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Abstract 

Antibiotics and pharmaceuticals are used to improve the quality of life worldwide. 

However, incomplete metabolism in humans has resulted in the release of large amounts 

of pharmaceutical drugs into municipal wastewater treatment plant. Past research has 

shown the release of antibiotic resistant organisms through wastewater effluents into 

streams and several studies have reported the occurrence of antibiotic resistant bacteria in 

major U.S. Rivers. Antibiotic resistant bacteria evolve and are selected by long-term 

environmental exposure to the low concentrations of antibiotics at the ng /L to µg/L 

range.  Infections caused by antibiotic resistant organisms are difficult to treat. The aim 

of this study was to analyze antibiotic resistance patterns in selected wastewater bacteria 

that include fecal coliforms, Escherichia coli and enterococci. Microorganisms in 

municipal wastewater treatment plant influent, secondary clarifier effluent and 

disinfected effluent were plated in the presence of predetermined concentrations of 

selected antibiotics. These antibiotics included ciprofloxacin, sulfamethoxazole/ 

trimethoprim and vancomycin. The diversity of enterococci was further investigated with 

PCR analysis. Fecal coliforms, E. coli and enterococci were found to be resistant or 

highly resistant to one or more target antibiotics in the influent and secondary clarifier 

(SC) effluent.  Biological treatment reduced the number of overall and resistant bacteria 

in the SC effluent sample. UV disinfection was generally very effective and eliminated 

all fecal indicator organisms. 



 

 iii  

Table of Contents 

List of Figures ..................................................................................................................... v 

List of Tables .................................................................................................................... vii 

Acknowledgements............................................................................................................. x 

Dedication .......................................................................................................................... xi 

CHAPTER 1 - INTRODUCTION...................................................................................... 1 

CHAPTER 2 - LITERATURE REVIEW........................................................................... 2 

2.1 Water and Wastewater Constituents ......................................................................... 2 

2.2 Indicator Organisms for Fecal Contamination of Water .......................................... 3 

2.2.1 Fecal coliforms................................................................................................... 3 

2.2.2 Escherichia coli ................................................................................................. 3 

2.2.3 Enterococci ........................................................................................................ 4 

2.3 Emerging Contaminants of Concerns – Antibiotics in Wastewater ......................... 4 

2.4 Antibiotic Resistant Microorganisms ....................................................................... 5 

2.5 Target Antibiotics ..................................................................................................... 8 

2.5.1 Ciprofloxacin ..................................................................................................... 8 

2.5.2 Sulfamethoxazole/Trimethoprim ....................................................................... 9 

2.5.3 Vancomycin ..................................................................................................... 10 

2.6 Minimum Inhibitory Concentration........................................................................ 10 

2.7 Antibiotic Resistant Enterococci ............................................................................ 12 

CHAPTER 3 - RESEARCH OBJECTIVES..................................................................... 13 

CHAPTER 4 - MATERIALS AND METHODS ............................................................. 14 

4.1 Wastewater Sampling ............................................................................................. 14 

4.1.1 Sample Collection............................................................................................ 14 

4.1.2 Sample Transport and Storage ......................................................................... 15 

4.2 Target Antibiotics ................................................................................................... 15 

4.3 Bacterial Enumeration ............................................................................................ 18 

4.3.1 Preparation of Selective Media Containing Antibiotics .................................. 18 

5.3.2 Membrane Filtration Technique ...................................................................19 



 

 iv 

4.4 Identification of Enterococci .................................................................................. 22 

4.4.1 Multiplex Polymerase Chain Reaction ............................................................ 22 

4.4.2 Single Polymerase Chain Reaction.................................................................. 24 

4.5 Statistical Analysis.................................................................................................. 25 

CHAPTER 5 - RESULTS AND DISCUSSION .............................................................. 26 

5.1 Antibiotic Resistant Bacteria in Summer Samples................................................. 26 

5.1.1 Fecal Coliforms................................................................................................ 26 

5.1.2 Enterococci ...................................................................................................... 29 

5.2 Antibiotic Resistant Bacteria in Winter Samples...................................................33 

5.2.1 Fecal Coliforms................................................................................................ 33 

5.2.2 Enterococci ...................................................................................................... 35 

5.2.3 E. coli ............................................................................................................... 37 

5.3 Antibiotic Resistant Bacteria in Spring Samples.................................................... 39 

5.3.1 Fecal Coliforms................................................................................................ 39 

5.3.1 Enterococci ...................................................................................................... 41 

5.3.3  E. coli .............................................................................................................. 45 

5.5 Seasonal Variations in Antibiotic Resistance Patterns ........................................... 47 

CHAPTER 6 - SUMMARY AND CONCLUSONS........................................................ 55 

References......................................................................................................................... 57 

Appendix A....................................................................................................................... 63 

 

 

 

 

 

 

 

 

 

 



 

 v 

List of Figures 

Figure 2.1 Antibiotic Resistance Mechanisms.................................................................... 6 

Figure 2.2 Horizontal Gene Transfer .................................................................................. 7 

Figure 4.1 Process Flow Schematic of Municipal Wastewater Treatment Plant. Points A, 

B and C mark Sampling Locations ........................................................................... 15 

Figure 4.2 Bacterial Enumeration (a) Culture Media on Petri Dishes; (b) Filter Holder; (c) 

Sample Filtration; (d) Transfer of Filter Membrane on Culture Media; (e) 

Incubation; (f) Fecal Coliforms on Filter Membrane; (g) Dark Field Quebec Colony 

Counter; (h) E. coli under UV Light......................................................................... 21 

Figure 4.3 Gel Picture for Multiplex Polymerase Chain Reaction ................................... 25 

Figure 5.1 Impact of Ciprofloxacin Concentration on Fecal Coliforms in Influent and 

Secondary Clarifier Effluent Samples ...................................................................... 27 

Figure 5.2 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform 

in Influent and Secondary Clarifier Effluent Samples.............................................. 29 

Figure 5.3 Impact of Ciprofloxacin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples ...................................................................... 30 

Figure 5.4 Impact of sulfamethoxazole/Trimethoprim Concentration on Enterococci in 

Influent and Secondary Clarifier Effluent Samples .................................................. 31 

Figure 5.5 Impact of Vancomycin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples ...................................................................... 32 

Figure 5.6 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples .............................. 34 

Figure 5.7 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform 

in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples ........... 35 

Figure 5.8 Impact of Ciprofloxacin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 36 

Figure 5.9 Impact of Vancomycin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 37 

Figure 5.10 Impact of Ciprofloxacin Concentration on E. coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 38 



 

 vi 

Figure 5.11 Impact of Sulfamethoxazole/Trimethoprim Concentration on E. coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples ............... 39 

Figure 5.12 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples .............................. 41 

Figure 5.13 Impact of Sulfamthoxazole/Trimethoprim Concentration on Fecal Coliform 

in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples ........... 42 

Figure 5.14 Impact of Ciprofloxacin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 43 

Figure 5.15 Impact of Sulfamethoxazole/Trimethoprim Concentration on Enterococci in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples ............... 44 

Figure 5.16 Impact of Vancomycin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 45 

Figure 5.17 Impact of Ciprofloxacin Concentration on E. coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples................................................ 46 

Figure 5.18 Impact of Sulfamthoxazole/Trimethoprim Concentration on E. coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples ............... 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vii  

List of Tables 

Table 2.1 Reported Bacterial Concentrations in Municipal Wastewater Treatment Plants 4 

Table 2.2 Reported Antibiotic Concentrations Observed in Wastewater and Surface 

Water........................................................................................................................... 9 

Table 2.3 Equivalent Minimum Inhibitory Concentration Breakpoints ........................... 12 

Table 4.1 Selected Properties of Target Antibiotics......................................................... 17 

Table 4.2 Incubation Time and Incubation Temperatures for Target Organisms............. 20 

Table 4.3 Multiplex PCR Primers used for Detection of Vancomycin Resistance 

Enterococci ............................................................................................................... 23 

Table 5.1 Seasonal Variations in Antibiotic Resistance Patterns in Response to Exposure 

to Ciprofloxacin ........................................................................................................ 49 

Table 5.2 Seasonal Variations in Antibiotic Resistance Patterns in Response to Exposure 

to Sulfamethoxazole/Trimethoprim.......................................................................... 50 

Table 5.3 Seasonal Variations in Antibiotic Resistance Patterns in Response to Exposure 

to Vancomycin Concentration to Enterococci .......................................................... 51 

Table 5.4 Antibiotic Resistant Patterns in Target Organisms...........................................52 

Table 5.5 Diversity of Selected Enterococci (Control and Highly resistant) from Influent 

and Secondary Clarifier Effluent Sample ................................................................. 54 

Table A.1: Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent and 

Secondary Clarifier Effluent Samples Collected in Summer ................................... 63 

Table A.2: Impact of Sulfamethoxazole/trimethoprim Concentration on Fecal Coliform in 

Influent and Secondary Clarifier Effluent Samples Collected in Summer ............... 64 

Table A.3: Impact of Ciprofloxacin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples Collected in Summer ................................... 64 

Table A.4: Impact of Sulfamethoxazole/Trimethoprim Concentration on Enterococci in 

Influent and Secondary Clarifier Effluent Samples Collected in Summer ............... 65 

Table A.5: Impact of Vancomycin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples Collected in Summer ................................... 65 



 

 viii  

Table A.6: Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in Winter

................................................................................................................................... 66 

Table A.7: Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform 

in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples Collected 

in Winter ................................................................................................................... 67 

Table A.8: Impact of Ciprofloxacin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples Collected in Winter ............... 68 

Table A.9: Impact of Vancomycin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples Collected in Winter ............... 69 

Table A.10: Impact of Ciprofloxacin Concentration on E.coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples Collected in Winter ............... 70 

Table A.11 Impact of Sulfamethoxazole/Trimethoprim Concentration on E.coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in 

Winter ....................................................................................................................... 71 

Table A.12 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in Spring

................................................................................................................................... 72 

Table A.13 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform 

in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples Collected 

in Spring.................................................................................................................... 73 

Table A.14: Impact of Ciprofloxacin Concentration on Enterococci in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in Spring

................................................................................................................................... 74 

Table A.15 Impact of Sulfamethoxazole/Trimethoprim Concentration on Enterococci in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in 

Spring........................................................................................................................ 75 

Table A.16: Impact of Vancomycin Concentration on Enterococci in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples Collected in Spring................ 76 

Table A.17: Impact of Ciprofloxacin Concentration on E.coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples Collected in Spring................ 77 



 

 ix

Table A.18: Impact of Sulfamethoxazole/Trimethoprim Concentration on E.coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples Collected in 

Spring........................................................................................................................ 78 



 

 x

 

Acknowledgements 

My sincere thanks to advisor, professor and mentor, Dr. Alok Bhandari for his 

constant guidance and support through out my masters program and research. I would 

like to thank Dr. Ludek Zurek and Dr. George Marchin for serving on my committee.  

I would like to thank Dr. Aqeel Ahmed for his continuous support through out the 

research. Without his help, it would have not been possible to finish this thesis within the 

stipulated time. I would also like to thank Adam Henry who helped me in learning 

laboratory experiments.  

I wanted to thank my labmates, Monica Palomo and Wongee Kim for their help in 

laboratory work. I would like to thank Wastewater Treatment officials in extending their 

help in collection of samples. I want to thank my friends Sairam Jabba, Hyma Gajula, 

Ashwini Kamath, Venkata Ganesh Nagisetti, Sreedhar Upendram and Phani Krishna 

Mellacheruvu for their continuous help through out my stay at Kansas State University.  

My Parents Venkat Reddy Nagulapally, Radha Nagulapally sister Sunitha and 

brother Gurunath have always supported me in my personal and professional career. I 

thank them for all their support to me.   



 

 xi

 

Dedication  

I would like to dedicate my thesis in memory of my beloved brother Shobhan 

Nagulapally who was an inspiration to me to finish my masters program successfully. He 

was a brother, friend and role model for me. I always miss him in my entire life.  

 

  

 

 

 

 

 

 

 

 

 

 

  

 



 

 1 

CHAPTER 1 - INTRODUCTION 

Antibiotics and pharmaceuticals are used to improve public health and quality of 

life worldwide. However, incomplete metabolism in humans has resulted in release of 

large amounts of pharmaceutical drugs into municipal wastewater treatment plants 

(WWTPs). Recent studies have shown the presence of low concentrations of antibiotics 

in WWTP effluents and surface waters (Giger et al, 2003; Golet et al, 2002; Hernando et 

al, 2006; Christian et al, 2003; Mulroy 2001). The prevalence of antibiotics in municipal 

wastewater and surface waters can lead to the development of antibiotic resistant bacteria 

due to long-term exposure to low concentrations of antibiotics in the ng /L toµg/L range 

(Gilliver et al, 1999; Khachatourians, 1998; Smith et al, 1999). A recent paper reported 

the release of antibiotic resistant organisms through wastewater effluents into streams 

(Gallert et al, 2005). Other studies have discussed the prevalence of antibiotic resistance 

bacteria in major U.S. Rivers (Ash et al. 2002). 

The prevalence of infections caused by multiple antibiotic resistant organisms is 

increasing although there are advances in antibacterial therapy (Baquero 1997). 

Infections caused by antibiotic resistant bacteria are extremely hard to treat. 

The aim of this study was to analyze the antibiotic resistance patterns in fecal 

bacteria (fecal coliforms, Escherichia coli and enterococci) collected from raw influent, 

secondary clarifier (SC) effluent and disinfected effluent wastewater. Fecal bacteria were 

tested for resistance against ciprofloxacin (CIP), sulfamethoxazole/trimethoprim (SXT) 

and vancomycin (VAN). Antibiotic resistant enterococci were identified through PCR to 

understand their diversity and resistance profiles in the wastewater plant. 
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CHAPTER 2 - LITERATURE REVIEW  

2.1 Water and Wastewater Constituents 

 Wastewater is a mixture of water and dissolved or suspended solids. Raw 

wastewater includes a variety of physical, chemical and biological constituents 

(Tchobanoglous et al. 2002). These are described below. 

 

1.  Physical characteristics 

The physical characteristics of wastewater include total solids that are composed 

of floating, colloidal and settle able particles. Other important physical characteristics 

include turbidity, color, temperature, conductivity, density, specific weight and specific 

gravity. 

 

2. Chemical characteristics 

The chemical characteristics of wastewater are mainly divided into inorganic and 

organic. Inorganic constituents include nutrients, and metallic and non- metallic 

constituents. Organic chemical constituents are represented by Bio-Chemical Oxygen 

Demand (BOD) and Chemical Oxygen Demand (COD) parameters. 

 

3. Biological Characteristics 

The biological characteristics of wastewater include pathogenic organisms of 

human and animal origin.  Organisms present in wastewater include bacteria, fungi, 

algae, protozoa, and viruses 

 

 Among these characteristics, the biological characteristics are of fundamental 

importance because they include disease causing pathogenic bacteria of human origin. 

Potential infectious agents in untreated wastewater include bacteria, protozoa, helminths 

and viruses (Tchobanoglous et al. 2002). 
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 2.2 Indicator Organisms for Fecal Contamination of Water 

In early 1880’s it was realized that pathogenic bacteria from human origin cause 

fecal contamination in water (Huber 1971). Fecal indicator organism are therefore, used 

as measures of surface water and wastewater quality. The Environmental Protection 

Agency (EPA) has noted that the occurrence of these fecal indicative in water is an 

indication of potential presence of pathogenic organisms capable of posing a threat to 

public health (EPA, 2006). Fecal indicator organisms include total coliforms, fecal 

coliforms, enterococci and Escherichia coli (Tchobanoglous et al. 2002). These 

organisms the natural inhabitants of gastrointestinal tracts in humans and warm-blooded 

animals and are discharged into wastewater treatment plants through human feces. Fecal 

indicators have also been found responsible for various diseases including cholera, 

typhoid, hepatitis, diarrhea and endocarditis (Gorbach et al. 1971; Gorbach et al. 1975; 

Sack et al. 1971; Aggarwal and Krawczynski 2000; Bajracharya et al, 2006). 

2.2.1 Fecal coliforms 

Fecal coliforms are gram-negative bacteria that live in the digestive tract of warm-

blooded animals and humans (Qasim, 1998). They are the indicators of potentially 

pathogenic bacteria from fecal origin (Asano, 1998).  Fecal coliforms are excreted in the 

feces by humans and animals and ultimately reach wastewater treatment plants. Hence, a 

huge amount of fecal coliforms are observed in raw wastewater. The numbers of fecal 

coliform bacteria that have been reported in municipal wastewater influent and effluent 

samples are summarized in Table 2.1. 

2.2.2 Escherichia coli 

Escherichia coli (E.coli) are used as indicators of microbiological quality of 

water. They are gram-negative bacteria and they are found naturally in both human and 

animal intestines. Usually E. coli plays a vital role in digestion and helps the body to 

absorb important vitamins from food. E. coli has several strains and most of these strains 

are human friendly but few like E. coli 0157:H7 are pathogenic to humans. Several 

intestinal and extra intestinal infections such as urinary tract infection, meningitis and 

diarrhea are caused by E.coli 0157:H7 (Sussman 1997; Cherubin et al, 1981). Commonly 
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observed E. coli numbers in municipal wastewater influent and effluent are summarized 

in Table 2.1. 

 

Table 2.1 Reported Bacterial Concentrations in Municipal Wastewater Treatment 

Plants 

Sampling Locations Reference Bacteria Type 

(cfu*/ml) Influent Final Effluent   

Fecal coliforms 

 

Escherichia coli 

 

Enterococci 

 

5.0 x 105 

1 x 104  - 1.0×106 

6.1 x 104 

 

1.8 x 104 

1.0 x 102  - 1.0 x 103 

1.4 x 103 

- 

2.3 x 102 

 

1.5 x 102 

- 

Gallert et al, 2005 

Tchobanoglous et al, 2002 

Reinthaler et al, 2002 

 

Gallert et al, 2005 

Tchobanoglous et al, 2002 

   * cfu = Colony forming units 

2.2.3 Enterococci 

Enterococcus is a gram-positive bacterium commonly present in human intestines. 

Enterococci have been recognized as potentially pathogenic bacteria for humans for 

many years (Gilmore, 2002). The enterococci species E. faecalis and E. faecium have 

been identified as the most prevalent species responsible for clinical infections in humans 

(Gilmore 2002). Infections commonly caused by enterococci include endocardititis, 

bacteremia, urinary tract infections and intra-abdominal pelvic and soft tissue infections 

(Gilmore 2002). Many infecting strains originate in human intestines (Murray 1990). 

Table 2.1 shows the typical numbers of enterococci population found in influent and 

effluent wastewater streams in municipal wastewater treatment plants. 

2.3 Emerging Contaminants of Concerns – Antibiotics in Wastewater 

Antibiotics are used to treat a wide spectrum of bacterial infections. However, 

incomplete metabolism in humans has resulted in release of large amounts of 

antimicrobial compounds into wastewater treatment plants (WWTPs). Recent studies 

have discovered trace level concentrations of antibiotics in WWTP effluents and surface 
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waters (Kolpin et al. 2002; Christian et al. 2003; Miao et al. 2004; Koch et al. 2005; 

Close. 2007). Long-term exposure of microorganisms to low concentrations of antibiotics 

(ng/L to µg/L) in wastewater and surface water has the potential for the development of 

antibiotic resistance in these organisms (Gilliver et al. 1999; Khachatourians 1998; Smith 

et al. 1999).  

2.4 Antibiotic Resistant Microorganisms 

Antibiotic resistance is the ability of microorganisms to withstand the effects of 

antibiotics. The development and proliferation of antibiotic resistance in bacteria is of 

public health concern because a patient can develop an antibiotic resistant infection by 

contacting a resistant organism, or by having a resistant microbe emerge in the body as 

treatment with antibiotic begins (Lewis 1995).  

In 1970, non-medical uses of antibiotics were questioned and antimicrobial agents 

were described as potential environmental contaminants and a threat to public health 

(Huber 1971). Since that time, several studies have reported the occurrence of antibiotic 

resistant organisms in environmental samples and advocated a global public health 

concern due to these bacteria (Pillai et al. 1997; Ash et al. 2002). 

The important mechanisms by which microorganisms exhibit resistance to 

antibiotics include drug inactivation or modification, alteration of the target site, 

alteration in the metabolic pathway, and reduced drug accumulation (Katzung 2004). 

These mechanisms are described in more detail in the following paragraphs and shown in 

Figure 2.1. 

 

Drug inactivation or modification : Resistant bacteria synthesize and secret enzymes 

which affect the antimicrobial activity of the antibiotics. For example β -lactamases 

synthesized by antibiotic resistant bacteria hydrolyze the β -lactone ring of penicillin 

thereby inactivating the antibiotic (Katzung 2004). 

Alteration of target site:  Penicillin acts on bacteria by attaching to penicillin binding 

proteins (PBP), which are essential components for synthesis of bacterial cell wall.  

Bacteria develop resistance to penicillin either by the overproduction of PBPs or by 

synthesis of PBPs, which have low affinity to penicillins (Katzung 2004). 
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Alteration of metabolic pathway: Bacteria are able to modify their metabolic pathways 

in order to evade the action of antibiotics. For example, sulfonamides inhibit the 

synthesis of folic acid, and sulfanomide resistant bacteria develop alternate routes for 

synthesis of folic acid or derepress its synthesis (Katzung 2004). 

Reduced drug accumulation: Bacteria developing resistance to antibiotics are able to 

reduce the uptake of the antibiotic by either altering the permeability of the drug or by 

enhancing active efflux of the drug (Katzung 2004). 

 

Figure 2.1 Antibiotic Resistance Mechanisms 
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Yim, (2007) 

 

Previously it was believed that resistance in bacteria was acquired by spontaneous 

mutation, which is called as primary resistance. The wide spread development of multiple 

antibiotic resistance in many species of bacteria led researchers to believe that another 

mechanism beyond spontaneous mutation was responsible for the acquisition of antibiotic 

resistance. The mechanism responsible for the development of resistance was through 

lateral or horizontal gene transfer. Horizontal gene transfer (HGT) has three possible 

mechanisms. Transduction, transformation and conjugation shown in Figure 2.2. 
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Transduction occurs when bacteria-specific viruses or bacteriophages transfer DNA 

between two closely related bacteria. Transformation is a process where parts of DNA are 

taken up by the bacteria from the external environment. This DNA present in the external 

environment is due to death of another bacterium.  Conjugation occurs when there is 

direct cell-cell contact between two bacteria and transfer of small pieces of DNA called 

plasmids takes place (Yim 2007). 

 

Figure 2.2 Horizontal Gene Transfer 
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Yim, (2007) 

 

Recent studies have shown presence of antibiotic resistant bacteria in wastewater 

and surface waters.  Gallert et al (2005), observed multi-resistant antibiotic fecal 

coliforms and enterococci in influent and effluent wastewater from treatment plants. 

Multiple anitibiotic resistant organisms have been observed in wastewater treatment 

plants across the world. More than 20 % of fecal coliforms were observed to be resistant 

to ampicillin, chloramphenicol, sulfanomide, tetracycline and streptomycin in one of the 
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treatment plant effluents in Finland (Niemi et al. 1983). Other studies across the world 

have revealed that fecal coliforms and E. coli in raw sewage were resistant to ampillicin, 

gentamycin, kanamycin, neomycin and streptomycin (Qureshi and Qureshi 1991). 

 Enterococci that were resistant to ciprofloxacin, sulfamethoxazole/trimethoprim 

and vancomycin at minimum inhibitory concentrations were also observed in raw and 

treated effluent wastewater (Gallert et al. 2005). E.  coli were resistant to a wide range of 

antibiotics in raw and treated sewage (Hassani et al, 1992). Recent studies have identified 

fluoroquinolone resistant E. coli isolates in leukemia patients (Kern et al. 1994). 

Antibiotic resistance provides a survival benefit to microorganisms and makes it 

difficult to eliminate the infections caused by them. Infections caused by antibiotic 

resistant bacteria are hard to treat.  Hence, physicians have to prescribe higher dosage of 

alternative antibiotics to cure the infections. High doses have side effects and the 

potential to produce more antibiotic-resistant strains of bacteria. Hence, there is a need to 

study antibiotic resistance patterns in wastewater bacteria. 

2.5 Target Antibiotics 

Ciprofloxacin (CIP), sulfamethoxazole/trimethoprim (SXT) and vancomycin 

(VAN) were selected as the target antibiotics for this work. The rationale for choosing 

these compounds as target antibiotics was based on past work in KSU’s environmental 

engineering laboratories (Koch et al. 2005; Close 2007) which had reported the 

occurrence of CIP, sulfamethoxazole (SMX) and azithromycin (AZI) in municipal 

wastewater treatment plants. This made it likely that the microbial biomass in these plants 

also included antibiotic resistant strains of bacteria.  

Trimethoprim is used in combination with sulfamethoxazole and was added as a 

target antibiotic in this study. Vancomycin was selected because enterococci were 

resistant to many antibiotics and VAN is the only drug that is effective to treat the 

infections caused by resistant enterococcus bacteria (Wegener et al, 1999). These target 

antibiotics are described in further detail in the following sections. 

2.5.1 Ciprofloxacin 

Ciprofloxacin is a widely prescribed antibacterial agent belonging to the 

fluoroquinoline group and is used to treat infections caused by gram-negative and gram-
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positive bacteria (Katzung 2004). CIP is effective in treating patients suffering from 

cirrhosis (Hsieh et al., 1998).  It is also used to treat urinary tract infections, skin and 

bone infections, gastrointestinal infections caused by multi-drug-resistant organisms, 

lower respiratory tract infections, febrile neutrophenia, and intra-abdominal infections 

(Davis et al, 1996).  Table 2.2 summarizes the reported concentration of CIP in 

wastewater and surface waters.  

 

Table 2.2 Reported Antibiotic Concentrations Observed in Wastewater and 

Surface Water 

Antibiotic Location Concentration Reference 

Ciprofloxacin Plant Effluent 36 – 106 ng/L Golet et al, 2002 

Sulfamethoxazole Plant Effluent 6000 ng/L Giger et al, 2003 

Trimethoprim Plant Effluent 154 ng/L Hernando et al, 2005 

Ciprofloxacin Surface Water 12 ng/L Christian et al, 2003 

Sulfamethoxazole Surface Water 40 - 200 ng/L Christian et al, 2003 

Trimethoprim Surface Water 6 - 70 ng/L Christian et al, 2003 

Vancomycin Surface Water 4.8 ng/L Mulroy, 2001 

 

2.5.2 Sulfamethoxazole/Trimethoprim 

  Sulfamethoxazole is a sulfanomide group of antibiotic and trimethoprim is a 

synergist of the sulfonamide group (Katzung 2004). Trimethoprim is used in combination 

with other drugs. SXT is used to treat patients suffering from Wegener’s granulomatosis, 

is a rare disease that primarily affects the upper respiratory tract, lungs and kidneys. This 

disease is characterized by inflammation in various tissues including blood vessels (Israel 

2006). SXT is also used to treat the human immune deficiency virus (HIV) infection and 

pneumonia caused by Pneumocystis carinii (Carr et al. 1992). Concentrations of 

sulfamethoxazole and trimethoprim observed in wastewater effluent and surface waters 

are shown in Table 2.2. 



 

 10 

2.5.3 Vancomycin 

Vancomycin is a glycopeptide antimicrobial agent and is active against infections 

caused by mainly gram-positive bacteria (Bauer 2001). It is used as a “last resort” 

antibacterial agent. When treatment with other antibiotics has failed, antibiotic resistant 

enterococci can be treated with vancomycin. Vancomycin inhibits synthesis of a cell wall 

and acts synergistically with aminoglycosides for organisms such as enterococci (Briles 

et al. 2006). VAN is used to treat infections like pseudo membranous colitis and 

infections caused by susceptible organisms resistant to penicillin’s (methicillin-resistant 

staphlococcus aureus and multiresistant staphylococcus epidermidis) (Gibson and Owen 

1998; Nagarajan 1994). Table 2.2 shows the observed concentration of vancomycin in 

surface water. 

2.6 Minimum Inhibitory Concentration 

Antibiotics, just like other toxic agents, exhibit a dose-response relationship in 

bacterial cultures. The response typically is mortality. Figure 2.3 illustrates a hypothetical 

dose response curve. Exposure to an antibiotic results in a reduction in observed bacterial 

concentration or population. The lowest concentration in a dose-response assay at which 

no bacteria are affected is called the ‘no observed adverse effect level’ or NOAEL. The 

lowest antibiotic concentration at which a significant decrease in the bacteria 

concentration is noted is considered to be the ‘lowest observable adverse effect level’ or 

LOAEL. As the antibiotic concentration is increased, the concentration resulting in a 50% 

kill of the bacterial population is described as the lethal concentration for 50% kill or 

LC50. NOAEL, LOAEL and LC50 depend on the type of bacteria, type of antibiotic and 

environmental conditions, including matrix chemistry. 

Bacteria may be considered ‘susceptible’ to antibiotic resistance at a given 

concentration if a significant fraction survives exposure to the antibiotic at that 

concentration. These clinical concentrations for various antibiotics were described by Wu 

(1995) and are summarized in Table 2.3.The experimental protocol for determination 

minimum inhibitory concentration (MIC) was obtained from Andrews (2001). Bacteria 

susceptible to antibiotic resistance require a high dose of antibiotic for deactivation. 

Bacteria that grow at exposures lower than the susceptible level of an antibiotic are 
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considered potentially antibiotic resistant.  The Minimum inhibitory concentration (MIC) 

is defined as the lowest concentration of antibiotic that inhibits the visible growth of 

bacteria (Andrews, 2001).  

 

Figure 2.3 Antibiotic Dose-Response Curve for Resistant Bacteria 

 
MIC = Minimum inhibitory concentration, NOAEL = Non-observable adverse effect level, 

LOAEL = Low-observable adverse effect level 

 

Bacteria that are observed to grow at MIC level exposure are defined as 

antibiotic-resistant organisms while those that grow at even higher antibiotic exposures 

are considered highly resistant to the antibiotic. Bacteria that grow at exposures higher 

than the ‘susceptible concentration’ but lower than MIC are considered to have 

intermediate resistance to the antibiotic. MIC is important in the field of medicine to 

confirm the resistance of microorganisms to an antibiotic and to monitor the activity of 
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newly developed antibiotics. MICs for the target antibiotics used in this study are 

tabulated in Table 2.3. 

 

Table 2.3 Equivalent Minimum Inhibitory Concentrati on Breakpoints 

Antibiotic Susceptible Level 

(mg/L) 

Resistant Level 

(mg/L) 

Ciprofloxacin < 1 > 4 

Sulfamethoxazole/Trimethoprim < 2/38 > 8/152 

Vancomycin < 8 > 32 

Wu, (1995) 

2.7 Antibiotic Resistant Enterococci 

The past few years have witnessed an increasing interest in the study of antibiotic 

resistant enterococci.   Enterococci are the second or third most important bacterial genus 

responsible for hospital infections (Klare et al, 2003). Enterococci are intrinsically 

resistant to a wide range of antibiotics (Gilmore, 2002). Hence, this has always limited 

the choice of antibiotics against these organisms available for use. Nosocomial infections 

are caused by enterococci and, therefore, antibiotics have been used in greater frequency 

in hospitals. Murray (1999) has observed in his research that 12 species of Enterococci 

are pathogenic for humans including most common human isolates Enterococcus faecalis 

and Enterococcus faecium.  Enterococcus faecalis causes 80% to 90% of human 

enterococcal infections, while E. Faecium accounts for a majority of the remainder 

(Moellering, 1992; Murray 1990; Schnell 1992) 

 Resistance in enterococci was developed by acquiring resistance genes on 

plasmids or transposons from other organisms or by spontaneous mutations (Gilmore, 

2002). Resistant Enterococci were entering the environment through wastewater effluents 

and hospital wastewater. 
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CHAPTER 3 - RESEARCH OBJECTIVES 

The primary objective of the study was to analyze the antibiotic resistance 

patterns in municipal wastewater bacteria. Another objective of the study was 

enumeration and identification of cultured enterococci.  Based on previous studies shown 

the prevalence of antibiotics in WWTP, it was hypothesized that: 

 

1. Bacteria in WWTPs, specifically fecal coliforms, E.coli and enterococci 

include strains that are resistant to antibiotics such as ciprofloxacin, 

sulfamethoxazole/trimethoprim and vancomycin. 

2. Activated sludge process is capable of removing antibiotic resistant bacteria 

from the aqueous phase. 

3. UV disinfection effectively removes antibiotic resistant bacteria. 

4. Biological treatment has effect on species diversity in the enterococcal 

population. 

5. Exposure to high levels of sulfamethoxazole/trimethoprim and ciprofloxacin 

does not affect species diversity in the enterococcal population. 
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CHAPTER 4 - MATERIALS AND METHODS 

4.1 Wastewater Sampling 

The municipal wastewater treatment plant selected for this study processes 

approximately 5 million gallons of water per day using a completely mixed activated 

sludge process (CMAS) with nitrification. CMAS is a biological process that utilizes 

microorganisms to transform the dissolved and particulate organic matter present in the 

wastewater. Carbonaceous organic matter in wastewater serves as an energy source for 

the production of new cells in a mixed population of microorganisms. 

Preliminary treatment (Figure 4.1) at this plant consists of bar screening and 

aerated grit removal; the plant uses no primary clarifier. The wastewater treatment 

facility is operated with a hydraulic retention time (HRT) of 6 to 8 h and a sludge age or 

mean cell residence time (MCRT) ranging from of 4 days in summer and 7 days in 

winter.   A portion of the settled biosolids from the activated sludge process is in recycled 

into the aerator of the activated sludge process through the help of splitter box. The 

excess biosolids produced during treatment are sent to the aerobic digesters for 

stabilization before disposal. Digesters are operated at a detention time of 107 days and 

the digested sludge is land-applied on agricultural fields. The secondary clarifier effluent 

is disinfected by allowing the water to flow through channels containing ultra violet (UV) 

lamps. UV disinfection destroys bacteria by disrupting their genetic material (Chang et al, 

1985) and the treated final effluent is released into the receiving stream.  

4.1.1 Sample Collection 

Wastewater samples were collected for the study from a nearby municipal 

wastewater treatment plants. The process schematic of this plant is illustrated in figure 

4.1. Sampling was performed at various locations in the WWTP including the influent 

(raw sewage), secondary clarifier (SC) effluent and the final plant effluent after UV 

disinfection. Twenty-four hour composite samples were obtained at the influent and 

disinfected effluent sampling locations. The composite sampler (Sonford model TC-2, St. 

Paul Park, MN) utilized magnetic flow meters and removed a 250 ml sample from the 

screened influent flow after every 20,000 gallons of flow during a 24-hour sampling 
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period. Grab samples were collected from the secondary clarifier weir (after biological 

process) with a help of a container.  

4.1.2 Sample Transport and Storage 

Samples were collected in 150 ml pre sterilized glass bottles and transported to 

the laboratory in a cooler. The cooler was filled with ice packs to preserve samples during 

transportation. Glass bottles used for the collection of samples were sterilized in an 

autoclave for 20 minutes using saturated steam under a pressure of 15 psi and a chamber 

temperature of at least 1210 C (2500 C). Samples transported to the laboratory were stored 

at 40 C in the refrigerator and analyzed on the day of collection. 

 

Figure 4.1 Process Flow Schematic of Municipal Wastewater Treatment Plant. 

Points A, B and C mark Sampling Locations 

 

 

 

 

 

 

 

 

 

 

4.2 Target Antibiotics 

This work focused on four antibiotics. Two of these compounds (CIP and SMX) 

were selected because a pervious study conducted at the plant had observed trace levels 

of these pharmaceuticals in the influent and effluent stream.  Trimethoprim was selected 
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because it is used synergistically with SMX. VAN was also selected as a target antibiotic 

because it is used as “last resort” for the patients infected with gram-positive bacteria. 

Ciprofloxacin hydrochloride was purchased from ICN Biomedicals Inc (Irvine, CA) 

while vancomycin hydrochloride and sulfamethoxazole/trimethoprim were obtained from 

Sigma Aldrich (St. Louis, MO). Selected properties of the target antibiotics are tabulated 

in Table 4.1. 

A stock solution of CIP was prepared by dissolving 100 mg of ciprofloxacin 

hydrochloride into 100 ml of distilled deionized water in a 250 ml volumetric flask. The 

antibiotic was allowed to dissolve completely for 5 min, transferred into a 250 ml serum 

bottle and labeled as CIP 100 mg/100 mL stock solution with the preparation date.  The 

serum bottle was closed with Teflon lined rubber stopper, capped with aluminum crimp 

caps and stored at room temperature as recommended by the manufacturer. 

A stock solution of SXT was prepared by dissolving 1900 mg of 

sulfamethoxazole and 100 mg of trimethoprim into 100 ml of DMSO in a 250 ml 

volumetric flask.  The antibiotic was allowed to dissolve completely for 5 min and 

transferred into a 250 ml serum bottle labeled as SMT 100 mg/100 ml.  The serum bottle 

was stoppered, capped   and stored at room temperature as recommended by the 

manufacturer. 

A stock solution of VAN was prepared by dissolving 100 mg of vancomycin in 

100 ml of 1:1 ethyl alcohol and de-ionized distilled water in a 250 ml volumetric flask. 

The antibiotic was allowed to dissolve for 5 min and transferred into a serum bottle 

labeled VAN 100 mg/100 ml stock solution.  The serum bottle was stoppered, capped and 

stored at 4°C in the refrigerator as recommended by the manufacturer. 
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Table 4.1 Selected Properties of Target Antibiotics 

Antibiotic 
Type/ 
Properties 

Ciprofloxacin Sulfamethoxazole Trimethoprim Vancomycin 

Molecular 
structure 
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Empirical 
formula 

C17H18FN3O3 C10 H11N3O3S C14H18N4O3 
 

C66H75Cl2N924.HCl 
 

Molecular 
weight 

331.4 gram/mole 
 

253.28 gram/mole 
 

290.32 gram/mole 1485.71 gram/mole 

Form Powder Powder Powder Powder 

Class of 
antibiotics 

Fluoroquinolone 
 

Sulfonamide Other Antimicrobial  
Agent 

Glycopeptide antibiotic 
 

Solvent Water 
 

Water Dimethyl sulfoxide 
(DMSO)  

Ethyl alcohol 
 

Mode of action Inhibits DNA gyrase 
 

Inhibits para-amino benzoic 
acid (PABA) 

Interferes with  
dihydrofolate reductase 

Interferes with cell wall  

Gram type Gram-negative  Gram-negative Gram-negative Gram positive  
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4.3 Bacterial Enumeration 

The membrane filter technique was used to isolate discrete colonies of bacteria 

from the wastewater. This method was easy to perform with large volume of samples and 

results could be obtained rapidly compared to other methods (Hobbie et al. 1977). 

Enterococcus, fecal coliforms and Escherichia coli were the target organisms that were 

enumerated by the above-specified technique. The target organisms are fecal indicators of 

water quality and have the potential to develop antibiotic resistance. 

4.3.1 Preparation of Selective Media Containing Antibiotics 

mFC Agar:  Membrane fecal coliform (mFC) agar is a selective medium used to 

enumerate fecal coliforms.  This media was purchased in powder form from Fisher 

Scientific (Hampton, NH). The media supports growth of fecal coliforms while inhibiting 

the growth of other organisms. The mFc agar solution was prepared by adding 52 grams 

of mFc agar powder to 1 L of distilled water in a 2 L conical flask.  The solution was 

stirred to dissolve any clumps of agar.  A 1% rosolic acid solution was prepared by 

adding 100 mg of rosolic acid (4-[bis (4-hydroxyphenyl) methylene]-2, 5-cyclohexadien-

1-one) powder to 10 ml of 0.2N NaOH solution. Rosolic acid inhibits bacterial growth in 

general, except for fecal coliforms. Ten milliliters of the 1% solution of rosolic acid was 

added to 1 L of agar and the solution continuously stirred and heated for 10 min. The 

heated agar solution was allowed to cool to 50o C. Precise amounts of the selected 

antibiotics (CIP, SMT, VAN) were added to the agar solution to achieve the 

predetermined antibiotic concentration in solution. Ten milliliters of agar solution were 

transferred into presterilized Petri dishes (Fisher Scientific, Hampton, NH) and the petri 

dishes with agar solution were allowed to dry for 24 h in a laminar flow hood. The dishes 

were stored in the refrigerator at4°C until plating. 

KF streptococcus Agar: KF streptococcus agar is a selective medium used to 

grow fecal enterococci bacteria. This medium was purchased in powder form from Fisher 

Scientific (Hampton, NH).  KF agar supports the growth of fecal enterococci while 

inhibiting the growth of other organisms. KF agar solution was prepared by adding 76.5 

grams of the agar to 1L of distilled water in a 2L conical flask. The solution was heated 

and stirred continuously for 5 minutes. The agar solution was thereafter cooled to 50o C 
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and modified by adding 10 ml of 1% TTC (2,3,5 triphenyltetrazolium chloride). The 1% 

TTC (fisher Scientific) solution was prepared by adding 10 mg of TTC powder to 10 ml 

of distilled water.  TTC was used as a redox indicator in agar solution to differentiate the 

bacteria. Predetermined amounts of the selected antibiotics (CIP, SXT, and VAN) were 

added to the agar solution. Ten milliliters of KF agar solution were transferred into each 

presterilized petri dish and the dishes were allowed to dry for 24 h and there after stored 

at 4o C. 

 Nutrient Agar with MUG Medium: MUG (4-methyl umbrelliferylβ -D 

gluconoride) media (Fisher Scientific, Hampton, NH) was used for the detection and 

enumeration of Escherichia coli in wastewater sample. Approximately, 23.1 grams of 

nutrient agar in 1 L distilled water was boiled to dissolve completely. The agar solution 

was sterilized at 121o -124 o C for 15 minutes and allowed to cool to 50o C. Precise 

amounts of the selected antibiotics (CIP, SXT, and VAN) were added to the nutrient agar 

and the solution was stirred for few seconds to ensure that antibiotics were completely 

distributed in the solution. Ten millimeters of nutrient agar was transferred into each pre-

sterilized Petri dish. The dishes were allowed to dry for 24 h and stored at 4o C. 

5.3.2 Membrane Filtration Technique 

  Individual bacteria are difficult to count because of their small size. Direct counts 

of bacteria are possible under the microscope but it requires a lot of time and expertise. 

One of the easiest methods to count bacterial colonies in water is by spreading a sample 

over a wide area of culture media and counting the colonies that grow on it. When the 

bacteria are spread on the media, each bacterial cell in the original sample produces a 

single colony of daughter cells.  However, this approach has difficulties if the solution 

has a large number of bacteria because the number of colonies produced can overlap one 

another on the petri dish. Such challenges are usually overcome by using serial dilution 

techniques (Sahm and Washington 1991).  

Samples collected from the WWTP were diluted in Benzer dilution fluid (BDF). 

The BDF solution consisted of 7 grams of NaCl and 1 gram of Trypticase soy agar mixed 

in 1 L of distilled water. BDF solution was sterilized in the autoclave and used for 

dilution of wastewater samples.  Five pre-sterilized test tubes were filled with 9 ml of 
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BDF solution. Sample bottles were shaken in order to evenly distribute the bacteria 

present in the wastewater. One-milliliter aliquot of the sample was transferred into the 

first tube and mixed to produce a 1/10 dilution.  One mL of diluted sample from this first 

tube was transferred to the second tube and mixed to produce a 1/100 dilution and the 

process was repeated until the 1/1000, 1/104, 1/105 dilutions had been prepared in the five 

tubes. Aliquots were transferred using sterilized pipettes. The plates were labeled with 

sampling location, date and sample number. The samples were filtered using a 0.45 µ m, 

47 mm, diameter, cellulosic white grid filter (Fishers scientific, Hampton, NH) placed on 

fa 3-prong filter holder (Figure 4.2b).  Approximately 25 ml of distilled water was first 

added to wet the filter paper.  Precise volumes of diluted samples were then transferred 

on to the filter (Figure 4.2c) 

A vacuum pump system was used to expedite the passage of water through the 

filter while bacteria were collected on the membranes. Filters were removed, carefully 

and transferred with the help of sterilized forceps on to the appropriate selective media 

plates (Figure 4.2d). All inoculated agar plates were incubated in a temperature controlled 

shaker an (Environ Shaker 3597, Lab-Line Instruments Inc IL) at temperatures and time 

as shown in Table 4.5.   

 

Table 4.2 Incubation Time and Incubation Temperatures for Target Organisms 

Type 
of Bacteria 

Culture Medium Incubation 
Temperature 

Incubation Time 
 

 
Fecal coliforms 
 
Fecal enterococcus 
 
Escherichia coli 

 
mFC agar 

 
KF agar 

 
Nutrient MUG agar 

 
44.5o C 

 
35o C 

 
37 o C 

 
24 h 
 
48 h 

 
2 – 4 h 
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Figure 4.2 Bacterial Enumeration (a) Culture Media on Petri Dishes; (b) Filter Holder; (c) Sample Filtration; (d) 

Transfer of Filter Membrane on Culture Media; (e) Incubation; (f) Fecal Coliforms on Filter Membrane; (g) Dark 

Field Quebec Colony Counter; (h) E. coli under UV Light 

  

 

 

 

 

 

 

        (a)         (b)      (c)          (d)                              

 

 

 

 

 

 

 

                   (e)         (f)      (g)          (h)
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Presumptive enterococcal colonies were sub-cultured on trypticase soy agar 

(TSA; Becton Dickinson, MA, USA), incubated at 37oC for 24 h and stored at 4oC for 

further analysis. 

4.4 Identification of Enterococci 

Multiplex or single polymerase chain reactions (PCR) were used to identify 

enterococci at species level. PCR is an approach, which allows the amplification of a 

short, well-defined part of a deoxyribonucleic acid (DNA) strand into millions. This can 

be a single gene, just a part of a gene. DNA is double-stranded and is measured in 

complementary DNA building blocks (nucleic acids) called base pairs (bp). PCR can 

amplify only short DNA fragments, usually up to 10-kilo base pairs (1000 bp).  

PCR requires following basic components: 

• Template DNA, which contains the region of the DNA fragment to be amplified; 

• Forward and Reverse primers, which determine the beginning and end of the 

region to be amplified;  

• DNA polymerase, which synthesizes a DNA copy of the region to be amplified;  

• Nucleotides, from which the DNA polymerase builds the new DNA; and 

• Buffer, which provides a suitable chemical environment for the DNA polymerase  

The PCR reaction is carried out in small reaction tubes (0.2-0.5 ml volumes) inserted 

into a thermal cycler. This machine heats and cools the reaction tubes within it to the 

precise temperature required for each step of the reaction. A heated lid is placed on top of 

the reaction tubes to prevent evaporation of the reaction mixture.  PCR is an especially 

valuable tool because the reaction is highly specific, easily automated, and capable of 

amplifying minute amounts of sample.  

4.4.1 Multiplex Polymerase Chain Reaction 

Species-level identification was performed using multiplex PCR for four common 

enterococcus species: E. faecalis, E. faecium, E. casseliflavus and E. gallinarum. Briefly, 
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the multiplex PCR was performed with described primers (Table 4.6) targeted at the  D-

alanine-D-alanine ligase (ddl) genes of E. faecalis and E. faecium (Dutka-Malen et al. 

1995), the vanC1 gene of E. gallinarum, and the vanC2/C3 gene of  E. casseliflavus  

(Kariyama et al. 2000) in a final volume of 25 µL consisting of 23 µL of master mix (10x 

buffer, 1.5 mM  of MgCl2, 0.25 mM each deoxynucleotide triphosphate (dATP, dCTP, 

dGTP,and dTTP), 1.2 U of Taq DNA polymerase) and 2.0 µL of template DNA.  

Overnight bacterial cultures on LB agar were used to extract the DNA.  For DNA 

template, 1-2 colonies of pure culture were suspended in a mixture of 25 µL of ddH2O 

and 25µL of chelex in micro centrifuge tubes (Fisher Scientific, Fairlawn, NJ). Tubes 

were boiled for 10 min at 100o C. The microcentrifuge tubes were centrifuged (Centrifuge 

5415 D, Eppendorf, Westbury, NY) at 7,200 rpm for 1 min.  The supernatant obtained 

from centrifuging contained the template DNA.  

 

Table 4.3 Multiplex PCR Primers used for Detection of Vancomycin Resistance 

Enterococci 

Primer 

Name 

Positive 

Control  

Sequence 5’���� 3’ Primer 

Conc. 

(pM) 

Product 

  (bp) 

E. 

 gallinarum 

ATCC 

49579 

GGTATCAAGGAAACCTC 

CTTCCGCCATCATAGCT 

2.5  

 

822 

E. 

casseliflavus 

ATCC 

25788 

CGGGGAAGATGGAGTAT 

CGCAGGGACGGTGATTTT 

2.5  

 

484 

 

E.  

faecalis 

ATCC 

19433 

ATCAAGTACAGTTAGTCTTTATTAG 

ACGATTCAAAGCTAACTGAATCAGT 

5.0  941 

E.  

faecium 

ATCC 

19434 

GGATTAGATACCCTGGTAGTCC 

TCGTTGCGGGACTTAACCCAAC 

1.25  658 

 

16S rDNA 

    

   - 

GGATTAGATACCCTGGTAGTCC 

TCGTTGCGGGACTTAACCCAAC 

2.5  320 

 

Amplification was conducted using a Peltier Thermal Cycler (MJ Research, 

Waltham, MA, USA) using the process described previously (Kariyama et al. 2000).  
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Fifteen microliters of PCR product was electrophoresed on a 3.0% agarose gel (Fisher 

Scientific, Fairlawn, NJ) containing 0.05% of ethidium bromide and visualized under UV 

light using the Bio-Rad Gel Doc imaging system (Bio-Rad Laboratories, Hercules, CA). 

Control strains consisting of E. faecalis ATCC 19433, E. faecium ATCC 19434, E. 

gallinarum ATCC 49579 and E. casseliflavus ATCC 25788 were included with each 

PCR assay.  E. mundtii ATCC 43186 was used as negative control. 

4.4.2 Single Polymerase Chain Reaction 

For unidentified isolates, the sodA gene encoding the manganese-dependent 

superoxidase dismutase was amplified by single PCR using sodA degenerate primers: 

sodA forward d1 (5’-CCITAYICITAYGAYGCIYTIGARCC-3’) and sodA reverse d2 

(5’-ARRTARTAIGCRTGYTCCCAIACRTC-3’) (Poyart et al, 2000). For screening of 

SodA gene, 1-2 colonies of pure culture from LB agar (Becton Dickinson, MA) was 

suspended in a mixture of 25 µL of ddH2O and 25µL of chelex in microcentrifuge tubes. 

The suspension was boiled for 10 min, and then centrifuged for 5 min at 7,200 rpm to extract 

DNA. Two µL of extracted DNA was used as a template for PCR.  The master mix 

contained: 100 nM of each primer, 400 µM dNTPs, 3mM MgCl2 and 0.5 unit Taq 

polymerase (all from Promega, Madison, WI) in a final volume of 25 µL.  Amplification 

was conducted using a Peltier Thermal Cycler (MJ Research, Waltham, MA) with the 

program described previously (Poyart et al, 2000). PCR products were purified using the 

GFX PCR DNA and gel band purification kit (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK) and visualized under UV light (Figure 4.3) on a 1.0% agarose gel 

(Fisher Scientific, Fairlawn, NJ) with 0.05% of ethidium bromide. Sequencing analysis of 

the sodA gene (480 bp) wasperformed using an Applied Biosystems 3730 DNA Analyzer 

(Applied Biosystems, Foster City, CA) at the Kansas State University DNA Sequencing 

Facility using the same sodA degenerate primers used for PCR. The sequences were 

compared with the sequences in the National Center for Biotechnology Information 

GenBank database by using Basic Local Alignment and Search Tool (BLAST) (Altschul 

et al. 1990). Sequences were manually aligned and edited with Codoncode Aligner 

Version 1.3.4 (CodonCode Corporation, Dedham, MA). 
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Figure 4.3 Gel Picture for Multiplex Polymerase Chain Reaction  

 

4.5 Statistical Analysis 

The enumerated bacteria data in wastewater was analyzed using one-way analysis 

of variance (ANOVA) in a completely randomized experimental design. Means were 

compared using the least square means (LSMEANS) procedure (p value = 0.05) of a 

general linear model (PROC GLM). The comparison of influent and SC effluent samples 

for prevalence and diversity of enterococci were evaluated using chi- square analysis of 

contingency tables and Fisher’s exact test (p value = 0.05). The SAS software (SAS 

Institute 2003) statistical software used to conduct statistical analysis.  

    100 bp Ladder Enterococcus 
casseliflavus 

Enterococcus 
faecalis 

Enterococcus 
gallinarum 

Enterococcus 
faecium 
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CHAPTER 5 - RESULTS AND DISCUSSION 

This section describes the results obtained from preliminary and final experiments 

conducted to evaluate the prevalence of antibiotic resistant bacteria in municipal 

wastewater treatment systems. Preliminary experiments were performed using duplicate 

samples of raw influent and secondary clarifier (SC) effluent collected during summer 

(July-August). Final experiments were performed using triplicate samples collected from 

raw influent, SC effluent and disinfected effluent during winter (December) and spring 

(March). The average bacterial counts observed in duplicate and triplicate samples are 

illustrated in figures and discussed in this section. Controls represent enumeration of 

samples in media with no antibiotics. 

5.1 Antibiotic Resistant Bacteria in Summer Samples 

The bacterial enumeration conducted in summer was performed with duplicate 

samples. The influent wastewater temperature during the sampling period was 26°C. 

Samples were collected from the influent and the SC effluent. Fecal coliforms and 

enterococcus bacteria were grown in media containing ciprofloxacin (CIP), 

sulfamthoxazole/trimethoprim (SXT) and vancomycin (VAN) at concentrations below 

the minimum inhibitory concentration (MIC) levels specified by Wu (1995). Lower 

concentrations were evaluated to determine the no observable adverse effect level 

(NOAEL) and the lowest observed adverse effect level (LOAEL) of the pharmaceutical 

agent on the target wastewater organisms. 

5.1.1 Fecal Coliforms  

Figure 5.1 illustrates the impact of various concentrations of CIP on the growth of 

fecal coliforms obtained from the raw influent and SC effluent samples. The raw 

wastewater was found to contain approximately 2.33 x 105 cfu/mL fecal coliforms in the 

24-hr composite samples (control samples in Figure 5.1). The activated sludge 

wastewater treatment process resulted in a reduction in the aqueous fecal coliform 

concentration to approximately, 4.65 x 102 cfu/mL (2 log removal) in the SC effluent. 
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Figure 5.1 Impact of Ciprofloxacin Concentration on Fecal Coliforms in Influent 

and Secondary Clarifier Effluent Samples 
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Fecal coliforms in the influent and SC effluent wastewater samples were exposed 

to five different concentrations of CIP - 0.01, 0.05, 0.1, 0.5 and 1.0 mg/L. The fecal 

coliform population remained unaffected when exposed to CIP 0.01 mg/L; hence this 

dose was considered NOAEL under the experimental conditions.  CIP concentration of 

0.05 mg/L had a significant (p value = 0.0475) impact on the growth of fecal coliforms in 

the raw wastewater and was, therefore, considered to represent LOAEL for this 

evaluation. The CIP concentration of 0.05 mg/L reduced the bacterial count to 1.08 x 105 

cfu/mL. The LC50 for CIP exposure to fecal coliforms in the influent wastewater sample 

was estimated to be at a value of < 0.05 mg/L. Fecal coliform numbers at higher 

antibiotic exposures were reduced to approximately 3.55 x 104, 9.25 x 103, and 3.4 x 103 

cfu/mL at CIP concentrations of 0.1, 0.5 and 1.0 mg/L, respectively. SC effluent samples 

exposed to CIP 0.01 mg/L showed approximately 50 cfu/mL indicating a LC50  value of < 

0.01 mg/L in the SC effluent and LOAEL of 0.01 mg/L. It is possible that matrix effects 
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were reduced in the relatively cleaner effluent sample causing the antibiotic to be a more 

potent bactericide with a lower LC50 value. When exposed to CIP 0.05 mg/L, CIP 0.1 

mg/L, CIP 0.5 mg/L and CIP 1.0 mg/L, the SC effluent fecal coliform concentrations 

were further reduced to approximately 30 , 75, 9.0 and 3.0 cfu/mL, respectively.  

 Fecal coliform survivability in the presence of SXT was also evaluated in 

summer samples. Figure 5.2 illustrates the impact of various SXT concentrations on the 

growth of fecal coliforms obtained from the raw wastewater and SC effluent. Fecal 

coliforms cultured from influent and SC effluent samples were exposed to three different 

levels of SXT – a combination of 1 mg/L trimethoprim and 19 mg/L sulfamethoxazole 

(1/19 mg/L SXT), 2/38 mg/L and 10/190 mg/L. In influent samples, the SXT level of 

1/19 mg/L showed significant (p value = 0.0285) impact on the growth of fecal coliforms 

and was, therefore, considered to represent the LOAEL. Data obtained for SXT 

concentration of 2/38 mg/L showed no impact on the growth of fecal coliforms, but was 

considered an outlier.  

The LC50 for SXT exposure to fecal coliforms in the influent sample was expected 

to occur between 2/38 mg/L and 10/190 mg/L. Exposure to 10/190 mg/L of SXT (>MIC) 

reduced the fecal coliform count from 2.33 x 105 cfu/mL to 5.9 x 103 cfu/mL.  The 

bacteria that survived exposure to SXT 10/190 mg/L were considered to be resistant to 

the antibiotic. In SC effluent samples, even the lowest level of SXT exposure (1/19 mg/L) 

produced a large reduction in the coliform population. This level of SXT resulted in a 

75% kill of bacteria. Thus the LC50 value for the SC effluent was < 1/19 mg/L indicating 

greater potency of the antibiotic in the ‘cleaner’ effluent sample.  Exposing the fecal 

coliforms in the SC effluent to SXT levels of 2/38 mg/L and 10/190 mg/L reduced the 

bacterial populations to 30 and 18 cfu/mL, respectively. 

The trends shown in Figures 5.1 and 5.2 illustrate that exposure to CIP and SXT had a 

significant impact on fecal coliforms, especially at the higher antibiotic exposures 

evaluated. All CIP concentrations studied in the summer were below the MIC value of 32 

mg/L and showed fecal coliform survivals ranging from 100 to 2% with increasing CIP 

exposure. In the SC effluent samples, the bacterial survivability ranged from 20 to 2% at 

the CIP concentrations evaluated. Although the activated sludge process was successful 

in a 2-log removal of fecal coliforms, a significant amount of bacteria were still able to 
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grow at various CIP concentrations. Three percent of the fecal coliforms in the influent 

sample were found to be highly resistant to SXT at 10/190 mg/L (> MIC level). Although 

fecal coliform numbers were significantly reduced after biological treatment, the fraction 

of SXT-resistant organisms increased from 3 % to 7 % in the SC effluent sample. 

 

Figure 5.2 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal 

Coliform in Influent and Secondary Clarifier Efflue nt Samples 
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5.1.2 Enterococci 

The 24-hour composite samples of raw wastewater collected in the summer were 

found to contain approximately 3.9 x 104 cfu/mL of enterococci bacteria (control samples 

in Figure 5.3). Figure 5.3 illustrates the effects of CIP exposure on the growth of 

enterococci obtained from influent and SC effluent samples. The biological treatment was 
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very efficient in reducing enterococci concentrations. A 3-log removal was observed with 

SC effluent enterococci concentrations of approximately 12 cfu/mL. 

Enterococci were exposed to the same concentrations of CIP as fecal coliforms. 

Although exposure to a CIP concentration of 0.01 mg/L reduced the enterococci count in 

the influent sample by more than 50% to 1.7 x 104 cfu/mL, exposure to a significantly 

higher level of CIP (1.0 mg/L) showed a higher bacterial count (2.4 x 104 cfu/mL). The 

lack of a dose-response relationship for the range of CIP concentrations evaluated 

suggested that these antibiotic levels had no impact on the enterococci population in the 

influent samples. Although activated sludge treatment produced a 99.9% reduction in 

enterococci numbers, no significant impact of CIP was observed up to the level 

evaluated.  

 

Figure 5.3 Impact of Ciprofloxacin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples 
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Analogous to what was seen for CIP exposure; no dose-response trends were 

observed for enterococci bacteria in the presence of SXT. Enterococci in influent and SC 
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effluent samples appeared to remain unaffected by the presence of SXT. In fact, nearly 

100% of the enterococci population in the raw wastewater and SC effluent samples 

appeared to be highly resistant to SXT at 10/190 mg/L (> MIC level).  

 

Figure 5.4 Impact of sulfamethoxazole/Trimethoprim Concentration on Enterococci 

in Influent and Secondary Clarifier Effluent Samples  
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The enterococci bacteria in influent and SC effluent samples were also exposed to 

various concentrations of vancomycin. Figure 5.5 illustrates the impact of VAN on the 

growth of enterococci obtained from the raw wastewater and SC effluent samples. 

Vancomycin had a significant impact on the growth of enterococci in the influent even at 

the lowest exposure level of 0.5 mg/L. The VAN concentration of 0.5 mg/L reduced 

enterococci numbers to 1.75 x 103 cfu/mL producing significant difference (p value = 

0.0070) therefore, was considered as LOAEL for this evaluation of 0.5 mg/L. The LC50 

value was determined to be < 0.5 mg/L. Enterococci numbers at higher VAN exposures 

were reduced to 1.19 x 103 cfu/mL and 3.0 x 102 cfu/mL at 1.0 mg/L and 30 mg/L, 
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respectively. Thirty-one colony-forming units of enterococci per milliliter of influent 

were considered to be highly resistant to VAN at 50 mg/L (> MIC level). In SC effluent 

samples, however, no significant (p value = 0.3505) impact of VAN exposure was noted 

for doses of 0.5, 1.0, 30 and 50 mg/L. Hence, 0.5 mg/L was considered as NOAEL for 

this evaluation. Approximately 4.0 cfu/mL of enterococci were found to be highly 

resistant to VAN at 50 mg/L (> MIC level). 

 

Figure 5.5 Impact of Vancomycin Concentration on Enterococci in Influent and 

Secondary Clarifier Effluent Samples 
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Figures 5.3 to 5.5 illustrate that although the enterococci population showed no 

susceptibility to CIP and SXT, VAN was significantly more lethal to these organisms 

even at the lowest concentration studied. Although toxic effects were noted for VAN, 

some organisms were able to survive even the largest level of exposure evaluated. About 

1% of enterococci in the raw influent were highly resistant to VAN above the MIC level. 

Similarly, approximately 37 to 65% of enterococci in the SC effluent were resistant to 

VAN at MIC level. 
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5.2 Antibiotic Resistant Bacteria in Winter Samples 

Bacterial enumeration conducted in the winter season was performed with 

triplicate samples. The influent wastewater temperature during the sampling period was 

12°C. A similar array of antibiotics was used to evaluate the resistance patterns in 

wastewater organisms as in summer. An additional sampling point (the disinfected 

effluent) and another target organism (Escherichia coli) were included in the winter 

sampling protocol. Bacteria in the wastewater samples were also enumerated at higher 

antibiotic exposures (above MIC level) to probe for the presence of highly resistant 

organisms.  

5.2.1 Fecal Coliforms  

The raw wastewater was found to contain 3.50 x 105 cfu/mL fecal coliforms in 

winter, a number that was comparable to what was observed in the summer. The 

activated sludge process produced a 2-log removal of the aqueous phase fecal coliform 

concentration resulting in a population of approximately 3.233 x 103 cfu/mL in the SC 

effluent. The disinfection process was effective with no fecal coliforms discharged into 

the receiving stream in the winter. 

Fecal coliforms collected from raw influent, SC effluent and the disinfected 

effluent were exposed to CIP concentrations similar to those tested in the summer. 

However, two higher concentrations (10 mg/L and 100 mg/L) were also evaluated. Figure 

5.6 illustrates the impact of various concentrations of CIP on fecal coliform growth in the 

raw influent and SC effluent samples. No growth was observed at 10 and 100 mg/L CIP 

exposures to fecal coliforms in the influent, SC effluent or disinfected effluent.  

The fecal coliforms exposed to lower concentrations of CIP (< MIC level) showed 

a similar trend as the summer results. LOAEL for this evaluation was 0.01 mg/L and 

exhibited a significant difference (p value <0.0001) from the control. LC50 was < 0.01 

mg/L in the influent and SC effluent samples for this evaluation. No clear dose-response 

relationship was observed in influent and effluent samples for CIP exposures of 1.0 mg/L 

or less.  
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Figure 5.6 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples 
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In addition to SXT concentrations of 1/19, 2/38, and 10/190, the fecal coliforms in 

winter samples were also exposed to higher SXT levels of 100/1900 mg/L and 200/3800 

mg/L. These concentrations were above the MIC level of SXT. Figure 5.7 illustrates the 

impact of various levels of SXT exposure on the growth of fecal coliforms during the 

winter sampling.  There was a significant reduction in the number of colony forming 

units observed (p value <0.001) when fecal coliforms were exposed to SXT 1/19; this 

dose was, therefore, considered the LOAEL for this evaluation. The LC50 value for SXT 

in both samples was < 1/19 mg/L. The two highest exposures of SXT completely 

inhibited bacterial growth. Fecal coliform counts were 2.52 x105 cfu/mL and 2.2 x102 

cfu/mL in the raw and SC effluent samples, respectively, at an exposure of 10/190 mg/L 

SXT (> MIC level). Thus, approximately 4% of fecal coliforms in the influent and 0.7% 

in the SC effluent were deemed to be highly resistant to SXT.  
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Figure 5.7 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal 

Coliform in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples 
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5.2.2 Enterococci 

Influent wastewater samples collected in winter were found to contain 

approximately 1.4 x 104 cfu/mL of enterococci bacteria. However, identification of 

enterococci by polymerase chain reaction (PCR) in follow-up experiments revealed that 

approximately 11% of the organisms enumerated as enterococci were actually 

lactococcus bacilli. Hence the enterococci numbers shown in the following figures 

represent a slight overestimation of the true enterococci numbers in the winter samples. 

Biological treatment produced a 97% reduction of aqueous-phase enterococci 

resulting in an SC effluent concentration of 4.3 x103 cfu/mL. UV-disinfection did not 

completely remove all enterococci in winter. The final plant effluent was observed to 

contain approximately 0.070x 102 cfu/mL of these bacteria.  

Figure 5.8 illustrates the impact of CIP exposure on the growth of enterococci in 

influent, SC effluent and disinfected effluent samples. Although CIP levels of 10 and 100 



 

 36 

mg/L completely inhibited the growth of enterococci, no dose-response relationship was 

observed in influent samples for CIP exposures of 1.0 mg/L or less. CIP appeared to have 

an impact on the enterococci in the SC effluent sample where the antibiotic produced 

nearly a 2-log deactivation of the bacteria. Although some bacteria escaped destruction in 

the UV-system, the final effluent did not appear to contain any CIP resistant enterococci. 

Enterococci survivability in the presence of SXT was also evaluated in the winter 

but no growth was noticed in the presence of even the lowest SXT level of 1/19 mg/L. 

Enterococci population multiply less rapidly than fecal coliforms and E.coli and have 

been shown to be more sensitive to antibiotics in at lower temperatures (Miescier and 

Cabelli 1982; Martinez et al., 2002).  

 

Figure 5.8 Impact of Ciprofloxacin Concentration on Enterococci in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples 
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Enterococci bacteria in the influent, SC effluent and disinfected effluent samples 

were also exposed to various concentrations of VAN (Figure 5.9). VAN concentrations of 

10, 100 and 200 mg/L showed complete kill of enterococci in all samples. The LOAEL 

for VAN in the influent sample was 1.0 mg/L as there was a significant difference in the 

bacterial population (p value < 0.01) compared to the control sample; 0.1 mg/L showed 
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no significant difference (p value = 0.8567) and was considered as NOAEL for this 

evaluation. No VAN-resistant enterococci were observed in any wastewater sample 

collected during winter.  

 

Figure 5.9 Impact of Vancomycin Concentration on Enterococci in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples 
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 5.2.3 E. coli  

Raw wastewater collected in winter was found to contain approximately 2.4  x 105 

cfu/mL E. coli. Figure 5.10 illustrates the effects of CIP exposure on the growth of E. coli 

obtained from influent and SC effluent samples. The activated sludge process reduced the 

E. coli count to 1.4  x 103 cfu/mL (2-log removal) and UV disinfection was successful in 

destroying all E. coli in the effluent wastewater.  

The E. coli enumerated from the raw influent had a survivability of 5.17  x 104 

cfu/mL when exposed to 0.01 mg/L CIP. This number was significantly different from 

the control (p value <0.001) and indicated the LOAEL; LC50 for this evaluation was < 
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0.01 mg/L. A dose-response relationship was observed when E. coli in the influent and 

SC effluent samples were exposed to CIP concentrations ranging from 0.01 to 0.1 mg/L. 

Higher doses of 10 and 100 mg/L CIP completely inhibited the growth of these 

organisms in influent and SC effluent samples. 

 

Figure 5.10 Impact of Ciprofloxacin Concentration on E. coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples 
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E. coli obtained from the raw wastewater were exposed to various concentrations 

of SXT as shown in Figure 5.11. Exposure to SXT 1/19 mg/L reduced the viable E. coli 

count in the influent to 1.27  x 104 cfu/mL. SXT concentration of 1/19 mg/L was 

considered as LOAEL for this evaluation because the bacterial population at this dose 

was significantly different from the control (p value <0.001). No E. coli growth in 

influent samples was observed at SXT exposures of 2/38 mg/L and above.  In the SC 

effluent sample, however, some E. coli survival was noted at the SXT level of 2/38 mg/L. 
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Figure 5.11 Impact of Sulfamethoxazole/Trimethoprim Concentration on E. coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples 
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5.3 Antibiotic Resistant Bacteria in Spring Samples 

 Bacterial enumeration of wastewater samples collected in the spring season was 

performed using triplicate samples. The influent wastewater temperature during the 

sampling period was 17°C. Additional concentrations of CIP 4.0 mg/L, SXT 8/152 mg/L 

and VAN 32 mg/L were incorporated in the spring experiments to investigate the 

presence of resistant organisms at the MIC level. 

5.3.1 Fecal Coliforms 

Influent wastewater collected in spring was found to contain a fecal coliform 

concentration of approximately 3.0 x 105 cfu/mL (Figure 5.12). This number was similar 

to the fecal coliform counts seen in summer and winter. Biological wastewater treatment 

reduced the fecal coliforms by an order of two resulting in 3.33 x 103 cfu/mL in the SC 

effluent. UV disinfection further reduced the bacteria concentration in the final effluent 

sample to 20 cfu/mL. No toxic effects were noted and no significant reduction in 
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bacterial counts was observed (p-value = 0.5777) in sample at CIP concentration of 0.01 

mg/L. Hence 0.01 mg/L was considered the NOAEL in the influent samples. In the SC 

effluent, the NOAEL was significantly higher (p-value = 0.1152) at a concentration of 1.0 

mg/L. Fecal coliforms growth in the influent and SC effluent samples were significantly 

impacted (p-value <0.0001, p-value = 0.067) at CIP 0.1 mg/L and CIP 4.0 mg/L; these 

concentrations were, therefore, considered as LOAEL for these evaluations. LC50 was 

estimated to be at a CIP concentration less than 0.1 mg/L.  

Exposure to higher CIP concentrations resulted in a steady decline in microbial 

survivability. Approximately, 3% (4.67 x 102 cfu/mL) of fecal coliforms in the raw 

influent were found to be resistant to CIP at the MIC level of 4 mg/L. No growth was 

observed at CIP concentrations greater than 4 mg/L. Organisms enumerated from the SC 

effluent showed a similar trend. Approximately 3% of the fecal coliform population (1.0 

x 102 cfu/mL) in the SC effluent was resistant to CIP at the MIC level. No resistant fecal 

coliforms were found in the disinfected effluent although 83% and 50% of the bacteria 

were potentially resistant to CIP at concentrations of 0.01 mg/L and 0.1 mg/L, 

respectively. 

Fecal coliforms enumerated in spring were also exposed to SXT for antibiotic 

resistance analysis (Figure 5.13). The influent revealed (p value = 0.0203) a LOAEL 

value of 1/19 mg/L SXT while NOAEL concentration was observed in the SC effluent 

and final effluent.  Approximately 1.1 x 103 cfu/mL (0.04%) of fecal coliforms in the 

influent sample were resistant to SXT at a concentration of 8/152 mg/L. In the SC 

effluent, the resistant fraction was significantly higher – 14% or 4.67 x 102  cfu/mL. Both 

influent and SC effluent samples revealed the presence of fecal coliforms that were 

highly resistant to SXT (at a level of 10/190 mg/L). No fecal coliform survival was noted 

in any sample at the SXT concentration of 50/950 mg/L. No SXT resistant organisms 

were observed in the disinfected effluent. 
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Figure 5.12 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples  
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5.3.1 Enterococci 

The population of enterococci observed in the raw wastewater samples during 

spring sampling was approximately 1.33 x 104 cfu/mL.  However identification of 

enterococci by polymerase chain reaction in follow-up experiments showed that 

approximately 30% of the organisms enumerated as enterococci were actually 

lactococcus bacilli. Thus the data shown in the following figures represent an 

overestimation of enterococci numbers. Figure 5.14 illustrates the impact of various 

concentrations of CIP on the growth of these organisms in the raw wastewater, SC 

effluent and disinfected effluent samples. Biological treatment produced an SC effluent 

enterococci concentration of approximately 7.5 x 102 cfu/mL, representing a 2-log 
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reduction. UV disinfection killed all enterococci in the stream exiting the wastewater 

treatment facility. 

 

Figure 5.13 Impact of Sulfamthoxazole/Trimethoprim Concentration on Fecal 

Coliform in Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples 
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Exposure to 0.01 mg/L CIP appeared to have a significant impact (p value = 

0.0467) on the concentration of enterococci. Thus, a concentration of 0.01 mg/L 

represented the LOAEL for this experiment. The enterococci population was reduced to 

6.2 x 103 cfu/mL (46%) at a CIP concentration of 1.0 mg/L indicating an LC50 in the 

influent matrix of < 1.0 mg/L. In the SC effluent, an exposure to 1.0 mg/L of CIP reduced 

the microbial population to 5.0 x 102 cfu/mL representing 68% of the population in 

control samples. A population of 4.3 x 103 cfu/mL or approximately 3.3% of the 

enterococci in the raw wastewater was resistant to CIP at the MIC level of 4 mg/L. 

Approximately 30 cfu/mL (or 0.2%) were highly resistant to CIP at 10 mg/L. Enterococci 
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enumerated from the SC effluent sample showed similar characteristics at exposures of 

1.0 mg/L, 4.0 mg/L and 10 mg/L CIP. Approximately 0.4% (30 cfu/mL) of the 

enterococci in the SC effluent were resistant to CIP at the MIC level and 0.2% (17 

cfu/mL) were highly resistant at 10 mg/L CIP. 

 

Figure 5.14 Impact of Ciprofloxacin Concentration on Enterococci in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples 
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 Exposure to SXT at a dose of 1/19 mg/L had no impact on the enterococci 

population in the raw or SC effluent samples (Figure 5.15). However, higher 

concentrations showed an increasing lethal response on the bacterial population. 

Approximately 5.67 x 103 cfu/mL (42%) of the enterococci in the influent and 0.37 x 102 

cfu/mL (5%) in the SC effluent were resistant to SXT exposure at the MIC level of 8/152 

mg/L. Furthermore, 4.33 x 102 cfu/mL (3.3%) and 3.17 x 102 cfu/mL (2.4%) of the 

enterococci population in the influent was characterized as highly resistant to SXT at 
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concentrations of 10/190 mg/L and 50/950 mg/L, respectively. Enterococci populations 

in the SC effluent showed similar characteristics. Approximately 5% (37 cfu/mL) of the 

SC effluent population was resistant to SXT at the MIC level and 3.7% (27 cfu/mL) and 

2.5% (19 cfu/mL) were highly resistant at SXT concentrations of 10/190 and 50/950 

mg/L, respectively. 

 

Figure 5.15 Impact of Sulfamethoxazole/Trimethoprim Concentration on 

Enterococci in Influent, Secondary Clarifier Effluent and Disinfected Effluent 

Samples 
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Similar alphabets represent no significant difference within dataset. 

 

Vancomycin resistant enterococci were also observed in the influent and SC 

effluent samples collected in spring (Figure 5.16). Approximately 3% (4.33  x 102 

cfu/mL) and 2%  (3.2 x 102 cfu/mL) of the enterococci population in the influent 

appeared to be resistant to VAN at the MIC level of 32 mg/L and highly resistant at 50 

mg/L, respectively. Biological treatment was efficient in reducing the enterococci 

numbers but resistance patterns were similar even after the treatment process. 

Approximately 4.5% (33 cfu/mL) and 2.5% (19  cfu/mL) of the enterococci population in 
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the SC effluent was resistant to VAN at the MIC level of 32 mg/L and highly resistant at 

50 mg/L, respectively. 

  

Figure 5.16 Impact of Vancomycin Concentration on Enterococci in Influent, 

Secondary Clarifier Effluent and Disinfected Effluent Samples 
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Similar alphabets represent no significant difference within dataset. 

 

5.3.3  E. coli  

The raw wastewater collected in spring was found to contain an E. coli 

concentration of approximately 2.0 x 104 cfu/mL (Figure 5.17). The activated sludge 

process reduced the E. coli concentration by 2 logs resulting in a population of 1.33 x 102 

cfu/mL. Hundred percent kill of E. coli was achieved by UV disinfection. E. coli growth 

in the influent sample was suppressed (p value <0.0001) even at the lowest CIP exposure 

of 0.01 mg/L resulting in a reduction in E. coli numbers to 1.73 x 103 cfu/mL. Hence 0.01 

mg/L concentration was considered the LOAEL in the influent matrix. LC50 for this 

evaluation was < 0.01 mg/L.  
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Figure 5.17 Impact of Ciprofloxacin Concentration on E. coli in Influent, Secondary 

Clarifier Effluent and Disinfected Effluent Samples 
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Similar alphabets represent no significant difference within dataset. 

 

Exposure to higher doses of CIP resulted in a decline in survivability. 

Approximately 3% (5 cfu/mL) of E. coli in the influent were resistant to CIP at the MIC 

level of 4 mg/L. No growth was observed at CIP concentrations of > 4 mg/L. E. coli 

enumerated from the SC effluent showed similar trends. Approximately 10% (0.13  x  102 

cfu/mL) of E. coli in the influent were resistant to CIP at the MIC level of 4 mg/L. 

Exposure to SXT at concentrations of 1/19 mg/L and 2/38 mg/L showed significant 

responses on the E. coli population in the influent, but not in the SC effluent sample. 

Approximately, 1.47  x  102 (0.72%) of E. coli in the influent and 20 cfu/mL (15%) in the 

SC effluent were resistant to SXT at the MIC level of 8/152 mg/L. Approximately 7 

cfu/mL E. coli in the raw wastewater were highly resistant to SXT at 10/190 mg/L. 
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Figure 5.18 Impact of Sulfamthoxazole/Trimethoprim Concentration on E. coli in 

Influent, Secondary Clarifier Effluent and Disinfected Effluent Samples 
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5.5 Seasonal Variations in Antibiotic Resistance Patterns 

The seasons in which samples were collected appeared to have some impact on 

NOAEL, and LOAEL concentrations for different target organisms.   Fecal coliforms 

collected in influent exposed to CIP showed a similar NOAEL concentration of 0.01 

mg/L in the summer and spring, although no NOAEL was observed in the winter (Table 

5.1). LOAEL for CIP in the case of fecal coliforms was similar in the influent and SC 

effluent sample.  Seasons also appeared to have an impact on LC50 levels. LC50 was 

lower in summer compared to spring in both influent and SC effluent samples. On the 

other hand E. coli and enterococci showed no significant difference in the NOAEL and 

LOAEL for CIP during the different seasons. LC50 of enterococci was lower in summer 

compared to spring season.  
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Fecal coliforms, E. coli and enterococci showed similar LOAEL values for SXT 

in influent and SC effluent samples collected in summer, winter and spring (Table 5.2). 

LC50 values for fecal coliforms increased from 1/19 mg/L in summer to 2/38 mg/L in 

spring. E. coli and enterococci bacteria also showed higher LC50 values in spring 

compared to summer and winter samples. LC50 values for E. coli and enterococci in the 

SC effluent were as high as 8/152 mg/L. VAN had a LOAEL of 1.0 mg/L and 0.1 mg/L 

for enterococci in influent and SC effluent respectively during winter (Table 5.3). 

However, in spring samples, LOAEL was observed at 0.5 mg/L VAN.  

The various reasons for the different trends of NOAEL and LOAEL can be 

explained by relating the bacterial susceptibility to temperature variations.  McMahon et 

al (2007) reported that under low temperatures lower MICs or low concentration of 

antibiotics would be efficient in complete susceptibility of bacteria. As the temperature, 

increases the concentration of antibiotic required for the susceptibility would increase.  

Antibiotic resistant patterns observed in this study are summarized in Table 5.4. 

Fecal coliforms, E. coli and enterococci were resistant or highly resistant to one or more 

target antibiotics in the influent and SC effluent. Approximately 6.67 x 102 cfu/mL (0.22 

%) of fecal coliforms were highly resistant to CIP, while 1.1 x102 cfu/mL (0.03 %) were 

highly resistant to SXT in the influent sample in spring.  After the biological treatment, 

the number of fecal coliform bacteria were reduced in the SC effluent sample but the 

percentage of bacteria that were resistant to CIP and SXT increased. Approximately 1.23 

x 102 cfu/mL (3.69 %) of fecal coliforms in the SC effluent were resistant to CIP. Fecal 

coliforms in influent and SC effluent were highly resistant to SXT in all the seasons. 

 

 

 

 



 

 49 

Table 5.1 Seasonal Variations in Antibiotic Resistance Patterns in Response to Exposure to Ciprofloxacin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO = Not observed, SPR= Spring, WIN= Winter, SUM= Summer

                   Fecal coliforms       Escherichia coli Enterococci   

NOAEL  LOAEL  LC50 NOAEL  LOAEL  LC50 NOAEL  LOAEL  LC50 

SPR 0.01 

(P=0.5777) 

0.1 

(P<0.0001) 

< 0.1 NO 0.01 

(P<0.0001) 

< 0.01 NO 0.01 

(P<0.0001) 

0.1 to 1.0 

WIN NO 0.01 

(P<0.0001) 

< 0.01 NO 0.01 

(P<0.0001) 

< 0.01 NO 0.01 

(P<0.0001) 

< 0.01 

   
   

 In
flu

en
t  

 

SUM 0.01 

(P=0677) 

0.05 

(P=0475) 

< 0.05 NO NO NO 1.0 

(P =2733) 

NO < 1.0 

SPR 0.1 

(P=0.1152) 

1.0 

(P<0.0054) 

1 to 4 0.01 

(P=0.0824) 

0.1 

(P=0.0152) 

0.01-0.1 NO 0.01 

(P<0.0001) 

 

1 to 4 

WIN NO 0.01 

(P<0.0001) 

< 0.01 NO 0.01 

(P<0.0001) 

0.01 to 0.0 5 NO 0.01 

(P<0.0001) 

< 0.01 

S
C

 E
ffl

ue
nt

 

SUM NO 0.01 

(P<0.0001) 

< 0.01 NO 

 

NO > 1.0 1.0 

(P=0.7152) 

NO < 1.0 
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Table 5.2 Seasonal Variations in Antibiotic Resistance Patterns in Response to Exposure to 

Sulfamethoxazole/Trimethoprim  

Fecal coliforms Escherichia coli Enterococci  

 NOAEL  LOAEL  LC50 NOAEL  LOAEL  LC50 NOAEL  LOAEL  LC50 

SPR NO 1/19 

(P=0.0203) 

1/19 -2/38 NO 1/19 

(P<0.0001) 

< 1/19 NO  1/19 

(P=0.0320) 

1/19-2/38 

WIN NO 1/19 

(P<0.0001) 

< 1/19 NO  1/19 

(P<0.0001) 

< 1/19 NO NO NO 

   
   

  I
nf

lu
en

t 

SUM 2/38 

(P=0.2195) 

10/190 

(P=0.0189) 

< 1/19 NO  NO NO 10/190 

(P=0.1785) 

NO < 1/19 

SPR 1/19 

(P=0.5182) 

2/38 

 (P=0.0077) 

< 1/19 2/38 

(P=0.5027) 

8/152 

(P=0.027) 

<8/152 1/19 

(P=0.0784) 

2/38 

(P=0.0021) 

2/38-8/190 

WIN 

 

 NO  1/19 

(P<0.0001) 

< 1/19 NO  1/19 

(P<0.0001) 

< 1/19 NO NO NO 

S
C

 E
ffl

ue
nt

 

SUM NO  1/19 

(P<0.0001) 

< 1/19 NO  NO NO 10/190 

(P=0.4826) 

NO < 2/38 

NO = Not observed, SPR= Spring, WIN= Winter, SUM= Summer 
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Table 5.3 Seasonal Variations in Antibiotic Resistance Patterns in Response 

to Exposure to Vancomycin Concentration to Enterococci 

 

Enterococci  

NOAEL  LOAEL  LC50 

SPR 0.5 

(P=0.0600) 

1.0 

(P=0.0268) 

1 – 4 

WIN 0.1 

(P=0.8567) 

1.0 

(P<0.0001) 

< 1.0 

In
flu

en
t 

SUM NO 0.5 

(P=0.0070) 

NO 

SPR NO 0.5 

(P<0.0001) 

1 – 4 

WIN NO 0.1 

(P<0.0001) 

< 0.1 

S
C

 E
ffl

ue
nt

 

SUM 50 

(P=0.0979) 

NO NO 

NO = Not observed, SPR= Spring, WIN= Winter, SUM= Summer 

 

 Approximately 4.67 x 102 cfu/mL (3.5%) of E. coli in the influent showed 

resistance to CIP while 13 cfu/mL (1.733%) were resistant in the SC effluent.  About 7 

cfu/mL (0.05%) of E. coli in the raw wastewater were highly resistant to SXT. No SXT 

resistant E. coli were observed in the samples collected from the influent and SC effluent 

in other seasons. CIP resistant enterococci were observed in the influent in spring; 14.8% 

(30 cfu/mL) were highly resistant to CIP. However, the percentage of CIP resistant 

enterococci was reduced to 0.48% (16 cfu/mL) in the SC effluent sample.  SXT resistant 

enterococci were observed in the influent sample although 4.33 x102 cfu/mL and 0.27 

cfu/mL enterococci in the SC effluent were resistant to the antibiotic. 

The above results show that wastewater treatment plants are potential sources for 

the antibiotic resistant organisms in surface waters. UV disinfection was found to work 

very efficiently at the wastewater treatment plant studied. The disinfected effluent 

samples were never positive for antibiotic resistant organisms. 
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Table 5.4 Antibiotic Resistant Patterns in Target Organisms 

CIP 

(MIC = 4 mg/L) 

         

SXT 

(MIC = 8/152 mg/L) 

 

VAN  

(MIC = 32 

mg/L) 

Fecal 

coliforms 

(cfu/mL) 

E. coli 

(cfu/mL)  

Enterococci 

(cfu/mL) 

Fecal coliforms 

(cfu/mL) 

E. coli 

(cfu/mL)  

Enterococci 

(cfu/mL) 

Enterococci 

(cfu/mL) 

 

 

R 

(4) 

HR 

(10 

R 

(4) 

HR 

(10) 

R 

(4) 

HR 

(10) 

R 

(8/152) 

 

HR 

(10/190) 

R 

(8/152) 

HR 

(10/190) 

R 

(8/150) 

HR 

(10/190) 

R  

(32) 

HR 

(50) 

SPR 6970 667 467 0 433 30 1670 110 146 7 5667 433 0 0 

WIN ND 0 ND 0 ND 0 ND 12700 ND 0 ND ND ND ND 

In
flu

en
t 

SUM ND ND ND ND ND ND ND 5900 ND 0 ND 11500 0 0 

SPR 120 100 13 0 30 17 467 134 20 0 36 27 0 0 

WIN  ND 0 ND 0 ND ND ND 22 ND ND ND ND 0 0 

  S
C

 E
ffl

ue
nt

 

SUM ND ND ND ND ND ND ND 17 ND ND ND 8 ND 0 

MIC = Minimum inhibitory concentration, R = Resistant, HR = Highly resistant, SUM = Summer, WIN = Winter, SPR = Spring 

ND = Not detected
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5.4 Identification of Antibiotic Resistant Enterococci 

A total of 231 out of 259 (89.1%) enterococcal isolates were identified to species 

level by multiplex or single polymerase chain reaction (PCR). The prevalence of various 

Enterococcus spp. isolated from influent and SC effluent during winter and spring is 

summarized in Table 5.5. The most frequently identified species was E. faecalis (72.7%), 

followed by E. casseliflavus (12.1%), E. faecium (9.9%), and E. hirae (3.0%). The 

prevalence of E. faecalis is attributed to the human waste in municipal wastewater and 

the fact that E. faecalis is an important part of the normal gastro-intestinal microbial 

community in humans and domestic animals. 

In winter, there were no significant differences in the prevalence of E. faecalis (p-

value 0.2429), E. casseliflavus (p-value 0.6793), E. hirae (p-value 0.4988), and  E. 

raffinosus (p-value 0.6730) in influent and SC effluent samples. Likewise, there were no 

significant differences in prevalence of E. faecalis (p-value 0.2567), E. casseliflavus (p-

value 0.5003), and E. faecium (p-value 0.3982) in influent and SC effluent samples in 

spring. None of the enterococci were resistant to tested antibiotics in the winter season. 

However, some spring isolates from influent and SC effluent were found resistant to CIP 

and SXT. Overall, no significant difference in prevalence of E. faecalis (p-value 0.7065) 

was observed in winter and spring.  



 

 54 

Table 5.5 Diversity of Selected Enterococci (Control and Highly resistant) from Influent and Secondary Clarifier Effluent 

Sample 

Winter Spring 

Influent SC Effluent Influent SC Effluent 

 

Ctrl CIP SXT VAN Ctrl CIP SXT VAN Ctrl CIP SXT VAN Ctrl CIP SXT VAN 

E. faecalis 22 0 0 0 14 0 0 0 13 28 20 0 19 28 24 0 

E. faecium 0 0 0 0 2 0 0 0 8 2 2 0   1 7 1 0 

E. casseliflavus 7 0 0 0 7 0 0 0 8 0 0 0 2 0 4 0 

E. gallinarum 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

E. hirae 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 

E. raffinosus 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Total 34 0 0 0 28 0 0 0 30 30 22 0 22 35 30 0 
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CHAPTER 6 - SUMMARY AND CONCLUSONS 

 Antibiotic resistance patterns were analyzed for municipal wastewater bacteria. 

The microorganisms studied included fecal coliforms, Escherichia coli and enterococci. 

Wastewater samples were collected in summer, winter and spring. Bacteria in municipal 

wastewater treatment plant influent, secondary clarifier effluent and disinfected effluent 

were plated in the presence of predetermined concentrations of selected antibiotics. The 

antibiotics included for the study were ciprofloxacin, sulfamethoxazole/trimethoprim and 

vancomycin. The diversity of enterococci was further investigated using PCR analysis.  

 

Several conclusions may be derived from this work. These include:   

 

• Significant numbers of fecal coliforms, E. coli and enterococci were found to be 

resistant or highly resistant to CIP and SXT in the influent and SC effluent.  

• Approximately 6.6 x 102 cfu/mL (0.22%) of fecal coliforms were highly resistant 

to CIP, while 1.1 x 102 cfu/mL (0.03 %) were highly resistant to SXT in the 

influent sample collected in spring. In SC effluent samples 1.23 x 102 cfu/mL 

(3.69 %) fecal coliforms were resistant to CIP.  Fecal coliforms in influent and SC 

effluent were highly resistant to SXT in all seasons. 

• Approximately 4.67 x 102 cfu/mL (3.5%) E. coli in the influent showed resistance 

to CIP while 0.13 x 102 cfu/mL (1.73%) were resistant in the SC effluent in 

spring. E.coli were also resistant to SXT and approximately 1.46 x 102 cfu/mL 

(0.70%) were observed in the influent sample in spring. 

•  Approximately 4.33 x 102 cfu/mL (0.03%) and 30 cfu/mL enterococci were 

resistant and highly resistant to CIP in the influent sample. Approximately 30 

cfu/mL (4.10%) and 17 cfu/mL (2.31%) enterococci population collected from SC 

effluent were resistant and highly resistant collected in spring. Approximately 

5.66  x 103 cfu/mL of enterococci were resistant and 4.33  x 102 cfu/mL were 

highly resistant to SXT in influent sample collected in summer. Enterococci that 
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were isolated from the SC effluent sample were also resistant and highly resistant 

to SXT. 

• E. faecalis constituted the largest fraction of the enterococci population in the 

wastewater samples; no significant difference was observed in the prevalence of 

E. faecalis (p value 0.7065) in winter and spring.  

• No significant difference in diversity of enterococcal species in influent and SC 

effluent was observed in winter and spring seasons. 

   

 The UV disinfection process in the treatment plant appeared to be efficient in 

reducing the number of resistant bacteria in the final effluent.  The final effluent released 

into the surface water was free from resistant organisms.  
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Appendix A 

Table A.1: Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent and Secondary Clarifier Effluent Samples 

Collected in Summer 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  Average STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL) 

SC 

Effluent 

(cfu/mL)  

SC  

Effluent 

(cfu/mL)  Average STDEV 

Control 350000 300000 100000 180000 232500 113541.475 480 450 28 25 245.75 253.467 

0.01 390000 450000 NA NA 420000 - 51 50 NA NA 50.5 - 

0.05 106000 110000 NA NA 108000 - 31 28 NA NA 29.5 - 

0.1 35000 33000 39000 35000 35500 2516.611 84 82 73 63 75.5 9.609 

0.5 9500 9000 NA NA 9250 - 8 10 NA NA 9 - 

1 3800 3000 NA NA 3400 - 1 5 NA NA 3 - 
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Table A.2: Impact of Sulfamethoxazole/trimethoprim Concentration on Fecal Coliform in Influent and Secondary Clarifier 

Effluent Samples Collected in Summer 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  Average STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL) 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AverageSTDEV 

Control 100000 180000 350000 300000 232500 113541.475 28 25 480 450 245.75 253.467 

1/19 30000 27000 NA NA 28500 - 60 55 NA NA 57.5 - 

2/38 300000 360000 NA NA 330000 - 29 22 NA NA 25.5 - 

10/190 6000 5800 NA NA 5900 - 19 15 NA NA 17 - 

 

Table A.3: Impact of Ciprofloxacin Concentration on Enterococci in Influent and Secondary Clarifier Effluent Samples 

Collected in Summer 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  Average STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  Average STDEV 

Control 15000 17000 70000 55000 39250 27548.442 2 20 14 10 11.5 7.5498 

0.01 19000 15000 NA NA 17000 - 11 9 NA NA 11 - 

0.05 14000 12000 NA NA 13000 - 6 6 NA NA 6 - 

0.1 5500 5000 3000 3100 5250 1287.1156 0 15 8 7.8 7.9 6.128 

0.5 13000 17000 NA NA 15000 - 4 8 NA NA 8 - 

1 22000 26000 NA NA 24000 - 20 7 NA NA 7 - 
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Table A.4: Impact of Sulfamethoxazole/Trimethoprim Concentration on Enterococci in Influent and Secondary Clarifier 

Effluent Samples Collected in Summer 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG   STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  Average STDEV 

Control 15000 17000 70000 55000 39250 27548.44 14 10 2 20 11.5 7.5498 

1/19 15000 12000 NA NA 13500 - 13 11 NA NA 13 - 

2/38 23000 22000 NA NA 22500 - 14 12 NA NA 14 - 

10/190 13000 10000 NA NA 11500 - 8 8 NA NA 8 - 

 

Table A.5: Impact of Vancomycin Concentration on Enterococci in Influent and Secondary Clarifier Effluent Samples 

Collected in Summer 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Control 15000 17000 70000 55000 39250 27548.44 2 20 14 10 11.5 7.5498 

0.5 1500 2000 NA NA 1750 - 15 16 NA NA 15.5 - 

1 1390 1450 1000 900 1185 275.4995 10 8 8 14 10 2.8284 

30 200 400 NA NA 0 - 8 7 NA NA 7.5 - 

50 25 36 NA NA 30.5 - 3 5 NA NA 4 - 
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Table A.6: Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Winter 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 300000 430000 320000 350000 70000 3000 3200 3500 3233.4 251.661 0 0 0 0 0 

0.01 55000 50000 48000 51000 3605.551 165 178 150 164.4 14.0118 0 0 0 0 0 

0.05 50000 43000 48000 47000 3605.551 170 140 120 143.4 25.166 0 0 0 0 0 

0.1 20000 28000 25000 24334 4041.451 120 100 110 110 10 0 0 0 0 0 

1 10000 18000 15000 14334 4041.451 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.7: Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform in Influent, Secondary Clarifier 

Effluent and Disinfected Effluent Samples Collected in Winter  

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 300000 430000 320000 350000 70000 3000 3200 3500 3233.4 251.66 0 0 0 0 0 

1/19 100000 170000 130000 133334 35118.84 200 210 190 200 10 0 0 0 0 0 

2/38 20000 25000 18000 21000 3605.55 100 97 101 99.4 2.08166 0 0 0 0 0 

10/190 10000 15000 13000 12667 2516.61 20 21 25 22 2.645 0 0 0 0 0 

100/1900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

200/3800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.8: Impact of Ciprofloxacin Concentration on Enterococci in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Winter 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 10000 15000 17000 14000 3605.55 400 420 470 430 26.45 10 9 7 8.7 1.52 

0.01 5000 5200 4800 5000 200 20 23 24 22.33 0.838 0 0 0 0 0 

0.1 0 4500 4700 3066.7 2657.69 0 20 19 13 3.78 0 0 0 0 0 

1 4000 4200 4900 4366.7 472.58 10 8 9 9 0.577 10 11 19 13.4 4.93 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.9: Impact of Vancomycin Concentration on Enterococci in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Winter 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 10000 15000 17000 14000 3605.5 400 420 470 430 26.45 10 9 7 8.7 1.52 

0.1 10000 18000 15000 14333.4 4041.4 100 70 9 59.7 32.64 0 0 0 0 0 

1 1000 1200 1500 1233.4 251.68 0 0 0 0 0 1 2 2 1.7 0.57 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.10: Impact of Ciprofloxacin Concentration on E.coli in Influent, Secondary Clarifier Effluent and Disinfected Effluent 

Samples Collected in Winter 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent  

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 200000 280000 240000 240000 40000 1000 1500 1700 1400 360.6 0 0 0 0 0 

0.01 50000 56000 49000 51666.7 3785.93 0 1200 1000 733.3 642.91 0 0 0 0 0 

0.05 40000 44000 39000 41000 2645.7 100 110 150 120 26.45 0 0 0 0 0 

0.1 20000 25000 31000 25333.4 5507.6 10 14 15 13 2.64 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.11 Impact of Sulfamethoxazole/Trimethoprim Concentration on E.coli in Influent, Secondary Clarifier Effluent and 

Disinfected Effluent Samples Collected in Winter 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent  

SC 

Effluent  

SC 

Effluent  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 200000 280000 240000 240000 40000 1000 1500 1700 1400 360.55 0 0 0 0 0 

1/19 10000 15000 13000 12666.7 2516.6 0 120 150 90 79.37 0 0 0 0 0 

2/38 0 0 0 0 0 10 9 5 8 2.645 0 0 0 0 0 

10/190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50/950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100/1900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

200/3800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.12 Impact of Ciprofloxacin Concentration on Fecal Coliform in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent  

(cfu/mL)  

Effluent  

(cfu/mL)  

Effluent  

(cfu/mL)  AVG  STDEV 

Control 200000 400000 300000 300000 100000 1000 5000 4000 3333.4 2081.66 10 30 20 20 10 

0.01 300000 280000 250000 276666.7 25166.11 3000 2000 4000 3000 1000 10 10 30 16.7 11.7 

0.1 18000 15000 130000 54333.4 65546.42 2000 3000 1000 2000 1000 10 10 10 10 0 

1 10000 20000 10000 13333.4 5773.50 3000 2000 0 1666.7 1527.52 0 0 0 0 0 

4 7700 7200 6000 6966.7 873.689 100 110 160 123.4 32.14 0 0 0 0 0 

10 500 800 700 666.7 152.75 22 9 8 99.7 2.081 0 0 0 0 0 
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Table A.13 Impact of Sulfamethoxazole/Trimethoprim Concentration on Fecal Coliform in Influent, Secondary Clarifier 

Effluent and Disinfected Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL))  AVG  STDEV 

Control 200000 400000 300000 300000 100000 1000 5000 4000 3333.4 2081.665 10 30 20 20 10 

1/19 200000 220000 210000 210000 10000 2000 1000 5000 2666.7 2081.665 30 20 50 33.4 15.27 

2/38 20000 10000 30000 20000 10000 1000 2000 1000 1333.4 577.350 10 20 10 13.4 5.77 

8/152 1000 2000 2000 1666.7 577.35 600 500 300 466.7 152.75 0 0 0 0 0 

10/190 100 110 120 110 10 100 100 200 133.4 57.73 0 0 0 0 0 

50/950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.14: Impact of Ciprofloxacin Concentration on Enterococci in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  AVG  STDEV 

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 10000 20000 10000 13333.4 5773.50 600 700 900 733.4 152.75 0 0 0 0 0 

0.01 8000 9000 10000 9000 1000 500 600 700 600 100 0 0 0 0 0 

0.1 8000 7000 8000 7666.7 577.35 500 600 400 500 100 0 0 0 0 0 

1 6200 6500 6000 6233.4 251.66 400 300 500 400 100 0 0 0 0 0 

4 420 450 430 433.4 15.27 30 28 27 30 1.52 0 0 0 0 0 

10 32 30 27 29.7 2.5 20 10 20 16.7 5.77 0 0 0 0 0 
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Table A.15 Impact of Sulfamethoxazole/Trimethoprim Concentration on Enterococci in Influent, Secondary Clarifier Effluent 

and Disinfected Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  AVG  STDEV 

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 10000 20000 10000 13333.4 5773.5 600 700 900 733.4 152.75 0 0 0 0 0 

1/19 8000 7000 9000 8000 1000 500 600 700 600 100 0 0 0 0 0 

2/38 6500 6800 6700 6666.7 152.752 450 490 420 453.4 35.11 0 0 0 0 0 

8/152 5900 5500 5600 5666.7 208.166 30 30 50 36.7 11.547 0 0 0 0 0 

10/190 400 500 400 433.4 57.7 28 29 25 27.4 2.08 0 0 0 0 0 

 

 

 

 

 

 

 

 

 



 

  76 

Table A.16: Impact of Vancomycin Concentration on Enterococci in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  

Influent  

(cfu/mL)  AVG  STDEV 

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  

SC 

Effluent  

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent  

(cfu/mL)  AVG  

STDE

V 

Control 10000 20000 10000 13333.4 5773.50 600 700 900 733.4 152.7 0 0 0 0 0 

0.5 8800 8500 8700 8666.6 152.7 600 700 600 633.4 57.7 0 0 0 0 0 

1 7000 8000 8000 7666.7 577.35 500 500 600 533.4 57.7 0 0 0 0 0 

4 6600 6500 610 4570 3429.8 48 47 45 46.7 1.527 0 0 0 0 0 

32 400 500 400 433.4 57.73 30 40 30 33.4 5.77 0 0 0 0 0 

50 320 330 310 320 10 19 20 17 18.7 1.52 0 0 0 0 0 
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Table A.17: Impact of Ciprofloxacin Concentration on E.coli in Influent, Secondary Clarifier Effluent and Disinfected 

Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(fu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 22000 21000 19000 20666.7 1527.52 100 200 100 133.4 57.73 0 0 0 0 0 

0.01 1500 1900 1800 1733.4 208.2 100 100 0 66.7 57.73 0 0 0 0 0 

0.1 1300 1200 1400 1300 100 40 30 20 30 10 0 0 0 0 0 

1 1200 1100 1000 1100 100 30 20 10 20 10 0 0 0 0 0 

4 100 800 500 466.7 351.18 16 13 11 13.4 2.51 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.18: Impact of Sulfamethoxazole/Trimethoprim Concentration on E.coli in Influent, Secondary Clarifier Effluent and 

Disinfected Effluent Samples Collected in Spring 

Antibiotic 

Conc. 

(mg/L) 

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  

Influent 

(cfu/mL)  AVG  STDEV 

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  

SC 

Effluent 

(cfu/mL)  AVG  STDEV 

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  

Effluent 

(cfu/mL)  AVG  STDEV 

Control 22000 21000 19000 20666.7 1527.52 100 200 100 133.4 57.7350 0 0 0 0 0 

1/19 2100 2000 1800 1966.7 152.752 120 150 190 153.4 35.118 0 0 0 0 0 

2/38 190 180 120 163.4 37.859 180 100 150 143.4 40.414 0 0 0 0 0 

8/152 170 150 120 146.7 25.166 18 19 22 19.7 2.08166 0 0 0 0 0 

10/190 5 6 9 6.667 2.0816 0 0 0 0 0 0 0 0 0 0 

50/950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 


