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TECHNIQUES FOR TESTING A 15-BIT DATA ACQUISITION SYSTEM

Introduction

Recent advances in semiconductor technology have allowed

higher performance and more complex integrated circuits to be

manufactured; as a consequence, new methods of testing must be

developed. This paper is primarily concerned with testing

digital-to-analog and analog-to-digital converters.

Present converter technology makes it possible to obtain

digital-to-analog converters (DACs) of up to 18-bits and analog-

to-digital converters of up to 16-bits in both chip and modular

form. Custom converters are being produced with 20-bit

resolutions and above. In order to fully test a 12-bit converter,

4,096 possible output states must be examined; testing a 15-bit

converter requires the examination of 32,768 states. By knowing

the types of converter errors that are commonly encountered and

where these errors occur, it is possible to significantly reduce

the number of states tested. For high-resolution converters (12

bits and up), testing of at least 1,024 states is a minimum.

Because of the large number of tests, automated techniques must

be used to obtain accurate results and make efficient use of an

engineer's time.

This thesis discusses techniques for testing a low-power data

acquisition system (DAS). The system resolution is 15-bits,

sampling frequency is 128 Hz, input range is ±5V, and the maximum

input frequency is 45Hz. It is the purpose of this paper to



discuss some of the techniques which have been considered for

testing the system, to present reasons why a particular technique

may or may not be feasible, and to present the results of

applying some of the techniques. Techniques which have been

considered are those which lend themselves to an automated test,

a test which is under computer control and which presents a

numerical and/or a graphical result.

The 15-bit DAS uses a DAC generated reference voltage in a

successive approximation analog-to-digital conversion technique.

In Section 1, a method of testing a DAC's static linearity is

presented together with the results of a static test. This static

test is of considerable interest since the DAS cannot be expected

to perform any better than its internal DAC. Should there be a

need for dynamic testing the DAC, Section 2 presents a dynamic

test method. Methods of static and dynamic testing ADCs are

presented in Sections 3 and 4 respectively. Selected methods are

applied to the 15-bit DAS and the results are presented.

In order not to constrict the flow of presenting the test

methods, terminology relating to DACs and ADCs is presented in

Appendices A and B respectively. The reader should refer to these

for a definition and an explanation of terms used in the body of

the report.



1. Static Testing Digital-to-Analog Converters

Static testing refers to performance evaluation under

relatively slowly-varying conditions, conditions which may be

considered dc. For a digital-to-analog converter (DAC), if the

-fch-e- amount of time allowed for the analog output voltage to

settle is about an order of magnitude greater than its settling

time (Appendix A), the operating conditions may be considered

slowly-varying.

1.1 Direct Method

Static testing of a DAC is a relatively easy and

straightforward task with the help of a digital voltmeter (DVM).

The method to be described below will be referred to as the

direct method. Figure 1 is a block diagram of a typical test

setup. In this system, the DVM determines the accuracy of the

test, therefore it should have an accuracy of at least 1/16 of

the value of the least-significant bit of the DAC under test.

There are DVMs available which are accurate to within 1 microvolt

or less for input voltages up to 300 millivolts, 10 microvolts up

to 3V, and 100 microvolts for input voltages up to 30 volts. The

Hewlett-Packard 3478A digital multimeter is one example.

Therefore, the span of the converter determines the accuracy of

the test. For example, a DAC with a 10V span and 12-bits

resolution would obtain 1/16 bit test accuracy using the 3478A.

Converters of higher resolution but the same span would have to

settle for less test accuracy. For high-resolution DACs, a DAC-
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to-DAC comparison technique using a higher resolution DAC would

be necessary. This is discussed in Section 2. This is also the

method used by the National Bureau of Standards (Section 3.4).

The following is an algorithm which can be used to obtain

values for performance testing of the DAC under test.

1. Apply a digital input value.

2. Allow ample time for the output to settle.

3. Initiate the DVH to take a reading.

4. Record the result.

5. Goto 1 to acquire more data, Else goto 6.

6. Done.

The digital input can be applied manually using a toggle

register, or automatically under computer control. Using the

above algorithm, values can be obtained for integral linearity,

differential linearity, offset error, and gain error:

linearity error,

V(i)

IN(i) =

differential linearity error,

_* [V(2N-1)-V(0)] + V(0)
2N-1

LSB
LSB,

offset error.

[V(i)-V(i-1)]
Dp(i) -J-4* 1 LSB '

voffset "
LSB

LSB '

gain error,

_ FS - V(2«-l) _
Gerror LS^

1 LSB '



where:

.__ _ V(2"-l)-V(0)
LbB ,

(2N-1)

i = The code number under test,

V(i) = Voltage of code i,

vzero = Voltage for code zero,

= V(000...000) for straight binary coding,

= V(100...000) for offset binary coding,

N = Bits of resolution for DAC under test, and

FS = Ideal full scale range of the converter.

The above equations apply to a unipolar converter using

straight binary coding. If a converter is operated in a bipolar

mode, the coding is offset binary.

When testing digital-to-analog converters, it may not be

feasible to test all possible codes. For example, a 14 bit DAC

has 16,384 possible outputs and the time required to look at all

outputs becomes quite long. A DVM of high accuracy usually

employs an integrating technique to perform the analog-to-digital

conversion. The reading rates are about 2 to 3 readings per

second for 5 1/2 digit resolution. Therefore, the time required

to make 16,384 readings is approximately 2 to 2 1/2 hours. This

amount of time would be unreasonable in a production testing

situation.

The testing time can be decreased by using a high-resolution

analog-to-digital converter (ADC) using some other type of

conversion technique in place of the DVM. However, the decrease

of reliability and user friendliness of this approach is a major



drawback. The accuracy of the readings will also decrease since

the next most accurate technique which has an increase in speed

is successive approximation. State-of-the-art in this technique

is limited to about 16 bits, with many of these having only 14-

or 15-bit linearity. Thus, with the requirement of having a

resolution of 16 times the resolution of the converter under

test, a 12-bit converter would be the highest resolution

converter that could be evaluated.

Time of testing can be minimized by evaluating only a few of

the codes. With this method, an educated guess is made as to

which codes will have the largest errors. In most situations,

these codes are the ones which make up major code transitions

(Appendix A). Figure 2a shows an R-2R multiplying type DAC.

This type of DAC has a characteristic such that the resistance

seen by the reference is independent of the digital input code,

it is always R. Also note the current entering each node is

divided by two. This is because the resistance seen by any node

looking to the right is R, or two resistors of value 2R in

parallel. Thus the R-2R ladder can be modeled as current sources

in parallel with magnitudes decreasing by a factor of two (Figure

2b). The switches of the R-2R ladder then serve to enable the

current sources.

Nonlinearity in the DAC occurs when the resistance values are

not perfectly matched. The most critical matching is required of

the resistors which steer the most current. In this case the

resistance matching of the most-significant bit output with the

output of all the other current sources. Therefore, in going

from code 0111 to 1000, the difference between the most-
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significant current source and the sum of the rest of the sources

must be matched accurately in order to insure an insignificant

error contribution in the linearity. Hence, the largest

linearity errors should be associated with the most major

transitions.

Another philosophy of testing only major code transitions

assumes that the errors associated with minor code changes repeat

themselves as they reappear in stepping up the transfer

characteristic. For example, the (differential) error associated

with going from 0011 to 0100 would be the same as the error in

going from 1011 to 1100.

1.2 Testing iie Datel-Intersil DAC-HA14B

The data acquisition system to be tested uses a successive

approximation technique for the analog-to-digital converter. The

heart of this system is a 14-bit DAC, the Datel-Intersil DAC-

HA14B. Dsing the method of Section 1.1, the static performance

of this converter was evaluated. A block diagram of the test

system is shown in Figure 3.

The control operations are performed by a Hewlett-Packard

9845B computer system. This consists of the 9845B computer, a

9885M Flexible Disc Drive, and a Hewlett-Packard 9872B Plotter.

The system uses a Hewlett-Packard 3478A multimeter for dc

measurements of the DACs analog output. The resolution of the

3478A is given in Table 1. The DVM was used in the 5 1/2 digit

mode for maximum accuracy.

9
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Table 1

HP 3478A DC Voltage Input Characteristics

Range
Resolution (digits)

5 1/2 4 1/2 3 1/2

30mV lOOnV luV lOuV
300mV luV lOuV lOOuV

3V lOuV lOOuV lmV
3 0V lOOuV lmV lOmV
300V lmV lOmV lOOmV

The full scale range of the DAC as it is being used in the

data acquisition system is +5V. Therefore, the minimum

resolution of the DVM is lOOuV once the DAC output voltage passes

3V. In the static test circuit (Figure 4), the reference voltage

of the DAC was lowered to 2.5V in order to lower the resolution

of the test from lOOuV to lOuV. This should have no effect on

the results as long as the weight of the LSB is an order of

magnitude greater than the noise present in the system. With a

2.5V reference, the LSB of the DAC is 153pV. Note that the

resolution of the meter is 15.3 times greater than the resolution

of the DAC under test. Thus, the results should be accurate to

within 0.0654 LSBs.

A method which can be used to check the accuracy

(consistency) of the test system is to take several readings of

the same output voltage and find the standard deviation, SD, of

the readings.

SD
2>2 - (I>)2

n
n-1

1/2

Volts,

where n is the number of readings taken.

11
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For the DAC-HA14B system, 64 readings where taken and the

standard deviation was calculated. This was performed for each of

the major codes. The procedure was carried out under different

laboratory conditions in order to evaluate the effect of the

environment on the test results, Table 2. The tests were taken

under three conditions: busy morning, busy afternoon, and quiet

night. During the busy morning and busy afternoon conditions,

other students were allowed to roam about the lab doing their

work. This consisted of doing lab work at the bench and running

other computer equipment. For example, one student was running a

second 9845B directly adjacent to the system under test. The

quiet night condition consisted of taking data in the evening

(after 12:00 midnight) when no one was around and all lights were

turned off. The closest possible noise source was a VAX 11/750

down the hall (the VAX 11/750 was also running during the daytime

tests)

.

Table 2

Standard Deviation of Test Readings
Under Varying Laboratory Conditions

Standard Deviation (uV) 3 478A
DAC Input busy busy quiet Resolution
(decimal) morning afternoon night (uV)

1 0.377 0.456 0.419 0.1
2 0.669 0.563 0.382 0.1
4 0.615 0.449 0.576 0.1
8 0.468 0.469 0.325 0.1

16 0.535 0.794 0.514 0.1
32 0.443 0.669 0.507 0.1
64 0.566 0.526 0.396 0.1

128 0.449 0.577 0.509 0.1
256 0.626 0.794 0.695 1.0
512 1.11 1.09 1.22 1.0

1024 2.11 2.64 1.87 1.0
2048 5.12 4.78 5.02 10.0
4096 7.45 11.2 10.4 10.0
8192 15.9 28.5 22.9 10.0

13



The results of Table 2 show that the test system has an

accuracy of about 3 0uVrms (the standard deviation is the same as

an rms value) maximum, or about 0.197 LSB. The results also show

that the period of the day in which data is taken is not of major

concern. As a matter of fact, the night time results show

greater error than some of the morning results. This may not be

the case in general, since the tests were only run once, but it

still is an interesting result. Running the above tests several

more times and finding the average would give a better

indication.

Using the static test procedure presented earlier, the DAC-

HA14B was evaluated for integral linearity and differential

linearity errors. The results of these tests are presented in

Figures 5, 6, 7. In order to get a better indication of the

performance of the DAC-HA14B, three different converters were

evaluated, each having a different lot number. These will be

referred to as DAC#1, DAC#2, and DAC#3 (Table 3).

Table 3

Lot Numbers of DACs Tested

DAC Designation Lot Number

DAC#1 8025
DAC#2 8441
DAC#3 8240

Figures 5a, 6a, and 7a illustrate the integral nonlinearity

of the three DACs. DAC#1 has an integral nonlinearity of +0.65

LSB and -1.25 LSB maximum. DAC#2 has an integral nonlinearity of

+0.75 and -2.0 LSB maximum. The integral nonlinearity of DAC#3 is

+1.0 and greater than -2.0 LSB maximum. Note the difference

14
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between the transfer characteristics in comparing the three DACs.

This shows that it is a good idea to check more than one

converter, especially ones with different lot numbers. Also note

the abrupt changes in the characteristic as it goes through major

code changes, Figure 6a is the best example. This supports the

philosophy of checking major code changes for a quick check of

the converter's performance, as stated in Section 1.1.

Datel-Intersil specifies the DAC-HA14B to have a maximum (@

25°C) integral nonlinearity of +1 LSB. All three of the DACs

tested failed to meet this specification.

Figures 5b, 6b, and 7b illustrate the differential

nonlinearity of the three DACs. DAC#1 has a differential

linearity error of +1.25 LSB maximum. However, these maximums

occur at the very end of the transfer characteristic. The error

is +1.0 LSB over most of the transfer characteristic. DAC#2 has a

differential nonlinearity error of +1.25 and -1.0 LSB maximum.

Note the large error associated with the major transition from

255 to 256 and that it is repeated at integer multiples. Also

note the difference in the transfer characteristic as compared

with DAC#1. This is in agreement with the integral nonlinearity

results. DAC#3's differential nonlinearity is within +1 LSB over

the entire operating range. DAC#3's transfer characteristic is

similar to DAC#2's.

Datel-Intersil specifies the DAC-HA14B to have a typical

differential linearity error of +1/2 LSB and a maximum error of

+ 1 LSB. All three of the DACs fall quite close to the maximum

specification. One should keep in mind that some of the

specifications published are not actually verified by testing,

18



but are merely best guesses. 1 Therefore, if a certain

specification is critical in a design, testing the device on your

own is highly advisable.

The 15-bit data acquisition system uses two DAC followers to

generate a positive and negative voltage output for use in

bipolar conversion. Figure 8 is a plot of the difference between

these two outputs as the converter is stepped through its

operating range. This error is an indication of how well the

gain resistors of the second follower are matched (Figure 4).

The data shown were taken using DAC#1. Since the difference

error is a function of the gain resistors, it is not necessary to

evaluate it using different DACs. Theory dictates that as the

magnitude of the output voltage increases, the voltage difference

between the outputs of the two amplifiers should increase.

Figure 8 shows that the resistors are matched well enough as to

create an error of less than 1 LSB over the entire operating

range.

19
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2. Dynamic Testing Digital-to-Analog Converters

Dynamic testing refers to performance evaluation by

subjecting the converter to rapidly changing conditions. For a

digital-to-analog converter (DAC), rapidly changing conditions

would correspond to changing input values at a rate which is not

considered static, i.e. rates which are greater than dc (see

Section 1.1). Dynamic testing subjects a converter to conditions

which are more demanding than static testing, and hence gives a

better indication of how well it will perform in its intended

application. Note that since there are many different rates at

which the converter can be tested, a parameter specifying

performance must be associated with the operating conditions

(e.g. the rate) to which it is to be subjected in order for the

parameter to have any meaning. When performing dynamic testing,

digital voltmeters like the one used in Section 1.2 can no longer

be used because their reading rates are much slower than the

conversion rates to which the DAC is being subjected. Therefore

a different method needs to be used.

The method to be described uses a DAC of superior performance

to the converter under test as a comparison reference (Figure 9).

The reference DAC will serve the purpose of approximating the

straight line transfer function of an ideal digital-to-analog

converter. Therefore by comparing the DAC under test to the

reference DAC, values for integral nonlinearity and differential

nonlinearity can be calculated. Both DACs must have the same

21
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output voltage range, e.g. +5V. A DAC of superior performance

refers to one which has a known dynamic performance of at least

two bits greater resolution than the DAC under test for the rate

being tested. As will be seen, this is the major limitation of

this method as it contributes the most error to the test system.

Note that this method may also be used for static testing. In a

static test the input would not change rapidly compared to the

DAC's settling time (see introductory paragraph of Section 1.1).

Using a controller, a specific digital value is input to the

DAC under test and the reference DAC simultaneously. The

difference amplifier subtracts the magnitude of the two DACs and

amplifies the difference voltage (the linearity error). The

amplified difference voltage is then applied to a fast analog-to-

digital converter, probably a flash type for maximum conversion

rates. The digital output of the ADC represents the deviation of

the DAC-under-test transfer characteristic from that of the

theoretical straight line. It is then used to calculate the

integral and differential nonlinearity of the converter.

The major source of error with this technique lies in the use

of a reference DAC to approximate the theoretical straight line

transfer characteristic of an ideal DAC. For example, if the

reference DAC has an accuracy of M bits and the DAC under test

has a resolution of N bits, then the uncertainty in the test

contributed by the reference DAC alone is

°ref =^r LSB.

23



For example, a reference DAC having an accuracy of 2-bits

more than the converter being tested contributes an uncertainty

in the test result of 0.25 least-significant bit (LSB).

The gain of the difference amplifier depends on the maximum

difference voltage (or nonl inearity) in LSBs the test system is

to detect. For example, if the DAC under test has a resolution

of N-bits, its LSB is

LSB =_FS
,

2 N

where FS is the full-scale output voltage. If the system is to

detect a nonl inearity of K LSBs, then the gain, Av , of the

amplifier must be set to amplify this to FS:

FS
FS — K «y»

2N

Therefore
2 N

AV
=— •

For example, if a 14-bit converter is being tested and the

assumed maximum error is 4-bits, then the gain of the amplifier

is

214
Av " —4"

,

or

Av = 2,048.

The difference amplifier also contributes uncertainty to the

test accuracy by way of its gain and offset errors (it will be

assumed that the bandwidth of the amplifier is greater than that

of the test system and it is allowed sufficient time to settle).

If the difference voltage between the DAC under test and the

24



reference DAC is V d , the equivalent input offset voltage

(includes all error sources which are referred back to the

amplifiers input) of the amplifier is V QS , and the gain error of

the amplifier is G, then the amplifier output voltage is given by

vo = Av [(l+G) (Vd+Vos )] Volts.

The error which is introduced by the amplifier is

verror = M G ) <vd> + Av (l+G) (Vos ) .

Normally, provisions are made to adjust V os to zero, therefore

the error voltage is

verror = Av (6) (Vd ) .

Since the output of the difference amplifier is being applied

to the input of an ADC, the error voltage of the amplifier must

be significantly less than the resolution of the ADC (somewhere

on the order of two bits better) so that the accuracy of the test

is not affected. For example, if an ADC with J-bits of accuracy

is being used, a gain error of at least J+2-bits (or (J+2)
-lxl00

percent. Appendix C) would be acceptable.

°amp =^§T2- LSB -

If a 7-bit ADC is being used, a gain error of 0.195% would

suffice. This is not hard to accomplish, since resistor networks

are available with ratio matching to 0.005%. The DAC system of

Section 1.2 used such a resistor network. If the system is to

detect a maximum of 4 LSBs, the amplifier contributes a test
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uncertainty of

°amp "-*y «»

= 0.00781 LSB.

The resolution of the ADC determines the resolution of the

nonlinearity estimate, i.e. the accuracy of the reading in

fractions of an LSB. If the maximum difference voltage of the

difference amplifier represents K-bits of the DAC under test, and

the ADC has a resolution of J-bits then the resolution of the

nonlinearity estimate is

Rtest =-^r LSB -

For example, if the ADC has a accuracy of 7-bits, and the maximum

assumed difference voltage of the DAC under test is 4-bits, then

the resolution of the test is

Rtest =_
S"

= °' 03125 LSB -

Using the above error analysis, a system composed of a

reference DAC with an accuracy of 16-bits, a difference amplifier

with a gain error of 0.195%, and a flash ADC with an accuracy of

7-bits is designed to detect the accuracy of a a DAC with 14-bits

of resolution to 4 LSBs. The total uncertainty in the system

estimate would be

°tot = Dref + °amp + Rtest

= 0.25 + 0.00781 + 0.03125 LSB

= 0.28906 LSB.

As stated previously, the reference DAC is the major

component of uncertainty in the system.
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3. Static Testing Analog-to-Digital Converters

Static testing refers to performance evaluation under dc

input conditions. Testing ADCs (Analog-to-Digital Converters) is

more difficult than testing DACs (Digital-to-Analog Converters).

This is due to the fact that an ADC has as its input a continuous

range of analog values. The purpose of the ADC is to estimate a

sample of this continuous range to within a specified error; a

process known as quantization (Appendix B). An N-bit ADC divides

this into 2N divisions. Thus the ADC has an inherent error, its

output can only specify the input to an accuracy set by the

quantization step. When testing an ADC it is necessary to

determine the analog values which correspond to the transition

points of a quantization step. Ideally this would require

testing with an infinite number of analog input values, an

impossible task. One method used to overcome this problem is to

partition the continuous analog range into levels much smaller

than the the quantization step of the ADC, providing an

indication of the transition levels but only to a degree

specified by the analog partition. This process is further

complicated by the presence of noise, which introduces another

source of error in the determination of the transition voltage.

The following sections describe some methods used in the

evaluation of ADCs.
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3.1 DAC-to-ADC Loop Method

Perhaps the simplest method is the DAC-to-ADC loop method. A

diagram of the test setup is shown in Figure 10. The DAC is used

as a precision voltage reference, the extent of the precision

specifying the degree of accuracy to which the ADC can be

evaluated. Thus, this is the major limitation of the method when

testing high resolution ADCs. For example, commercially

available DACs have accuracies up to about 18-bits. Therefore, if

a test accuracy of 1/16 bit is desired, 14-bits is the maximum

resolution ADC which can be tested. If a higher resolution

device is to be tested, either the test resolution can be

decreased or a custom DAC of higher resolution can be developed.

A problem with this method is that the accuracy of the DAC

must be evaluated before the ADC can be tested. Taking a

manufacturer's specifications from the data sheet is unadvisable

since these values are most likely based on tests performed

during development of the device, and possibly a random sampling

of devices during production. However, a static test of a DAC is

relatively simple (Section 1.1), hence evaluating the DAC should

not be much of a problem.

There are three procedures which can be performed using the

DAC-to-ADC loop method.

3.1.1 Procedure 1 The simplest, but not very informative

procedure, consists of a direct comparison of the DAC input with

the ADC output. If the DAC is of higher resolution than the ADC,

only the top N bits (N being the resolution of the ADC) of the

DAC are used with the lower bits being set to zero. Below is the

test algorithm.
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1. Adjust the zero offset of the ADC so that a code of

00. ..00 occurs for the DAC output voltage corresponding

to 00. ..00 input.

2. Adjust the gain of the ADC so that a code of 11. ..11

occurs for the DAC output voltage corresponding to 11. ..11

input.

(note: The above digital values are straight binary for a

unipolar converter, offset binary for a bipolar converter.)

3. Set the DAC input code of interest.

4. Record the ADC output code.

5. Calculate the difference between the DAC input code and

the ADC output code. This is the nonlinearity.

6. Goto 3 to acquire more data, Else goto 7.

7. End.

The amount of information extracted from this procedure is at

a minimum since it does not give the precise location of each

analog transition voltage. This algorithm estimates the

nonlinearity to a degree of only ±1/2 least-significant bit (LSB)

assuming a perfect DAC. Normally it is desirable to determine

nonlinearity to a greater degree of accuracy than this. However,

in a noncritical application requiring a quick check of linearity

this method would suffice. The speed of the test can be

increased by checking only major codes or by setting the major

codes in succession, hence requiring the test of only N points.

3.1.2 Procedure 2 An alternative to the above procedure is

to step the DAC through all of its possible values and record the

corresponding ADC output. This procedure can be used to

determine the transition points of the ADC transfer
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characteristic (to within the resolution of the DAC). From this

data, differential and integral linearity errors can be

calculated. The following is the algorithm used.

1. Adjust the zero offset of the ADC so that a code of

00. ..00 occurs for the DAC output voltage corresponding

to 00. ..00 input.

2. Adjust the gain of the ADC so that a code of 11. ..11

occurs for the DAC output voltage corresponding to 11. ..11

input.

(note: The above digital values are straight binary for a

unipolar converter, offset binary for a bipolar converter.)

3. Set the DAC input code, Din , to 00. ..00; Initialize an

array Vt to zero.

4. Record the ADC output code, Dout;

Doutl " Douf

5. Increment D^n.

6. Read Dout.

If Dout Doutl then g° to 7 >

J ^ Dout = D outl + l then transition voltage has been

detected:

vt(D0Ut> = (D in ) (Lsb_dac)

,

Record Vt and Dout»

Doutl " Dout»

If Dout > Doutl +1 then missing codes have been found,

Doutl +1 to Dout-l:

Doutl " Dout-
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7. Done?

No, goto 5}

Yes, goto 8.

8. Calculate the differential nonlinearity

:

Vt (i+1)-Vt (i)

DF(i) = -1 LSB i=l,... ,2N-1.
LSB

9. Calculate the integral nonlinearity:

Vt (i)-[Vt (D+(i-l) (LSB)]

lN(i) = LSB i=l,...,2 N .

LSB

where:

Vt (2
N-l)-Vt (l)

LSB
2N-2

D
in is the input code of the DAC,

Doutl * s t^ie Previous ADC output code,

Dout is tne present ADC output code,

Vt is an array containing the transition voltages for the

ADC output codes (Note that this is the transition

voltage to a code 1 greater than the code being tested),

Lsb_dac is the value of the DAC s LSB, and

N is the resolution of the converter.

A problem with this procedure is that for high resolution

systems, noise inhibits the exact determination of the transition

points. For example, if the noise of the system consisted of

1/16 LSB, and the resolution of the DAC is 1/8 LSB, the

uncertainty in the measurement would be 3/16 bit. A method which

can be used to improve the estimate is to take several readings

of the ADC corresponding to a single DAC input and find the

standard deviation, if it meets a certain limit specification
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(e.g. less than 0.1) then the transition can be assumed to have

taken place. However, this will significantly increase the test

time for high-resolution converters and may complicate the

determination of missing codes.

3.1.3 Procedure 1 A third procedure which can be performed

using the test setup of Figure 9 will be referred to as the

histogram procedure. This is similar to the one described above

except that the purpose is not to search for the transition

voltages, but to estimate them using statistics. The

differential nonlinearity is found by counting the number of

times a code occurs, normalizing with the number of times the

code is expected to occur, and then subtracting 1. For example,

if a 15-bit ADC is under test, and 10 readings are taken for each

possible input code of an 18-bit DAC, the number of expected

occurrences, ENO, for each ADC code is

ENO , (10) U^ 8
) = 80 .

2 15

If 30 occurrences actually occur, the differential nonlinearity

is

DF = -|0_- 1 = -0.625 LSB.

Note that missing codes contain a count of zero in their

bins, hence their differential nonlinearity is -1.

Again the resolution of this test is limited by the accuracy

of the DAC. Below is an algorithm used for this procedure.

1. Adjust the zero offset of the ADC so that a code of

00. ..00 occurs for the DAC output voltage corresponding

to 00. ..00 input.
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2. Adjust the gain of the ADC so that a code of 11. ..11

occurs for the DAC output voltage corresponding to 11. ..11

input.

(note: The above digital values are straight binary for a

unipolar converter, offset binary for a bipolar converter.)

3. Initialize a counting array, A, to zero.

4. Set the DAC input code to 00. ..00.

5. Read the ADC output, DQUt :

A(Dout ) = A(Dout )+l.

6. Need more readings?

Yes, goto 5;

No, goto 7.

7. Done?

Yes, goto 8;

No, Increment the DAC input, goto 5.

8. Divide each element of A by the expected number of

occurrences and subtract one. The result is an estimate of

differential nonlinearity:

DF(i) = Mi) -

ENO

9. To find integral nonlinearity:

LSB i=l,. ,N

IN(i) =

I Ml)
j=l

Ml)

(i-D LSB
ENO

i=l,...,2N,
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where:

Dout is the ADC output code,

A is a counting array of length 2 N ,

N is the resolution of the ADC,

ENO is the expected number of occurrences for each code.

The above equation for calculating integral nonlinearity

assumes that the gain has been adjusted to zero. If there is not

a gain adjustment available for the ADC, the gain adjustment of

the DAC can be used to null it out. If neither is available, the

slope of the ideal transfer characteristic can be be altered from

its ideal value of one by calculating the slope of the line

between the first and last codes (not that this is the end point

definition described in Appendix B). Usually the first and last

codes do not contain an accurate count in their bins. They either

have too many or not enough since they accumulate counts for

inputs outside the converters span. Therefore, the actual slope

of the transfer characteristic is calculated using the second and

the second from the last codes.

The expected number of occurrences should also be altered. It

should be the number of counts in all codes, except the first and

last, divided by two less than the number of possible output

codes.

2«-l

I A(i)
1=2

ENO'
2N-2
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2 N-2

X, A(i)
1=2

slope =

(ENO') (2 N-2)

The differential and integral nonlinearity equations become

IN(i) =

DF(i)

I A(j)

A(i)

ENO'

A(l)

LSB i=l,...,2N ,

ENO'
(i-1) (slope) LSB i=l,...,2N.

The histogram procedure has an advantage over the second

procedure in that the noise in the system, which makes it

difficult to find transition voltages, is averaged out if enough

data points are taken. Therefore more accurate results are

obtained.

3.2 Servo-Loop Integrating Method

The servo-loop integrating method can be used to evaluate the

performance of an ADC without the use of a reference DAC. This

method uses an operational amplifier based integrating amplifier

in conjunction with a digital comparator and an averaging

voltmeter to search for the transition voltages of the ADC under

test. Though this method does not require a reference DAC, it

does require another ADC (the voltmeter) of higher accuracy than

itself. This is not a problem however since digital voltmeters

(DVMs) with 19- and 20-bit accuracy are available. A block

diagram of the test setup is shown in Figure 11. The ADC under

test, the digital comparator, and the integrator form a servo-

loop.
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A computer serves as the controller. It outputs a digital

word, the target code, which is compared to the output of the ADC

after each conversion. The output of the digital comparator

controls the slope direction of the integrator. If the target

code is greater than the ADC output code, the integrator slopes

in the positive direction. If the target code is less than the

ADC output code, the integrator slopes in the negative direction.

After a few conversion periods, the integrator output approaches

the transition voltage of the target code (the transition voltage

being the voltage which causes a transition from the code 1 less

than the target code to the target code), and then locks on to

it. The locked state is reached when the output of the ADC

toggles between the target code and the code one less than the

target code.

When in the locked state, the integrator output will ideally

be a triangle wave centered about the transition voltage. The

peak-to-peak voltage of the integrator output is given by:

Vpp
= -(I/O (delta_t)

where

I = integrator input current,

C = integrator capacitance, and

delta_t = conversion interval.

The voltmeter then acquires the transition voltage by averaging

the integrator output. The voltage V
pp specifies the accuracy of

the test, a typical value being 1/16 LSB.

The locked loop condition is sensed by taking successive

readings with the voltmeter. When the voltage difference between

successive DVM readings is smaller than a predetermined threshold
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given by Vpp/delta_t and the time period separating the voltmeter

readings, the system is considered locked.

After finding all transition voltages, the integral and

differential nonlinearity can be calculated.

V t (i+1)-Vt (i) „
DF(i) = f^s -1 LSB i=l,...,2N-l,

Vt (i)-[Vt (l)+(i-l) (LSB)]
IN(i) = ^ LSB i=l,...,2 N ,

where

Vt (2
N-l)-Vt (l)

LSB ,

2 N-2

V t is an array containing the ADC transition voltage for

the code specified by i,

N is the resolution of the converter.

The digital comparator is also used to sense missing codes.

Once in the locked state, the ADC output code should never exceed

the the target code, since the system toggles between the target

code and the target code minus one. If after sufficient tracking

time has been allowed the ADC output is sensed as being greater

than the target code, the system is toggling between the target

code plus one and the target code minus one and hence the target

code is missing.

This system has limitations with converters of high-

resolution and relatively slow sample rate. For example, suppose

that a 15-bit ADC having a span of +5V is to be tested to an

accuracy of 1/16 LSB. The system parameters are as follows:
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Vpp = 10 = 19(10-6) volts,
(215) (16)

and if C=5pF

delta_t =_!_= 7.8125mS
128

I =
(V
PP } ig 12nA.
slta_t"del

The integrator current would be difficult to realize, and

even more difficult to maintain. The current could be increased

with a larger capacitor, but 5uF is about the maximum capacitance

of a high quality capacitor. Although the above system is rather

unique with its high resolution and slow sample rate, it is the

problem faced in testing the 15-bit data acquisition system. In

general though, a high-resolution system should have a conversion

interval of less than lOOuS to make this technique feasible.

3.3 Testing the 15-bit Data Acquisition System

The histogram procedure of the DAC-to-ADC loop method

described in Section 3.1.3 was used to evaluate the static

performance of the 15-bit data acquisition system. This procedure

was chosen because of its ease of use, its accuracy, and its

inherent property of averaging out noise in the determination of

transition voltages. A block diagram of the test setup is shown

in Figure 12.

The controller is a Hewlett-Packard 9 845B desktop computer.

The digital-to-analog converter is a system developed using the

Analog Devices DAC1146 18-bit digital-to-analog converter. This

is a modular converter with 16-bit (±1/2 bit with respect to 16-
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bits) accuracy specifications. The system was tested and the

accuracy was verified to be within 16-bits.^ It should be noted

that the maximum differential nonl inearities were found to occur

for only a fraction of the possible number of codes available and

that 18-bit differential linearity is realized for approximately

99% of the output voltage levels. However, the test accuracy

will be specified as ±1/4 LSB (±1/2 LSB with respect to 16 bits).

A total of 2,621,440 readings were taken to construct the

histogram. This is 10 times the possible number of DAC input

codes, or 80 times the possible number of ADC output codes. The

test was initiated with the DAC at minus full-scale and the

voltage was increased one DAC quantization level at a time until

full-scale was reached.

The ADC system is a successive approximation type and uses

the Datel-Intersil DAC-HA14B DAC. A test was run using each of

the three DACs tested in Section 1.2. The differential

nonlinearity results are shown in Figures 13a, 14a, and 15a. It

should be noted that these plots do not show the differential

nonlinearity for each possible code. Since there are 32,767 (-

16,383 to +16,383) possible output codes, it is difficult and

time consuming to plot every data point. Instead the data files

were thinned to 2,048 of the maximum and minimum points. A

search was performed which took 64 point blocks, keeping the

minimum and maximum points in that block and throwing the rest

away. Thus all of the interesting information is retained but

yet there is 1/64 less data to plot.

For all three cases, the majority of the codes lie within the

±1 LSB test limit. Note that there is a large differential
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nonlinearity found at the zero-crossing point. The plots also

indicate missing codes, or differential nonlinearities of less

than -1 LSB. A search of the data files found the following

missing codes.

Table 4

Missing Codes for Static Histogram Tests

Figure Number of Hissing Codes

13a 5

14a 8

15a 9

Remember that the accuracy of the input reference is +1/4 LSB,

thus a missing code as indicated above may exist but its

quantization step is less than 1/4 LSB. Overall though, the

results show that the system obtains 14.5-bit differential

linearity (+1 bit with respect to 15-bits), except at zero-

crossing.

Integral nonlinearity for the same three cases mentioned

above is shown in Figures 13b, 14b, and 15b. Again the data

reduction process was performed for plotting purposes. All three

plots carry similar information. The integral nonlinearity seems

to fall in the range of -2 LSB to +6 LSB. The major contributor

to the nonlinearity is the large differential nonlinearity

associated with zero-crossing. If this can be corrected, the

nonlinearity would probably be restricted to +2 LSBs.

In conclusion, the 15-bit data acquisition system was found

to have 14.5-bit differential linearity and about 12.5-bit

integral linearity. The integral linearity can be increased to

14-bits by correcting the large differential nonlinearity at
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zero-crossing.

3.4 Tlie National Bureau af Standards Calibration Service

A calibration service based on an automated test facility has

been developed at the National Bureau of Standards (NBS) for

measuring the static transfer characteristics of high-performance

ADCs and DACs. This service specifically addresses the

measurement of static converter errors. A capability for making

dynamic measurements is currently under development.^

The calibration service is particularly intended for the

following customer applications:

1. Testing of high resolution converters for use in unique,

highly demanding applications.

2. Satisfying traceability requirements imposed by State,

Federal or military contracts.

3. Independently verifying the test methods of converter

manufacturers through the use of transfer standards.

4. Verifying incoming inspection tests of converter user by

the same use of transfer standards.

5. Periodically testing high -resolution converters used in

precision automatic test equipment.

6. Providing performance data during development stages of

new converter products.

The parameters measured include integral linearity,

differential linearity, offset error, gain error, and equivalent

rms input noise. Typically the 10 most-significant bits are

tested, it is assumed that the errors due to the least-

significant bits are insignificant. However it is possible to
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test all 2 N codes, N being the resolution of the converter.

Figure 16 is a block diagram of the test setup used. DAC

testing is accomplished by comparing the DAC under test to a DAC

standard, a 20-bit plus sign, relay- switched converter developed

at the National Bureau of Standards. This DAC incorporates less

than 1 ppm linearity error and incorporates a self-calibration

feature. ADCs are tested using the servo-loop integrating

technique described in Section 3.3. However, instead of using an

averaging voltmeter, the integrator output voltage is compared to

the DAC standard. Table 5 gives the test set accuracy

specifications.

It should be noted that converters must meet certain

specifications in order to be compatible with the NBS test set.

Table 6 lists these specifications. It is also the customers

responsibility to mount the test converter on a suitable test

board, provide all trimmer circuits, voltage references, input or

output amplifiers, recommended power supply decoupling

capacitors, and connectors for interfacing to the input/output

lines.

Due to the slow sample rate of the 15-bit system tested in

Section 3.4, it is not possible to make use of this service.

For more specific details of the service, see reference 3.
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Table 5

NBS Test Set Accuracy

|
Estimated Systematic Uncertainty

Parameter DAC's ADC's

Linearity Error:±10 V range 2.7 ppm + 0.04 LSB ! 4.7 ppm + 0.16 LSB
0-10 V,±5 V 3.5 ppm + 0.04 LSB 5.5 ppm + 0.16 LSB
0-5 V 4.2 ppm + 0.04 LSB 6.2 ppm + 0.16 LSB

Bit Coefficients

Q th
same as linearity same as for linearity

error j error, less 0.06 LSB

]St t0 jsame as linearity i same as for tn coef .

,

10th j

less 1 ppm

Differential ±10 V !3.2 ppm + 0.04 LSB 5.2 ppm + 0.16 LSB
Linearity 0-10 V,± 5 V 4.2 ppm + 0.04 LSB

j

6.2 ppm + 0.16 LSB
Error: 0-5 V 5.2 ppm + 0.04 LSB

j

7. 2 ppm + 0.16 LSB

Offset Error 3 ppm j 3 ppm + 0.07 LSB

Gain Error 6 ppm 6 ppm + 0.13 LSB

RMS Input Noise -100%: +(20% + lOuV)

Noise introduced by
Test Set is

30nV/vUF
in

a 1 MHz BW.

Measured upon special request only, and only if no adjustable trimmers
are provided for these parameters.
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Table 6

NBS Test Converter Specifications

Parameter

Specifications of Test Converters

DAC's ADC's

Resolution (Bits) 12-18 12-16

Voltage Ranges (V) 0-10; ±10; 0-5; ±5

Output Load Capability IOkK MlOOpF

Input Impedance > 200 n/v

Coding Full Parallel Input or Output:
Binary Unipolar
Offset Binary
Two's Complement
One' s Complement
Sign-Magnitude Binary
Complemented Versions of Above

Acceptable
Convert Command

20 us positive pulse
for DAC's with
input latches

2us positive pulse

Status Output Command Required

Logic Compatibility TTL

Settling Time <2ms

Conversion Time <100us

External Power
Requirements ±15V, +5V

Maximum error
including gain & offset 500 ppm
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4. Dynamic Testing Analog-to-Digital Converters

Dynamic testing an analog-to-digital converter (ADC) refers

to the performance evaluation of the converter when it is

subjected to a time varying input voltage. A dynamic test will

give a true indication of the converter's performance in its

intended application. A dynamic test takes into account the slew

rate limitations of active devices in the circuit, settling

times, and the ADC aperture jitter. Normally the analog input

voltage is a sinusoidal waveform. This is because readily

available waveform generators can be used to supply the input

waveform, a sinusoid is precisely known mathematically, and the

sine wave allows the performance to be specified at discrete

frequencies. Also, since the input waveform has to be of lower

distortion than the degree to which the test accuracy has been

specified, it is also much easier to obtain a low distortion sine

wave than say a highly linear triangle wave. In addition it is

easier to verify the distortion level of a sinusoid using a

spectrum analyzer.

Three dynamic test methods will be discussed. The first

method discussed is the histogram method. This method is used to

find missing codes and give an estimate of the differential

nonlinearity. The second method is the Fourier transform

method. The error being measured with this method is integral

nonlinearity, however, an indication of the differential

nonlinearity, aperture uncertainty, and noise is also given. The
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last method discussed is the sine wave curve fit method. This

method gives an overall indication of a converters performance by

calculating a parameter referred to as the effective number of

bits. A block diagram of the setup used to acquire data for the

three tests is shown in Figure 17.

4.1 Histogram Method

The dynamic differential nonlinearity performance of an ADC

is best evaluated using the histogram method. This method

consists of obtaining several samples of a spectrally pure sine

wave and then forming a histogram of the number of occurrences as

a function of the output code. From this missing codes can be

found and an estimate of the differential nonlinearity can be

obtained. Gain error is also observable since it tends to

compress or expand the histogram. Offset error shows up as a

shift of the histogram symmetry point from the ideal case of

zero. The precision of the measurement is specified by the

number of samples taken. This method can also be used to measure

the overall noise in the system. A block diagram of the test

setup is shown in Figure 17.

The histogram method also has the inherent property of

eliminating noise from being a deterrent in the calculation of

the transition voltages. Since noise has a random characteristic,

it tends to be averaged out as the number of samples increases.

It may seem that a triangle wave is a more appropriate input

waveform. However, it is much easier to obtain a low distortion

sine wave than it is to obtain a low distortion triangle wave. It

is also much easier to test the distortion level of a sine wave
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than a triangle wave. Hence a sine wave will be used as the input

waveform (see Appendix D).

The probability density function for a sine wave of the form

Asin(wt) is 4

P(V)

This function is plotted in Figure 18. Integrating with respect

to voltage gives the distribution function P(V a,v D ), the

probability that the input voltage is between Va and Vt>:

p(vafVb ) -_L
7T

sin-l/Vb\-sin-l/Z.a

Converting this to a discrete distribution gives

P(i) 1

7T

,
/V

r [i-2
N--L -1]

A2N

Vr [i-2
N_1-2]

A2N

1 ~-L f • • • * r -c.

N

where

V
r is the reference voltage of the ADC,

N is the resolution of the ADC,

i is the code under test, and

A is the peak voltage of the input waveform.

The histogram is then normalized using P(i) and the differential

nonlinearity is calculated:

actual probability (i)
DF(i)

ideal probability (i)

= H(i)/Npts _ 1 LSB
P(i)

i=l, ,2«

LSB
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where

i is the code under test,

H(i) is the number of counts for code i, and

Npts is the total number of samples taken.

After the histogram has been generated, missing codes may be

found; a missing code will have a bin with zero counts, or the

differential nonlinearity will be minus one.

Note that when using this method, the amplitude A and the

reference voltage V r
must be known, and to a high degree of

accuracy for a high resolution converter. The reference voltage

V r may not be much of a problem to measure, since it is a dc

voltage and dc voltmeters are available which are very accurate.

However, it is much more difficult to measure the peak amplitude

of the input waveform since ac voltmeters take rms measurements

and very accurate ones have limited bandwidths. An alternate

method of calculating differential nonlinearity is to estimate

the transition voltages from the histogram data. This is

accomplished with the use of the cumulative histogram CH(i),

where CH(i) is

•i
CH(i) = £ H(j) i=l,...,2N.

j=l

The voltage V(i) for a given CH(i) is given by

V(i) = -Acos 7TCH(i) ] i=1 2 N-i
Npts '

i"'"z

Here A can be normalized, since it is constant, so that the span

of the converter is +1. Now differential nonlinearity can be

calculated from
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DF(i) = V(i+1)-V(i) - j LSB
1 LSB

i=l,..,2N-l.

It was noted earlier that the degree of test accuracy depends

on the number of samples taken. To find the minimum number of

samples needed for an estimate of differential nonlineari ty, a

lOO(l-a) percent confidence interval of the form (u-

z a/2 s » U+Z a/2 S ' i s set U P' This says that the measured

differential nonlinearity lies in the range ( U-Z a/2 S ' U+Z a/2 S )

with a lOO(l-a) percent probability. The minimum number of

samples, Npts, needed for B bit precision and lOO(l-a) percent

confidence is given by

z a/2
2

7T
2N-1

NptS >

B2

where Z a/ 2 is found in a standard normal distribution table, and

N is the resolution of the converter. Thus to know the

differential nonlinearity for a 15-bit converter to within 0.1

bit with 95% confidence requires 19,770,000 samples.

This last calculation shows the major limitation of this

method. For high-resolution converters, a large number of samples

are required for a high test accuracy. This means that a large

amount of time may be spent in acquiring the data, during which

the amplitude of the input waveform drifts and hence degrades the

desired accuracy of the test. For example, if the above converter

has a maximum sample rate of 1,000 Hz, it will take 5 1/2 hours

to acquire the data. Thus it may be desirable to test the

converter with a lower degree of confidence and less precision in

order to cut down on testing time. If the precision is changed to

58



0.25 bit and the confidence interval lowered to 85%, the number

of samples is reduced to 1,708,000 and the test time becomes

about 45 minutes.

The overall noise in the system is found (but only to a

resolution of 1 LSB) by grounding the input and seeing how many

of the bins fill up. Ideally only the bin corresponding to zero

will be filled, but if noise is present in the system codes

around zero will also contain some counts. It also possible to

find the dc offset using this method. If the bin which

accumulates the counts is anything other than zero, then the

voltage which corresponds to that bin is the dc offset.

The offset can also be found using the histogram data. The

offset voltage is found from the shift of the histogram about the

midpoint of 0V. Let

2N-1 2N

Nn = V H(i) and Np = y H(i)
i=l "

i=2 N_1 +l

then an estimate of the offset can found from4

7T .

N
e-Nn

V„ = A— sin .°
2 Np+Nn

4.2 Fourier Transform HgthQd.

The dynamic integral nonlinearity performance of an ADC is

best evaluated using the Fourier transform method. A block

diagram of the test setup is shown in Figure 17. The application

of this method is simple. A spectrally pure sine wave is applied

to the ADC under test and a sequence of samples is obtained. Then

using a fast Fourier transform (FFT) algorithm, the discrete
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Fourier transform (DFT) is computed and plotted. The output

spectrum will contain the input sine wave plus errors introduced

by the ADC. The errors of the ADC introduce harmonics and noise.

When obtaining the samples, the sampling frequency should be

noncoherent with the input sine wave in order to avoid sampling

the same points over and over again.

Integral nonlinearity shows up as harmonics of the input sine

wave. For example, given the nonlinear function of

f(t) = Asin(wt) + B[sin(wt)] 2

and expanding this function using the trigonometric identity

[sin(wt)]2 . l-cos(2wt)
2

results in the equation

f(t) = sin(wt) +JL + JL cos(2wt) .

2 2

Thus f(t) contains the fundamental plus the second harmonic and a

dc offset. Further analysis shows that higher harmonics show up

when additional terms of higher power are added to f(t).

The dynamic range (ratio of full-scale to the quantization

error) of an N-bit converter is known to be

dynamic range = 201og 10 (2N ) = 6.02N dB.

Therefore the number of bits of integral nonlinearity can be

calculated by dividing the amplitude of the highest harmonic in

the output spectrum by 6.02. If the integral nonlinearity is less

than 6.02N dB below the fundamental, then it is less than one

LSB. Dynamic range for various resolution converters is tabulated
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in Appendix C.

Information about noise, differential nonl inearity, and

aperture uncertainty can also be obtained from the output

spectrum, although they can not be measured directly. All of

these errors show up as an elevation of the noise floor.

The overall noise in the system can be modeled as being white

noise since it is mostly due to resistors and active components

in the system and hence the amplitude of all frequency components

will be raised in the output spectrum. If a large amount of noise

is due to digital circuitry, it will show up at frequencies

corresponding to the digital clock frequency and its harmonics.

Ideal quantization of the input waveform introduces an rms

noise voltage of

VQ =_Q_ = 2A V.

Differential nonl inearity changes the quantization step size from

its ideal size of one and hence tends to increase the rms

quantization noise.

Aperture uncertainty (the uncertainty in the time at which a

sample is taken, a characteristic of the sample-and-hold for most

converters but an inherent characteristic for flash type

converters) also tends to raise the noise floor. Aperture

uncertainty introduces an amplitude uncertainty in the sample.

This amplitude variation is different with every sample. Hence

aperture uncertainty effectively adds a random noise voltage to

the input waveform, hence the noise floor of the output spectrum

increases. The amount is dependent upon the frequency of the

61



input waveform and the uncertainty time. Higher frequency

waveforms require smaller aperture uncertainty times to achieve

the same accuracy as a slower frequency waveform with a given

aperture uncertainty.

Figures 19(a) and 19(b) illustrate the effect of an aperture

uncertainty of lOOnS and 500nS respectively. The input waveform

in this case was generated in software with no quantization, thus

the noise is due entirely to aperture uncertainty.

Ideally it is also possible to obtain the signal-to-noise

ratio (SNR) from the output spectrum. This can be found by taking

the ratio of the fundamental's power to that of the power in the

rest of the components. The theoretical SNR is the ratio of the

power in the input waveform to the quantization error, since

quantization is the only noise source for an ideal system. The

average power of a sinusoid is known to be A2/2 and the power in

the quantization noise is Q2/12 where Q=2A/2 N. Thus

A2

SNR = 10 Log 2 dB

Q2

T2
-

= 6.02N + 1.76 dB.

The ideal signal to noise ratio for different resolution

converters is tabulated in Appendix C.

When obtaining data, it is not always possible to sample an

integral number of periods of the input waveform. If a DFT is

performed on a sequence in which there is not an integral number

of periods, a phenomenon known as spectral leakage occurs. This

is because the DFT is a Fourier series expansion which assumes

that all components are periodic over NT, where N is the number
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of samples taken and T is the sampling interval. If they are not,

then the periodic extension of the sequence assumed by the DFT

contains discontinuities. In addition there are only a finite

number of frequencies which can be used to describe the input

waveform. The frequency resolution of the transform is given by

FS/N, where FS is the sampling frequency. If the input has a

component which is not an integral number of the frequency

resolution, its amplitude leaks over into the frequency

components adjacent to it, thus the term spectral leakage. For

example, if FS is 128 Hz and N is 1024, the frequency resolution

of the DFT is 0.125 Hz. A frequency of 24.3 Hz is 194.4 times the

frequency resolution, hence leakage occurs.

Spectral leakage also makes it impossible to calculate SNR

from the output spectrum data due to the power in the fundamental

spreading out into adjacent components.

In order to combat leakage, the input sequence is multiplied

by a window function, a process known as windowing. The exact

properties of windowing are beyond the scope of this discussion.

For a full explanation of its properties, see references 5 and 6.

In short though, the window function tapers off the ends of the

input sequence to zero, hence eliminating the discontinuities

that occur for a periodic extension of the sequence. The

information of the input signal in the frequency domain is not

lost however. A good window has a very narrow bandwidth in the

frequency domain (it is approximately a delta function) and using

the fact that multiplication in the time domain is convolution in

the frequency domain, windowing is nothing more than convolving

an approximate delta function with the input signal's output
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spectrum. Thus the input signal's components still remain, but

their amplitudes may change. It should be noted that the above

discussion is very loose, and that not all window functions will

give good results. Some may even make the situation worse.

Reference 6 presents a good discussion of this.

The choice ofwhichwindow to use is usually dependent on the

application. Reference 6 gives some optimal windows for certain

conditions. The Hanning (or Von Hann) window is a good general

purpose window and is usually used in practice (at least it is

the one which is used in most of the literature) for spectral

estimation. Thus this will be the one used for the tests

performed in Section 4.4.

4.3 Sine Wave Curve Fit Method

The sine wave curve fit test gives an overall indication of a

converter's performance by finding its effective number of bits.

The effective number of bits may be considered the number of bits

in a perfect ADC whose rms quantization error is equal to the

total rms error of the unit under test. 7 This total rms error

would include the errors from all sources in the ADC under test:

quantization error, differential nonlinearity error, missing

codes, integral nonlinearity, aperture uncertainty and noise. A

block diagram of the test setup used to obtain data is shown in

Figure 17.

The first step in determining the effective bits is to apply

a spectrally pure sine wave to the converter under test,

digitizing it and then fitting the data to a sine wave of the

form
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Asin [2 7Tft+theta] +dc

where A, f, theta, and dc are parameters selected using a least-

squares error minimization algorithm. After the best fit sine

wave has been calculated, the rms error between the actual data

and the best fit sine wave, rms error (actual), is calculated.

Then knowing the rms error of an ideal ADC of the same

resolution, rms error (ideal), the effective number of bits is

calculated from

effective bits = N - log, rms error (actual)
« rms error (ideal)

Knowing that the quantization error as a function of input

voltage for a perfect ADC is a ramp function with an ampl itude of

Q, Q being the quantization error of an ideal N-bit ADC, the rms

error (ideal) is found to be

rms error (ideal) = = 2A
.

12 ,T2 2 N

By obtaining the effective number of bits for several

frequencies, the frequency response of the converter can be

specified by a plot of the effective bits as a function of

frequency.

When obtaining data for the sine fit, a large number of data

points should be taken, on the order of 1,024 to 2,048. If an

insufficient number of data points are obtained, errors in the

ADC can change the apparent frequency of the sine wave and thus

reduce the actual rms error." The test frequency should also be

nonharmonically related to the sample frequency. If it is not,

then the same codes would occur over and over again, thus not

exercising the entire system. Also, if the test frequency is
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harmonically related to the sample frequency, harmonics

introduced by the ADC will be aliased back into the fundamental,

thus giving a higher number of effective bits. Finally, the test

amplitude should be close to the full-scale input range of the

converter. The amplitude should be kept just low enough not to

introduce distortion due to clipping of the input waveform and

hence decreasing the effective number of bits.

4.4 Testing a 15-bit Data Acquisition System

Using the methods described in Sections 4.1 and 4.2, a 15-bit

data acquisition system (DAS) has been evaluated. A block diagram

of the test setup used in acquiring data for both methods is

shown in Figure 20. The control operations are performed by a

Hewlett-Packard 9845B desktop computer system. Data from the DAS

is passed to the 9845B via a Hewlett-Packard 98032A Bit-Parallel

Interface. The purpose of the band-pass filter is to obtain a

spectrally pure sine wave (Appendix D).

The DAS tested is a prototype, constructed to verify the

operation of the design. The DAS consists of two sections, an

analog section and a digital section. The analog section performs

the analog-to-digital conversion while a microprocessor based

(Intel 80C39) digital section performs the control functions,

timing, and interface operations. Photographs of the system are

shown in Figure 21.
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Figure 21. Photographs of 15-bit DAS

69



4.4.1 Histogram Test Using the histogram test of Section

4.1, an estimate of differential nonlinearity has been obtained.

Three tests were performed, one for each of the three DACs tested

in Section 1.2. The reason for this is to check the ADCs

performance as a function of the DAC used, the most critical

component in the design.

The key to obtaining accurate results using the histogram

method is to acquire several samples. A method for calculating a

minimum number of points given a desired confidence interval was

presented in Section 4.1. It was shown that for a 15-bit

converter 19,700,000 samples were required to estimate

differential nonlinearity to within 0.1 bit with 95% confidence.

The nominal sample rate for the DAS is 128 Hz. At this sample

rate, it would require almost 43 hours just to acquire the data

not to mention processing by the controller. In this time the

input waveform would probably drift several millivolts and hence

ruin the desired test accuracy. Thus, for the given application

there will have to be a trade-off of test accuracy and confidence

for testing time.

For the tests performed, 1,638,400 samples were taken. This

corresponds to a 84% confidence interval with 0.25 bit precision.

This still requires about 4 hours to acquire the data, during

which processing and storage operations must be accomplished,

adding an additional few hours. Therefore the input waveform will

drift and hence degrade the given precision and confidence

interval. However, this is all that can be done with such a slow

sample rate. As will be seen though, the results pretty well

agree with those of the static tests performed in Section 3.4.
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The amplitude of the input waveform was set to be slightly

greater than full-scale ( + 5V), +5.091V (3.6Vrms). This is to

ensure that all codes are exercised.

Figures 22 through 24 illustrate the results obtained.

Figures 22a, 23a, and 24a are histograms of the data. Figures

22b, 23b, and 24b are the differential nonlinearity estimates

obtained from the histogram data. As was noticed in the static

tests, the system has a large differential nonlinearity at zero-

crossing. At all other points however, the differential

nonlinearity is less than two LSBs. Thus the system basically has

14-bit differential nonlinearity (with respect to ±1 LSB).

Missing codes show up as points with a differential

nonlinearity of minus one. A search of the data files was

performed to find the number of missing codes for each test. The

results are given in Table 7.

Table 7

Missing Codes for Dynamic Histogram Test

Figure Number of missing codes

22 5

23 44
24 32

Note that the tests performed using DAC#1 obtained much

better results than the tests using DAC#2 and DAC#3. This

indicates that the performance of the DAS is dependent on the DAC

to some degree. Of the above missing codes, only one was common

with all three tests, the code of -4. Thus it could be possible

that some of the codes which are indicated as being missing are

actually not. It could be due to the fact that an insufficient
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number of samples were taken to ensure that all the codes were

exercised. Remember that the confidence interval was 84% and the

bit precision was 0.25 bit. Thus 16% of the codes indicated as

being missing could actually exist, or their code widths may be

less than 0.25 LSB.

Comparing these results to the static tests of Section 3.3,

the differential nonlinearity seems to be slightly greater for

the dynamic tests, approximately 1 LSB. A larger differential

nonlinearity indicates more missing codes, as was found to be

true.

4.4.2 Fourier Transform Test Using the method of Section

4.2, the dynamic integral linearity performance of the 15-bit DAS

has been evaluated. For the tests performed, 2,048 samples were

taken. Even though this exercises only a fraction of the possible

output codes, experience has shown that successive tests gives

similar results. It should be noted that DAC#1 of Section 4.4.1

is used for all tests performed.

The maximum frequency of interest for the DAS is 45Hz and its

span is ±5V. The nominal sampling frequency is 128Hz. When a DFT

is performed on the samples, the frequency window is from dc to

64Hz. Therefore with an input frequency of 45Hz, the harmonics

will be outside of the frequency window. However, due to aliasing

they are all folded back into the window, showing up at their

respective aliased frequencies. In order to determine exactly

where they show up, a software simulation was performed. A 45Hz

sinusoid and its first 8 harmonics were sampled at 128Hz. The

amplitude of each harmonic was decreased by 20dB, thus making it

possible to detect the respective harmonic in the frequency
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window. The result is shown in Figure 25, and the exact

frequencies are tabulated in Table 8.

Table 8

Location of Harmonics in the
DFT Frequency Window

Harmonic Frequency (Hz)

1st 45
2nd 38
3rd 7
4th 52
5th 31
6th 14
7th 59
8th 24
9th 21

Using software, a perfect 15-bit ADC sampling a 45Hz sine

wave at 128Hz was simulated. The resultant output spectrum is

shown in Figure 26. This is used for comparison with the test

results to follow.

The first test performed uses a 45Hz 9.9Vpp sine wave input.

The input is slightly less than full-scale in order to avoid

clipping, and hence erroneous results. The results are shown in

Figure 27a. Dynamic range sets the test limit for 1 LSB accuracy

of a 15-bit converter at -90dBc (all components must be 90dB

below the fundamental of full-scale amplitude for 1 LSB

accuracy). This test shows that there are several components

well above -90dBc, indicating a large integral nonlinearity. The

highest component is contained in the 2nd harmonic, at a

magnitude of approximately -55dBc. The dynamic range for an N-bit

converter was given in Section 4.2 as being 6.02N. Thus the DAS

has an effective dynamic range of 9.1 bits. Further investigation
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has found that this is unique to a signal which changes sign.

Part of this is due to the large differential nonlinearity at

zero, but it does not explain distortion to the degree indicated.

The noise floor of the spectrum is well below the 90dB threshold

however. This indicates that the overall system noise, the

differential nonlinearity, and the aperture uncertainty of the

sample-and-holds are acceptable.

For the second test, the band-pass filter was replaced with a

low-pass filter (see Appendix D) and a 4.9Vpp sine wave with a

2.5Vdc offset was applied, thus only exercising the positive

range of the converter. The result is shown in Figure 27b. Since

only one-half of the converter's span is being exercised, the

results with the dc offset can be assumed to be those of a 14-bit

converter. Therefore the test limit is now -84dBc. The component

at 15Hz is from the function generator, a component the low-pass

filter is unable to filter out, as predicted in Appendix D.

Therefore the only unacceptable component due to the converter

shows up at the 2nd harmonic. Its amplitude is about -80dBc, an

effective dynamic range of 13.3 bits, only 0.7 bits away from the

test limit. The noise floor is again well below -90dBc,

indicating acceptable overall noise, differential nonlinearity,

and aperture uncertainty.

Exercising the negative range with a -2.5Vdc offset and a

4.9Vpp input obtains similar results. This result is shown in

Figure 27c. Note that a component at the 3rd harmonic is also

present, but of a little less magnitude. This component therefore

does not degrade the dynamic range, but does increase the signal-

to-noise ratio. As an experimental control factor, a test was
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performed with 4.9Vpp input but without the offset, still using

the low-pass filter, Figure 27d, and without the filter. Figure

27e. Figure 27d supports the evidence that the converter's

integral linearity is degraded when a bipolar signal is used.

Figure 27e shows that the the distortion is not due to the

filter, since the harmonics are of the same amplitude. The noise

floor is raised however. This is because the noise of the

function generator is filtered out when the low-pass filter is

used.

Note that the second harmonic in the tests performed with the

4.9Vpp input is at -55dBc, the same as with a 9.9Vpp input. This

suggests that the distortion is not dependent on the amplitude.

To help support this last statement, a test with a 500mVpp input

was performed, Figure 27f. Again the second harmonic is 55dB

below the fundamental. This verifies that the distortion is

amplitude independent.

It was found that the harmonics obtained in Figures 27b and

27c were due to the sample-and-hold opamps (Precision Monolithic

OP-22s). The sample-and-hold opamps were replaced with some

National Semiconductor LF356s, an industry standard high-

performance opamp with excellent open-loop gain characteristics

and an excellent sample-and-hold opamp. Figure 27g illustrates

the results of digitizing a 4.9Vpp signal with a 2.5Vdc offset.

In this test no significant harmonics are present, the one at

15Hz is introduced by the function generator as stated

previously. The converter is working almost ideally, with the

exception of unavoidable noise. A comparison of Figures 27g and

27b indicate that the 2nd harmonic of Figure 27b is due to the
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nonlinearity of the sample-and-hold opamps. A rather interesting

result was obtained when a -2.5Vdc offset was used, Figure 27h.

In this example, several harmonics are present. An indication

that one, if not both, of the LF356s used is very nonlinear for

negative input voltages.

4.4.3 Conc l usions Dsing the methods of Sections 4.1 and 4.2,

the dynamic performance of a 15-bit data acquisition system has

been evaluated.

The histogram method was used to estimate the differential

linearity. Results show the differential nonlinearity to be about

14-bits. This test also showed that missing codes are present in

the system, the number dependent on the DAC used in the system.

The Fourier transform method was used to estimate integral

nonlinearity. It was found that the system has a large amount of

distortion when a bipolar signal is sampled. When a dc offset is

applied to the signal, hence exercising only positive or negative

voltages, the system distortion was reduced dramatically.

Effectively 13.3-bit linearity was achieved (since the span is

cut in half the system resolution becomes 14 bits). Further tests

indicated that the nonlinearity is independent of the input

amplitude. Though the harmonics found in the tests which used a

dc offset were at acceptable levels, it was found that they were

due to the sample-and-hold opamps. Dsing a higher performance

opamp obtained excellent results, essentially no distortion.
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APPENDIX A

Digital-to-Analog Converter Terminology

Introduction

As with many other areas of electronics, there is a lack of

an industry-wide standardization of terminology used to describe

the characteristics of digital-to-analog converters (DACs). it

seems that every manufacturer has its own unique definition of a

specific term. The following definitions are taken from the

Analog Devices 1984 Databook, volume 1, Section 9, and an

applications note published by Teledyne Philbrick, bulletin AN-

25, July 1976. Discussions in the body of this thesis are based

on these definitions.

Parameter Definitions

Accuracy.,. Abso l ute - The error of a DAC is the difference

between the actual analog output and the theoretical output when

a given digital code is applied to the converter (Figure A-lb).

Sources of error include gain (calibration) error, zero error,

linearity errors, and noise. Absolute accuracy is normally

expressed as a percentage of full-scale and when given with a

maximum value, it indicates the worst case deviation from the

ideal point.

Accuracy may be much better than resolution in some

applications; for example, a 4-bit reference supply having only

16 discrete digitally chosen levels would have a resolution of
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1/16 (6.25%), but it might have an accuracy to within 0.01% of

each ideal value.

Accuracy, Relative - Relative accuracy error is the deviation

of the analog output at any code from its theoretical value after

the full-scale range (FSR) has been calibrated (Figure A-lb).

Since the discrete analog output values corresponding to the

digital input values ideally lie on a straight line, the

relative-accuracy error of a linear DAC can be interpreted as a

measure of nonlinearity error.

After the gain and offset errors are adjusted to zero, a

converter with perfect relative accuracy will display perfect

absolute accuracy. Relative accuracy error is expressed in

percent of full-scale, ppm, or fractions of 1 LSB.

Differential Nonlinearity - Differential nonlinearity for a

DAC is defined as the maximum deviation of any bit size from its

theoretical value of 1 LSB over the full conversion range (Figure

A-2). For example, differential nonlinearity of +1/2 LSB demands

that each step be 1 +1/2 LSB.

A differential nonlinearity of less than or equal to -1 LSB

is the maximum allowed for monotonic operation. In addition,

differential nonlinearity directly affects the nonlinearity of

the input-output transfer function.

Full-Scale (FS) - Full-scale is defined as the absolute value

of the maximum analog output voltage of the DAC. For example, a

DAC with an output range of 0V to 10V has a full scale of 10V. A

DAC with an output range of -5V to +5V has a full scale of 5V.
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Gain Error - Gain error is the difference in slope between

the actual input-output relationship and the ideal relationship,

ignoring offset error (Figure A-lb). This is usually quoted as a

percentage of full-scale, or fraction of 1 LSB.

Integral Nonl inearity - Integral nonlinearity (or just

nonlinearity) of a converter is a deviation of the analog values,

in a plot of the measured conversion relationship, from a

straight line (Figure A-3).

The straight line can be either a "best straight line",

determined empirically by manipulation of the gain and/or offset

to equalize maximum positive and negative deviations of the

actual transfer characteristic from this straight line; or it can

be a straight line passing through the end points of the transfer

characteristic. Sometimes referred to as "end-point" linearity,

the latter is both a more conservative measure and is much easier

to verify in actual practice. "End-point" linearity error is

similar to relative-accuracy error (see Accuracy Relative).

LS£&t=_S±gn_i£i££nt £ii _LLS£1 - In a system in which a

numerical magnitude is represented by a series of binary (i.e.

two-valued) digits, the "least-significant bit" is that digit (or

"bit") that carries the smallest value or weight. For example,

in the natural binary number 1101 (decimal 13, or 2 3 + 2 2 + +

2°), the rightmost "1" is the LSB. Its analog weight, relative

to full-scale, is 2" N
, where N is the number of binary digits.

It represents the smallest analog change that can be resolved by

an N-bit converter.
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Major and Minor Transitions - The number of bits involved in

a code change establish "major" and "minor" transitions. The

most major transition occurs at 1/2 scale, when the DAC switches

from Oil. ..Ill to 100. ..000. The most minor transition would

occur when only the LSB changes, such as when the DAC switches

from 000. ..000 to 000. ..001.

flonotonicity. - a DAC is said to be monotonic if the output

either increases or remains constant as the digital input

increases, with the result that the output will always be a

single-valued function of the input. Monotonicity requires that

the differential nonlinearity be > -1 LSB (Figure A-4).

Most-Significant £i£ fMSB) - In a system in which a numerical

magnitude is represented by a series of binary (i.e. two-valued)

digits, the "most-significant bit" is that digit (or "bit") that

carries the largest value or weight. For example, in the natural

binary number 1101 (decimal 13, or 2 3 + 2 2 + + 2°), the

leftmost "1" is the MSB. Its analog weight, relative to full-

scale, is 2-1 .

Noise - The noise of a DAC is defined as the amount of jitter

in the analog output. It is usually expressed as a peak-to-peak

or rms value over a defined bandwidth. Noise is of primary

importance in high-resolution DACs (2 12 bits resolution) where

the noise can exceed the LSB value over a reasonable bandwidth

and thereby reduce the useful resolution.

Offset -Brrpj - Offset error is the degree to which the

transfer function fails to pass through the origin (Figure A-lb).

If this error is not adjusted to zero, a constant absolute

accuracy error is added to every point on the transfer function.
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Offset error does not degrade the relative accuracy. Offset

error is normally expressed as a percentage of full-scale or a

fraction of an LSB. Provisions are normally made to adjust this

error to zero.

Quantizing Error - The analog continuum is partitioned into

2 N discrete ranges for n-bit processing (Figure A-la). All

analog values within a given range of output are represented by

the same digital code, usually assigned to the nominal midrange

value. For applications in which an analog continuum is to be

restored, there is an inherent quantization uncertainty of ±1/2

LSB, due to limited resolution, in addition to the actual

converter errors.

Resolution - Resolution is defined as the relative value of

the least-significant bit (LSB) - the smallest value of change

that can be generated by a DAC. Resolution is determined by 2~N

of the span for a converter with N binary bits. Resolution is

normally expressed in terms of the number of bits, as a

percentage of full-scale, or in ppm. Note that useful resolution

may be limited by relative accuracy but that resolution need not

limit accuracy.

Settling Tjme - The time required, following a prescribed

data change, for the output of a DAC to reach and remain within a

given fraction (usually +1/2 LSB) of the final value. Typical

prescribed changes are full-scale, 1 MSB, and 1 LSB at a major

code transition. Settling time of current-output DACs is quite

fast. The major share of settling time of a voltage-output DAC

is usually contributed by the settling time of the output opamp

circuit.
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Skew - Skew defines the degree to which events that are to

occur (ideally) simultaneously do not. Internal DAC skewing is

caused by the bit switches not switching simultaneously (in

response to simultaneous input commands). Externally, bit

switching skew can be aggravated due to skew of the individual

bits of the input command. Output glitches are the direct result

of skew.

.Slew. Rate - The maximum rate at which a DAC output voltage

can change in response to a full-scale output command. Slew rate

is only a guide to speed, In most applications, the important

specification is the settling time, which is elapsed time to

rated accuracy.

Span - For a DAC with a bipolar output, the span is defined

as the sum of the minus full-scale and plus full-scale values,

regardless of sign. For example, a converter with an output

which has a range of -5V and +5V has a voltage span of 10V. A

converter with an output range of OV to 10V also has a voltage

span of 10V.

Stability - Stability of a converter usually applies to the

insensitivity of its characteristics to time, temperature, etc.

All measurements of stability are difficult and time consuming,

but stability vs. temperature is sufficiently critical in most

applications to warrant universal inclusion of temperature

coefficients in tables of specifications (see "Temperature

Coefficients)

.

Xemssxaluxe £osl£islsniS - In general, temperature

instabilities are expressed in %/°C, ppm/°C, as fractions of 1

LSB/°C, or as a change in a parameter over a specified
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temperature range. Measurements are usually made at room

temperature and at the extremes of the specified range, and the

temperature coefficient (tempco, T.C.) is defined as the change

in the parameter, divided by the corresponding temperature

change. Parameters of interest include gain, linearity, offset

(bipolar), and zero. The last three are expressed in % or ppm of

full-scale range per degree Celsius.

Zero and G3in Adjustment Princip les - Most manufacturers

specify zero and gain adjustment instructions on the data sheet.

The data sheet instructions should be followed. If instructions

are not supplied, the following steps can be followed.

The output of a unipolar DAC is set to zero volts in the all-

bits-off condition. The gain is set for FS(l-2-N
) with all bits

on. The "zero" of an offset-binary bipolar DAC is set to -FS

with all bits off, and the gain is set for +FS(1-2_ (N-1)
) w i tn

all bits on.
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APPENDIX B

Analog-to-Digital Converter Terminology

Introduction

As with many other areas of electronics, there is a lack of

an industry-wide standardization of terminology used to describe

the characteristics of analog-to-digital converters (ADCs). it

seems that every manufacturer has its own unique definition of a

specific term. The following definitions are taken from the

Analog Devices 1984 Databook, Volume 1, Section 10, and an

applications note published by Teledyne Philbrick, bulletin AN-

24, July 1976. Discussions in the body of this thesis are based

on these definitions.

Parameter Definitions

Accuracy, Abso l ute - The error of an ADC at a given output is

the difference between the theoretical and the actual analog

input voltages required to produce that code (Figure B-lb).

Since the code can be produced by any analog voltage in a finite

band (see Quantizing Error), the "input required to produce that

code" is defined as the midpoint of the band of inputs that will

produce the code.

Absolute error comprises gain error, offset error, and

nonlinearity, together with noise.

Accuracy, Relative - Relative accuracy error, expressed in %,

ppm, or fractions of an LSB, is the deviation of the analog value

at any code (relative to the full analog range of the device
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transfer characteristic) from its theoretical value (relative to

the same range), after offset and gain errors have been

calibrated (Figure B-lb).

Since the discrete points on the theoretical transfer

characteristic lie on a straight line, this deviation can also be

interpreted as a measure of nonlinearity (see Integral

Linearity).

The "discrete points" of an ADC transfer characteristic are

the midpoints of the quantization bands at each code (see

Accuracy, Absolute).

Conversion Time and Conversion Rate - The time required for a

complete measurement by an ADC is called conversion time. For

most converters (assuming no significant additional systemic

delays), this is identical to the inverse of conversion rate.

However, in some high-speed converters, because of pipelining,

new conversions are initiated before the results of prior

conversions have been determined. Therefore the conversion rate

can be greater than the inverse of the conversion time.

In successive-approximation converters, the conversion time

is independent of input amplitude. In integrating converters,

the conversion time may be somewhat proportional to the input

amplitude, varying about 50% from zero to full scale.

Differential Non l inearity - Differential nonlinearity is

defined as the maximum deviation of any bit size from its

theoretical value of 1 LSB over the full conversion range. For
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example, a differential nonlinearity of +1/2 LSB demands each

step be 1 LSB +1/2 LSB (Figure B-2).

It is an important specification, because a differential

nonlinearity £ -1 LSB can lead to nonmonotonic behavior (see

monotonicity) of a DAC, and missed codes in an ADC employing such

a DAC. In addition, differential nonlinearity directly affects

the input-output function's nonlinearity.

Often, instead of a maximum differential nonlinearity

specification, there will be a simple specification of "no

missing codes", which implies a differential nonlinearity less

than 1 LSB.

£aIl=Ssale (FS) - Full-scale is defined as the absolute value

of the maximum analog input voltage of the ADC. For example, an

ADC with an input range of OV to 10V has a full scale of 10V. An

ADC with an input range of -5V to +5V has a full scale of 5V.

fiaia Error - Gain error is the difference in slope between

the actual input-output relationship and the ideal relationship,

ignoring offset error (Figure B-lb). Gain error does not degrade

the relative accuracy. This is usually quoted as a percent error

of full-scale. Provisions are normally made to adjust this error

to zero. A proper gain adjustment results in the transition from

111. ..110 to 111. ..Ill occurring at -1 1/2 LSB from the

theoretical full-scale output.

Integral Nonlinearity - Integral nonlinearity (or just

nonlinearity) of a converter, expressed in percent or parts-per-

million of full-scale range, or fractions of a least-significant

bit, is the deviation of the analog values from a straight line,

in a plot of the measured conversion. relationship (Figure B-3).
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The straight line can be either a "best straight line",

determined empirically by manipulation of the gain and/or offset

to equalize maximum positive and negative deviations of the

actual transfer characteristic from this straight line; or , it

can be a straight line passing through the end points of the

transfer characteristic. Sometimes referred to as "end-point"

nonlinearity, the latter is both a more conservative measure and

is much easier to verify in actual practice. "End-point"

nonlinearity is similar to relative accuracy error (see Accuracy,

Relative)

.

Figures B4a and B4b demonstrate how the linearity error

depends on the definition used. Using the "best straight line"

definition, the peak linearity error is minimized, giving a

nonlinearity of +1/2 LSB. The "end-point" definition gives a

nonlinearity of 1 LSB.

Note that integral linearity error is independent of offset

or gain errors. Thus, accurate linearity measurements can be

made on uncalibrated converters.

i^a^t^igH-Lfi-S-a-B-fc -Bii 1L-S.B1 - In a system in which a

numerical magnitude is represented by a series of binary (i.e.

two-valued) digits, the "least-significant bit" is that digit (or

"bit") that carries the smallest value or weight. For example,

in the natural binary number 1101 (decimal 13, or 2 3 + 2 2 + +

2°), the rightmost "1" is the LSB. Its analog weight, relative

to full-scale, is 2" N
, where n is the number of binary digits.

It represents the smallest change that can be resolved by an N-

bit converter.
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Major and Minor Transitions - The number of bits involved in

a code change establish "major" and "minor" transitions. The

most major transition occurs at 1/2 scale, when the ADC switches

from Oil. ..Ill to 100. ..000. The most minor transition would

occur when only the LSB bit changes, such as when the ADC

switches from 000. ..000 to 000. ..001.

fljssjng Code - No missing (skipped) codes requires that the

differential nonlinearity be less than +1 LSB. This means that

for a continuously increasing input the converter's output, while

increasing, will not skip or miss one or more codes (Figure B-5).

HQnptonicjty - Monotonicity requires that the differential

nonlinearity be less than -1 LSB. This means that for a

continuously increasing input, the converter's output must not

decrease (Figure B-5).

a££t=£±£n±i±£ailt £it UJ.S.B.1 - In a Binary (two-valued)

numerical system, the most significant bit is that digit or bit

that carries the greatest value or weight. For example, in the

natural binary number 1011 (decimal 11, or 23 + + 2 1 + 2°), the

leftmost digit is the MSB, with weight, or value, of 1/2 nominal

peak-to-peak full scale input.

Noise - The noise of an ADC is defined as the amount of

jitter or uncertainty in the transition point for output code

changes (Figure B-6). It is usually expressed as a fraction of

an LSB. Noise is of primary importance in high-resolution ADC's

(greater than or equal to 12 bits resolution) where the noise can

exceed the LSB value and thereby reduce the useful resolution.

Offset Erroj - Offset error is the degree to which the

transfer function fails to pass through the origin (Figure B-lb).
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If this error is not adjusted to zero, a constant absolute

accuracy error is obtained at every point on the transfer

function. Offset error is normally expressed in microvolts or

LSB's. Provisions are normally made to adjust this error to

zero. A proper zero adjustment results in the transition from

000. ..000 to 000. ..001 occurring at +1/2 LSB for a unipolar ADC,

or from 100.000 to 100. ..001 at FS/2 + 1/2 LSB for a bipolar ADC.

Quantizing Error - The analog continuum is partitioned into

2 N discrete ranges for N-bit conversion. All analog values

within a given range are represented by the same digital code,

usually assigned to the nominal midrange value (Figure B-la).

There is, therefore, an inherent quantization uncertainty of ±1/2

LSB, in addition to the actual conversion errors. In integration

converters, this "error" is often expressed as "+1 count."

Resolution - Resolution is defined as the relative value of

the least significant bit (LSB) - the smallest value of change

that can be distinguished by an ADC. Resolution is determined

by 2-N of the span for a converter with N binary bits. Resolution

is normally expressed in terms of the number of bits, as a

percentage or in parts-per-million (ppm).

Span - For an ADC with a bipolar input, the span is defined

as the sum of the minus full-scale and plus full-scale values,

regardless of sign. For example, a converter with an input which

may vary between -5V and +5V has a voltage span of 10V.

Stability - Stability of a converter, usually applies to the

insensitivity of its characteristics with time, temperature, etc.

(See Temperature Coefficients).
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XSMESXaiuxe £o^Uiciejii^ - in general, temperature

instabilities are expressed in %/°C, ppm/°C, as fractions of 1

LSB/°c, or as a change in a parameter over a specified

temperature range. Measurements are usually made at room

temperature and at the extremes of the specified range, and the

temperature coefficient (tempco, T.C.) is defined as the change

in the parameter, divided by the corresponding temperature

change. Parameters of interest include gain, linearity, offset

(bipolar), and zero. The last three are expressed in % or ppm of

full-scale range per degree Celsius.

& er P .and gain Adjustment Princip les - Most manufacturers

specify zero and gain adjustment instructions on the data sheet.

The data sheet instructions should be followed. If instructions

are not supplied, the following steps can be followed.

The zero adjustment of a unipolar ADC is set so that the

transition from all-bits-off to LSB-on occurs at l/2x2" n of

nominal full-scale. The gain is set for the final transition to

all-bits-on to occur at FS(l-3/2x2_n ). The "zero" of an offset-

binary bipolar ADC is set so that the first transition occurs at

-FS(l-2"n ) and the last transition at +FS(l-3x2~n ).
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APPENDIX C

Data Converter Characteristics

Bits
Resolution Percent Dynamic Signal-to-Noise

(N) 2N Resolution Range (dB) Ratio (dB)

3 8 12.5 18.06 19.82
4 16 6.25 24.08 25.84
5 32 3.125 30.10 31.86
6 64 1.563 36.12 37.88
7 128 0.7813 42.14 43.91
8 256 0.3906 48.16 49.93
9 512 0.1953 54.19 55.95

10 1 024 0.09766 60.21 61.97
11 2 048 0.04883 66.23 67.99
12 4 096 0.02441 72.25 74.01
13 8 192 0.01221 78.27 80.03
14 16 384 0.006104 84.29 86.05
15 32 768 0.003052 90.31 92.07
16 65 536 0.001523 96.33 98.09
17 131 072 0.0007629 102.4 104.1
18 262 144 0.0003815 108.4 110.1
19 524 288 0.0001907 114.4 116.2
20 1 048 576 0.00009537 120.4 122.2

Percent Resolution = 1/2"

Dynamic Range = 20Log10 (2
N

) = 6.02N dB

Signal-to-Noise Ratio = lOLogn) (3x22N_1 ) = 6.02N + 1.76 dB

where: signal power = A2/2

A = Peak amplitude of sinusoid

noise power = Q/(12) 1/ 2

Q = 2A/2 N

C2
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APPENDIX D

Spectrally Pure Sine Wave Generation

When dynamic testing analog-to-digital converters, the input

waveform must be of lower distortion than the converter-under-

test in order to ensure that distortion detected in the results

is due solely to the converter. When testing a 15-bit ADC, the

input must have a distortion level of less than 0.00305% (-90dB),

the percent resolution of the converter. Host commercially

available function generators have sine wave outputs with

distortion levels of -40dBc to -70dBc. The function generator

available for work presented in this thesis was the Hewlett-

Packard 3325A. The operator's manual states that the harmonic

distortion is less than -65dBc and spurious signals are less than

-70dBc.

The method used to lower the distortion and noise levels was

to band-pass filter the output of the 3325A. The maximum

frequency of interest for the data acquisition system was 45Hz.

Thus, a band-pass filter with a center frequency of 45Hz was

developed. Since some tests required the use of a dc offset, a

low-pass filter with a cut-off frequency of 45Hz was also

developed.

In order to verify the distortion specifications of the

3325A, the sine wave output was characterized at 45Hz using a

Hewlett-Packard 3561A Signal Analyzer. The result is shown in

Figure D-l. The amplitude of the fundamental was 6.47dBV (5.96V

D2
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peak-to-peak). The highest harmonic occurs at -71.44dBV, 77.91dB

below the fundamental.

It was desired that all harmonics be -HOdBc. Thus the filter

must have an attenuation greater than 30dB at the second

harmonic, 90Hz. An elliptic response was chosen because of its

rapid fall-off in the transition band. This advantage comes at

the expense of ripples in the passband and stopband. Since only

one frequency passes through the filter, the ripple in the

passband is of no significance. The ripple in the stopband is

limited to be less than -30dB.

Oslhg Reference 9 as a guide, an 8-pole band-pass elliptic

filter was designed with a center frequency of 45Hz, a Q of 1, a

passband ripple width of 1.0 dB, and a minimum stopband loss of

40dB. The frequency response is shown in Figure D-2. At 90dB, the

second harmonic, the gain is -37dB. All other harmonics will be

attenuated by at least 40dB.

Also using Reference 9 as a guide, a 3-pole low-pass elliptic

filter was designed with a cut-off frequency of 45Hz, a passband

ripple width of 3dB, and a minimum stopband loss of 40dB. The

response is shown in Figure D-3. The gain at 90dB is -40dB. Note

that the gain at 45Hz is -3dB, thus the attenuation is 37dB. The

filter was designed with the attenuation of 3dB at 45Hz because

this allows for maximum attenuation of the second harmonic from

the fundamental; it makes maximum use of the rapid drop-off in

the transition band. Note that in Figure D-l there is a

15Hz signal with a significant amplitude which will not be

filtered by the low-pass filter.
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In implementing the above filters, the biquad band-pass

filter circuit of Reference 9 was used. It was chosen because of

its excellent stability and its relative ease in cascading

several circuits to obtain higher-order filters. The Precision

Monolithics OP-01 operational amplifier was chosen for its speed

and its high open-loop gain (which makes for low distortion).

Polystyrene capacitors and 1% metal film resistors were chosen

for their excellent analog qualities.

D7
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Abstract

This thesis discusses techniques for testing a low-power data

acquisition system (DAS). The system resolution is 15-bits,

sampling frequency is 128Hz, input range is +5V, and the maximum

input frequency is 45Hz. Techniques considered are those which

lend themselves to an automated test, a test which is under

computer control and which presents a numerical and/or graphical

result. Static and dynamic test procedures are considered in

testing a digital-to-analog converter (DAC) and an analog-to-

digital converter (ADC).

The direct method of static testing DACs was found to be

satisfactory for testing the 14-bit DAC used in the system. The

DAC-to-ADC loop method using the histogram procedure is the best

static test for the DAS; this procedure provides a good estimate

of the transition voltages in the presence of noise and is easy

to implement. Dynamic testing of the DAS involved two techniques;

the histogram method was found to be best for estimating the

differential linearity, and the Fourier transform method was

found to be best for estimating the integral linearity. A third

technique, the sine fit method, was used to give an overall

indication of the system's performance.


