWNER OF THE SET IS */
/* RETRIEVED AND THEN RN = TEMP IS USED TO FIND THE MEMBER THAT */
/* IS DESIRED. ID FIND IS THE ROUTINE THAT DETERMINES WHETHER OR*/
/* NOT THE RECORD DESIRED HAS A CAIC IDENTIFIER AND IF NOT IT */
/* LOCATES THE OWNER RECORD AND ITS CALC IDENTIFIER. */

/% Su4 SEARCH SETS A POINTER TO THE BEGINNING AUDRESSS OF Tl %/
/* CAIC IDENTIFIER FCUND BY ID FIND. */
CALL SYM SEARCH;
TF' RCODE = 1 THEN DO;

I00P: DISPTAY ('ENTER VAIUE FOR' \\ ID) REPLY
(INPUT) ;
IF S = 'C' THEN SUBSTR(CVAL,1,N) = INPUT;
FISE DO;

IF RCODE = 1 THEN SUBSTR(CVAL,1,IEN) =
TNPUT;
ELSE DO;
DISPIAY('LENCTH OF * \\ ™MW\
'CONTATNS n1ang)\
' 700 MANY CHARACTERS.');
(OTO LOOP;
END;
®]D;

/* OBTAIN CAIC(RN) */

SUBSCHEMA CTRL.DML,_SEQUENCE = ‘0014';

CALL IDiSP1F (ADDR {TDEMSOOM(32)) ,RN
,ADDR (IDBMSCOM(43))) ;

CALL IDMS_STATUS;

IF ROODE == 1 THEW GOTG RF1;

Al2

IF FLAG = 1 THEN DO;
R = T

/* THIS IS WHERE THE DESIRED RECORD (WHICH IS A SET MEMBFR} IS */
/* IDENTIFIED. FLAG = 1 INDICATES THAT THE CRIGINAL RN WAS THE */
/* MEMBER OF A SET. */

DISPIAY ('ENTER A UNIQUE NAME TO')};
DISPLAY (' IDENTIFY THE DESIRED RECORD.')
REPLY (ID) ;

CALL AD COMP;
I ROODE = 1 DO;
CALL SYM SFARCH;
IF RCODE = 1 THEN DO;
DISPIAY ('ENTER' Y\ ID)
REPLY (INFUT) ;

/* OBTAIN FIRST RECORD-NAME WITHIN SET-NAME */

SUBSCHEMA. CTRL.DML_SEQUENCE =
'0015;
CAIL IDMSPIF (ADDR (IDBMSCOM(18))
,BN,SN
,ADCR (IDEMSOOM(43))) &
IF ERROR STATUS = '0307' THEN
DISPLAY (ID !\ SUBSTR{INFUT,1,M) W\
'*NOT FOOND. ') ;
CALL IDMS STATUS;
0O VHILE
{SUBSTRI(CVAL,1,YN) — =INPUT & ROODE = 1);

/* CBTIAY EACH RWJORD IN THE SET AS LONG AS THE UNIQUE IDENTTFIER */

/% THAT THE USER GAVE IS NOT EQUAL TO THAT IDENTIFIER IN THE */
/* RECORD C3TAINED. %/

SUBSCHEMA CTRL.DML SPQUENCE = '0016°;
CALL IDMSP1F (ADDCR (IDBMSCOM(10)),RN,SN
,ADDR (IDBMSCOM (43) }) ;
IF ERROR STATUS = '0307' THEN
DISPLAY (ID |\ SUBSTR(INPUT,1,N) \| 'mr FG.NJ '):
CALL IDMS STATUS;

END;
RF1: ED REC FIND;
/*********************i**************************t***************/
/* | i
/* REPORT ROUTINE %/
7k *

/**t*****************/

REPORT: PRGCEDURE;

/* TEIS ROUTINE WOULD NORMALLY MAKE CATLS TC OTHER ROUTINES */
/* WHICH WOUID BE SEPERATE APPLICATION PROGRAMS THAT CAUSE */
/* CERTATN REPORTS TO BE WXITTEN. %/

Al3

/*
/*

DISPLAY ('REPORT PROC CALLED...'):

RCODE = 1;
END REPORT;
JRERRRE TRk kR Rk IR ERR KRR Rk Rk kR kAR Rk AR R AR R AR R Rk kI A /
o
SECURITY CODE THECK ROUTINE L74
*

/t

/***/

CODECK: PROCEDURE;

IAST:

DECTARE CCDE CHAR(6);

OPEN FILE (SEQMAT);

GET FILE (SECMAT) EDIT (CODE) (A(6));
DO WHILE (CODE —= PCODE); -

IF CODE = '"* ' THEN DO; /* THE * INDICATES EOF */
J=1;
G0 TO ERR;
END;

GET FILE (SECMAT) EDIT (CODE) (X(6),A(6));

END;
GET FILE (SECMAT) EDIT (CODE) (A(6));
IF CODE — = SCODE THEN DO;

ELSE ix);

IFr J = 1 THEN DISPIAY ('INVALID PERSONNEL CODE.');
ELSE DISPLAY ('INVALID SECURITY CODE.');

IF I = 3 THEN DO;
DISPIAY ('PLEASE CHECK YOUR PERSONNEL NUMBER AND') ;
DISPLAY ('SECURITY CCDE PRIOR TO ATTEMPTING RE-ENTRY');
DISPLAY (' INTO THE SYSTEM.');
DISPLAY ('PROGRAM TERMINATING.');

ROODE = 5;
END;
CLOSE FILE (SECMAT);
END CODECK;

Al4d

/***##*****#***t*#k**ﬁ********t*t*iik***ﬁ***tt***********k*ﬁ****k/

£ *
/* ERROR MESSAGE ROUTINE : */
Vi *

/*******************************i**k*****************************/

ERROR: PROCEDURE;
JF ROODE = 2 THEN
DISPLAY ('DATA ELEMENT' |\ ID I\ 'NOT FOUND');
EISE IF ROODE = 3 THEN
DISPLAY (RECORD NAME' || RN || 'NOT FOUND');
DISPLAY ('RETURNING TO MAIN ROUTINE.......');

END ERROR;
/***i**************/
/% . +
i : ID FIND ROUTINE */
/* *

/**/

ID FIND: PRCCEDURE;
DCL IDLIST FILE EXTERNAL,
RECORD CHAR(80) ;
/* ON ENDFILE CONDITICN WILL EXIST IF THE RECORD NAME IS INVALID*/

ON ENDFILE (IDLIST) BEGIN;

RCCCE = 3;
GG TO 1LAST;
' END;
RCODE = 1;
FLAG = (;

DO WHILE('1'B);
/% GET FIRST RECORD IN THE FILE */

OPEN FILE (IDLIST);
GET FILE (IDLIST) EDIT (RECORD) (A(80));

/* FIND RECORD THAT MATCHES RECORD NAME */

DO WHILE (RN — = SUBSTR(RECORD,1,16));
GET FILE (IDLIST) EDIT (RECORD) (A(80));

END;
/* WHEN RN IS FOUND, THE RECORD IS CHECKED FOR THE CALC IDENTIFIER*/
/* IF IT HAS NONE THEN FIAG = 1, RN = THE OWNER RBCORD, 2ND - */
/* SN = THE SET NAME. THE CODE THEN LOOPS BACK TO FIND THE NEW */
/* RECORD. */

Al5

IF SUBSTR(RECORD,17,16) = = ' ® THEN DO;
D = SUASTR (RECOKD,17,16);
GO TC LAST;
END;

FIAG = 1;

RN = SUBSTR(RECORD, 33,16);

SN = SUBSTR(RECORD,49,16);

CLOSE FILE (IDLIST);

H\]D.

I
LAST: CLOSE FILE (IDLIST);
END ID FIND;
e e i Ly
* */
/™ ADDRESS COMPUTATION ROUTINE */
* *

/**/

AD QMP: PROCEDURE;
%DECIARE NAMES CHARACTER;
$INCIUDE RECNAMS;
RCODE = 1;
AD CAIC (NAMES) ;
ELSE ROODE = 5;

END AD COMP;
/**i************/
/* *y
/* RECORD DISPLAY RCUTINE */

" | o

/***/

REC DISPLAY: PROCEDURE:

PUT FILE (SYSPRINT) DATA (INSURED_BEC);
PUT SKIP;
END;
ELSE IF RN = 'FINANCIAL-REC' THEN DO;
PUT FILE (SYSPRINT) DATA (FINANCIAL REC) ;
PUT SKIP;
END;
ELSE IF RN = 'OQOCUPATION-REC' THEN DO;
PUT SKIP;
END; .
EISE IF RN = '"LIFE-REC' THEN DO;
PUT FILE (SYSPRINT) DATA (LIFE REC);
PUT SKIP;
END; :
ELSE IF RV = 'HEALTH-REC' THEN DO;
PUT FILE (SYSPRINT) DATA (HEALTH REC);
PUT SKIP; -
END;

Ale

FISE JF RN = 'MEDICAL~REC' THEN DO;
PUT FILE (SYSPRINT) DATA (MEDICAL REC);
PUT SKIP;
END;
ELSE RCODE = 3;
END REC DISPLAY;

/***************************************i*******************i******/

7 */

/* SYMBOL SEARCH ROUTINE %
* *

/*******************i***i**************t***************************/

SYM SFARCH: PROCEDURE;

/* THE ON KEY CONDITION WILL HOLD IF THE SYMBOL DOES NOT EXIST */

ON KEY (SYMFILE) BEGIN;

RCODE = 2;
Q0 TO LAST;
END;
RCCDE = 1;
CNT = 1;

READ FILE (SYMFILE) INTO (BUFF) KEY (RN |\ CNT);
/* SEARCH THROUGH SYMFILE FOR ID */

DO WHILE (BUFF.NAME — = ID);
CNT = CNT + 1;
REZD FILE (SYMFILE) INTO (BUFF) KEY (RN !\ CNT);
END;

/* WHEN ID IS FCUND, SET THE BASE POINTER TO THE ADDRESS OF ID. */
/* § = EITHFR C OR F DEPENDING ON WHETHER THE ATTRIBUTE OF ID */
/* IS CHARACTER OR FIXED. N = THE NUMBER COF BYTES OF STCRAGE */
/* REQUIRED FOR ID. */

UNSPEC (RPTR) = UNSPEC(RPTR) + MASK;
K = BIN(UNSPEC (RPTR),31,0);

= BIN (UNSPEC (BUFF.PTR),31,0);
UNSPEC (P) = UNSPEC (BIN (K+L,31,0));

S = BUFF.ID;
N = BUFF.VAILUE;
1AST: END SYM SEARCH;

Al7

/***/

o */
/* POINTER ADJUST ROUTINE i
* *

/***/

PTR ADJUST: PROCEDURE
- RCODE = 1
LEN = INDEX (INPUT,' '")-1;
ADJ = N - LEN;
IF ADT ¢ 0 THEN RCODE = 4;
ELSE DO:
K = BIN(UNSPEC(P),31,0);
L = BIN(UNSPEC(ADJ),31,0);
UNSPEC (P) = UNSPEC (BIN(K+L,31,0));
END;
END PTR ADJUST;

e e

TERM

FINISH;
DISPIAY("END OF JOB');
END DATATST;

AlS

APPENDIX

qLl |
DMSL107401 EXECUTION BEGINS...
PLEASE ENTER YOUR SECURITY CODE.

PLEASE ENTER YOUR PERSONNEL NUMBER.

ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA:

4, INFORMATION RETRIEVAL.

5. REPORT GENERATION.

1

ENTER RECORD NAME
occupation-rec

PLEASE ENTER THE FOLLOWING INFORMATION
ENTER C-AREA-CODE

913

ENTER C-CITY

manhattan

ENTER C-PHONE-NUMBER

776=-4100

ENTER C-STATE

ks

ENTER C-STREET

913 w 5th ave

ENTER C-Z1IP-CODE

66502

ENTER COMPANY-NAME

u.s. pipe co.

ENTER OCCUPATION

welder

OCCUPATION-REC RECORD STORED...
DO YOU WISH TO ENTER ANYMORE RECORDS?
yes

ENTER RECORD NAME

insured-rec

PLEASE ENTER THE FOLLOWING INFORMATION
ENTER AGE

34

ENTER ANN-NET-INCOME

$18,000.00

ENTER CITY

clifton

Bl

ENTER DATE-QF-BIRTH
100342

ENTER 1-AREA-CODE
913

ENTER l1-NAME

robert smith

ENTER MARITAL-STATUS
2

ENTER PHONE-NUMBER
883-9911

ENTER POLICY-TYPE

1h

ENTER SSAN-ID
173926515

ENTER STATE

ks

ENTER STREET-ADDRESS
111 steel ave.

ENTER YEARS~-EMPLOYED

5

ENTER ZIP-CODE

66507

INSURED-REC RECORD STORED...

DO YOU WISH TO ENTER ANYMORE RECORDS?
yes

ENTER RECORD NAME
madical-rec
PLEASE ENTER THE FOLLOWING INFORMATION
ENTER CONDITION

1

ENTER D-AREA-CODE
913

ENTER D-CITY
clifton

ENTER D-PHONE-NO
882-0000

ENTER D-STATE

ks

ENTER D-STREET
123 main st.
ENTER D-ZIP-CODE
66507 '

B2

ENTER DOCTORS-NAME
0. roberts

ENTER LAST-PHYS-DATE
061074

ENTER MAJ-AILMENT
noae

ENTER SSAN-ID

173926515

MEDICAL-REC RECORD STORED...

DO YOU WISH TQO ENTER ANYMORE RECORDS?
yes

ENTER RECORD NAME

life-rec

PLEASE ENTER THE FOLLOWING INFORMATION
ENTER B-NAME

betty smith

ENTER CITY

clifton

ENTER FACE-VALUE

$10,000.00

ENTER ISSUE-DATE

050173

ENTER POLICY-ID

100000005

ENTER STATE

ks

ENTER STREET

111 steel ave.

ENTER ZIP-CODE

66507

LIFE-REC RECORD STORED...

DO YOU WISH TO ENTER ANYMORE RECORDS?
yes

ENTER RECORD NAME

health-rec :

FLEASE ENTER THE FOLLOWING INFORMATION
ENTER EXPIRATION-DATE

050177

ENTER ISSUE-DATE

050173

ENTER POLICY-CLASS

general health

ENTER POLICY-ID

L00000005

EEALTH-REC RECORD STCRED...
DO YOU WISH TO ENTER ANYMORE INFORMATION?
yes

B3

ENTER RECORD NAME

financial-rec

PLEASE ENTER THE FOLLOWING INFORMATION
ENTER AMOUNT-OF-LOAN

ENTER AMOUNT-REPAID
ENTER CURRENT-OWED
ENTER D-A-AMOUNT
ENTER DATE-APPROVED

ENTER FREQUENCY

mo '
ENTER L-P-REC~-AMOUNT
4362

ENTER L-P-DATE
110376

ENTER N-P-DUE-DATE
1200576

ENTER NO-OF-PAYMENTS

ENTER P-AMOUNT

$43.62

ENTER PCLICY-ID

L00000005

FINANCIAL-REC RECORD STORED...

DO ¥OU WISH TO ENTER ANYMORE RECORDS?
yes

ENTER RECORD NAME

finencial-rec

DLEASE ENTER THE FOLLOWING INFORMATION
ENTER AMOUNT~-OF-LOAN

ENTER AMOUNT-REPAID
ENTER CURRENT-OWED
ENTER D-A-AMOUNT
ENTER DATE-APPROVED
ENTER FREQUENCY

sa

ENTER L-P-REC-AMOUNT
10000

B4

ENTER L-P-DATE
C10376

ENTER N-P-DUE-DATE
070576

ENTER NO-OF-PAYMENTS

ENTER P-AMOUNT

$100.00

ENTER POLICY-ID

h00C00005

FINANCIAL-REC RECORD STORED...

DO YOU WISH TO ENTER ANYMORE RECORDS?
no

DO YOU WISH TO CONTINUE? (YES/NO)

no
END OF JOB
R;

qLl :
DMSL107401 EXZCUTION BEGINS...
PLEASE ENTER YQUR SECURITY CODE.

PLEASE ENTER YOUR PERSONNEL NUMBER.

ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA,

4, INFORMATION RETRIEVAL.

5. REPORT GENERATION.

3

ENTER NAME OF RECORD TO BE MODIFIED
financial-rec

ENTER VALUE FOR POLICY-ID
L30000001

ENTER NAME OF ELEMENT TO

BE MODIFIED.

no-of-payments

ENTER NEW VALUE FOR NO-OF-PAYMENTS
l ©

ARE THERE ANYMORE DATA-ELEMENTS

TC BE MODIFIED? (YES/NO)

no

ARE THERE ANYMORE RECORDS TO

BE MODIFIED? (YES/NO)

no

DO YOU WISH TO CONTINUE? (YES/NO)

yes

B5

ENTER NUMBER FOR FUNCTION TO BE PERFCRMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4., INFORMATION RETRIEVAL.

5. REPORT GENERATION.

4

ENTER THE NAME OF THE RECORD WHICH
CONTAINS THE INFORMATION TO BE DISPLAYED
financial-rec

ENTER VALUE FOR POLICY-ID

L000Q0000S

DO YOU WANT THE ENTIRE RECORD DISPLAYED?
yes

FINANCIAL REC.POLICY ID='L00000005"

FINANCIAL REC.PREMIUM DATA.P AMOUNT='$43.62 '
FINANCIAL REC.PAYMENT DATA.LAST PAYMENT.L P REC AMOUNT=
4362

FINANCIAL REC.DELINQUENT . ACCT.NO _OF_PAYMENTS=' '
FINANCIAL REC.LOAN DATA.DATE APPROVED=' i
FINANCIAL REC.LOAN DATA.AMOUNT REPAID=' i
FINANCIAL REC.LOAN DATA.CURRENT OWED=' - '
FINANCIAT, REC.FILLER0007=" '
IS THERE INFORMATTON IN ANOTHER

RECORD YOU WISH DISPLAYED? (YES/NO)

no

DO YOU WISH TO CONTINUE? (YES/NO)

yes

ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4, INFORMATION RETRIEVAL.

5. REPQORT GENERATION.

3

ENTER NAME OF RECORD TO BE MODIFIED
financial-rec

ENTER VALUE FOR POLICY-ID
LO0000005

ENTER NAME OF ELEMENT TO

BE MODIFIED.

no-of-payments

ENTER NEW VALUE FOR NO-OF-PAYMENTS
1

ARE THERE ANYMORE DATA_ELEMENTS

TC BE MODIFIED? (YES/NO)

Bé

yes

ENTER NAME OF ELEMENT TO

BE MODIFIED. :
d-a-amount

ENTER NEW VALUE FCR D-A-AMOUNT
4362

ARE THERE ANYMGCRE DATA;ELEMENTS
TO BE MODIFIED? (YES/NO)

no -
ARE THERE ANYMORE RECORDS TO

BE MODIFIED? {YES/NO) -

no

DO YOU WISH TO CONTINUE? (YES/NO)

yes
ENTER NUMBER FOR FUNCTION TO BE PERFORMED
l. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4, INFORMATION RETRIEVAL.

5. REPORT GENERATION.

4

ENTER THE NAME OF THE RECORD WHICH
CONTAINS THE INFCRMATION TO BE DISPLAYED
financial-rec

EMTER WVALUE FOR POLICY-ID

LC0000005

DO YOU WANT THE ENTIRE RECORD DISPLAYED?
no

ENTER THE NAME OF THE DATA_

ELEMENT TO BE DISPLAYED.

ELEMENT =

no-of-payments

NO-OF-PAYMENTS = 1

IS THERE ANYMORE INFORMATION IN THIS RECORD
TO BE DISPLAYED? (YES/NO)

yes '

ENTER THE NAME OF THE DATA_

ELEMENT TO BE DISPLAYED.

ELEMENT =

d=-a-amount

D-A-AMOUNT = 4362 '

IS THERE ANYMORE INFORMATION IN THIS RECORD
TO BE DISPLAYED? (YES/NO)

no

IS THERE INFORMATION IN ANOTHER

RECORD YQU WISH DISPLAYED {YES/NO)

no

DO YOU WISH TO CONTINUE? (YES/NO)

B7

]

£NTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4. INFORMATION RETRIEVAL.

5. REPORT GENERATION.

4 5
ENTER THE NAME OF THE RECORD WHICH

CONTAINS THE INFORMATION TO BE DISPLAYED

1ife-rec
ENTER VALUE FOR SSAN-ID
173926515
ENTER A UNIQUE NAME TO IDENTIFY THE DESIRED RECORD
policy-id
ENTER POLICY-ID
L0O0000005
DO YOU WANT THE ENTIRE RECORD DISPLAYED°
yes

LIFE_REC.POLICY ID='L00000005'

LIFE REC.ISSUE-DATE='050173"

LIFE REC.BENEFICIARY.B NAME='BETTY SMITH

LIFE REC.ADDRESS.STREET='STEEL AVE. :
LIFE REC.BENEFICIARY. B_ADDRESS.STATE="KS'

LIFE PEC.FILLER0OOC3=" s

IS THERE INFORMATION IN ANCTHER

RECORD YOU WISH DISPLAYED? (YES/NO)

ves

ENTER THE NAME OF THE RECORD WHICH

CONTAINS THE INFORMATION TO BE DISPLAYED
insured-rec

ENTER VALUE FOR SSAN-ID

173926515

DO YOU WANT THE ENTIRE RECORD DISPLAYED?

yes

INSURED_REC.SSAN ID='173926515"
INSURED_REC.I-NAME='NAME=ROBERT SMITH
INSURED_REC.CURRENT_ADDRESS.STREET ADDRESS='111 STEEL AVE.
INSURED_REC.CURRENT ADDRESS.CITY='CLINTON
INSURED_REC.CURRENT ADDRESS.STATE='KS
INSURED_REC.CURRENT_ADDRESS.ZIP CODE='66507"
INSURED REC.TELEPHONE.AREA _CODE='913"
INSURED_REC.TELEPHONE.PHONE _NUMBER="'883-9911"'
INSURED_ REC.AGE="'34"

INSURED REC.MARITAL _STATUS="'2"'

INSURED_ REC.ANN _NET INCOME='$18,000.00 '
INSURED_ " REC.POLICY _TYPE="LH'

INSURED REC.FILLER(0002=' !

IS THERE INFORMATION IN ANOTHER

RECORD YQU WISH DISPLAYED? (YES/NO)

no

B8

DO YOU WISH TO CONTINUE? (YES/NO)

yes
ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA,

3. MODIFY DATA.

4, INFORMATION RETRIEVAL.

5. REPORT GENERATICN.

2

ENTER THE NAME OF THE RECORD TO BE DELETED
life-rec

ENTER VALUE FOR SSAN-ID

173926515 -
ENTER A UNIQUE NAME TO IDENTIFY THE DISPLAYED RECORD
policy-id

ENTER POLICY-ID

L90000005

ARE THERE ANYMORE RECORDS TO DELETE?

no

DO YOU WISH TO CONTINUE? (YES/NO)

yes
ENTER NUMBER FOR FUNCTION TO BE PERFCRMED
1. ENTER NEW LATA,

2. DELETE DATA.

3. MODIFY DATA.

4. INFORMATION RETRIEVAL.
5. REPORT GENERATION.

4
ENTER THE NAME OF THE RECORD WHICH

CONTAINS THE INFORMATION TQO BE DISPLAYED
life-rec

ENTER VALUE FOR SSAN-ID

173926515 '

ENTER A UNIQUE NAME TO IDENTIFY THE DESIRED RECCRD
policy-id

ENTER POLICY-ID

LO0000005 =

POLICY-ID LO0000005 NCT FOUND.

*%%*TDMS ERROR DETECTED****

PROGRAM NAME DATATST

ERROR STATUS 0307

ERROR RECORD = LIFE-REC

ERROR SET = INSURED-LIFE-SET

nn

B9

#RROR AREA = INSURANCE-AREA

LAST GOOD RECORD WAS INSURED-REC
LAST GOOD AREA WAS INSURANCE-AREA
DML SEQUENCE NUMBER 1S 15
****TDMS ERROR DETECTED**#%*%
RETURNING TO MAIN ROUTINE...:esew

DO YOU WISH TO CONTINUE? (YES/NO)

yes
ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4, INFORMATION RETRIEVAL.

5. REPORT GENERATION.

4

ENTER THE NAME OF THE RECORD WHICH
CONTAINS THE INFORMATION TO BE DISPLAYED
insured-~rec ’ .

ENTER VALUE POR SSAN-ID

173326515

DG YOU WANT THE ENTIRE RECORD DISPLAYED?
Lo

ENTER THE MAME QF THE DATA

ELEMENMNT o7 BE DISDFAVED, -

ELEMENT =

i-name

I-NAME =ROBERT SMITH

IS THERE ANYMORE INFCRMATION IN THIS RECORD
TC BE DISPLAYED? (YES/NO)

nc

IS THERE INFORMATION IN ANOTHER

RECORD YOU WISH DISPLAYED? (YES/NO)

no

DO YOU WISH TO CONTINUE? (YES/NO)

yes
ENTER NUMBER FOR FUNCTICN TO BE PERFORMED
1. ENTER NEW DATA.

2. DELETE DATA.

3. MODIFY DATA.

4. TINFORMATION RETRIEVAL.

5. REPORT GENERATION.

2
ENTER THE NAME OF THE RECORD TQO BE DELETED

BlOQ

occupation-rec

ENTER VALUE FOR OCCUPATION

welder

ARE THERE ANYMORE RECORDS TO DELETE?
no

DO YOU WISH TO CONTINUED? (YES/NO)

yes
ENTER NUMBER FOR FUNCTION TO BE PERFORMED
1. ENTER NEW DATA.

. DELETE DATA.

. MODIFY DATA.

. INFORMATION RETRIEVAL.,

. REPORT GENERATION.

ok W N

4

ENTER THE NAME OF THE RECORD WHICH
CONTAINS THE INFORMATION TO BE DISPLAYED
insured-rec

ENTER VALUE FOR SSAN-ID

173926515

*#%%*TDMS ERROR DETECTED***

PROGRAM NAME = DATATST

ERROR STATUS = 0326

ERROR RECORD = INSURED-REC

ERROR SET = CALC

ERROR AREA = INSURANCE-AREA

LAST GOOD RECORD WAS OCCUPATION-REC
LAST GOCD AREA WAS INSURANCE-AREA

DML SEQUENCE NUMBER 1S 14
*%**TDMS ERROR DETECTED***#*

RETURNING TO MAIN ROUTINE. .:v.o..

DO YOU WISH TO CONTINUE? (YES/NO)

no
END OF JOB

R;

CHECKPOINTING...

Bll

REFERENCES CONSULTED

Cullinane Corporation, Data Manipulation Language Pro-
grammer's Reference Guide, release 3-1, April, 1974,
Boston, Mass.

Cullinane Corporation, IDMS DML Manual Supplement,
June, 1976, Boston, Mass.

International Business Machines, IBM Virtual Machine
Facility/370: CMS User's Guide, release 3, lst ed.,
February 1976.

Internacional Business Machines, PL/1(F)
Language Reference Manual, 5th ed., December, 1972.

International Business Machines, PL/1(F)
Programner's Reference Guide, 9th ed., September, 1972.

MARTIN, J., Computer data-base organization,
Prentice-Hall, Englewood Cliffs, N. J., 1975.

MARTIN, J., Design of man-computer dialogues,
Prentice-Hall, Englewood Cliffs, N. J., 1973.

TAYLOR, Robert W.; FRANX, Randall L., "CODASYL Data-Base

Management Systems", Computing Surveys 8, 1 (March, 1976),

- §7-103.

TSKHRITZIS, D. C; and LOCHOVSKY, F. H., "Hierarchical
Data—Base Management: A Survey", Computing Surveys 8, 1
(March, 1976), 105-123.

IDﬁS QUERY LABGUAGE
by
William B Shea

B.S5., University of Tampa, Tampa Florida, 1972

AN ABSTRACT OF A MASTER'S REPORT
subaitted in partial fulfillment of the
requirements for the degree
BASTER OF SCIENCE

Department of Computer Science

KAKSAS STATE UNIVERSITY
Manhattan, Kansas

1977

The purpose of this project is to design an interactive
QUERY LANGUAGE to interface with Culliname <Corporation's

Integrated Database Eanagement System (IDMS).

The query language wil be generalized and designed fo
perform the following:

1. Provide additional protection for the system by
using security codes and personnel numbers for each
active user.
2. Provide the «capability of retrieving, stering,
deleting, or modifing information in the database with
only a limited amount of knowledge of the datatase
structure.
3. A report generator module will be included which
will place calls to the actual report wmodule provided

by the user.
A prototype versicn of the language will be implemented.

The 1language will be written in PL/1 and will te a
pachine prompt lanquage, i.e. the user will be asked to
rrovide information and assisted (to a limited -extent) in

determining what to do next.

	Untitled

