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ABSTRACT 

 

Barley yellow dwarf (BYD) is one of the most important wheat diseases in the state of 

Kansas. Despite the development of cultivars with improved levels of resistance to BYD, little is 

known about the impact that this resistance has on yield loss from the disease. The intent of this 

research was to estimate yield loss in winter wheat cultivars in Kansas due to BYD and quantify 

the reduction in losses associated with resistant cultivars. During seven years, BYD disease 

incidence was visually assessed on numerous winter wheat cultivars in replicated field nurseries.  

Cultivars were planted about three weeks early to promote disease.  When grain yields were 

regressed against BYD incidence scores, negative linear relationships significantly fit the data 

for each year and for the combined dataset covering all seven years.  The models showed that, 

depending upon the year, 19-48% (average 33%) of the yields was explained by BYD incidence.  

For the combined dataset, 29% of the relative yield was explained by BYD incidence.  The 

models predicted that cultivars showing high disease incidence had 25-86% (average 49%) less 

yield than a hypothetical cultivar that showed zero incidence.  Using the models, the moderate 

level of resistance in the cultivar Everest was calculated to reduce yield loss from BYD by about 

73%.  Therefore, utilizing visual BYD symptom evaluations in Kansas, coupled with grain 

yields, is useful to estimate yield loss from the disease.   Furthermore, linear models that 

incorporate those parameters can be used to calculate the impact of improving cultivar resistance 

to BYD on yield losses. 
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INTRODUCTION 

 

 Barley yellow dwarf (BYD) is caused by strains of the Barley yellow dwarf virus 

(BYDV) and Cereal yellow dwarf virus (CYDV) of the Luteoviridae family.  The disease is 

capable of producing significant yield losses in several different crop species including wheat 

(Triticum aestivum) (4).  It is considered one of the most economically important virus diseases 

of cereal crops in the world (9; 20; 27).  In the state of Kansas, it is the fourth most important 

wheat disease in terms of average estimated yield losses (1). 

  The virus particles have an icosahedral shape and encase a single stranded positive RNA 

genome. The virus is phloem limited within the host plant and it cannot be transmitted without 

the aid of its hemipteran vector (13; 18).  The serotype most common to Kansas agronomic 

cereal crops is PAV although the closely-related RPV strain of CYDV is also common (Bockus, 

unpublished).  Both of these species are transmitted by either the bird cherry-oat aphid 

(Rhopalosiphum padi) or the greenbug (Schizaphis graminum) (28). The virus persists in the 

aphid vectors in a circulative, non-propagative manner (18).  

 BYD symptoms can vary depending on the host: however, even within a host such as 

wheat, symptoms can differ widely among cultivars. Visual foliar symptoms can vary between 

yellow leaf discolorations to oranges, reds, and purples.  They begin at the leaf tip and spread 

toward the leaf base, particularly on the flag leaves (23).  Stunting and a decrease in kernel size 

and kernel number per head can occur as well leading to an overall decrease in yield in the 

infected plants (17; 30).  The stunting symptom is usually associated with early infections of the 

wheat plant by the pathogen. 
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 BYDV is thought to over season in native perennial grasses and volunteer host plants 

which are considered to be the main viral/vector reservoir (19; 22). The virus is often spread in 

the fall when viruliferous aphid species fly or are blown from the reservoirs into winter wheat 

fields at emergence (23). Infection can also occur in the spring; however, those are significantly 

less important than the ones that occur in the fall (14). It was shown that the severity of BYD 

infection, and subsequent wheat yield loss, are positively correlated with how old the plant is at 

infection (14). Additionally, fall infections were shown to decrease the number of heads, number 

of seeds per head, as well as tiller height (16). A study looking at possible BYD control measures 

determined that a critical treatment time is during the emerging stages of the wheat life cycle, 

confirming the importance of limiting early infections by BYDV (23).  

 Yield has been shown to be greatly reduced when wheat is infected with BYDV. When 

comparing symptomatic with adjacent nonsymptomatic sites of winter wheat and barley in 

Virginia, BYD significantly reduced tiller height, head number, seed number, number of seed per 

head, 1000 seed weight, and yield (17). Seed number, number of seed per head and yield were 

reduced the most with yield reduced by 34%.  Additionally, the amount of BYDV titer in wheat 

was shown to be directly correlated with the amount of resistance; resistant lines had 

significantly less titer (2). In the southeastern United States, researchers stated that data on BYD 

yield losses were sparse; however, they indicated that there were serious problems in many years 

due to the virus (15). Grain yield was shown to be “strongly associated with kernel number per 

plant” with a 36% decrease in research trials with BYD infection only and a 50% reduction in 

kernels when infected with BYD and infested with aphids (R. padi) at the same time (29). In the 

same study, it was shown that yield had been decreased by 46% in BYD infected wheat and 58% 

when wheat was infested with R. padi and simultaneously infected with BYDV.  In a different 
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study, researchers concluded that yield had been decreased by a total of 34% in the host (16). In 

a 1990 report, regional yield losses in wheat in the U.S. due to the viruses were estimated at 

between 2% and 10% (25). In summary, there are numerous reports that point to the BYD 

viruses’ capacity to cause 30-60% loss in wheat plants and up to 10% loss across large regions. 

The purpose of this study was to estimate yield loss due to barley yellow dwarf  in winter 

wheat cultivars in Kansas.  Preliminary reports indicated 22-39% loss due to BYD in susceptible 

winter wheat cultivars in Kansas (5; 6).  However, many cultivars that are grown in the state have 

some level of resistance to BYD (rating of 4 on a 1 to 9 scale where 1 is highly resistant and 9 is 

highly susceptible).  There are no reports of how that resistance affects the yield loss.  Therefore, 

this research sought to fill that gap and involved a novel method to estimate BYD yield loss for 

winter wheat cultivars in Kansas.  BYD incidence ratings for numerous cultivars were collected 

over the course of seven years and regressed against their relative grain yields in replicated 

disease nurseries. Although many parameters can affect grain yields (inherent yielding ability, 

response to abiotic stresses, response to other diseases), the hypothesis was that, given enough 

data points, grain yield would be negatively associated with BYD incidence.  Furthermore, if that 

is true, the resulting model equations could be used to calculate the impact that resistance has on 

yield loss from BYD. 

 

MATERIALS & METHODS 

 

All experiments were conducted at the Plant Pathology Rocky Ford Experimental Field 

located near Manhattan, Kansas. The soil type at that location is a silty clay loam (pH = 6.5) and 

all experiments were sown in an area that had been fallowed the year before.  A total of seven 
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experiments were conducted beginning in 2005 through 2013 (Table 1).  Data from 2007 and 

2009 were not available; therefore, those years were not included in the analyses.  Each 

experiment used a randomized complete block design with five replications with 24-48 entries 

each year. Entries consisted of different winter wheat cultivars or advanced breeding lines (Table 

1).  The field plots consisted of single rows, each 2.3 m in length and 50 cm apart in all 

directions. On average, the planting date occurred three weeks early for North Eastern KS. Early 

planting facilitates BYD spread to winter wheat due to increased aphid presence and subsequent 

feeding at higher temperatures. Grain was harvested with a plot combine at the normal time for 

the region.  To verify the species of virus present each year, several leaves were collected from 

the plot area after heading and subjected to Enzyme-Linked Immunosorbent Assay (ELISA) to 

test for the PAV species of BYDV and RPV species of Cereal yellow dwarf virus. PAV was the 

dominant species each year but RPV was also detected.  These are the two species that are most 

common in wheat in Kansas with only trace amounts of other species detected (Bockus, 

unpublished). 

 Infection by BYDV occurred due to the natural activity of various aphid species (mostly 

the bird cherry-oat aphid, Rhopalosiphum padi) and was promoted by an early planting date. 

Disease incidence was visually observed and recorded weekly beginning after heading and 

ending at the onset of normal wheat senescence. At each rating date, the percentage of tillers 

with leaf symptoms was visually estimated for each plot. Fungicide treatments were used when 

needed to prevent leaf senescence from foliar diseases (leaf rust and tan spot).  When foliar 

fungicides were used, they were applied at the early heading growth stage.  Folicur 3.6F (38.7% 

tebuconazole) was applied at a rate of 292 ml/ha in 187 L water per hectare with a back-pack 

sprayer equipped with flat fan nozzles. 



5 

 A total of 160 winter wheat cultivars or breeding lines were used in these experiments; 

however, the cultivars varied year to year (Table 1). Resistant and susceptible checks were 

included in each experiment and were selected based on the Kansas State University Cooperative 

Extension ratings (11). Ratings were on a 1-to-9 scale with 1 being highly resistant and 9 being 

highly susceptible. Resistant checks were those that had a rating of 4 and the susceptible checks 

were those with a rating of 9. 

Disease incidence ratings were averaged across all rating dates and replications to 

determine the mean for each wheat entry. Mean grain yields for each entry were also calculated. 

For each experiment, mean incidence values were regressed against mean grain yield using the 

Excel software.  To combine data across all seven years, incidence data were transformed by 

expressing them as a percentage of the entry showing the highest incidence.  Similarly, mean 

grain yields were expressed as a percentage of the test average yield. Scatter graphs were 

constructed showing the linear model fit to the data utilizing Excel.  Using the linear regression 

equations for each experiment, the potential yield loss for an experiment was calculated by 

comparison of the calculated yield of the entry showing the highest disease incidence with the 

calculated yield for a hypothetical entry that showed zero disease incidence.  Data across all 

experiments were combined to produce an overall model for relative grain yield regressed 

against relative incidence of BYD. 

 

RESULTS 

 

 There was significant BYD pressure in the nurseries each year as indicated by the 

relatively high percentage of wheat plants displaying symptoms on susceptible cultivars (Fig. 1).  
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An example of the disease progress on moderately-resistant and susceptible cultivars is shown in 

Table 2.  Depending upon the year, the most susceptible cultivars displayed between 29 and 83% 

incidence.  This was due to the fact that the nurseries were planted 2-3 weeks earlier than the 

usual planting date for North East Kansas.  Early planting of winter wheat cultivars in Kansas 

promotes BYD because the aphid vectors are more active in warmer temperatures. A continuum 

of BYD incidences, from relatively high to relatively low, was observed among cultivars for 

each year (Fig. 1).  Some of the more resistant cultivars displayed less than 10% incidence, less 

than 20% of the symptoms seen on the susceptible cultivars in that experiment.  The ELISA 

results showed that an average of 76% of the symptomatic plants had detectable BYDV or 

CYDV while none of the non-symptomatic plants had detectable virus. 

 For each of the seven years, data were incorporated into plots of the percentage 

symptomatic plants (X axis) and the grain yield (g/plot, Y axis) (Fig. 1).  Linear regression 

models of these relationships significantly fit the data for all seven years (Table 3).  The 

coefficients of determination ( R
2
) ranged from 0.1924 in 2011 to 0.4788 in 2008 indicating that 

disease incidence values explained about 19 to 48% of the yield in these experiments. The p-

values were highly significant (<0.0001) in 2005, 2006, 2008, and 2010 but were also significant 

(<0.02) for each of the other years. Equations of all of the regression lines for each year are given 

in Table 3.   

 The linear equations for each year were used to calculate the difference in yield between 

a cultivar that displayed the highest incidence that year with the yield of a hypothetical cultivar 

that was displaying zero symptoms. Using these differences, yield losses were calculated and are 

shown in Table 3.  
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 To allow combining of data across years, yields were expressed as a percent of the test 

average for that year and BYD incidence as a percent of the highest-rating cultivar for that year. 

A graph was then created to compare relative grain yields with relative percent symptomatic 

plants across all the years (Fig. 2). Results from the combined data set displayed a highly 

significant (P<0.0001) linear relationship. A linear model was fit to the data and used as 

described above to calculate hypothetical yield loss for the data set combined over all seven 

years (Table 3). Using this equation, cultivars showing the highest disease incidence would be 

expected to have 48.9% less yield than a hypothetical cultivar that showed zero incidence. 

 

DISCUSSION 

 

 Yield losses in wheat due to BYD have been determined using several different methods.  

Some of these involve comparing yields of symptomatic areas and adjacent, non-symptomatic 

areas (16), maintaining disease-free checks (30), or using artificial inoculation methods (17; 26).  

With these techniques, large yield losses have been measured.  For example, McKirdy and Jones 

(23) measured up to 43% loss, Hoffman and Kolb (17) up to 36%, Perry et al., (26) up to 35%, 

Herbert et al. (16) up to 34%, and Weisz et al., (30) up to 32%.  Clearly, BYD can have a 

significant impact on wheat yields.  In fact, for individual cultivars in some years, losses can 

exceed 60% (8).  Similar losses (22-49%) have been reported for susceptible winter wheat 

cultivars in Kansas (5; 6; 7).  However, the research reported here is the first use of visual 

disease phenotypic data, coupled with grain yields from many cultivars, to estimate yield losses. 

 Disease incidence (percentage of tillers expressing symptoms) was the method used to 

evaluate BYD in these experiments.  Although many studies have shown a poor relationship 
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between BYD incidence and yield (10; 17; 30), results presented here showed a consistent 

statistically-significant relationship.  Even within the citations listed above, there were years 

when symptom expression was negatively correlated with yield (17); therefore, there are 

environments where the association between these parameters is significant.  Kansas appears to 

consistently be one of those environments because there was a significant relationship in each of 

the seven years of these experiments.  Another difference between the studies cited above and 

this one is that data from 160 wheat cultivars and breeding lines and seven years (264 

cultivar/years) went into our analyses compared with a relatively small number of cultivars in the 

earlier studies (11 or less).   With such a large number of disease ratings correlated with yields, 

we were able to establish that barley yellow dwarf incidence can be useful to predict winter 

wheat yield losses in Kansas.  Nevertheless, there are clearly environments where our models 

may not be valid. 

 Similar to results presented here, other studies have also shown a significant negative 

linear relationship between BYD incidence and grain yield (3; 24; 26).  Nevertheless, there were 

important differences between the previous experiments and the current ones.  Only a few 

cultivars were used in the previous experiments (6; 1; and 3, respectively) while 160 cultivars 

and breeding lines were used in our experiments.  Additionally, the earlier studies used ELISA to 

detect the presence of the virus to estimate incidence while the current experiments used visual 

symptoms.  Although it has been reported that visual symptoms underestimate the actual 

incidence of virus in plants (17), they were shown to be useful indicators of the impact that the 

virus has on yield under conditions in Kansas.  Each method of determining BYD incidence has 

its own virtues.  The use of ELISA or PCR would be the most accurate because the presence of 

the virus and virus titer are being measure in each plant.   However, those methods are laborious 
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and may not be able to be utilized in breeding nurseries where there are large numbers of plots.  

Visual assessment of disease incidence is rapid and can be used in breeding nurseries where 

there are large numbers of entries.  Despite the differences, our results corroborate these earlier 

findings that a significant negative linear relationship exists between BYD incidence and grain 

yield in some environments. 

 As noted above, there are reports that BYD incidence may not be correlated with grain 

yield and visual symptoms can underestimate actual virus incidence in plants.  For that reason, 

researchers have used artificial inoculations or seed-treatment and foliar insecticides to obtain 

“healthy” checks to determine yield loss (17; 24; 30).  While those methods have merit, they are 

costly or require much effort.  For example, to artificially inoculate some plots with viruliferous 

aphids necessitates maintaining aphid colonies feeding on BYDV-infected plants and controlling 

the spread of aphids from inoculated plots to non-inoculated ones.  Additionally, high levels of 

control of aphid transmission using seed-treatment and foliar chemicals can be difficult to 

achieve.  In Kansas, treatment of seeds with insecticides results in about 50% control of BYD in 

some years (5; 6) but can also give no significant control in other years (Bockus, unpublished; 7).  

That method alone would not allow accurate assessment of the impact of BYD on grain yields in 

Kansas.  To achieve “healthy” check plots in that state can require seed-treatment insecticides 

coupled with up to nine applications of foliar insecticides (7).  Such elaborate methods to achieve 

“healthy” checks are often not feasible for breeding and disease-evaluation nurseries.  The 

methods used here are more conducive to recurrent selection and BYD phenotyping experiments. 

 Using visual assessment of BYD incidence (symptoms) has proven to be useful in Kansas 

to help produce cultivars with improved levels of resistance to this important disease.  Using this 

technique, the winter wheat cultivar Everest was developed and released in 2009 (12).  Because 
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of selection for reduced BYD symptom expression, Everest is rated a 4 on the KSU Extension 1 

to 9 scale, where 1 is highly resistant and 9 is highly susceptible (7).  That moderate level of 

resistance was a major factor in the rapid grower adoption of Everest and it is now the number 

one cultivar grown in Kansas.  Using the equations of the models generated here, Everest is 

calculated to have an average of 7.8% yield loss during the 4 years it was included in these 

experiments (2010-2013).  During those same 4 years, the most susceptible cultivar had an 

average of 28.5% loss.  Therefore, the resistance in Everest is estimated to have reduced yield 

loss from BYD by about 73% relative to more susceptible cultivars.  In conclusion, the linear 

models developed here have utility in Kansas to: 1) quantify potential BYD yield losses in 

Kansas; 2) help develop cultivars with resistance to BYD; and 3) quantify the impact that 

improved levels of resistance has on yield loss from BYD. 
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Table 1.  Winter wheat entries in seven barley yellow dwarf phenotyping experiments 

        Year       

Number 2005 2006 2008 2010 2011 2012 2013 

1 2137 2137 2137 2137 2137 282 Arrow 

2 2163 2145 Abilene Arkan 2145 625 Art 

3 Akron 2174 Arkan Armour Above 894 Billings 

4 Arkan Above Betty Art Arkan 947 Brawl CL 

5 Auburn Arkan BondCL Aspen Art 2029 Byrd 

6 Avalanche Avalanche Coker 9663 Betty Bill Brown 2072 Centerfield 

7 B-02 B-04 Danby Bill CJ 2089 Clara CL 

8 B-03 B-06 Dominator Coker 9663 Coker 9663 2100 Coker 9553 

9 B-04 Betty Duster Danby Cutter 2101 Duster 

10 B-05 Coker 9663 Endurance Dominator Deliver 2110 Endurance 

11 B-06 Cutter Fuller Duster Endurance 2121 Everest 

12 B-07 Dominator Heyne Endurance Everest 2124 Garrison 

13 B-08 Dumas Jagger Everest Hawken 2126 Greer 

14 B-09 Heyne 5391 Fuller Hitch 2127 Jackpot 

15 B-10 Intrada 5392 Hatcher Ike 2129 Karl 92 

16 B-11 Jagalene 5393 Hawken Karl 92 2130 McGill 

17 B-12 Jagger 5405 Heyne Larned 2134 MFA 2018 

18 Betty Kaskaskia 5406 Hitch Millenium 2139 MFA 2525 

19 Coker 9474 KS010525-1-1 5407 Jagger NuFrontier 2141 P 25R30 

20 Coker 9663 KS010525-1-3 Karl 92 Karl 92 NuHills 2149 P 25R39 

21 Custer Lakin Larned Keota Overland Art P 25R40 

22 Dumas Larned McCormick Larned Overley Coker 9663 P96134A3-2-2 

23 Intrada McCormick MFA 2020 Neosho P 25R47 Everest Ripper 

24 Jagalene Millenium Neosho OK Bullet P96134A3-2-2 Karl 92 Robidoux 

25 Jagger NuFrontier Newton Overland Pat - Ruby Lee 

26 Kaskaskia NuHIlls NuFrontier Overley Roane - SY Gold 

27 Larned NuPlains OK Bullet P 25R47 Sabbe - SY Wolf 

28 McCormick Overley Overley P96134A3-2-2 Shocker - T153 

29 Millenium P961341A3-2-2 P96134A3-2-2 Post Rock Smokey Hill - T154 

30 NuHills Platte Pioneer 25R47 Protection Snowmass - T158 
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31 NuPlains Prairie Red Platte Ripper Sturdy 2K - T163 

32 Overley Prowers 99 Post Rock Roane TAM 110 - TAM 110 

33 P961341A3-2-2 Roane Protection RonL TAM 111 - TAM 113 

34 Prairie Red Stanton Roane Santa Fe TAM 304 - Thunder CL 

35 Red Chief T81 RonL Shocker Tiger - WB Cedar 

36 Roane TAM 107 Santa Fe Smokey Hill Trego - WB Stout 

37 Stanton Tomahawk Shocker Spartan - - - 

38 T81 Truman Stanton Stanton - - - 

39 Tomahawk U4808-1-1-17-8 Sturdy 2K T-81 - - - 

40 USG 3209 U4808-1-1-25-6 TAM 112 TAM 110 - - - 

41 - U4808-4-3-19-3 Tarkio TAM 111 - - - 

42 - U4808-4-3-20-5-7 Truman TAM 112 - - - 

43 - - - TAM 203 - - - 

44 - - - TAM 304 - - - 

45 - - - Tarkio - - - 

46 - - - Truman - - - 

47 - - - Wesley - - - 

48 - - - Winterhawk - - - 
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Table 2: Progression of barley yellow dwarf incidence in moderately resistant 

and susceptible cultivars during 2012
a
 

   
Cultivar

b
 April 13 April 20 April 30 May 9 Mean 

Everest 13.4
c
 22.2 28.8 22.6 21.8 

Art 40.8 51.2 65.0 55.2 53.1 

LSD (P=0.05)
d
 10.7 12.9 12.2 11.1 9.9 

a
Visual assessment of the percentage tillers in a plot showing symptoms. 

b
Everest is moderately resistant and Art is susceptible. 

  c
Each value is the average of four replications 

  
d
Analysis of variance followed by Fisher's protected least significant difference at P = 

0.05. 
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a
Number of cultviars included in each field experiment. 

b
Significance of the slope parameter for the equation. 

c
Relationship between incidence of barley yellow dwarf and grain yield. 

d
Equation describing the trend line for incidence of barley yellow dwarf regressed against grain 

yield. 

e
Calculated from the incidence of the cultivar with the highest incidence that year compared with 

a hypothetical cultivar that had zero incidence. 

  

Table 3.  Linear regression models for seven years of Barley yellow dwarf incidence regressed 

against grain yield and for a data set combined over all seven years 
 

Year  N
a 

P-value
b 

R
2 c 

Equation
d 

Yield loss (%)
e
  

2005 40 < 0.0001 0.4390 Y = -4.11X + 195.6 85.7 

2006 42 < 0.0001 0.3676 Y = -3.17X + 279.4 55.2 

2008 42 < 0.0001 0.4788 Y = -2.65X + 187.9 63.2 

2010 48 < 0.0001 0.3748 Y = -1.61X + 266.2 40.4 

2011 32 0.0120 0.1924 Y = -0.939x + 312.6 25.0 

2012 24 0.0134 0.2473 Y = -2.18X + 255.6 45.2 

2013 36 0.0023 0.2188 Y = -1.38X + 119.4 33.2 

Combined 264 <0.0001 0.2891 Y = -0.659X + 134.9 48.9 
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Fig. 1. Incidence of Barley yellow dwarf regressed against grain yield for 2005 (A), 2006 (B), 2008 

(C), 2010 (D), 2011 (E), 2012 (F), and 2013 (G).  
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Fig. 2. Relative incidence of Barley yellow dwarf regressed against relative grain yield for the 

combined data set for 2005, 2006, 2008, 2010, 2011, 2012, and 2013.  
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