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Abstract 

Food preparation in institutional settings is often carried out in large quantities. Food is 

cooked and then cooled and stored for later service. Improper or “slow” cooling has been 

identified by the United States Food and Drug Administration (US FDA) as a contributing factor 

in foodborne illness outbreaks. This study was designed to test the efficacy of cooling technique 

combinations on controlling microbial growth within pre-cooked taco meat, chili con carne with 

beans, low sodium marinara sauce, and brown rice food products. These products were cooked to 

73.8°C (165°F) and then portioned to 2 and 3-inch depths in steam table pans. Food product was 

allowed to cool to 60°C ± 5°C (140°F ± 5°F) before inoculation with surrogate Escherichia coli 

(E. coli) or Biosafety Level I (BSL I) Bacillus cereus (B. cereus). Pans were uncovered or 

covered with one or two layers of aluminum foil to allow or restrict air exposure and then placed 

in a -20°C (-4°F) commercial walk-in freezer or situated in ice water baths in a commercial 

walk-in refrigerator 4°C (39.2°F). Food products were sampled over a 24-hour period (0, 4, 8, 

12, and 24 hour time points) for enumeration of microbial populations. 

Conclusions from the cooling temperature data in this study revealed uncovered pans and 

pans stored in the freezer at 2-inch food product depths cooled most rapidly. However, few 

cooling methods achieved the two-step US FDA Food Code requirement for pre-cooked taco 

meat, chili con carne with beans, and brown rice products and none of the cooling methods tested 

achieved the US FDA food code requirement for low sodium marinara sauce. Surrogate E. coli 

and BSL I B. cereus microbial population data revealed pre-cooked taco meat, chili con carne 

with beans, and brown rice products all exhibited a certain degree of overall population decline 

during the 24-hour cooling period. However, a small recovery of surrogate E. coli population 

was observed in the low sodium marinara sauce product as well as 2-inch product depths of the 



 

 

chili con carne with beans product. This observed growth was less than 0.50 log10 CFU/g, 

indicating low risk for microbial proliferation from the cooling methods tested. It is possible that 

the surrogate E. coli and BSL I B. cereus population changes observed were not the result of 

cooling failure or risk, but rather due to natural variations within the food products. These results 

indicate all 12 cooling methods tested were low risk and therefore effective at controlling E. coli 

and B. cereus microbial populations within the four food products.  
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Chapter 1 - INTRODUCTION 

Foodborne illness affects 48 million people each year, resulting in 128,000 

hospitalizations and 3,000 deaths (39). Of these illnesses, only 20% can be traced back and 

attributed to 31 major foodborne pathogens (132). Of those pathogens, Bacillus cereus (B. 

cereus) causes more than 63,000 illnesses annually, and 100% of these illnesses are foodborne in 

origin (132). Exposure to Escherichia coli (E. coli) O157:H7 results in a similar number of 

illnesses annually, but with over 46% of cases resulting in hospitalization and 0.5% in death 

(132).  

Escherichia coli O157:H7 and B. cereus do not rank among the top pathogens for 

numbers of hospitalizations, illnesses, or deaths (132). However, it is critical to emphasize these 

pathogens when considering those at risk for severe illness and life-threatening complications, 

including young children. Children, especially those under the age of five, have underdeveloped 

immune systems that may not be equipped to handle a pathogenic infection (24). An 

underdeveloped immune system compounded with a child’s low body weight makes even a 

small amount of pathogen a significant risk (24). Therefore, children under the age of five 

account for almost 30% of all deaths from foodborne illness (171). 

Escherichia coli O157:H7 is a critical concern for young children (age 1-9 years) as they 

experience an infection rate of 8.2 per 100,000 which is four times the infection rate of adults 

aged 20-29 (24). Children also have a higher likelihood of developing chronic sequelae like 

hemolytic uremic syndrome (HUS) (24). The World Health Organization has identified HUS as 

the most common cause of acute renal failure in children (146, 170). Long-term complications 

from an E. coli O157:H7 infection can affect children in many ways, including decreased 

neuromotor skills, increased risk of hypertension, and chronic renal issues that have been 
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documented in over a third of cases in children (22, 124). The ability of E. coli to survive 

improper holding temperatures is a critical concern for school nutrition programs. A school 

associated outbreak of E. coli O157:H7 in Japan sickened over 6,000 school children because 

dishes served at one school were held for serving at a temperature just 5°C lower than other 

schools that did not report illness (89).  

When compared to other pathogens, B. cereus generally causes mild and self-limiting 

symptoms of diarrhea or vomiting, contributing to the fact that it is a markedly underreported 

foodborne illness (9, 74, 75, 76, 77). However, there have been documented cases that suggest 

certain strains are more virulent than others are and may cause life-threatening illness. The 

emetic strain produces a heat stable toxin that has been implicated in cases of fulminant liver 

failure resulting in the deaths of several young people (including a 7-year-old girl in 2003 ) (56, 

106, 112). The three documented cases resulted from the ingestion of a variety of contaminated 

pasta dishes (56, 106, 112). Another high-risk food product for this pathogen is fried rice, a dish 

commonly served in schools and daycares that has been identified as the leading cause of emetic-

type B. cereus food poisoning in United States schools (16, 143). Milk is another product of 

concern, as spores of B. cereus may survive pasteurization and some species have the ability to 

then germinate and cause vegetative cell growth at low temperatures (15, 49). In fact, milk was 

implicated in 11 outbreaks and over 1,600 illnesses in United States schools from 1973-1997 

(55). 

Large outbreaks of foodborne illness are prevalent in environments where food is cooked 

in large batches, a common practice for restaurants and institutional settings (72, 102, 107, 110). 

Outbreaks can be seasonal in school settings and also peak in the fall during November, perhaps 

correlating with thanksgiving style meals or leftovers (31). Outbreaks, illnesses, and 
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hospitalizations in school settings peak in the spring during the month of March (31). A 2013 

Centers for Disease Control and Prevention (CDC) surveillance summary reviewed outbreak 

data collected during the years 1998-2008 and concluded that schools were associated with the 

largest number of outbreaks (286) and illnesses (17,266) compared to other institutional settings 

like daycares, workplace cafeterias, and prisons or jails (72). The risk for large outbreaks is 

considerable in schools, as The National School Lunch program serves over 31 million children 

each day, with a total of 224 billion lunches served since the beginning of the formal program in 

1946 (150).  

The large population of children served at school, combined with their classification as an 

at-risk population, make proper food preparation practices especially critical in a school lunch 

setting. Many factors during food preparation may lead to an outbreak, and the US FDA has 

consistently identified time/temperature control as a critical point where control is necessary to 

prevent foodborne illness (155, 157, 158). A recent survey of school food service managers 

concluded that cooling is an intrinsic aspect of food preparation for school nutrition programs, 

with 78% of managers reporting cooling leftovers to reheat for service at another meal (98). 

Though it may be a common practice in the school lunch setting, improper or “slow” cooling has 

been identified as a major contributing factor for school associated foodborne illness (123, 163). 

To address factors like improper cooling, schools are now required to utilize a food safety 

program based on the principles of Hazard Analysis and Critical Control Point (HACCP) as 

stated in the Child Nutrition and WIC Reauthorization Act of 2004 (1). The FDA Food Code was 

also updated to reflect this concern, requiring cooked food products to be cooled from 57ºC 

(135ºF) to 21.1ºC (70°F) within 2 hours and from 57ºC (135ºF) to 5ºC (41°F) or less within a 

total of 6 hours (152, 156).  
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To meet these guidelines, the FDA has suggested certain methods to effectively cool food 

products in the required amount of time, such as storing food in shallow pans, in smaller or 

thinner portions, and using rapid cooling equipment (156). Previous studies have evaluated the 

cooling of food products with several methods including refrigerators, ice baths, freezers, and 

blast chillers (98, 117, 118, 129). Food products selected for this study were among those 

identified as most commonly served in schools by a survey of school foodservice managers and 

included taco meat filling, chili, marinara sauce, and rice (98). These studies provided the 

information necessary to design this experiment to reflect common cooling methods used in 

school nutrition programs with relevant food products. The blast chiller, a form of rapid cooling 

equipment, was one of the few cooling methods that produced results meeting the FDA Food 

Code requirement (117). However, this may represent a financial barrier for schools as a blast 

chiller represents a significant investment, in fact, only 8% of schools nationwide own and use 

them (98). Another common barrier is a lack of adequate freezer space; schools report an average 

of just 20% free or open space for storage (129). According to these studies, few cooling 

techniques meet the requirements of the 2013 FDA Food Code. Thus, the focus of research 

should be to scientifically characterize and validate cooling methods that are both feasible and 

effective at preventing pathogen growth, in regard to meals prepared in school nutrition program 

settings, as it is critical to public health. 

The primary objective of this project was to assess 12 cooling methods and their effect on 

surrogate E. coli and B. cereus populations in four food products commonly served by school 

nutrition programs. A variety of cooling variables were tested in order to validate methods that 

effectively control pathogenic microbial populations. These cooling methods were also chosen to 



5 

 

simulate those that are already commonly used in school nutrition programs. The experimental 

design was created to reflect these goals.  

One multifaceted objective was necessary to complete this study: the enumeration of 

surrogate E. coli and B. cereus populations within four food products during a 24-hour cooling 

period. The hypothesis for this project was that a majority of the cooling methods would be 

effective in controlling surrogate E. coli and B. cereus population growth within all four food 

products. It was also hypothesized that the most effective method for rapid cooling would be the 

uncovered 2-inch food product depths cooled in the -20°C (-4°F) freezer for all four food 

products.  
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Chapter 2 - REVIEW OF THE LITERATURE 

 Escherichia coli O157:H7 

 Background & General Properties 

Escherichia coli is classified as a Gram negative with rod morphology and it is a 

facultatively anaerobic microorganism (103, 108). This bacteria was first characterized in 1885 

by Dr. Theodor Escherich, a pediatrician and researcher who studied the microorganisms that 

inhabit the feces of infants and neonates (81). He termed the microorganisms he found the 

“bacterium coli commune” after the colon, due to the colonization of this specific section of the 

intestines (62, 81). It has been suggested by further research that just a few hours after the birth 

of an infant, E. coli has already successfully colonized the gastrointestinal tract (57, 93, 113). 

Almost a century after Dr. Escherich’s discovery, the first clinical reports of bloody diarrhea 

from the novel E. coli O157:H7 serotype were associated with outbreaks in Michigan and 

Oregon in 1982, prompting the food safety community to recognize it as a significant foodborne 

pathogen (103, 128, 164). 

The non-pathogenic species of E. coli are known as commensal organisms meaning they 

routinely colonize the intestines or gut of mammals including humans (80, 113). In fact, it is the 

most abundant facultative anaerobe found in the intestines of humans, despite competition from 

other microorganisms (93). The ability to compete successfully make a serotype like E. coli 

O157:H7 especially virulent since the strain has evolved and acquired pathogenicity through 

various exposures and genetic evolution (93, 103). Common symptoms of E. coli O157:H7 

infection are bloody diarrhea, stomach cramps, and vomiting lasting 5-7 days (32). However, 

certain populations are at a higher risk for more severe illness and sequelae. The virulence of E. 
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coli O157:H7 and its documented presence in a variety of food products from spinach to fruit 

juices to ground beef contributes to its significance as a source of foodborne illness (28, 30, 33). 

 Classification 

As a Gram negative microorganism, E. coli is encapsulated in an outer layer of primary 

surface polysaccharides that contain virulence determinants (166). Identification based on 

somatic antigen (O), flagellar antigen (H), and capsular antigen (K) date back to methods 

developed in the 1940’s (94). Kauffman’s 1947 publication titled The Serology of the Coli Group 

described the development of unique serotyping for E. coli that built upon techniques discovered 

for Salmonella classification in 1929 (65). Kauffman began by analyzing K antigens that indicate 

the thermolabile (L antigen), thermostable (A antigen), or binding (B antigen) qualities of the 

capsule surrounding the O antigen (94). He then worked to classify groups of O and H antigens 

as well. As of 2013, 174 O antigen groups and 53 H antigen groups are recognized utilizing the 

Kauffman classification scheme (52). However, two alternate identification methods have 

recently been developed to identify E. coli that may be difficult to classify because of cross 

reactivity of antigens or other factors that make them unable to be serotyped (52). These methods 

include pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) which 

are considered the gold standard for identification of previously untypeable E. coli (52, 103).  

There are six recognized pathotypes for E. coli most often associated with diarrheal 

illness in the human population. These pathotypes include E. coli that are enteroaggregative 

(EAggEC), enteropathogenic (EPEC), diffuse-adhering (DAEC), enterotoxigenic (ETEC), 

enteroinvasive (EIEC), and enterohemmorrhagic (EHEC) (49). These pathotypes are often 

distinguished by modes of attachment, toxins produced, and severity of illness. Escherichia coli 

O157:H7 is the most frequently isolated EHEC from those sickened in the United States, Japan, 
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and the United Kingdom (103). Therefore, this review will focus on E. coli O157:H7 as a Shiga 

toxin-producing EHEC. 

 Mechanisms of Pathogenicity and Illness 

It has been proposed that there are four stages recognized for bacterial infection of a host: 

(i) colonization of a mucosal site, (ii) evasion of host defenses, (iii) multiplication, and (iv) host 

damage (110). Escherichia coli O157:H7 possesses several virulence factors that enable it to 

successfully infect humans as described above, including acid tolerance and highly effective 

methods of host cell attachment (103). Pathogenicity islands within the genome allow for the 

acquisition of these pathogenic mechanisms through mobile genetic elements including 

bacteriophages, transposons, insertion sequences, and plasmids (52, 103). 

As a member of the EHEC group, a particular bacteriophage gives E. coli O157:H7 the 

ability to produce cytotoxins like Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) (52, 103). It has 

been hypothesized that the acquisition of these bacteriophages is one of the main steps in the 

evolutionary process of an EPEC serotype, O55:H7, to the more virulent E. coli O157:H7 EHEC 

(167). The Shiga toxin produced by E. coli O157:H7 contains one A subunit and five B subunits 

(103). Once fimbriae (lpf1 and lpf2) facilitate the superficial attachment of E. coli O157:H7 to 

the extracellular matrix of an epithelial cell in the intestine, the B subunits of the Shiga toxin can 

facilitate binding to the host cell at specific receptor sites in order for the A subunit to internalize 

into the cytoplasm of the host cell, inhibiting protein synthesis and causing cell death (52, 103). 

The eae gene encodes for intimin which also facilitates the intimate attachment to the host cell 

via translocated intimin receptors (Tir) (52, 130). These eae genes are commonly identified in 

serotypes of E. coli that cause an attaching and effacing infection like E. coli O157:H7 (52). 

Hemolysin (ehx) is another genetic element that contributes to pathogenicity and it is housed on 
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the O157 plasmid (102). Hemolysin is considered cytotoxic to epithelial cells and causes pore 

formation (103). 

The ability to survive acidic conditions contributes to the pathogenicity of EHEC 

pathotypes of E. coli. An rpoS regulation system produces protective proteins that allow E. coli 

O157:H7 to become acid tolerant (47). This system allows E. coli O157:H7 to evade the acidity 

of the stomach, facilitating a successful colonization of the intestines and subsequent illness 

within a human host (17). Acid tolerance may also contribute to a lower infective dose for 

pathogens like Shigella species, E. coli O157:H7, and Salmonella (17). Cells that are starved or 

in stationary phase show the greatest acid tolerance, which might represent several growth 

scenarios resulting from cross contamination or improper holding temperatures (47). 

These genetic elements make E. coli O157:H7 a virulent pathogen that sickens an 

estimated 63,000 people annually in the United States (132). Infection usually results in diarrhea 

and stomach cramps, but may also lead to hemorrhagic colitis and a severe sequelae known as 

hemolytic uremic syndrome (HUS) (32, 103). HUS develops in 5-10% of cases after symptoms 

of hemorrhagic colitis, and it occurs more frequently in children and the elderly, resulting in 

acute renal failure (14, 103). Escherichia coli that produce Stx1 may cause an infection leading 

to HUS but Stx2 production causes more severe human disease (52). Current research and past 

evidence suggest Shiga toxin-producing E. coli (STEC) causes all, or almost all, of post-diarrheal 

HUS cases in developed countries like the United States (14, 103). 

 Reservoirs and Modes of Transmission 

Escherichia coli infections are most commonly contracted via the fecal-oral route, often 

by consuming contaminated food or water (52, 103). It is well known that ruminants, especially 

cattle, are the major reservoir for E. coli O157:H7 and it is the exposure to their feces that causes 
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a high risk for human infection (52, 59, 80, 103). Some theorize a prevalence of up to 60% of 

cattle may shed the microorganism in the summer months, whereas an average estimate is 10 to 

25% for other seasons (80). Research indicates a correlation between the summer months and a 

seasonal increase in E. coli shedding from cattle, contamination of carcasses, and an increase in 

the incidence of human STEC infections (134). An increase in shedding during the summer 

months can be especially critical to public health when considering cattle known as “high 

shedders” or “super shedders” that may have populations of  >104 Colony Forming Units (CFU) 

g -1 detectable in their feces (46, 64, 122). 

The prevalence of E. coli O157:H7 shedding in the feces of cattle has lead to the 

microorganism’s ubiquitous status in agricultural environments, however, its presence has also 

been well documented during carcass processing. Data show that once cattle reach an abattoir, up 

to 75% of hides test positive for E. coli O157:H7; meanwhile, carcasses at pre-evisceration test 

positive up to 43.4% and up to 3.8% of samples test positive post-evisceration (10, 11, 19). In 

fact, beef was implicated in 20% of E. coli O157:H7 foodborne outbreaks occurring from 2003-

2012 (85). However, leafy vegetables and fruits have continued to grow in significance since the 

late 1990s and now account for 9% of recent E.coli O157:H7 outbreaks (85). Sprouts, melon, 

lettuce, and apple cider or juice are some of the most commonly implicated products in the 

produce or “raw food” category (85, 125). Contaminated irrigation water, contaminated manure, 

or exposure to equipment during processing may be to blame for produce-associated E. coli 

O157:H7 outbreaks (85, 125). It is important to note that evidence suggests products consumed 

raw such as vegetables and fruits result in higher hospitalization rates (85).  

There have been many documented outbreaks of pathogenic E. coli associated with food 

products like beef and produce; however, another vehicle of transmission for E. coli is water 
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(169, 170). Human infections from a waterborne source accounted for 4-9% of E. coli O157:H7 

outbreaks from 1982-2012, and the majority of those outbreaks were caused by exposure to 

contaminated recreational water (85, 125). It is possible that recreational water may become 

contaminated with pathogenic E. coli from improperly treated or improperly disposed waste 

water of various facilities including slaughterhouses and hospitals (13, 68, 97). Over 20% of 

waste water samples from slaughter facilities may test positive for E. coli O157:H7 and 

antibiotic resistant E. coli can be detected in hospital sewage at populations as high as 1×105 

CFU/mL (13, 68, 97). Drinking water may pose a risk to humans as well, especially if potable 

water is supplied by systems that are smaller in size and may be unprotected from contamination 

or not properly maintained (119). Unchlorinated water resulted in an outbreak in a small 

Wyoming town in 1998 where 157 people fell ill after drinking water from the municipal supply 

(119). 

Person-to-person contact has also been identified by the World Health Organization 

(WHO) as an important mode of transmission for E. coli O157:H7 (170). An estimated 10-14% 

of E. coli O157:H7 outbreaks resulted from person-to-person transmission from 1982-2012 (85, 

125). Outbreaks from this route of transmission peak in the summer months from June to August 

and a vast majority of person-to-person outbreaks (80%) occurred in child care centers (125). Up 

to 60% of person-to-person outbreaks occur in children younger than five years of age (85). 

 Major Outbreaks and Illness 

There have been a number of major outbreaks in the United States that have contributed 

to the status of E. coli O157:H7 as a significant pathogen. Beef and ground beef products have 

been implicated in some of the largest outbreaks including the most prolific outbreak in United 

States history in the early 1990’s. From mid-November in 1992 through the end of February in 
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1993, laboratories confirmed more than 500 cases of E. coli O157:H7 foodborne illness from 

individuals who reported symptoms after consuming undercooked hamburger patties served at a 

fast food chain (30). Four children died in this outbreak, and at least one child was exposed 

secondarily through a daycare setting (30). The 11 lots of contaminated meat used for making the 

fast food hamburgers were traced back to five different slaughter facilities in the United States 

and one in Canada (30). This prompted the FDA to revise the Model Food Code for Restaurants 

regarding cooking temperature, and in 1994, E. coli O157:H7 became a nationally notifiable 

infection (125). In the years since, outbreaks have decreased in size as a result of increased 

awareness, increased reporting, and improvements in the accuracy of testing and detection (125). 

Although outbreaks are decreasing in size, ground beef products continue to be implicated in E. 

coli O157:H7 infections, including a 2007 outbreak from ground beef patties that sickened 40 

consumers and prompted a recall of 21.7 million pounds of product (36). However, in more 

recent research, other beef products like steak are becoming more frequently associated with E. 

coli O157:H7 infection, perhaps as a result of contamination via tenderizing and marination 

processes (85). Recent outbreak data confirms this trend, as assorted beef products were 

implicated in another multistate outbreak in 2009 which resulted in 23 illnesses (35). 

 In the last 30 years produce has also become a significant food product associated with 

E. coli O157:H7 contamination. In 2006, 205 people were sickened in 26 different states from 

contaminated spinach (33, 151). In this outbreak, 31 people developed hemolytic uremic 

syndrome and 3 died (33). Although the FDA could not confirm the exact cause of the 

contamination, environmental risks were cited in a 2007 report including the risk of fecal 

contamination of irrigation wells and surface waterways from cattle or wild pigs (151). This was 

a novel outbreak and prompted the FDA to launch programs like the “Leafy Greens” initiative 



13 

 

and an official guidance document for processors titled “Guide to Minimize Microbial Food 

Safety Hazards of Fresh-cut Fruits and Vegetables” (151). It has been hypothesized that high 

cattle density in or around farms where leafy greens are harvested may be to blame for cross 

contamination from feces (85). Another large outbreak associated with lettuce occurred in 2006 

(34). In this outbreak, multiple states reported 77 E. coli O157:H7 infections, including 51 

hospitalizaitons (34). Epidemiological studies concluded that the most likely culprit was 

shredded lettuce consumed at a fast food restaurant (138). Other produce-associated outbreaks 

have resulted from contaminated sprouts. A recent outbreak in 2016 resulted in 11 people falling 

ill in Minnesota and Wisconsin after they bought E. coli O157:H7 contaminated sprouts at 

grocery stores and consumed them (40).  

 Novel food products that might not traditionally be associated with this pathogen have 

also been implicated in outbreaks. In 1996, unpasteurized, fresh-pressed apple cider sickened 66 

(28). The apples used in the cider may have become contaminated after being washed in 

contaminated well water at the mill where they were then pressed and the juice sold 

unpasteurized (28). Children as young as one and two years old fell ill in this outbreak, 

prompting the FDA to encourage consumers to boil unpasteurized cider or juice before 

consumption or to consume pasteurized juice products instead (28). Gouda cheese was 

implicated in an outbreak that occurred in 2010 that resulted in 38 illnesses (37). The FDA 

eventually seized over 100,000 pounds of cheese made with unpasteurized milk from the 

producers implicated in the outbreak (148). Another novel outbreak of E. coli O157:H7 occurred 

in 2011 from in-shell hazelnuts in which eight people were infected (38). 
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 Bacillus cereus 

 Background & General Properties 

The Bacillus family was first identified in 1872 by Ferdinand Cohn and was later 

characterized into three groups based on spore morphology (50, 135). In fact, the Bacillus group 

were differentiated from other Gram-positive microorganisms based upon their spore forming 

abilities (69). Historically, it had been determined that species within the Bacillus cereus sensu 

lato group were nearly identical and later research concluded some species within the group 

share over 99% genetic similarity to one another (86, 131). However in 1887, Bacillus cereus 

sensu stricto was identified by two scientists from London after they isolated the bacteria from 

air samples of a cow shed (66). They preliminarily characterized and differentiated Bacillus 

cereus sensu stricto from seven other species within the Bacillus cereus group based on 

phenotypic observations of both cellular morphology and colonies grown on gelatin plates (66, 

131). Bacillus cereus sensu stricto, hereon referred to as Bacillus cereus, is an aerobic, Gram-

positive rod with a centrally located spore (20). It is ubiquitous in the environment and often 

found in spore form in soil, sediment, and other organic matter (9). These spores are highly 

resistant to stressors like heat and dehydration, making B. cereus a hardy pathogen (9). 

Its ubiquity in the environment lends B. cereus the ability to inhabit food processing 

environments as well because of its spore forming capabilities and effective establishment of 

biofilms (9, 63, 99, 161). This pathogenic microorganism can cause either diarrheal or emetic 

illness dependent upon which toxin is produced and when it is produced (20). Individuals who 

have eaten contaminated food will experience emetic symptoms shortly after consuming 

contaminated food, usually within 30 minutes to an hour, whereas, diarrheal symptoms may take 

up to six hours to exhibit (9). The entirety of the illness is short in duration and lasts, on average, 
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12-24 hours (though longer periods have been reported) (9). While hospitalization and death are 

rare, B. cereus infections result in an estimated 63,400 illnesses annually, similar to estimated 

annual illnesses from Shiga toxin-producing E. coli O157:H7 (132). It is interesting also to note 

that B. cereus foodborne illness is also considered highly underreported because of the mild and 

self-limiting symptoms (9, 69, 74, 75, 77, 132). However, several severe cases have resulted in 

death from fulminant liver failure in children and young adults (56, 105, 112). 

 Classification 

The Bacillus cereus group consists of eight species: B. anthracis, B. cereus, B. mycoides, 

B. pseudomycoides, B. thuringiensis, B. weihenstephanensis, B. cytotoxicus, and B. toyonensis 

(131). These species share very similar genetic components, most notably, B. cereus is nearly 

identical to B. anthracis genetically and phenotypically (131). Although species like B. athracis 

or B. cereus can be highly toxic, causing illness and even death, others have beneficial uses 

(131). Bacillus thuringiensis has intrinsic insecticidal properties and is used as a pest control 

mechanism to protect crops while other Bacillus cereus strains can be utilized as probiotics (9, 

58, 131). 

Bacillus cereus can be identified based on many criteria, including core gene sequences, 

toxin production, hemolysis, motility, and spore morphology (9, 69, 131). Genome sequencing is 

often considered the gold standard for identification of many other bacteria; however, several 

species within the B. cereus group are almost entirely genetically homogenous, making it 

difficult to distinguish between species based on sequencing alone (9, 69, 74, 75, 76, 77, 131). 

However, amplification of specific virulence genes, specifically those located on the plasmid, 

can be an effective method to identify the presence of B. cereus and differentiate it from other B. 

cereus species (9, 131). On the other hand, multilocus sequence typing (MLST) has been used to 
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target both virulence genes and housekeeping genes in order to provide a relatively accurate 

phylogenetic tree for B. cereus (9). Other distinguishing traits considered in identification and 

characterization include the evaluation of colony phenotypes, as B. cereus has a unique wax-like 

or matte appearance (69, 74, 75, 131). B. cereus also has a unique inability to ferment mannitol 

but actively produces lecithinase, resulting in characteristic colony phenotypes on selective agar 

(9). Some B. cereus species also prefer different growth temperatures and an increase in the 

identification of psychrotrophic species growing at temperatures as low as 7-10°C have been 

noted in recent years (131). 

 Mechanisms of Pathogenicity and Illness 

Bacillus cereus has the ability to produce two different toxins that result in emetic or 

diarrheal types of foodborne illness (9, 20, 74, 75, 76, 77). Although each toxin is produced 

during the vegetative growth phase, the mechanism by which each toxin affects the host is 

unique. Cereulide is the toxin produced by B. cereus in the vegetative state within the food 

product and results in a foodborne intoxication with rapid illness onset (9, 20). On the other 

hand, the enterotoxin responsible for delayed onset diarrheal symptoms is produced by 

vegetative cells of B. cereus within the gastrointestinal tract, and this illness is considered a 

toxicoinfection (9, 20, 77). Genes regulating for virulence and toxin production are located on 

both the plasmid and the chromosome (9, 20, 76). These genes or operons encode for 

mechanisms like pore formation, hemolytic activity, and cytotoxicity (9, 20, 76). 

Cereulide is a ring structured or cyclic peptide regulated by the cereulide synthetase (ces) 

gene encoded on the plasmid (9, 20, 74). It is resistant to high temperatures, acidity, and 

proteolysis, which facilitates its survival in the conditions of the gut (9, 75). Cereulide inhibits 

the activity of mitochondria and damages hepatocytes in the liver (74). The cellular damage and 
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other pathological changes brought on by the toxin lasts for several weeks after the infection (75, 

76). In fact, the toxic effect cereulide has on liver cells has been implicated in several cases 

where those sickened by the emetic strain of B. cereus have died from fulminant liver failure (56, 

105, 106, 112).  

The diarrheal illness caused by B. cereus can be attributed to the production of three 

pore-forming toxins: hemolysin BL (Hbl), non-hemolytic enterotoxin (Nhe) and cytotoxin K 

(CytK) (9, 20, 73). Hbl and Nhe are classified as three component proteins where each 

component is responsible for binding and lytic functions (74). The gene regulation for Nhe and 

Hbl are primarily carried out by chromosomally located operons (9). Aside from pore formation, 

exposure to Hbl also results in dermonecrotic activity and fluid accumulation (9, 20). CytK is 

classified as a ß-barrel toxin and is responsible for similar pathological changes like pore 

formation and necrotic activity (9, 20). Cytotoxin K belongs to a family of toxins that include 

those produced by Clostiridum perfrignens and Staphylococcus aureus (9). 

Although these toxins are responsible for generally mild and self-limiting emetic and 

diarrheal illness, there are also many other types of non-gastrointestinal infections. Bacillus 

cereus species may cause eye infections, respiratory illness, endocarditis, and gas gangrene-like 

infections of wounds (20). It is also important to note that food production facilities are not the 

only unique environments susceptible to B. cereus contamination, as illustrated by several 

significant outbreaks of hospital-associated infections involving contaminated linens and medical 

equipment (130, 162). 

 Reservoirs and Modes of Transmission 

There are several foods associated with Bacillus cereus outbreaks including rice, grains, 

milk, cereal, potatoes, and vegetables (131). However, different foods may be responsible for 
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different illnesses caused by the pathogen (9). It is well known that emetic illness is most 

associated with rice and pasta whereas the diarrheal illness is associated with soups and meat 

products (9, 69). Certain food products provide a better environment for the distinct strains of B. 

cereus. The emetic strain seems to be associated with starch-rich foods whereas the diarrheal 

strain is associated with proteinaceous foods (9). Therefore, the diets of communities may make 

one strain more prevalent than another in certain geographic areas (9). For example, the emetic 

illness is more common in Japan and the United Kingdom, but the diarrheal illness is more 

common in Northern Europe and North America (9, 76). 

In particular, the dairy industry faces an increased risk for B. cereus contamination (7, 48, 

49). Milk may become contaminated by the exposure of the udder to soil and, if sold 

unpasteurized, could pose an even greater risk for infection (75). Similar to E. coli O157:H7, 

seasonal peaks occur for B. cereus in the summer months when cattle are grazed outdoors rather 

than indoors, resulting in higher rates of contamination (48). Pasteurized food products may 

present a particular challenge as it allows the non-competitive B. cereus spores to survive and, if 

product is temperature abused, germinate and allow vegetative cells to proliferate in an 

environment with little competition (75). Hydrophobic spores of B. cereus possess proteinaceous 

appendages that can facilitate attachment to many surfaces, especially pipelines in dairy 

production environments, where biofilms are readily formed and bacteria can flourish (7, 140).  

The ubiquitous presence of B. cereus in soil leads to plant origin foods being at high risk 

for contamination, and processing these foods may result in cross contamination to other 

products in a production environment (75). Even low water activity foods (aw ≤ 0.92) or foods 

with a high pH ( >9.3) are not considered low risk for B. cereus contamination because of the 

resistance of hardy spores; in fact, outgrowth can occur in these products (75). It is clear that the 
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ubiquitous nature of B. cereus combined with its adaptive ability to survive heat processing in a 

resistant spore form make it a pathogen of concern rather than a low risk contaminant. 

 Major Outbreaks 

Bacillus cereus has been implicated in many outbreaks of foodborne illness. The 

diarrheal strain was implicated as early as 1948 in a hospital-associated outbreak in Oslo, 

Norway (82). The most notable in literature occurred in France in 1998 during which 44 elderly 

patients at a nursing home experienced severe diarrhea after consuming contaminated vegetable 

puree (104). Six patients experienced bloody diarrhea and three died, giving the outbreak a 

mortality rate of 6.8% (45). This was a novel outbreak in that bloody diarrhea is not a common 

symptom with B. cereus foodborne illness and the severity of this outbreak was attributed to 

cytotoxin K produced by the strain (104).  

Fried rice is another well documented food product that has been implicated in B. cereus 

foodborne illness since 1971 (111). In 1993, an outbreak in Virginia took place at two separate 

day care facilities where twelve children and two day care workers became ill after eating 

chicken fried rice that was improperly cooled and then served without reheating (29). Bacillus 

cereus was isolated from rice samples at > 106 CFU/g (29). Rice and fried rice products are often 

implicated in outbreaks as uncooked rice harbor spores of B. cereus that can survive the cooking 

process and proliferate when food is cooled improperly (29).  

Several unique outbreaks have occurred in hospital settings as well. In 2006, a hospital 

located in Japan discovered a significant increase in positive B. cereus blood cultures, especially 

during the month of August, when a total of 15 patients tested positive (130). Eleven patients 

developed bacteremia and an investigation concluded a washing machine used for bed linens was 

highly contaminated with B. cereus (130). Patients had been exposed through bed sheets and 
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even through intravenous fluid lines (130). Another hospital-associated outbreak was 

documented in the Netherlands in 1998 in which a neonatal intensive care unit exposed infants to 

the pathogen via balloons utilized for manual ventilation (162). After B. cereus was isolated from 

the blood samples of three neonates, including one who died, further testing of tracheal aspirate 

samples revealed 35 total neonates that tested positive (162). 

 Non-O157 Shiga toxin-producing Escherichia coli 

There are also serotypes of Shiga toxin-producing E. coli other than O157:H7 that 

contribute to foodborne illness. In 2011, the USDA Food Safety Inspection Service (FSIS) 

declared six additional serogroups as adulterants in non-intact beef products, referred to as “The 

Big Six” including O26, O103, O45, O111, O121 and O145 (160). The motivation to identify 

these serogroups as adulterants is most likely due to increased surveillance and identification as 

well as the 112,752 illnesses non-O157 STEC is estimated to cause annually (132). 

Non-O157 STEC serotypes possess the same ability as O157:H7 serotype to produce 

Shiga toxins Stx1 and Stx2 as well as the ability to facilitate attachment via the eae gene (172). 

Between 1983 and 2002, stool samples were collected from over 900 patients with non-O157 

infections, and 70% were attributed to six serogroups including O26, O111, O103, O121, O45, 

and O145 (21). The isolates were analyzed by PCR, and results showed 61% of isolates had Stx1, 

22% had Stx2, and 17% had both stx1 and Stx2; Stx2 production was associated with higher risk 

of HUS (21). An epidemiological study utilized results from cases reported via FoodNet sites 

from 2000-2010 to compare non-O157 STEC with O157:H7 STEC illnesses (71). A laboratory 

survey on reported cases provided O antigen identification for 1,708 isolates and “The Big Six” 

serogroups accounted for 83% of non-O157 illnesses over the ten year period (71). Of the 

isolates from this study, the Shiga toxin type was reported for 74% of isolates, 74% of which had 
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just Stx1 as opposed to 17% that had just Stx2, while just 9% had both Stx1 and Stx2 (71). Again, 

HUS was more frequently associated with Stx2 production (71). The similarity in virulence 

factors leads to findings of clonality in certain serogroups including O26, O111, and O103 from 

MLST testing, furthering the evolutionary theory that Stx genes encoded on bacteriophages may 

be transferred between certain EPEC and EHEC pathotypes (61). 

Reservoirs and modes of transmission for non-O157 STEC are similar to those known for 

O157:H7 and include food and water, as well as person-to-person and animal-to-person contact 

(133). International travel may also play a significant factor in the transmission of non-O157:H7 

as one study concluded that individuals were five times more likely to report international travel 

around the time of illness (71). Person-to-person contact has been implicated in 39% of 

outbreaks of non-O157:H7 STEC as opposed to just 14% of O157:H7 STEC, suggesting person-

to-person could be a more significant form of transmission for non-O157 STEC (125). Food 

commodities implicated in outbreaks of O157:H7 STEC and non-O157 STEC also differ in that 

41% of foodborne outbreaks were attributed to beef and 21% to produce for O157:H7 STEC 

infection, but for non-O157 STEC, 35% of foodborne outbreaks implicated dairy, leafy 

vegetables, and fruits or nuts while less than 6% were attributed to beef (104). Although beef is a 

product that has been found to harbor non-O157 STEC, the outbreak information suggests beef 

products have not been as highly implicated in foodborne illness outbreaks of non-O157 STEC 

as opposed to O157:H7 STEC (104, 133, 165). In fact, two different sprout outbreaks in recent 

years have been attributed to non-O157 STEC serogroups. A retail restaurant serving sprouts 

contaminated with E. coli O26 as a part of sandwiches and other dishes sickened 29 people in 11 

different states from December of 2011 to March of 2012 (42). In 2014, another sprout outbreak 

caused 19 people in six states to fall ill and was again associated with deli restaurants serving 
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sprouts, this time contaminated with E. coli O121 (41). E. coli O26 caused another outbreak in 

2015 at a Mexican grill style restaurant and although the contamination could not be traced back 

to a specific food product, 60 people fell ill, of which 22 were hospitalized (44). Lastly, a unique 

outbreak was attributed to flour contaminated with E. coli O121 and O126 in 2016, during which 

63 people in 24 states were affected by foodborne illness from the product (43). 

 Prediction Modeling Programs for Foodborne Pathogens  

There are several programs available to model specific pathogens including the USDA 

Pathogen Modeling Program (PMP) and the ComBase Predictor modeling program which are 

available online (51, 154). Both programs offer a fairly comprehensive database of results from 

studies conducted with foodborne pathogens under different growth or inactivation scenarios 

whether within food products or selected broths. If either database does not contain the 

combination of pathogen, food product, and growth or inactivation scenario needed, predictive 

modeling is offered by both the PMP and ComBase programs. Each program offers modeling  

based on conditions intrinsic to food products or broth conditions including the initial population 

of pathogen, % NaCl or aw, and pH as well as external conditions like holding temperature.  

The ComBase Predictor offers growth, thermal inactivation, and non-thermal survival 

prediction methods. The thermal inactivation and non-thermal survival methods are limited to 

certain pathogens but provide modeling based on the results of published research. There are also 

static and dynamic versions of the growth model for constant holding temperature modeling, or 

to correlate a series temperatures and time points during the growth process. The PMP allows for 

similar modeling based on the results of published research including cooling, growth, heat 

inactivation, survival, and transfer models for certain pathogens. However, the PMP only allows 

for static condition predictive modeling regarding growth. The limitations for these predictive 
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models are especially apparent for studies regarding cooling as a variety of temperatures outside 

growth conditions are expected and cooling modeling is often carried out for a select few 

pathogens.  Other limitations include the lower limits of 4.5 pH and 0.5% NaCl which are not 

completely accurate for the modeling of low sodium or acidic products.  

In summary, both programs are limited in their ability to model the survival or growth of 

BSL I E. coli and B. cereus in the food products evaluated in the research described herein. The 

lack of cooling modeling for the microorganisms tested compounded with the lower limits of 

temperature and % NaCl result in only a nominal amount of reliability for predictions made by 

ComBase and PMP. Perhaps the research described herein could be used to inform databases and 

programs such as ComBase and PMP to further the understanding of how surrogates and 

pathogens behave in food products during cooling. 

 The Use of BSL I Surrogate Escherichia coli and Pathogenic Bacillus cereus 

 Bacillus cereus Isolates 

The research activities described in subsequent chapters utilized two Bacillus cereus 

strains with a Biosafety Level I (BSL I) status designation (ATCC® 11778 and ATCC®14579). 

Both isolates were originally obtained from air samples taken within a cow shed (55). Although 

given a BSL I designations, PCR testing identified that these two Bacillus cereus reference 

strains possess virulence genes including those regulating hemolysis and cytotoxin K production 

(Oltuszak-Walczak). The application of the ATCC®14579 strain, as designated by ATCC®, is 

specifically for food testing (5). The ATCC® 11778 strain (FDA strain PCI 213) is designated 

under the International Organization for Standardization (ISO) 6888-3:2003 “Microbiology of 

Food and animal Feeding Stuffs” (6). Therefore, these strains were selected to model true 

pathogen behavior in the brown rice product during cooling. Although many studies exist for 
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inactivation and some interventions, the use of research databases did not reveal a representative 

study under cooling conditions where either BSL I B. cereus ATCC® strain (ATCC®11778 and 

14579) were utilized.   

 Escherichia coli Isolates 

The research activities described in subsequent chapters utilized four Escherichia coli 

strains (ATCC® BAA-1427, BAA-1429, BAA-1430, and BAA-1431) from The ATCC® Non-

pathogenic Escherichia coli Surrogate Indicators Panel (ATCC® MP-26™) to serve as surrogates 

for Shiga toxin-producing Escherichia coli (STEC) (4). All four strains were originally isolated 

from cattle hides and each are recommended by the United States Department of Agriculture 

Food Safety Inspection Service (USDA-FSIS) for use in research when evaluating changes in 

microbial populations in the food processing environment during validation studies (4). The E. 

coli Reference Center of Pennsylvania State University has confirmed that these strains lack 

virulence factor genes (4). Therefore, these strains are categorized as Biosafety Level I (BSL I). 

Therefore, these four strains were selected to model pathogenic STEC activity during cooling in 

the pre-cooked taco meat, low sodium marinara sauce, and chili con carne with beans products.  

The use of research databases revealed two representative studies under which the five 

ATCC® surrogate E. coli strains (ATCC® BAA-1427, BAA-1428, BAA-1429, BAA-1430, and 

BAA-1431) were utilized under cooling conditions. One study examined the five ATCC® 

surrogate E. coli strains in uncooked, irradiated beef patty product and compared the survival or 

growth rates to that of O157:H7 STEC (95). Frozen, irradiated beef patties were stored at 4°C 

(39.2°F) and sampled on days 0, 4, 7, and 14 of cooling; the results indicated none of the ATCC® 

surrogate E. coli strains were statistically different (P> 0.10) in population under the cooling 

conditions when compared with E. coli O157:H7 (94). Another study evaluated the ability of the 
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five ATCC® surrogate E. coli strains to model Salmonella enterica populations under 4°C 

(39.2°F) refrigeration and -20°C (-4°F)  freezer conditions by inoculating irradiated, frozen 

ground beef (116). Sampling took place during a 21 or 90 day period and results indicated the 

five ATCC® surrogate E. coli strains were comparable in population, or slightly greater than S. 

enterica under the cold storage conditions (116). These results indicate the five ATCC® 

surrogate E. coli strains provided a margin of safety and could be used for modeling pathogens 

like S. enterica under similar conditions (116). Many other studies exist for inactivation and 

interventions, but these two studies provide the strongest evidence for the efficacy of ATCC® E. 

coli surrogates under cooling conditions. 

 Cold Holding: Time/Temperature Control 

 Introduction  

The US FDA has consistently identified time/temperature control, specifically cold 

holding, as a major factor contributing to the incidence of foodborne illness (156, 157, 158). 

Schools in particular may struggle with this critical control point for several reasons including: 

limited cooling capacity in freezers or refrigerators, a lack of funding for more effective cooling 

equipment, or the limitations that come with a short workday for school lunch program 

employees (129). As part of the 2000 Retail Food Program Database of Foodborne Illness Risk 

Factors report, the FDA reported a high percentage of observations indicated as “out of 

compliance” (39.5%) for schools regarding proper holding time/temperature procedures (158). 

Although schools have shown statistically significant improvement over the past ten years when 

it comes to cold holding and proper holding time/temperature (155, 158), there will always be a 

certain amount of risk associated with school nutrition programs, as they often utilize foods 

classified as Potentially Hazardous (PHF) that requires Time Control for Safety (TCS) (115, 152, 
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156). Potentially hazardous food includes sliced fruits, lettuce, meat, poultry, milk, and other 

dairy products will become more frequently served by school nutrition programs to comply with 

the Healthy, Hunger-Free Kids Act of 2010, which requires more diversified options for fruit, 

vegetables, and lower sodium food options (147). Even pre-cooked foods are subject to TCS, 

requiring a heating step to 57.2°C (135°F) (115). Therefore, school nutrition programs face risk 

with these pre-cooked food products as well. 

 Cooling Practices in U.S. Schools 

Holding time/temperature and cold holding is a critical aspect of food safety for school 

nutrition programs. A survey of 411 school food service managers by Krishnamurthy et al (98) 

revealed that 78% of respondents cool leftovers to reheat for service at another meal in their 

school lunch operations. The survey also pointed to a financial barrier for schools regarding blast 

chillers, which effectively cool food according to FDA Food Code standards (117). Only 8% of 

respondents across the U.S. reported having access to a blast chiller (94). This low percentage is 

most likely because of the high cost of this piece of equipment. Other cooling risk factors 

identified via survey responses include 18% who did not monitor temperature over time, 12% 

who did not use appropriate thermometers, and 30% who did not own an ice machine. School 

nutrition managers also reported an average walk-in refrigerator/freezer capacity of just 20% free 

or open space (129). 

Over a ten-year period from 2000-2010, the Centers for Disease Control and Prevention 

(CDC) collected data via the Foodborne Disease Outbreak Surveillance System regarding 

foodborne illness outbreaks in school settings (163). A 2015 analysis of the data revealed the 

second leading contributing factor for the proliferation of pathogens within a food product was 

that no attempt was made to control the temperature of the implicated food or the length of time 
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the food was out of temperature control (163). The analysis also concluded that the third leading 

contributing factor for proliferation to be improper cold holding as a result of malfunctioning 

refrigeration equipment (163). Of 105 food safety errors reported in the proliferation category for 

this analysis, the two factors above accounted for a total of 38% of those errors (163). These 

factors are of particular issue in school environments because, often, only breakfast and lunch 

meals are served, and employees leave work for the day shortly after beginning the cooling 

process (129). 

It is clear from these studies that there are various barriers and issues faced by school 

nutrition programs regarding their ability to implement food safety protocols. They include 

obvious factors like lack of cold storage space or errors where temperature control was not even 

attempted. They also provide insight to more nuanced issues and passive errors such as not being 

attentive to equipment malfunction and the inability to afford equipment maintenance. Research 

into effective and feasible cooling is critical in order to offer alternatives considering the various 

limitations in the school nutrition program setting. 

 Time/Temperature Control Studies  

Several studies have been conducted to validate cooling methods used by school nutrition 

programs. One foundational study published in 2005 evaluated refrigerator, chill stick, and blast 

chiller methods of cooling chili (117). The blast chiller met the 2001 FDA Food Code 

requirement for 2 and 3-inch food product depths but the other methods did not (117). The chill 

stick method was also evaluated in this study and is considered a large plastic reservoir that is 

filled with water and subsequently frozen to later be used as a way to cool food without watering 

down the product (117). The chill stick method in the refrigerator was just ten minutes out of 

compliance (117). However, the chill stick method may not be a feasible cooling technique as it 
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is most effective as an active cooling method, requiring more labor and time from employees 

(117). 

 Another study contributing to knowledge of effective cooling techniques was published 

in 2013, concluding that the density and nature of food products pose different challenges to 

proper cooling (118). In this study, cooked beef taco meat was cooled using three different 

methods including storage in a walk-in refrigerator, with or without an ice bath, and storage in a 

walk-in freezer (118). The only method for the cooked taco meat that met FDA Food Code 

standards was when the food was cooled in a walk-in freezer at a 2-inch product depth (118). 

Two methods of cooling for the steamed rice product met the FDA Food Code requirement, 

including storage in a walk-in refrigerator, with and without an ice bath, for 2-inch product 

depths (118). Because the 2-inch product depth of rice cooled in the refrigerator according to the 

FDA Food Code requirement and cooked taco meat did not, the results provide evidence that the 

density and composition of each food had a definitive impact on which cooling method was 

effective (118). For this reason, a standard cooling guideline for food products is difficult to 

achieve when many different types of food products and methods are involved in the cooling 

process as they often are in school nutrition lunch programs.  

 Another cooling method study was published in 2013 with similar results (129). In this 

study, chili con carne with beans and meatless tomato sauce were cooled at 2 and 3-inch product 

depths in a walk-in freezer, walk in refrigerator with or without ice bath, and cooled with a chill 

stick (129). The only cooling method for both products that met both FDA Food Code standards 

was the 2-inch food product depth stored in the walk-in freezer (129). Similar to the other 

cooling studies already referenced above, this study concluded that the freezer cooling method 

was the most effective, but only at 2-inch food product depths (117, 118, 129). 
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All three studies concluded that none of the 3-inch product depth pans met the 2001 or 

2009 FDA Food Code time and temperature requirement. However, even 2-inch product depth 

pans in the refrigerator did not meet FDA code standards in these studies for most products, 

excluding the steamed rice. Attempting to reduce heated food products to a depth that would 

meet time and temperature cooling standards for refrigerator methods may not be practical in a 

school setting because of a lack of space in a school lunch setting (129). Although blast chillers 

cool food products to meet the FDA Food Code requirement, the cost of the equipment does not 

make it a feasible option for most schools (117). Summarily, few methods have been validated 

that cool food products at a pace to meet the FDA Food Code requirement, signaling a critical 

need to continue research into validating cost effective and safe cooling techniques. 

 Post-process Contamination   

 Introduction 

Foodborne illness may have many origins and there are certain factors that facilitate the 

spread of pathogens. Hand hygiene and cross contamination are two significant factors identified 

by the CDC (25). According to FDA Good Manufacturing Practices (GMPs), post-process 

contamination is defined as an incident after processing when a finished food product becomes 

adulterated, whether with pathogens, chemicals, allergens, or foreign objects, making the 

processed product unsafe to eat (159). Post-process contamination within production facilities 

has led to several outbreaks of Salmonellosis from peanut butter spreads in the United States (26, 

27). Listeria monocytogenes and Staphylococcus aureus are often implicated in post-process 

contamination in restaurant or other food service settings as well, especially in foods that are 

ready-to-eat or require more hand preparation (3, 91, 92). Several factors can reduce the safety of 
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finished food products, two of the most significant being poor hand hygiene and cross 

contamination. 

 Hand Hygiene and School Associated Outbreaks 

Poor hand hygiene facilitates the spread of many viral and bacterial borne illnesses. It is a 

major contributing factor in outbreaks of norovirus, up to 54% of which can be attributed to 

infected workers’ bare hand contact with ready-to-eat food (82). Poor hand hygiene has been 

linked to outbreaks of Staphylococcus aureus, Escherichia coli, and Salmonella as well (53, 67, 

92). When hands are still wet after washing, the ability of bacteria, even at low populations, to 

transfer easily between hands and surfaces makes proper hand hygiene critical (87). Although 

studies have shown that hand hygiene is a simple way to reduce diarrheal illness by up to 35%, 

this poor hygiene practice continues to be a significant factor in foodborne illness (60, 67, 169). 

School nutrition programs face challenges and barriers for hand hygiene that affect food 

handlers in other food production environments as well, such as time pressure (78). Inadequate 

staffing can lead to increased time pressure and infected employees coming to work despite 

illness (55, 78, 144, 145). One study evaluated school associated outbreaks of foodborne illness 

documented from 1973-1997 and concluded that 57% were caused by contamination from a food 

handler (55). Another study in support of these findings evaluated outbreaks in schools during 

1998-2008 and concluded that enhancing effective handwashing was the top recommendation for 

preventing future outbreaks in schools (101). Handwashing is not only critical for food handlers, 

but for school age students as well since an estimated 20% of E. coli O157:H7 infections are the 

result of secondary spread (136). 

Several significant school associated outbreaks have occurred as a result of poor hand 

hygiene. In 1990, an outbreak of Staphylococcal food poisoning was traced back to one specific 



31 

 

food handler who unwrapped hams (127). A nasopharyngeal sample taken from a worker tested 

positive for the same phage and plasmid profile of the Staphylococcus strain isolated from those 

infected (127). In another school associated outbreak, Campylobacter jejuni sickened 27 who ate 

at a “Grandparents Luncheon” held by a school in Kansas (120). This outbreak was traced to a 

food handler at a central kitchen who was suffering a diarrheal illness (120). Pulse- field gel 

electrophoresis identified the strain from the food handler as indistinguishable from those 

isolated from case patients (120). In 1989, Japan suffered a massive outbreak of norovirus from 

contamination caused by an ill food handler in a centralized kitchen, resulting in over 3,000 

students and 117 teachers reporting illness from seven different elementary schools (96). 

 Cross Contamination and School Associated Outbreaks 

Cross contamination is defined as a transfer of harmful substances or disease causing 

microorganisms to food via food contact surfaces, hands, even sponges and utensils (149). Cross 

contamination results from many food handling scenarios, such as cutting or slicing, during food 

preparation. For example, cutting utensils used when preparing raw animal meat that may be 

improperly sanitized and then used to cut produce (89, 125, 126). The handling of money around 

ready-to-eat foods may also pose a risk for contamination, especially if paper bills are dirty or 

damaged (100, 109). It is estimated that 13% of coins and 42% of paper money in the United 

States are contaminated with pathogenic bacteria (2). However, more commonly implicated in 

cross contamination are food contact surfaces which pose a particularly high risk if not sanitized 

correctly (137, 141). For instance, cutting boards, countertops, and non-food contact surfaces 

(faucet handles and sink drains) may be primary culprits for contamination (137, 141). 

 It is common for raw foods like meats and vegetables to be prepared in one kitchen. 

Therefore, cross contamination is a likely risk during food preparation (89, 125, 126). Cross 
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contamination in a restaurant setting was modeled by four different outbreaks that occurred in 

Oregon and Washington in 1993 from salad bar items contaminated with E. coli O157:H7 (89). 

The conclusion of an epidemiological investigation was that multiple events of cross 

contamination from raw beef products to salad bar food items had led to the illnesses, resulting 

in 39 culture confirmed cases and 15 hospitalizations (89). Processing equipment can also play a 

role in cross contamination and Listeria species are often implicated in these outbreaks because 

of their biofilm forming abilities (90). Dairies may provide a particularly nutritive environment 

for pathogens like Listeria as dairy foods are proteinaceous and surfaces within a dairy 

production environment may create the perfect niches for biofilms (139, 168). A processing 

environment cross contamination resulted in an outbreak that took place in 1994 when Listeria 

monocytogenes sickened 54 individuals after they consumed contaminated chocolate milk at a 

picnic in Illinois (54). An investigation revealed that contamination most likely occurred when 

milk had leaked into an insulation jacket around a holding tank and was able to re-enter the 

product when the tank was drained at a dairy processing facility (54). 

 Cross contamination occurs in school settings for similar reasons, including contaminated 

sink drains and work surfaces which were implicated in an outbreak involving over 1,400 

students in Italy (12). L. monocytogenes was detected at a population greater than 106 CFU/g in a 

corn and tuna salad prepared by a food caterer that served both primary schools and a university 

(12). Corn and tuna samples by themselves tested as sterile from unopened cans and the positive 

results from the work surface and sink drain make cross-contamination a likely suspect in this 

outbreak (12). In 2001, an outbreak of Salmonella enteritidis in Japan sickened 163 school age 

children who ate dessert buns that became contaminated after unpasteurized liquid and shelled 

eggs were utilized in the same production facility (108). It was theorized that equipment and bins 
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previously used during the production of cream puffs were not properly sanitized but were 

subsequently used in the production of the ready-to-eat dessert buns (108). Large outbreaks seem 

to occur in Japan where the food preparation system for elementary schools follows a menu 

distributed by a centralized kitchen, meaning schools in different districts within a large city 

receive the same menu prepared in once central kitchen (110). Produce for these menus often 

come from farms around the city, one such farm contributed to a massive E. coli O157:H7 

outbreak after it produced and shipped contaminated white radish sprouts to a centralized kitchen 

serving schools and childcare centers in Sakai city in 1999 (110). The white radish sprouts were 

included in several dishes as an uncooked ingredient that was then consumed by thousands of 

children, resulting in over 9,000 illnesses and 398 hospitalizations, making it the largest outbreak 

in Japan’s history (110).  
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Chapter 3 - OBJECTIVE ONE: EVALUATING THE IMPACT OF 

COOLING METHODS ON BIOSAFETY LEVEL I SURROGATE 

AND PATHOGEN POPULATIONS IN FOUR FOOD PRODUCTS 

 Introduction  

Improper or “slow” cooling has been identified as the third leading factor in school 

associated foodborne illness and a considerable risk for improper cooling is also present for other 

institutional settings as well (123). According to a 2013 Morbidity and Mortality Weekly Report, 

the CDC concluded that school settings were associated with the largest number of foodborne 

outbreaks (286) and illnesses (17,266) when compared with other institutions like daycares, 

workplace cafeterias, and prisons or jails (1). However, the nature of large outbreaks and number 

of illnesses may be attributed to the fact that the National School Lunch Program provides meals 

to over 31 million children each day in the United States (150). Because many school nutrition 

program directors report cooling leftover food for later service (98) and slow cooling is a public 

health risk, the Food and Drug Administration Food Code was updated in 2009, requiring food 

products to be cooled to 21.1°C (70°F) within 2 hours of cooking and down to 5°C (41°F) within 

a total of 6 hours (156). Several studies have been conducted to evaluate cooling techniques 

commonly used in school nutrition programs for various food products and have concluded that 

very few techniques meet the FDA Food Code requirement (98, 117, 118, 129). This study was 

designed to evaluate B. cereus and surrogate E. coli microbial populations in food products 

during a 24-hour cooling period as a follow up to these published cooling studies. 
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 Experimental Design 

Pre-cooked taco meat, chili con carne with beans, marinara sauce, and brown rice were 

evaluated in this study. Food products were re-heated or cooked, portioned to 2 and 3-inch 

depths in steam table pans, then allowed to cool to 60°C ± 5°C (140°F ± 5°F) before inoculation 

with a Biosafety Level I (BSL I) Bacillus cereus (B. cereus) or surrogate Escherichia coli (E. 

coli) at a target concentration of 4 log10 CFU/g. Pre-cooked taco meat, chili con carne with 

beans, and marinara sauce were inoculated with a cocktail of four ATCC® strains of surrogate E. 

coli to model Shiga toxin-producing E. coli (STEC). Brown rice was inoculated with a cocktail 

of two ATCC® strains of BSL I B. cereus. After inoculation, each pan was covered with one of 

three methods and then cooled in either a 4°C (39.2°F) walk-in refrigerator situated in an ice bath 

or in a -20°C (-4°F) walk-in freezer. Food products were then sampled at time points including 0, 

4, 8, 12, and 24 hours of cooling. At these time points, samples were collected, serially diluted, 

and plated in order to enumerate microbial population within the food products at each time 

point. Three replications of all experimental methods were completed for each of the four food 

products. 

 Materials and Methods  

 Bacterial Strains and Propagation 

 Escherichia coli 

Four Escherichia coli strains were chosen from The ATCC® Non-pathogenic Escherichia 

coli Surrogate Indicators Panel (ATCC® MP-26™) to serve as surrogates for Shiga toxin-

producing Escherichia coli (STEC) (4). The four strains that were utilized in a cocktail included 

ATCC® BAA-1427, BAA-1429, BAA-1430, and BAA-1431. All four strains were originally 

isolated from cattle hides and each are recommended by the United States Department of 
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Agriculture Food Safety Inspection Service (USDA-FSIS) for use in research when evaluating 

changes in microbial populations in the food processing environment during validation studies 

(4). According to ATCC® instructions, isolates were rehydrated in tryptic soy broth (TSB; BD 

Difco™ from Fisher Scientific, Franklin Lakes, NJ) and incubated separately at 37°C (98.6°F)for 

24 hours. Rehydrated cultures were then dispensed in 1 mL portions to microcentrifuge tubes 

with 10% glycerol (Fisher Scientific, Lenexa, KS) added. The microcentrifuge tubes were then 

stored at -80°C until later use.   

 Developing and Assessing Acid Tolerance 

The first repetition with the marinara sauce product revealed lower than expected survival 

rates of surrogate E. coli. A 5 log10 CFU/g inoculum of E. coli surrogate cocktail was prepared 

using methods described in the Inoculation Procedure section of this paper, however, colony 

enumeration from time point testing revealed inconsistent results over a 24-hour period ranging 

from poor to no surrogate survival from the first experimental repetition of the marinara sauce 

product. Therefore, a hypothesis was developed: if the E. coli surrogates could not survive as 

effectively at low pH like E. coli O157:H7 then there would be a lower than expected rate of 

survival in the marinara sauce product. The level of acidity was hypothesized to have a negative 

impact on surrogate survival in the food product. The first step to assess this hypothesis involved 

utilizing a benchtop pH meter (Education pH meter; Fisher Scientific, Lenexa, KS) to accurately 

measure the acidity of the marinara sauce. Once the meter was calibrated, the pH of the 

uninoculated, room temperature sauce product measured 4.18. To further evaluate these 

hypotheses, preliminary testing was performed by conducting a small study to compare the 

survival of three microorganisms in the marinara sauce product: E. coli surrogate cocktail, 

Salmonella enterica subsp. enterica serovar Typhimurium (ATCC® 14028), and Escherichia coli 
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O157:H7. Each microorganism was prepared in two different growth mediums for inoculum: 

TSB + 1% glucose and Buffered Peptone Water (BPW; BD Difco™ Fischer Scientific, Franklin 

Lakes, NJ). It was hypothesized that the TSB + 1% glucose (Fisher Scientific, Lenexa, KS) 

would foster an increased acid tolerance after incubation for 18 hours, a hypothesis previously 

tested by Buchanan, et. al. in 1996 (23). 

 Acid Habituation Preliminary Study Results  

Salmonella enterica subsp. enterica serovar Typhimurium (ATCC® 14028), E. coli 

O157:H7, and the cocktail of four ATCC® E. coli surrogates were each grown for 24 hours at 

37°C (98.6°F). Each microorganism was grown in both TSB + 1% glucose and BPW. Six 500 -

mL glass bottles were each filled with 100 mL of marinara sauce after it had been heated to 

73.8°C (165°F) in a commercial tilt skillet (Cleveland Tilt Skillet). The sauce was allowed to 

cool to 60°C ± 5°C (140°F ± 5°F), at which time, 1 mL of inoculum was added to each bottle of 

sauce to achieve a 105 CFU/g distribution of each pathogen grown in each medium. Samples 

were obtained at time points 0, 4, and 8 hours. 25 gram samples were diluted with 225 mL BPW 

and serially diluted and plated on MacConkey Agar (MAC; Remel, Lenexa, KS). MAC plates 

were incubated at 37°C (98.6°F) for 18-24 hours at which point colonies were enumerated. 

The pH of the ATCC® E. coli surrogate cocktail grown in TSB + 1% glucose was 4.68. 

During the 8 hour cooling period, the ATCC® E. coli surrogate cocktail inoculum grown in TSB 

+ 1% glucose provided increased population survival of 0.23 log10 CFU/g over the ATCC® E. 

coli surrogate cocktail grown in BPW. Salmonella serovar Typhimurium survival was improved 

when grown in TSB + 1% glucose by an average of 1.56 log10 CFU/g compared to survival when 

grown in BPW. Escherichia coli O157:H7 survival was nearly identical when grown in TSB + 

1% glucose as in BPW, with only 0.07 log10 CFU/g difference. This acid habituation method was 
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chosen to prepare inoculum for the marinara sauce product because of the moderately improved 

survival of the ATCC® Escherichia coli surrogate cocktail when grown in TSB + 1% glucose. 

 Bacillus cereus  

Two Bacillus cereus strains of Biosafety Level I status were utilized in a cocktail 

(ATCC® 11778 and ATCC®14579). Both isolates were originally obtained from air samples 

taken within a cow shed (55). Each strain was propagated from a freeze-dried state according to 

ATCC® instructions. Under aseptic conditions, the two ATCC® isolates were rehydrated in 

Nutrient Broth (BD Difco™ from Fisher Scientific, Frankland Lakes, NJ) and incubated 

separately at 30°C for 24 hours. They were then dispensed in 1 mL portions to micro centrifuge 

tubes with 10% glycerol added. The microcentrifuge tubes were stored at -80°C until later use.  

To enumerate populations of the originally rehydrated ATCC® frozen suspensions, micro 

centrifuge tubes of each strain were thawed and 1 mL was serially diluted in BPW and plated on 

Mannitol Egg Yolk Polymyxin B agar (MEP; Remel, Lenexa, KS) for enumeration after 

incubation at 30°C for 24-48 hours. For the ATCC®11778 and 14579 strain, a 7.07 log10 

CFU/mL and a 7.49 log10 CFU/mL population was detected, respectively. 

 Spore Harvesting and Enumeration 

In order to harvest spores for inoculum preparation, a procedure outlined by Grande et al. 

was performed (73). A frozen microcentrifuge tube of each ATCC® B. cereus strain (ATCC® 

11778 and ATCC®14579) was thawed and 1 mL of each strain was added to its own test tube 

containing 9 mL Brain Heart Infusion Broth (BHI; Fisher Scientific, Lenexa, KS). The strains 

grew separately by incubating at 30°C (86°F) for 24 hours. After incubation, 100 μl of each 

strain grown in BHI broth was spread plated onto Nutrient Agar (Fisher Scientific, Lenexa, KS) 

supplemented with 0.05 g/l manganese sulfate (Acros Organics™ from Fisher Scientific, Geel, 
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Belgium). Plates were incubated for four days at 37°C (98.6°F) to obtain spores from an 

estimated 90-95% of cells (73). Spores and vegetative cells were directly harvested from the 

plates with sterile loops and then deposited directly into sterile distilled water at approximately 3 

mL per plate. These 3 mL spore + vegetative cell suspensions were added to a 25 mL centrifuge 

tube and centrifuged at 5,000 x g for 15 minutes at 4°C (39.2°F). The resulting pellet was 

washed with sterile distilled water and re-suspended for a second, identical centrifugation and 

washing. The final pellet was re-suspended in 25 mL of sterile distilled water. This suspension 

was then aliquoted in 5 mL amounts to conical tubes (MIDSCI, St. Louis, MO) and stored at -

20°C (-4°F) until later use. 

Preliminary enumeration testing was performed to evaluate the population of the 

vegetative + spore populations within the harvested suspensions. A conical tube of vegetative + 

spore suspension was thawed to room temperature (20°C) and a 1 mL aliquot was serially diluted 

in BPW and plated on MEP agar plates that were incubated at 30°C for 24-48 hours. The 

enumeration revealed a pre-heat shock population of the harvested spore + vegetative cell 

suspension to be 8.06 log10 CFU/mL.  

However, it was critical to assess the approximate spore population after the heat shock 

as that step would be performed the day of inoculation. Therefore, a conical tube of spore + 

vegetative cell suspension in distilled water was thawed to room temperature (20°C) and 

subsequently heat shocked at 80°C for 10 minutes to simulate inoculum preparation, which was 

designed to mimic the cooking process. A 1 mL aliquot of the heat-shocked suspension was then 

serially diluted in BPW and plated on MEP agar plates that were incubated at 30°C for 24-48 

hours. The population post-heat shock was found to be 8.63 log10 CFU/mL. This was considered 

to be primarily spores. A phase contrast microscope was utilized to visually confirm populations 
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pre- and post-heat shock. The pre-heat shock suspension had very high populations of both 

vegetative cells and spores. Post-heat shock, there were very few vegetative cells and a large 

population of spores apparent (See Appendices F, Figures F-1 and F-2). The larger population 

post-heat shock may be due to the fact that spore suspensions were not cooled on ice 

immediately after heating, cooling heated suspensions on ice has been suggested in some 

research in order to stabilize spores and prevent germination (140). 

To ensure that vegetative cells were eliminated as a source of error and to obtain a true 

spore enumeration, a Brightline Hemocytometer was utilized along with a protocol published by 

the biology department of Massachusetts Institute of Technology (6). Frozen spore + vegetative 

cell suspension in distilled water was thawed and 20 microliters were dispensed for dilution in 

120 microliters of 0.4% trypan blue (dilution factor of 7). After vortexing the spore + vegetative 

suspension in trypan blue, 10 microliters of the resulting suspension was injected into each well 

of the hemocytometer and spores were enumerated under the 20x objective magnification of a 

phase contrast microscope. Spores appeared small, round, and clear indicating they were viable 

cells as they did not take up the trypan blue solution. Vegetative cells were rod shaped and pre-

heat shock appeared clear while post-heat shock, they appeared blue. Pre-heat shock, the 

hemocytometer testing revealed a spore population of approximately 5.41 log10 CFU/mL spores. 

Post-heat shock, small, round, and clear spores were prevalent with very few vegetative cells 

apparent. Post-heat shock, the population of spores was 5.31 log10 CFU/mL spores. These results 

support the utilization of several enumeration methods including a hemocytometer in order to 

yield more accurate spore enumeration than performing the plating method alone. 

A spore stain was also conducted to evaluate spore + vegetative cell suspensions pre- and 

post-heat shock, following the Schaeffer-Fulton method for staining endospores (88). The stain 
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reflected a similar number of spores pre- and post-heat shock but much fewer vegetative cells 

post-heat shock. A preliminary test was carried out to monitor the population of spores vs. 

vegetative cells within the brown rice product. A 2 and 3-inch product depth of brown rice was 

prepared according to the procedures outlined in the Product Preparation section, allowed to cool 

to 60°C ± 5°C (140 ± 5°F), and then inoculated with a post-heat shock inoculum of 105 CFU/mL 

spores. Over a 3-hour period, the 2 and 3-inch pans of brown rice were stored in the 4°C (39.2°F) 

walk-in refrigerator and 25 gram samples were collected each hour. Sampling procedures were 

identical to those in the Sampling section, with dilutions plated on MEP agar that were then 

incubated at 30°C for 24-48 hours. Enumeration from MEP agar plates revealed a slight 0.03 

log10 CFU/g population increase for 2-inch product depths over the 3-hour cooling period and a 

1.56 log10 CFU/g decrease in populations in the 3-inch product depths. An endospore stain was 

conducted from the BPW homogenate of diluted rice samples at each hour. The endospore stains 

from time 0 hour revealed a high spore population and few vegetative cells. The endospore stains 

from time 1, 2, and 3 hours revealed a decreasing spore population and a slight increase in 

vegetative cell population. These results indicate the sublethal heat shock of 80°C (176°F) in the 

laboratory successfully mimicked the scenario of the cooking process. These results provide 

confidence that on the day of the experimental run, the food product was inoculated with 105 

CFU/mL of B. cereus spores which would then germinate with possible vegetative growth during 

the cooling process.  

 Product Preparation 

All food products and ingredients were ordered from a foodservice product distributor 

and were chosen to meet National School Lunch Program Nutrition Standards 7 CFR Parts 210 

and 220 (149). Pre-cooked, frozen taco meat was stored in a commercial refrigerator at 4°C 
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(39.2°F) for several days prior to an experimental run in order to thaw properly for reheating. 

Pre-cooked taco meat was packaged in 5 lb. bags that were placed in 2-inch steam table pans and 

heated in commercial steamers (Electrolux Air-o-Steam Touchline Combi Oven, Pordenone, 

Italy; Cleveland SteamChef Electric Countertop Steamer, Cleveland, Ohio) to 73.8°C (165°F). 

Canned, low sodium marinara sauce was cooked to 73.8°C (165°F) in a commercial tilt skillet 

(Cleveland Tilt Skillet). Chili was prepared according to a recipe (see Appendices F, Figure F-3) 

used by a school nutrition program and was cooked to 73.8°C (165°F) in the same commercial 

tilt skillet. For the brown rice product, water was heated to 190°F in the commercial tilt skillet 

and was then added to uncooked brown rice measured in 2 ½ and 4-inch counter pans. Pans were 

then covered with a layer of plastic wrap and a layer of aluminum foil and placed in a 

commercial grade convection oven (Garland Master 200) at 350°F for 35 minutes. After the food 

products were re-heated or cooked, they were then portioned to 2 and 3-inch food product depths 

in 2 ½ and 4 inch counter pans. The product was stirred and allowed to cool to 60°C ± 5°C 

(140°F ± 5°F) for inoculation. 

 Inoculation Procedure  

The day prior to inoculation of pre-cooked taco meat and chili products, a 

microcentrifuge tube of each frozen ATCC® Escherichia coli strain (ATCC® BAA 1427, BAA 

1429, BAA 1430, BAA 1431) was thawed and grown separately in four large centrifuge tubes 

with 25 mL of BPW. These cultures were incubated at 37°C (98.6°F) for 18-24 hours. For the 

marinara sauce product, each ATCC® Escherichia coli surrogate was grown separately at 37°C 

(98.6°F) for 18-24 hours in 25 mL of TSB + 1% glucose in order to prepare acid-adapted 

cultures according to Buchanan et al. (20).  The following day, the 25 mL culture tubes were 

centrifuged at 5,000 x g for 15 minutes at 4°C (39.2°F). The supernatant was discarded and the 
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pellets were then re-suspended in 25 mL of 0.1% Peptone Water (PW; BD Bacto™ Fischer 

Scientific, Franklin Lakes, NJ) after which all four strains were combined in a sterile 100 mL 

container, resulting in 100 mL of cocktail. This 100 mL cocktail in PW was estimated to be 109 

CFU/mL and was utilized to prepare inoculum for all samples. Inoculum for each pan was 

prepared based on the weight of food product within each pan in order to achieve a target 

concentration of 1.0 x 104 CFU/g, with the liquid of the inoculum comprising no more than 1% 

of the food product (114). 

On the day of inoculation of the brown rice food product, six conical tubes of 5 mL 

frozen spore suspension were removed and allowed to completely thaw for 45-60 minutes at 

room temperature (20°C). The thawed tubes were then placed in an 80°C bead bath and heat 

shocked for 10 minutes to simulate the cooking process and subsequent sublethal heat-induced 

germination of spores. After the spore suspensions were allowed to cool to room temperature, 

tubes were thoroughly vortexed and inoculum was prepared from these tubes of 105-106 

CFU/mL suspensions. Inoculum for each pan was prepared by diluting the heat shocked spore 

suspensions in 0.1% PW based on the weight of food product within each pan to achieve a  

104 - 105 CFU/g spore inoculation, such that the inoculum comprised no more than 1% of the 

total food product (114). 

The temperature of all products was monitored using a Taylor 9842FDA waterproof 

digital thermometer (Taylor; Las Cruces, NM) and all food products were stirred and allowed to 

cool to 60°C ± 5°C (140°F ± 5°F) prior to inoculation. After liquid inoculum was added to each 

pan, food was stirred thoroughly (~2 minutes per pan) to obtain an even distribution of bacterial 

cells. Inoculation times were recorded for each pan upon completion of stirring and time points 

at 0, 4, 8, 12, and 24 hours were set accordingly. 



44 

 

 Treatments and Cooling 

After the food products were inoculated and time point 0 samples obtained, each pan was 

fitted with a Lascar EL-USB-2- LCD USB temperature data logger (Lascar; Erie, PA) in the 

center of the pan to track the temperature of the food product every 60 seconds for the next 24 

hours. To ensure the probe of the data logger was centered, a placement system using a ruler, 

clips, and a straw was used (see Appendices F, Figure F-4). Pans were then prepared with three 

treatments: uncovered, covered with a single layer of aluminum foil over the top of the pan to 

allow for air exposure, or covered twice to restrict air exposure with one layer of plastic wrap or 

aluminum foil directly over the top of the food product and another layer of aluminum foil over 

the top of the pan. Each cover method was applied to both a 2 and 3-inch food product depth 

pan. Each cover method and product depth combination treatment were also prepared in 

duplicate, with one pan being stored in the 4°C (39.2°F) walk-in refrigerator with an ice bath and 

the other duplicate pan stored in the -20°C (-4°F) walk-in freezer (see Appendices F, Figures F-5 

and F-6). Pans in the refrigerator were also situated in ice baths as suggested in the FDA Food 

Code (134, 136). The ice baths were prepared by filling 3 and 6-inch steam table pans ¾ of the 

way full with ice (for use with the 2 and 3-inch food product depth pans, respectively). It is 

important to note that once the ice within the ice bath had melted, it was not replaced with fresh 

ice. A total of twelve pans were stored for cooling and sampling. To avoid food products 

becoming completely frozen and unable to be sampled, pans in the freezer were transferred to the 

refrigerator immediately after the 8 hour time point. 

 Sampling 

After inoculation, composite samples were collected from each pan at five time points: 0, 

4, 8, 12, and 24 hours. At each time point, a representative composite sample was obtained by 
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using a spoon to gather food from four to five different areas within each pan. These sampling 

points were randomly selected and the food was taken from under the food surface in order to 

collect from the interior of the pan where the food was likely the warmest and, therefore, most at 

risk for microbial growth. This composite sample was homogenized by hand mixing, after 

which, a 25 gram aggregate sample was removed and deposited in a sterile stomacher bag for 

further testing. This aggregated 25 gram sample was then diluted 1:10 with 225 mL of BPW and 

stomached for one minute at 230 rpm (Stomacher® 400 Circulator; Seward, Bohemia, NY). 

Serial dilutions of the samples were then carried out in tubes with 9 mL of BPW, after which the 

appropriate dilutions were spread plated onto MacConkey agar and Mannitol Egg Yolk 

Polymyxin B agar to enumerate E. coli and B. cereus populations, respectively. The MacConkey 

plates were incubated 37°C (98.6°F) for 18-24 hours while the Mannitol Egg Yolk Polymyxin B 

plates were incubated at 30°C for 24-48 hours. 

 Statistical Analysis 

E. coli and B. cereus population data and temperature data were analyzed using a 

compound symmetry covariance structure, a compound symmetry with heterogeneous time 

variances structure, or an unstructured covariance matrix combined with a PROC MIXED 

procedure in SAS. This was considered a four factor repeated measures experiment and it was 

analyzed accordingly. A Type III test for fixed effects was carried out as well. Because three 

repetitions were carried out for the testing of cooling methods for the four food products, least 

square means of microbial populations were obtained and used to compare the significance of 

variables and variable interactions at a significance level of P≤ 0.05. For the cooling curves, the 

average of 5 temperature values near each time point was utilized to reduce variability. The 
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significance of variables and variable interactions for temperature data was also observed at a 

significance level of P≤0 .05. 

 Results and Discussion 

 Temperature Data Analysis 

Temperature data for the pre-cooked taco meat, chili con carne with beans, low sodium 

marinara sauce, and brown rice products were in agreement with previously published findings 

(117, 118, 129). The significance of variables and their effect on the cooling process at each of 

the five time points (0, 4, 8, 12, and 24 hours) is discussed for each product in the sections 

below. In this section, if a variable or variable interaction is described as significant, it is implied 

that P≤ 0.05 as mentioned in the statistical analysis section above. Ambient temperature data for 

the -20°C (-4°F) walk-in freezer and the 4°C (39.2°F) walk-in refrigerator can be found in 

Appendix F, Figure F-11. 

 Achieving FDA Food Code Standards 

 Pre-Cooked Taco Meat 

No variable was significant at time point 0 hours. Treatment, treatment by product depth, 

and cover were significant at time point 4 and 8 hours. The freezer treatment cooled 2-inch 

product depths more rapidly than the refrigerator during the first 8 hours of cooling. The 3-inch 

product depths cooled more rapidly in the refrigerator for the first 4 hours but by time point 8, 3-

inch product depths were at lower temperatures in the freezer. The 2-inch product depth in the 

refrigerator cooled less rapidly than the 3-inch product depth in the refrigerator during the first 8 

hours of cooling. The cover significance was observed for uncovered pans which cooled more 

rapidly than single or double covered pans during the first 8 hours. Treatment in the refrigerator 

or freezer was the only significant factor for cooling at the 12 and 24-hour time points. The pans 
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removed from the freezer and placed in the refrigerator after the 8-hour time point (as discussed 

in the Treatments and Cooling section) continued to remain at a lower temperature than those 

stored in the refrigerator with an ice bath.  

A previous study by Olds, et al. concluded that the only method that met the two step 

FDA Food Code requirement for beef taco meat was storing the product at 2-inch product depths 

in the freezer (118). The results of this study indicate uncovered 3-inch product depths stored in 

ice baths in the refrigerator also meet FDA Food Code as shown in Table 1. Appendix A 

contains cooling curve graphs to help illustrate the conclusions in this section. 

Table 1 Pre-Cooked Taco Meat Cooling Methods that Achieved FDA Food Code 

Requirements 

Table 1: Pre-Cooked Taco Meat Cooling Methods that Met FDA Food Code Requirement 

 

Treatment 

57°C to 

21°C 

 

2 hours 

Limits 57°C to 

 5°C 

 

6 hours 

Limits 

Both 

Requirements 

Lower Upper Lower Upper 

2-inch  

Refrigerated ice bath 

Single cover 
30.12°C 

 

 

23.81°C 

 

 

36.45°C 

 

 

15.65°C 

 

 

9.78°C 

 

 

21.52°C 
 

2-inch 

Refrigerated ice bath 

Double cover 
36.57°C 

 

 

30.26°C 

 

 

42.89°C 

 

 

23.68°C 

 

 

17.82°C 

 

 

29.56°C 
 

2-inch  

Refrigerated ice bath 

Uncovered 
26.51°C 

 

 

20.20°C 

 

 

32.83°C 

 

 

11.33°C 

 

 

5.46°C 

 

 

17.20°C 
 

3-inch 

Refrigerated ice bath 

Single cover 
25.32°C 

 

 

18.99°C 

 

 

31.63°C 

 

 

10.41°C 

 

 

4.54°C 

 

 

16.28°C 
 

3-inch 

Refrigerated ice bath 

Double cover 
29.15°C 

 

 

22.83°C 

 

 

35.47°C 

 

 

18.15°C 

 

 

12.28°C 

 

 

24.02°C 
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3-inch 

Refrigerated ice bath 

Uncovered* 

5.28°C   

 

-1.04°C 

 

11.59°C 

 

2.24°C   

 

-4.86°C 

 

9.34°C  

2-inch, freezer 

Single cover 
25.46°C 19.14°C 31.78°C 4.94°C   -0.93°C 10.82°C 

 

2-inch, freezer 

Double cover 
31.85°C 25.53°C 38.17°C 4.17°C   -1.71°C 10.04°C 

 

2-inch, freezer 

Uncovered* 
19.78°C      13.46°C 26.09°C -3.56°C   -9.43°C 2.32°C  

3-inch, freezer 

Single cover 
34.32°C 27.99°C 40.63°C 9.61°C 3.74°C 15.48°C 

 

3-inch, freezer 

Double cover 
37.48°C 31.16°C 43.80°C 13.98°C 8.11°C 19.85°C 

 

3-inch, freezer 

Uncovered 
24.06°C 17.73°C 30.37°C -1.39°C   -7.26°C 4.48°C 

 

*Indicates cooling treatment achieved both FDA Food Code Requirements 

 

 Chili Con Carne with Beans 

No variable was significant at the 0 hour time point. At the 4 hour time point, product 

depth, treatment by product depth, and cover were significant for the cooling of this product. The 

pans stored in the freezer at 2-inch product depths cooled more quickly than those in the 

refrigerator during the first 4 hours of cooling, but the 3-inch product depths cooled more quickly 

in the refrigerator than in the freezer during this time. The uncovered pans cooled more rapidly 

during the first 4 hours than single or double covered pans. At the 8 and 12 hour time point, 

treatment, treatment by product depth, and cover were significant. During these hours, the 2-inch 

product depths in the freezer cooled most rapidly while the 2-inch product depth in the 

refrigerator cooled at a slower rate than the 3-inch product depth in the refrigerator. At the 24 

hour time point, treatment and product depth by cover were significant. Pans in the refrigerator at 

the 24 hour time point were cooler by a small but statistically significant amount. The product 
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depth by cover significance was observed for 3-inch product depths in the refrigerator that were 

recorded as the lowest in temperature at the 24 hour time point.  

Two previous studies published results on the cooling of chili products. Olds, et al. 

concluded the blast chiller was the only cooling method that met both FDA Food Code 

requirements (117). Roberts, et al. concluded only 2-inch product depths cooled in the freezer 

met both FDA Food Code requirements for this product (129). The results from this study 

indicate three cooling methods met both FDA Food Code requirements as shown in Table 2. 

Appendix B contains cooling curve graphs to help illustrate these conclusions. 

Table 2 Chili Con Carne with Beans Cooling Methods that Achieved FDA Food Code 

Requirements 

Table 2: Chili Con Carne with Beans Cooling Methods that Met FDA Food Code Requirement 

 

Treatment 

57°C to 

21°C 

 

2 hours 

Limits 57°C to 

 5°C 

 

6 hours 

Limits 

Both 

Requirements 

Lower Upper Lower Upper 

2-inch  

Refrigerated ice bath 

Single cover 
16.79°C   

 

 

10.39°C 

 

 

23.20°C 

 

 

5.65°C 

 

 

-0.77°C 

 

 

12.07°C 
 

2-inch 

Refrigerated ice bath 

Double cover 
30.18°C 

 

 

23.78°C 

 

 

36.59°C 

 

 

12.61°C 

 

 

6.19°C 

 

 

19.03°C 

 

2-inch  

Refrigerated ice bath 

Uncovered 
14.72°C   

 

 

8.32°C 

 

 

21.13°C 

 

4.70°C   

 

 

-1.72°C 

 

 

11.12°C  

3-inch 

Refrigerated ice bath 

Single cover 
23.33°C°C 

 

 

16.93°C 

 

 

29.74°C 

 

 

6.76°C 

 

 

0.34°C 

 

 

13.18°C 
 

3-inch 

Refrigerated ice bath 

Double cover 
27.79°C 

 

 

21.39°C 

 

 

34.20°C 

 

 

10.13°C 

 

 

3.70°C 

 

 

16.56°C 
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3-inch 

Refrigerated ice bath 

Uncovered* 
13.24°C   

 

6.83°C 

 

19.64°C 

 

2.90°C   

 

-3.52°C 

 

9.33°C  

2-inch, freezer 

Single cover 
29.96°C 23.56°C 36.37°C 1.83°C   -4.59°C 8.26°C 

 

2-inch, freezer 

Double cover 
30.74°C 24.33°C 37.14°C 2.68°C   -3.74°C 9.10°C 

 

2-inch, freezer 

Uncovered* 
15.89°C      9.48°C 22.29°C -3.22°C   -9.64°C 3.20°C  

3-inch, freezer 

Single cover 
36.98°C 30.58°C 43.39°C 12.32°C 5.89°C 18.74°C 

 

3-inch, freezer 

Double cover 
38.22°C 31.82°C 44.63°C 15.72°C 9.30°C  22.14°C 

 

3-inch, freezer 

Uncovered 
29.85°C 23.44°C 36.26°C 4.72°C   -1.70°C 11.14°C 

 

*Indicates cooling treatment achieved both FDA Food Code Requirements 

 

 Low Sodium Marinara Sauce 

At time point 0 and 4 hours, product depth was significant as 3-inch product depths were 

observed at a significantly higher temperature than 2-inch product depths. Treatment and product 

depth were significant at the 8 hour time point. The freezer cooled pans to lower temperatures at 

this time point and 3-inch product depths continued to be significantly higher in temperature than 

2-inch product depths. Treatment was significant for the 12 and 24 hour time point with the 

freezer cooling pans to lower temperatures than the refrigerator.  

None of the cooling methods tested met either FDA Food Code requirement for this food 

product, as indicated in Table 3. However, in a previous study, Roberts, et al. concluded 2-inch 

product depths cooled in the freezer met both FDA Food Code requirements for this product. 

Appendix C contains cooling curve graphs to help illustrate these conclusions. 
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Table 3 Low Sodium Marinara Sauce Cooling Methods that Achieved FDA Food Code 

Requirements 

Table 3: Low Sodium Marinara Sauce Cooling Methods that Met FDA Food Code Requirement 

 

Treatment 

57°C to 

21°C 

 

2 hours 

Limits 57°C to 

 5°C 

 

6 hours 

Limits 

Both 

Requirements 

Lower Upper Lower Upper 

2-inch 

Refrigerated ice bath 

Single cover 
29.29°C 

 

 

17.78°C  

 

 

40.80°C 

 

 

12.82°C 

 

 

3.23°C 

 

 

22.39°C 
 

2-inch 

Refrigerated ice bath 

Double cover 
30.00°C 

 

 

18.49°C 

 

 

41.51°C 

 

 

15.39°C 

 

 

5.81°C 

 

 

24.97°C 

 

2-inch 

Refrigerated ice bath 

Uncovered 
17.07°C   

 

 

5.56°C 

 

 

28.58°C 

 

7.33°C   

 

 

-2.24°C 

 

 

16.91°C  

3-inch 

Refrigerated ice bath 

Single cover 
32.52°C 

 

 

21.01°C 

 

 

44.03°C 

 

 

15.94°C 

 

 

6.36°C 

 

 

25.52°C 
 

3-inch 

Refrigerated ice bath 

Double cover 
24.48°C 

 

 

12.97°C 

 

 

35.99°C 

 

 

14.32°C 

 

 

2.64°C 

 

 

25.99°C 
 

3-inch 

Refrigerated ice bath 

Uncovered* 

26.24°C 

 

14.73°C 

 

37.76°C 

 

11.14°C   

 

1.57°C 

 

20.73°C  

2-inch, freezer 

Single cover 
28.54°C 17.03°C 40.04°C -0.41°C   -9.98°C 9.17°C 

 

2-inch, freezer 

Double cover 
28.30°C 14.20°C 42.4°C 2.59°C  -9.08°C 14.28°C 

 

2-inch, freezer 

Uncovered* 
22.11°C    10.60°C 33.62°C -6.44°C   -1.02°C 3.13°C  

3-inch, freezer 

Single cover 
34.57°C 23.07°C 46.08°C 9.03°C -0.54°C 18.62°C  

 

3-inch, freezer 

Double cover 
42.50°C 30.99°C 54.01°C 17.54°C 7.96°C 27.12°C 
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3-inch, freezer 

Uncovered 
32.67°C 30.99°C 54.01°C 4.53°C   -5.04°C 14.12°C 

 

*Indicates cooling treatment achieved both FDA Food Code Requirements 

 

 Brown Rice 

At time point 0 hours, product depth and treatment by cover was significant. At this time 

point, 3-inch product depths were significantly higher in temperature than 2-inch product depths. 

Treatment by cover significance could be due to the lower temperature of uncovered pans 

situated in ice water baths. Product depth and cover were significant at time point 4 hours with 3-

inch product depths significantly higher in temperature and uncovered pans at a significantly 

lower temperature. Cover was significant at time point 8 and 12 hours with uncovered pans at 

lower temperatures than single or double covered pans. Treatment and product depth by cover 

were significant at the 24 hour time point. Pans in the refrigerator were lower in temperature than 

pans in the freezer. Uncovered 3-inch product depths were lowest in temperature.  

A previous study by Olds, et al. concluded 2-inch product depths cooled in a refrigerator 

with an ice water bath was the only cooling method that would meet both FDA Food Code 

requirements for a steamed rice product (118). The results of this study indicate four cooling 

methods met both FDA Food Code requirements for this food product as shown in Table 4. 

Appendix D contains cooling curve graphs to help illustrate these conclusions. 

Table 4 Brown Rice: Cooling Methods that Achieved FDA Food Code Requirements 

Table 4: Brown Rice Cooling Methods that Met FDA Food Code Requirement 

 

Treatment 

57°C to 

21°C 

 

2 hours 

Limits 57°C to 

 5°C 

 

6 hours 

Limits 

Both 

Requirements 

Lower Upper Lower Upper 
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2-inch 

Refrigerated ice bath 

Single cover 
13.65°C     

 

 

6.37°C 

 

 

20.93°C 

 

 

6.18°C   

 

 

-0.77°C 

 

 

12.07°C  

2-inch 

Refrigerated ice bath 

Double cover 
20.94°C   

 

 

13.67°C 

 

 

28.22°C 

 

 

8.43°C   

 

 

6.19°C 

 

 

19.03°C  

2-inch 

Refrigerated ice bath 

Uncovered 
9.46°C   

 

 

2.18°C 

 

 

16.74°C 

 

4.06°C   

 

 

-1.72°C 

 

 

11.13°C  

3-inch 

Refrigerated ice bath 

Single cover 
20.02°C   

 

 

12.74°C 

 

 

27.29°C 

 

 

9.06°C   

 

 

0.34°C 

 

 

13.18°C  

3-inch 

Refrigerated ice bath 

Double cover 
24.20°C 

 

 

16.92°C 

 

 

31.48°C 

 

 

9.74°C 

 

 

3.70°C 

 

 

16.56°C 
 

3-inch 

Refrigerated ice bath 

Uncovered* 
8.94°C   

 

1.66°C 

 

16.22°C 

 

1.76°C   

 

-3.52°C 

 

9.33°C  

2-inch, freezer 

Single cover 20.32°C   13.03°C 27.59°C 1.37°C   -4.59°C 8.26°C  

2-inch, freezer 

Double cover 
28.86°C 19.94°C 37.77°C 13.21°C   -3.74°C 9.10°C 

 

2-inch, freezer 

Uncovered* 
10.68°C      3.40°C 17.96°C 0.96°C   -9.64°C 3.2°C  

3-inch, freezer 

Single cover 
30.22°C 22.94°C 37.50°C 4.72°C    5.89°C 18.74°C 

 

3-inch, freezer 

Double cover 
30.98°C 23.70°C 38.26°C 6.76°C 9.30°C 22.14°C 

 

3-inch, freezer 

Uncovered 
28.33°C 21.05°C 35.61°C 1.04°C   -1.70°C 11.14°C 

 

*Indicates cooling treatment achieved both FDA Food Code Requirements 

 

 Summary of Temperature Data Findings 

Treatment, product depth, treatment by product depth, and cover were often significant in 

the cooling of these food products. In general, the freezer cooled more consistently to lower 
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temperatures, 2-inch product depths cooled more quickly than 3-inch product depths, and 

uncovered pans cooled most rapidly. Although not statistically significant, it is interesting to note 

that for all four products, the 3-inch product depths stored in the freezer cooled less effectively in 

the first four hours than 3-inch product depths in the refrigerator with an ice bath. However, at 4 

to 5 hours, the ice had mostly melted, leading to stagnated cooling that did not necessarily 

facilitate the transition to lower temperatures, but rather held food products at a steady 

temperature. The freezer, however, continued to cool to lower temperatures at a steady rate.   

In general, the temperature data results reflect similar conclusions to previously 

established research (117, 118, 129). The results of this study also add to those conclusions on 

cooling methods already validated to achieve FDA Food Code requirements for three of the four 

food products. This study identified several refrigerator and ice bath cooling combinations that 

achieved FDA Food Code which previous studies had not been able to validate for pre-cooked 

taco meat, chili con carne with beans, and brown rice (117, 118, 129). These conclusions are 

unique in that other studies indicated chili and taco meat products may be too dense for 

refrigerator and ice bath methods to effectively cool to FDA Food Code requirements (117, 118, 

129). This may be due to the composition of the ice water baths, as this study utilized ice filling 

the pans to ¾ full with no water added. Perhaps this allowed more rapid cooling than if an ice 

water bath contained added water as they may have been in others studies. There were some 

cooling methods that came close to meeting the two-step FDA Food Code requirement including 

the 2-inch product depths, covered with one layer of aluminum foil in the refrigerator for the 

chili con carne with beans and brown rice products. This cooling method met the first step of the 

requirement for each food product but missed meeting the second step of the requirement by 

0.65°C and 1.18°C, respectively. For the pre-cooked taco meat, the 3-inch product depth, 



55 

 

uncovered in the freezer met the first step of the requirement but missed the first step of the 

requirement by 3.06°C. 

 On the other hand, one study identified a method that achieved requirements that this 

study was unable to validate and that method was for the marinara sauce product. In 2013, 

Roberts, et al. concluded that 2-inch product depths of tomato sauce cooled in the freezer met 

both FDA Food Code requirements (129). In this study, the uncovered 2-inch product depth in 

the freezer missed achieving the first step of the FDA Food Code requirement by 1.11°C while 

successfully meeting the second time and temperature step.  

Temperature differences like these can be attributed to several variations between studies 

including the facilitation of the cooling of food products to 60°C ± 5°C (140°F ± 5°F) before 

placement in the freezer or refrigerator, how often the refrigerator or freezer door is opened 

during the cooling period, and whether water is used as an additive in the ice bath method. The 

two main studies referenced evaluated the cooling of chili, meatless tomato sauce, beef taco 

meat, and steamed rice; in these studies, the freezer and refrigerator were not opened once the 

cooling process had begun (118, 129). In order to access the food products for microbiological 

sampling at the five time points for this study, the -20°C (-4°F) walk-in freezer and 4°C (39.2°F) 

walk-in refrigerator were opened after the cooling process had begun (See Appendices F, Figure 

F-12 for Ambient Temperature Data). It must also be taken into consideration that food products 

went directly from heating to cooling in the two previous studies, whereas this study facilitated 

the cooling of food products to 60°C ± 5°C (140°F ± 5°F) before placement in the -20°C (-4°F) 

walk-in freezer and 4°C (39.2°F) walk-in refrigerator (118, 129). The four food products were 

also left uncovered in the previous cooling studies, which may have influenced the observed 

differences between cooling results (118, 129). 
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 The variables mentioned above that may influence the variations in temperature data 

conclusions from these studies are akin to real life variables in cooling protocols and food 

preparation settings of school nutrition programs. That is why it is critical to identify and 

scientifically validate a variety of cooling methods. Doing so provides school nutrition programs 

with flexibility and a number of cooling options so they may identify and validate feasible 

cooling methods that meet FDA Food Code requirements within their unique food preparation 

settings. 

 Microbiological Data Analysis 

Microbiological population data over the 24-hour cooling period are discussed in this 

section for the four food products: pre-cooked taco meat, chili con carne with beans, low sodium 

marinara sauce, and brown rice. The significance (P<0.05) of depth, cover, and treatment 

variables and their effect on microbial populations during the 24-hour cooling process is also 

detailed for each product in the sections below. If a variable or variable interaction is described 

as significant in this section, it is understood that significance is P< .05 as mentioned in the 

statistical analysis section. 

 Pre-cooked Taco Meat 

Time (P=0.0022) was the only one significant factor for pre-cooked taco meat. The most 

significant decrease in E. coli population occurred between time point 0 and 4 hours (-0.31 log10 

CFU/g) and overall, between time point 0 and 24 hours E. coli populations decreased 0.20 log10 

CFU/g.  The marginal decrease in population during this time may be due to variations of 

populations within the food product. No statistically significant difference (P>0.05) in E. coli 

population was observed for cover (two layers, one layer, uncovered), treatment (refrigerator vs. 

freezer), or product depth variables and there were no significant variable interactions. The lack 
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of these effects combined with the slight but significant decrease in E. coli population over time 

demonstrates an effective control for the cooling methods evaluated. In Appendices A, Figure A-

1 and Figure A-2 represent log10 CFU/g population data analyzed over time alone, as time alone 

was the only significant variable. 

 Chili con carne with beans 

Microbiological data revealed no statistically significant difference (P>0.05) in E. coli 

populations for cover (two layers, one layer, uncovered), treatment (refrigerator vs. freezer), or 

product depth variables. However, time (P=0.0015) and the product depth by time (P=0.0197) 

interaction, were significant for this product. Populations did increase in the 2-inch product 

depths between 0 and 24 hours (0.11 log10 CFU/g) whereas they decreased in the 3-inch product 

depths between 0 and 24 hours (-0.15 log10 CFU/g). The temperatures of 2 and 3-inch product 

depths were very similar at inoculation and the populations at time 0 for 2 and 3-inch product 

depths were also very similar. However, temperature data indicates that product depth was 

significant in the first 4 hours of the cooling process as 3-inch pans cooled less rapidly and were 

10°F hotter than 2-inch pans at the 4 hour time point. The retention of heat in 3-inch pans may 

have resulted in pockets of lethal temperature, which led to a small but significant population 

decline of 0.28 log10 CFU/g during the first 4 hours of cooling. Therefore, the E. coli population 

in 3-inch product depths at time point 4 hours were interpreted as statistically different in 

comparison to slightly larger populations in 2-inch product depths or even 3-inch product depths 

at other time points.  It is also plausible that the variation in populations is the result of non-

uniform inoculation throughout the product. However, these population differences were well 

under 0.5 log10 CFU/g and it is possible that a difference of this size in population was simply 

the result of natural variation in populations throughout the food product. These results indicate 
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all cooling method variables suppressed growth to the same degree, suggesting all the cooling 

methods evaluated were effective at controlling E. coli populations in the chili con carne with 

beans product. In Appendices A, Figure A-3 and Figure A-4 represent log10 CFU/g population 

data analyzed by product depth and time because the product depth by time variable interaction 

was significant. Surrogate E. coli log10 CFU/g population data was not analyzed by time alone 

due to the time variable being included in the product depth by time interaction. 

 Marinara sauce 

Product depth (P<0.0001) and time (P=.0312) were statistically significant for marinara 

sauce. The difference in E. coli populations between 2-inch (4.20 log10 CFU/g) and 3-inch (3.79 

log10 CFU/g) pans, overall, were 0.40 log10 CFU/g. Temperature data also suggests product 

depth was significant within the first four hours of cooling. It is possible the significance of 

product depth was influenced by 3-inch food product depths that may have facilitated the 

retention of pockets of lethal temperature, which may have reduced some of the bacterial 

population at inoculation. The heat combined with the acidity may have also injured the cells, 

causing them to lag and then recover. Temperature data indicates product depth was significant 

at inoculation, or time 0 hour, with 3-inch product depths being significantly higher in 

temperature than 2-inch product depths. Therefore, the E. coli population in 3-inch product 

depths were considered statistically significantly less than 2-inch product depths. 

Though time was statistically significant, 0.21 log10 CFU/g was the largest increase in 

populations occurring between the 0 and 8 hour time points, which is not considered a 

noteworthy impact, microbiologically. This slight difference is more likely due to natural 

variation within the product and the properties of the food product. It is possible that E. coli 

populations that were initially injured as a result of heat and/or acidity were able to make a slight 
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recovery during the first 8 hours of cooling. The recovery of E. coli O157:H7 cells after sub 

lethal heat treatment has been well documented (142). The cells go through periods of recovery, 

regaining their ability to grow and divide during the first 9 hours after being subjected to sub 

lethal heat conditions (142). It is important to note the results from the preliminary study indicate 

0.23 log10 CFU/g was an expected population recovery for the acid habituated surrogate E. coli 

in this product. The recovery of microbial populations during the first 8 hours of cooling was 

nearly identical to the preliminary study findings. Therefore, it is likely that these results indicate 

the slight increase in populations for the marinara sauce product were a natural consequence of 

acid habituation rather than the result of a cooling failure or risk. No statistically significant 

difference (P>0.05) in populations were observed for cover (covered two layers, covered one 

layer, uncovered) or treatment (refrigerator vs. freezer) variables and no interaction combinations 

tested were significant. These results indicate all cooling method variables suppressed growth to 

the same degree, suggesting all the cooling methods evaluated were effective at controlling E. 

coli populations in marinara sauce. In Appendices A, Figure A-5 and Figure A-6 represent log10 

CFU/g population data analyzed by time alone, as time alone was a significant variable. Figure 

A-7 represents log10 CFU/g population data analyzed by product depth alone, as product depth 

alone was a significant variable. 

 Brown Rice 

Microbiological data revealed two factors were significant for the brown rice product 

including time (P<.0001) and product depth (P=0.0235). Significant two way variable 

interactions include treatment by time (P=0.0026) and product depth by time (P=0.0268). 

Treatment by time was significant and demonstrated a population decrease of 0.37 log10 CFU/g 

between time point 0 and 24 hour when food product depths were stored in the freezer. The ice 
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bath in the refrigerator proved less effective with a population decrease of 0.09 log10 CFU/g 

between time points 0 through 24 hours. Product depth by time significance was observed 

because populations did decrease overall in both 2 and 3-inch product depths between time 

points 0 and 24 hours (-0.21 log10 CFU/g and -0.25 log10 CFU/g, respectively). Bacillus cereus 

populations at time 0 were slightly, but significantly, different as the 3-inch product depths were 

observed at a 0.29 log10 CFU/g higher population than the 2-inch product depths at inoculation. 

This difference in population may be attributed to an uneven distribution of inoculum due to the 

absorbency of the brown rice product as has been encountered in a previous study (Gilbert 1974).  

Therefore, the B. cereus populations in 3-inch product depths were interpreted as statistically 

different in comparison to populations in 2-inch product depths or even 3-inch product depths at 

other time points. No statistically significant difference (P>0.05) in B. cereus population was 

observed for the cover (two layers, one layer, uncovered) variable and the slight decrease in B. 

cereus populations from significant factors prove cooling techniques tested were effective at 

controlling B. cereus populations. These results reflect the findings of a similar study conducted 

in 1974, where rice was cooked and inoculated with various B. cereus cultures, then cooled at a 

range of different temperatures (70). Three different B. cereus strain populations declined in the 

cooked rice over a 24-hour cooling period at 4°C (39.2°F) (70). The strains utilized in this study 

were either from isolates obtained from samples of feces from foodborne outbreaks involving 

fried rice or an isolate from uncooked rice (70).  

In Appendices A, Figure A-8 and Figure A-9 represent log10 CFU/g population data 

analyzed by treatment and time, as treatment by time was a significant variable interaction. 

Figure A-10 and Figure A-11 represent log10 CFU/g population data analyzed by product product 

depth and time, as product depth by time was a significant variable interaction. B. cereus log10 
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CFU/g population data was not analyzed by time alone or by product depth alone due to the time 

variable and product depth variable being included in the product product depth by time 

interaction. 

 ComBase and PMP Growth Predictions 

To evaluate the microorganisms and temperature conditions modeled in this study, two 

online programs were utilized: the USDA Pathogen Modeling Program (PMP) and the ComBase 

Predictor modeling program (51, 154). Neither the PMP nor the ComBase programs had data 

from previous research regarding the specific microorganism, food products, or cooling 

conditions evaluated in this study. For E. coli and B. cereus, data for broth cultures and food 

products were available but they were not similar in % NaCl or pH at cold holding temperatures. 

In fact, only broth models were available for B. cereus at cold holding temperatures. Therefore, 

modeling was carried out based on conditions that were intrinsic to the food products tested 

including initial population level, % NaCl or aw, and pH as well as external conditions like 

holding temperature. Nutrition labels from the food products provided information to calculate % 

NaCl based on weight (See Appendices F, Figures F-7 through F-10). 

The ComBase Predictor offers a non-thermal survival prediction method, but this method 

only allows for modeling of Listeria monoctyogenes and Salmonella and not for modeling of the 

microorganisms evaluated in this study. Therefore, the growth prediction method was chosen as 

the most appropriate predictor model. The dynamic version of the model correlates temperatures 

with time points during the “growth” process. This was an advantage over the static model, as 

temperatures changed frequently during the cooling process in this study. However, this model 

was not ideal as the temperature ranges for each pathogen were limited to growth conditions, for 

B. cereus 5-34°C (41-93°F) and E. coli 10-42°C (50-107°F). Therefore, temperature data 
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gathered from this project fell out of range for modeling during a majority of the 24-hour cooling 

period. The dynamic model was carried out for food products stored in the refrigerator as more 

time points fell within modeling range than those for products in the freezer. The ComBase 

program was also limited as far as pH input with the lower limit being 4.5, so modeling for the 

marinara sauce product at a pH of 4.18 was not possible.  

As or the PMP, there were models for cooling conditions regarding Clostridium 

botulinum and Clostridium perfringens; however, there were no cooling models for the 

microorganisms evaluated in this study. The PMP did not contain a bacteria-specific model for 

the food products tested in this study, so a bacteria-specific, broth-based model was chosen. 

Unlike the ComBase program, the PMP allowed for a modeling scenario including initial 

population level and pH but had the advantage of allowing a lower temperature limit to be 

selected at 5°C (41°F). However, the limitations of the PMP included the absence of a dynamic 

model as well as the problematic lower limit of 0.5 % NaCl. This lower limit resulted in limited 

prediction potential as the food products evaluated in this study were between 0-0.45% NaCl. 

The following information was input in ComBase to run the modeling program for the 

pre-cooked taco meat product: initial level = 4.52-log10, temperatures of food product in the 

refrigerator from time points 2, 4, 6, and 8 hours of cooling that were within modeling limits, 

0.45% NaCl, and two pH scenarios at 5 and 6. Two pH scenarios were run to model a worst-case 

scenario as the final pH of the pre-cooked taco meat product was unknown. At a pH of 5 and 6, 

E. coli was predicted by the ComBase dynamic model to grow by 0.11-log10 and 0.49-log10, 

respectively, over the 8 hour period. The PMP was also run to model growth in this product, with 

identical input information, but at a lower temperature of 5°C and at the lower limit of 0.5% 

NaCl. This model reported a 0.01 log10 (CFU/mL)/h growth rate in an aerobic, broth-based 
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scenario. The model predicted that over a 24-hour period, the population would increase by 0.17-

log10 and 0.26-log10 for pH 5 and 6, respectively. The results from the microbiological data for 

the pre-cooked taco meat in this study showed a decrease of 0.16 log10 CFU/g between time 

point 0 and 8 hours. 

For the low sodium marinara sauce product, there was limited prediction potential as the 

pH for the product (4.18) fell below the lower limit in ComBase (4.5). The following information 

was used as input for ComBase to run the modeling program for the low sodium marinara sauce 

product: initial level = 3.86-log10, temperatures of food product in the refrigerator from time 

points 1, 2, 4, and 6 hours of cooling that were within modeling limits, 0.16% NaCl, and pH = 

4.5. Under these conditions, E. coli was predicted by the ComBase dynamic model to grow by 

0.15-log10 over the 6 hour period. The PMP was also run to model growth in this product, but at a 

lower temperature of 5°C, at the lower limit of 0.5% NaCl, and at the lower limit of pH 4.5. This 

model predicted a 0.01 log10 (CFU/mL)/h growth rate. At 24-hours, the population was predicted 

to grow by 0.12-log10. The results from the microbiological data for the low sodium marinara 

sauce in this study showed an increase of 0.15 log10 CFU/g between time point 0 and 4 hours 

which was very similar to the ComBase and PMP predictions. 

The following information was input in ComBase to run the modeling program for the 

chili con carne with beans product: initial level = 4.56-log10, temperatures of food product in the 

refrigerator from time points 1, 2, and 4 hours of cooling that were within modeling limits, 

0.17% NaCl, and two pH scenarios at 5 and 6. Two pH scenarios were run to model a worst-case 

scenario as the final pH of the chili con carn with beans product was unknown. E. coli was 

predicted by the ComBase dynamic model to grow by 0.05-log10 and 0.09-log10, at a pH of 5 and 

6 respectively. The PMP was also run to model growth in this product, but at a lower 
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temperature of 5°C and at the lower limit of 0.5% NaCl. This model reported a 0.01 log10 

(CFU/mL)/h growth rate. At 24-hours, the population was predicted to grow by 0.17-log10 and 

0.26-log10 at a pH of 5 and 6, respectively. The results from the microbiological data for the chili 

con carne with beans product in this study showed a decrease of 0.12 log10 CFU/g between time 

point 0 and 4 hours. 

The following information was input in ComBase to run the modeling program for the 

brown rice product: initial level = 4.48-log10, temperatures of food product in the refrigerator 

from time points 1, 2, 4, and 6 hours of cooling that were within modeling limits, 0% NaCl, and 

pH= 6. B. cereus was predicted by the ComBase dynamic model to remain at the same 

population over the 6 hour period. The PMP was also run to model growth in this product, but at 

a lower temperature of 5°C and at the lower limit of 0.5% NaCl. This model reported a 0.04 log10 

(CFU/mL)/h growth rate. At 24-hours, the population was predicted to grow by 0.60-log10. The 

results from the microbiological data for the brown rice product in this study showed a decrease 

of 0.16 log10 CFU/g between time point 0 and 4 hours. 

 Summary of Microbiology Data Findings 

The microbiological data suggests that all 12 cooling methods were effective at 

controlling microbial populations. The pre-cooked taco meat and brown rice products exhibited a 

certain degree of overall population decline over the 24 hour cooling period, indicating that 

microorganism populations were effectively controlled by the cooling methods tested. The small 

recovery of the microbial population in the low sodium marinara sauce product and 2-inch 

product depths of chili con carne with beans were less than 0.50 log10 CFU/g. In fact, the 

variation in microbial populations for all the cooling variable combinations tested was lower than 

0.5 log10 CFU/g.  
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According to the 2013 FDA Food Code section “Holding Cold Food Without 

Temperature Control”, food kept without temperature control should meet the performance 

standard of no more than 1 log10 growth of Clostridium perfringens and Bacillus cereus (152). 

Experts agreed this was reasonable and even somewhat conservative (156). This is based on the 

knowledge that 105 - 107 CFU/g of vegetative cells within food products lead to a production of 

enterotoxin within the intestines, however, levels of spores in raw food products is relatively low 

at 10-1000 CFU/g (152, 156). The FDA Food Code also states that when held at ambient 

temperatures (75°F) for 4 hours, the performance standard is no more than 1 log10 CFU/g growth 

of Listeria monoctyogenes even though the infectious dose is not known (152, 156). Results of 

the USDA Pathogen Modeling Program in 1999 suggested safe time and temperatures resulted in 

3 log10 growth in broth cultures and even some food related studies, however, these 1 log10 

parameters were set after more exploratory studies were conducted on pathogens in defined food 

products (152, 156). These parameters far exceed the population changes observed in this study. 

 Future Research 

The E. coli surrogates used were intended to model O157:H7 STEC and were utilized in 

three food products. Therefore, the results of this research can only provide an indication of the 

suspected behavior of O157:H7 STEC in these food products. Future research could evaluate 

variables like replacing or removing ice baths after several hours of cooling in order to validate 

more refrigerator cooling methods. Cover methods utilizing plastic wrap instead of aluminum 

foil could also be investigated. According to the survey in Krishnamurthy, et al. 2011, a large 

percentage (48.7%) of school foodservice managers reported leaving food uncovered in the 

refrigerator for cooling but then covering at a later time (98). This may correlate with the end of 

a work shift and could be a cooling variable worthy of investigation as well. Lastly, spore 
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forming bacteria like Clostridium perfringens should be investigated in proteinaceous foods like 

chili and taco meat, as rapid cooling is imperative for controlling this microorganism (152, 156).  
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Chapter 4 - SUMMARY AND CONCLUSIONS 
 

The microbiological data from this project builds upon previous studies that evaluated 

cooling methods used in school lunch settings in order to meet the two-step FDA Food Code 

cooling requirement (117, 118, 129). This study was designed to include variables to properly 

model cooling techniques that may be utilized by school nutrition programs. Time points were 

also planned to reflect a passive cooling process that often takes place within a school lunch 

setting.  

Temperature data results from this study agreed with previously established research as 

well as establishing new understanding of microbial populations within specific food products. 

The variables tested included cover method, treatment with 4°C (39.2°F) refrigerator + ice bath 

or -20°C (-4°F) freezer, and product depth. These variables were all significant for the cooling of 

food products, but had limited or no impact on the control of microbial populations. None of 

these methods significantly improved control of microbial populations, but rather, controlled 

populations in an equal manner. Therefore, all 12 cooling combinations tested could be utilized 

for the food products evaluated despite the inability of some methods to meet FDA Food Code 

requirements with regard to temperature. However, it is critical to follow certain 

recommendations to facilitate rapid cooling including leaving pans uncovered when possible or 

covering with just one layer of aluminum foil or plastic food wrap, replacing or removing ice 

baths after several hours of cooling, and cooling foods at 2-inch product depths in the freezer 

whenever possible. It may be beneficial to store 3-inch product depths with the refrigerator + ice 

bath method based on the conclusion that this method cooled 3-inch product depths more rapidly 

than the freezer during the first four hours of the cooling process.  
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Cooling food properly will continue to serve as a significant step in preventing the 

proliferation of microbial populations within food products. However, the results of this research 

suggest microbial populations within food products were stable during the cooling process 

despite inability to achieve time and temperature limit requirements. Overall, this research 

identified and scientifically validated several economical cooling methods. These data may 

provide school nutrition programs, restaurants, and other food preparation settings with an 

increased flexibility to explore and validate cooling methods that meet FDA Food Code 

requirements within their unique food preparation settings. A variety of options for economical 

cooling methods may have a positive impact for institutional food service settings that may be 

limited by financial challenges, staffing, or cooling equipment capacity. Although the results of 

this research suggest a certain degree of flexibility in regards to time and temperature limits 

would mostly likely not raise the risk of microbial proliferation in food products, it is important 

to note that that this study is not exhaustive with regard to potential foodborne pathogen and food 

product combinations that could be explored in future experimentation. 
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Appendix A - Microbial Population Data 

 
Figure A-1: Least Squares Means of Surrogate E. coli Populations (Log10 CFU/g) in Pre-

Cooked Taco Meat Analyzed by Time with 95% Confidence Limits 

 

 
Figure A-2: Surrogate E. coli Populations (Log10 CFU/g) in Pre-Cooked Taco Meat 

Analyzed by Time     
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Figure A-3: Least Squares Means of Surrogate E. coli Populations (Log10 CFU/g) in Chili 

Con Carne with Beans Analyzed by Product Depth and Time with 95% Confidence 

Intervals 

 
 

Figure A-4: Surrogate E. coli Populations (Log10 CFU/g) in Chili Con Carne with Beans 

Analyzed by Product Depth and Time   
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Figure A-5: Least Squares Means of Surrogate E. coli Populations (Log10 CFU/g) in Low 

Sodium Marinara Sauce Analyzed by Time with 95% Confidence Intervals 

 

 

Figure A-6: Least Squares Means of Surrogate E. coli Populations (Log10 CFU/g) in Low 

Sodium Marinara Sauce Analyzed by Time with 95% Confidence Intervals 



88 

 

 

Figure A-7: Surrogate E. coli Populations (Log10 CFU/g) in Low Sodium Marinara Sauce 

Analyzed by Product Depth 

 

Figure A-8: Least Squares Means of B. cereus Populations (Log10 CFU/g) in Brown Rice 

Analyzed by Treatment and Time with 95% Confidence Intervals   
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Figure A-9: B. cereus Populations (Log10 CFU/g) in Brown Rice Analyzed by Treatment 

and Time 

 

 

Figure A-10: Least Squares Means of B. cereus Populations (Log10 CFU/g) in Brown Rice 

Analyzed by Product Depth and Time with 95% Confidence Intervals  
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Figure A-11: B. cereus Populations (Log10 CFU/g) in Brown Rice Analyzed by Product 

Depth and Time 
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Appendix B - Pre-Cooked Taco Meat Cooling Curves  

 

Figure B-1: Cooling Curves for all Cooling Technique Combinations Tested for Pre-

Cooked Taco Meat 

 

The cooling curves in this graph represent all 12 cooling treatment combinations tested 

for the pre-cooked taco meat product. Treatment combinations are referenced by color patterns 

shown in the Cover Methods key at the bottom of the graph. Black lines represent the two FDA 

Food Code time and temperature requirements. This figure was included to provide a visual for 

the cooling effects of all 12 treatments tested for this product. 
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Figure B-2: Cooling Curves for Treatment and Product Depth Combinations Tested for 

Pre-Cooked Taco Meat  

 

The cooling curves in this graph represent each treatment and product depth combination 

tested for the pre-cooked taco meat product. Treatment combinations are referenced by color 

patterns at the bottom of the graph. Black lines represent the two FDA Food Code time and 

temperature requirements. This figure was included to provide a visual to support the 

significance of treatment and product depth on the cooling of this product.  
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Figure B-3: Cooling Curves for Cover Treatments Tested For Pre-Cooked Taco Meat  

 

The cooling curves in this graph represent each cover method tested for the pre-cooked 

taco meat product. Cover methods are referenced by color patterns at the bottom of the graph. 

Black lines represent the two FDA Food Code time and temperature requirements. This figure 

was included to provide a visual to support the significance of cover method on the cooling of 

this product.  
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Appendix C - Chili Con Carne with Beans Cooling Curves 

 

Figure C-1: Cooling Curves for all Cooling Technique Combinations Tested for Chili Con 

Carne with Beans 

 

The cooling curves in this graph represent all 12 cooling treatment combinations tested 

for the chili con carne with beans product. Treatment combinations are referenced by color 

patterns shown in the Cover Methods key at the bottom of the graph. Black lines represent the 

two FDA Food Code time and temperature requirements. This figure was included to provide a 

visual for the cooling effects of all 12 treatments tested for this product.  
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Figure C-2: Cooling Curves for Treatment and Product Depth Combinations Tested for 

Chili Con Carne with Beans  

 

The cooling curves in this graph represent each treatment and product depth combination 

tested for the chili con carne with beans product. Treatment combinations are referenced by color 

patterns at the bottom of the graph. Black lines represent the two FDA Food Code time and 

temperature requirements. This figure was included to provide a visual to support the 

significance of treatment and product depth on the cooling of this product. 

  



96 

 

 

Figure C-3: Cooling Curves for Cover Treatments Tested For Chili Con Carne with Beans  

 

The cooling curves in this graph represent each cover method tested for the low sodium 

marinara sauce products. Cover methods are referenced by color patterns at the bottom of the 

graph. Black lines represent the two FDA Food Code time and temperature requirements. This 

figure was included to provide a visual to support the significance of cover method on the 

cooling of this product. 
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Appendix D - Low Sodium Marinara Sauce Cooling Curves 

 

Figure D-1: Cooling Curves for all Cooling Technique Combinations Tested for Low 

Sodium Marinara Sauce 

 

The cooling curves in this graph represent all 12 cooling treatment combinations tested 

for the low sodium marinara sauce product. Treatment combinations are referenced by color 

patterns shown in the Cover Methods key at the bottom of the graph. Black lines represent the 

two FDA Food Code time and temperature requirements. This figure was included to provide a 

visual for the cooling effects of all 12 treatments tested for this product.  
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Figure D-2: Cooling Curves for Treatment and Product Depth Combinations Tested for 

Low Sodium Marinara Sauce 

 

The cooling curves in this graph represent each treatment and product depth combination 

tested for the low sodium marinara sauce product. Treatment combinations are referenced by 

color patterns at the bottom of the graph. Black lines represent the two FDA Food Code time and 

temperature requirements. This figure was included to provide a visual to support the 

significance of treatment and product depth on the cooling of this product. 
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Appendix E - Brown Rice Cooling Curves 

 

Figure E-1: Cooling Curves for all Cooling Technique Combinations Tested for Brown 

Rice  

 

The cooling curves in this graph represent all 12 cooling treatment combinations tested 

for the brown rice product. Treatment combinations are referenced by color patterns shown in 

the Cover Methods key at the bottom of the graph. Black lines represent the two FDA Food Code 

time and temperature requirements. This figure was included to provide a visual for the cooling 

effects of all 12 treatments tested for this product. 
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Figure E-2: Cooling Curves for Treatment and Product Depth Combinations Tested for 

Brown Rice  

 

The cooling curves in this graph represent each treatment and product depth combination 

tested for the brown rice product. Treatment combinations are referenced by color patterns at the 

bottom of the graph. Black lines represent the two FDA Food Code time and temperature 

requirements. This figure was included to provide a visual to support the significance of 

treatment and product depth on the cooling of this product. 
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Figure E-3: Cooling Curves for Cover Treatments Tested For Brown Rice 

 

The cooling curves in this graph represent each cover method tested for the brown rice 

product. Cover methods are referenced by color patterns at the bottom of the graph. Black lines 

represent the two FDA Food Code time and temperature requirements. This figure was included 

to provide a visual to support the significance of cover method on the cooling of this product. 
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Appendix F - Additional Figures 

 

Figure F-1: B. cereus Spores and Vegetative Cells Pre-Heat Shock Viewed Under 100x 

Magnification of a Phase Contrast Microscope 

 

 

Figure F-2: Primarily B. cereus Spores Post-Heat Shock Viewed Under 100x Magnification 

of a Phase Contrast Microscope 
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Figure F-3: School Lunch Recipe for Chili Con Carne with Beans 
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Figure F-4: Ruler and Binder Clip System Implemented to Stabilize Data Logger Probe in 

the Center of the Pan and Food Product 
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Figure F-5: Key and Diagram Describing All 12 Cooling Treatments Evaluated 
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Figure F-6: Examples of Cover and Cooling Treatments Applied to Pans 
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Figure F-7: Nutrition Label for Pre-Cooked Taco Meat Product 
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Figure F-8: Nutrition Label for Low Sodium Marinara Sauce Product 
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Figure F-9: Nutrition Label for Chili Con Carne with Beans Product 
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Figure F-10: Nutrition Label for Brown Rice Product 

Ambient Temperature Data for -20°C Walk-in Freezer and  

4°C Walk-in Refrigerator 

 Average 

Temperature (°C) 

Standard 

Deviation (°C) 

Mean Kinetic 

Temperature (°C) 

Freezer Inside -21.27 ±0.43 -20.19 

Freezer Outside -21.05 ±0.24 -20.72 

Refrigerator Inside 4.64 ±0.24 4.68 

Refrigerator Outside 5.21 ±0.14 5.22 

*Inside describes temperature data loggers that were placed on the shelves along the back wall of 

the refrigerator or freezer 

*Outside describes temperature data loggers that were placed near the doorway of the freezer or 

refrigerator 

Figure F-11: Ambient Temperature Data for -20°C Walk-in Freezer and 4°C Walk-in 

Refrigerator 
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