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NOMENCLATURE

C Boundary of shaft cross section.

R Interior of C.

5 Unit circle.

U Interior of S.

X, y Coordinates in plane of cross section,

z The complex variable x + iy.

I ,
T] Coordinates in a second plane.

C The complex variable ^ + i^

z X - iy.

a Coefficients in polynomial in C .

n=0

6 Polar angle.

J
'

J
'

u, V, w Displacement of a material point of shaft.

4> Warping function.

a Unit angle of twist of shaft.

Tpq Shearing stress on the p plane in the q direction, p, q = x, y, z.

G Modulus of rigidity of shaft material.

N Normal to C.

D Torsional rigidity.
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NOMENCLATURE concl.

o o

M Applied torque.

vjj Harmonic conjugate to

F(z) <i>
(x, y) + ii|i (x, y) .

^ ' ^r ^-n "

d
n / (r-n ) a a

Lj r r-n



INTRODUCTION

The problem considered in this report is torsion of an isotropic

cylindrical shaft. The torsion problem was one of the first problems

considered by early workers in the theory of elasticity such as Coulomb,

Cauchy, and Saint- Venant. It has been treated by many writers and

the general theory is well known. However, solution of the problem

for irregularly shaped cylindrical shafts by the classical approach is

difficult if not practically impossible in many cases.

Classically, the problem is considered as the second boundary

value problem of potential theory or Neumiann's problem. By intro-

ducing functions of a complex variable, the problem is reduced to the

first boundary value problem of potential theory or Dirichlet's problem.

Mapping the cross section of the cylindrical shaft conformally

onto the unit disc greatly simplifies solution of the problem, and a

solution is obtained immediately. The original problem is thus reduced

to finding the desired mapping function.

Instead of seeking the true mapping function, a polynomial is used

to map the cross section onto the unit disc approximately. Using the

approximate mapping function, the solution is obtained directly for a

large class of cylindrical shafts.
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APPROXIMATE CONFORMAL MAPPING

The function z = (X){i ) which maps the curve C into the unit

circle S as shown in Fig. 1, and hence nnaps R into U, is, in

general, very difficult to obtain. The object here is to develop a general

expression a)(C ) which will map C into S, approximately.

Fig. I. Map of curve onto unit circle.

The approximating function employed is a finite polynomial of

the form

a i

n=0

where the a are, in general, complex numbers,
n

The method used here to construct the mapping function is one

of collocation; i. e. , a procedure which forces the polynomial of

equation ( l) to map accurately k + 1 points of C into the circle S.

These k + 1 points are called collocation points. The remaining

points of C are mapped approximately into points of S.



The collocation points are chosen as the points of intersection

of rays (See Fig. 2 )
•

Fig. 2. Choice of collocation points.

whose arguments are nX., n = 0, 1, ... , k with the two curves C

and S. The angle X is chosen so that (k+ l) X = Ztt. This i-s

expressed in equation form as

K

Y5. = / a a.
,

J n J

(2)

n=0

where

J J

so Eq. (2) is

. =
f
z.[ e^j^ = r. e^j and a. = e

ij^

1 1 \ \ 1 J n

.

J Li
(3)

n=0



, - i j m X. . , J
Multiplying both sides of Eq. (3) by e yields

k
ij\ -ijm\ V ijnZ -ijm\

r.e-' e"* - / a. e ' e •'

J
n

n=0

Summing both sides of Eq. (4) with respect to j yields

k k
1 1 1 n-m ) A.

I
or

j= n=

^ij(n-m) K

j=0 ' n=0 j=0

The change in order of siimmation is permitted since only finite

sums are involved.

The sum on j in the right-hand side of Eq. (5) is simply a

finite geometric series and can be expressed in closed form as

• •/ \ V , i(n-m)(k+ l) X
ij(n-m)A. _ 1 - e ^

\ i(n-m) X.

1 -e ^

_2Tr

k+1
for all n, rn such that n ^ m. Since X =

^i{n-m) (k+ l) \ _ ^i(n-m)(k+ 1 ) _ ^i(n-m)ZTT _
^

k

Therefore ^ ^ij(n-m)\
^ ^

j=0

For n=m, ^ e ^ ' = ^ l = k+ l.

j=0 j=0
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Thus Eq. (5) becomes

.

gij(l-m) X ^ ^ (k + 1 ), or
J

m
j=0

^m-^ I -ei^(^-)V m=0.1 k. (6)

j=0

Equation (6) is also valid for negative m.

Thus the approximate mapping function is completely determined

by knowing r^, j = 0, I, . . . , k.

The shape of curve which can be mapped as above is not

arbitrary. The following limitations must be placed on the curve C:

1. The region bounded by C must be simply
connected.

2. There must exist at least one point of the

cross section, Z , such that every ray
originating at intersects the curve C
once and only once. Such a curve is said
to be starlike with respect to Z

^ o

The method used above for determining a mapping function which

maps C onto S, approximately, has a serious weakness which must

be considered.

As is shown in most texts' on theory of functions, the function

which maps C onto S is unique. In constructing the mapping function

one is at liberty to fix only one point of S and the direction of one

tangent to S.

These requirements have been violated here, so one may not expect

' Titchmarsh, The Theory of Functions, p. 209.
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to obtain a mapping function which is arbitrarily accurate simply

by taking a large number of collocation points.

In using the method developed here, one must exercise great

caution. "When the polynomial has been determined, several points

on S should be mapped into the z plane. Using these points, one may

estimate the shape of the curve, C, which is actually being mapped

onto S.

In obtaining an approximate solution of the torsion problem,

it is required only that C lie close to C. Therefore one may find

the polynomial aj(^ ) and estimate the shape of the curve C .
If the

two curves are approximately the same, a reasonable solution of the

torsion problem may be obtained through use of the development which

follows.

If C is not similar to C, other methods^ of constructing the

polynomial Ci;(C ) must be employed.

REVIEW OF THE TORSION PROBLEM

The torsion problem for isotropic cylindrical shafts was first

solved by Saint- Venant. His method of solution is called the semi-

inverse method. In it, he made the following assumptions concerning

displacement of material points in the shaft: u=-Q!zy, v= Q!zx

and w = a ({) (x, y) where, as shown in Fig. 3, the axis of the shaft

is taken to be the Z axis with the X and Y axes in the plane of the cross

^ Kantorovich and Krylov, Approximate Methods of Higher Analysis ,

Chapt. V.



section, u, v and w are the rectangular components of displacement

of a point (x, y, z ) in the shaft in the x, y and z directions, respectively.

V

X

Fig. 3. Shaft under consideration.



Using these assumptions, the stresses are given by

T = GO! (x + ),zy d y
"

T = Ga( - y + t-^).
ZX ^ ^ O X .

T=T=T=T=0
xy XX yy zz

where G is the modulus of rigidity and a is the unit angle of twist

in the shaft. . .

•

Furthermore, the equations of equilibrium will be satisfied if

9 x^ a y^

throughout the cross section. In order that the lateral surface of the

shaft be free of stress, it must be such that

y cos (N, x) - X cos (N, y) (?)

on the boundary of the cross section.

It can be shown that a measure of the torsional rigidity is

given by

D= ]J(x^+y^+x|^ - y dxdy.

where M = GDa.

A function 4^(x, y) such than

d <^ _ d ^ . d<^ _ d<\> (8),(9)
9 X " a y TY ~ ' "aF"

is now introduced. Since

^Jl + ^ ^ = '

ax^ ay^

^ is also harmonic in R.
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The condition that <() satify Eq. (7) on C is reduced to

the condition that ^ satisfy the condition t|j = (x^ + y^ ) on C. (lO)

This problem is commonly called the Dirichlet Problem.

It is this form of the torsion problem that is solved with the aid

of conformal mapping.

Consider (j)(x, y ) and 4" (x, y) to be functions of the complex

variable and define

F(z) = ci)(x, y) + i 4^ (x, y)

F (z) is an analytic function in R, since Eqs. (8) and (9), which

define ^ , are the Cauchy-Riemann conditions exactly.

The analytic function z = Co(t, ) of the complex variable

^ = i + i r\ is introduced which maps the region R in the z plane

conformally onto the unit disc U in the zeta plane. The function

F(z) then becomes

f(C ) = F(W(C = ii.r] ) + i ^ *
( e, Ti ),

and the condition of Eq. (lO ) becomes

4" (x, y) = z z" on C, or

4 * (I. Ti) = i a)(U W (I ) on S.

where W ( C ) = W )

.

As shown by I. S. Sokolnikoff^

) =
cu(a)j0(a) do-

^ ^^^^

i
where a= e is the complex variable taken on the unit circle S

^ Sokolnikoff, Mathematical Theory of Elasticity
, pp. 151-154.



10

and the i in Eq. ( ll) is any point interior to S. But since f (a) as

determined by Eq. (ll ) is not well defined, define

r ( \ 1 i m , 1 V f Co(o) Z){'o) da /
{ 2 )

Further, it is shown that D = + where

I^=.4.y [7i(o)]'c.(a) -^i^de and (13)

[f(o)+l(a)] <ira^H^(^)l d9. (14

DWS tl

1 CO

Finally, Sokolnikoff shows that at z = CO (
t,

)

i T = G a
\ •^^-77T-^^ - i CO (T)

zx zy

Thus if C0(^ ) is known, £ ) is determined

from Eq. ( 1 1) and the problem can be solved for D, T and T

APPLICATION OF APPROXIMATE MAPPING
TO THE TORSION PROBLEM

To find the torsional rigidity of the bar it is necessary to

evaluate the integrals of Eqs. ( 1 3) and (l4 ). k

With CO (or) represented as a polynomial, Co((r) = ^
the product Co(a) "coCa) is written as

CO (a) CO (a)

n=0

This product reduces to

C0((t)

1=0

^(a) -Y -n^" + Z ^n^'"
n=0 n= 1
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where c = / a a
n Li r r-n

Equation ( 11 ) becomes

k n k

(16)

The integrals of the first sum in Eq. (l6 ) are integrable by

the Cauchy Integral Formula to

k n

\_
Z V /_i J a -

n=0 S n=0

By the use of the residue theorem, it is easily shown that the integral

of the second sum vanishes. Thus,

(17)

n=0

Next
do) (g) _ d

d e ~ de (7 ac7^) = i7 nao^, and
^ Li n Li n '

n=0 n=0

d a"

where

n=0

r a a and d

n=l
k

Thus Ft.

r a a
_ \ r r-n

n ~ Zy
r=n

= 7 (r - n ) a a
n Lj r r-n

7 c a + 7 c a
L/ n L/ n
n= n= 1

Zb + )d a"'^
n Z_/ n

n= n= 1
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Also, |>((7) w(a)J = -3-0

k

and

/ c a + / c a

a= n= 1

k

^ n cr - ^ n a""

n=l

k k

^=0 n=

Using these expressions, Eq. ( 1 3) and ( 14) are

k

^nc^a'-^nc^a"

k k k k

V n V- Vu ^ V./ca+/ca /ba+/da
Lj n Lj n Lj n Lj n
-.0 n=l J Ln=0 n=l

n= 1 n=

1

de

n= n=

Since a = e

2tt

n=l n=l

de .

r 1 / inZiT io> „ /„
\ a de = —

^. (e - e ) = 0, n :^ 0.
Jq ni

Therefore, only constants in the integrand of Eqs. (l8) and ( 19)

yield non-zero terms, and

1^

=b+/ (cd+7b)00 ^ n n n n
n=l

k

Zn c "c
n n

(18)

(19)

(20)

(21)

n=l



whe

and

The stresses in terms of constants are given by Eq. (l5 )

k k

n= 1 n= 1

n=0

Thus at the point z = CO ),

T - i T = G a i

zx zy

2 n c„ t, O -n^ ^ - > ^ ^

S n a C n=0

n-1

S n a C
n= 1 n

SOLUTION OF A SIMPLE PROBLEM

As an illustrative problem, a shaft whose cross section is

bounded by a cardioid is considered. The cardioid is chosen as

an example because the function which maps it into a circle is a

finite polynomial, so that the method developed here should yield cor-

rect results.

The polynomial which maps the cardioid r = Z(l + cos a)

onto the unit circle is z = 1 + Zt, + ^. It is anticipated then that

three collocation points will be sufficient to determine the mapping

function.

Using the IBM l620 computer and the FORGO programs (See

Appendix) with data for three collocation points, and instructions to

compute stress at four points on the boundary, the results given in

Table 1 were obtained. As was expected, these results are correct.
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Data for thirty six collocation points and instructions to compute

stress at four points were employed in the same manner and, to four

decimal places, the results were the same as with three collocation

points.

Input Data:

r. k = 2 le = 3

4. ^ , (instruction to calculate stress

at 4 points )

1.0 1

1.0 2

Output;

I = 1. 0996 X 10^
o

D = -5. 6549 X 10
o

^zx(j) ^zy^j^ j

-1.5000
' -1.5000 1

-3. 2787 x 10^ 2. 7322 x lO*" 2

1.5000 -1.5000 3

-8. 2000 X lO-'' 2. 5000 4

Table 1. Results for cardioid.



SHAFT WITH SQUARE CROSS SECTION

As an example of a problem to which the method developed in

this report does not apply, torsion of a shaft with square cross section

was considered.

Using data for a two by two- inch square with eight and thirty-

two collocation points, and Program 1 (See Appendix), the a^'s

were found.

With the a 's determined above and Program 3 (See Appendix),
n

twenty points of the unit circle with argument less than tt / 4 were

mapped into the z plane.

It was desired that the resulting curve in the z plane be close

to the vertical straight line portion of the square in the first quadrant

of the z plane. However, upon plotting the curves (See Fig. 4 ),

Fig. 4(a) Fig. 4(b)

Fig. 4. Plot of curves associated with square.



16

it is seen that for eight collocation points (See Fig. 4a ) the curve

departs considerably from the square. For thirty-two collocation

points (See Fig. 4b), the curve departs violently from the square

and is further not a simple curve.

It may be concluded, therefore, that the method of approximate

conformal mapping developed in this report is not applicable in this case.

CONCLUSIONS

The torsion problem has been reduced to the problem of finding

a function which maps the boundary of the cross section, c, conformally

onto the unit circle. Since such a function is difficult to obtain, an

approximate conformal mapping is determined.

A polynomial with undetermined coefficients is assumed to be

the desired function, and the coefficients are found through use of

Eq. (6).

In using this polynomial, one must be cautious. After the coef-

ficients of the polynomial have been determined, a rough plot of the curve

which is actually mapped onto the unit circle should be made. If this

curve, call it cf , is close to the curve c, then a reasonable solution

of the problem for torsional rigidity, displacement and stress is to be

expected.

If, however, c' is not close to c, then other means of deter-

mining the coefficients of the polynomial must be used.
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PROGRAM 1

TCRSION PROBLEM
Diy.ENSICN AR(90 ) AI ( 90) BR ( 90 ) ,BI ( 90) ,CR ( 90) ,CI (90)

Diy.ENSICN 0R(90) tDI (90) R(90)
1 DC io J=l,90

AR{J)=v..
AI(J)=u.
bR(J)=v-.
bI(J)=^.
CR(J)=^.
CI ( J)=0.
DR(J)=0. ;/

DI ( J) = 0.

10 R{J)=0.
READ,K

4 READ, T,J,N
IF(N) 6.3,5

5 R ( J+1 ) =T
GO TC 4

6 CONTINUE
K.P = K+1
0=K
DL= (2.*3.141 5927)/ (0+1.

)

DO 102 M=1,KP
DM=M-1
DO 101 J=l ,KP
DJ=J-1
APR = (1./(Q + 1. ) )*R( J )*C0SF(DJ*(1.-D,M)*DL)
API = (1./(Q + 1.) )*R{J )*SINF( DJ*( l.-DM)*-DL)
AR(M )=AR(M )+APR

101 AI (M ) =A I (M )+API
102 CONTINUE

DO 132 N= 1,KP
DN=N-1
DO 131 J= N, KP
JNP = J-N+1
DJ = J-1
BPR=DJ*(AR(J )*AR(JNP )+AI(J )*AI(JNP ))

BPI=DJ*(AI(J )*AR(JNP )-AR(J )*AI(JNP ))

BR(N )=dR(N )+BPR
111 dI (N )=bl (N )+BPI

CPR = AR{J )*AR(JNP )+AI(J )*AI(JisP )

CPI=AI(J )*AK(JNP )-AR(J )*AI(JNP )

CR(N )=CR{N )+CPR



121 CI ( N ) =CI ( M ) +CP

I

DPR=(DJ-DN)*(AR(J )^^AR(JNP )+AI(J )*AI(JNP ))

DPI = (DJ-DN)*(AR(J )*AI(JNP )-AI-(J )*AR(JNP ))

DR(N )=DR(N )+DPR

131 DUN ) =01 ( N )+DP I . .
.

132 CONTINUE
DPR = O.G
DCPUR =0.0
TPUyiR = CR( 1)*dR(1)-CI (1)*BI (1)

DC 201 J=l »<

DJ = J

TPR = CR( J+1)*DR{ J+1 )- CI ( J+1 )*DI

(

J+1)+CR(J+1)*BR(J+1)

TPR = TPR + CI ( J+1)*BI ( J+l

)

DCPR =-2.*DJ* (CR ( J+] )*CR(J+1)+CI ( J + l ) *C I( J + l )

)

DCPUR = DCPUR +DCPR
201 TPUMR =TPUMR+TPR

TR=3. 1415927*. 5*TPUMR
DCR = 3. 1415927*. 5*DCPUR
DPUMI=Ci ( 1 )*BR( 1 )+CR ( 1 )*BI ( 1)

. \ ,
4 .

DC 211 j=i ,K ' '''rr
DJ = J

DPI=CI ( J+l )*0R( J + l )+CR( J + l )*DI ( J+l ) +CR( J + l )*bl ( J + l

)

DPI = DPI -CI ( J+l )*BR(J+1)

211 DPUMI=DPUMI+DPI
DIDBG=3. 1A1592 7*.5*DPUMI
KA = K+1
JA=1
J8 = 2

JC = 3

JD = 4

501 FCRMATl E18. 8,213)
600 FCRMAT( I3,4E16.8)

PUNCH, TR, DCR, DIDBG
DC 3u3 J=l ,<A
I=J-1
PUNCH 600,J,BR(J) jBI (J) ,DR( J) ,DI { J)

PUNCH 501, AR( J) ,1 ,JA

PUNCH 501, AI ( J) , I , JB

PUNCH 501 , CR ( J ) , I , JC
303 PUNCH 501, CI(J)»I» JD

GC TC 1

END



PROGRAM 2

STRESS FOR TORSION PROBLEM
DIiV,ENSION AR(90) .AI (90) tCRCgC) .CI (90) ,FDR(9C) .FDI (90)
DIMENSION WUR(90) »WDI (90) »WbR(90) »WbI (90) ,TX0GA(90) »TYDGA(90)
READ.K tlS

2 READ,T,J,N
GO TO (3»4. 3»6»7) N

3 AR ( J ) = T

GO TO 2
'

4 AI ( J)=T
GO TO 2

5 CR( J)=T
GO TO 2

6 CI ( j)=T • -
:

GO 10 2

7 CONTINUE
READ,ARZ,AIZ
ISP = IS+1
DO 102 J=l , ISP '

DJ = J

FDR(J)=0.
,

F D I ( J ) = .

WDR(J)=C.
WDI{J)=G.
WbR(J)=0.
WBI { J ) = 0. .

do'' 101 N=l < ...
. .,

DN = N
aP=ISP
DL= 3. 1413927*2. /(QP) '

.

FDRP={-1. )*DN*CR(N)*SINF ( ( DN-1 . ) *DJ*DL)
FDRP = FDRP-DN*CI (N)->C0SF( (DN-1. )*DJ*DL)
FDR(J) =FDR(J )+FDRP
FDIP=DN*(CR(N)*COSF( (DN-1, )*DJ*DL)-CI (N)*SINF( (DN-1. )*DJ*DL)

)

FDI ( J)=FDI ( J) +FDIP
WDRP = DN*(AR(N)*COSF{ (DN-I. )^^DJ*DL)-AI (N)*SINF( (DN-1. )*DJ*DL) )

WDR(J) =WDR(J) +WDRP
WDIP=DN*( AR ( N )^SINF ( ( DN-1. ) *DJ*DL ) +AI ( N)*COSF( ( DN-1. )*DJ*DL )

)

WDI ( J)=WDI ( J) +WDIP
WbRP = AR(,\ )*COSF (DN*DJ*DL)-A1 ( N ) *S I NF { DN*DJ*OL)
WbR( J)=WBR(J)+WBRP
Wbl P= ( -1 . )*( AI ( N) *COSF (DN*DJ*DL ) +AR ( N ) *S I NF ( DN*DJ*DL )

)

101 Wbl ( J) =WbI ( J )+WBIP
WbR ( J)=WaR( J )+ARZ

102 WBI { J)=WBI ( J)-AIZ
DO 201 J=l , ISP



TXDGA(J)=(FDR( J)*WDR(J)+FDI ( J)*WDI (J)

)

TXDGA( J) = TXOGA{ J)/(WDR(J)*WDR(J)+WDI ( J)*WDI (J) )+WbI ( J)

TYDGA(J)=(FDR( J)*WDI (J)-FDI ( J)*WDR(J)

)

TYDGA( J)=TYDGA{ J)/(WDR( J)* WDR ( J ) +WD I ( J ) ^^WD I (J) >+WbR( J)

201 PUNCH,J,TXDGA( J) »TYUGA(J)
END

PROGRAM 3

PLOTTING THE APPROXIMATING CURVE
DIMENSION AR(4C)» AI(40)
READ,K,IS,T

5 READ»R» i *J

IP =1+1
GO TO ( lo, 11,12) J

10 AR ( IP ) = R

GO TO 5

11 AI ( IP ) = F

GO TO 5

12 CONTINUE
KP = K+1
S = IS

DO 21 L=l, IS

DL = L

Tri = (T/S)*DL
ZI = C.u
ZR = 0.0
DO 20 N = 1,<P
DNM = N-1
ZRP= AR(N)*COSF(DNM*T H) - A I ( N ) *S I NF ( DNM*TH

)

ZIP= AR(N)*SINF(DNM*TH) + A I ( N ) *COSF ( DNM*TH

)

ZR = ZRP + ZR
20 Zl = ZI + ZIP

PUNCH, Th,L,ZR»ZI
21 CONTINUE

END
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ABSTRACT

The problem considered in this report is torsion of an isotripic

cylindrical shaft.

This problem is first formulated as the second boundary value

problem of potential theory, i. e. , the problem of determining a func-

tion which satisfies Laplace's equation and has a normal derivative

prescribed on the boundary of the cross section of the shaft under con-

sideration. The problem is then transformed to the Dirichlet problem,

i. e. , the problem of finding a solution of Laplace's equation which

assumes prescribed values on the boundary of the unit disk. The

Dirichlet problem is then solved with the aid of conformal mapping.

The function which maps the cross section of the shaft onto the

k n

unit disk is assumed to be a finite polynomial of the form a^ t, •

The constants of the polynomial are found by the method of collocation.

In this method, k + 1 points of the boundary of the cross section are

mapped exactly into k + 1 points of the unit circle. All other points

of the boundary of the cross section are assumed to map approximately

into the unit circle.

Using this finite polynomial, equations are developed from which

the stresses and the torsional rigidity of the shaft can be calculated.


