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Abstract

There are many measures developed for assessing clustering algorithms. However, little

work has been done to determine what type of clusterings these validation measures would

consider “the best.” In particular, if a clustering validation measure performs well, then

it should be able to identify the “correct” clustering when when presented with all possi-

ble ways of clustering a dataset. We evaluate the performance of five clustering validation

measures—Silhouette, Hubert-Gamma, R-squared, the Dunn family of indices, and the data

Davies-Bouldin index—on five small clustered datasets. To obtain a large set of candidate

clusterings, we view each dataset as a graph and form a connected bottleneck subgraph. On

this subgraph, we identify all set-connected partitions—those whose blocks are connected—

that satisfy a set of constraints on the number of blocks and the size of each block within

the partition. We then apply the validation measure on each of the possible partitions to

determine the clustering that each validation measure considers to be optimal. Based on test

results, we find each measure has its own preferences. For example, the silhouette measure

tends to be better at capturing connected regions, and many others measures prefer cluster-

ings that contain many clusters. Finally, we compare the clusterings found by the validation

measures to those obtained by other popular clustering methods including k-means, hierar-

chical agglomerative clustering (HAC), density-based spatial clustering of applications with

noise (DBSCAN) and ordering points to identify the clustering structure (OPTICS).
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Chapter 1

Introduction

Over the past few decades, there have been various methods proposed to perform the clus-

tering of datasets (Hastie et al., 2001). As the number of clustering methods is on the rise,

clustering is made applicable to more and more types of data. However, allowing for many

competing clustering methods, it is potentially difficult to identify which method is most

appropriate for a specific dataset. Consequently, clustering validation measures have been

developed to compare these clustering methods for their effectiveness.

At present, there have been some work performed on assessing the efficacy of these vali-

dation measures. Some research focuses on the viability of validation measures (Brun et al.,

2007). In this research, different types of models taken into consideration, clustering is

performed using different methods, and validation measures are applied to compare them.

Other research are aimed at validating the measures (Liu et al., 2010). Through the ex-

periment on different types of datasets, clusterings are performed with different number of

clusters for each set. Then, the measures are used to validate each clustering and determine

whether the expected clustering can be identified. Some validation measures have been used

to automate number of clusters in a clustering algorithm. For example, the fviz nbclust

function in the factoextra R package (Kassambara and Mundt, 2020) finds the optimal

number of clusters for a given clustering method by applying the method many times to the

dataset with varying number of clusters and finding which number of clusters leads to better
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values of a selected validation measure.

In our study, we build on this literature by assessing the efficacy of five clustering val-

idation measures: Silhouette, Hubert-Gamma, R-squared, the Dunn index, and the data

Davies-Bouldin index. Our consideration is given to five small datasets for which some

”reasonable” clusterings can be enumerated. Then, these clustering validation measures are

applied across all potential clusterings to ascertain which one the measure judges as “opti-

mal”, thus allowing a comparison to be performed between the cluster validation measures.

1.1 Clustering

Clustering is a common statistical method that classifies and aggregates similar or close

data points (based on their covariates) into different groups known as clusters. Clustering

techniques are applied in such fields as machine learning (Taherkhani and Pierre, 2016),

pattern recognition (Kalhori and Zarandi, 2015), and information retrieval (Jimenez and

Vidal, 2004,2005).

There are a wide variety of clustering algorithms. In crisp clustering, each unit is assigned

to a unique cluster. Fuzzy clustering requires that consideration is given to the correlation

between the unit and the cluster. In fuzzy clustering, data points may fall into multiple

clusters.

In our study, it is assumed that there are n units, as numbered 1 through n. Each unit

i contains p covariates, denoted as xi = (xi1, xi2, . . . , xip). In many clustering methods, the

distance between units’ covariates plays an essential role in the formation of clusters and

the assessment of clustering. Among various methods applied for the calculation of distance

are the Euclidean distance, the Manhattan distance and the Mahalanobis distance. The

Euclidean distance is utilized in this study:

d(xi, xj) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + . . . + (xip − xjp)2 =

√√√√ p∑
k=1

(xik − xjk)2. (1.1)
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In the following part, various clustering methods will be discussed in detail.

K-means is known as one of the most commonly used clustering methods (Hartigan and

Wong, 1979). It obtains a clustering that contains k clusters and all of the points in the same

cluster are closest to their own cluster centroid. K-means aims at providing the clustering

with minimal within-cluster variances. The objective function for k-means is expressed as

follows

min
C

k∑
i=1

∑
x∈Ci

‖x− ci‖2. (1.2)

Where the set of clusters C = {C1, C2, . . . , Ck}, and ci is the centroid of clusters. In k-

means, the centroid is the mean of all vectors in the cluster. K-means clustering algorithms

are subject to limitations and are frequent to identify locally optimal clusterings rather than

globally optimal ones. In most cases, the number of clusters k should is supposed to defined

in the first place.

For hierarchical agglomerative clustering (HAC) (Nielsen, 2016), distance is a critical

factor. The purpose of HAC is to construct a hierarchy of clusters based on a single unit.

The first step is to identify the units to be merged in the cluster, before selecting the two

closest units based on the chosen linkage for merger. Then, HAC connects the two clusters

based on the linkage, and finally aggregate all of the units. Depending on the type of dataset,

HAC is required to select from different distance formulas. In HAC, Euclidean distance is

used most, though the square Euclidean distance, Manhattan distance, and others are used

as well. For HAC, there are different linkage criteria applied. Maximum (complete-linkage)

clustering uses the following formula: max{d(a, b) : a ∈ A, b ∈ B}, where d represents a

distance function, while A and B refer to two clusters. Complete-linkage clustering would

connect the two clusters via minimal value of the maximum distance between them. Min-

imum (single-linkage) clustering uses the following formula: min{d(a, b) : a ∈ A, b ∈ B}.

Single-linkage clustering would connect the two clusters via minimal value of the minimum

distance between them. And unweighted average linkage clustering uses the following for-

mula: 1
|A||B|

∑
a∈A

∑
b∈B

d(a, b). Unweighted average linkage clustering would connect the two

clusters via minimal value of the average distance between them.
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There are two clustering methods based on density models, including DBSCAN (Density-

based spatial clustering of applications with noise) (Schubert et al., 2017) and OPTICS

(Ordering points to identify the clustering structure) (Ankerst et al., 1999). Based on data

density, DBSCAN aggregates the surrounding data points close to the center of the high

density regions for the formation of clusters and marks outliers, which refer to the points

fall under the low-density area. OPTICS is also based on density, similar to DBSCAN.

Density-based clustering is mainly targeted at high-density areas, while those low-density

areas are referred to as noise. DBSCAN involves two initial parameters, the size of the

epsilon neighborhood and the number of minimum points in the epsilon region, respectively.

The size of the epsilon is defined as the radius of the density cluster, and the epsilon region

refers to the area of the core points. As the result of clustering is highly sensitive to these two

parameters, different initial values will produce different clustering results. In OPTICS, it is

sufficient to define the upper limit on the size of the epsilon neighborhood and the number of

minimum points in the epsilon region, which allows OPTICS to perform clustering without

a specific size limitation.

Although we have the above-mentioned solutions to obtain clusterings, it is often difficult

to identify the structure of data during research applications. The efficacy of the clustering

methods is determined by the structure of data. Since K-means method is required to de-

fine the number of clusters in advance, the datasets with more obvious distribution are more

suitable for them. For dense, non-convex data, DBSCAN and OPTICS are potentially ad-

vantageous. As HAC is subject to no set constraints the whole graph can be sliced according

to the number of clusters needed. Therefore, HAC can be applied to any datasets which can

obtain the effective distance.

1.2 Measures for validating clustering

Following the clustering algorithm, the assessment of clustering is another significant part

of the study. In the absence of a response, clustering validation measures can be taken to

assess the efficacy of a clustering. Some popular cluster validation measures have been listed
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by Halkidi et al. (2002). Herein, a few validation measures are detailed.

The silhouette value is taken as a measure to validate the consistency of the clus-

ter (Rousseeuw, 1987). The silhouette value is calculated from the distance, which range

from -1 to 1. Where high values indicate that the clustering has a good match, and vice versa.

The Euclidean distance is often used in the silhouette measure. It is assumed that clustering

algorithm is applied to assign data to k clusters C = {C1, C2, . . . , Ck}. The silhouette value

for a data point is

s(i) =
b(i)− a(i)

max{a(i), b(i)}
if |Ci| > 1 (1.3)

and s(i) = 0 if |Ci| = 1, where a(i) represents the mean distance between the point i and

other points in its cluster Ci and b(i) refers to the minimum mean distance between the

point i and all points other clusters Ck 6= Ci. That is to say, the a(i) and b(i) are defined as

follows:

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) and b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j). (1.4)

The smaller value of a(i), the more similar the point i is to the rest of the cluster. A greater

values of b(i) implies that the point i is dissimilar from other clusters. As for the silhouette

value, the mean value of all s(i) is taken to assess the overall quality of clustering,

s =
1

k

∑
i∈Ci,Ci∈C

s(i). (1.5)

The greater the value of s, the better the clustering is.

The Hubert Γ statistic is a measure used to test the similarity between two different

clusters (Theodoridis and Koutroubas, 1999). It is obtained by the equation

Γ =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

P (i, j)Q(i, j). (1.6)

Here, P (i, j) indicates the distance between point i and j and Q(i, j) is equal to the distance

between centers of the clusters to which the points i and j belong. If the two points i and

j fall into the same cluster, then Q(i, j) = 0, and there are no other clusters affected. If the

5



distance between two clusters ci and cj is close to the distance between two points i and j

for which i ∈ ci and j ∈ cj for i, j = 1, 2, . . . , n, then the Γ is assigned a large value. A larger

value of Γ suggests a better clustering.

R-squared is a commonly used statistical measure (Sharma, 1996). In many cases, R-

squared is applied to judge the goodness of fit for a regression model (Freels and Sinha,

2008). Moreover, it is suitable for the assessment of clustering. The form of the R-squared

is expressed follows:

R2 =
SSb

SSt

=
SSt − SSw

SSt

=

{ ∑
j=1,...,v

[
nj∑
k=1

(dk − d̄k)2
]}
−

{ ∑
i=1,...,c,j=1,...,v

[
nij∑
k=1

(dk − d̄k)2
]}

∑
j=1,...,v

[
nj∑
k=1

(dk − d̄k)2
] .

(1.7)

Where nj represents the number of distances between each point and other points in the

dataset, while nij refers to the number of distances between each point and other points in

a cluster. SSw indicates the sum of squares within group, SSb denotes the sum of squares

between groups, and SSt stands for the total sum of squares. The dk in the SSt part means

the distance between the point j and all other points, and d̄k is defined as the mean of all

dk. For SSw, dk is the distance between the point j and all other points in its own cluster,

with d̄k as the mean value. R2 ranges from 0 to 1. A larger value of R2 means a smaller

variance of clusters.

Dunn index is treated as a measure taken to validate that clusters are compact and well-

separated (J.C.Dunn, 1974). They are two characteristics potentially indicative of a better

clustering. It is defined as follows:

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

 d(ci, cj)

max
k=1,...,nc

diam(ck)

}. (1.8)

Where d(ci, cj) is the dissimilarity function between two clusters ci and cj:

d(ci, cj) = min
x∈Ci,y∈Cj

d(x, y) (1.9)
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and diam(c) indicates the diameter of cluster C

diam(C) = max
x,y∈C

d(x, y). (1.10)

If diam(c) is small, the clusters can be proven compact and well-separated. That is to say,

a small diam(c) indicates a large value of Dunn index.

Davies-Bouldin (DB) index provides a means to conduct internal assessment of cluster-

ing (Xiao et al., 2017). To obtain the DB value, a number of parameters are required to be

determined. Firstly, we need to define Si =

(
1
Ti

Ti∑
j=1

|Xj − Ai|2
)1/2

and Mi,j = ‖Ai−Aj‖2 =(
n∑

k=1

|ai,k − aj,k|2
)1/2

, where Ai indicates the centroid of cluster Ci and Ti denotes the size

of the cluster Ci. Ai is defined as the mean of all Xi in cluster Ci, and ai,k is denoted as a

covariate in Ai. The next step is to obtain R, which is defined as:

Ri,j =
Si + Sj

Mi,j

. (1.11)

The last step is to obtain the value of DB, using the following formula:

DB =
1

N

N∑
i=1

Di. (1.12)

Where Di reoresents the maximum Ri,j with i 6= j . Si represents the scattering value within

the cluster Ci, and Mi,j refers to a measure of separation between cluster Ci and cluster Cj.

The value of DB is indicative of the similarity between different clusters. A smaller DB

values suggests a better clustering.

1.3 Enumerating All Set-connected Clusterings

Even for small datasets, enumerating all possible ways of clustering units requires prohibitive

computation. Instead, we look at a small subset of these clusterings called set-connected
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clusterings that seem likely to contain an “optimal” one for these validation measures.

These clusterings are generated as follows. We view a dataset a graph G = (V,E). Each

of the n units is treated as a vertex in V , and edges ij ∈ E connect units i and j together.

In this graph, a bottleneck subgraph BGω = (V,Eω) is constructed (Hochbaum and Shmoys,

1986; Higgins et al., 2016). The bottleneck subgraph with threshold ω is a subgraph of G

where edges ij ∈ Eω if and only if ωij ≤ ω. The threshold ω is chosen to be as small as

possible while ensuring that the graph G is connected—that is, a path of the edges in BGω

connects every two vertices in BGω.

Upon forming this graph, we enumerate all ways of clustering the graph so that connected

clusters are formed. These clusterings are called set-connected clusterings. To further restrict

the number of clusterings, we also restrict the number of clusters and set minimum and

maximum values on the number of units to be contained in each cluster. The algorithm

for finding all set-connected clusterings can be found as part of the redist R package on

CRAN (Fifield et al., 2016).

1.4 Test Clusterings

Our consideration is given to five datasets, each of which is comprised of a small number of

units. Some datasets can distinguish the number of clusters accurately, and some datasets

are symmetrical in the figure. These datasets would help us to validate the accuracy of

obtaining the optimal clusterings and the preference of each measure.

For each dataset, the optimal clustering is identified for each validation measure by finding

all set-connected clusterings as mentioned in Section 1.3 and by applying the validation

measure on each of these clusterings. The basic process is shown in Figure 1.1.

Compared with the traditional clustering method, our method ensures the accuracy of

optimality. Since there are thousands of clustering obtained altogether through set-connected

partition algorithm, these clustering show reliability and are not randomly obtained. When

thousands of reliable clusterings are assessed, the error will be reduced accordingly. It is

a real possiblity that the traditional clustering method produces different results under the
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same setting, i.e., K-means amd HAC, but the results of our method being fixed.

Additionally, the aforementioned popular clustering methods are adopted to process these

datasets, including K-means, HAC, DBSCAN and OPTICS. Then, a comparison is per-

formed between the clusterings obtained by these traditional methods and the ”optimal”

clustering obtained from measures. The clusterings obtained using these traditional meth-

ods are evaluated with the five validation measures we use, which is conducive to determining

which type of clustering each measure prefers.
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Chapter 2

Results

Five different types of datasets are created. For each dataset, the pattern of clustering is

different. After all the set-connected clusterings with the different number of clusters are lised

for each dataset, the 5 measures as mentioned above are used to evaluate all clusterings. The

optimal clustering of each measure is obtained through the comparison of scores. As for the 4

traditional clustering methods, the aforementioned steps are repeated. The clustering results

as obtained by set-connected clustering method will be compared against those obtained

using traditional clustering methods, which is helpful for verifying the viability and validity

of these 5 clustering validation measures. In doing so, the correct clusterings and their

preference for different types of clusterings can be identified.

2.1 Datasets

With regard to the dataset 1 shown in Figure 2.1, there are 20 points evenly distributed in

the four corners of the plot. As the set-connected algorithm of dataset 1, we try, 3 to 6,

different numbers of clusters, and with the minimum number of a cluster set to 3 and the

maximum number to 7. When the number of clusters is set to 3, 84 potential set-connected

clusterings will be enumerated. When we set the number of clusters to 4, there will be

6897 clusterings. And if the number of clusters is reset to 5 and 6, the number of potential
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set-connected clusterings will be 12012 and 2562, respectively.

As for the dataset 2 plot shown in Figure 2.1, it can be seen clearly that there are 23

units contained in five clusters of a varying size. A trial is also conducted on 3 to 6 number

of clusters using the set-connected algorithm for dataset 2, with the minimum number of a

cluster set to 3. In order to complete the test, the maximum number of a cluster is set to 10

for 3 and 4 clusters and the number is set to 7 for 5 and 6 clusters. There are 481 potential

set-connected clusterings with the cluster number of 3 and 12503 potential set-connected

clusterings with cluster number of 4. And for the number of clusters set to 5 and 6, there

will be 22346 and 39585 set-connected clusterings, respectively.

As for dataset 3, 4, and 5, they are all symmetrical. It is difficult for us to distinguish

between several combinations intuitively. There are 20 points contained in the dataset 3

shown in Figure 2.1. Since dataset 3 is centrosymmetric, it is expected that all points may

be divided into two clusters. Therefore, trial is conducted on 2 to 4 clusters using the set-

connected algorithm, with the minimum number of a cluster set to 4 and the maximum

number set to 12. There are 319 potential set-connected clusterings when the clusters are

set to 2. If the clusters are set to 3 and 4, the potential results will be 4708 and 4324,

respectively.

As for dataset 4, there are 18 points, and the plot is symmetrical on the horizontal axis

shown in Figure 2.1. It is expected to obtain the clustering with two clusters symmetrically

up and down, or divide the clustering with 3 clusters into three parts. Thus, trial is conducted

on 2 to 4 number of clusters on set-connected clustering. The minimum number for each

cluster is set to 4, and the maximum number is set to 10. When the cluster number is set to

2, there are 437 potential set-connected clusterings. If the cluster numbers is set to 3 and 4,

then the potential number of set-connected clusterings will be 4938 and 2763, respectively.

There are 21 points contained in dataset 5. From Figure 2.1, it can be seen clearly that

dataset 5 is vertically symmetrical and distributed across three areas for which it is expected

that clustering will involve 2 or 3 clusters. A trial is conducted on 2 to 4 number of clusters

with set-connected clusterings in the first place. Through previous experiments, however,

it can be found out that there are many measures showing preference for more clusters.

12



Then, 5 clusters setting is added for dataset 5. Moreover, the same is done for k-means and

HAC. The minimum number for each cluster is set to 4, and the maximum number to 14

for number of cluster as 2 and number to 10 for number of cluster as 3 to 5. There are as

few as 8 potential set-connected clusterings when the number of cluster is set as 2, and 45

potential set-connected clusterings with the cluster number set as 3. If the cluster number

is set to 4 and 5, the potential set-connected clusterings will be 104 and 16, respectively.

2.2 Implementation and Results

With regard to dataset 1, the cluster validation measures are applied to test all of these

clusterings, and the clustering is selected by choosing the maximum silhouette value, the

maximum Hubert-gamma value, the maximum R2, the maximum Dunn index and the min-

imum DB index of all set-connected clusterings. We list all results on Table 2.1, Figure 2.2

and Figure 2.3. Since k-means and HAC can define the number of clusters, a trial is con-

ducted on 3 to 5 clusters for each of them and the measures intended for these two method

are taken as comparison. After the result for all set-connected clusterings is compared, the

clustering with 4 clusters is chosen for silhouette, Hubert gamma, Dunn index and Davies-

Bouldin index, while the clustering with 6 clusters is chosen for R2 measure. For the k-means

method, silhouette and Dunn index are applied to obtain the clustering with 4 clusters. Hu-

bert gamma and Davies-Bouldin index are applied to obtain the clustering with 6 clusters,

and R2 shows the clustering involves 5 clusters. For HAC method, silhouette, Dunn index

and Davies-Bouldin index indicate that the clustering involves 4 clusters, and the clustering

with 6 clusters is obtained by Hubert gamma and R2. The clustering obtained by DBSCAN

involves 4 clusters, while the clustering obtained by OPTICS involves 5 clusters. All of the

clusterings with 4 clusters involved produce a reasonable result as expected.

The testing results for dataset 2 are listed in Table 2.2, Figure 2.4 and Figure 2.5. For

the set-connected method, the optimal clustering with 5 clusters is obtained using silhouette

and Dunn index. Hubert gamma, R2 and Davies-Bouldin index are applied to obtain the

clustering with 6 clusters. As for k-means, only silhouette is applied to obtain the clustering

13



Table 2.1: Cluster validation measures results for dataset 1
Clustering method Measures for assessing Values of optimal clusterings

clustering (number of clusters)
Set-connected Clusterings Silhouette 0.620715(4)

Hubert Gamma 4.289470(4)
R-squared 0.993003(6)
Dunn index 1.414214(4)
Davies-Bouldin index 0.800000(4)

K-means Silhouette 0.620715(4)
Hubert Gamma 4.366474(6)
R-squared 0.995777(6)
Dunn index 1.414214(4)
Davies-Bouldin index 0.609096(6)

Hierarchical Silhouette 0.620715(4)
Hubert Gamma 4.366486(6)
R-squared 0.995777(6)
Dunn index 1.414214(4)
Davies-Bouldin index 0.800000(4)

DBSCAN Silhouette 0.620715(4)
Hubert Gamma 4.289470(4)
R-squared 0.992213(4)
Dunn index 1.414214(4)
Davies-Bouldin index 0.800000(4)

OPTICS Silhouette 0.374396(5)
Hubert Gamma 3.852513(5)
R-squared 0.985447(5)
Dunn index 0.395285(5)
Davies-Bouldin index 1.477132(5)

has 5 clusters. Hubert gamma, R2, Dunn index and Davies-Bouldin index indicate that

the clustering involves 6 clusters. For HAC, the clustering with 5 clusters are chosen by

silhouette and Dunn index. Hubert gamma, R2 and Davies-Bouldin index are applied to

obtain the clustering involving 6 clusters. The clustering obtained by DBSCAN contains 5

clusters, while the clustering obtained by OPTICS involves 5 clusters. In addition to the

result obtained by OPTICS, the clustering with 5 clusters produces reasonable result.

As for dataset 3, the final results are shown in Table 2.3, Figure 2.6 and Figure 2.7.

For set-connected clusterings, only silhouette is applied to obtain the result for clustering

that involves 2 clusters. Hubert gamma, R2, Dunn index and Davies-Bouldin index are

14



Table 2.2: Cluster validation measures results for dataset 2
Clustering method Measures for assessing Values of optimal clusterings

clustering (number of clusters)
Set-connected Clusterings Silhouette 0.624640(5)

Hubert Gamma 3.701114(6)
R-squared 0.997546(6)
Dunn index 1.382932(5)
Davies-Bouldin index 0.657519(6)

K-means Silhouette 0.624640(5)
Hubert Gamma 3.669669(6)
R-squared 0.995138(6)
Dunn index 1.044031(6)
Davies-Bouldin index 0.655834(6)

Hierarchical Silhouette 0.624640(5)
Hubert Gamma 3.682135(6)
R-squared 0.996336(6)
Dunn index 1.382932(5)
Davies-Bouldin index 0.656256(6)

DBSCAN Silhouette 0.624640(5)
Hubert Gamma 3.659150(5)
R-squared 0.994573(5)
Dunn index 1.382932(5)
Davies-Bouldin index 0.702293(5)

OPTICS Silhouette 0.547919(5)
Hubert Gamma 3.534014(5)
R-squared 0.983944(5)
Dunn index 0.685763(5)
Davies-Bouldin index 0.852880(5)

applied to obtain the results for clustering that contains 4 clusters. K-means and HAC

has the same situation as set-connected clusterings. Although the clustering have the same

clusters, the clustering for each of them are different. The clustering obtained by DBSCAN

contains 3 clusters, while the clustering obtained by OPTICS involves 3 clusters. All of the

clusterings with 2 clusters produce the results as expected. In addition to the clustering

obtained by DB index using set-connected clusterings method, although the other clustering

with 4 clusters are different, they are all centrosymmetric structures. From this perspective,

these clusterings with 4 clusters are deemed reasonable as well. And the results of DBSCAN

and OPTICS can be ignored basically which is due to plenty of noise shown in the figure.
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Table 2.3: Cluster validation measures results for dataset 3
Clustering method Measures for assessing Values of optimal clusterings

clustering (number of clusters)
Set-connected Clusterings Silhouette 0.528297(2)

Hubert Gamma 3.298002(4)
R-squared 0.983940(4)
Dunn index 0.755511(4)
Davies-Bouldin index 0.963887(4)

K-means Silhouette 0.528297(2)
Hubert Gamma 3.396084(4)
R-squared 0.985566(4)
Dunn index 1.035744(4)
Davies-Bouldin index 0.998422(4)

Hierarchical Silhouette 0.528297(2)
Hubert Gamma 3.330704(4)
R-squared 0.975390(4)
Dunn index 0.751617(4)
Davies-Bouldin index 1.053518(4)

DBSCAN Silhouette -0.037873(3)
Hubert Gamma 1.026219(3)
R-squared 0.558376(3)
Dunn index 0.202949(3)
Davies-Bouldin index 3.263959(3)

OPTICS Silhouette -0.330371(3)
Hubert Gamma 0.452710(3)
R-squared 0.296555(3)
Dunn index 0.202949(3)
Davies-Bouldin index 3.579808(3)

The final results for dataset 4 are listed in Table 2.4, Figure 2.8 and Figure 2.9. As

for set-connected algorithm, the clustering with 2 clusters by silhouette and the clustering

with 3 clusters by Dunn index are chosen. Hubert gamma, R2 and Davies-Bouldin index are

used to screen out the clustering with 4 clusters involved. Through K-means and HAC has

the same situation as set-connected clusterings, the clustering for each of them is different.

The clustering obtained by DBSCAN contains 3 clusters, while the clustering obtained by

OPTICS involves 4 clusters. For the clustering with 2 clusters, set-connected with silhouette

and k-means compound the expected result. And set-connected algorithm by Dunn index,

k-means, HAC and DBSCAN get the expected result for clustering with 3 clusters also. For
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other clusterings obtained, they are shown not to be as reasonable as required.

Table 2.4: Cluster validation measures results for dataset 4
Clustering method Measures for assessing Values of optimal clusterings

clustering (number of clusters)
Set-connected Clusterings Silhouette 0.508489(2)

Hubert Gamma 9.244584(4)
R-squared 0.980601(4)
Dunn index 0.707955(3)
Davies-Bouldin index 1.260339(4)

K-means Silhouette 0.508489(2)
Hubert Gamma 9.466156(4)
R-squared 0.973296(4)
Dunn index 0.707955(3)
Davies-Bouldin index 1.329216(4)

Hierarchical Silhouette 0.510266(2)
Hubert Gamma 9.466156(4)
R-squared 0.973296(4)
Dunn index 0.707955(3)
Davies-Bouldin index 1.329216(4)

DBSCAN Silhouette 0.436226(3)
Hubert Gamma 9.068886(3)
R-squared 0.955676(3)
Dunn index 0.707955(3)
Davies-Bouldin index 1.375237(3)

OPTICS Silhouette 0.278079(4)
Hubert Gamma 7.308639(4)
R-squared 0.930078(4)
Dunn index 0.359410(4)
Davies-Bouldin index 3.958782(4)

The final results for dataset 5 are listed in Table 2.5, Figure 2.10 and Figure 2.11. As

for set-connected clusterings, the clustering with 3 clusters is chosen by silhouette, and

the clustering with 4 clusters is chosen by Hubert gamma. Besides, the clustering with 5

clusters is chosen by R2, Dunn index and Davies-Bouldin index. For k-means, silhouette

demonstrates that the optimal clustering contains 3 clusters, and other measures show that

the optimal clustering involves 5 clusters. For HAC, the clustering with 3 clusters also shows

the highest silhouette values, which is however different from the clustering obtained by set-

connected and k-means. The clustering with 4 clusters is chosen for Dunn index, with other
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measures showing that the optimal clustering contains 5 clusters. The clustering obtained by

DBSCAN involves 3 clusters, while the clustering obtained by OPTICS contains 3 clusters.

For the clustering with 3 clusters, set-connected with silhouette and k-means compound

the expected result. The clustering obtained by DBSCAN is also reasonable, despite some

difference.

Table 2.5: Cluster validation measures results for dataset 5
Clustering method Measures for assessing Values of optimal clusterings

clustering (number of clusters)
Set-connected Clusterings Silhouette 0.506199(3)

Hubert Gamma 9.696242(4)
R-squared 0.983315(5)
Dunn index 0.614636(5)
Davies-Bouldin index 1.215449(5)

K-means Silhouette 0.506199(3)
Hubert Gamma 9.902522(5)
R-squared 0.974304(5)
Dunn index 0.620484(5)
Davies-Bouldin index 1.118323(5)

Hierarchical Silhouette 0.500292(3)
Hubert Gamma 9.884463(5)
R-squared 0.972620(5)
Dunn index 0.583095(4)
Davies-Bouldin index 1.174966(5)

DBSCAN Silhouette 0.383481(3)
Hubert Gamma 8.468460(3)
R-squared 0.922672(3)
Dunn index 0.406885(3)
Davies-Bouldin index 2.024551(3)

OPTICS Silhouette 0.365489(3)
Hubert Gamma 8.483592(3)
R-squared 0.920787(3)
Dunn index 0.339935(3)
Davies-Bouldin index 2.043995(3)
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2.3 Discussion

After the comparison between our set-connected methods and those traditional methods,

the viability of set-connected method was confirmed in first place. Then, some reasonable

results were obtained as expected, and some of the results looking odd. Nevertheless, some

new discoveries were made.

The first one is that silhouette is the most effective measures identified in our study.

The silhouette is most likely to provide the most reasonable clustering as we expected for all

datasets for most of the clustering methods, especially the set-connected method. Besides, it

is effective in capturing the clustering with ”non-compact” clusters. Secondly, other validity

measures show preference for the clustering with more clusters in most part, and R2 even

showed this feature in dataset 1. It is also the case for datasets 2, 3 and 4, for which one

more clusters was added for data 5. These results also confirmed this argument, as R2, Dunn

index and Davies-Bouldin index pick the clustering which has the highest cluster number.

Among the tradition clustering methods, the DBSCAN method is also excellent in picking

up ”non-compact” clusters. The DBSCAN method identifies the reasonable clustering well

except dataset 3. Due to the inability to set the number of clusters for DBSCAN, some set

of exact clustering can be obtained directly on a frequent basis. After the clustering with

noise is excluded, the cluster number of clustering picked by DBSCAN can be taken as a

reference for our method. For k-means and HAC, the expected clustering can be obtained

when the correct cluster numbers are set in most of the situations. It is possible for them to

generate some clusterings with only 1 or 2 units involved in a cluster when too many clusters

are chosen. This will affect the evaluation of the measures for their validity to some extent.

But for validity measures for k-means in dataset 3, they show more reasonable values on

clustering with 4 clusters, which is because the size of each cluster is different from that in

our method. Therefore, the measures for k-means can provide some guidance on the size

of cluster for our set-connected algorithm. This is because OPTICS failed to produce a

satisfactory result, a result of which the cluster number of the clustering can be taken as

reference after the removal of noises from OPTICS results.
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Figure 2.1: Plots of all datasets.
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Figure 2.2: Results of clustering methods for dataset 1. We connect all units in the same
clusters by using the same color. The content in parentheses behind the number in parenthesis
indicates the number of clusters.
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Figure 2.3: The result of five validation measures given 4 clusters on dataset 1.
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Figure 2.4: Results for dataset 2. We connect all units in the same clusters by using the
same color. The number in parenthesis indicates the number of clusters.
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Figure 2.5: The result of five validation measures given 5 clusters on dataset 2.
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Figure 2.6: Results for dataset 3. We connect all units in the same clusters by using
the same color. Since the connections of DBSCAN and OPTICS are very chaotic, then we
use different colors and different shapes to represent clusters. The number in parenthesis
indicates the number of clusters.
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Figure 2.7: The result of five validation measures given 2 clusters on dataset 3.
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Figure 2.8: These are results for dataset 4. We connect all units in the same clusters by
using the same color. The number in parenthesis indicates the number of clusters.
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Figure 2.9: The result of five validation measures given 3 clusters on dataset 4.
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Figure 2.10: These are results for dataset 5. We connect all units in the same clusters by
using the same color. The number in parenthesis indicates the number of clusters.
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Figure 2.11: The result of five validation measures given 3 clusters on dataset 5.
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Chapter 3

Conclusion

3.1 Conclusion

In this study, we discussed the preferences of 5 popular cluster validation measures and the

viability of applying them to identify the ”correct” clustering among all potential clusterings.

First of all, clustering verification measures were taken to test all potential clustering that

can identify the ”correct” clustering. We find each measure has its own preferences. The sil-

houette measure seems to be most effective in capturing connected regions. The Dunn index

performs well for the data with relatively obvious known cluster numbers. The other three

measures, including-Hubert-Gamma, R-squared, and Davies-Bouldin index, prefer cluster-

ings that contain a large number of clusters.

3.2 Future Study

In small dataset experiments, our method can be used to evaluate the optimal clustering.

Faced with relatively complex data, our method can also give a variety of possible clusterings

which selected by the cluster validation measures. According to different data types and

requirements of experimental, measures can be added or changed to improve the method.

In the process of obtaining the set-connected clusterings, some datasets may be unlikely
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to connect units by connecting the maximum distance of the minimum distance between all

units, which will make us unable to enumerate set-connected clustering. We may aim to

automate the procedure to obtain all set-connected clusterings.

Finally, this type of method may be useful in the design of experiments and observational

studies. For example, given a measure that assesses the projected power of an experiment,

the procedure uncovering optimal configuration of experimental blocks.
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Appendix A

R-Code

#rm(list = ls())

source("countPartitionsRWrapper.R")

#library("fpc")

library(dbscan)

########## data set #######################

smallstar = function(center, radius){

x1 = center[1]

x2 = center[2]

r = radius

matrix(c(x1 + r, x2,

x1 - r, x2,

x1, x2 + r,

x1, x2 - r,
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x1, x2), ncol = 2, byrow = TRUE)

}

smallsquare = function(center, radius){

x1 = center[1]

x2 = center[2]

r = radius

matrix(c(x1 + r, x2 + r,

x1 - r, x2 + r,

x1 + r, x2 - r,

x1 - r, x2 - r),

ncol = 2, byrow = TRUE)

}

smalltriangle = function(center, radius){

x1 = center[1]

x2 = center[2]

r = radius

matrix(c(x1 + .75*r, x2,

x1 - .75*r, x2,

x1, x2 + r),

ncol = 2, byrow = TRUE)

}

smallhex = function(center, radius){

x1 = center[1]

x2 = center[2]

37



r = radius

matrix(c(x1 + r, x2 + 1.5*r,

x1 + r, x2 - 1.5*r,

x1 - r, x2 + 1.5*r,

x1 - r, x2 - 1.5*r,

x1 + 2.5*r, x2,

x1 - 2.5*r, x2),

ncol = 2, byrow = TRUE)

}

smallarc = function(center, radius, parity = 1){

x1 = center[1]

x2 = center[2]

r = radius

ret = matrix(c(x1, x2,

x1 - .5*r, x2 - .25*r,

x1 + .5*r, x2 - .25*r,

x1 - r, x2 - .75*r,

x1 + 1*r, x2 - .75*r,

x1 - 1.25*r, x2 - 1.5*r,

x1 + 1.25*r, x2 - 1.5*r),

ncol = 2, byrow = TRUE)

ret = ret*parity

}
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smalltail = function(start,radius,parity = 1, flip = 1){

x1 = start[1]

x2 = start[2]

r = radius

ret = matrix(c(x1, x2,

x1 +.5*r, x2 - .25*r,

x1 + r, x2 - .45*r,

x1 + 1.5*r, x2 - .35*r,

x1 + 1.5*r, x2 - .55*r,

x1 + 2*r, x2 - .35*r,

x1 + 2*r, x2 - .55*r,

x1 + 2.5*r, x2 - .5*r,

x1 + 3*r, x2 - .35*r,

x1 + 3.5*r, x2 - .25*r),

ncol = 2, byrow = TRUE)

ret[,1] = ret[,1]*flip

ret*parity

}

g1 = rbind(

smallstar(c(1,1),.5),

smallstar(c(-1,1),.5),

smallstar(c(1,-1),.5),

smallstar(c(-1,-1),.5)

)
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g2 = rbind(

smallsquare(c(1,1),.3),

smallstar(c(-1,1),.4),

smallstar(c(1,-1),.3),

smallhex(c(-1,-1),.2),

smalltriangle(c(0,0),.2)

)

g3 = rbind(smalltail(c(-1,1), 1),

smalltail(c(-1,-1), 1, parity = -1))

g4 = rbind(smallsquare(c(0,0), radius = .35),

smallarc(c(0,3),1),

smallarc(c(0,3),1,parity = -1))

g5 = rbind(smallarc(c(0,2),1.5,parity = -1),

smallarc(c(-2,2),1),

smallarc(c(2,2),1))

########## functions ############################

distance <- function(x,y){

a = sqrt((x[1]-y[1])^2+(x[2]-y[2])^2)

as.numeric(a)

}

#sihouette function
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silh <- function(st,np){

npl = nrow(np)

xx = rep(0,npl)

np = cbind(np,xx)

nst = length(unique(st))

np[,3] = st

np = np[order(np[,3]),]

newnp = NULL

renp = np

cnum = rep(0,nst)

for (i in 1:nst) {

cnum[i] = sum(st==i)

pp = 1:cnum[i]

newnp[[i]] = renp[pp,]

renp = renp[-pp,]

}

aa = np[,1:2]

dm <- as.matrix(dist(aa))

nr <- nrow(dm)

diag(dm) = NA

dm <- t(matrix(t(dm)[which(!is.na(dm))],nrow = (nr-1),ncol = nr))

s =NULL

for (j in 1:npl) {

nc <- np[j,3]

newcnum = cnum

41



newcnum[nc] = newcnum[nc] - 1

ds = dm[j,]

zz = NULL

for (k in 1:nst) {

nn = newcnum[k]

nnn = 1:nn

zz[[k]] = ds[nnn]

ds = ds[-nnn]

}

zz <- lapply(zz, mean)

a = zz[[nc]]

zz[[nc]] = NULL

b = min(unlist(zz))

s[[j]] = (b-a)/max(a,b)

}

sa = mean(unlist(s))

}

#R-square function

rsf <- function(st,np){

npl = nrow(np)

xx = rep(0,npl)

np = cbind(np,xx)

nst = length(unique(st))

np[,3] = st

np = np[order(np[,3]),]

newnp = NULL
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renp = np

cnum = rep(0,nst)

for (i in 1:nst) {

cnum[i] = sum(st==i)

pp = 1:cnum[i]

newnp[[i]] = renp[pp,]

renp = renp[-pp,]

}

aa = np[,1:2]

dm <- as.matrix(dist(aa))

nr <- nrow(dm)

nr <- nrow(dm)

diag(dm) = NA

dm <- t(matrix(t(dm)[which(!is.na(dm))],nrow = (nr-1),ncol = nr))

meanxk <- apply(dm,1,mean)

mxkm <- matrix(meanxk,nrow = length(meanxk),

ncol = length(meanxk)-1,byrow = FALSE)

tt <- (dm-mxkm)^2

sst <- sum(tt)

wdm = dm

w = rep(0,nst)

for (k in 1:nst) {

nc = cnum[k]

if(nc > 2){

nc1 = nc - 1

calm <- wdm[1:nc,1:nc1]

43



meanxk2 <- apply(calm, 1, mean)

mxkm2 <- matrix(meanxk2,nrow = length(meanxk2),

ncol = length(meanxk2)-1,byrow = FALSE)

ww <- (calm - mxkm2)^2

w[k] = sum(ww)

}else{

w[k] = 0

}

if(k==nst){

}else{

wdm = wdm[-(1:nc),-(1:nc)]

}

}

ssw <- sum(w)

rs = (sst-ssw)/sst

rs

}

#Hubert Gamma statistic

hubertgamma <- function(st,np){

p <- cp(np)

q <- cq(st,np)

n = nrow(np)
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m = n*(n-1)/2

hgamma = (1/(2*m))*sum(p*t(q))

hgamma

}

#Create P

cp <- function(np){

point <- np[,1:2]

p <- as.matrix(dist(point))

p

}

#Create Q

cq <- function(st,np){

npl = nrow(np)

xx = rep(0,npl)

np = cbind(np,xx)

nst = length(unique(st))

np[,3] = st

np = np[order(np[,3]),]

newnp = NULL

renp = np

cnum = rep(0,nst)

cpoint = NULL
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for (i in 1:nst) {

cnum[i] = sum(st==i)

pp = 1:cnum[i]

newnp[[i]] = renp[pp,]

renp = renp[-pp,]

if(cnum[i] > 1){

cpoint[[i]] = apply(newnp[[i]], 2, mean)

}else{

cpoint[[i]] = newnp[[i]]

}

}

q <- matrix(rep(0,npl),npl,3)

for (x in 1:npl) {

q[x,] = cpoint[[st[x]]]

}

q <- q[,1:2]

q <- as.matrix(dist(q))

q

}

#Dunn index

dn <- function(st,np){

npl = nrow(np)

xx = rep(0,npl)

np = cbind(np,xx)
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nst = length(unique(st))

np[,3] = st

np = np[order(np[,3]),]

newnp = NULL

renp = np

cnum = rep(0,nst)

for (i in 1:nst) {

cnum[i] = sum(st==i)

pp = 1:cnum[i]

newnp[[i]] = renp[pp,]

renp = renp[-pp,]

}

diamall <- rep(0,nst)

for (j in 1:nst) {

diamall[j] = max(dist(newnp[[j]]))

}

diam = max(diamall)

dall <- rep(0,nst-1)

aaa <- as.matrix(dist(np))

nst1 = nst - 1

for (k in 1:nst1) {

c = sum(st==k)

cc = 1:c

dall[k] = min(aaa[cc,-cc])

aaa <- aaa[-cc,-cc]
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}

d = min(dall)

dnc = d/diam

dnc

}

#Davies-Bouldin index

DBindex <- function(st,np){

npl = nrow(np)

xx = rep(0,npl)

np = cbind(np,xx)

nst = length(unique(st))

np[,3] = st

np = np[order(np[,3]),]

newnp = NULL

renp = np

cnum = rep(0,nst)

A <- NULL

for (i in 1:nst) {

cnum[i] = sum(st==i)

pp = 1:cnum[i]

newnp[[i]] = renp[pp,]

renp = renp[-pp,]

if(cnum[i]>1){
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A[[i]] = apply(newnp[[i]], 2, mean)

}else{

A[[i]] = newnp[[i]]

}

}

A = matrix(unlist(A),nrow = nst, byrow = TRUE)

M = as.matrix(dist(A))

s <- rep(0,nst)

for (j in 1:nst) {

newa <- rbind(A[j,],newnp[[j]])

newa = newa[,1:2]

t = cnum[j]

s[j] = sum(dist(newa)[1:t])*sqrt(1/t)

}

d = rep(0,nst)

for (k in 1:nst) {

r = (s[k]+s)/M[k,]

r = r[-k]

d[k] = max(r)

}

DB = 1/nst*sum(d)

DB

}
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# Print function for Clustering

# print out different clusters separately and connect the dots

# in the clusters.

connectplot <- function(data,cl,name){

plot(data[,1],data[,2], main = name, xlab = "",ylab = "",cex.main=1.5)

cl = unlist(cl)

ncl = length(unique(cl))

npl = nrow(data)

xx = rep(0,npl)

data = cbind(data,xx)

data[,3] = cl

data = data[order(data[,3]),]

if(data[1,3]==0){

data[,3] = data[,3] + 1

cl = cl + 1

}

newdata = NULL

redata = data

cnum = rep(0,ncl)

for (i in 1:ncl) {

cnum[i] = sum(cl==i)

pp = 1:cnum[i]

newdata[[i]] = redata[pp,]

redata = redata[-pp,]

}
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for (a in 1:ncl) {

if(cnum[a]==1){

mp = newdata[[a]]

}else{

mp = newdata[[a]]

nm = nrow(mp)

for (b in 1:nm) {

for (c in 1:nm) {

segments(mp[b,1],mp[b,2],mp[c,1],mp[c,2],col = a)

}

}

}

}

}

# Plot function(2), use only when the image is

# too cluttered for DBSCAN and OPTICS

doplot <- function(data,cl,name){

plot(data[,1],data[,2], main = name, xlab = "",ylab = "",cex.main=1.5)

cl = unlist(cl)

ncl = length(unique(cl))

npl = nrow(data)
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xx = rep(0,npl)

data = cbind(data,xx)

data[,3] = cl

data = data[order(data[,3]),]

if(data[1,3]==0){

data[,3] = data[,3] + 1

cl = cl + 1

}

newdata = NULL

redata = data

cnum = rep(0,ncl)

for (i in 1:ncl) {

cnum[i] = sum(cl==i)

pp = 1:cnum[i]

newdata[[i]] = redata[pp,]

redata = redata[-pp,]

}

for (a in 1:ncl) {

mp = newdata[[a]]

points(mp[,1],mp[,2],pch = (15+a),col=a,cex=1.5)

}

}
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######################### Main part ############################

######################################################

#

# Step 1 : Find the threshold for bottleneck subgraph a dataset.

# Step 2 : Using the threshold to create the bottleneck subgraph.

# Step 3 : Enumerating All Set-connected Clusterings by using set-connected

# algorithm(generatePartitions) with different numbers of clusters.

# Step 4 : Using 5 clustering validation measures|Silhouette, Hubert-Gamma,

# R-squared, the Dunn index, and the data Davies-Bouldin index|on

# all Set-connected Clusterings to evaluate the score.

# Step 5 : Find the "Optimal" clustering for each clustering

# validation measures.

# Step 6 : Using 4 traditional clustering method-K-means, HAC, DBSCAN,

# OPTICS-to create clustering and use 5 clustering validation

# measures evaluate the score.

# Step 7 : Find the "Optimal" clustering for each clustering validation

# measures from traditional clusterings.

# Step 8 : Plot the "Optimal" clustering by Set-connected algorithm

# and all best clusterings selected by 5 clustering validation

# measures for Set-connected Clusterings.

# Step 9 : Plot the "Optimal" number of clusterings for which clusterings

# selected by clustering validation measures are different

# from the "Optimal" one.

# Step 10: Plot all clusterings selected by 5 clustering validation

# measures of traditional clustering method.
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#

#####################################################

# For data set 1

plot(g1[,1],g1[,2])

# Find the threshold for bottleneck subgraph for data set 1,

# to make sure all point can connect within the same group.

dis1 <- as.matrix(dist(g1))

diag(dis1) <- Inf

dis11 <- apply(dis1, 1, sort, decreasing=F)

d14 <- min(dis11[5,])

adjlist = NULL

num = nrow(g1)

for (i in 1:num) {

ntivec = NULL

for (j in 1:num) {

dd = distance(g1[i,],g1[j,])

dd

if(dd!=0){

if(dd<=d14){

segments(g1[i,1],g1[i,2],g1[j,1],g1[j,2])
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ntivec = c(ntivec , j)

}

}else{}

}

adjlist[[i]]= ntivec

}

# set-connected algorithm to enumerating All Set-connected Clusterings,

# define the size from 3-7 for each cluster,

# and set the number from 3-4.

st13 = generatePartitions(adjlist,numBlocks = 3,

numConstraintLow = 3, numConstraintHigh = 7)

st14 = generatePartitions(adjlist,numBlocks = 4,

numConstraintLow = 3, numConstraintHigh = 7)

st15 = generatePartitions(adjlist,numBlocks = 5,

numConstraintLow = 3, numConstraintHigh = 7)

st16 = generatePartitions(adjlist,numBlocks = 6,

numConstraintLow = 3, numConstraintHigh = 7)

# data 1 cluster 3

# evaluate all set-connected clustering by using

# 5 clustering validation measures

n13 = length(st13)

ss13 = rep(0,n13)

hb13 = rep(0,n13)

rq13 = rep(0,n13)

df13 = rep(0,n13)

db13 = rep(0,n13)
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for (i in 1:n13) {

stt = st13[[i]]

ss13[i] = silh(stt,g1)

hb13[i] = hubertgamma(stt,g1)

rq13[i] = rsf(stt,g1)

df13[i] = dn(stt,g1)

db13[i] = DBindex(stt,g1)

}

mssc13 = which.max(ss13)#2

mhbc13 = which.max(hb13)#2

mrqc13 = which.max(rq13)#2

mdfc13 = which.max(df13)#2

mdbc13 = which.min(db13)#45

# data 1 cluster 4

n14 = length(st14)

ss14 = rep(0,n14)

hb14 = rep(0,n14)

rq14 = rep(0,n14)

df14 = rep(0,n14)

db14 = rep(0,n14)

for (i in 1:n14) {

stt = st14[[i]]

ss14[i] = silh(stt,g1)

hb14[i] = hubertgamma(stt,g1)
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rq14[i] = rsf(stt,g1)

df14[i] = dn(stt,g1)

db14[i] = DBindex(stt,g1)

}

mssc14 = which.max(ss14)#1757

mhbc14 = which.max(hb14)#1757

mrqc14 = which.max(rq14)#1757

mdfc14 = which.max(df14)#1757

mdbc14 = which.min(db14)#1757

# data 1 cluster 5

n15 = length(st15)

ss15 = rep(0,n15)

hb15 = rep(0,n15)

rq15 = rep(0,n15)

df15 = rep(0,n15)

db15 = rep(0,n15)

for (i in 1:n15) {

stt = st15[[i]]

ss15[i] = silh(stt,g1)

hb15[i] = hubertgamma(stt,g1)

rq15[i] = rsf(stt,g1)

df15[i] = dn(stt,g1)

db15[i] = DBindex(stt,g1)

}
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mssc15 = which.max(ss15)#1170

mhbc15 = which.max(hb15)#1170

mrqc15 = which.max(rq15)#1170

mdfc15 = which.max(df15)#39

mdbc15 = which.min(db15)#4840

# data 1 cluster 6

n16 = length(st16)

ss16 = rep(0,n16)

hb16 = rep(0,n16)

rq16 = rep(0,n16)

df16 = rep(0,n16)

db16 = rep(0,n16)

for (i in 1:n16) {

stt = st16[[i]]

ss16[i] = silh(stt,g1)

hb16[i] = hubertgamma(stt,g1)

rq16[i] = rsf(stt,g1)

df16[i] = dn(stt,g1)

db16[i] = DBindex(stt,g1)

}

mssc16 = which.max(ss16)#688

mhbc16 = which.max(hb16)#688

mrqc16 = which.max(rq16)#688
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mdfc16 = which.max(df16)#2

mdbc16 = which.min(db16)#900

# List all "optimal" scores for each number of clusters,

# and then compare all these scores to find which clustering

# has the optimal score in its own measure.

vs13 = max(ss13)

vs14 = max(ss14)

vs15 = max(ss15)

vs16 = max(ss16)

vs1 = c(vs13,vs14,vs15,vs16)

max(vs1)

which.max(vs1)

vh13 = max(hb13)

vh14 = max(hb14)

vh15 = max(hb15)

vh16 = max(hb16)

vh1 = c(vh13,vh14,vh15,vh16)

max(vh1)

which.max(vh1)

vr13 = max(rq13)

vr14 = max(rq14)

vr15 = max(rq15)
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vr16 = max(rq16)

vr1 = c(vr13,vr14,vr15,vr16)

max(vr1)

which.max(vr1)

vf13 = max(df13)

vf14 = max(df14)

vf15 = max(df15)

vf16 = max(df16)

vf1 = c(vf13,vf14,vf15,vf16)

max(vf1)

which.max(vf1)

vb13 = min(db13)

vb14 = min(db14)

vb15 = min(db15)

vb16 = min(db16)

vb1 = c(vb13,vb14,vb15,vb16)

min(vb1)

which.min(vb1)

# K-means also try 3-4 clusters and evaluate all clusterings

# by 5 clustering validation measures.

# And compare the scores with optimal set-connected clusterings.

km13 <- kmeans(g1,3)$cluster
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km14 <- kmeans(g1,4)$cluster

km15 <- kmeans(g1,5)$cluster

km16 <- kmeans(g1,6)$cluster

ss13k = silh(km13,g1)

hb13k = hubertgamma(km13,g1)

rq13k = rsf(km13,g1)

df13k = dn(km13,g1)

db13k = DBindex(km13,g1)

ss14k = silh(km14,g1)

hb14k = hubertgamma(km14,g1)

rq14k = rsf(km14,g1)

df14k = dn(km14,g1)

db14k = DBindex(km14,g1)

ss15k = silh(km15,g1)

hb15k = hubertgamma(km15,g1)

rq15k = rsf(km15,g1)

df15k = dn(km15,g1)

db15k = DBindex(km15,g1)

ss16k = silh(km16,g1)

hb16k = hubertgamma(km16,g1)

rq16k = rsf(km16,g1)

df16k = dn(km16,g1)

db16k = DBindex(km16,g1)

vs1k = c(ss13k,ss14k,ss15k,ss16k)

61



max(vs1k)

which.max(vs1k)

vh1k = c(hb13k,hb14k,hb15k,hb16k)

max(vh1k)

which.max(vh1k)

vr1k = c(rq13k,rq14k,rq15k,rq16k)

max(vr1k)

which.max(vr1k)

vf1k = c(df13k,df14k,df15k,df16k)

max(vf1k)

which.max(vf1k)

vd1k = c(db13k,db14k,db15k,db16k)

min(vd1k)

which.min(vd1k)

# HAC also try 3-4 clusters and evaluate all clusterings

# by 5 clustering validation measures.

# And compare the scores with optimal set-connected clusterings.

hc1 <- hclust(d=dist(g1))

hc13 <- cutree(hc1, 3)

hc14 <- cutree(hc1, 4)

hc15 <- cutree(hc1, 5)

hc16 <- cutree(hc1, 6)

ss13h = silh(hc13,g1)
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hb13h = hubertgamma(hc13,g1)

rq13h = rsf(hc13,g1)

df13h = dn(hc13,g1)

db13h = DBindex(hc13,g1)

ss14h = silh(hc14,g1)

hb14h = hubertgamma(hc14,g1)

rq14h = rsf(hc14,g1)

df14h = dn(hc14,g1)

db14h = DBindex(hc14,g1)

ss15h = silh(hc15,g1)

hb15h = hubertgamma(hc15,g1)

rq15h = rsf(hc15,g1)

df15h = dn(hc15,g1)

db15h = DBindex(hc15,g1)

ss16h = silh(hc16,g1)

hb16h = hubertgamma(hc16,g1)

rq16h = rsf(hc16,g1)

df16h = dn(hc16,g1)

db16h = DBindex(hc16,g1)

vs1h = c(ss13h,ss14h,ss15h,ss16h)

max(vs1h)

which.max(vs1h)

vh1h = c(hb13h,hb14h,hb15h,hb16h)

max(vh1h)
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which.max(vh1h)

vr1h = c(rq13h,rq14h,rq15h,rq16h)

max(vr1h)

which.max(vr1h)

vf1h = c(df13h,df14h,df15h,df16h)

max(vf1h)

which.max(vf1h)

vd1h = c(db13h,db14h,db15h,db16h)

min(vd1h)

which.min(vd1h)

# DBSCAN

db1 <- dbscan(g1,eps=0.5,MinPts = 3)$cluster

ss1d = silh(db1,g1)#0.6207152

hb1d = hubertgamma(db1,g1)#4.28947

rq1d = rsf(db1,g1)#0.9922129

df1d = dn(db1,g1)#1.414214

db1d = DBindex(db1,g1)#0.8

# OPTICS

op10 <- optics(g1,eps = 3,minPts = 3)

op1 <- extractDBSCAN(op10,eps_cl = 0.5)$cluster

op1 = op1 + 1

ss1o = silh(op1,g1)#0.3743962

hb1o = hubertgamma(op1,g1)#3.852513

rq1o = rsf(op1,g1)#0.9854472
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df1o = dn(op1,g1)#0.3952847

db1o = DBindex(op1,g1)#1.477132

# Plot all datasets

pdf("data.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

plot(g1[,1],g1[,2],main = "Data 1",xlab = "",ylab = "",

pch = 19,cex = 1.5,cex.main=2)

plot(g2[,1],g2[,2],main = "Data 2",xlab = "",ylab = "",

pch = 19,cex = 1.5,cex.main=2)

plot(g3[,1],g3[,2],main = "Data 3",xlab = "",ylab = "",

pch = 19,cex = 1.5,cex.main=2)

plot(g4[,1],g4[,2],main = "Data 4",xlab = "",ylab = "",

pch = 19,cex = 1.5,cex.main=2)

plot(g5[,1],g5[,2],main = "Data 5",xlab = "",ylab = "",

pch = 19,cex = 1.5,cex.main=2)

dev.off()

# Plot dataset1

pdf("data1result.pdf",width = 12, height = 16,colormodel=’cmyk’)

par(mfrow=c(4,3))

connectplot(g1,st14[mssc14],"Result by Silhouette(4)")

connectplot(g1,st14[mhbc14],"Result by Hubert gamma(4)")
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connectplot(g1,st16[mrqc16],"Result by R-square(6)")

connectplot(g1,st14[mdfc14],"Result by Dunn index(4)")

connectplot(g1,st14[mdbc14],"Result by DB index(4)")

connectplot(g1,km14,"Result by Kmeans(4)")

connectplot(g1,km16,"Result by Kmeans(6)")

connectplot(g1,hc14,"Result by Hierarchical(4)")

connectplot(g1,hc16,"Result by Hierarchical(6)")

connectplot(g1,db1,"Result by DBSCAN(4)")

connectplot(g1,op1,"Result by OPTICS(5)")

dev.off()

pdf("data1right.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

connectplot(g1,st14[mssc14],"Result by Silhouette with 4 clusters")

connectplot(g1,st14[mhbc14],"Result by Hubert gamma with 4 clusters")

connectplot(g1,st14[mrqc14],"Result by R-square with 4 clusters")

connectplot(g1,st14[mdfc14],"Result by Dunn index with 4 clusters")

connectplot(g1,st14[mdbc14],"Result by DB index with 4 clusters")

dev.off()
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# For data set 2

plot(g2[,1],g2[,2])

dis2 <- as.matrix(dist(g2))

diag(dis2) <- Inf

dis21 <- apply(dis2, 1, sort, decreasing=F)

d2 <- min(dis21[7,])

adjlist2 = NULL

num2 = nrow(g2)

for (i in 1:num2) {

ntivec = NULL

for (j in 1:num2) {

dd = distance(g2[i,],g2[j,])

dd

if(dd!=0){

if(dd<=d2){

segments(g2[i,1],g2[i,2],g2[j,1],g2[j,2])

ntivec = c(ntivec , j)

}

}else{}

}

adjlist2[[i]]= ntivec

}
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st23 = generatePartitions(adjlist2,numBlocks = 3,

numConstraintLow = 3, numConstraintHigh = 10)

st24 = generatePartitions(adjlist2,numBlocks = 4,

numConstraintLow = 3, numConstraintHigh = 10)

st25 = generatePartitions(adjlist2,numBlocks = 5,

numConstraintLow = 3, numConstraintHigh = 7)

st26 = generatePartitions(adjlist2,numBlocks = 6,

numConstraintLow = 3, numConstraintHigh = 7)

# data 2 cluster 3

n23 = length(st23)

ss23 = rep(0,n23)

hb23 = rep(0,n23)

rq23 = rep(0,n23)

df23 = rep(0,n23)

db23 = rep(0,n23)

for (i in 1:n23) {

stt = st23[[i]]

ss23[i] = silh(stt,g2)

hb23[i] = hubertgamma(stt,g2)

rq23[i] = rsf(stt,g2)

df23[i] = dn(stt,g2)

db23[i] = DBindex(stt,g2)

}

mssc23 = which.max(ss23)#252
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mhbc23 = which.max(hb23)#252

mrqc23 = which.max(rq23)#105

mdfc23 = which.max(df23)#451

mdbc23 = which.min(db23)#451

# data 2 cluster 4

n24 = length(st24)

ss24 = rep(0,n24)

hb24 = rep(0,n24)

rq24 = rep(0,n24)

df24 = rep(0,n24)

db24 = rep(0,n24)

for (i in 1:n24) {

stt = st24[[i]]

ss24[i] = silh(stt,g2)

hb24[i] = hubertgamma(stt,g2)

rq24[i] = rsf(stt,g2)

df24[i] = dn(stt,g2)

db24[i] = DBindex(stt,g2)

}

mssc24 = which.max(ss24)#2594

mhbc24 = which.max(hb24)#2594

mrqc24 = which.max(rq24)#2071

mdfc24 = which.max(df24)#2070

mdbc24 = which.min(db24)#2070
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# data 2 cluster 5

n25 = length(st25)

ss25 = rep(0,n25)

hb25 = rep(0,n25)

rq25 = rep(0,n25)

df25 = rep(0,n25)

db25 = rep(0,n25)

for (i in 1:n25) {

stt = st25[[i]]

ss25[i] = silh(stt,g2)

hb25[i] = hubertgamma(stt,g2)

rq25[i] = rsf(stt,g2)

df25[i] = dn(stt,g2)

db25[i] = DBindex(stt,g2)

}

mssc25 = which.max(ss25)#7812

mhbc25 = which.max(hb25)#7812

mrqc25 = which.max(rq25)#7812

mdfc25 = which.max(df25)#7812

mdbc25 = which.min(db25)#7812

# data 2 cluster 6

n26 = length(st26)

ss26 = rep(0,n26)
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hb26 = rep(0,n26)

rq26 = rep(0,n26)

df26 = rep(0,n26)

db26 = rep(0,n26)

for (i in 1:n26) {

stt = st26[[i]]

ss26[i] = silh(stt,g2)

hb26[i] = hubertgamma(stt,g2)

rq26[i] = rsf(stt,g2)

df26[i] = dn(stt,g2)

db26[i] = DBindex(stt,g2)

}

mssc26 = which.max(ss26)#27024

mhbc26 = which.max(hb26)#27024

mrqc26 = which.max(rq26)#27025

mdfc26 = which.max(df26)#27027

mdbc26 = which.min(db26)#27024

# Find the best score for each measure.

vs23 = max(ss23)

vs24 = max(ss24)

vs25 = max(ss25)

vs26 = max(ss26)

vs2 = c(vs23,vs24,vs25,vs26)

max(vs2)
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which.max(vs2)

vh23 = max(hb23)

vh24 = max(hb24)

vh25 = max(hb25)

vh26 = max(hb26)

vh2 = c(vh23,vh24,vh25,vh26)

max(vh2)

which.max(vh2)

vr23 = max(rq23)

vr24 = max(rq24)

vr25 = max(rq25)

vr26 = max(rq26)

vr2 = c(vr23,vr24,vr25,vr26)

max(vr2)

which.max(vr2)

vf23 = max(df23)

vf24 = max(df24)

vf25 = max(df25)

vf26 = max(df26)

vf2 = c(vf23,vf24,vf25,vf26)

max(vf2)

which.max(vf2)
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vb23 = min(db23)

vb24 = min(db24)

vb25 = min(db25)

vb26 = min(db26)

vb2 = c(vb23,vb24,vb25,vb26)

min(vb2)

which.min(vb2)

# K-means

km23 <- kmeans(g2,3)$cluster

km24 <- kmeans(g2,4)$cluster

km25 <- kmeans(g2,5)$cluster

km26 <- kmeans(g2,6)$cluster

ss23k = silh(km23,g2)

hb23k = hubertgamma(km23,g2)

rq23k = rsf(km23,g2)

df23k = dn(km23,g2)

db23k = DBindex(km23,g2)

ss24k = silh(km24,g2)

hb24k = hubertgamma(km24,g2)

rq24k = rsf(km24,g2)

df24k = dn(km24,g2)

db24k = DBindex(km24,g2)

ss25k = silh(km25,g2)

hb25k = hubertgamma(km25,g2)
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rq25k = rsf(km25,g2)

df25k = dn(km25,g2)

db25k = DBindex(km25,g2)

ss26k = silh(km26,g2)

hb26k = hubertgamma(km26,g2)

rq26k = rsf(km26,g2)

df26k = dn(km26,g2)

db26k = DBindex(km26,g2)

vs2k = c(ss23k,ss24k,ss25k,ss26k)

max(vs2k)

which.max(vs2k)

vh2k = c(hb23k,hb24k,hb25k,hb26k)

max(vh2k)

which.max(vh2k)

vr2k = c(rq23k,rq24k,rq25k,rq26k)

max(vr2k)

which.max(vr2k)

vf2k = c(df23k,df24k,df25k,df26k)

max(vf2k)

which.max(vf2k)

vd2k = c(db23k,db24k,db25k,db26k)

min(vd2k)

which.min(vd2k)
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# HAC

hc2 <- hclust(d=dist(g2))

hc23 <- cutree(hc2, 3)

hc24 <- cutree(hc2, 4)

hc25 <- cutree(hc2, 5)

hc26 <- cutree(hc2, 6)

ss23h = silh(hc23,g2)

hb23h = hubertgamma(hc23,g2)

rq23h = rsf(hc23,g2)

df23h = dn(hc23,g2)

db23h = DBindex(hc23,g2)

ss24h = silh(hc24,g2)

hb24h = hubertgamma(hc24,g2)

rq24h = rsf(hc24,g2)

df24h = dn(hc24,g2)

db24h = DBindex(hc24,g2)

ss25h = silh(hc25,g2)

hb25h = hubertgamma(hc25,g2)

rq25h = rsf(hc25,g2)

df25h = dn(hc25,g2)

db25h = DBindex(hc25,g2)

ss26h = silh(hc26,g2)

hb26h = hubertgamma(hc26,g2)

rq26h = rsf(hc26,g2)
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df26h = dn(hc26,g2)

db26h = DBindex(hc26,g2)

vs2h = c(ss23h,ss24h,ss25h,ss26h)

max(vs2h)

which.max(vs2h)

vh2h = c(hb23h,hb24h,hb25h,hb26h)

max(vh2h)

which.max(vh2h)

vr2h = c(rq23h,rq24h,rq25h,rq26h)

max(vr2h)

which.max(vr2h)

vf2h = c(df23h,df24h,df25h,df26h)

max(vf2h)

which.max(vf2h)

vd2h = c(db23h,db24h,db25h,db26h)

min(vd2h)

which.min(vd2h)

# DBSCAN

db2 <- dbscan(g2,eps=0.5,MinPts = 3)$cluster

db2 = db2 + 1

ss2d = silh(db2,g2)

hb2d = hubertgamma(db2,g2)

rq2d = rsf(db2,g2)
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df2d = dn(db2,g2)

db2d = DBindex(db2,g2)

# OPTICS

op20 <- optics(g2,eps = 3,minPts = 3)

op2 <- extractDBSCAN(op20,eps_cl = 0.5)$cluster

op2 = op2 + 1

ss2o = silh(op2,g2)

hb2o = hubertgamma(op2,g2)

rq2o = rsf(op2,g2)

df2o = dn(op2,g2)

db2o = DBindex(op2,g2)

pdf("data2result.pdf",width = 12, height = 16,colormodel=’cmyk’)

par(mfrow=c(4,3))

connectplot(g2,st25[mssc25],"Result by Silhouette(5)")

connectplot(g2,st26[mhbc26],"Result by Hubert gamma(6)")

connectplot(g2,st26[mrqc26],"Result by R-square(6)")

connectplot(g2,st25[mdfc25],"Result by Dunn index(5)")

connectplot(g2,st26[mdbc26],"Result by DB index(6)")

connectplot(g2,km25,"Result by Kmeans(5)")

connectplot(g2,km26,"Result by Kmeans(6)")

connectplot(g2,hc25,"Result by Hierarchical(5)")

connectplot(g2,hc26,"Result by Hierarchical(6)")

connectplot(g2,db2,"Result by DBSCAN(5)")
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connectplot(g2,op2,"Result by OPTICS(5)")

dev.off()

pdf("data2right.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

connectplot(g2,st25[mssc25],"Result by Silhouette with 5 clusters")

connectplot(g2,st25[mhbc25],"Result by Hubert gamma with 5 clusters")

connectplot(g2,st25[mrqc25],"Result by R-square with 5 clusters")

connectplot(g2,st25[mdfc25],"Result by Dunn index with 5 clusters")

connectplot(g2,st25[mdbc25],"Result by DB index with 5 clusters")

dev.off()

# For data set 3

plot(g3[,1],g3[,2])

dis3 <- as.matrix(dist(g3))

diag(dis3) <- Inf

dis31 <- apply(dis3, 1, sort, decreasing=F)

d3 <- min(dis31[6,])

adjlist3 = NULL

num3 = nrow(g3)

for (i in 1:num3) {
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ntivec = NULL

for (j in 1:num3) {

dd = distance(g3[i,],g3[j,])

dd

if(dd!=0){

if(dd<=d3){

segments(g3[i,1],g3[i,2],g3[j,1],g3[j,2])

ntivec = c(ntivec , j)

}

}else{}

}

adjlist3[[i]]= ntivec

}

st32 = generatePartitions(adjlist3,numBlocks = 2,

numConstraintLow = 4, numConstraintHigh = 12)

st33 = generatePartitions(adjlist3,numBlocks = 3,

numConstraintLow = 4, numConstraintHigh = 12)

st34 = generatePartitions(adjlist3,numBlocks = 4,

numConstraintLow = 4, numConstraintHigh = 12)

# data 3 cluster 2

n32 = length(st32)

ss32 = rep(0,n32)

hb32 = rep(0,n32)

rq32 = rep(0,n32)

df32 = rep(0,n32)

db32 = rep(0,n32)
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for (i in 1:n32) {

stt = st32[[i]]

ss32[i] = silh(stt,g3)

hb32[i] = hubertgamma(stt,g3)

rq32[i] = rsf(stt,g3)

df32[i] = dn(stt,g3)

db32[i] = DBindex(stt,g3)

}

mssc32 = which.max(ss32)#93

mhbc32 = which.max(hb32)#93

mrqc32 = which.max(rq32)#93

mdfc32 = which.max(df32)#93

mdbc32 = which.min(db32)#93

# data 3 cluster 3

n33 = length(st33)

ss33 = rep(0,n33)

hb33 = rep(0,n33)

rq33 = rep(0,n33)

df33 = rep(0,n33)

db33 = rep(0,n33)

for (i in 1:n33) {

stt = st33[[i]]

ss33[i] = silh(stt,g3)

hb33[i] = hubertgamma(stt,g3)
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rq33[i] = rsf(stt,g3)

df33[i] = dn(stt,g3)

db33[i] = DBindex(stt,g3)

}

mssc33 = which.max(ss33)#1736

mhbc33 = which.max(hb33)#1400

mrqc33 = which.max(rq33)#1400

mdfc33 = which.max(df33)#1400

mdbc33 = which.min(db33)#1097

# data 3 cluster 4

n34 = length(st34)

ss34 = rep(0,n34)

hb34 = rep(0,n34)

rq34 = rep(0,n34)

df34 = rep(0,n34)

db34 = rep(0,n34)

for (i in 1:n34) {

stt = st34[[i]]

ss34[i] = silh(stt,g3)

hb34[i] = hubertgamma(stt,g3)

rq34[i] = rsf(stt,g3)

df34[i] = dn(stt,g3)

db34[i] = DBindex(stt,g3)

}
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mssc34 = which.max(ss34)#3310

mhbc34 = which.max(hb34)#2626

mrqc34 = which.max(rq34)#2710

mdfc34 = which.max(df34)#2710

mdbc34 = which.min(db34)#2612

# Find the best score for each measure.

vs32 = max(ss32)

vs33 = max(ss33)

vs34 = max(ss34)

vs3 = c(vs32,vs33,vs34)

max(vs3)

which.max(vs3)

vh32 = max(hb32)

vh33 = max(hb33)

vh34 = max(hb34)

vh3 = c(vh32,vh33,vh34)

max(vh3)

which.max(vh3)

vr32 = max(rq32)

vr33 = max(rq33)

vr34 = max(rq34)

vr3 = c(vr32,vr33,vr34)
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max(vr3)

which.max(vr3)

vf32 = max(df32)

vf33 = max(df33)

vf34 = max(df34)

vf3 = c(vf32,vf33,vf34)

max(vf3)

which.max(vf3)

vd32 = min(db32)

vd33 = min(db33)

vd34 = min(db34)

vd3 = c(vd32,vd33,vd34)

min(vd3)

which.min(vd3)

# K-means

km32 <- kmeans(g3,2)$cluster

km33 <- kmeans(g3,3)$cluster

km34 <- kmeans(g3,4)$cluster

ss32k = silh(km32,g3)

hb32k = hubertgamma(km32,g3)

rq32k = rsf(km32,g3)
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df32k = dn(km32,g3)

db32k = DBindex(km32,g3)

ss33k = silh(km33,g3)

hb33k = hubertgamma(km33,g3)

rq33k = rsf(km33,g3)

df33k = dn(km33,g3)

db33k = DBindex(km33,g3)

ss34k = silh(km34,g3)

hb34k = hubertgamma(km34,g3)

rq34k = rsf(km34,g3)

df34k = dn(km34,g3)

db34k = DBindex(km34,g3)

vs3k = c(ss32k,ss33k,ss34k)

max(vs3k)

which.max(vs3k)

vh3k = c(hb32k,hb33k,hb34k)

max(vh3k)

which.max(vh3k)

vr3k = c(rq32k,rq33k,rq34k)

max(vr3k)

which.max(vr3k)

vf3k = c(df32k,df33k,df34k)

max(vf3k)
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which.max(vf3k)

vd3k = c(db32k,db33k,db34k)

min(vd3k)

which.min(vd3k)

# HAC

hc3 <- hclust(d=dist(g3))

hc32 <- cutree(hc3, 2)

hc33 <- cutree(hc3, 3)

hc34 <- cutree(hc3, 4)

ss32h = silh(hc32,g3)

hb32h = hubertgamma(hc32,g3)

rq32h = rsf(hc32,g3)

df32h = dn(hc32,g3)

db32h = DBindex(hc32,g3)

ss33h = silh(hc33,g3)

hb33h = hubertgamma(hc33,g3)

rq33h = rsf(hc33,g3)

df33h = dn(hc33,g3)

db33h = DBindex(hc33,g3)

ss34h = silh(hc34,g3)

hb34h = hubertgamma(hc34,g3)

rq34h = rsf(hc34,g3)

df34h = dn(hc34,g3)

db34h = DBindex(hc34,g3)
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vs3h = c(ss32h,ss33h,ss34h)

max(vs3h)

which.max(vs3h)

vh3h = c(hb32h,hb33h,hb34h)

max(vh3h)

which.max(vh3h)

vr3h = c(rq32h,rq33h,rq34h)

max(vr3h)

which.max(vr3h)

vf3h = c(df32h,df33h,df34h)

max(vf3h)

which.max(vf3h)

vd3h = c(db32h,db33h,db34h)

min(vd3h)

which.min(vd3h)

# DBSCAN

db3o <- fpc::dbscan(g3,eps=0.5,MinPts = 4)

db3 <- db3o$cluster

db3 = db3 + 1

ss3d = silh(db3,g3)

hb3d = hubertgamma(db3,g3)

rq3d = rsf(db3,g3)

df3d = dn(db3,g3)
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db3d = DBindex(db3,g3)

# OPTICS

op30 <- optics(g3,eps = 4,minPts = 4)

op3o <- extractDBSCAN(op30,eps_cl = 0.5)

op3 <- op3o$cluster

op3 = op3 + 1

ss3o = silh(op3,g3)

hb3o = hubertgamma(op3,g3)

rq3o = rsf(op3,g3)

df3o = dn(op3,g3)

db3o = DBindex(op3,g3)

pdf("data3result.pdf",width = 12, height = 16,colormodel=’cmyk’)

par(mfrow=c(4,3))

connectplot(g3,st32[mssc32],"Result by Silhouette(2)")

connectplot(g3,st34[mhbc34],"Result by Hubert gamma(4)")

connectplot(g3,st34[mrqc34],"Result by R-square(4)")

connectplot(g3,st34[mdfc34],"Result by Dunn index(4)")

connectplot(g3,st34[mdbc34],"Result by DB index(4)")

connectplot(g3,km32,"Result by Kmeans(2)")

connectplot(g3,km34,"Result by Kmeans(4)")

connectplot(g3,hc32,"Result by Hierarchical(2)")

connectplot(g3,hc34,"Result by Hierarchical(4)")

doplot(g3,db3,"Result by DBSCAN(3)")

doplot(g3,op3,"Result by OPTICS(3)")

dev.off()
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pdf("data3right.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

connectplot(g3,st32[mssc32],"Result by Silhouette with 2 clusters")

connectplot(g3,st32[mhbc32],"Result by Hubert gamma with 2 clusters")

connectplot(g3,st32[mrqc32],"Result by R-square with 2 clusters")

connectplot(g3,st32[mdfc32],"Result by Dunn index with 2 clusters")

connectplot(g3,st32[mdbc32],"Result by DB index with 2 clusters")

dev.off()

# For data set 4

plot(g4[,1],g4[,2])

dis4 <- as.matrix(dist(g4))

diag(dis4) <- Inf

dis41 <- apply(dis4, 1, sort, decreasing=F)

d4 <- min(dis41[5,])

adjlist4 = NULL

num4 = nrow(g4)

for (i in 1:num4) {

ntivec = NULL

for (j in 1:num4) {

dd = distance(g4[i,],g4[j,])
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dd

if(dd!=0){

if(dd<=d4){

segments(g4[i,1],g4[i,2],g4[j,1],g4[j,2])

ntivec = c(ntivec , j)

}

}else{}

}

adjlist4[[i]]= ntivec

}

st42 = generatePartitions(adjlist4,numBlocks = 2,

numConstraintLow = 4, numConstraintHigh = 10)

st43 = generatePartitions(adjlist4,numBlocks = 3,

numConstraintLow = 4, numConstraintHigh = 10)

st44 = generatePartitions(adjlist4,numBlocks = 4,

numConstraintLow = 4, numConstraintHigh = 10)

# data 4 cluster 2

n42 = length(st42)

ss42 = rep(0,n42)

hb42 = rep(0,n42)

rq42 = rep(0,n42)

df42 = rep(0,n42)

db42 = rep(0,n42)

for (i in 1:n42) {
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stt = st42[[i]]

ss42[i] = silh(stt,g4)

hb42[i] = hubertgamma(stt,g4)

rq42[i] = rsf(stt,g4)

df42[i] = dn(stt,g4)

db42[i] = DBindex(stt,g4)

}

mssc42 = which.max(ss42)#302

mhbc42 = which.max(hb42)#302

mrqc42 = which.max(rq42)#302

mdfc42 = which.max(df42)#302

mdbc42 = which.min(db42)#302

# data 4 cluster 3

n43 = length(st43)

ss43 = rep(0,n43)

hb43 = rep(0,n43)

rq43 = rep(0,n43)

df43 = rep(0,n43)

db43 = rep(0,n43)

for (i in 1:n43) {

stt = st43[[i]]

ss43[i] = silh(stt,g4)

hb43[i] = hubertgamma(stt,g4)

rq43[i] = rsf(stt,g4)

df43[i] = dn(stt,g4)
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db43[i] = DBindex(stt,g4)

}

mssc43 = which.max(ss43)#1

mhbc43 = which.max(hb43)#1

mrqc43 = which.max(rq43)#1219

mdfc43 = which.max(df43)#1

mdbc43 = which.min(db43)#1

# data 4 cluster 4

n44 = length(st44)

ss44 = rep(0,n44)

hb44 = rep(0,n44)

rq44 = rep(0,n44)

df44 = rep(0,n44)

db44 = rep(0,n44)

for (i in 1:n44) {

stt = st44[[i]]

ss44[i] = silh(stt,g4)

hb44[i] = hubertgamma(stt,g4)

rq44[i] = rsf(stt,g4)

df44[i] = dn(stt,g4)

db44[i] = DBindex(stt,g4)

}

mssc44 = which.max(ss44)#4
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mhbc44 = which.max(hb44)#25

mrqc44 = which.max(rq44)#25

mdfc44 = which.max(df44)#93

mdbc44 = which.min(db44)#4

# Find the best score for each measure.

vs42 = max(ss42)

vs43 = max(ss43)

vs44 = max(ss44)

vs4 = c(vs42,vs43,vs44)

max(vs4)

which.max(vs4)

vh42 = max(hb42)

vh43 = max(hb43)

vh44 = max(hb44)

vh4 = c(vh42,vh43,vh44)

max(vh4)

which.max(vh4)

vr42 = max(rq42)

vr43 = max(rq43)

vr44 = max(rq44)

vr4 = c(vr42,vr43,vr44)

max(vr4)
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which.max(vr4)

vf42 = max(df42)

vf43 = max(df43)

vf44 = max(df44)

vf4 = c(vf42,vf43,vf44)

max(vf4)

which.max(vf4)

vd42 = min(db42)

vd43 = min(db43)

vd44 = min(db44)

vd4 = c(vd42,vd43,vd44)

min(vd4)

which.min(vd4)

# K-means

km42 <- kmeans(g4,2)$cluster

km43 <- kmeans(g4,3)$cluster

km44 <- kmeans(g4,4)$cluster

ss42k = silh(km42,g4)

hb42k = hubertgamma(km42,g4)

rq42k = rsf(km42,g4)

df42k = dn(km42,g4)

db42k = DBindex(km42,g4)
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ss43k = silh(km43,g4)

hb43k = hubertgamma(km43,g4)

rq43k = rsf(km43,g4)

df43k = dn(km43,g4)

db43k = DBindex(km43,g4)

ss44k = silh(km44,g4)

hb44k = hubertgamma(km44,g4)

rq44k = rsf(km44,g4)

df44k = dn(km44,g4)

db44k = DBindex(km44,g4)

vs4k = c(ss42k,ss43k,ss44k)

max(vs4k)

which.max(vs4k)

vh4k = c(hb42k,hb43k,hb44k)

max(vh4k)

which.max(vh4k)

vr4k = c(rq42k,rq43k,rq44k)

max(vr4k)

which.max(vr4k)

vf4k = c(df42k,df43k,df44k)

max(vf4k)

which.max(vf4k)

vd4k = c(db42k,db43k,db44k)
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min(vd4k)

which.min(vd4k)

# HAC

hc4 <- hclust(d=dist(g4))

hc42 <- cutree(hc4, 2)

hc43 <- cutree(hc4, 3)

hc44 <- cutree(hc4, 4)

ss42h = silh(hc42,g4)

hb42h = hubertgamma(hc42,g4)

rq42h = rsf(hc42,g4)

df42h = dn(hc42,g4)

db42h = DBindex(hc42,g4)

ss43h = silh(hc43,g4)

hb43h = hubertgamma(hc43,g4)

rq43h = rsf(hc43,g4)

df43h = dn(hc43,g4)

db43h = DBindex(hc43,g4)

ss44h = silh(hc44,g4)

hb44h = hubertgamma(hc44,g4)

rq44h = rsf(hc44,g4)

df44h = dn(hc44,g4)

db44h = DBindex(hc44,g4)

vs4h = c(ss42h,ss43h,ss44h)

max(vs4h)
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which.max(vs4h)

vh4h = c(hb42h,hb43h,hb44h)

max(vh4h)

which.max(vh4h)

vr4h = c(rq42h,rq43h,rq44h)

max(vr4h)

which.max(vr4h)

vf4h = c(df42h,df43h,df44h)

max(vf4h)

which.max(vf4h)

vd4h = c(db42h,db43h,db44h)

min(vd4h)

which.min(vd4h)

# DBSCAN

db4 <- dbscan(g4,eps=1.4,MinPts = 4)$cluster

ss4d = silh(db4,g4)

hb4d = hubertgamma(db4,g4)

rq4d = rsf(db4,g4)

df4d = dn(db4,g4)

db4d = DBindex(db4,g4)

# OPTICS

op40 <- optics(g4,eps = 4,minPts = 4)
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op4 <- extractDBSCAN(op40,eps_cl = 1)$cluster

op4 = op4 + 1

ss4o = silh(op4,g4)

hb4o = hubertgamma(op4,g4)

rq4o = rsf(op4,g4)

df4o = dn(op4,g4)

db4o = DBindex(op4,g4)

pdf("data4result.pdf",width = 12, height = 16,colormodel=’cmyk’)

par(mfrow=c(4,3))

connectplot(g4,st42[mssc42],"Result by Silhouette(2)")

connectplot(g4,st44[mhbc44],"Result by Hubert gamma(4)")

connectplot(g4,st44[mrqc44],"Result by R-square(4)")

connectplot(g4,st43[mdfc43],"Result by Dunn index(3)")

connectplot(g4,st44[mdbc44],"Result by DB index(4)")

connectplot(g4,km42,"Result by Kmeans(2)")

connectplot(g4,km44,"Result by Kmeans(4)")

connectplot(g4,hc42,"Result by Hierarchical(2)")

connectplot(g4,hc44,"Result by Hierarchical(4)")

connectplot(g4,hc43,"Result by Kmeans and Hierarchical(3)")

connectplot(g4,db4,"Result by DBSCAN(3)")

connectplot(g4,op4,"Result by OPTICS(4)")

dev.off()

pdf("data4right.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

connectplot(g4,st43[mssc43],"Result by Silhouette with 3 clusters")
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connectplot(g4,st43[mhbc43],"Result by Hubert gamma with 3 clusters")

connectplot(g4,st43[mrqc43],"Result by R-square with 3 clusters")

connectplot(g4,st43[mdfc43],"Result by Dunn index with 3 clusters")

connectplot(g4,st43[mdbc43],"Result by DB index with 3 clusters")

dev.off()

# For data set 5

plot(g5[,1],g5[,2])

dis5 <- as.matrix(dist(g5))

diag(dis5) <- Inf

dis51 <- apply(dis5, 1, sort, decreasing=F)

d5 <- min(dis51[4,])

adjlist5 = NULL

num5 = nrow(g5)

for (i in 1:num5) {

ntivec = NULL

for (j in 1:num5) {

dd = distance(g5[i,],g5[j,])

dd

if(dd!=0){

if(dd<=d5){
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segments(g5[i,1],g5[i,2],g5[j,1],g5[j,2])

ntivec = c(ntivec , j)

}

}else{}

}

adjlist5[[i]]= ntivec

}

st52 = generatePartitions(adjlist5,numBlocks = 2,

numConstraintLow = 4, numConstraintHigh = 14)

st53 = generatePartitions(adjlist5,numBlocks = 3,

numConstraintLow = 4, numConstraintHigh = 10)

st54 = generatePartitions(adjlist5,numBlocks = 4,

numConstraintLow = 4, numConstraintHigh = 10)

st55 = generatePartitions(adjlist5,numBlocks = 5,

numConstraintLow = 4, numConstraintHigh = 10)

# data 5 cluster 2

n52 = length(st52)

ss52 = rep(0,n52)

hb52 = rep(0,n52)

rq52 = rep(0,n52)

df52 = rep(0,n52)

db52 = rep(0,n52)

for (i in 1:n52) {

stt = st52[[i]]

ss52[i] = silh(stt,g5)
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hb52[i] = hubertgamma(stt,g5)

rq52[i] = rsf(stt,g5)

df52[i] = dn(stt,g5)

db52[i] = DBindex(stt,g5)

}

mssc52 = which.max(ss52)#1

mhbc52 = which.max(hb52)#1

mrqc52 = which.max(rq52)#1

mdfc52 = which.max(df52)#5

mdbc52 = which.min(db52)#1

# data 5 cluster 3

n53 = length(st53)

ss53 = rep(0,n53)

hb53 = rep(0,n53)

rq53 = rep(0,n53)

df53 = rep(0,n53)

db53 = rep(0,n53)

for (i in 1:n53) {

stt = st53[[i]]

ss53[i] = silh(stt,g5)

hb53[i] = hubertgamma(stt,g5)

rq53[i] = rsf(stt,g5)

df53[i] = dn(stt,g5)

db53[i] = DBindex(stt,g5)
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}

mssc53 = which.max(ss53)#5

mhbc53 = which.max(hb53)#5

mrqc53 = which.max(rq53)#5

mdfc53 = which.max(df53)#5

mdbc53 = which.min(db53)#5

# data 5 cluster 4

n54 = length(st54)

ss54 = rep(0,n54)

hb54 = rep(0,n54)

rq54 = rep(0,n54)

df54 = rep(0,n54)

db54 = rep(0,n54)

for (i in 1:n54) {

stt = st54[[i]]

ss54[i] = silh(stt,g5)

hb54[i] = hubertgamma(stt,g5)

rq54[i] = rsf(stt,g5)

df54[i] = dn(stt,g5)

db54[i] = DBindex(stt,g5)

}

mssc54 = which.max(ss54)#3
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mhbc54 = which.max(hb54)#3

mrqc54 = which.max(rq54)#3

mdfc54 = which.max(df54)#3

mdbc54 = which.min(db54)#3

# data 5 cluster 5

n55 = length(st55)

ss55 = rep(0,n55)

hb55 = rep(0,n55)

rq55 = rep(0,n55)

df55 = rep(0,n55)

db55 = rep(0,n55)

for (i in 1:n55) {

stt = st55[[i]]

ss55[i] = silh(stt,g5)

hb55[i] = hubertgamma(stt,g5)

rq55[i] = rsf(stt,g5)

df55[i] = dn(stt,g5)

db55[i] = DBindex(stt,g5)

}

mssc55 = which.max(ss55)#4

mhbc55 = which.max(hb55)#4

mrqc55 = which.max(rq55)#4

mdfc55 = which.max(df55)#1

mdbc55 = which.min(db55)#16

102



# Find the best score for each measure.

vs52 = max(ss52)

vs53 = max(ss53)

vs54 = max(ss54)

vs55 = max(ss55)

vs5 = c(vs52,vs53,vs54,vs55)

max(vs5)

which.max(vs5)

vh52 = max(hb52)

vh53 = max(hb53)

vh54 = max(hb54)

vh55 = max(hb54)

vh5 = c(vh52,vh53,vh54,vh55)

max(vh5)

which.max(vh5)

vr52 = max(rq52)

vr53 = max(rq53)

vr54 = max(rq54)

vr55 = max(rq55)

vr5 = c(vr52,vr53,vr54,vr55)

max(vr5)

which.max(vr5)

vf52 = max(df52)

vf53 = max(df53)
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vf54 = max(df54)

vf55 = max(df55)

vf5 = c(vf52,vf53,vf54,vf55)

max(vf5)

which.max(vf5)

vd52 = min(db52)

vd53 = min(db53)

vd54 = min(db54)

vd55 = min(db55)

vd5 = c(vd52,vd53,vd54,vd55)

min(vd5)

which.min(vd5)

# K-means

km52 <- kmeans(g5,2)$cluster

km53 <- kmeans(g5,3)$cluster

km54 <- kmeans(g5,4)$cluster

km55 <- kmeans(g5,5)$cluster

ss52k = silh(km52,g5)

hb52k = hubertgamma(km52,g5)

rq52k = rsf(km52,g5)

df52k = dn(km52,g5)

db52k = DBindex(km52,g5)

ss53k = silh(km53,g5)

hb53k = hubertgamma(km53,g5)
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rq53k = rsf(km53,g5)

df53k = dn(km53,g5)

db53k = DBindex(km53,g5)

ss54k = silh(km54,g5)

hb54k = hubertgamma(km54,g5)

rq54k = rsf(km54,g5)

df54k = dn(km54,g5)

db54k = DBindex(km54,g5)

ss55k = silh(km55,g5)

hb55k = hubertgamma(km55,g5)

rq55k = rsf(km55,g5)

df55k = dn(km55,g5)

db55k = DBindex(km55,g5)

vs5k = c(ss52k,ss53k,ss54k,ss55k)

max(vs5k)

which.max(vs5k)

vh5k = c(hb52k,hb53k,hb54k,hb55k)

max(vh5k)

which.max(vh5k)

vr5k = c(rq52k,rq53k,rq54k,rq55k)

max(vr5k)

which.max(vr5k)
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vf5k = c(df52k,df53k,df54k,df55k)

max(vf5k)

which.max(vf5k)

vd5k = c(db52k,db53k,db54k,db55k)

min(vd5k)

which.min(vd5k)

# HAC

hc5 <- hclust(d=dist(g5))

hc52 <- cutree(hc5, 2)

hc53 <- cutree(hc5, 3)

hc54 <- cutree(hc5, 4)

hc55 <- cutree(hc5, 5)

ss52h = silh(hc52,g5)

hb52h = hubertgamma(hc52,g5)

rq52h = rsf(hc52,g5)

df52h = dn(hc52,g5)

db52h = DBindex(hc52,g5)

ss53h = silh(hc53,g5)

hb53h = hubertgamma(hc53,g5)

rq53h = rsf(hc53,g5)

df53h = dn(hc53,g5)

db53h = DBindex(hc53,g5)

ss54h = silh(hc54,g5)
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hb54h = hubertgamma(hc54,g5)

rq54h = rsf(hc54,g5)

df54h = dn(hc54,g5)

db54h = DBindex(hc54,g5)

ss55h = silh(hc55,g5)

hb55h = hubertgamma(hc55,g5)

rq55h = rsf(hc55,g5)

df55h = dn(hc55,g5)

db55h = DBindex(hc55,g5)

vs5h = c(ss52h,ss53h,ss54h,ss55h)

max(vs5h)

which.max(vs5h)

vh5h = c(hb52h,hb53h,hb54h,hb55h)

max(vh5h)

which.max(vh5h)

vr5h = c(rq52h,rq53h,rq54h,rq55h)

max(vr5h)

which.max(vr5h)

vf5h = c(df52h,df53h,df54h,df55h)

max(vf5h)

which.max(vf5h)

vd5h = c(db52h,db53h,db54h,db55h)

min(vd5h)
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which.min(vd5h)

# DBSCAN

db5 <- dbscan(g5,eps=1.3,MinPts = 4)$cluster

db5 = db5 + 1

ss5d = silh(db5,g5)

hb5d = hubertgamma(db5,g5)

rq5d = rsf(db5,g5)

df5d = dn(db5,g5)

db5d = DBindex(db5,g5)

# OPTICS

op50 <- optics(g5,eps = 4,minPts = 4)

op5 <- extractDBSCAN(op50,eps_cl = 1.3)$cluster

op5 = op5 + 1

ss5o = silh(op5,g5)

hb5o = hubertgamma(op5,g5)

rq5o = rsf(op5,g5)

df5o = dn(op5,g5)

db5o = DBindex(op5,g5)

pdf("data5result.pdf",width = 12, height = 16,colormodel=’cmyk’)

par(mfrow=c(4,3))

connectplot(g5,st53[mssc53],"Result by Silhouette(3)")

connectplot(g5,st54[mhbc54],"Result by Hubert gamma(4)")

connectplot(g5,st55[mrqc55],"Result by R-square(5)")

connectplot(g5,st55[mdfc55],"Result by Dunn index(5)")

connectplot(g5,st55[mdbc55],"Result by DB index(5)")

connectplot(g5,km53,"Result by Kmeans(3)")
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connectplot(g5,km55,"Result by Kmeans(5)")

connectplot(g5,hc55,"Result by Hierarchical(5)")

connectplot(g5,hc53,"Result by Hierarchical(3)")

connectplot(g5,hc54,"Result by Hierarchical(4)")

connectplot(g5,db5,"Result by DBSCAN(3)")

connectplot(g5,op5,"Result by OPTIC(3)")

dev.off()

pdf("data5right.pdf",width = 8, height = 12,colormodel=’cmyk’)

par(mfrow=c(3,2))

connectplot(g5,st53[mssc53],"Result by Silhouette with 3 clusters")

connectplot(g5,st53[mhbc53],"Result by Hubert gamma with 3 clusters")

connectplot(g5,st53[mrqc53],"Result by R-square with 3 clusters")

connectplot(g5,st53[mdfc53],"Result by Dunn index with 3 clusters")

connectplot(g5,st53[mdbc53],"Result by DB index with 3 clusters")

dev.off()
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