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Abstract 

The Soil Conservation Service-Curve Number (SCS-CN) method is widely used to 

estimate direct runoff from rainfall events; however, the method does not account for the 

dynamic rainfall-runoff relationship. This study used back-calculated curve numbers (CNs) and 

Normalized Difference Vegetation Index (NDVI) to develop NDVI-based CNs (CNNDV) using 

four small northeastern Kansas grassland watersheds with average areas of 1 km
2
 and twelve 

years (2001–2012) of daily precipitation and runoff data. Analysis indicated that the CNNDVI 

model improved runoff predictions compared to the SCS-CN method. The CNNDVI also showed 

greater variability in CNs, especially during growing season, thereby increasing the model’s 

ability to estimate relatively accurate runoff from rainfall events since most rainfall occurs 

during the growing season. The CNNDVI model was applied to small, disturbed grassland 

watersheds to assess the model’s ability to detect land cover change impact for military 

maneuver damage and large, diverse land use/cover watersheds to assess the impact of scaling up 

the model. CNNDVI application was assessed using a paired watershed study at Fort Riley, 

Kansas. Paired watersheds were identified through k-means and hierarchical-agglomerative 

clustering techniques. At the large watershed scale, Daymet precipitation was used to estimate 

runoff, which was compared to direct runoff extracted from stream flow at gauging points for 

Chapman (grassland dominated) and Upper Delaware (agriculture dominated) watersheds. In 

large, diverse watersheds, CNNDVI performed better in moderate and overall flow years. Overall, 

CNNDVI more accurately simulated runoff compared to SCS-CN results: The calibrated model 

increased by 0.91 for every unit increase in observed flow (r = 0.83), while standard CN-based 

flow increased by 0.506 for every unit increase in observed flow (r = 0.404). Therefore, CNNDVI 

could help identify land use/cover changes and disturbances and spatiotemporal changes in 



 

 

runoff at various scales. CNNDVI could also be used to accurately estimate runoff from 

precipitation events in order to instigate more timely land management decisions. 
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Abstract 

The Soil Conservation Service-Curve Number (SCS-CN) method is widely used to 

estimate direct runoff from rainfall events; however, the method does not account for the 

dynamic rainfall-runoff relationship. This study used back-calculated curve numbers (CNs) and 

Normalized Difference Vegetation Index (NDVI) to develop NDVI-based CNs (CNNDV) using 

four small northeastern Kansas grassland watersheds with average areas of 1 km
2
 and twelve 

years (2001–2012) of daily precipitation and runoff data. Analysis indicated that the CNNDVI 

model improved runoff predictions compared to the SCS-CN method. The CNNDVI also showed 

greater variability in CNs, especially during growing season, thereby increasing the model’s 

ability to estimate relatively accurate runoff from rainfall events since most rainfall occurs 

during the growing season. The CNNDVI model was applied to small, disturbed grassland 

watersheds to assess the model’s ability to detect land cover change impact for military 

maneuver damage and large, diverse land use/cover watersheds to assess the impact of scaling up 

the model. CNNDVI application was assessed using a paired watershed study at Fort Riley, 

Kansas. Paired watersheds were identified through k-means and hierarchical-agglomerative 

clustering techniques. At the large watershed scale, Daymet precipitation was used to estimate 

runoff, which was compared to direct runoff extracted from stream flow at gauging points for 

Chapman (grassland dominated) and Upper Delaware (agriculture dominated) watersheds. In 

large, diverse watersheds, CNNDVI performed better in moderate and overall flow years. Overall, 

CNNDVI more accurately simulated runoff compared to SCS-CN results: The calibrated model 

increased by 0.91 for every unit increase in observed flow (r = 0.83), while standard CN-based 

flow increased by 0.506 for every unit increase in observed flow (r = 0.404). Therefore, CNNDVI 

could help identify land use/cover changes and disturbances and spatiotemporal changes in 



 

 

runoff at various scales. CNNDVI could also be used to accurately estimate runoff from 

precipitation events in order to instigate more timely land management decisions.
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Chapter 1 - Introduction 

1.1  General Background 

Water is one of the most essential natural resources on the earth, but its availability and 

quality is adversely affected by increasing agricultural, domestic, and industrial demands. Water 

demands vary depending on the climate of an area and traditional uses of water (Davie, 2008). 

As the world’s population grows rapidly, water demands are also increasing. Intensified 

urbanization and the degradation of ecosystems exacerbate adverse effects on water quality and 

quantity (Lal and Shukla, 2004). Water experiences cyclical continuous movement on, above, 

and below the surface of the earth; the sun is the primary cause for this movement (Perlman, 

2014). Figure 1-1 shows the hydrologic cycle, which involves an exchange of energy that drives 

precipitation, evapotranspiration, infiltration, and runoff generation in the atmosphere, 

hydrosphere, biosphere, and lithosphere. Quantifying components of the hydrologic cycle at 

various scales provides invaluable assistance for water resource planning and management and 

the decision-making process on water usage and quality.  

Hydrologists obtain measurable information and knowledge about the water cycle and its 

components in order to increase understanding of hydrologic physical processes and make 

appropriate and timely water quantity and quality-related decisions. Hydrologic processes and 

estimations of hydrologic components, mainly precipitation and runoff, comprise the foundation 

of effective water resource and environmental planning and management. Fedak (1999) stated 

that models enable hydrologists to understand complex problems by simulating and predicting 

hydrologic behavior. However, adaptations of models’ results need precautions since models 

depend on assumptions, input, and parameter estimates. Quantification of hydrologic 

components also requires understanding of the factors that determine those hydrologic processes, 
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their inter-relationships, and the methods used to determine the relationship. For example, the 

amount of runoff produced from precipitation events is dependent upon hydrologic 

characteristics such as area and shape of watershed, vegetation, topography, soil, and rainfall 

volume and intensity. Accurate runoff predictions require thorough understanding of these 

factors and their relationship.  

 
Figure 1-1: Hydrologic cycle with components that describe water movement derived by 

sun and wind energy (Adopted from Enock, 2011) 

Hydrologic models have been used to quantify and predict the amount of water, nutrients, 

sediment, and pollutant loads in the system. However, the accuracy of hydrologic models 

typically depends on how well the input data represent precipitation, soil, land use/cover, land 

management, topography, and other factors that affect physical processes. In addition, 

determining the empirical and numerical relationships of various components of hydrologic 

processes is a critical but daunting issue in modeling. These empirical and numerical 
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relationships, also called parameterizations, relate hydrologic variables to each other and 

describe specific physical mechanisms in hydrologic processes. 

Although hydrologic models are simplified representations of a complex system, they 

could quantify hydrologic processes more appropriately with proper model setup, input, and 

parameterization. Hydrological models have potential to effectively estimate annual and seasonal 

water yields, predict flood peak for improved structural design to prevent floods, conserve water 

for better management during drought periods, estimate sedimentation and chemical transport, 

and estimate crop yields from agricultural areas with different weather and climatic conditions. 

In order to accomplish these purposes, however, components of hydrological processes must be 

quantified at different scales which fits the objective of specific study.  

When any process is defined or parameterized, that process must be considered at a given 

scale. A watershed model holistically considers hydrological processes at the watershed scale 

when compared to other models that simulate at small or field scale (Daniel et al., 2011; 

Oogathoo, 2006). A watershed is defined as an entire upstream area that contributes to the stream 

system that flows through a given outlet point. Watershed size depends on the outlet point in the 

drainage system under consideration, which is typically the entrance point to the large water 

body, reservoir, or any point where it  changes from a tributary to a river. In most cases, river 

flow is measured at that outlet point. Watersheds, which are naturally delineated by land surface 

topography, are natural systems boundaries for mass and energy flux. A watershed is also the 

basic organizing unit for a wide range of scientific, engineering, and water management 

activities that quantify water and sediment fluxes into and out of a specified system (Genereux, 

2005). Watersheds integrate hydrologic processes within their boundaries, and watershed data is 

often extrapolated to a larger extent with appropriate precautions (Dahlgren, 1999). However, 
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when hydrological processes are defined or parameterized at the watershed scale, its spatial 

variability must be included because most hydrologic processes are highly variable in space 

(Daniel et al., 2011). Therefore, parameterization of a watershed model requires additional 

expertise and precaution, especially in semidistributed and distributed models because these 

models account for spatial variability of hydrologic processes, input, boundary conditions, and 

watershed characteristics (Refsgaard, 1996). The study of hydrologic processes must consider 

spatial and temporal variability of topography, soil, and vegetation in the study area in order to 

improve the representation of runoff generating processes.  

Variability in land use/cover, soil physicochemical properties, and climatic variables such 

as precipitation, humidity, temperature, solar radiation, and wind speed and direction cause 

spatiotemporal heterogeneity in hydrologic processes. The changing climate, occurrences of 

variable extreme events, and landscape disturbances contribute to spatiotemporal variability in 

hydrologic processes at various scales. As the watershed area decreases in size, precipitation 

variability could increasingly impact model outputs, especially peak flows (Mandapaka et al., 

2009). Changes in amount, frequency, and intensity of precipitation directly affect the magnitude 

and timing of runoff as well as flood and drought intensities (Arnell et. al, 1996; Immerzeel, 

2008). In addition to precipitation, landscape and topography are also very significant variables 

that require pertinent representation in models. For example, change in land use affects 

hydrologic processes because it alters evapotranspiration (ET), the ability of soil to hold water, 

and the ability of vegetation to intercept precipitation. Changes in land use also modify runoff 

pathway and timing. Spatiotemporal variability of components in the hydrologic cycle incites an 

increasing demand for simple, accurate, reliable methods to measure or estimate hydrologic 

variables and define suitable relationships of rainfall and runoff.  
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Current and future advancements in remote sensing and geographic information science 

(GIS) provide opportunity to quantify and predict components of hydrologic processes at various 

scales by providing a means of observing and assessing hydrologic variables over large areas 

(Schmugge, 1987; Schmugge et al., 2002), thereby improving input data and parameterization of 

hydrologic models. Remote sensing allows spatial variability of parameters and processes in 

hydrology to be defined at fine spatial and temporal scales that are typically present in the natural 

environment. Remote sensing techniques also help quantify temporal variability if observations 

are made repeatedly. Remote sensing is applied in various hydrologic studies, including 

estimation of soil moisture, runoff, ET, snow pack and melt, precipitation, land surface 

temperature, vegetation covers, and vegetation phenology (Hong and Adler, 2008; Jackson et al., 

1996; Pockrandt, 2014; Schmugge et al., 2002; Schnur et al., 2010). The remote sensing and GIS 

technology allows researchers to understand integral variables in the land surface water balance 

at various spatial and temporal resolutions. GIS allows those variables to be analyzed and 

mapped at different spatial scales, consequently facilitating water management and decision-

making processes.  

  Although computational capability of computing equipment has tremendously increased 

over the time in recent decades, quantifying hydrologic processes and accounting for watersheds’ 

variability especially in spatial cases such as changes in climate, occurrences of variable extreme 

events, and landscape disturbances on hydrologic processes cannot be done with available 

traditional data. This is difficult mainly due to unavailability of long-term hydrologic records, 

higher natural variability of most hydrologic systems, difficulties in controlling catchment land-

use changes, limited controlled small-scale experimental studies and the challenges involved in 

extrapolating model results to other systems (DeFries and Eshleman, 2004). However, these 
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problems can be resolved by using advancements in remote sensing and GIS (DeFries and 

Eshleman, 2004; Lambin et al., 2001) to implement hydrologic models, especially at the 

watershed scale. This study devised methods to improve the development and analysis of surface 

hydrologic modeling using remote sensing, GIS, and statistical techniques.  

1.2  Research Agenda 

1.2.1 Statement of Problem 

Land surface and its transformation plays a fundamental role in modulating the 

atmospheric, geomorphic, hydrologic, and ecological processes on or near the earth’s surface; 

therefore, understanding land surface could provide valuable information regarding natural 

process functions (Wilson, 2012). Land use/cover change and/or disturbances affect the water 

cycle because it changes the ET, soil’s ability to hold water, and vegetation’s ability to intercept 

precipitation. Changes in land use/cover also modify the pathways of water and the surface 

roughness that influences the timing of runoff and river flow.  

Surface runoff is a vital hydrologic component that is widely studied in water resources. 

Understanding and predicting the rainfall-runoff relationship is crucial for water resource 

planning and management and understanding processes of erosion, sediment transport, and 

contaminant loading. However, the rainfall-runoff process is complex, dynamic, and nonlinear 

(Fan et al., 2013; Song et al., 2011). The amount of runoff generated from a rainfall event is 

dependent on hydrologic conditions of an area as well as the amount, intensity, and duration of 

the rainfall. Hydrologic conditions of a watershed are primarily affected by land use/cover, soil 

physicochemical properties, antecedent moisture condition, and local and regional temperature. 

Land surface topography, land use/cover, soil physical properties, and compaction are the main 

determinants in hydrologic processes, especially for surface and groundwater processes. Direct 
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runoff from rainfall events is a fundamental hydrologic concept for flood peak estimation and 

structure design (Hawkins et al., 2008). However, reliable predictions of amount and rate of 

runoff from land surface is becoming increasingly difficult and time-consuming as watershed’s 

complexity increases.  

The volume of direct runoff in ungauged rural catchments widely estimated using the 

curve number method (Boughton, W., 1989). The Curve Number (CN) method, also referred as 

the SCS-CN method, was developed in the 1950s by the U.S. Department of Agriculture 

(USDA), formerly the Soil Conservation Service (SCS) and currently the Natural Resources 

Conservation Service (NRCS), in order to implement public law 566 (Hawkins et al., 2008; 

Hawkins, 2014). Public law 566 is a Watershed Protection and Flood Prevention Act, enacted on 

August 4, 1954, that requires upstream flood prevention and watershed condition improvement, 

primarily within the small watershed scale (Woodward et al., 2002). The SCS-CN method was 

developed as a uniform procedure the USDA-SCS could apply nationwide based on available 

data (Woodward et al., 2002). The SCS-CN method has been widely applied in many hydrologic 

models, such as Soil and Water Assessment Tool (SWAT), Hydrologic Engineering Center-

Hydrologic Modeling System (HEC-HMS), Erosion Productivity Impact Calculator (EPIC), and 

Agricultural Non-Point Source Pollution Model (AGNPS) (Kousari et al., 2010).  

The SCS-CN method is based on land use/cover, hydrologic soil group (HSG), and 

hydrologic condition of the watershed. It expresses runoff depth as a function of rainfall depth, 

hydrologic storage, and initial abstraction. Since a watershed is usually a combination of 

different land uses and soil conditions, an area weighted average CN for the entire watershed or 

sub-watershed is often used based on SCS-CN lookup tables and seasonal or dynamic land use 

changes is not well represented. Dynamic land use/cover changes and hydrologic conditions are 
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not precisely accounted for in most hydrologic studies due to limited spatial and temporal data 

availability and their time-consuming nature. However, because spatiotemporal changes in a 

landscape significantly influence runoff estimation, the changes should be accounted for in order 

to improve water resources management. Although the SCS-CN method is widely applied and 

incorporated in numerous hydrologic models (Kousari et al., 2010), it does not adequately reflect 

detailed spatiotemporal variability of the rainfall-runoff relationship because of limited spatial 

and temporal data availability. The first part of this study more efficiently accounted for 

spatiotemporal variability of the rainfall-runoff relationship than the standard CN method (SCS-

CN) because CN based on the Normalized Difference Vegetation Index (NDVI) was utilized. 

NDVI is remotely sensed product of Moderate Resolution Imaging Spectroradiometer (MODIS). 

In hydrologic studies the understanding of hydrologic impacts of watershed management 

decisions or disturbances are derived from controlled, experimental manipulations of land cover 

and pre- and post-manipulation observations of hydrologic processes at the watershed scale so 

that watershed is used as an observable scale of catchment experiments with precipitation inputs 

and stream discharge outputs (DeFries and Eshleman, 2004; Tollan, 2002). The paired watershed 

approach, a commonly used hydrologic approach, captures the effects of climate and hydrologic 

processes due to land use/cover changes in watersheds without measuring all components 

throughout the study area (Andréassian, 2004). A paired watershed study is especially useful for 

uncontrolled and landscape disturbances and significant localized changes in soil properties and 

compaction, such as from military maneuvers. However, no consistent, statistically sound 

criterion and method exist to process paired watershed selection; many studies use subjective 

professional judgments to select paired watersheds for their studies. Therefore, the second part of 

this study utilized a statistically sound technique with topographic and geologic parameters for 
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paired watershed selection since selected topographic and geologic parameters determine 

hydrologic processes in small watersheds. This is a useful method for determining hydrologic 

process disturbances.  

1.2.2 Study Goals and Objectives 

One of the principal applications of hydrology is forecasting and predicting runoff 

volumes and flood peaks due to large rain and snowmelt events (Dingman, 2008). Systematic 

approaches to quantifying hydrologic processes with various landscape and watershed 

management and the spatiotemporally variability of  land use/cover, soil physicochemical 

properties, and climatic forcing are essential in order to address the ever increasing importance 

of estimating available water for  numerous needs and dealing with extreme events that could 

potentially affect resources and security.  

The overall goal of this study was to improve surface water hydrologic modeling by 

developing a dynamic method to estimate runoff and identify a systematic approach for paired 

watershed analysis. This dissertation has three main component studies: curve number based on 

Normalized Difference Vegetation Index (CNNDVI) development, application of developed 

CNNDVI in similar small but disturbed land use, and relatively diverse land use larger watersheds, 

and statistically paired watershed selection.  

The first goal of this study was to assess the applicability of satellite data for capturing 

spatiotemporal changes of hydrologic conditions in order to improve estimation of surface 

runoff. The hypothesis of the study was that a CNNDVI would provide a more accurate 

spatiotemporal prediction of runoff than the standard SCS-CN method. The specific objective of 

this study was to develop a model that estimates CNNDVI as a surrogate of spatial and temporal 

changes of hydrologic conditions in order to accurately capture the spatiotemporal relationship of 
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rainfall and runoff. This study was based on12 years of recorded rainfall and runoff data from 

four small watersheds in the Konza Prairie, Kansas and NDVI for the respective time period. 

Regression analysis was used to develop the model to calculate CN using NDVI, and 

model-based runoff was calibrated and validated using observed (recorded) runoff compared to 

standard CN-based runoff. The study also addressed the following research questions: How can 

GIS and remote-sensed products be jointly used to develop periodic and seasonal curve 

numbers? Are there any temporal and seasonal changes in developed CN? If there are changes, 

what are the patterns of the changes? Can NDVI provide relatively accurate estimates of rainfall-

runoff relationships by developing a CNNDVI? Can CNNDVI provide better runoff estimates than 

the SCS-CN method?  

The second goal of the study was to determine a statistical approach to process paired 

watershed selections and apply the CNNDVI on small, disturbed grassland watersheds. The 

specific objectives were to conduct a paired watershed selection by devising a statistical method 

to select watersheds based on topographic and geologic parameters that dominate hydrologic 

processes in small watersheds and to apply CNNDVI in disturbed grassland. The paired watershed 

chapter (Chapter 4) addresses the following research questions: Can statistical techniques be 

applied to select paired watersheds in order to study hydrological responses? Is using 

topographic and geologic parameters scientifically sound and statistically feasible? Can CNNDVI 

be applicable in disturbed lands?  

The third goal of this study was to evaluate the application of a previously developed 

CNNDVI model on relatively diverse land use/cover and large watersheds. The hypothesis was 

that Daymet precipitation and the CNNDVI model could estimate runoff accurately than standard 

CN methods for large watersheds with various land use/cover. The specific objectives were to 
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assess the application of Daymet precipitation and CNNDVI to estimate runoff in relatively large 

watersheds and to compare CNNDVI runoff of the two watersheds to direct runoff component of 

stream flow at United States Geological Survey (USGS) outlets of the watersheds. The research 

questions associated with this goal were: Can the CNNDVI model be applied at a larger scale and 

various land cover areas? How much spatiotemporal variability in runoff can be addressed using 

Daymet precipitation and CNNDVI? This study used Daymet data to account for spatial variability 

of precipitation. The Daymet data, available with 1 km × 1 km spatial resolution, was compared 

to nearby National Climate Data Center (NCDC) gauge precipitation to assess relative accuracy 

of the data. The analysis compared and validated Daymet precipitation using NCDC data (within 

1 km radius from NCDC points) to use precipitation in rainfall-runoff modeling. The study was 

done at HUC10 watershed scale.  

Overall, the methods explored in this research (CNNDVI development and paired 

watershed techniques based on statistics) provided a better alternative for studying natural and 

anthropogenic impacts on hydrologic responses at the watershed scale. The study was applied in 

two watersheds with distinct land uses in Kansas, but a similar approach could be adapted to 

various land use categories. The method can also alleviate difficulties in studying environmental 

impacts of natural and/or disturbed lands and also provides a mechanism to study the 

effectiveness of conservation practices at larger watershed scales. 
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Chapter 2 - Literature Review  

This study encompassed a multidisciplinary approach to study watersheds, such as 

surface water hydrology, remote sensing, and GIS. The major goal of the study was to improve 

surface water modeling through remote sensing and GIS. The study developed CNNDVI and 

systematic paired watershed selection methods. This literature review provides a general 

overview of surface water modeling, especially runoff prediction pertaining to remote sensing 

and GIS. A broad overview of watershed modeling, land use/cover changes and management, 

remote sensing and GIS, the importance of spatiotemporal variability in hydrology, rainfall-

runoff modeling, and the CN method are also discussed. In addition, data acquisition and 

uncertainty related to hydrologic modeling are addressed, and the paired watershed, a widely 

applied practice to study hydrologic responses of different treatments, is discussed. 

2.1  Modeling the Watershed 

Detailed field studies emerged in the 1960s in order to broaden understanding of the 

physical processes by which water enters streams; conceptual and mathematical models were 

used to comprehend and quantify those processes (Hubbart, 2008). Watershed modeling 

attempted to understand the components of hydrologic processes as well as water movements 

and interactions with vegetation and physicochemical properties of sol at the surface, subsurface, 

and interface. Watershed models are valuable tools that provide valuable information for water 

resource decisions. Jeon et al. (2014) described watershed modeling as a rational, economical, 

and useful approach for water resource planning, design, and decision making.  Moriasi et al. 

(2007) portrayed watershed models as powerful tools to quantify hydrologic processes and 

simulate the effects of hydrologic processes within the watershed which increase management 

efficiency of soil and water resources. Watershed scale models such as the AGNPS, the 
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Kinematic Runoff and Erosion Model (KINEROS), Hydrologic Simulation Program-FORTRAN 

(HSPF), MIKE SHE, and SWAT were developed to address water quality issues (Borah and 

Bera, 2003).  

Hydrologic models can be conducted from field-scale to watershed-scale levels with 

various sizes to quantify the amount of water in each hydrologic process component, assess flood 

and drought occurrences, and estimate the amount of sediment and pollutant loads (Garen and 

Moore, 2005; Parajuli and Ouyang, 2013). A watershed is an area of land from which all runoff 

from rainfall excess and/or snow melt flows to a certain point. It can be considered a closed 

boundary in order to quantify water as input, output, and storage in watershed models. GIS 

advancement, remote sensing, and data computing capabilities of computers increase the 

applicability of hydrologic models at various scales. 

Hydrologic models have varied from lumped to distributed models throughout the 

conceptualization and parameterization evolution of hydrologic processes in catchment models 

over several decades of research (Todini, 2007). Watershed models can be categorized spatially 

as lumped, semi-distributed, or distributed models. In the lumped watershed approach, a 

watershed is often considered as a single unit, and watershed parameters and variables are 

averaged over this unit. For semi-distributed or distributed model approaches, the models 

account for spatial variability of hydrologic processes and parameters, and variables are allowed 

to vary. Advancements of digital computation and increasingly improving resolution data from 

remote satellites have caused rapid development and acceptance of distributed hydrologic 

models. Temporal variability is often included in event-based or continuous process watershed 

models. Event-based models consider individual rainfall events, focusing on infiltration and 
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surface runoff; continuous process models account for all runoff components while considering 

soil moisture redistribution between storm events (Melone et al., 2005).  

Watershed models utilize mathematical expressions or conceptual categorization to 

quantify and predict components of hydrologic processes. These models also use precipitation, 

land use/cover, impervious areas, slope, soil type, drainage area, and other topographic 

characteristics as input data to characterize variability and quantify components of hydrologic 

processes (US EPA Ecosystems Research, 2013). Watershed model accuracy depends on 

complex hydrologic process representation and how well inputs are parameterized. Land 

use/cover is a crucial variable used in watershed models to characterize spatial variability.  

2.2  Land Use/Cover Changes and Management 

Land is one of Earth’s foremost natural treasures, but its use and availability depends on 

population growth and suitable land management. Land use/cover changes are induced primarily 

by population growth (DeFries et al., 2004; Geist and Lambin, 2002; Lambin et al., 2001; Mul, 

2009) and the changing climate (Millennium Ecosystems Assessment, 2005). As the population 

expands, more land is changed from natural systems to agricultural, residential, and industrial 

areas (Barbosa et al., 2012; De Fries et al., 2004; DeFries and Eshleman, 2004; Isik et al., 2013). 

In addition, the changing climate may exacerbate land use/cover changes that affect hydrologic 

processes.  

Changes in land use/cover affect local, regional, and global hydrologic processes and 

water management activities (Foley et al., 2005; Schilling et al., 2008; Mao and Cherkauer, 

2009; Elfert and Bormann, 2010; Ghaffari et al., 2010). Land owner’s and manager’s choices 

about land use and land cover patterns also exacerbate the effects of climate change. The impacts 

of land use/cover change on surface and near-surface landscape affect runoff generation 
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processes, including increasing direct runoff volume by interfering natural infiltration rates or 

surface storage or both. Land use changes can also significantly alter leaf area index (LAI) and 

ET (Mao and Cherkauer, 2009), soil moisture content and infiltration capacity (Fu et al., 2000; 

Costa et al., 2003), subsurface flow (Tu, 2009), ground water recharge, and as well as cause lag 

effects in stream flow. Land use change can also alter the presence and extent of perched water 

tables and alter the generation of overland flow (Germer, 2010). Infiltration capacity of the soil 

determines the amount and time of rainfall excess distribution that is available for runoff and 

surface storage (Garen and Moore, 2005). Zimmermann et al. (2006) examined how land use 

influences soil hydraulic conductivity and infiltrability, thereby affecting other components of 

hydrologic processes, such as surface runoff.  

Quantification of hydrologic processes at field and watershed scales is essential for 

understanding hydrologic responses of land management activities, including natural and 

anthropogenic disturbances. Various methodologies have been implemented to attempt to 

understand the effects of land use and land cover change on hydrologic processes. Most current 

understanding of hydrological impacts of land use/cover changes were derived from paired 

watershed comparisons of controlled and experimental watersheds (Andréassian, 2004; Hong 

and Adler, 2008; King et al., 2008). Hydrological models, which assess the impact of land use 

changes, are benefiting from digital computation advancements and increasing availability of 

high resolution, remotely sensed data.  

2.3  Remote Sensing in Hydrological Modeling 

The invention and development of GIS and remote sensing have significantly improved 

hydrological modeling and advanced the physical understanding of hydrology. Schmugge et al. 

(2002) defined remote sensing as the process of inferring surface parameters from measurements 
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of upwelling electromagnetic radiation from the land surface. Remote sensing is applied in 

environmental, hydrological and climatological studies, including estimation of soil moisture, 

ET, snow pack and melt, precipitation, land surface temperature, and vegetation covers 

(Khanbilvardi e al., 2014). GIS analyzes spatial information, manages georeferenced data such as 

the digital elevation model (DEM), creates interactive queries, and presents model results in 

maps. It also helps formulate spatially distributed hydrological models (Mitas and Mitasova, 

1998).  

Distributed hydrologic models require spatial distribution of meteorological and 

geographical elements such as temperature, precipitation, humidity, solar radiation, and other 

observation data as their main inputs or forcing parameters. Because traditional hydrologic data 

are point/field measurements, hydrologic analysis are limited by spatial data availability. 

Satellite remote sensing data have emerged as a viable alternative or supplement to in situ 

observations due to its availability for implementation and calibration of hydrologic models over 

vast ungauged regions. Distributed hydrologic model demands are often met by integrating GIS 

and remote sensing products. Landsat (mainly TM and ETM+), Satellite Pour l’Observation de la 

Terre (SPOT), MODIS, National Oceanic and Atmospheric Administration - Advanced Very 

High Resolution Radiometer (NOAA–AVHRR), IKONOS, and QuickBird are commonly used 

remote sensing products in data acquisition tasks. Scientists monitor patterns of land cover 

change over space and time at regional, national, and global scales using satellite and other 

remotely sensed data (Slonecker, et al., 2013). 

Remote sensing data is widely applied in hydrologic modeling, especially to quantify 

land use/cover changes (Alexakis et al., 2013; Bhaduri et.al, 2000; Li, et. al, 2013; Zacharias et. 

al, 2004). Zacharias et al. (2004) used remote sensing and modeling techniques to quantify land 
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use alterations and associated hydrologic impacts. Charoenhirunyingyos et al. (2011) proposed 

remote sensing data as an emerging alternative to estimate soil hydraulic parameters. Band et al. 

(1993) used GIS processing of remote sensing data to study ecosystem processes at a watershed 

scale. In addition to use in many water quality studies, remote sensing techniques have been used 

to map snow and soil moisture and to monitor crop development (Schmugge et al., 2002). 

Remotely sensed data have also been used to estimate land surface water balance variables such 

as precipitation, ET, snow and ice, soil moisture, and terrestrial water storage variations at 

various spatial and temporal resolutions and accuracies (Tang et al., 2009). 

2.3.1 Normalized Difference Vegetation Index and Quality Check 

The Normalized Difference Vegetation Index (NDVI) is an index that measures 

“greenness” of vegetation.  NDVI is calculated as the normalized difference between near-

infrared (841–876 nm) and red (620–670 nm) bands as  

      
       

       
                                                (2-1) 

NDVI is one of the most commonly used vegetation indices (VIs) to monitor vegetation 

conditions and display land use/cover and its changes. NDVI has been successfully applied 

worldwide to study temporal and spatial trends and variation in vegetation distribution, 

productivity, and dynamics and to monitor habitat degradation, fragmentation, and ecological 

effects. In addition, NVDI has been applied to monitor climatic disasters such as drought (Singh 

et al., 2003), fire (Maselli et al., 2003), flood (Wang et al., 2003), and frost (Tait and Zheng, 

2003). NDVI also has been used as a pseudo indicator of soil moisture conditions (Narasimhan et 

al., 2005) and derived LAI to monitor potential ET (Zhou et al., 2006). Global usage of NDVI 

suggests that any application can be adapted to various regions.  
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MODIS provides NDVI globally over land at 16-day composite periods (MOD13Q1). 

The 16-day composite image is less noisy than daily data. MODIS NDVI products are already 

calibrated and atmospherically corrected bi-directional surface reflectance that has been masked 

from cloud and cloud shadows, land/water, and aerosol products. However, persistent cloud 

cover is a potential threat during the 16-day period. Therefore, pixel reliability ranking and VI 

quality imagery, which are 16 days 250 m as that of other VIs, QA Science Datasets (SDS) can 

be used to assess the quality assurance of MOD13Q1 products.   

Detail quality assessment of MODIS VI products is described in NASA LP DAAC 

(2013), and NDVI quality is summarized in the pixel reliability, which is represented by numbers 

ranking from -1 to 4 to depict pixel level data quality (Table 2-1). VI quality pertains to acquired 

and processed conditions of each pixel (Table 2-2).  

Table 2-1: Pixel realization rank values and descriptions (Adopted from NASA LP DAAC, 

2013) 

Pixel 

Reliability 

Rank Summary QA Description 

-1 Fill/No data Not processed 

0 Good data Use with confidence 

1 Marginal data Useful but look at other QA information 

2 Snow/Ice Target covered with snow/ice   

3 Cloudy Target not visible, covered with cloud 

4 Estimated 

Based on MODIS historic time-series. All products 

are gap-filled, indicating whether or not the value 

was interpolated from long-term averages 

VI QA bit values can be converted to 16-bit binary numbers for interpretation in which 

the binary bit-string must be read from right to left, as shown in the following bit-string 

direction. Individual bits within a bit-field are read from left to right, as shown via the bit-word 

arrow (NASA LP DAAC, 2013). The following values were common at the Konza Prairie 

Biological Station, Kansas, for this study; so that it is described as an example of interpretation.  
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           Bit-word 

2116 = 0|0|001|0|0|0|01|0001|00 

2120 = 0|0|001|0|0|0|01|0010|00 

2185 = 0|0|001|0|0|0|10|0010|01 

2189 = 0|0|001|0|0|0|10|0011|01  

                                      Bit-string direction for interpretation 

 

Table 2-2: Bit-no, parameters, bit-words, and interpretations (Adopted from NASA LP 

DAAC, 2013) 

Bit-No Parameter Bit-Word Interpretation 

0-1 

VI Quality 

00 VI produced with good quality 

01 VI produced but check other QA 

 
10 

Pixel produced but most probably 

cloudy 

 
11 

Pixel not produced due to reasons 

other than clouds 

2-5 VI usefulness 

0000  Highest quality 

0001 Low quality 

0010,0001,0010,0100, 

1000,1001, 1010 Decreasing quality 

1100 Lowest quality 

1101 Quality so low it is not useful 

1110 L1B data faulty 

1111 Not useful for any other reason 

6-7 Aerosol quantity 
01 Low 

10 Intermediate 

8 
Adjacent cloud 

detected 
0 

No 

9 
Atmospheric BRDF 

Correction 
0 

No 

10 Mixed clouds 0 No 

11-13 Land-water mask 001 Land (Nothing else but land) 

14 Possible snow/ice 0 No 

15 possible shadow 0 No 
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2.4   Spatiotemporal Variability in Hydrology 

Spatiotemporal heterogeneity and dynamic landscapes are the products of complex 

interactions of abiotic and biotic processes at different scales (Schroeder, 2006). Spatiotemporal 

variability of hydrologic processes due to land use/cover changes, soil physicochemical 

properties, and climatic variables such as precipitation, humidity, temperature, solar radiation, 

and wind speed and direction are the main factors to affect hydrologic processes. In addition to 

examining a variable’s spatial and/or temporal variability, the scale at which the variable is 

applied in the study should also be considered. Spatiotemporal variability is an important part in 

rainfall-runoff modeling because runoff variability depends on factors such as the amount and 

intensity of precipitation, watershed topographic characteristics, land use/cover of the watershed, 

and soil physicochemical properties. Figure 2-1 shows the spatial and temporal scale of 

topographic, soil, vegetation, and atmospheric phenomenon. At the spatial scale hydrologic 

processes range from micro level to regional basin level; at the temporal scale processes range 

from minutes to years. As shown in Figure 2-1, for instance, the infiltration/ soil moisture related 

processes vary from minutes to daily at temporal scale, and with micro level at spatial scale. 

Infiltration and soil moisture are the primary factors in runoff generation processes. Accounting 

the spatial and temporal variability of topographic, soil, vegetation and weather conditions is 

crucial to accurately estimate runoff from rainfall events.  
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Figure 2-1: Spatial and temporal scale of factors affecting hydrologic and soil erosion 

processes (adopted with permission from Renschler and Harbor, 2002) 

 l schl and Sivapalan (1995) clearly explained the spatial versus temporal scale of 

precipitation and runoff, as shown in Figure 2-2, which depicts water movement at various 

scales. The figure shows that precipitation varied from several minutes to more than a day at the 

temporal scale, and precipitation ranged from meters (i.e., cumulus convection) to thousands of 

kilometers (e.g., frontal systems) in the spatial scale. Similar to other hydrologic processes, 

runoff processes operate in response to precipitation and at similar length scale ( l schl and 

Sivapalan, 1995); however, the amount differs based on spatial heterogeneity and temporal 

scales vary on dominant runoff mechanisms. For example, at a small spatial scale (e.g., 1 km
2
) 

with high rainfall intensities, infiltration excess or Horton overland flow is very fast (<30 
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minutes), but saturation excess or saturation overland flow is slower because saturated layers 

require time to accumulate ( l schl and Sivapalan, 1995).   

 

Figure 2-2: Schematic relationship between spatial and temporal process scales in 

hydrology (adopted with permission from         and Sivapalan, 1995) 

2.5   Rainfall-Runoff Modeling 

The rainfall and runoff relationship is a highly nonlinear, complex relationship that 

exhibits a high degree of spatial and temporal variability (Isik et al., 2013; Solomatine and Dulal, 

2003). This relationship is dependent upon factors such as soil type, antecedent soil moisture, 

evaporation, infiltration, distribution and / or duration of rainfall, slope, and catchment size 

(Critchley et al., 1991; Isik et al., 2013). However, rainfall-runoff models are widely accepted as 

simplified, appropriate methods to estimate the amount of runoff from precipitation events by 

approximating all other components of hydrologic processes as losses (Dingman, 2008; Wagener 

and McIntyre, 2005). According to Beven (2012), rainfall-runoff models are categorized as 
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perceptual, conceptual, and procedural. Beven  2012) and Džubáková  2010) stated that 

perceptual models summarize modeler perceptions of how the catchment responds to rainfall 

under various conditions, conceptual models include a mathematical description of the 

hydrologic process, and procedural models contain the code of techniques of numerical analysis 

that run on the modeling computer.  

Various rainfall-runoff models have been developed and used, including the SCS-CN 

method, the rational method, the time-area method, and the unit hydrograph method (Dingman, 

2008). The SCS-CN method is a popular rainfall-runoff model that creates a relationship 

between rainfall events and runoff using an empirical number that depends upon land cover, 

hydrologic soil group, and hydrologic conditions of the area. The rational method is a simple 

method that determines peak discharge of watershed runoff based on drainage area, rainfall 

intensity, and runoff coefficient. The rational method assumes that rainfall occurs uniformly over 

the drainage area; peak rate of runoff can be reflected by rainfall intensity, and the frequency of 

occurrence for peak discharge is identical to the frequency of rainfall producing that event 

(Beven, 2012). The time-area method is the first distributed model developed based on the time 

step, which considers the lag in time of runoff from a subdivided catchment area to an outlet. 

The time-area method transforms an effective storm hyetograph into a runoff hydrograph (Ponce, 

1989). It assumes that the outflow hydrograph results from the direct runoff to the outlet at 

uniform velocity. The unit hydrograph is the runoff hydrograph generated by an excess 

precipitation of one unit (1 mm) that flows towards the catchment outlet. Detailed descriptions of 

the area-time method, unit hydrograph, and the SCS-CN method are presented in Ponce (1989) 

and Bedient et al. (2008).  

http://ponce.sdsu.edu/textbookhydrologyp307.html
http://ponce.sdsu.edu/textbookhydrologyp307.html
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2.6   Curve Number Method 

The Curve Number (CN) method was developed in the 1950s by USDA, formerly Soil 

Conservation Service (SCS) and currently Natural Resources Conservation Service (NRCS), to 

meet the needs of the agency in implementing Public Law 566 (Hawkins et al., 2008; Hawkins, 

2014) and is referred to as SCS-CN method. It is a widely used means of estimating storm runoff 

from rainfall events and designing water management structures. Its simplicity, ease of use, 

predictability, stability, reliance on only one variable (which is CN to predict the rainfall-runoff 

relationship), and responsiveness to major runoff producing watershed properties such as soil, 

land use, surface condition and antecedent moisture condition are among the perceived 

advantages of CN method (Ponce and Hawkins, 1996; Garen and Moore, 2005, Hong and Adler, 

2008; Hawkins, 2014). Though it was developed to estimate the amount of direct runoff from 

event precipitations, the method is incorporated into several continuous hydrologic models such 

as Soil and Water Assessment Tool (SWAT), Hydrologic Engineering Center-Hydrologic 

Modeling System (HEC-HMS), Erosion Productivity Impact Calculator (EPIC), and Agricultural 

Non-Point Source Pollution Model (AGNPS) (Kousari et al., 2010).  

The following steps were used to derive the SCS-CN equation (Hawkins et al., 2008; Mishra 

and Kumar, 2002):   

1. The original equation assumed the basic water budget at watershed level in depth units as 

 

                                                                    (2-2) 

 

where P is rainfall depth, Q is runoff depth, and F is all losses. Initial abstraction 

(Ia) was not included in the original equation. 

2. Maximum potential losses to runoff (S) were incorporated as a limiting factor for runoff. 

                  
        

                                               (2-3) 
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3. Proportionality equation hypothesis was used to explain the runoff fraction (Q/P). 

             

                
 

 

 
 

 

 
                                          (2-4) 

Hawkins et al. (2008) noted that the hypothesis is true when P = 0 and P = ∞; however, 

its validity in the interval is questionable. 

4. The following equation was derived from equation in step 2-2 and 2-4: 

  
  

     
                                                         (2-5) 

5. Through USDA-SCS interagency review, the initial abstraction (Ia) was not incorporated, 

and Ia was determined to 20% of the maximum retention potential. Effective rainfall (Pe) 

was used instead of total rainfall, resulting in the following equations: 

                                                               (2-6) 

                                                              (2-7) 

 

6. Based on steps 2-5 and 2-6, 

  
  

 

      
                                                        (2-8) 

  
      

 

         
                                                     (2-9) 

7. The following equation was developed from steps 2-6 and 2-9:  

  
         

         
                                               (2-10) 

                                    
 

8. Maximum retention potential (S) was transformed to CN, which was determined to be 0–

100. CN is a dimensionless empirical number that determines the relationship of rainfall 

event and direct runoff obtained using lookup tables developed by USDA-SCS based on 

land cover, HSG, hydrologic condition based on ground cover, and antecedent moisture 
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conditions. The relationship between CN and S was developed based on recorded events 

of rainfall and runoff of research watersheds in the United States.  

  
     

  
                    

     

     
                                       (2-11) 

where S is in millimeter (mm). When the depth unit of S changes, the numbers in the   

equation change accordingly. Back-calculated CNs in this study were calculated from 12 years of 

precipitation event and runoff depth records. 

The CN method has been adapted to areas with various land use/cover and climatic 

conditions throughout the world and successfully applied to situations ranging from simple 

runoff calculations and land use change assessment to comprehensive hydrologic/water quality 

simulations (Auerswald and Haider, 1996; Garen and Moore, 2005; Ponce and Hawkins, 1996). 

CN application can be grouped into three distinctly different modes: determination of runoff 

volume for a given return period, determination of direct runoff for individual events, and 

process model or infiltration model or a soil moisture-CN relationship (Van Mullem, 1989). 

Although the CN method has been accepted and applied worldwide, studies have indicated that 

the method should be evaluated and calibrated at local and regional scales (Hawkins and Cate, 

1998; Van Mullem, 1989). Remote sensing and GIS have improved CN research by defining 

land use/cover and enabling data processing and mapping, but CN application still requires SCS-

CN lookup tables to determine the CN. 

2.7   Data Acquisition and Uncertainty 

Comprehensive scientific work requires statements of accuracy in order to understand 

and communicate reliability of results. If accuracy is known objectively, then it can be expressed 

as error; if it is not known objectively, then the results are uncertain (Gahegan and Ehlers, 2000; 

Hunter and Goodchild, 1993). Uncertainty is the degree, not the actual value, of discrepancy 
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between geographical data in GIS and the geographical reality these data represent (McMaster 

and Usery, 2004). Uncertainty in hydrologic prediction continues to challenge modelers despite 

significant recent developments in computational power and distributed hydrologic modeling 

(Liu and Gupta, 2007). A model cannot realistically be free of uncertainty and bias, but reducing 

the bias and uncertainty must be a priority in planning and implementing hydrologic models for 

prediction. Every aspect of modeling is affected by uncertainty and error from sampling, 

measurements, and prediction procedures, depending on spatial and temporal scales of the study. 

No spatial model is a perfect representation of reality; modeling is the only means of 

addressing complex environmental problems in large-scale studies (Klepper, 1997; Li and Wu, 

2006; Petersen, 2000). Each model and transformation process contributes to the overall 

uncertainty within the data (Gahegan and Ehlers, 2000). Those uncertainties could originate from 

model inputs such as precipitation, land use/cover, soil physicochemical properties, and other 

climatic forcing. Uncertainties could also be a result of inaccurate representation of the processes 

and spatial and temporal scales of data representation. Liu and Gupta (2007) asserted that 

uncertainty must be cohesively and systematically understood, quantified, and reduced in 

hydrologic modeling.  

2.7.1  Weather and Climate Data 

Weather and climate forecast predictability is determined by uncertainty projections in 

initial conditions and model formulation onto flow-dependent instabilities of the chaotic climate 

attractor that embraces errors and uncertainties (Palmer, 2000). Depending on the model type, 

weather and climatic data are used as input for predicting and quantifying hydrologic processes. 

Weather and climate data are often measured and recorded at points, for spatial modeling 

purposes point values are usually interpolated to a relatively larger area or scale (Li et al., 2013; 
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Merz et al., 2006). Hydrologic processes occur within a wide range of scales and span 

approximately eight orders of magnitude in space and time (Klemes, 1983). For example, 

precipitation occurrence scale can range from1 m (cumulus convection) to 1000 km (frontal 

systems). Most hydrologic studies, however, use only point measurements in which 

transformation of information across scales, referred to as scaling, introduces most uncertainties 

and biases at different levels. Rainfall is the one of the main source of uncertainty in most 

hydrologic models  due to its variability and its use as the main climatic forcing input 

(Srinivasan, 2005; Tuppad, 2006). 

2.7.2 Satellite Data Uncertainty 

GIS has provided hydrologists new platforms for data management and visualization in 

hydrologic applications because it can process DEM and other remote sensing related data (Sui 

and Maggio, 1999; Zhang et al., 2003). Gahegan and Ehlers (2000) determined that GIS provides 

a whole series of tools with which data can be manipulated, but it does not offer control over 

misuse. Spatial and/or temporal scale inconsistencies of input data is one of most often misused 

components in software such as GIS. Scale issues in hydrology manifest in various space-time 

scales because physical processes are described by mathematical relationships (Gupta et al., 

1986). Changing the scale without understanding the effects of such an action can result in the 

representation of processes or patterns that are different from intended (McMaster and Usery, 

2004). Scaling and its effects on hydrologic modeling are linked to heterogeneity (Blöschl and 

Sivapalan, 1995). Heterogeneity that affects scaling is small at small scales and large at large 

scales; the greater the degree of heterogeneity, the smaller the scale must be to represent 

variability. Hydrologic parameters are often used as lumped parameters in order to represent 
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entire watersheds, but watershed characteristic data is collected only at a limited number of field 

locations (Singh, 1995). 

2.8  Paired Watershed Studies  

The principle of the paired-watershed design is simple and remains the reference for all 

studies of the impact of land use /cover changes on hydrology (Andréassian, 2004; Hewlett, 

1971; Hewlett, 1982). Paired watershed design is based on two watersheds (control and 

treatment) similar in terms of size, morphology, geology, climatic forcing, and land use 

(Andréassian, 2004), with the assumption that their similarities will cause both watersheds to 

respond similarly if all conditions remain identical. However, the pretreatment period must be 

monitored in order to effectively study hydrologic responses of land use/cover changes or any 

other treatment.  

The paired watershed approach captures the effects of climate and hydrologic differences 

due to land use/cover changes in watersheds and eliminates the need to measure all change 

components throughout the study area (Andréassian, 2004). This approach, which has been used 

to study the impact of land use change in hydrology (DeFries and Eshleman, 2004; Schilling and 

Spooner, 2006; King et al., 2008; Prokopy et al., 2011), also provides high quality experimental 

data that could advance understanding of the hydrologic response of watersheds to land use 

changes (DeFries and Eshleman, 2004). The paired watershed approach has been extensively 

used to investigate the effects of forestry practices on water yield, streamflow, and aquatic 

habitat (Bishop et al., 2005; Skaugest, 2005), as well as to document best management practices 

(BMP) effects (Spooner et al., 1985), organic carbon loss (Veum et al., 2009), soil erosion 

(Ricker et al., 2008), and non-point source pollution (Prokopy et al., 2011) and to assess 

conservation practices (King et al., 2008). 
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2.8.1 Clustering Techniques  

Clustering techniques are commonly used in paired watershed selection. Two methods of 

clustering, k-means and hierarchical clustering, are the most widely used methods. K-means 

clustering is a partition clustering algorithm that clusters data into k groups in order to minimize 

the within-group sum-of-squares (Cao et al., 2013; Martinez and Martinez, 2008; Martinez and 

Martinez, 2004). Divisive and agglomerative hierarchical clustering are popular in gene 

expression studies and proteomics (Martinez and Martinez, 2008; Martinez and Martinez, 2004; 

Varshavsky et al., 2008). The divisive method starts with one large group and successively split 

the groups until there is one observation per group which is computationally inefficient 

(Martinez and Martinez, 2008; Martinez and Martinez, 2004). The agglomerative method, the 

most widely used hierarchical method, however, starts with n groups (one observation per group) 

and successively merges most similar groups until only one group left (Lu and Wan, 2013; 

Bettegoni et al., 2006; Martinez and Martinez, 2008). Agglomerative clustering has been applied 

to study robustness of fish assemblages (Singh et al., 2011), identify protein complexes (Yu et 

al., 2011), and incorporate social context variables in paired watershed study design in order to 

study non-point source program effectiveness (Prokopy et al., 2011). 

Each of these well-known clustering techniques has unique advantages and 

disadvantages. When a similar pattern exists, hierarchical clustering cannot determine distinct 

clusters; actual expression patterns become less effective when cluster size increases. However, 

k-means clustering requires a specified number of clusters in advance, and it is sensitive to 

outliers. A combination of both clustering methods is a novel technique that allows utilization of 

features and merits of both methods. 
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Chapter 3 - Curve Number Development using Normalized 

Difference Vegetation Index 

 Abstract 

The Curve Number (CN) is a widely applied method to estimate runoff from rainfall 

events. It has been adapted to various areas with different land use/cover and climatic conditions 

in many parts of the world, and successfully applied to situations ranging from simple runoff 

calculations and land use change assessment to comprehensive hydrologic/water quality 

simulations. However, the SCS-CN does not consider seasonal or dynamic land-use changes. 

This study used regression analysis to develop an NDVI-based CN (CNNDVI) using Moderate 

Resolution Imaging Spectroradiometer – Normalized Difference Vegetation Index (MODIS-

NDVI (MOD13Q1). The MODIS-NDVI was derived for every 16 days at 231 meter spatial 

resolution with NAD83/ UTM Zone 14 projection. Rainfall and runoff data collected from 2001 

to 2012 from four small watersheds in Konza Prairie Long-Term Ecological Research, Kansas 

were used to develop, calibrate, and validate the model. A total of 398 and 201 data points were 

used for calibration and validation respectively. Results showed that the flow based on the 

calibrated model performed significantly better than the standard CN (SCS-CN) flow. The 

pairwise comparison of the calibrated flow and observed flow did not show a statistical 

difference (p-Value = 0.6622); however the standard CN based flow showed statistical 

differences with both observed flow and calibrated flow (p-Value  <  0.0001). Calibrated flow 

increased by 0.91 for every unit increase in observed flow, while the standard CN based flow 

increased by 0.506 for every unit increase in observed flow. The calibrated flow was highly 

correlated to the observed flow (r = 0.83) with the standard CN was less correlated to measured 

flow (r =  0.404). The validated flow was better correlated to the measured flow than the 
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literature CN based flow (for validated model r ranges from 0.52 to 0.63 for different options, 

while r = 0.44 for literature CN), indicating that the calibrated improved the prediction of runoff 

compared to the existing method. These findings suggest that the CNNDVI could be used to 

provide better estimates of surface runoff from the precipitation events in order that more timely 

land management decisions can be made. 

3.1  Introduction 

Complex interactions of biotic and abiotic processes at various scales result in 

spatiotemporally heterogeneous and dynamic landscapes with multiple ecological processes 

(Schroeder, 2006). Geological characteristics that affect the location, movement, and chemistry 

of water are extremely complex, but water movement in seemingly diverse landscapes 

demonstrates commonalities that allow the use of models (Wolock et al., 2004). Landscape 

heterogeneity results in spatiotemporal variability of hydrologic conditions and scale-dependent 

flow and transport properties both at field and catchment-scale hydrologic responses (Troch et 

al., 2009). Landscape characteristic changes due to natural and/or anthropogenic impacts 

determine water quantity and quality parameters in watersheds and stream channels. However, 

hydrologic responses due to landscape characteristic interactions are not the same as responses 

produced by the same variables without interaction as variability increases (Mohamoud, 2004).  

Quantifying water movement and available water in a landscape aids drought and flood 

occurrence estimations, and understanding water quantity and quality of a landscape is a crucial 

component of ecosystem functions to assess the productivity, abundance, nutrient cycling, and 

ecological response of a landscape to natural and/or other disturbances. Stream flow trends and 

vegetation-hydrology interactions have been used to understand physical, hydrologic, and 

ecological factors and their interactions relative to channel evolution (Lenhart et al., 2013). 
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Long-term monitoring of stream discharge and sediment and the estimation of those parameters 

using various hydrologic models increase understanding of the overall hydrologic system. 

Hydrologic models are necessary tools for estimating water quantity and quality 

parameters, resulting in better environmental resources management (Zhang and Savenije, 2005). 

Hydrologic models have been widely used to predict complex behaviors associated with 

environmental systems management and land use/cover changes across the landscape (Isik et al., 

2013). Watershed modeling is a rational, economical, and useful approach for pertinent water 

resource management and decision making (Jeon et al., 2014). The SCS-CN method is a 

commonly used empirical method to simulate surface runoff of a rainfall event at the watershed 

scale, thereby representing combined hydrologic effects of soil, land use, land management, 

hydrologic condition, and antecedent soil moisture. CN-based runoff estimation predicts direct 

runoff from individual rainfall events. Runoff estimates based on CN are used to determine soil 

erosion, pollutant loading, and the amount of nutrients and pesticides transported in water 

systems from the landscape (Garen and Moore, 2005).   

3.1.1 Background of SCS-CN Method 

The Curve Number (CN) method, also referred to as the SCS-CN method, was developed 

in the 1950s by USDA, formerly Soil Conservation Service (SCS) and currently Natural 

Resources Conservation Service (NRCS), to meet the needs of the agency in implementing 

Public Law 566 (Hawkins et al., 2008; Hawkins, 2014). Public law 566, a Watershed Protection 

and Flood Prevention Act enacted on August 4, 1954 (Woodward et al., 2002), provided for 

upstream flood prevention and watershed condition improvement. It primarily targeted flood 

prevention and alleviating sediment problems at the small watershed scale. The CN method is 

relatively simple and widely used to calculate event rainfall-runoff volume relationships 
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(Hawkins, 2014). Through time, a good deal has been learned about the CN method; new 

applications and developments have emerged; and also insights to general rainfall-runoff 

hydrology have been gained through its application (Hawkins et al., 2008). 

The CN is determined based on land use, hydrologic soil group (HSG), land treatments or 

practices, and the hydrologic condition of the area which accounts for a combination of factors 

that affect infiltration and runoff. It has been adapted to various areas with different land 

use/cover and climatic conditions in many parts of the world and successfully applied to 

situations ranging from simple runoff calculations and land use change assessment to 

comprehensive hydrologic/water quality simulations (Auerswald and Haider, 1996; Garen and 

Moore, 2005; Ponce and Hawkins, 1996). It is a widely used means of estimating storm runoff 

from rainfall events for designing water management structures. Its simplicity, predictability, 

stability, reliance on only one variable (CN) to predict the rainfall-runoff relationship, and 

responsiveness to major runoff producing watershed properties (soil type, land use, surface 

condition and antecedent moisture condition) are among the perceived advantages of CN method 

(Ponce and Hawkins, 1996).  

Although the method was designed for a single storm event and originated as an 

empirical, event-based procedure for flood hydrology, the CN method has been adapted and used 

in various hydrologic models to simulate runoff behavior of ordinary and large rainfall events 

and daily time series (Garen and Moore, 2005;  “SCS Curve Number Method”, 2015). The CN 

method is widely used for rainfall-runoff modeling in continuous hydrologic simulation models 

(Kannan et al., 2007) and is the foundation of hydrology algorithms in most simulation models 

developed by the USDA for hydrology, soil erosion, and nonpoint source water quality (Garen 

and Moore, 2005).  
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Although the CN model is widely used and applicable, some watersheds were found to 

perform quite differently from basic CN runoff response patterns, leading to significant 

differences between the model and reality (Hawkins, 2014). For example, several studies (Baltas 

et al., 2007; Hjelmfelt, 1991; Soulis et al., 2009; Yuan et al., 2014) found that estimated runoff 

was inaccurate in semiarid watersheds in southeastern Arizona due to high retention capacity of 

the soil. Garen and Moore (2005) stated that the CN method is beset with many problems, issues, 

and misinterpretations that weaken its use for accurately estimating the amounts, paths, and 

source areas upon which erosion and water quality predictions depend. Many unresolved issues 

in the empirical CN-based rainfall-runoff relationship occur because the method is simplified but 

the relationship is dependent upon multiple watershed-related factors, such as land use/cover and 

soil moisture at the time of the rainfall event. The rainfall-runoff relationship is also highly 

affected by rainfall volume, intensity, and frequency, which are not accurately accounted for in 

CN determination; however, the 5 days prior rainfall in the form of antecedent moisture 

condition is to some extent incorporated. Seasonal changes in rainfall-runoff relationship must be 

accounted for in order to accurately estimate runoff for water management planning and decision 

making.  

3.1.2 Rationale 

The CN is traditionally determined from land-use, HSG, hydrologic condition, and 

antecedent soil moisture condition of the watershed using SCS lookup tables (Figure 3-1). Since 

a watershed is usually a combination of different land-use/cover and soil conditions, an area 

weighted average curve number for the entire watershed is often calculated. However, the 

standard CN approach does not reflect the temporal variability of hydrologic conditions and 

cannot capture seasonal or dynamic land-use changes, which are essential for reflecting 
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seasonality of hydrologic conditions, particularly in vegetated systems such as rangeland or 

prairie grasses that do not demonstrate significant variability in the lookup tables. The 

incorporation of dynamic land-use changes is essential in any hydrologic process study because 

they affect the water cycle, especially the ET and vegetation’s ability to intercept precipitation. 

In addition, change in land use modifies the pathway and surface roughness, which then affects 

the timing of runoff. All these dynamic land use effects ultimately alter the runoff.  

 

Figure 3-1: Schematic comparison of SCS-CN and CNNDVI depicting spatiotemporal 

changes of event runoff 

The objective of developing CNNDVI was to capture the spatiotemporal variability of 

runoff from each rainfall event. This study developed a method to derive CNNDVI using satellite 

data in order to account the seasonal effect of land use/cover changes and capture the temporal 

variability of hydrologic conditions. Figure 3-1 compares SCS-CN and CNNDVI, demonstrating 

how CNNDVI can account for spatiotemporal variability of annual land cover in order to capture 
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the spatiotemporal variability of the rainfall-runoff relationship. The specific objective of this 

study was to develop a model that estimates CN in order to accurately capture the spatiotemporal 

relationship of rainfall and runoff based on NDVI as a surrogate of spatial and temporal changes 

of hydrologic conditions. 

3.2 Study Area 

This study utilized 12 years of rainfall and runoff data from four small watersheds in 

northeast Kansas on the Konza Prairie Long-Term Ecological Research (LTER) site (Figure 3-2 

and Table 3-1). Konza Prairie LTER is a comprehensive ecological research, education, and 

outreach program centered in one of the most productive grasslands in North America, the 

tallgrass prairie (Macpherson, 1996). The Konza Prairie provides an array of burning and grazing 

(especially bison) treatments to facilitate research and evaluate the effects of fire and grazing on 

plant composition, primary production, consumer density and diversity, nutrient dynamics, soil 

chemistry, and hydrology (Konza Prairie LTER Data Catalog, 2015). The Konza Prairie 

experiences a temperate midcontinental climate, with annual temperatures ranging from an 

average low of -3 
o
C (-9–3 

o
C) in January to an average high of 27 

o
C (20–33 

o
C) in July. Annual 

average precipitation is 835 mm, 75% of which occurs during the growing season, April through 

October (Konza Prairie LTER Data Catalog, 2015). 
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Figure 3-2: Konza Prairie Biological Station and watersheds used (aqua color) in 

this study 

Konza watersheds are categorized based on grazing and burning treatments. Watersheds 

used in this study were N1B, N4D, N2B, and N20B, where N signifies grazing by native 

herbivores, the number indicates the years between burnings in spring, and B and D indicate 

replicates. Table 3-1 shows the watershed area, percentage of land cover, and HSG of the four 

small watersheds.  

Table 3-1:  Konza Prairie Biological Station, KS, study watersheds' land cover and 

hydrologic soil group 

Watershed Area 

(km
2
) 

Hydrologic Soil Group   (%) Land Cover    (%) 

B C D Grassland Forest Other 

N1B 1.2 8.6 90.3 1.1 96.0 3.7 0.2 

N2B 1.2 8.6 89.9 1.5 88.5 11.3 0.2 
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N4D 1.4 7.0 92.0 1.0 95.3 4.3 0.4 

N20B 0.8 7.0 91.2 1.8 95.6 3.8 0.5 

3.3   Model Development 

The CNNDVI model was developed using regression analysis between the back-calculated 

observed CN and NDVI developed using remotely sensed data. In this study NDVI was assumed 

to represent land use/cover changes and hydrologic conditions of the watershed for predicting the 

rainfall-runoff relationship. Because NDVI is a measure of vegetation health, a negative 

relationship between the CN and NDVI was expected due to the fact that high CNs indicate poor 

hydrologic conditions. Increases in NDVI suggest healthier vegetation and improved hydrologic 

condition, thereby indicating better infiltration and lower CNs and vice versa (Figure 3-3). The 

model was developed based on the assumption that the 16-day NDVI interval reflected 

hydrologic conditions of the landscape better than the SCS-CN method.  

 

Figure 3-3: Graphical representation of expected relationship between vegetation 

phenology, change in NDVI, and resulting CN and runoff (adopted and modified from 

Reynolds, 2014) 
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3.3.1 Observed CN: Back-Calculated Curve Number  

Twelve years of daily precipitation and runoff data from four small Konza watersheds 

were used to back-calculate observed CNs based on the SCS-CN method (Table 3-2). Rain 

gauges in the watersheds operated from April 1 to October 31. Prior to 2010, rainfall data was 

measured using Belfort Weighing rain gauges at each study watershed (LTER Methods Manual). 

Starting in March 2010, precipitation at Konza headquarters, approximately 3 km from the 

watersheds, was measured using an OTT Pluvio rain gauge. Watershed discharge was measured 

at 5 minutes intervals using triangular-throated flumes with pressure transducers at the base of 

each catchment and processed into a daily volume (from midnight to midnight). The volume was 

converted to depth of runoff based on each watershed area, and rainfall and runoff were reported 

in mm/day. Since the watersheds were small, “no lag time” was assumed between rainfall and 

runoff at the watershed outlets.   

Table 3-2: Rainfall and runoff data used in each study year watershed at 

Konza Prairie Biological Station, KS 

 

 

 

 

The CN was back-calculated based on the SCS-CN equation (Equation 3-1). Equation 3-

3 was derived from Equation 3-2 in order to calculate potential maximum retention (S) from 

observed rainfall and runoff data (Hawkins, 1979; Soulis et.al., 2009). The National Engineering 

Handbook, Section 4 (NEH4) suggested the initial abstraction (Ia) in the SCS-CN equation (3-4) 

be 20% of the maximum retention (S) with limited explanation (Hawkins et al., 2008; USDA, 

SCS, 1986). In an extensive study using 97 small watersheds, Hawkins and Khojeini (2000) 

Watershed Year 

N1B 2001–2006 and 2008–2012 

N2B 2001–2012 

N4D 2001–2007 and 2012 

N20 2002–2011 
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found that the group median value for the ratio of Ia/S varied from 0 to 0.0966 for “ordered” data 

and was equal to 0 for all cases with “natural” data. However, this study used the original SCS 

Ia/S ratio value of 0.2 (USDA, Soil Conservation Service, 1954 et seq.) since the initial 

abstraction in the study area could be substantial because the landscape is dominated by dense 

grassland, thereby increasing the initial abstraction.  

  
      

 

         
                                          (3-1) 

  
           

        
                                                  (3-2) 

                                                  (3-3) 

   
     

     
                                                                                 (3-4) 

Where Q = runoff depth (mm),     

P = precipitation depth (mm),  

CN=Curve Number 

Ia = 0.2*S, initial abstraction, and  

S= potential maximum retention. 

 

After calculating the CN, adjustments for antecedent moisture conditions (AMCs) were 

made based on SCS AMC criteria (Huffman et al., 2013; Hawkins et al., 2008; Hawkins and 

Cate, 1998). First, the back-calculated CN were calculated using AMC II conditions and each 

event CN was adjusted based on the criteria in Table 3.3, which lists AMC classifications based 

on rainfall amount (Huffman et al., 2013). The CN was back-calculated for all data, including 

zero value rainfall and runoff data, in order to implement the 5-day AMC criteria. Values were 

filtered to remove zero rainfall and runoff and negative potential maximum retention (S) values. 
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After filtering, 599 data points were used for model development, calibration, and validation of 

the CNNDVI model.  

Table 3-3: Classification of antecedent moisture conditions 

 

AMC 

Total 5-day Antecedent Rainfall (mm) 

Dormant Season Growing Season 

I <13 <36 

II 13 - 28 36  - 53 

III >28 >53 

 

Data-defined CN is dependent on rainfall depth in addition to landscape characteristics, 

and a distinct bias for high CN at lower rainfall depth was evident (Hawkins et al, 2008). In this 

study, the back-calculated CN response to rainfall depth was assessed; a majority of the data was 

associated with low rainfall depths, so the back-calculated CNs were in the high range. Figure 3-

4 shows CN response to rainfall depth based on observed runoff used for model development. 

Assessing the dominating behavior of CN response to rainfall depth was crucial for determining 

whether the CN method was appropriate for watersheds in this study. In general, three 

dominating behaviors of CN response for rainfall were identified: standard (characterized by 

decreasing CN with increasing P but approaching a constant or near-stable value asymptotically 

at higher rainfalls), complacent (characterized by declining CN with increasing rainfall but not 

approaching a fixed equilibrium value), and violent (a pattern with complacent behavior with 

declining CN with increasing rainfall at low rainfalls but with sudden change to a much higher 

runoff response at some threshold elevated rainfall depth) (D'Asaro et.al, 2014; Hawkins et al, 

2008; Hawkins, 1993). The standard behavior is typically most common, as demonstrated in a 

majority of agricultural, urban, and rangeland settings where rainfall excess occurs due to 

infiltration processes (Hawkins et al, 2008; Hawkins, 1993). The rainfall-runoff relationship of 

standard response behavior can be best explained by the CN method, as proven by the CN-
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rainfall data relationship from this study (Figure 3-4). Figure 3-4 shows that higher CNs were 

calculated for low rainfall depths; therefore, since most rainfall depths were in the low range, 

rainfall was the main factor in determining CN. 

 
Figure 3-4: CN response to rainfall depth for observed records in Konza 

Prairie Biological Station, KS, used for model development 

3.3.2  Land cover change: Normalized Difference Vegetation Index 

Moderate Resolution Imaging Spectroradiometer – Normalized Difference Vegetation 

Index (MODIS-NDVI) 16-day composite grid data (MOD13Q1) was used to estimate CN based 

on 250 m, 16-day resolution NDVI with 231 m spatial resolution when re-projected from 

sinusoidal projection to UTM Zone 14 North using NAD 83 projection. MODIS-NDVI was 

derived from the reflectance of near-infrared (841–876 nm) and red (620–670 nm) bands 

(Equation 5).  

      
       

       
                                                         (3-5) 
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NDVI is a VI used to monitor vegetation conditions and display land cover and its 

changes. It is useful for assessing vegetation health and allows fast visual examination of 

vegetation density and photosynthetically active regions (Huete et al., 1999). NDVI relies on the 

absorption of red radiation by chlorophyll and other leaf pigments and the strong scattering or 

reflection of near-infrared radiation by foliage (Beck et al., 2006). Seasonal variations of NDVI 

are closely related to vegetation phenology, such as green-up, peak, and offset of development 

(Beck et al., 2006; McCloy and Lucht, 2004). Most monitoring of large-scale vegetation activity 

is based on NDVI (Beck et al., 2006).  

NDVI ranged from 0 to 255 (theoretical range) in this analysis, which is an 8-bit 

unsigned integer. The 8-bit unsigned integer format was used to capture CN variability with 

comparable NDVI and CN ranges. Rescaling NDVI from 0 to 255 (8-bit unsigned integer) 

resulted in values from -1 to 1 (floating point). Low NDVI values (approximately 0.1 and below) 

corresponded to barren areas of rock, sand, or snow. Values between 0.2 and 0.3 represented 

sparse vegetation such as shrub and grassland, while high values (approximately 0.6–0.9) 

indicated dense vegetation such as temperate and tropical rainforests (Jesslyn, 2015).  

NDVI has been widely used in phenological studies (Boschetti et al., 2000; Colombo et 

al., 2011; Soudani et al., 2008; Hmimina et al., 2013) because it is more sensitive to small 

increases in the amount of photosynthetic vegetation (Soudani et al., 2006; Soudani et al., 2008; 

Sesnie et al., 2012) than other VIs. The link between NDVI and vegetation productivity has been 

well established theoretically and empirically and well documented: Studies have shown that 

NDVI differentiated vegetative systems at various scales worldwide (Soriano and Paruelo, 1992; 

Paruelo et al., 2001) and improved impact assessments of disturbances such as drought (Singh et 

al., 2003), fire (Maselli et al., 2003), flood (Wang et al., 2003), and frost (Tait and Zheng, 2003). 
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NDVI has also been successfully applied to study temporal and spatial trends and variation in 

vegetation distribution and productivity and dynamics and to monitor habitat degradation and 

fragmentation, as well as the ecological effects of climatic disasters such as drought or fire. 

Narasimhan et al. (2005) used NDVI as a pseudo indicator of soil moisture condition. Zhou et al. 

(2006) used NDVI-derived LAI to monitor potential ET. Global usage of NDVI suggests that 

any application can be easily adapted to other regions. Enhanced vegetation index (EVI) could 

be an alternative for NDVI; a comparison of MODIS NDVI and EVI to predict crop-related land 

use/cover produced similar output with equivalent accuracies (Wardlow and Egbert, 2010).  

Based on rainfall and runoff data availability in the study watersheds, corresponding 

MODIS NDVI 16-day composite grid data (MOD13Q1) in Hierarchical Data Format (HDF) 

format were gathered from January 2001 through December 2012 (12 years) from the NASA 

Earth Observing System Data and Information System (EOSDIS) data gateway. Constrained 

view angle-maximum NDVI value (CV-MVC) compositing technique was used in MOD13Q1 to 

reduce atmospheric and cloud effects and constrain view angles (Huete et al., 2002; Hutchinson 

et al., 2015). These NDVI products were already calibrated and atmospherically corrected bi-

directional surface reflectance that have been masked from cloud and cloud shadows, land/water, 

and aerosol products. NDVI data were extracted to the extent of the study area boundary and 

averaged for each period for the linear regression developed to estimate CN.   

3.3.3 CNNDVI Regression Model  

Regression analysis, frequency analysis, and screening time series are the most common 

statistical methods of analyzing hydrologic data (Oosterbaan and Nijland, 1994). Regression 

analysis was developed to detect the presence of mathematical relationship between two or more 

variables (Helsel and Hirsch, 2002; Mendenhall and Sincich, 2012; Oosterbaan and Nijland, 
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1994). In this study regression analysis was used to mathematically model relationships between 

the response variable (CNNDVI) and predictor variable (NDVI). The overall procedure to develop 

the NDVI-based curve model is described in Figure 3-5.  

 

Figure 3-5: Schematic diagram of the overall method of NDVI based CN development 

using rainfall, runoff, and NDVI imagery 

One of the problems in regression analysis is caused by the type of data for regression 

which can be either observational (where the independent variables are uncontrolled) or 

experimental (where the independent variables can be controlled) (Mendenhall and Sincich, 

2012). Moreover, regression analysis is dependent upon the amount of information; the more 

data, the better the regression analysis is; however uncontrollable in the case of observational 

studies. Mendenhall and Sincich (2012) suggested that the number of data should be greater than 
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or equal to 10 times the number of β parameters as a good rule of thumb to ensure a sufficiently 

large sample. β parameters are coefficients of the  independent variables and their interaction 

plus the y-intercept; so that we have two β parameters in the case of linear regression. This would 

suggest that a minimum of 20 data points are necessary for good model development. Therefore, 

more than 390 points were used for model development, calibration, and validation in this study.    

The least squares estimation of parameters for the linear regression model was conducted 

using SAS 9.3 statistical software. The linear regression analysis fits the following linear 

regression model:  

                                                            . (3-6) 

Where: CN = Curve Number (response variable) 

 NDVI = Normalized Difference Vegetation Index (the predictor variable) 

    = the slope of the regression line which shows the decrease in the mean of CN of           

every 1-unit NDVI value increase.  

    = The y-intercept at which the CN value for zero NDVI. 

Simple linear regression is an approach to model the relationship of one response variable 

(i.e., CN) using a single independent variable (i.e., NDVI), with the assumption that the two 

variables are linearly related and a single predictor observation provides a distinct criterion 

variable. Because one or more rainfall events could occur (as shown in Figure 3-6) in a 16-day 

NDVI period, resulting in several back-calculated CNs associated with a single NDVI value, all 

back-calculated CNs occurring within one 16-day NDVI window were averaged to create a 

unique CN for each NDVI period. Averaging back-calculated CN based on the same NDVI 

period reduced variation related to the model and provided normally distributed residuals (Figure 

3-8 and Appendix A), thereby improving model performance.  
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Figure 3-6: Diagram depicting the back-calculated CN versus NDVI relationship that 

shows presence of multiple events in each NDVI period  

 

Residual analysis was conducted to assess whether the assumptions of the regression 

analysis were met. Those assumptions were that the error term was (roughly) normally and 

(approximately) independently distributed with a mean zero and constant and all pairs of error 

terms were uncorrelated (Mendenhall and Sincich, 2012; Engineering Statistics Handbook) and 

that the assumptions were interrelated. The normality assumption was checked, outliers were 

detected, and influential observations were identified based on standardized residual, studentized 

residual, and leverage. An observation was considered an outlier and removed when the 

standardized residual was larger than three times the standard deviation (in absolute value) and 

when the studentized residual was larger than 3 (in absolute value).  
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3.3.4 Model Calibration and Validation 

As mentioned, the CNNDVI model was developed by averaging the back-calculated CN 

with the same NDVI period if more than one event occurred in the same period in order to meet 

the requirements of valid regression analysis. Averaging was done to meet one-to-one 

relationships of linear regression in order to reduce residual errors and meet normally distributed 

error assumptions. However, calibration and validation processes were conducted using whole 

set of data without averaging the back-calculated CN and without removing extreme values in 

order to improve model efficiency. Two-thirds of the data was used for calibration, and the other 

one-third of data was used for validation. The data was divided based on the amount of 

precipitation for each event. As previously shown in Figure 3-4, the rainfall-runoff relationship 

(back-calculated CN) was dependent upon the amount of precipitation at each event, so the 

calibration and validation data were expected to have similar precipitation distribution. Data used 

for calibration represented 66% (398) of the complete data set, with 71% of low precipitation and 

63% of high precipitation events. The validation data (201) accounted for 34% of the complete 

data, with 29% of low precipitation and 37% of high precipitation events. The assumption was 

made that the rainfall-runoff relationship was similar throughout the data period so that the 

calibration and validation data division could provide a better statistical analysis and inference. 

For calibration and validation, the CN was calculated from the NDVI based on the regression 

model developed. Figure 3-7 plots the data used for calibration and validation. Calibration was 

stopped when r and r
2
 reached to satisfactory.  
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Figure 3-7: Konza watersheds precipitation data distribution for a) calibration and b) 

validation 

Note: From top-left: scatter plot, histogram, boxplot, and quantile of residuals   

 

Model calibration was conducted using MATLAB considering the relationship of CN and 

precipitation depth, runoff depth and precipitation depth, and CN and runoff depth comparisons 

of the observation and model. Coefficient of correlation (r) and coefficient of determination (r
2
) 

and different plots were used in assessment. The coefficient of correlation measured the strength 

of the linear relationship between the predictor and the response variable. The coefficient of 

determination indicated how well the data fits a statistical model, allowing determination of 

prediction certainty using the model. Graphical plots were used to verify whether or not the 

model output imitated the observed distribution. Figure 3-10 and statistical parameters were used 

in the calibration process.  

The model was calibrated in two phases. The first phase used the observed CN (back-

calculated), rainfall with relatively high values but low runoff. The second phase used various 

combinations of rainfall, CN, and observed flow. After initial satisfactory calibration, the model 
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was adjusted to account for theoretical bounds of CN; the CN could not be greater than 98 

according to literature values for the method.  

Validation of the model occurred in three alternatives to highlight the importance of high 

rainfall events in the rainfall-runoff relationship. The first alternative used all data designated for 

validation. The second alternative removed the most extreme data point generated from the 

highest rainfall point that yielded almost no runoff. The third alternative removed two additional 

data points. 

3.3.5 Vegetation Indices Quality Assessment  

Because clouds can obstruct the quality of NDVI and other VI products and introduce 

noise into the data, Huete et al. (2002) and Hutchinson et al. (2015) developed the constrained 

view angle-maximum NDVI value (CV-MVC) compositing technique used in MOD13Q1 to 

reduce atmospheric and cloud effects and constrain view angles. However, persistent cloud cover 

was still a possibility during the 16-day study period. In order to assess the quality assurance of 

MOD13Q1 products, pixel reliability ranking and VI quality imagery (16-day, 250 m similar to 

other VIs) SDS were used in this study.   

In this study, the pixel reliability ranking and VI quality pixel bit numbers were used as 

described in NASA LP DAAC (2013) guidance to monitor NDVI quality. The purpose of VI 

quality analysis is to find any cloud contamination. NDVI quality was assessed for the whole 

NDVI products covering all watersheds used to develop the CNNDVI model.  Even though, the 

pixel reliability rank and VI quality data were processed (Appendix Table A-1) for all used 

NDVI products; the pixel realization values were first used to determine the quality of NDVI as 

it is recommended in the guidance.  
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Pixel reliability is represented by numbers ranking from -1 to 4 that depict the pixel level 

data quality (Table 2-1). First, the percentages of the area with similar pixel reliability rank were 

estimated for the four small watersheds used to develop the model. The total area of four 

watersheds was considered as single study area as they are located next to each other (Figure 3-

1).  If the area covering all four watersheds contains pixel reliability not equal to 0 which means 

the data is good and use confidence, then the VI Quality bit numbers were considered for further 

analysis. During VI Quality analysis, the VI Quality values were changed to 16-bit numbers for 

appropriate interpretation. For interpretation, the binary bit-string were read from right to left  

and the individual bits within a bit-field were read from left to right as described in  NASA LP 

DAAC (2013) (or in literature review of this dissertation[Chapter 2]). Detailed description on VI 

quality interpretation can be seen in NASA LP DAAC (2013). Pixel reliability rankings and VI 

quality values for study watersheds at the Konza Prairie Biological Station are included in 

Appendix A and Table A-3.   

The VI quality QA values extracted for the entire Konza Prairie area, the data quality 

description based on NASA LP DAAC (2013), and the summary description are provided in 

Table 3-4. The percentage areas of each VI quality value for the study area are summarized 

inTable A-3 (Appendix A).  

 

 

 

 

 



65 

Table 3-4: VI quality Bit-No, parameter, bit-word, and their interpretation in Konza 

Prairie watersheds (Adopted and modified from NASA LP DAAC, 2013) 

16-bit binary  Imagery 

value 

Data quality description based on NASA 

LP DAAC (2013) guidance  

Summary 

description  

0|0|001|0|0|0|0

1|0001|00  

2116  VI produced with good quality, low quality 

VI usefulness, low aerosol quantity, no 

adjacent cloud detected, no atmospheric 

BRDF correction, no mixed clouds, only 

land, no possible snow/ice, possible 

shadow  

Good quality 

data and no 

noise* 

0|0|001|0|0|0|0

1|0010|00  

2120  VI produced with good quality, decreasing 

quality VI usefulness, low aerosol quantity, 

no adjacent cloud detected, no atmospheric 

BRDF correction, no mixed clouds, only 

land, no possible snow/ice, possible 

shadow  

Good quality 

data with 

decreasing 

quality VI 

usefulness and 

no noise* 

0|0|001|0|0|0|1

0|0010|01  

2185  VI produced but check other QA, 

decreasing quality VI usefulness, 

intermediate aerosol quantity, no adjacent 

cloud detected, no atmospheric BRDF 

correction, no mixed clouds, only land, no 

possible snow/ice, possible shadow  

Decreasing VI 

usefulness with 

intermediate 

aerosol and no 

clouds, snow or 

shadow  

*Aerosols, adjacent and mixed clouds, possible snow/ice, and shadow were considered to be 

noise. 
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3.4  Results and Discussion 

The CNNDVI model proved to be a promising alternative to a standard CN method by 

providing a mechanism to address spatiotemporal variability of the rainfall-runoff relationship in 

the CN method. Results showed that the regression model based on the 16-day NDVI composite 

data provided a better prediction, even with no calibration, than the standard CN. The CNNDVI 

method could be appealing to hydrologists because it uses only one variable, CN, to estimate 

runoff from rainfall events.  

3.4.1 Vegetation Indices/Quality Assurance Assessment 

Based on pixel reliability rank (Table A-1), all NDVI data used for model development 

were categorized as good data (confidence 92.74%) and marginal data (useful but look at other 

QA information, 7.26 %) for the four Konza watersheds (Table 3-5, Appendix A, Table A-3). 

Among marginal data, A majority of the data had a value of 2116 (binary value 

0|0|001|0|0|0|01|0001|00, meaning that VI produced with good quality, no mixed clouds, only 

land, no possible snow/ice, but possible shadow) or 2120 (binary value 0|0|001|0|0|0|01|0010|00, 

meaning that VI produced with good quality, low aerosol quantity, no adjacent or mixed cloud, 

only land, no possible snow/ice, but possible shadow). Therefore, 7.26 % of marginal data 

(useful based on pixel reliability ranking) had no noise issues (no adjacent/mixed clouds, no 

possible snow and shadow, and no aerosols) based on VI quality QA. Based on these 

interpretations of values, no significant cloud contamination was present in all NDVI products 

used in model development.  
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Table 3-5: Pixel reliability rank percentage with good data (pixel reliability rank = 0, 

meaning the data can be used with confidence)  

Pixel reliability rank % 

Percentage of NDVI temporal products with good data for all 

watersheds (i.e., 100% of area) 92.74 

NDVI temporal products  with <100 % and ≥90% of area with  

good data; the remaining is useful data but need to look at other 

VI quality QA 2.42 

NDVI product  with <90%  of area with good data; the 

remaining is useful data but need to look at other VI quality QA 4.84 

3.4.2 Model Output 

Regression analysis mathematically modeled relationships between the CN (response 

variable) and NDVI (predictor variable). The CNNDVI regression model is given in Equation 3-7 

and Figure 3.8.  

                                                       (3-7)

 

Figure 3-8: NDVI versus back-calculated CN relationship based on rainfall and runoff data 

and 16-day NDVI for Konza Prairie Biological Station, KS, study watersheds 

 

Output of residual analysis showed that residual errors were normally distributed and the 

model met the assumptions of regression (Figure 3-9, Appendix A). The scatterplot, quantile 
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plot, and histogram of the residuals (Figure 3-9) showed the normality of residuals with zero 

mean value. Precipitation and runoff, which are observational data, are not normally distributed 

(usually skewed to the right or positive skewness), so the expectation of perfect normality in 

residual distribution of observational analysis, especially weather-related data such as rainfall 

and runoff, would be unreasonable because of significant extreme event occurrences. As 

described in the methods, regression analysis performs better in experimental studies because the 

independent variable is controlled. Nevertheless, analysis of this study showed that the residuals 

were normally distributed, so the diagnostics of the residual analysis outcome was sufficient for 

observational study. 

 

Figure 3-9: Residual analysis output of developing CN based on Normalized Difference 

Vegetation Index (NDVI) 

Note: From top-left: the scatter plot, histogram, boxplot, and quantile of residuals   
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Statistical analysis of the model relating CN and NDVI is shown in Table 3-6. The p-

value for the overall model was less than 0.05, proving that the model was statistically 

significant, with the coefficient of determination (r
2
) of 0.1445. Many researchers prefer the p-

value approach for statistical decision making (Mendenhall and Sincich, 2012). The p-value 

indicates the probability of making an incorrect decision, which was less than 0.01% according 

to output in the model for this study. The low r
2
 indicates that the rainfall-runoff relationship is 

much more complicated than prediction using a single variable; however, as explained in 

Sections 3.4.3–3.4.6, it is more accurately determines the rainfall-runoff relationship than the 

existing SCS-CN method. As shown in Figure 3-11, the regression model performed better than 

the standard CN-based flow even without calibration, and improved after calibration.  

Table 3-6: Regression analysis output of SAS to model CN using NDVI as predictor 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 1 3903.13 3903.13 28.89 <.0001 

Error 171 23101 135.09216   

Corrected Total 172 27004    

Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 1 97.295 3.72116 26.15 <.0001 

NDVI 1 -0.117 0.02171 -5.38 <.0001 

 

3.4.3 Model Calibration 

Model calibration was accomplished in two phases. The first phase used the observed CN 

(back-calculated), and the second phase used combinations of rainfall, CN, and observed flow. 

Calibration was stopped when r = 0.85 and r
2
 = 0.72 as the plot in figure 3-10 believed 
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satisfactory. Figure 3-10 shows the final plots of rainfall versus CN, rainfall versus runoff, and 

runoff versus CN. 

 
Figure 3-10: Plots to assess model performance during calibration 

Note: Red plots are based on observed data, and blue plots are based on model output. 

After satisfactory calibration output was found based on statistical measurements, the 

NDVI and model CN were used and remodeled using SAS to obtain the calibrated regression 

model of CN based on NDVI. The calibrated model is shown in Equation 3-8.   

                                                          (3-8) 

The model was adjusted to account for theoretical bounds of CN; the CN cannot be 

greater than 98 according to the literature values based on the concept of the method (Equation 

3-9). CN value of 98 indicates that almost all rainfall in an event would be runoff. 

                                                              (3-9) 
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Table 3-7 shows pairwise comparisons of observed (measured), literature CN based, and 

calibrated model flow to assess the overall distribution of flow. Observed and calibrated model 

flows did not show statistical difference (p-value = 0.6622), but flow based on literature was 

statistically different from observed and calibrated model flows (p-value <0.0001). 

Table 3-7: Pairwise comparison between observed, literature CN, and calibrated 

model flow 

 

Figure 3-11 plots flows based on observed CN values with respect to standard (literature) 

CN, regression model CN, and calibrated model CN. The regression model flow fit the observed 

flow better than flow based on literature CN, and flow based on the calibrated model (slope = 

0.91) was better compared to the literature (standard)-based CN flow (slope = 0.51).  
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Figure 3-11: Calibration: literature CN, regression model, and calibrated model 

flows compared to observed flow at Konza Prairie Biological Station  
Note: The box plot is zoomed to show a majority of the data distribution, thereby 

excluding some relatively extreme observations from the box plot. 

The calibrated model accounted for approximately 91% of observed flow, while literature 

CN-based calculations explained less than 51% of observed flow. The error component, 

approximated by the y-intercept, decreased in the calibrated model compared to the literature-

based flow. The y-intercept measured the lag or lead between the model and observed data with 

lower y-intercepts representing better model fits. The calibrated model exhibited the lowest y-

intercept (0.304) compared to literature CN-based flow (2.77). As shown in the top-right of the 

figure, the flow regression model performed better than the standard CN flow, and calibration 
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improved model performance. The slope, intercept, and coefficient of correlation showed that the 

calibrated model performed very well. 

The coefficient of correlation (r), which measures the strength of the linear relationship 

between the observed flow and estimated flow, supported the above analysis. Analysis showed 

that the r value was 0.40 for the literature CN flow, 0.48 for the uncalibrated regression model 

flow, and 0.85 for calibrated model flow with observed (measured) flow, respectively. These 

values indicate that the calibrated model improved runoff prediction compared to the standard 

method. Box plots of the flow also supported the analysis. As shown in the box plots in Figure 3-

11, a majority of the calibrated flow had similar distribution to the observed flow. This study 

showed that the CNNDVI provided more statistically acceptable results of CN than the standard 

CN. 

3.4.4 Model Validation 

The model was validated with 34% of the total available data, as described above and 

shown in Figure 3-12. In the figure the blue trend line shows results with all data designated for 

validation, the red trend line shows results after removing the most extreme data point generated 

from the highest rainfall point yielding almost no runoff, and the black trend line shows results 

after removing two additional data points. All three validation options demonstrated improved 

results compared to literature-based CN flow. In the first case the validated flow explained 

87.3% of observed flow, with a moderately strong relationship (r = 0.52). In the second case the 

validated flow accounted for 89.3% of the observed flow, with a stronger relationship (r = 

0.641), and in the last case the observed flow over-predicted the validated flow by 13.6%. The 

validated flow and observed flow had the strongest relationship (r = 0.693). However, the 
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literature CN-based flow accounted for 48.7% of the observed flow, with weak relationship (r = 

0.44). In general, NDVI-based estimation of CN offers better rainfall-runoff prediction. 

 
Figure 3-12: Validation: literature CN and calibrated model flows compared to observed 

flow at Konza Prairie Biological Station 

Note: In the validation versus observed plot, the line and the equation in blue is validation data 

with no removal; the line and equation in red is validation by removing one event data in red 

circle, assumed to be an outlier; and the line and equation in black is validation by removing data 

from three events in the black circle.  

 

The box plot shown in Figure 3-13 supported the analysis; validation flow was better than 

the literature CN (SCS-CN) flow compared to the observed flow.  

 
Figure 3-13: Observed, validation, and literature flow for watersheds at Konza Prairie 

Biological Station 
Note: The second figure shows the zoomed portion of the first figure to highlight a majority of 

the data. 
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This analysis contained limitations, however, primarily due to the complex nature of the 

rainfall-runoff relationship. Davie (2008) defined runoff as the end-product of precipitation after 

all other hydrologic processes, meaning that the amount of runoff is dependent upon watershed 

hydrologic characteristics and other processes. This model attempted to incorporate the effects of 

various factors into one parameter, NDVI. In addition, possible errors in precipitation and runoff 

estimations for extreme events (low and high rainfall and runoff events) could be present;   data 

from this study was primarily in the lower range. Harmel et al. (2006) compiled detailed 

uncertainties in streamflow using various measurement techniques for small watersheds. Those 

uncertainties may be associated with preciseness of the measurement techniques and 

environmental conditions such as wind effects. Another source of uncertainty could be the initial 

abstraction percentage in back-calculating CN for the analysis. Hawkins et al. (2008) analyzed 

and documented the unsettled nature of initial abstraction and provided a range of initial 

abstraction values based on the data source and type of analysis (natural and ordered data).  

Moreover, the coarse spatial scale of NDVI could also add errors and uncertainty. Even so, based 

on the analysis, NDVI provided a better prediction of flow than the standard literature-based CN 

method.  

3.4.5 Spatiotemporal Variability of Curve Number 

Studies have shown that hydrologic processes, soil moisture, infiltration, and other 

abstractive losses of rainfall have significant spatial and temporal variability (Gonzalez et al., 

2014; Hosseini and Saradjian, 2011; Ponce and Hawkins, 1996); however, the standard CN 

method does not account for temporal variability of those processes (Ponce and Hawkins, 1996). 

In this analysis, MODIS-NDVI captured the effects of those processes on a 16-day cycle 
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(Figures 3-14, 3-15, and 3-17). Figure 3-14 shows the 11-year average CN for the Konza Prairie 

based on the time period of MODIS-NDVI data acquisition. 

 
Figure 3-14: Konza Prairie CNNDVI box plot for each time period of Normalized Difference 

Vegetation Index  
Note: Green in the figure shows the growing season. 

 

CNNDVI demonstrated a vivid change during the beginning of the growing season (late 

March to April), with the lowest CNNDVI around June 10. CNNDVI standard deviation was greatest 

during the spring (April 23), which was expected based on varying spring weather and changes 
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of the landscape frost; and wider during the growing season in general when vegetation health 

varies based on various weather conditions (e.g., available soil moisture). Anandhi et al. (2013) 

highlighted the general distribution percentage of late spring frost from March 21 to May 20 

from 1980 to 2009, supporting the variability of CNNDVI in the growing season and providing 

opportunity to calculate relatively accurate runoff from rainfall events since most rainfall occurs 

during that season. The wide ranges of NDVI could be attributed to grazing and burning 

activities conducted in the growing season, especially during spring and fall, since the Konza 

Prairie is a long-term ecological research site with controlled grazing and burning practices. 

In general the CNNDVI was higher from November 01 to March 22 due to the lower NDVI 

so that less water could be held by the vegetation and creates a higher runoff potential. Also, 

during this season the soil profile is likely full of water due to lower ET.  Occurrence of Snow 

could also contribute for lower NDVI in addition to barren land especially during December and 

January. In other hand, during growing season ET will be higher, thus infiltration high and runoff 

reduced. This process lead lower CN during the growing season. 

For example, if a 50 mm rainfall event occurred and the CN increased from 75 to 77, the 

runoff would increase by 17.9%; if the CN increased by 5 (from 75 to 80), the runoff would 

increase by 47%. Runoff changes depend on the amount of rainfall and CN ranges. Figure 3-15 

illustrates how CNNDVI varies seasonally. Runoff-generating mechanisms vary by season due to 

landscape characteristics and available water in the soil. In general, CNNDVI was lower during 

summer (June through August) and higher in winter (December through February), but there was 

a relatively wider range of CNNDVI in the spring (March through May) and autumn (September 

through November). CNNDVI variability in the spring and summer could reflect variability in the 

relationship of rainfall events and runoff occurrences in seasons in which most precipitation 
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occurs. During late autumn, winter, and early spring the runoff-generating mechanism is mainly 

dominated by available soil moisture, low surface temperature, and low ET that affect the 

proportion of runoff and infiltration during rainfall events. However during peak growing season, 

vegetation intercepts significant amounts of water and increases the porosity of the upper soil 

profile that increases infiltration.  

  

Figure 3-15: Konza Prairie Biological Station, KS, seasonal CNNDVI averaged based on time 

period of Normalized Difference Vegetation Index (NDVI) 

Figure 3-16 shows CN based on SCS lookup tables using land cover, hydrologic 

condition, and HSG. A majority of the area had a CN value of 77. Similar land cover and HSG 

were used throughout the year with some adjustments related to the hydrologic condition. It had 

lower values due to the riparian soil categorized as HSG A with low runoff potential. However, 

CNNDVI demonstrated significant variability in spatial and temporal conditions (Figure 3-17).  
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Figure 3-16: Konza Prairie SCS-CN based on NLCD land cover, SSURGO hydrologic 

condition, and hydrologic condition using SCS lookup table 

CNNDVI captured CN variability based on each NDVI period so that relatively accurate 

runoff could be estimated from rainfall events. Figure 3-17 shows CNNDVI maps the Konza 

Prairie during five periods in 2010. As shown in the figure, CNNDVI changed throughout those 

selected time periods. CNNDVI decreased from March to July and then increased throughout the 

following periods. The map of May 9–24 supports the plot in Figure 3-17, showing drastic 

decreases of CN during the beginning of the growing season and wide variable CN values 

throughout the season. However, the period between March and November did not demonstrate 

significant CN variability.  
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Figure 3-17: Konza CNNDVI maps of selected periods in 2010 to assess the 

spatiotemporal changes in curve number 

VI quality of the spatial maps in Figure 3-18 and Figure 3-19 were analyzed to assess 

whether or not cloud contamination was present in the study. Figure 3-18 shows the pixel 

reliability ranking for the five time periods of NDVI imagery. The imagery from March 6–21, 

2010, shows that the entire area was categorized under marginal classification. A similar 

situation was observed from May 9–24, 2010. Further VI quality analysis was done for those two 

time periods of NDVI imagery. 
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Figure 3-18: Pixel reliability ranking in Konza Prairie watersheds for corresponding 

NDVI periods of CNNDVI in Figure 3-16 

Figure 3-19 shows the pixel reliability rank and VI quality map of those two time periods 

with marginal data (pixel reliability is 1 [i.e., useful but look at other QA information]). 

According to the interpretation of VI quality described in Sections 3.3.5 and 3.4.5, the two 

imageries were not cloud contaminated, although they demonstrated decreasing quality. As also 

shown in Appendix A, Table 1, March 6 imagery was not used in model development because no 

rainfall and runoff data were used for model development. Imagery from May 09, 2010, was 

used in model development in which majorities of the watershed data were under good data pixel 

reliability classification (Figure 3-18).  
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Figure 3-19: Pixel reliability rank (upper) and VI quality (lower) of MODIS (MOD13Q1) 

of two NDVI periods at Konza Prairie Bilogical Station 

Note: No noise means no aerosols, no mixed clouds, no snow/ice, and no shadow. 

3.5  Summary and Conclusion 

CN prediction using any variable is more complicated than prediction via linear 

regression. However, in this study, NDVI was proven to be a better predictor than the existing 

standard CN method. In order to evaluate the applicability of NDVI to estimate CNNDVI for 16 

days, this study developed a regression model based on the assumption that NDVI and CN have 

an inverse relationship. Back-calculated CN using similar period runoff and precipitation from 

four watersheds in at the Konza Prairie Long-Term Ecological Research Station was used as 

observed CN for calibration and validation. During calibration the slope and intercepts were 

improved based on coefficient of determination (r
2
) performances and comparison of model plots 
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and observed data. Results showed that derived models behaved satisfactorily during calibration 

and validation even though the rainfall event-runoff relationship is complex. The model also 

produced better CN than popular literature CN values for runoff predictions of a rainfall event. 

The method used in this study could be adjusted (based on local data) and used in any 

watershed or climatic conditions in order to develop the CNNDVI method. Improved rainfall and 

runoff measurement techniques and issues related to improved satellite data (e.g., higher 

resolution NDVI to capture land use/cover variability on the ground) could improve regression 

model development. This study showed that CN could be approximated using NDVI to capture 

the rainfall-runoff relationship more accurately than the standard method even though CN 

depends on factors, such as land use, soil physicochemical properties, and intensity, duration, 

and frequency of precipitation of the watershed, which reflects the complexity of the rainfall-

runoff relationship. This method could help alleviate the static nature of the standard method and 

reflect a fairly accurate relationship of rainfall and runoff that could be improved since the 

resolution of satellite data is higher. The following chapter specifies how the developed model 

could perform in similar land use/cover with mechanical disturbances of land cover.  
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Chapter 4 - Paired Watershed Selection and Application of NDVI-

based Curve Number in Disturbed Land 

Abstract 

Paired watershed design has been used to study the impact of land use changes on 

hydrology. It is based on the idea that watersheds located in close proximity will respond 

similarly to the climatic variables and land use/cover changes. Even though it has been widely 

used, the method lacks objective criteria for the selection of paired watersheds. This study 

focuses on statistical methods to select paired watersheds to study land use change impacts on 

hydrological processes and the potential to use the CNNDVI for assessing runoff from small 

watersheds.  

A combined  K-means and hierarchical-agglomerative clustering techniques were applied 

in this study to identify hydrologically homogeneous paired watersheds on Fort Riley Military 

Installation, KS. Clustering techniques were done using seven topographic variables (total stream 

length, drainage density, ruggedness, total mean slope, no flat area slope, percent flat area, 

curvature) and one soil parameter (percent clay in the upper layer). These parameters play 

important roles in hydrologic processes by revealing surface runoff behavior, indicating 

closeness of spacing of channel network, measuring terrain heterogeneity, affecting overland and 

subsurface flow velocity that determine the rate of runoff, converging/diverging flow and soil 

moisture and influencing infiltration, respectively.  In order to eliminate the domination of one 

variable due to the different magnitudes of parameters, Z-score standardization was done to 

improve generalizability of the results. The K-means clustering techniques led to six clusters for 
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optimal classification with a silhouette value of 0.42. The watersheds in each cluster were paired 

with higher Cophenetic correlation coefficient with values greater than 0.80 revealed the validity 

of the agglomerative hierarchical clustering technique. The performance of CNNDVI was further 

assessed using two combinations of paired watersheds in low, medium and high intensities. The 

results showed that CNNDVI were able to predict the land cover impact and differentiate the 

maneuver difference in intensities. The results also revealed that CNNDVI model performs better 

than the standard SCS CN at smaller scale watershed. 

4.1  Introduction and Background 

Human transformation of the earth’s land surface to feed, shelter, and accommodate the 

increasing human population has become a concern for this century (DeFries and Eshelman, 

2004; DeFries et al., 2004). Expanding agricultural areas, growing developed areas, and 

deforestation are expected to accelerate due to an increasing population worldwide. 

Anthropogenic land transformation has multiple consequences, including streamflow alteration 

with high peak flows and reduced recharge (Storck et al., 1998; Rose and Peters, 2001), altered 

atmospheric circulation with reductions in precipitation, ET, and cloudiness (Werth and Avissar, 

2002), and habitat fragment and species losses. Numerous studies have investigated the effect of 

human land transformation on climate, habitat loss, and geomorphic, hydrologic processes, and 

ecological processes (DeFries et al., 2004; DeFries and Eshelman, 2004; Gaston et al., 2003; Jetz 

et al., 2007; Sala et al., 2000; Vitousek et al., 1997; Wilson, 2012), indicating that understanding 

the consequences of land use change, especially on hydrological processes, should be a primary 

research focus.  

Consequences of land use change on hydrology have been studied via modeling, 

experimental watersheds, and measurements, especially at the watershed scale. A watershed is 
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the basic organizing unit for a wide range of scientific, engineering, and water management 

activities (Genereux et al., 2005). When studies are done at the watershed scale, results can be 

extrapolated to a larger scale with appropriate precautions and used for management and 

planning activities. Watersheds with controlled and experimental manipulated land surface, 

together with pre- and post-manipulation observations, have been used to understand land-use 

effects on hydrological process (Nobert and Jeremiah, 2012; Schilling, 2002). However, 

identifying and quantifying hydrological consequences of land-use change is still challenging 

due to the short length of hydrological records, highly variable hydrological systems, and 

difficult control of land use changes in real system (DeFries and Eshelman, 2004).  

Current understanding of land use effects on hydrology are based on paired watershed 

studies (DeFries and Eshleman, 2004; Schilling and Spooner, 2006; King et al., 2008; Prokopy et 

al., 2011). The paired watershed approach captures the effects of land cover, climate, and 

watershed hydrological variability, and it eliminates the need to measure all components that 

cause changes throughout watersheds under study (Andréassian, 2004). The paired watershed 

approach engages two similar watersheds (control and treatment) that are synchronously 

monitored during calibration (pretreatment) and post-treatment periods (Clausen and Spooner, 

1993). Watershed similarity leads to the belief that both watersheds respond similarly to climatic 

forcing, land use/cover, and soil physic-chemical property changes, so that a conclusion can be 

made on the impact of the treatment and control watersheds. Paired watershed studies provide 

high quality experimental data that seeks to advance the understanding of the hydrologic 

response of watersheds to land use changes (DeFries and Eshleman, 2004). Paired watersheds 

have also been used to study environmental conditions such as organic carbon loss (Veum et al., 

2009), soil erosion (Ricker et al., 2008), non-point source pollution (Prokopy et al., 2011), 
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conservation practices (King et al., 2008), and forest management practices (Andréassian, 2004; 

Ford et al., 2011). 

Despite relatively wide use of paired watershed applications, no consistent statistically 

sound criteria and methods exist for selecting paired watersheds. Limited paired watershed 

selection has been done based on subjective professional judgments. Other studies have used 

clustering techniques, such as k-means (Burn and Boorman, 1993; Nathan and Mcmahon, 1990; 

Ssegane et al., 2012; Razavi, 2013), canonical correlation (Cavadias et al., 2001; De Prinzio, 

2011), hierarchical clustering ( Kahya et al, 2008), and fuzzy clustering algorisms (Rao and 

Srinivas, 2006) for watershed selection.  

Selected watersheds should be representative of the region so that study results are 

transferrable to other (ungauged) watersheds (Blöschl and Sivapalan, 1995). Watershed 

representativeness and similarity can be determined with respect to vegetative cover, soil 

properties, and topographic and climatic conditions (Chang, 2006; Ssegane, 2013), especially in 

hydrological studies. The paired watershed approach utilizes land surface topography, vegetative 

cover, and soil physiochemical properties to determine hydrological processes, especially surface 

and groundwater processes. This study devised a paired watershed selection method based on 

soil, topographic parameters, and clustering techniques. The objectives of the study were to 

conduct paired watershed selection by devising a statistical method based on topographic and 

soil parameters that dominate hydrological processes in small watersheds and apply developed 

CNNDVI to study the impact of military maneuvers on runoff generation using paired watersheds 

with various training intensities.  
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4.2  Study Area 

The study area, Fort Riley military base, is located in the Flint Hills of northeastern 

Kansas and covers approximately 411 km
2
 in Clay, Geary, and Riley counties (Figure 4-1). The 

elevation of the area ranges from 313 m to 419 m. Fort Riley experiences a typical 

midcontinental climate characterized by large seasonal temperature contrasts with cold, 

relatively dry winters and hot summers. Average monthly temperature ranges from -2 
o
C in the 

winter to 26 
o
C in the summer (Althoff et al., 2005), while average precipitation varies from 

812.8 mm to 863.6 mm (USDA, 2007). Farnum Creek, Honey Creek, Little Arkansas Creek, 

Madison Creek, Sevenmile Creek, Timber Creek, Threemile Creek, and Wildcat Creek are 

located in Fort Riley. Downstream flooding due to increased flow in these creeks, especially 

Wildcat Creek, is a major concern (Bunger, 2013).  
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Figure 4-1: Elevation range of Fort Riley military installation located in Northeast Kansas 

with counties and State map 

Fort Riley land use (Figure 4-2) is dominated by grassland (63% of total area); other land 

cover includes forest (20%), developed (11%), and crop areas (3.5%). Forest land is mainly 

located along the Kansas and Republican rivers. The Fort Riley area is dominated by Wymore 

series soils (USDA Soil Conservation Service, 1975; Althoff et al., 2009a), which consists of 

moderately well-drained silty clay loam and silty clay soils. Based on SSURGO, a majority of 

the area is C and D HSGs (Figure 4-2), indicating that the area is prone to high runoff potential 

compared to type A and B soils (Clausen and Spooner, 1993).  
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Fort Riley military base was established in 1853 and currently serves as a combat training 

ground for mortar and artillery fire, maneuver training, and mechanized infantry units (Althoff et 

al., 2007; Pockrandt, 2013; Quist et al., 2003). Fort Riley is divided into training areas with 

average areas of 2.76 km
2
 (0.43 km

2 
minimum and 6.46 km

2
 maximum) and maneuver areas 

(larger than training areas). Activities at the base affect vegetation cover, biotic component 

compositions, and soil physicochemical properties (Althoff et al., 2009a). These activities have 

been shown to detrimentally affect ecosystems. 

 

Figure 4-2: National Agricultural Statistics Service- Cropland Data Layer (NASS CDL) 

2010 land use/cover and Soil Survey Geographic Database (SSURGO) hydrologic soil 

group of Fort Riley, KS 
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4.2.1 Military Training Maneuver and Landscape Impacts 

Military training maneuvers at Fort Riley include off-road use of large tracked and 

wheeled vehicles. Impacts of military maneuvers on the land surface have been reported in many 

studies (Althoff and Thien, 2005; Althoff et al., 2007; Althoff et al., 2009a; Althoff et al., 2009b; 

Anderson et al., 2005, 2006; Bhat et al., 2005; Foster et al., 2006; Haugen et al., 2003; Kun et al., 

2009; Perkins et al., 2007; Thurow et al., 1993). Impacts include removal/damage of ground 

vegetation cover, alteration of soil physical properties, increased soil exposure, and accelerated 

soil erosion (Howard et al., 2011; Quist et al., 2003). Maneuvers have also been shown to reduce 

native flora and fauna and spread invasive species (Milchunas et al., 2000; Prosser et al., 2000). 

Perkins et al. (2007) found high correlations between training intensity and ecological 

disturbances. Althoff et al. (2009a) reported reduction of vegetative biomass with repeated tank 

traffic at Fort Riley. Althoff and Thien (2005) found loss of biodiversity due to military training 

activities.  

Vegetation destruction has been reported as the primary effect of military maneuvers 

(Althoff et al., 2009a; Anderson et al., 2005). Destruction of vegetation can cause significant 

secondary effects, including soil loss through accelerated wind and water erosion. Althoff et al. 

(2007, 2009a, and 2009b) reported substantial changes in landscape conditions and 

physiochemical soil properties due to military activities. The authors reported that mechanized 

military training causes landscape-scale soil disturbances that affect soil quality through 

displacement and compaction. Quist et al. (2003) also reported that intensive mechanized 

military maneuvers remove vegetation cover, increase bare and compacted soil, and shift the 

composition of plants. Changes in soil physical properties and land use/cover disturbances affect 

hydrological processes, specifically the rainfall-runoff relationship. 
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Althoff and Thien (2005) and Perkins et al. (2007) found reduced mean soil pore sizes 

and increased soil bulk density in training areas compared to undisturbed areas. Disturbed pore 

structure of the soil alters infiltration and may cause poor soil aeration. These changes can affect 

vegetation growth by inhibiting root growth, nutrient uptake, and seedling emergence. 

Displacement of organic-rich topsoil and compaction resulting in reduced infiltration and water-

holding capacity have been reported as common effects of military training activities (Grantham 

et al., 2001; Prosser et al., 2000; Raper, 2005). Thurow et al. (1993) reported a decline in the 

infiltration rate in wet-tracked military maneuver conditions. The reduced and/or lost vegetation 

cover results in less interception and dissipation of raindrop energy directly into the ground. 

Dissipation of raindrop energy and reduced infiltration and interception create an erosion-prone 

environment. These studies showed that military maneuvers can alter regional hydrological 

processes. The degree of hydrological impact due to military maneuvers and rates of subsequent 

recovery of the system are dependent upon site characteristics such as vegetation type, soil 

texture, soil type, soil moisture content at the time of impact, vehicle types and maneuvers, and 

local climatic characteristics (dry and wet). The net effect of soil and vegetation degradation and 

recovery associated with a particular activity can be studied by measuring the change in 

hydrological process, especially change in infiltration rate and runoff (Thurow et al., 1993).  

4.3  Materials and Methods 

4.3.1  Watershed Delineation 

Watersheds of approximately 1 km
2 

were delineated using ArcGIS model builder 

application (Figure 4-3) to capture watersheds with relatively similar military training intensity 

in order to study the hydrological impact of maneuvers. Hydrology tools in Spatial Analyst Tools 

of ArcGIS 10 were used to process watersheds from a 3 m DEM that was downloaded from the 
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USGS “Seamless” archive  http://seamless.usgs.gov). The DEM was filled to remove sinks in 

the surface raster and reduce DEM imperfections prior to conducting a flow direction that 

created a raster layer with values indicating flow direction from the highest point down-slope to 

the lowest point. Accumulated flow was computed based on flow direction used to determine the 

stream network. Conditional evaluation on each cell of accumulated flow was conducted to 

determine the average size of the watersheds to determine the contributing area above a set of 

cells using the watershed tool. The raster watersheds were converted to vector data format.  

 

Figure 4-3: ArcGIS model builder to delineate watersheds in Fort Riley with average areas 

of 1 km
2
 

4.3.2 Topographic Parameter Selection and Cluster Analysis 

Various topographic and soil variables were used in paired watershed selection because 

hydrological processes in any landscape are complex and defining the optimum governing 

equation of all processes using one or two variables is difficult. A total of 8 watershed 

topographic parameters were assessed to conduct cluster analysis and apply to paired watershed 

http://seamless.usgs.gov/
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selection analysis (Table 4-1). The first seven parameters were derived from the 3 m DEM, and 

the percent clay of the top zone of the soil was acquired from the SSURGO database. These 

variables were selected as the most determinant parameters in the hydrological processes, 

particularly to the study area since topographic characteristics affect hydrologic processes at field 

and small-scale watersheds (Christopher et al., 2010; Horton, 1932; Olaya, 2009; Riley et al., 

1999; Strahler, 1957; Wilson, 2012). A brief description of each selected topographic parameters 

is given in Table 4-1 and the following sections. 

Total stream length: The most important hydrologic feature of the basin is stream length, which 

is skewed to the right (Strahler, 1957) and denotes surface characteristics. Relatively small 

stream lengths reveal the surface area with steep slopes and fine texture; long stream lengths 

denote flat surfaces (Christopher et al., 2010). Stream length is generally inversely proportional 

to the stream order. 

Drainage density: Drainage density is a linear scale of landform elements in stream-eroded 

topology (Horton, 1932), revealing the closeness of channel spacing. Drainage density is the 

ratio between stream length to total watershed area (Strahler, 1957), expressed in terms of mi. 

mi/sq. or km. km/sq. Based on drainage density, drainage basins can be classified as low density 

basin (D < 12), medium density basin (D = 12–16), and high drainage density (D > 16) (Strahler, 

1964). Low drainage density has been widely noticed in areas with highly permeable subsoil 

material under dense vegetation. High drainage density occurs in weak or impermeable, sparse 

vegetation and mountainous areas (Christopher et al., 2010). A high drainage density value 

indicates a relatively high density of streams and a rapid storm response with high runoff yield. 
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Ruggedness: Ruggedness index indicates the instability of a land surface (Olaya, 2009; Strahler, 

1957). Ruggedness is calculated using the range of elevation divided by the square root of the 

watershed area. Ruggedness provides a measure of terrain heterogeneity (Riley et al., 1999).  

Flat area, mean Slope of total area, and mean slope of no-flat area: Slope is one of the most 

important factors governing the rate of runoff. Runoff flows faster on a steep slope; a high slope 

results in decreased response time and high peaks at downstream locations, while flat slope 

results in extended response time and high infiltration. In order to include impact of sloped and 

flat areas, both parameters were studied individually. Mean slope of total area was used to study 

the combined effect. Slope can be calculated as a percent of slope or degree of slope using 

ArcGIS. 

Mean curvature: Curvature describes the curve of a surface at a particular point in the 

landscape. Profile curvature affects the acceleration or deceleration of flow across the surface, 

converging/diverging flow, and soil moisture.  

Mean clay of upper layer: The type of soil in the upper soil layer significantly affects runoff due 

to its infiltration rate. Pore size and pore distribution affects infiltration process. Mean clay in the 

upper soil layer causes variation in pore size and distribution as it changes with wetting and 

drying. 
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Table 4-1: Topographic parameters used in paired watershed analysis 

  Variable 

 

Range Comment 

Significance in 

Hydrological Process 

1 

Total stream 

length 

 

 

 

 

 

0.6–14.9 km 

Streams are delineated 

based on a 3 m DEM 

Distance of stream from 

its confluence with 

another stream or water 

body, reveals surface 

runoff behavior  

2 

Drainage 

density 

 

 

0.5–46.7 

km/km
2
 

Total stream length divided 

by the area of the 

watershed 

Indicates closeness of 

spacing of channel 

network  

3 Ruggedness 

 

 

 

0.00–0.2 km
2
 

The range of elevation 

divided by the square root 

of area of the watershed 

(Olaya, 2009) 

Measures terrain 

heterogeneity  

4 Flat area 

21.4%–

79.9% 

 Derived from a 3 m DEM 

  

  

Affects overland and 

subsurface flow velocity 

and determines the rate of 

runoff 

5 

Mean slope 

of total area  

 

1.5–10.8 

degree 

6 

Mean Slope 

of no-flat 

area 

 

 

6.5–13.4 

degree 

7 

Mean 

curvature 

-0.02–0.01 

one 

hundredth 

(1/100) of a 

z-unit 

The second derivative of a 

surface or the slope of the 

slope, profile curvature 

processed for this analysis. 

Profile curvature affects 

the acceleration or 

deceleration of flow 

across the surface, 

converging/diverging flow 

and soil moisture 

8 

Mean Clay 

of Upper 

Layer 

 

 

 

19.5-36.5% 

Based on the SSURGO soil 

database which is the % of 

the upper 50 cm of the soil 

Affects infiltration 

 

Clustering methods utilized variability of parameters in order to categorize the 

appropriate groups based on them and to match each paired watershed (Martinez and Martinez, 

2008; MathWorks, 2012). However, the scale and magnitude difference among parameters 

caused the clusters to be dominated by wider and larger magnitude parameters, such as percent 
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flat area (Table 4-1). The eight variables had unique units and ranges of magnitude, as listed in 

Table 4-1. Histograms and boxplots were used to identify distribution and variability of selected 

parameters. For example, mean clay in the upper layer ranged from 19.50 to 36.50, and 

ruggedness ranged from 0.00 to 0.19. Therefore, if the data were not standardized, mean clay 

values could have higher role in pairing watersheds statistically. To alleviate that problem, even 

though the study required nonparametric analysis, standardization of data was done using z-score 

function available in MATLAB (MathWorks, 2012; Martinez and Martinez, 2008). 

Standardization of z-scores allows normalization of data. Mathworks (2012) describes z-score as 

a measure of the distance of data based on the mean in terms of the standard deviation. Z-score 

standardization returns each variable value to a mean centered at zero and scaled to have a 

standard deviation of 1, normalizing the data and equalizing variance for positively and 

negatively skewed variables. The z-score standardization function in MATLAB uses Equation 

(1). Z-scores were computed using the mean and standard deviation for each parameter to 

standardize the observations (Martinez and Martinez, 2008). 

   
   

 
                                                   (4-1) 

where z is the standardized value,  x is actual observation data value, µ is the mean value 

of each variable, and s is the standard deviation of data. 

Interdependence of variables was checked using Pearson’s correlation technique and a 

variance-covariance matrix. Pearson’s correlation values were plotted into a correlation matrix 

with pseudo color for easy results interpretation. The correlation matrix was also used to remove 

redundancy if one or more variables had a strong relationship with the remaining. Variance-

covariance matrix of the parameters was then calculated to validate correlation matrix results. 
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Two methods of clustering, k-means and agglomerative hierarchical clustering, were used 

for cluster analysis using the Statistics Toolbox of MATLAB. Both techniques utilize measures 

of distance using the pairwise distance between pairs of objects (pdist) function that measures 

dissimilarity between every pair of watersheds in a dataset (MathWorks, 2012; Martinez and 

Martinez, 2008). For example, in k-means, cluster centroids are determined based on the 

specified number of clusters so that the pdist function can determine the distance using a 

combination of variables from each centroid. Both methods are well-known clustering 

techniques; there are advantages and disadvantages for each method. When a similar pattern 

exists, hierarchical clustering cannot determine distinct clusters.  The actual expression patterns 

become less effective when clusters sizes increase. In the case of K-means clustering, it requires 

a specified number of clusters in advance. It is also sensitive to outliers. This study used a 

combination of K-means and agglomerative clustering techniques to minimize the weaknesses 

and take advantage of the strengths of the two methods. K-means clustering was first used to 

reduce the large number of watersheds (316 watersheds), and then agglomerative hierarchical 

clustering was used to pair individual watersheds within the groups.  

4.3.2.1 K-means 

K-means clustering is a partition clustering algorithm (Cao et al., 2013; Martinez and 

Martinez, 2008; Martinez and Martinez 2004) that clusters data into k groups so that the within-

group sum-of-squares is minimized (Martinez and Martinez, 2008; Martinez and Martinez, 

2004). K-means clustering uses a two-step basic procedure: 1) assign observations to the closest 

group, and 2) calculate the cluster centroid using the assigned objects. It uses a two-phase 

iterative algorithm (i.e., batch updates and online updates) to minimize the sum of point-to-

centroid distances (MathWorks, 2012). K-means is an inbuilt function in the Statistics Toolbox 
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of MATLAB. The following is the detailed k-means algorithm procedure (Martinez and 

Martinez, 2008): 

i. Obtain a partition of k groups using silhouette statistics. 

ii. Take each data point (xi) and calculate the Euclidean distance between it and every 

cluster centroid. 

iii. Here xi is in the r
th

 cluster, nr is the number of points in the r
th

 cluster, and d
2

ir is the 

Euclidean distance between xi and the centroid of cluster r. If there is a group s such 

that  
  

    
   
  

   

    
   
  ,  then move xi to cluster s. 

iv. If there are several clusters that could satisfy the above inequality, then move xi to the 

group that has the smallest value for
   

    
   
 . 

v. Repeat steps ii through iv until no more changes are made. 

Using this method, similar watersheds were grouped within a group, while others were 

grouped into a different group. The optimum number of groups was specified using mojena- 

upper tail rule (Mojena, 1977) and silhouette statistics (Kaufman and Rousseeuw, 1990; 

Martinez and Martinez, 2008; MathWorks, 2012). The upper tail rule of mojena (Mojena, 1977) 

was used to determine the number of clusters based on raw fusion levels (Martinez and Martinez, 

2008). The possible silhouette value ranged from -1 to 1, where the greater silhouette value was 

assumed to be a better cluster. The silhouette value was used to validate the upper tail rule of 

mojena results because various numbers of possible clusters may exist in unsupervised learning 

techniques. Use of both methods helps determine the most optimal number of clusters.  

4.3.2.2 Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering merges the closest pair of watersheds within a 

group based on clustering distance. The Euclidean distance technique of pdist function in the 
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Statistics Toolbox of MATLAB was used to calculate the pairwise distance between watersheds 

(MathWorks, 2012). Then the centroid linkage method, a method that calculates the distance 

between two clusters as the distance between centroids, was used to perform agglomerative 

clustering (MathWorks, 2012). A dendrogram was used to show links between the best pairs; the 

tree was not a single set of clusters but rather a multilevel hierarchy of related watersheds 

(MathWorks, 2012). Cophenetic correlation coefficient was used to assess the correlation 

between clusters.  

4.3.3 Application of CNNDVI for Runoff Estimation  Fort Riley 

Fort Riley military installation is in close proximity to the Konza Prairie Biological 

Station with similar land cover but very different management and disturbance processes. The 

Konza Prairie Biological Station and Fort Riley have similar hillslope processes with similar 

elevation range, geologic formations, and soils. A majority of land cover for both areas is 

grassland; and they experience identical climatic conditions.  

The CNNDVI model (Equation 4-2) was initially developed using four small northeastern 

Kansas grassland watersheds with the assumption that it was a natural system. A detailed 

description of CNNDVI development was included in Chapter 3. CNNDVI was applied to test the 

ability of the developed method to capture the hydrological impact of various training intensities. 

Runoff was estimated with uniform rainfall during the year 2010 to eliminate rainfall effect and 

to test only CNNDVI predictability. The assumption was made that all eleven periods received 

similar rainfall (75 mm). Eleven consecutive CNNDVI during 2010 were used for analysis.  

                                         (4-2) 

where NDVI_CN is curve number based on NDVI and NDVI is NDVI with value ranges 0–255. 
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In order to compare the effect of low, medium, and high maneuver intensities on runoff, 

paired watersheds with various training intensities were selected (Figure 4-4). Watersheds 99 

(moderate intensity), 310 (high intensity), 361 (low intensity), 185 (high intensity), 262 (low 

intensity), and 112 (moderate intensity) were selected for analysis. ISCO samplers (Teledyne 

ISCO, Lincoln, Nebraska) were used to study rainfall-runoff processes at Fort Riley (Figure 4-4). 

Water samplers were installed at the outlets of five watersheds (one in the northeast, two in the 

center, and two in the west part of Fort Riley) to record surface runoff from rainfall events based 

on accessibility and range of training intensity. The watershed runoff contributing area was 

delineated using ArcGIS based on a 3m DEM (Table 4-2). Paired watersheds of two ISCO-

installed watersheds with various intensities of runoff were calculated to study the impact of land 

cover change due to maneuver damage.  
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Figure 4-4: Watersheds for analysis embedded with Fort Ri ey’  training intensity map 

(from P. Denker (pers. Comm.), J. M. S. Hutchinson (pers. Comm.), and Johnson et al., 

(2010)) 

Note: Similar colors of watersheds are in the same group for runoff increase comparison due to 

low, moderate, and high training intensities.  

ISCO samplers were installed in the spring of 2012; one ISCO in the west was reinstalled 

in a different cross section of the nearby area in the spring of 2013 since no runoff was recorded 

during the period due to very small contributing area for the watershed at the particular cross 
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section. Stream geomorphological parameters, mainly the cross section (Figure 4-5) and the long 

profile at the site, were surveyed.  

Table 4-2: Watersheds with the training area location delineated using 3-meter 

DEM, Fort Riley military installation 

Watershed Training  Area 

Maneuver 

Intensities 

Area 

(km
2
) 

99 90 Moderate 0.27 

117 65 No Agreement 0.81 

153 64 Low 0.13 

185 56 High 1.33 

249 52 High 1.01 

ISCO-recorded runoff was processed and compared to CNNDVI runoff. Manning’s method 

was used to convert stage depth into discharge and estimate the amount of runoff from rainfall 

events. Manning’s equation was used to calculate discharge using the cross section of the stream 

at the ISCO location, hydraulic radius, and the slope of the channel (Equation 4-3 and 4-4). 

Figure 4-6 shows the cross sections of small streams where the ISCOs were set up. 

  
  

 
                                                        (4-3) 

                                                                    (4-4) 

where V is cross-sectional average velocity (m/s), Q is discharge (m
3
/s), R is A/P 

(hydraulic radius (m)), P is wetted perimeter (m), A is the cross-sectional area (m
2
), S is 

the slope of hydraulic gradient (m/m), Kn is 1.49 for English units or 1 for SI units (
    

 
), 

and n is Manning’s resistant coefficient or Manning’s roughness coefficient.    
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Figure 4-5: Stream cross section at ISCO water sampler sites at small watersheds at Fort 

Riley 

The ISCOs recorded runoff depth during rainfall events every 5 minutes. For each 

watershed, the relationship between depth versus cross-sectional area at the ISCO site (Figure 4-

6) and depth versus discharge (Figure 4-7) were developed by dividing each cross-sectional area 

into smaller grids in order to capture possible runoff amounts at smaller depths. Cross-sectional 

area (A) was estimated based on cross-sectional survey data. Gridded maps of the cross section 

were used to estimate the area based on a 0.03048 m (0.1 ft.) progression of depth from the 

thalweg of the cross-section. The depth versus cross-sectional area mathematical relationship 

was developed using a two-order polynomial. 
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Figure 4-6: Depth versus cross-sectional area at the ISCO water sampler of small 

watersheds at Fort Riley 

 

Figure 4-7: Depth versus discharge at each cross section of small watersheds at Fort Riley  
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4.4  Results and Discussion 

Combination of k-means and agglomerative clustering techniques provided a statistical 

mechanism to conduct paired watershed selection that could improve water quality and quantity 

studies. The advancement of GIS and remotely sensed data increases the applicability of 

hydrological studies at various scales. This section describes watershed delineation, watershed 

parameters selection, paired watershed selection, and application of CNNDVI developed in the 

previous chapter on a relatively undisturbed system to be applied in a disturbed area with QA 

analysis. 

4.4.1  Watershed Delineation 

Three hundred ninety-one (391) watersheds at Fort Riley with average areas of 1 km
2
 

were delineated in this study. The small area of watershed captured homogeneous training 

intensities and landcover change/damage (Figure 4-8). Most watersheds were located in one of 

the training areas or in similar training intensities, improving the use of watersheds as replicates 

in a paired watershed assessment.  
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Figure 4-8: Delineated watersheds using hydrology tool in ArcGIS for paired watershed 

analysis 

4.4.2 Topographic Parameters Selection 

Figure 4-9 shows histograms of eight parameters that represent the distribution of data. 

Most parameters were not normally distributed and skewed. Martinez and Martinez (2008) 

advised researchers to be aware of distances that could be affected by magnitude and scale of 

variables used in clustering. Although curvature was distributed around mean value of zero, most 

values for percent flat area were greater than 40%.   
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Figure 4-9: Histogram of eight variables used to select the paired watershed 

Figure 4-10 shows boxplots of selected eight parameters that display summary values of 

minimum, maximum, median, and quantiles. Based on the figure, the parameters were not 

normally distributed and had a wide range of values with extreme values. The box plot also 

highlights outliers in each variable. 
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Figure 4-10: Box and whisker plots of watershed variables used in analysis 

Table 4-3 summarizes statistics of raw and z-scored data of eight variables used in this 

analysis. The statistics show that variability was reduced compared to the raw data so that each 

variable equal role in statistical paired watershed selection. Z-score allows each variable to be 

represented when determining paired watersheds.  
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Table 4-3: Summary statistics of raw and z-scored values of eight variables used to select 

paired watershed 

 

The pattern of observations must be preserved when standardizing parameters. Figure 4-

11 shows plots of each parameter before and after z-scoring of the observations. As shown, the z-

scores did not change the patterns of observation; rather the scores standardized the dataset to 

alleviate domination of one or more parameter/s in the clustering process. The z-score values 

mimic data distribution of the raw data and improve the ability to compare variables.  

 

Min. Max. Mean Std. Dev. Range Min. Max. Mean Std. Dev. Range

Total Length 

(km) 0.61 14.89 3.62 2.33 14.28 -1.29 4.84 0.00 1.00 6.13

Drainage Density 

(1/km) 0.50 46.67 4.66 5.72 46.17 -0.73 7.34 0.00 1.00 8.07

Ruggedness 

(km/sqrt(km2)) 0.00 0.19 0.04 0.03 0.19 -1.43 5.43 0.00 1.00 6.86

Percent Flat 

Area (%) 21.41 79.89 55.68 12.38 58.48 -2.77 1.95 0.00 1.00 4.72

SlopeTotal Mean 

(Degree) 1.46 10.83 4.23 1.91 9.37 -1.45 3.45 0.00 1.00 4.90

Slope No Flat 

Mean (Degree) 6.52 13.37 8.28 1.47 6.85 -1.20 3.47 0.00 1.00 4.67

Mean Curvature 

(1/100 z units) -0.02 0.01 0.00 0.00 0.03 -6.29 6.09 0.00 1.00 12.39

Soil Clay (%) 19.50 36.50 31.11 3.06 17.00 -3.79 1.76 0.00 1.00 5.56

Raw Data Z-scored Data

Variable
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Figure 4-11: Plot of eight variables used to select the paired watershed 

Figure 4-12 shows raw and z-scored data differences on two variables used for paired 

watershed selection analysis (total stream length and percent clay in the upper soil layer). Total 

stream length has an average value of 3.62 km (most values are below 5), but the percent clay 

average is 31.11% (most values are over 25 %). Therefore, when using the raw data, percent clay 

could have more to determine distances of k-means and agglomerative hierarchical statistics. The 

z-scored plots show that the two variables were within a similar range.  
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Figure 4-12: Data range comparison of raw data (upper) and z-scored standardized data 

(below) of total stream length and percent clay in upper soil layer 

The correlation matrix technique explores whether or not dependencies are present in the 

dataset. Identifying nondependent variables is essential for successful clustering. Figure 4-13 

shows the correlation matrix containing Pearson’s correlation coefficients that helped visually 

identify the correlation of parameters. The correlation coefficients showed no strong positive or 

negative correlations between respective variables except total area slope and percent flat area. 

However, neither of the two variables showed identical correlation to the remaining variables, so 

all eight variables were included in the analysis.  
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Figure 4-13: Corre ation matrix  ontaining Pear on’   orre ation  oeffi ients for each 

pair of variables  
Note: Light colors represent strong positive linear correlations; dark colors designate 

negative correlations. The range of values in orange suggests no correlation. (ToSL = 

total stream length, DrDs = drainage density, RUGD = ruggedness, FA% = percentage of 

flat area, S-TA = total area slope, SNFA = non-flat area slope, CurM = mean curvature, 

and MCl% = percentage of clay in the upper soil layer). 

Variance-covariance matrix of the parameters showed similar results to Table 4-4. The 

diagonal of the table, which is bold and italicized, shows variances of the regression coefficients 

of each parameter, whereas the off-diagonal values are the covariance between the respective 

combined parameters. Mean curvature and ruggedness showed less variability, while percent flat 

area and drainage density had the most variability. Covariance values showed dependence 

between parameters, but the dependence was only in certain variables. Therefore, all parameters 

were included in the cluster analysis.  
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Table 4-4: Variance-covariance values of the data matrix of eight variables used in 

clustering analysis 

Covariance 

MATRIX 

Total 

Stream 

Length  

Drainage 

Density  RUGN 

% Flat 

Area  

Mean 

Slope  

Mean 

Slope  

No-Flat 

Area 

Mean 

Curvature   

Mean 

Clay 1st 

layer %  

Total Stream 

Length (km) 5.426 2.915 -0.012 -1.104 0.130 0.170 -0.001 -0.455 

Drainage 

Density 

(1/km) 2.915 32.738 0.065 -2.718 0.646 0.909 -0.002 -2.762 

Ruggedness -0.012 0.065 0.001 -0.063 0.012 0.011 0.000 -0.014 

% Flat Area  -1.104 -2.718 -0.063 153.335 -22.667 -14.743 0.002 6.269 

Mean Slope  0.130 0.646 0.012 -22.667 3.658 2.624 0.000 -0.971 

Mean Slope  

No-Flat 

Area 0.170 0.909 0.011 -14.743 2.624 2.156 0.000 -1.007 

Mean 

Curvature  -0.001 -0.002 0.000 0.002 0.000 0.000 0.000 0.001 

Mean Clay    

1st layer % -0.455 -2.762 -0.014 6.269 -0.971 -1.007 0.001 9.364 

 

4.4.3 Clustered Watersheds 

4.4.3.1 K-means Clustering 

The optimum number of groups was determined based on the Mojena- upper tail rule and 

silhouette statistics. As shown in Figure 4-14, many estimates were possible for the number of 

clusters. However, a distinct change occurred in raw fusion levels at 6, producing an elbow 

effect. Elbows at 9 and 11 provided other options of clusters; however, 6 clusters is supported by 

silhouette statistics (see below).  
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Figure 4-14: Raw fusion levels from complete data linkage to select the number of clusters 

in K-means clustering  

Note: A distinct elbow effect is shown at 6 clusters; other possible elbows are 9 and 11. 

 

In addition to the Mojena plot based on raw fusion levels, silhouette statistics can also 

provide the optimum number of clusters (Kaufman and Rousseeuw, 1990; Martinez and 

Martinez, 2008; MathWorks, 2012). Possible silhouette values range from -1 to 1, with greater 

silhouette values suggesting a better cluster (Figure 4-15). Silhouette statistics for this study 

suggested that 6 was the optimum number of clusters, as supported by the Mojena plot above. 

The range of mean silhouette value for various clusters ranged from 0.26 to 0.42. The overall 

average silhouette value for six clusters was 0.42, which was highest compared to other cluster 

numbers. Silhouette values vary little with repeated calculations, especially for cluster numbers 

greater than 10, indicating that an increased number of clusters would not improve the 

relationship. Therefore, the data were grouped into 6 clusters using k-means clustering.  
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Figure 4-15: Silhouette values plot for 4–14 clusters using the eight watershed variables 

A total of 316 watersheds were grouped into six distinct clusters. The number of 

watersheds in each cluster ranged from 29 to 69 (Table 4-5). Spatial distribution of the six 

clusters obtained from k-means clustering at Fort Riley is provided in Figure 4-16. A 

watershed’s cluster can be identified by the watershed color.  

 

Table 4-5: Number of watersheds in each cluster obtained by k-means technique 
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Figure 4-16: Map of watersheds at Fort Riley with specified clusters obtained by k-

means clustering 

Scatter plots in Figure 4-17 show possible combinations of eight parameters used in 

paired watershed selection of the six clusters. These scatter plots show that each parameter 

contributed to the formation of clusters even though visual identification of the contribution of 

individual parameters in cluster computation with many variables is difficult.  
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Figure 4-17: Map of clusters based on two possible parameter combinations of Fort Riley 

watersheds in analysis 

 

4.4.3.2 Agglomerative Hierarchical Technique 

The agglomerative hierarchical method was used for each cluster of watersheds obtained 

by k-means clustering in order to pair watersheds. Cophenetic correlation coefficients, the 

standard measure of how well a hierarchical cluster fits the data, were greater than 0.80 for six of 

the clustered groups. This proved valid hierarchical clustering (Table 4-6), which measured the 

linear correlation coefficient between cophenetic distances from the hierarchical tree of 

watersheds and the original distance used to construct the tree based on the centroid of each 

cluster of watersheds (MathWorks, 2012). Based on obtained cophenetic correlation coefficients 
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(Table 4-6), cluster 6 was selected as the best paired watersheds composed group. Cluster 6 

watersheds are also clearly shown in terms variable contributions in Figure 4-17. Watersheds 

were selected from this cluster for runoff analysis.  

Table 4-6: Cophenetic correlation coefficient of agglomerative 

hierarchical clustering of each cluster 

Watersheds 

Cophenetic 

Correlation 

Coefficient 

Cluster 1 0.9044 

Cluster 2 0.8404 

Cluster 3 0.8703 

Cluster 4 0.8159 

Cluster 5 0.9168 

Cluster 6 0.9341 

The dendrogram for cluster 2 watersheds in Figure 4-18 indicates the hierarchical 

relationship of individual watersheds. The key for watershed ID and the dendrograms of the 

other five clusters are attached in Appendix B. The dendrogram also indicates possible small 

clusters within the dataset. The y-axis shows matched watersheds in hierarchy based on 

clustering distance. Based on the hierarchy of the dendrogram, possible paired watersheds can be 

identified. For example, denodrogram ID 9 and 16 (watershed ID 224 and 257) are similar 

watersheds (Appendix for matching dendrogram and watershed IDs). The height of the hierarchy 

represents the distance linkage computed between watersheds. High hierarchy indicates less 

similarity between watersheds. Appendix B shows the remaining dendrogram of the 

agglomerative analysis and the matched table of IDs in denedogram and watersheds. 
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Figure 4-18: Hierarchical matches of watersheds in one cluster 

 

4.4.4 Application of CNNDVI for Runoff Estimation  

Initially, CNNDVI modeled runoff data was assumed to be compared to actual data 

gathered by ISCO water samplers installed at five small watersheds outlets. However, no 

significant runoff was recorded during the study period. In fact, one ISCO in the west area was 

reinstalled in a different cross section because no runoff was recorded due to very small 

contributing area for the watershed at the particular cross section. The assumption was made that 

the very small sizes of watersheds, low sensitivities of ISCO samplers, and low rainfall events 

caused insufficient runoff. Due to the low number of observations, all watershed data were 

combined for analysis. ISCO-recorded runoff at Fort Riley from watersheds versus runoff based 

0 0.5 1 1.5 2 2.5 3 3.5

 9
16
14
11
28
29
 3

24
 8

10
23
17
26
 7

13
22
18
20
21
 1

27
 2
 6
 4

15
 5

12
25
19

Clustering Distance

W
a

te
rs

h
e

d
 I
D



127 

on CNNDVI is shown Figure 4-19; the graph also shows how it varies with SCS-CN modeled 

runoff.  

Figure 4-20 shows that most CNNDVI runoff was higher than ISCO-recorded values, 

especially low flows. However, CNNDVI model runoff was similar to standard SCS-CN runoff, 

although the coefficient of determination was higher in SCS-CN due to similar land cover in 

both conditions since the watersheds were very small. Low-resolution NDVI was unable to 

accurately capture spatial variation in land cover. Watersheds were very small and had few 

NDVI grids because NDVI was low resolution (231 m). So it is expected that if very high spatial 

resolution NDVI acquired a better result might be seen. Nevertheless, the CNNDVI accounted for 

72% of observed runoff even though only one value had significant influence. The ISCOs had 

different issues during the collection period.  

 
Figure 4-19: Runoff comparison of ISCO recorded at small watersheds at Fort Riley: a) 

CNNDVI and b) SCS-CN 

In addition to uncertainties in runoff, rainfall measurements and the inability to 

accurately predict low flows may also be related to the initial abstraction used in CNNDVI 

development. The original SCS Ia/S ratio value of 0.2 may not able to represent the actual 
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condition, thereby requiring a higher value, especially when significant military impacts are 

present, including removal of vegetation, soil compaction, and gullies. These effects may need to 

be included in initial abstraction.  

Temporal pattern in CNNDVI over 16-day NDVI acquisition periods in 2010 is given in 

Figure 4-20. The maps show that CNNDVI captured variability of the rainfall-runoff relationship 

by capturing spatiotemporal variability in CNNDVI.  

 

Figure 4-20: NDVI-CN based on the 16-day NDVI period in 2010 

The pixel reliability rank and VI quality QA assessment was conducted for NDVI 

imagery used in runoff of analysis and spatiotemporal mapping of CNNDVI (Figure 4-21). As 

shown in the figure, a majority of March 6–21, 2010, pixel reliability ranking imagery was under 
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marginal data (useful but look other QA), and the upper part of Fort Riley May 9–24, 2010, 

imagery pixel reliability maps were partly marginal data and cloudy.  

 
Figure 4-21: Pixel reliability ranking of MODIS VIs (MOD13Q1) at Fort Riley 

Furthermore, VI quality QA analysis showed that March 6–21 and May 9-24, 2010, 

imagery had multiple values with and without clouds, resulting in decreased VI quality or poor 

VI quality (Figure 4-21). However, VI quality QA results showed that a majority of the area had 

NDVI products without intermediate and mixed clouds. In addition, both images satisfactorily 

showed the different growing period (March 6-crop emerging or no crop period; May 09-

developed crop).   
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Figure 4-22: VI quality of MODIS (MOD13Q1) at Fort Riley watersheds 

Note: noise * is aerosols, adjacent and mixed clouds, possible snow/ice, and shadow. VI quality 

summary description is included in Appendix A.  

The map shows that CN NDVI decreased from March to July and increased during the 

remaining periods. A majority of land surface had higher CNNDVI values during the non-growing 

season due to low NDVI values, potentially leading to lower interception and infiltration and 

higher runoff potential. During growing season, increases in vegetation cover resulted in 

decreased CNNDVI (May, June, and August), potentially representing higher ET and infiltration 

and thus lower runoff.  

CNNDVI also showed the effect of training intensity (Figure 4-23 Figure 4-24). Figure 4-

24 shows the error bars of low, medium, and high training intensity categories at Fort Riley and 
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the Konza Prairie for the 12 years averaged for each time period. As shown in the figure, low 

military intensity closely matched the Konza Prairie, especially during peak growing period. 

High military intensity and resulting high CN showed more impact on vegetation during peak 

season. Wide error bars in higher intensity also showed potential variation of runoff through 

various CNNDVI for this area.  

 
Figure 4-23: Error bar of CN based on 23 NDVI acquisition time periods for low, 

medium, and high training intensities at Fort Riley 

The spatial (different training intensities) and temporal (each NDVI acquisition period) 

variability of CNNDVI showed significant differences (p = 0.001, Table 4-7). The temporal 

variability pattern among the four areas (three intensities at Fort Riley and Konza) was similar, 

as shown in Figure 4-23. Spatial variability was not as wide as temporal variability, although the 

training intensity and Konza CN were lower in general. Various factors caused the low 

variability, including that the CN was averaged for relatively wider areas, all areas were in 

01J17J02F18F06M22M07A23A09M25M10J 26J12J 28J13A29A14S30S16O01N17N03D19D
76

78

80

82

84

86

88

90

92

Time Period

C
u

rv
e

 N
u

m
b

e
r

 

 

Konza Prairie

Low Intensity

Moderate Intensity

High Intensity



132 

similar land use/cover category (primarily grasslands), and NDVI coarse spatial resolution may 

not capture accurate training intensity effects. However, the runoff potential from a possible 

rainfall event; 1 or 2 CN differences could cause significant increase in the runoff potential. The 

pairwise comparison of various intensities was conducted and low intensity CN showed 

significant difference (p-value < 0.0001) from moderate and high intensity CNs; however, no 

statistically  significant difference was evident between the moderate and high intensity areas.  

Table 4-7: ANOVA statistical output of CN based on training intensity and NDVI 

acquisition period 

 

 Detailed boxplots of CNNDVI for each 16-day NDVI period for high, moderate, and low 

intensity areas at Fort Riley (Figure 4-24) show that CN_NDVI variability during the growing 

season was lower compared to moderate and high intensity areas, especially during growing 

season. A wider range of CNNDVI for moderate and high intensities during July and August 

relatively than low intensity areas was attributed to changes in land cover due to military 

maneuvers.  
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Figure 4-24: Box plots of CNNDVI for each 16-day NDVI period for three types of intensities 

In order to compare the effects of training intensities on runoff generation, the percent 

runoff changes of moderate and high training intensity watersheds in relative-to-low training 

intensities were estimated as described in methods section. The percent runoff increases from 

low to moderate intensity and high intensity for selected watersheds were assessed (Figure 4-25).  

The percent increase was calculated by taking low intensity runoff as a benchmark so that the 

amount of percent increase was computed for moderate and high intensity. In general, for both 

watershed combinations, the percent runoff increase from low intensity to high intensity was 

higher than from low to moderate intensity. Because a uniform rainfall event was used, this 

result showed that runoff increased with increasing intensity, potentially creating significant 

erosion potential. The effect was higher during the growing period, clearly demonstrating the 

influence of vegetation on runoff. High intensity maneuvers cause higher loss of vegetation, 

resulting in lower interception and infiltration by creating a micro environment in root zone 

vegetation that increases infiltration and leads higher runoff. Although VI quality QA maps 

showed some cloud contamination (Figure 4-22), the study watersheds in other NDVI periods in 
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analysis were under good data (use with confidence) classification using pixel reliability ranking 

imageries (Figure 4-21).  

 

Figure 4-25: Percent increase in runoff for a) watersheds 112, 185, and 262; and b) 

watersheds 99, 310, and 361 

4.5   Conclusion  

Paired watershed study has been widely practiced in water resources research to study 

water quality and quantity and conservation impact. However, no objective criteria or method 

exists to select paired watersheds. A combination of K-means and hierarchical-agglomerative 

clustering techniques were investigated in this study to identify hydrologically homogeneous 

clusters of watersheds at Fort Riley, Kansas. Eight hydrologically important topographic 

parameters, including one soil parameter, were used in classification. Those parameters were 

transformed using standardized z-score to improve generalizability of the results and eliminate 

the domination of a certain variable. K-means clustering techniques grouped 316 watersheds into 

six groups, and the agglomerative hierarchical technique classified those into small groups and 

into paired watersheds. Six paired watersheds identified through this process were used to apply 
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previously developed CNNDVI and to study the impact of military maneuvers on runoff 

generation at smaller scale. These results showed that the paired watershed selection technique 

used in this study effectively identified land cover changes due to natural and/or anthropogenic 

disturbances. Although the study pertained to military maneuvers, the same parameter selection 

method and classification techniques could be applied for any landscape. However, additional 

caution is recommended when selecting parameters since it is challenging and can be subjective. 

The following chapter describes how the developed model could perform with relatively diverse 

land use/cover set up and with relatively larger watersheds. 
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Chapter 5 - Application of NDVI-based Curve Number Model to 

Quantify Rainfall-Runoff Relationship in Diverse Land Use/Cover 

Areas 

Abstract  

The CNNDVI, developed using back-calculated CN and NDVI, was applied to study the 

performance of CNNDVI in larger and more diverse land use/cover watersheds. Daymet 

precipitation and CNNDVI were used to estimate runoff, which was compared with direct runoff 

extracted from stream flow gauging stations in the study watersheds, Chapman (grassland 

dominated) and Upper Delaware (agriculture dominated). Low, moderate, and high flow years 

were selected based on the stream flow observed at USGS runoff gauging points in the last 

decade. The overall flow of selected years and moderate flow performed well compared to low 

and high flow years in both watersheds. In the Chapman watershed, for every 1.057 increase in 

observed flow, the predicted flow increased by 1 for overall study years that means the model 

under-predicted by about 6 %; and the intercept showed less error in the model which is 0.23 

mm. And for moderate flow year, model under-predicted flow by about 30 % with every 1.3 

increase in CNNDVI flow, the observed flow increased by 1. The CNNDVI flow over-predicted by 

38% for the overall flow year in Upper Delaware. The moderate flow over predicted by the 

model by 22% and the intercept in all cases of Delaware showed less error in the model. And the 

moderate year was the best performing relatively as that of grassland dominated watershed. In all 

seasons of Upper Delaware and three seasons in Chapman (spring, summer, and autumn), 

molded runoff values were closely matched with observed values statistically. However in the 

case of Chapman Creek, the grassland dominated watershed, the model flow was significantly 
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different than the observed flow during winter period. In both watersheds, the low flow year 

runoff comparison was showed the worst performance statistically. Daymet precipitation and 

CNNDVI could provide an opportunity for timely surface runoff water planning and management.  

5.1   Introduction  

Surface runoff, an important component of hydrological processes, is widely studied in 

water resources for planning and management practices. Surface runoff studies have become 

crucial as worldwide land use modifications and the importance of drought and flood predictions 

evolve. The rainfall-runoff process is complex, dynamic, and nonlinear (Fan et al., 2013; Song et 

al., 2011), controlled by many interrelated physical factors. As land use/cover and soil 

physicochemical properties become increasingly diverse, the complexity of rainfall-runoff 

relationship increases. Therefore, predicting the amount and rate of runoff becomes increasingly 

difficult and time-consuming. The CN, also referred to as the SCS-CN method, is one of the 

most commonly used empirical methods to estimate surface runoff from rainfall events. It 

represents combined hydrologic effects of land use/cover, HSG, agricultural land treatment class, 

and hydrologic condition. The CN method has been widely used for watershed modeling and has 

been incorporated in numerous hydrological models such as Soil and Water Assessment Tool 

(SWAT), Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS), Erosion 

Productivity Impact Calculator (EPIC), and Agricultural Non-Point Source Pollution Model 

(AGNPS) (Kousari et al., 2010; Hawkins et al., 2002; Woodward et al., 2002). The wide 

applicability of CN shows how crucial the method is in water resources for planning and 

management practices. Even though, it is widely applied and accepted as a method for runoff 

estimation; studies have indicated that it should be evaluated and adapted to local and regional 

conditions  D’Asaro et al., 2014; Epps et al., 2013;  Soulis et al., 2009; Yuan, 2014).  
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Hawkins (2014) stated that some watersheds perform differently from SCS-CN runoff 

response patterns, leading to significant differences between the model and reality. Several other 

studies also mentioned that the estimated runoff was inaccurate in semiarid watersheds in 

southeastern Arizona due to higher retention capacity of the soil (Baltas et al., 2007; Hjelmfelt, 

1980; Soulis et al., 2009; Yuan, 2014). Garen and Moore (2005) stated that the use of CN is 

beset with a number of problems, issues, and misinterpretations that weaken its usage to estimate 

accurate representation of the amount, paths, and source areas upon which erosion and water 

quality predictions depend. Many of these unresolved issues in  the empirical CN based  rainfall-

runoff relationship are due to the fact that  the method is very simplified though the relationship 

is so complex and dependents on multiple watershed related factors such as land use/cover and 

soil related factors, mainly soil moisture at the time of rainfall event.  

The CN is generally determined using SCS-CN lookup tables that primarily contain land 

use/cover and land surface characteristics that affect the rainfall-runoff relationship. An area-

weighted average CN for the entire watershed/subwatershed is often calculated since a watershed 

is usually a combination of land-use/cover and soil conditions. However, the CN approach does 

not reflect temporal variability of hydrological conditions and it cannot reflect the effects of 

seasonal or dynamic land-use changes, which are essential for reflecting seasonality of 

hydrological conditions. Many researchers have attempted to include spatial variability of land in 

CN calculation. Hong and Adler (2008) used land cover, soils, and antecedent moisture 

conditions to develop a global SCS-CN runoff map. Canters et al. (2006) derived a catchment 

scale CN using impervious surface, vegetation, bare soil, and water/shade information. Reistetter 

and Russell (2011) proposed a CN calculation method by integrating percentages of impervious 

surface, tree canopy density, and pervious surface. However, none of these methods used 
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temporal/ seasonal variability of land cover of CN or combined spatial and temporal variability 

of land cover.  

The major reason for this gap in CN research is limited spatiotemporal data. Because 

hydrological data are typically point/field measurements, satellite remote sensing data and GIS 

techniques are viable alternatives or supplements because it is available over vast ungauged 

regions. Based on the considerations of seasonal or dynamic land-use changes of landscape and 

characteristics of medium-resolution satellite imagery, a previous study developed CNNDVI 

model using remotely sensed data. The CNNDVI model was developed to address the seasonality 

of land use/cover effects and capture the temporal variability of hydrological conditions. This 

study attempted to address CNNDVI model’s applicability for different land uses and watershed 

sizes. The goal of this study was to evaluate the CNNDVI model for estimating runoff, using 

Daymet precipitation data, for large watershed with more complex land use patterns. The 

specific objectives were to assess the application of Daymet precipitation and CN based on 

NDVI to estimate runoff in relatively larger watersheds; and to evaluate runoff in grassland and 

agriculture dominated land use/cover watersheds using USGS outlets.  

5.2  Study Area 

Two watersheds with different land use/cover and hydrological conditions in northeast 

Kansas were used for study: Chapman and Upper Delaware watersheds. The Chapman 

watershed (HUC 10: 1026000806) was dominated by grassland, while the Upper Delaware 

(HUC10: 1027010301 [Muddy Creek] and HUC10: 1027010302 [Grasshopper]) was dominated 

by agricultural land use/cover. NCDC rainfall gauge points (two in each watershed) were located 

in Chapman and the Upper Delaware (Figure 5-1). Daymet precipitation points (Thornton et al., 

1997) enabled high spatial representation (1 km x 1 km) of precipitation. Figure 5-1 shows the 
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study watersheds, available NCDC rainfall gauges, Daymet precipitation points used to generate 

runoff in this study, and USGS streamflow outlet locations. Watersheds were chosen based on 

dominant land use/cover, HSG, and stream gauge locations. Land cover data was obtained from 

the 2011 USGS National Land Cover Dataset (NLCD) at a 1:24,000 scale (30 m resolution). Soil 

data were derived from the USDA-NRCS SSURGO database. Hydrological characteristics of 

study watersheds are listed in Table 5-1. 

Table 5-1: Watershed hydrological characteristics 

 

 

  
Chapman Creek 

Watershed 
Upper Delaware 

Watershed 

Area (km2) 776.2 1130 

Elevation range (m) 338–488 282–422 

Average annual 

precipitation (mm) 762–813 864–965 

Long-term average 

flow (m3/s) 2.78 7.07 

Dominant HSG C (49.8%) and B (36.3%) D (48.2%) and B (32%) 

Dominant land 

use/cover 

Forest/shrub land (56.7%) 

and Agriculture (33.5%) Agriculture (74.9%)  
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Figure 5-1: Chapman Creek and Upper Delaware watersheds in Kansas, Dayment points, 

NCDC stations, and USGS outlets 

5.2.1 Chapman Creek Watershed 

The Chapman watershed is located in northeast Kansas and has a 776.2 km
2
 drainage 

area. The Chapman Creek watershed was delineated with the USGS station (06878000 Chapman 

Creek near Chapman, Kansas) as the outlet (Figure 5-1). Therefore, the current study area 

covered approximately 91% of 10-digit hydrological unit code (HUC 10-1026000806) area. The 

average annual precipitation of the watershed region ranged from 762 mm to 813 mm (NRCS, 

2007), with a long-term average annual stream flow of 2.78 m
3
/s.  

The elevation of Chapman watershed ranges from 338 m to 488 m, with average 4.15% 

land slope (Figure 5-2). Soils in the Chapman Creek watershed are mainly Class B and C HSG,  

accounting for 36.3% and 49.8%, respectively, and categorized as moderate runoff potential 
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(Figure 5-3). Based on NLCD (2011), land cover (Figure 5-3) in the watershed is approximately 

57% grassland; the remainder is cultivated crop (33.5%) and developed area (3.4%) (Table 5-1 

and Figure 5-3).  

 

Figure 5-2: DEM and percent slope of Chapman Creek (upper) and Upper Delaware 

(lower) watersheds 

5.2.2 Upper Delaware Watershed 

The Upper Delaware watershed has a drainage area (Figure 5-1) approximately 1130 

km
2
, covering two HUC 10s (Upper Delaware [HUC10s- 1027010301 Muddy Creek and 

1027010302 Grasshopper]). The elevation of the watershed ranges from 282 m to 422 m, with an 

average 4.73% land slope. Soils in the Upper Delaware watershed are mainly Class D HSG 

(48.2%), with high runoff potential, followed by Class B HSG (32%), which has moderately low 
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runoff potential (Figure 5-3). The Upper Delaware watershed was considered for this study due 

to its high percentage of agricultural land cover. Based on NLCD (2011), land cover in the 

watershed is approximately 75% cultivated land (cultivated crops and pasture/hay), and the 

remainder is grassland (10%), forest (8%), and developed area (5%) (Table 5-1 and Figure 5-3). 

Hay, dryland corn, and soybean are the major cultivated crops in the watershed. The average 

annual precipitation of the watershed region ranges from 864 mm to 965 mm (NRCS, 2007). 

USGS station (06890100) Delaware River near Muscotah is located in the outlet of watershed 

(Figure 5-1). The Upper Delaware had 7.07 m
3
/s average annual total long-term flow (1971–

2014). The Upper Delaware watershed faces many challenges associated with high runoff, such 

as sedimentation, nutrient management, fecal coliform bacteria contamination, pesticide 

contamination, household hazardous wastes, water wells, and point source pollution (Bosworth, 

2007). 
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Figure 5-3: Land use/cover based on NLCD and hydrologic soil group based on SSURGO 

of Chapman Creek (top) and Upper Delaware watershed (bottom) 

5.2.3 Study Period 

Three flow periods (high flow, moderate flow, and low flow) from 2000 to 2014 were 

analyzed. Any annual average flow less than or equal to 75% of long-term average flow (45 

years) was considered low flow. Long-term average flow plus/minus 25% was considered 

moderate flow, and flow greater than 125% of long-term average was considered high flow. 

Based on this flow evaluation, flows from the year 2003 were considered low flow, flows 

from the year 2007 were moderate flow, and flows from the year 2010 were high flow. Those 

years were selected based on availability of NDVI for analysis. Figure 5-4 shows the 45-year 

period long-term stream flow average for Chapman and Upper Delaware watersheds (1970–

2014). Figure 5-5 shows stream flow from 2000 to 2014, which is the time period NDVI is 
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available. Figure 5-5 also shows selected stream flow as high, moderate, and low flow for 

this study. The criteria used to select low, moderate, and high flow is described in Table 5-5. 

 

Figure 5-4: Annual average long term flow for Chapman Creek and Upper Delaware 

watersheds 

 

 

Figure 5-5: Annual stream flow for Chapman Creek and Upper Delaware watersheds 
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Table 5-2: Study period flow categorization and criteria 

Study Period Flow 

Categorization 

Criteria 

Low  ≤75% long-term average flow
†
 

Moderate  75%–125% long-term average flow
†
 

High  ≥125% long-term average flow
†
 

†
 Long-term flows for Chapman Creek and Upper Delaware are 92.3 cfs and 249. 53 cfs, 

respectively. 

5.3  Materials and Methods 

5.3.1 General Method  

The following steps were used to estimate runoff from rainfall events in this study. 

Step 1: NDVI was extracted from multi-parameter MODIS-NDVI 16-day composite grid 

data (MOD13Q1) and processed into a scale of 0–255 from the MODIS raw data scale (-

2000–10000). 

Step 2: CNNDVI from NDVI was calculated based on the model developed in Chapter 3.  

Step 3: Daymet precipitation was downloaded and processed based on 1 km latitude and 

longitude interval. 

Step 4: Daymet precipitation was interpolated for each study area using the Inverse Distance 

Weighting (IDW) method. 

Step 5: Runoff was calculated based on SCS-CN formula using the processed CNNDVI and 

precipitation input. 

Step 6: Stream flow at gauging points of USGS National Streamflow Information Program 

(NSIP) was downloaded to compare to runoff estimated based on CNNDVI and SCS CN. 
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Step 7: Baseflow was separated from stream flow to estimate direct runoff for comparison 

using the Baseflow Filter Program developed by Arnold and Allen (1999).  

Step 8: Direct runoff from USGS and runoff based on CNNDVI and SCS-CN were analyzed 

to assess model performance.  

5.3.2  Curve Number based on NDVI 

A CNNDVI model based on NDVI (Equation 1, 2) calculated in Chapter 3 was used to 

estimate runoff. The CNNDVI model was developed using four small northeastern Kansas 

grassland watersheds with an average area of 1 km
2
, located on the Konza Prairie Long-Term 

Ecological Research (LTER) site Twelve years (2001-2012) of daily precipitation and runoff 

were used in CNNDVI model development. The rain gauges in the watersheds operated from 

April 1 to October 31. The annual average precipitation at the Konza was 835 mm. The 

watersheds were dominated with hydrologic soil group C soils. Detail description on CNNDVI 

development can be seen in the chapter 3.  

                                                              (5-1) 

where NDVI is processed NDVI for CN model (value 0–255) and         is original 

NDVI downloaded from MODIS website (16-bit signed integer ranging -2000–10000). 

 

                                                                           (5-2) 

where NDVI-CN is curve number based on NDVI and NDVI is NDVI with value 0–255. 

CN model development is detailed in Chapter 3 of this dissertation.  
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5.3.3 Daymet Precipitation 

Daymet (Thornton et al., 1997) provides gridded estimates of weather data at 1 km × 1 

km spatial resolution and daily time step. It contains estimations of daily weather parameters: 

day length (s/day), precipitation (mm/day), shortwave radiation (W/m
2
), snow water equivalent 

(kg/m
2
), maximum air temperature (

o
C), minimum air temperature (

o
C), and water vapor 

pressure (Pa). Daymet estimates are based on daily meteorological observations (observations of 

maximum temperature, minimum temperature, and precipitation from NCDC daily ground-based 

meteorological stations, and the SNOwpack and TELemetry (SNOTEL) dataset managed and 

distributed by the NRCS. DEM (1-km or 30 arc second DEM) and land value “Mask” 

(information of land and water areas on earth) were used as a secondary data. According to Oak 

Ridge National laboratory (ORNL) website, Daymet data has been available from 1980 through 

the latest full calendar year for the United States, Mexico, and Canada (south of 52 degrees 

North) as station density allows. Daily precipitation includes all forms converted to water-

equivalent. Daymet data has been broadly applied to fields such as hydrology, terrestrial 

vegetation growth models, carbon cycle science, and regional-to-large-scale climate change 

analysis (Thornton et al., 2014). For this study, Daymet data was accessed through the ORNL 

Distributed Active Archive Center (DAAC). For the study area, the latitude and longitude based 

on 1 km × 1 km spatial resolution was processed by creating point shape files within each 

watershed; Chapman watershed had 782 points, and Upper Delaware had 1148 points (Figure 5-

1). Precipitation was extracted and processed using MATLAB from all points within each 

watershed.  
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5.3.4 Surface Runoff Estimation 

Stream flow at the outlets of the two watersheds, Chapman Creek and the Upper 

Delaware River (Figure 5-1), was downloaded from USGS National Streamflow Information 

Program (NSIP) website, and direct runoff was extracted and used to compare to runoff 

estimated based on the CNNDVI. These stations were selected because they have only natural or 

unregulated flow (Rasmussen and Perry, 2001) with no diversions and dams or other significant 

regulations within the watersheds. (The CN method does not account for reservoirs or other 

diversions.) The assumption was made that minimal diversions or ponds were contained within 

both watersheds.  

5.3.4.1 Baseflow Separation 

Baseflow is the component of streamflow that comes from groundwater or return flow. 

Kansas baseflow displays significant spatial variability as a consequence of variation in climatic 

conditions, land use, topography, and hydrogeological heterogeneity (Sophocleous and Wilson, 

2000). In this study baseflow was separated using the automated recursive digital filter program 

(or baseflow filter program) (Nathan and McMahon, 1990; Arnold et al, 1995). The filter was 

run over the streamflow three times (forward/Pass 1, backward/Pass 2, and forward/Pass 3), 

separating low frequency baseflow from high frequency quick streamflow. From Pass 1 to 3 the 

percentage of baseflow contribution decreased (Nathan and McMahon, 1990; Santhi et al., 

2008). Fraction of baseflow (BF) contribution to total streamflow (average of Pass 1 and 2), a 

baseflow recession constant (alpha factor), and baseflow days of the two watersheds were 

calculated during baseflow analysis (Table 5-3). Recession constant (alpha factor) is a direct 

index of groundwater flow responses to changes in recharge. Low flow response values for both 
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watersheds represented slow response to recharge. Baseflow days represented the required 

number of days for baseflow recession to decline through one log cycle (Arnold et al., 1995) 

Table 5-3: Calculated baseflow as a fraction of total streamflow, alpha factor and baseflow 

USGS Station Pass 1 

Baseflow 

Fraction 

Pass 2 

Baseflow 

Fraction 

Average 

Baseflow 

Fraction 

Alpha Factor 

(1/days) 

Baseflow  

(days) 

Chapman 0.44 0.32 0.38 0.0605 54 

Delaware 0.40 0.25 0.325 0.0640 36 

 

Average of Pass 1 and 2 baseflow fraction was used to separate baseflow from 

streamflow. Thereafter, runoff volume was converted to depth of runoff based on each watershed 

area. 

5.3.4.2 Potential Runoff-Contributing Areas 

Runoff is the result of two processes that produce overland flow. The first process is 

infiltration-excess overland flow, which occurs when precipitation intensity exceeds the rate of 

infiltration. The second process is saturation-excess overland flow, which occurs when 

precipitation falls on temporarily or permanently saturated land surface areas. Saturated areas are 

produced during storms and disappear during dry periods. Based on Juracek (1999), high runoff 

potential areas are characterized by high antecedent soil moisture and high rainfall intensity.  

Therefore, identification of potential runoff-contributing areas could be helpful to estimate 

relatively accurate response areas for a single rainfall event.   

In order to estimate infiltration excess and saturation-excess overland flow that 

contributed to direct runoff, potential runoff contributing areas must be estimated. Juracek (1999) 

estimated potential runoff-contributing areas using topographic and soil information based on the 

topographic wetness index (TWI) derived from flow accumulation and slope. In this study 
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potential runoff-contributing areas were estimated to 63% of the watershed for Chapman and 

89% of the Upper Delaware based on 100 m resolution potential runoff of grid (Juracek, 1999), 

which was downloaded from Kansas Data Access and Support Center for analysis.  

5.3.5 Model Evaluation 

Efficiency of the runoff estimation model was assessed using various model evaluation 

statistical techniques. Modeled and observed runoff was evaluated using regression graphs slope 

and y-intercept (Pineiro et al., 2008) and three quantitative statistics: Pearson’s correlation 

coefficient (r), Nash-Sutcliffe efficiency (NSE) (Equation 5-3), and percent bias (PBIAS) 

(Equation 5-4). These graphics and statistics are commonly used in model evaluation (Moriasi et 

al., 2007; Pineiro et al., 2008; Shaw and Walter, 2008; Patil et al., 2008). Pineiro et al. (2008) 

evaluated models that compared observed and predicted data, suggesting that Observed (y-axis 

or ordinate) versus Predicted (x-axis or abscissa) should be used to estimate the slope and 

intercept accurately with less error in the model. 

NSE = 1- 
    

           
   

    
            

   

                                (5-3) 

where   
   is the  th 

observation (i.e., measured runoff) value evaluated,      is the  th simulated 

(i.e., predicted runoff) value evaluated, Y
mean

 is the mean of observed data, and n is the total 

number of observations. 

PBIAS = 
    

      
           

   

    
     

   

                           (5-4) 

The theoretical NSE value range between −∞ and 1.0  1 inclusive), with NSE =1 being 

the optimal value (Moriasi et al., 2007). Moriasi et al. (2007) stated that ranges of NSE values 

between 0.0 and 1.0 are generally acceptable levels of performance. However, the authors 

suggested that values ≤0.0 indicate that mean observed values are better predictors than 
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simulated values that indicate unacceptable performance of the model. Percent bias measures the 

average tendency of predicted values to be larger or smaller than the observed values (Moriasi et 

al., 2007; Gupta et al., 1999), where the optimal value is zero, positive values indicate 

overestimation bias, and negative values indicate underestimation bias. 

In order to estimate model efficiency on seasonal variability, runoff was grouped into 

four seasons in this study. Runoff event values from March through May were grouped for 

spring, June through August for summer, September through November for autumn, and 

December through February for winter. A two-sample t-test (assuming unequal variance) tested 

whether or not any significant difference was present between observed and CNNDVI model 

predictions.  

5.4   Results and Discussion 

5.4.1 Runoff Estimation 

5.4.1.1 Runoff Estimation for Grassland Dominated Watershed 

CNNDVI model more accurately predicted runoff than the existing standard (literature) CN 

method. Figure 5-7 shows higher r
2
 for all observed runoff versus CNNDVI-predicted runoff, 

except for the low-flow period (2003) during which r
2
 was slightly higher for observed runoff 

versus standard CN runoff. The slope and intercept of each comparison for overall study years 

(all three years), low flow (2003), moderate flow (2007), and high flow (2010) year data is 

shown in Figure 5-7. The slope and intercept (Figure 5-6) of the linear regression fit indicates 

how well the predicted data matched the observed data; the slope indicates the relative 

relationship between predicted and observed, and the intercept indicates the presence of a lag or 

lead between model predictions and measured data (Moriasi et al., 2007). 
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Based on Figures, the overall study period (Figure 5-6) and the moderate flow year 

(Figure 5-8) performed relatively well compared to low and high flow years in the standard CN-

based runoff and CNNDVI-based runoff estimation. In general (for the overall period, moderate, 

and high flow years), CNNDVI performed better than the standard CN based on slope, r
2
, and NSE 

and PBIAS in Table 5-3. However, the r
2 

was better for standard CN flow. The slope expresses 

the consistent relationship of the two variables in comparison. The slope of the overall study 

period for CNNDVI prediction was 1.06, indicating that for every 1 increase in CNNDVI runoff, the 

observed flow increased by 1.06. Therefore, the CNNDVI model underpredicted by approximately 

6%. For standard CN in the overall period, for 1 increase in standard CN flow, the observed flow 

increased by 0.52, demonstrating that the standard CN flow overpredicted by 47%. The intercept 

showed less error in the CNNDVI runoff model (0.34 mm) than the literature CN (0.72 mm). In the 

moderate flow year, although the CNNDVI and standard CN flow overpredicted, the CNNDVI 

model was better than the standard CN. However, low-flow year predictions were the worst 

statistically. Figures 5-7 and 5-9 show for low-flow year (2003) and high-flow years (2010) and 

performed poorly compared to overall and moderate flow years.  

 
Figure 5-6: Comparison of observed runoff vs. standard CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Chapman watershed outlet during overall 

flow years (2003, 2007, and 2010) 



160 

 
Figure 5-7: Comparison of observed runoff vs. standard CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Chapman watershed outlet during low flow 

year (2003) 

 
Figure 5-8: Comparison of observed runoff vs. standard CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Chapman watershed outlet during moderate 

flow year (2007) 
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Figure 5-9: Comparison of observed runoff vs. standard CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Chapman watershed outlet during high flow 

year (2010) 

The same pattern was observed in quantitative statistics measures (Table 5-4). In all 

conditions, CNNDVI model predictions showed better results than the SCS-CN prediction. For 

CNNDVI predictions, all quantitative statistics were relatively good throughout the entire study 

period and for the moderate flow year. NSE values for those periods were positive, PBIAS was 

comparatively lower, and the correlation coefficient (r) was above 0.60. 
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Table 5-4: Model performance statistics of Chapman watershed 

Statistics 

Overall Study 

Period 
Yr 2003 Yr 2007 Yr 2010 

Observed 

runoff 

vs. std. 

CN 

runoff 

Observed 

runoff 

vs. 

CNNDVI 

runoff 

Observed 

runoff 

vs. std. 

CN 

runoff 

Observed 

runoff 

vs. 

CNNDVI 

runoff 

Observed 

runoff 

vs. std. 

CN 

runoff 

Observed 

runoff 

vs. 

CNNDVI 

runoff 

Observed 

runoff 

vs. std. 

CN 

runoff 

Observed 

runoff 

vs. 

CNNDVI 

runoff 

NSE 
-0.02 0.26 -21.64 -4.31 -0.28 0.63 -2.44 -0.05 

Correlation 

coefficient 

(r) 

0.56 0.53 0.14 0.02 0.68 0.61 0.03 0.33 

PBIAS (%) 
-65 33.05 -693.26 -274.82 48.01 -41.54 -46.67 38.22 

 

In summary, the moderate flow period runoff, which was approximately 25% greater than 

long-term average flow (Table 5-2), performed well than the low flow, which was 17% of long-

term average flow, and high flow, which was 167% of long-term average flow, runoffs. Results 

showed that the CNNDVI model accurately predicted moderate flow runoff but not low and high 

flows or extreme flow runoff of grassland. However, the CNNDVI model predicted runoff better 

than the standard SCS-CN model (Table 5-4) as that of the overall year period and moderate 

flow year.  

Inability to accurately predict low-flow period runoff may be related to uncertainties in 

runoff, rainfall measurements, NDVI, initial abstraction, and/or base flow extraction. CNNDVI 

developed in this study (Chapter 3) used the original SCS Ia/S ratio value of 0.2 as the initial 

abstraction. In general, results showed that the CNNDVI overpredicted runoff during low runoff 

period (Figure 5-6b, Table 5-4). Therefore, a higher initial abstraction value may improve runoff 

prediction and improve other measurement techniques, such as rainfall and runoff, especially 
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true when rainfall events are sparse and scattered and initial abstraction and infiltration play big 

role in runoff generation. However, initial abstraction may not able to represent the actual 

condition. Altering the initial abstraction throughout the season with changing CN may improve 

the results (Jacobs and Srinivasan, 2005). 

Baseflow was separated using the automated recursive digital filter program (or baseflow 

filter program) (Nathan and McMahon, 1990; Arnold et al., 1995) in this study. Stewart (2015) 

asserted that extra caution should be used when streamflow is far below low flow and during 

high flows. During a low-flow period, streamflow is dominated by baseflow, but during a high-

flow period, streamflow is composed of comparable amounts of quick- flow and baseflow. 

Stewart (2015) stated that various mechanisms must be used in baseflow during those periods. 

Baseflow values calculated during low- and high-flow periods in this study may not sufficiently 

address these runoff conditions.  

Results also showed that higher uncertainties were present during low-flow conditions as 

compared to regular flow measurements due to the difficulty of measuring low-flow discharge as 

a result of surface-groundwater exchange and the presence of ice and vegetation (Hamilton, 

2008; Shrestha et al., 2013; Sinnathamby, 2014). There may be also a potential source of error in 

the rainfall data input. MODIS NDVI also contains uncertainties: Light reflectance from the soil 

surface can influence NDVI values. The effect of soil is expected to be higher in grasslands, 

which tend to have higher cover of bare ground and exposed rock, especially during drought or 

low-flow periods (Huete and Jackson, 1988). The good performance demonstrated throughout 

the entire study period could be explained by the increase in the number of events compared to 

the individual flow period analysis. 
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5.4.1.2 Runoff Estimation for Agricultural Dominated Watershed 

Results similar to the grassland dominated area were observed in the Upper Delaware, 

which is an agriculture dominated watershed (Figure 5-10–5-13 and Table 5-5). Both r
2
 and 

statistics considered in this study (NSE, r, and PBIAS) were better for CNNDVI runoff predictions 

compared to literature-based CN runoff predictions. Overall, CNNDVI model performance was 

relatively better for the grassland dominated watershed than the agricultural dominated 

watershed (Table 5-4 and 5-5, NSE, and r). However, PBIAS (%) for the Upper Delaware was 

better than Chapman Creek for most of the condition due to the NDVI uncertainty for grassland 

(Heute and Jackson, 1988). Moderate flow period performed very well also performed very well 

for grassland. CNNDVI moderate flow demonstrated an increase of observed flow by 0.78 for the 

predicted flow increase by 1 mm, and the intercept showed less error in the model (i.e., 0.84 

mm). For the overall years of study, for every 0.62 increase in observed flow, the predicted flow 

increased by 1. The moderate year was the best performing relatively.  

Based on all results, the CNNDVI model overpredicted runoff for grassland and agriculture 

land areas during low-flow periods. However, the CNNDVI model performed better than the SCS-

CN-based predictions, even at low flows. Similar reasons explained for Chapman Creek low 

flow period could explain the overpredicted runoff in Upper Delaware runoff during runoff.  The 

improved results for the combined study period were due to the dramatic increase in the number 

of events, as with Chapman Creek. 
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Figure 5-10: Comparison of observed runoff vs. literature CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Upper Delaware watershed outlet during 

overall study years (2003, 2007, and 2010) 

 

 
Figure 5-11: Comparison of observed runoff vs. literature CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Upper Delaware watershed outlet during 

low flow year (2003) 
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Figure 5-12: Comparison of observed runoff vs. literature CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Upper Delaware watershed outlet during 

moderate flow year (2007) 

 

 
Figure 5-13: Comparison of observed runoff vs. literature CN runoff (left) and observed 

runoff vs. CNNDVI predicted runoff (right) at Upper Delaware watershed outlet during 

high flow year (2010) 
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Table 5-5: Model performance statistics of Upper Delaware watershed 

Statistics 

Study Period 

Yr 2003 Yr 2007 Yr 2010 

Observed 

runoff vs. 

std. CN 

runoff 

 

 

Observed 

runoff vs. 

CNNDVI 

runoff 

Observed 

runoff vs. 

std. CN 

runoff 

 

 

Observed 

runoff vs. 

CNNDVI 

runoff 

Observed 

runoff vs. 

std. CN 

runoff 

 

 

Observed 

runoff vs. 

CNNDVI 

runoff 

Observed 

runoff vs. 

std. CN 

runoff 

 

 

Observed 

runoff vs. 

CNNDVI 

runoff 

NSE -2.36 0.20 

 

-327.80 -50.44 

 

-1.40 0.56 

 

-1.51 -0.06 

Correlation 

Coefficient, 

r 0.41 0.57 

 

 

 

0.01 0.07 

 

 

 

0.66 0.77 

 

 

 

0.19 0.38 

PBIAS (%) -74.69 4.22 

 

-241.71 -271.71 

 

-72.48 8.76 

 

-12.45 32.08 

5.4.2 Estimation of Seasonal Variability  

In general, the CNNDVI model underpredicted runoff for spring, summer, and autumn and 

overpredicted runoff for winter in grassland. Literature CN-based runoff was higher all the times. 

The seasonal change in runoff was captured more in CNNDVI than the standard CN-based runoff. 

For Chapman Creek, the grassland dominated watershed, the model flow was significantly 

different than the observed flow during the winter period. In all other seasons, however, modeled 

runoff values were closely matched to observed values (Figure 5-14).  
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Figure 5-14: Comparison of CNNDVI predicted, observed, and literature CN-based runoff 

variability for a) spring, b) summer, c) autumn, and d) winter for grassland dominant 

(Chapman Creek) watershed 

In the Upper Delaware watershed, cropping seasons were identified as August to October 

for hay, April to October for corn, and May to October for soybean according to K-State 

Extension documents. Therefore, any type of crop was present in the Upper Delaware watershed 

from April to October, including spring, summer, and part of autumn. NDVI-captured variation 

in CN values on a seasonal basis may result observed overall model performance on runoff 

prediction (Price, 1998; Van Mullem et al., 2002). Figure 5-15 shows seasonal flow of observed, 

CNNDVI, and standard CN boxplots.  
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Figure 5-15: CNNDVI predicted, observed, and literature CN-based runoff variability for 

a) spring, b) summer, c) autumn, and d) winter for agricultural land dominant (Upper 

Delaware) watershed 

Figure 5-16 shows spatiotemporal maps of three selected NDVI periods in 2007 for 

Chapman and Upper Delaware watersheds. The maps show that the CNNDVI increased from 

March to September. However, the lowest CNNDVI (higher NDVI) values were observed at 

different periods. The lowest CNNDVI for Chapman was observed during the end of May and the 

beginning of June; for the Upper Delaware watershed, the lowest CNNDVI was in September, 

potentially due to the fact that Upper Delaware is agriculture dominated and the beginning of 

September is the peak greenness period of the area. The increased variability observed March 
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22–April 6 at both watersheds CNNDVI could be explained by the spatial variability of slope and 

land use/cover. Significant higher CNNDVI values were observed along riparian vegetation from 

August 29 to September 13 in Chapman Creek due to increased soil moisture.   

 

Figure 5-16: CN based on 16-day NDVI periods in 2007: Chapman (upper) and Upper 

Delaware (lower) 

VI quality analysis of these six periods (or images) revealed that NDVI used in this 

analysis were in good condition (pixel reliability = 0) and no clouds contamination was present. 

VI quality analysis utilized pixel reliability ranking imagery for the maps in Figure 5-16. 

Therefore, March 22, 2007, Chapman Creek watershed variability of upper and lower parts of 

the watershed was due to land use changes. The upper part of the watershed is grassland, and the 

lower part is cropland.  
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Figure 5-17: Pixel reliability ranking of MODIS VIs (MOD13Q1) at Chapman Creek 

watershed (upper) and Upper Delaware watershed (lower) 

5.5  Conclusion 

Although the SCS-CN method is widely applied, modification is required. The CNNDVI 

model developed in Chapter 3 was applied to study the performance of CNNDVI in larger and 

more diverse land use/cover watersheds. Results showed that the CNNDVI model predicted 

moderate-flow runoff well than the low flow and high flow runoffs at larger scales for grassland 

and agricultural watersheds. Inability to accurately predict low-flow period runoff may relate to 

initial abstraction, baseflow extraction, or uncertainties in runoff, rainfall measurements, and 

NDVI. However, the CNNDVI model more accurately predicted runoff than the standard SCS-CN 

model. The spatiotemporal pattern observed in CNNDVI revealed that CNNDVI captured 
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spatiotemporal variability of the rainfall-runoff relationship, thereby improving runoff modeling 

at larger scale. Use of Daymet and CNNDVI, as shown in this study, could provide opportunity for 

new applications of a modified CN model with improved runoff estimation results. This method 

could be used to estimate runoff in a real-time fashion if an online model is developed based on 

this analysis. The method could also be automated and results could be used in water resource 

planning and management. Longer study years may improve the analysis.  
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Chapter 6 - Summary and Conclusion  

Land surface and its transformation plays a fundamental role in modulating the 

atmospheric, geomorphic, hydrologic, and ecological processes on or near the earth’s surface so 

that understanding of the land surface could provide valuable information on natural process 

functions (Wilson, 2012). Quantifying hydrological processes and accounting for their 

spatiotemporal variability due to changes in climate, occurrences of variable extreme events and 

landscape disturbances on hydrological processes are challenging tasks that require tremendous 

parameterizations of different processes and input. Understanding and predicting the rainfall-

runoff relationship is crucial for water resources planning and management; and to understand 

processes of erosion, sediment transport, and contaminant loading. However, the rainfall-runoff 

process is a complex, dynamic and nonlinear process (Fan et al., 2015; Song et al., 2011) to 

quantify in any universal way. How much runoff generated from a certain rainfall event is 

dependent on the hydrologic condition of an area in addition to the amount, intensity and 

duration of the rainfall. Reliable predictions of amount and rate of runoff from land surface is 

becoming a difficult and time consuming process as its complexity increases.  

The overall goal of the study was to develop a mechanism to improve surface water 

hydrologic modeling through incorporating spatiotemporal variability of rainfall-runoff 

relationship; and devise statistical method for hydrologically homogenized selection of paired 

watersheds. The first study tried to overcome the inadequate representation of spatiotemporal 

variability of the rainfall-runoff because of static nature curve number.  

The SCS-CN method is a popular method to estimate runoff events; is determined based 

on land use/cover, hydrologic soil groups, agricultural treatments, and hydrologic conditions of 

the area. Even though the SCS-CN method is widely applied and incorporated in numerous 
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hydrologic models (Kousari et al., 2010; Hawkins et al., 2008; Woodward et al., 2002); the SCS-

CN method  does not adequately reflect the detailed spatiotemporal variability of the rainfall-

runoff relationship because of limited spatial and temporal data availability. The study used 

Moderate Resolution Imaging Spectroradiometer – Normalized Difference Vegetation Index 

(MODIS-NDVI) and back-calculated CN using regression analysis to develop CNNDVI. This 

study have used NDVI to develop CNNDVI to better estimate or predict  the runoff from rainfall 

events and address the spatiotemporal variability of rainfall-runoff relationship based on a 12 

years observed precipitation and runoff. The pixel reliability ranking and VI quality pixel bit 

numbers were used to monitor quality of all NDVI used.  In addition, the developed CNNDVI have 

applied a similar land cover smaller watershed, but very different management and disturbance 

processes and in larger watersheds with different land use/cover. Result showed that derived 

models behave satisfactorily during calibration and validation period irrespective of the fact that 

the rainfall event-runoff relationship is so complex. It was also noticed that the calibrated model 

has improved the prediction of runoff compared to the existing standard CN/static method.  

The developed CNNDVI has predicted statistically better runoff from rainfall events 

compared to the standard CN based runoff. The coefficient of correlation (r) which measures the 

strength of the linear relationship between the observed flow and estimated flow supported the 

analysis. The analysis showed the r value of 0.40 for the standard CN based flow; 0.48 of 

regression model flow; and 0.85 for calibrated model flow in a relationship with the observed 

(measured) flow, respectively. The CNNDVI showed a vivid change during the beginning of the 

growing season (late March to April) with the lowest CNNDVI around June 10. The CNNDVI 

standard deviation was greatest during the spring (April 23), which was expected based on the 

varying spring weather and changes of the landscape  frost; and wider during the growing season 
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in general where vegetation health varies based on various weather conditions (e.g. available soil 

moisture). The variability of CNNDVI in the growing season could give a chance to calculate 

relatively accurate runoff from rainfall events since most rainfall occurs from during the season. 

The study has also provided insights on the suitability of developed CNNDVI to estimate 

runoff in relatively disturbed grassland with similar size watersheds, and with larger and diverse 

watersheds of grassland and agriculture dominated areas. The results show that, CNNDVI model 

was able to estimate runoff for different land use watersheds especially in moderate runoff 

condition especially at larger scale. However, CNNDVI model was not able to predict extremely 

low and higher flow period runoffs accurately.  Inability to accurately predict low flow period 

runoff might relate to initial abstraction or baseflow extraction or uncertainties in runoff, rainfall 

measurements and NDVI.  CNNDVI model also was able to capture seasonal variability in runoff 

of both watersheds. These results suggest that the CNNDVI and Daymet data could be useful in 

capturing the spatiotemporal variability of runoff.  

In general, the model is able to produce better CNNDVI than the popularly used SCS-CN 

values to predict runoff for a rainfall event. The method used in this study can be adjusted (based 

on the local data) and used in any watersheds and climatic conditions to develop CNNDVI method. 

Improved rainfall and runoff measurement techniques for various soil and climatic conditions 

and issues related to the improvement of satellite data (especially higher resolution NDVI to 

capture the land use/cover variability on the ground) could improve regression model 

development.  

Predicting CN using any variable is more complicated than implied by a linear 

regression, however in this study; NDVI was indicated to be a better predictor than the existing 

standard CN method. Modeling CN based runoff using satellite data can be improved as the 
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resolution of the satellite data is higher. In addition, the advancement of remote sensing might 

provide other hydrologic variables to incorporate in the model such as soil moisture and 

evapotranspiration. Improved CNNDVI method could be automated with online website to 

estimate runoff from rainfall events for better water resources planning and management.   

In addition to development of CNNDVI, the study conducted a paired watershed selection 

that could be used to study land use/cover change impacts in hydrology. Eight hydrologically 

important topographic variables including one soil variable (total stream length, drainage 

density, ruggedness, total mean slope, no flat area slope, percent flat area, curvature, and percent 

clay in the upper layer) and combined K-means and hierarchical-agglomerative clustering 

techniques used in this study give a promising method of paired watershed selection as long as 

appropriate caution is done in selecting major variables affecting the hydrologic processes on the 

study watersheds.  

6.1  Recommendations 

 Improved rainfall and runoff measurement techniques, especially during low rainfall periods, 

and improved satellite data (such as higher resolution NDVI to capture land use/cover 

variability on the ground) could improve regression model development. Low-flow 

measurements have higher uncertainty than regular flow due to higher variability because of 

ground-surfacewater (or base flow) interactions and the presence of ice and vegetation. 

 Inclusions of various distinct land uses and long set of precipitation and runoff data from a 

variety of climatic conditions would improve model performance.  

 This analysis contained limitations due to the complex nature of the rainfall-runoff 

relationship. The model attempted to incorporate the effects of various factors into one 

parameter, NDVI, but possible errors in precipitation and runoff estimations could have been 
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present on low values since the data was in the low range. Those uncertainties may be 

associated with measurement technique precision and environmental conditions, such as 

wind effects. In addition, the coarse spatial scale of NDVI could add errors and uncertainty. 

 Using different initial abstractions for various seasons when developing CNNDVI could 

improve runoff prediction. Testing runoff estimation with different initial abstractions in 

different maneuver intensities may also be valuable.  

 This study intended to use only readily available MODIS NDVI to predict CN, but the 

advancement of remote sensing may provide other hydrologic variables to incorporate into 

the model, such as soil moisture and ET. 

 Stream flow characteristics, if available, could be a better parameter in the paired watershed 

selection process. 

 

 

 

 

 

  



182 

References 

Fan, F. M., Collischonn, W., Jiménez, K. Q., Sorribas, M., Buarque, D., and Siqueira, V. (2015). 

Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real-time 

satellite rainfall estimates. Journal of Flood Risk Management. DOI: 10.1111/jfr3.12177 

Hawkins, R. H., Ward, T. J., Woodward, D. E., and Van Mullem, J. A. (2008). Curve number 

hydrology: State of the art. ASCE Publication.  

Kousari, M. R., Malekinezhad, H., Ahani, H., and Zarch, M. A. A. (2010). Sensitivity analysis 

and impact quantification of the main factors affecting peak discharge in the SCS curve 

number method: An analysis of Iranian watersheds. Quaternary International 226(1): 

66–74.  

Song, X., Kong, F., Zhan, C., and Han, J. (2011). Hybrid optimization rainfall-runoff simulation 

based on xinanjiang model and artificial neural network. Journal of Hydrologic 

Engineering 17(9): 1033–1041.  

Wilson, J. P. (2012). Digital terrain modeling. Geomorphology 137(1): 107–121.  

Woodward, D. E., R. H. Hawkins, A. T. Hjelmfelt, J. A. VanMullem, and Q. D. Quan (2002). 

Curve number method: Origins, applications, and limitations. U.S. Geological Survey 

Advisory Committee on Water Information - Second Federal Interagency Hydrologic 

Modeling Conference. July 28–August 1, (2002), Las Vegas, Nevada. 

 

  



183 

Appendix A- Chapter 3 Additional Information 

Figure A-1: Fit diagnostics for NDVI back-calculated CN  

Number of Observations Read 173 

Number of Observations Used 173 

 

Root MSE 11.62292 R-Square 0.1445 

 

Dependent Mean 

77.86529 Adj R-Sq 0.1395 

Coeff Var 14.92695   
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Figure A-2: Residuals 

  

Figure A-3: NDVI versus observed CN  
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Figure A-4: Regression residuals 

  

 

 

Table A-1:  Pixel realization rank values and their interpretation in Konza Prairie watersheds 

(Adopted from NASA LP DAAC, 2013) 

Pixel 

Reliability 

Rank Summary QA Description 

-1 Fill/No data Not processed 

0 Good data Use with confidence 

1 Marginal data Useful but look at other QA information 

2 Snow/Ice Target covered with snow/ice   

3 Cloudy Target not visible, covered with cloud 

4 Estimated 

Based on MODIS historic time-series. All products 

are gap-filled, indicating whether or not the value 

was interpolated from long-term averages. 
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Table A-2: VI quality Bit-No, parameter, Bit-word and their interpretation in Konza 

Prairie watersheds (Adopted from NASA LP DAAC, 2013) 

Bit-No Parameter Bit-Word Interpretation 

0-1 

VI Quality 

00 VI produced with good quality 

01 VI produced but check other QA 

 
10 

Pixel produced but most probably 

cloudy 

 
11 

Pixel not produced due to reasons 

other than clouds 

2-5 VI usefulness 

0000  Highest quality 

0001 Low quality 

0010,0001,0010,0100, 

1000,1001, 1010 Decreasing quality 

1100 Lowest quality 

1101 Quality so low that it is not useful 

1110 L1B data faulty 

1111 Not useful for any other reason 

6-7 Aerosol quantity 
01 Low 

10 Intermediate 

8 
Adjacent cloud 

detected 
0 

No 

9 
Atmospheric BRDF 

Correction 
0 

No 

10 Mixed clouds 0 No 

11-13 Land-water mask 001 Land (nothing else but land) 

14 Possible snow/ice 0 No 

15 possible shadow 0 No 

 

Table A-3: MODIS NDVI quality analysis based on pixel reliability and VI bit quality 

  

NDVI Period 

Pixel Reliability VI bit Quality 

0  

Good 

Data               

(% 

Area) 

1  

Marginal 

Data                 

(% 

Area) 

2116*         

(% Area) 

2120**       

(% 

Area) 

2185***    

(% 

Area) 

2189****     

(% 

Area) 

1 MOD13Q1_20010306_20010321 100 0 100 0 0 0 

2 MOD13Q1_20010322_20010406 100 0 100 0 0 0 

3 MOD13Q1_20010407_20010422 100 0 100 0 0 0 

4 MOD13Q1_20010423_20010509 99 1 99 0 1 0 
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5 MOD13Q1_20010509_20010524 100 0 100 0 0 0 

6 MOD13Q1_20010525_20010609 100 0 100 0 0 0 

7 MOD13Q1_20010610_20010625 100 0 0 0 100 0 

8 MOD13Q1_20010626_20010711 100 0 100 0 0 0 

9 MOD13Q1_20010712_20010727 100 0 100 0 0 0 

10 MOD13Q1_20010728_20010812 100 0 100 0 0 0 

11 MOD13Q1_20020423_20020509 100 0 100 0 0 0 

12 MOD13Q1_20020509_20020524 100 0 100 0 0 0 

13 MOD13Q1_20020525_20020609 100 0 100 0 0 0 

14 MOD13Q1_20020610_20020625 100 0 0 0 100 0 

15 MOD13Q1_20030407_20030422 100 0 90 10 0 0 

16 MOD13Q1_20030423_20030509 0 100 0 100 0 0 

17 MOD13Q1_20030509_20030524 100 0 100 0 0 0 

18 MOD13Q1_20030525_20030609 100 0 100 0 0 0 

19 MOD13Q1_20030610_20030625 96 4 96 4 0 0 

20 MOD13Q1_20030626_20030711 100 0 100 0 0 0 

21 MOD13Q1_20030712_20030727 100 0 100 0 0 0 

22 MOD13Q1_20030728_20030812 100 0 100 0 0 0 

23 MOD13Q1_20040407_20040422 100 0 100 0 0 0 

24 MOD13Q1_20040423_20040509 100 0 100 0 0 0 

25 MOD13Q1_20040509_20040524 20 80 20 80 0 0 

26 MOD13Q1_20040525_20040609 100 0 100 0 0 0 

27 MOD13Q1_20040610_20040625 100 0 100 0 0 0 

28 MOD13Q1_20040626_20040711 100 0 100 0 0 0 

29 MOD13Q1_20040712_20040727 100 0 100 0 0 0 

30 MOD13Q1_20040728_20040812 100 0 100 0 0 0 

31 MOD13Q1_20040813_20040828 100 0 100 0 0 0 

32 MOD13Q1_20040829_20040913 100 0 97 3 0 0 

33 MOD13Q1_20050322_20050406 100 0 100 0 0 0 

34 MOD13Q1_20050407_20050422 100 0 100 0 0 0 

35 MOD13Q1_20050423_20050509 100 0 100 0 0 0 

36 MOD13Q1_20050509_20050524 100 0 98 2 0 0 

37 MOD13Q1_20050525_20050609 100 0 100 0 0 0 

38 MOD13Q1_20050610_20050625 100 0 100 0 0 0 

39 MOD13Q1_20050626_20050711 100 0 100 0 0 0 

40 MOD13Q1_20050712_20050727 100 0 100 0 0 0 

41 MOD13Q1_20050728_20050812 100 0 100 0 0 0 

42 MOD13Q1_20050813_20050828 100 0 100 0 0 0 

43 MOD13Q1_20050829_20050913 100 0 100 0 0 0 

44 MOD13Q1_20050914_20050929 100 0 100 0 0 0 

45 MOD13Q1_20050930_20051015 100 0 99 1 0 0 
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46 MOD13Q1_20051016_20051031 100 0 99 1 0 0 

47 MOD13Q1_20060322_20060406 100 0 100 0 0 0 

48 MOD13Q1_20060407_20060422 100 0 100 0 0 0 

49 MOD13Q1_20060423_20060509 25 75 25 0 75 0 

50 MOD13Q1_20060509_20060524 100 0 90 10 0 0 

51 MOD13Q1_20060525_20060609 100 0 100 0 0 0 

52 MOD13Q1_20060610_20060625 100 0 100 0 0 0 

53 MOD13Q1_20060626_20060711 100 0 100 0 0 0 

54 MOD13Q1_20060712_20060727 100 0 100 0 0 0 

55 MOD13Q1_20060728_20060812 100 0 100 0 0 0 

56 MOD13Q1_20060813_20060828 100 0 100 0 0 0 

57 MOD13Q1_20060829_20060913 100 0 100 0 0 0 

58 MOD13Q1_20060914_20060929 100 0 100 0 0 0 

59 MOD13Q1_20060930_20061015 100 0 100 0 0 0 

60 MOD13Q1_20070407_20070422 100 0 100 0 0 0 

61 MOD13Q1_20070423_20070509 100 0 100 0 0 0 

62 MOD13Q1_20070509_20070524 100 0 100 0 0 0 

63 MOD13Q1_20070525_20070609 100 0 100 0 0 0 

64 MOD13Q1_20070610_20070625 0 100 100 0 0 0 

65 MOD13Q1_20070626_20070711 99 1 99 0 1 0 

66 MOD13Q1_20080407_20080422 100 0 100 0 0 0 

67 MOD13Q1_20080423_20080509 100 0 100 0 0 0 

68 MOD13Q1_20080509_20080524 100 0 100 0 0 0 

69 MOD13Q1_20080525_20080609 100 0 100 0 0 0 

70 MOD13Q1_20080610_20080625 100 0 100 0 0 0 

71 MOD13Q1_20080626_20080711 100 0 100 0 0 0 

72 MOD13Q1_20080712_20080727 100 0 100 0 0 0 

73 MOD13Q1_20080728_20080812 100 0 100 0 0 0 

74 MOD13Q1_20080813_20080828 100 0 85 15 0 0 

75 MOD13Q1_20080829_20080913 0 100 0 100 0 0 

76 MOD13Q1_20080914_20080929 100 0 100 0 0 0 

77 MOD13Q1_20090322_20090406 100 0 0 100 0 0 

78 MOD13Q1_20090407_20090422 100 0 100 0 0 0 

79 MOD13Q1_20090423_20090509 100 0 100 0 0 0 

80 MOD13Q1_20090509_20090524 100 0 100 0 0 0 

81 MOD13Q1_20090525_20090609 100 0 100 0 0 0 

82 MOD13Q1_20090610_20090625 100 0 100 0 0 0 

83 MOD13Q1_20090626_20090711 100 0 100 0 0 0 

84 MOD13Q1_20090712_20090727 100 0 100 0 0 0 

85 MOD13Q1_20090728_20090812 100 0 100 0 0 0 

86 MOD13Q1_20090813_20090828 100 0 100 0 0 0 
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87 MOD13Q1_20090829_20090913 100 0 100 0 0 0 

88 MOD13Q1_20090914_20090929 100 0 100 0 0 0 

89 MOD13Q1_20090930_20091015 100 0 100 0 0 0 

90 MOD13Q1_20091016_20091031 100 0 100 0 0 0 

91 MOD13Q1_20091101_20091116 100 0 100 0 0 0 

92 MOD13Q1_20100322_20100406 100 0 100 0 0 0 

93 MOD13Q1_20100407_20100422 100 0 100 0 0 0 

94 MOD13Q1_20100423_20100509 100 0 100 0 0 0 

95 MOD13Q1_20100509_20100524 75 25 80 0 20 0 

96 MOD13Q1_20100525_20100609 100 0 100 0 0 0 

97 MOD13Q1_20100610_20100625 100 0 100 0 0 0 

98 MOD13Q1_20100626_20100711 100 0 100 0 0 0 

99 MOD13Q1_20100712_20100727 100 0 99 1 0 0 

100 MOD13Q1_20100728_20100812 100 0 100 0 0 0 

101 MOD13Q1_20110306_20110321 100 0 100 0 0 0 

102 MOD13Q1_20110322_20110406 100 0 100 0 0 0 

103 MOD13Q1_20110407_20110422 100 0 100 0 0 0 

104 MOD13Q1_20110423_20110509 100 0 100 0 0 0 

105 MOD13Q1_20110509_20110524 100 0 100 0 0 0 

106 MOD13Q1_20110525_20110609 100 0 100 0 0 0 

107 MOD13Q1_20110610_20110625 100 0 100 0 0 0 

108 MOD13Q1_20110626_20110711 100 0 100 0 0 0 

109 MOD13Q1_20110712_20110727 100 0 100 0 0 0 

110 MOD13Q1_20110728_20110812 100 0 100 0 0 0 

111 MOD13Q1_20110813_20110828 100 0 100 0 0 0 

112 MOD13Q1_20110829_20110913 100 0 100 0 0 0 

113 MOD13Q1_20111219_20111231 100 0 0 100 0 0 

114 MOD13Q1_20120101_20120116 100 0 3 97 0 0 

115 MOD13Q1_20120117_20120201 100 0 100 0 0 0 

116 MOD13Q1_20120202_20120217 100 0 100 0 0 0 

117 MOD13Q1_20120218_20120305 100 0 99 1 0 0 

118 MOD13Q1_20120306_20120321 100 0 100 0 0 0 

119 MOD13Q1_20120322_20120406 100 0 100 0 0 0 

120 MOD13Q1_20120407_20120422 100 0 75 25 0 0 

121 MOD13Q1_20120423_20120509 100 0 100 0 0 0 

122 MOD13Q1_20120509_20120524 100 0 100 0 0 0 

123 MOD13Q1_20120525_20120609 100 0 99 1 0 0 

124 MOD13Q1_20120610_20120625 100 0 100 0 0 0 
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*2116 = 0|0|001|0|0|0|01|0001|00 VI produced with good quality, low quality VI usefulness, low 

aerosol quantity, no adjacent cloud detected, no atmospheric BRDF correction, no mixed clouds, 

only land, no possible snow/ice, and possible shadow 

 

**2120 = 0|0|001|0|0|0|01|0010|00 VI produced with good quality, decreasing quality VI 

usefulness, low aerosol quantity, no adjacent cloud detected, no atmospheric BRDF correction, 

no mixed clouds, only land, no possible snow/ice, and possible shadow  

 

***2185 = 0|0|001|0|0|0|10|0010|01 VI produced but check other QA, decreasing quality VI 

usefulness, intermediate aerosol quantity, no adjacent cloud detected, no atmospheric BRDF 

correction, no mixed clouds, only land, no possible snow/ice, and possible shadow 

 

****2189 = 0|0|001|0|0|0|10|0011|01 VI produced but check other QA, no grouping found for VI 

usefulness, intermediate aerosol quantity, no adjacent cloud detected,  no atmospheric BRDF 

correction, no mixed clouds, only land, no possible snow/ice, and possible shadow 
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Appendix B- Chapter 4 Additional Information  
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Cluster

Dendrogr

am ID

Watersh

ed ID Cluster

Dendrogr

am ID

Watersh

ed ID Cluster

Dendrogr

am ID

Watersh

ed ID

1 1 37 2 1 132 3 1 17

1 2 39 2 2 141 3 2 73

1 3 43 2 3 148 3 3 106

1 4 50 2 4 155 3 4 107

1 5 86 2 5 166 3 5 111

1 6 100 2 6 169 3 6 114

1 7 113 2 7 176 3 7 118

1 8 125 2 8 178 3 8 121

1 9 127 2 9 224 3 9 144

1 10 134 2 10 226 3 10 153

1 11 139 2 11 232 3 11 163

1 12 154 2 12 237 3 12 165

1 13 161 2 13 239 3 13 172

1 14 181 2 14 240 3 14 190

1 15 198 2 15 253 3 15 222

1 16 200 2 16 257 3 16 227

1 17 210 2 17 291 3 17 245

1 18 212 2 18 331 3 18 261

1 19 215 2 19 338 3 19 264

1 20 219 2 20 339 3 20 269

1 21 220 2 21 340 3 21 271

1 22 223 2 22 346 3 22 277

1 23 230 2 23 351 3 23 280

1 24 242 2 24 366 3 24 294

1 25 244 2 25 368 3 25 296

1 26 247 2 26 369 3 26 298

1 27 250 2 27 370 3 27 309

1 28 260 2 28 371 3 28 313

1 29 284 2 29 372 3 29 317

1 30 297 3 30 320

1 31 299 3 31 329

1 32 300 3 32 333

1 33 302 3 33 342

1 34 306 3 34 350

1 35 308 3 35 353

1 36 312 3 36 358

1 37 324

1 38 325

1 39 326

1 40 328

1 41 330

1 42 334

1 43 336

1 44 341

1 45 349

1 46 356

1 47 357

1 48 360

1 49 362

1 50 363

1 51 365
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Cluster

Dendrogr

am ID

Watersh

ed ID Cluster

Dendrogr

am ID

Watersh

ed ID Cluster

Dendrogr

am ID

Watersh

ed ID

4 1 7 5 1 1 6 1 2

4 2 11 5 2 4 6 2 3

4 3 24 5 3 5 6 3 6

4 4 29 5 4 8 6 4 9

4 5 34 5 5 13 6 5 10

4 6 36 5 6 14 6 6 15

4 7 48 5 7 20 6 7 18

4 8 61 5 8 22 6 8 21

4 9 62 5 9 27 6 9 23

4 10 70 5 10 28 6 10 25

4 11 75 5 11 30 6 11 35

4 12 76 5 12 31 6 12 40

4 13 85 5 13 47 6 13 41

4 14 99 5 14 52 6 14 44

4 15 102 5 15 54 6 15 45

4 16 116 5 16 55 6 16 46

4 17 119 5 17 58 6 17 49

4 18 123 5 18 59 6 18 53

4 19 128 5 19 63 6 19 57

4 20 137 5 20 68 6 20 60

4 21 152 5 21 69 6 21 64

4 22 156 5 22 71 6 22 66

4 23 158 5 23 74 6 23 67

4 24 167 5 24 81 6 24 72

4 25 171 5 25 84 6 25 78

4 26 175 5 26 88 6 26 79

4 27 186 5 27 89 6 27 80

4 28 187 5 28 94 6 28 82

4 29 188 5 29 98 6 29 91

4 30 193 5 30 103 6 30 93

4 31 196 5 31 115 6 31 95

4 32 199 5 32 117 6 32 97

4 33 206 5 33 120 6 33 105

4 34 207 5 34 122 6 34 108

4 35 211 5 35 126 6 35 109

4 36 214 5 36 129 6 36 110

4 37 225 5 37 133 6 37 112

4 38 235 5 38 135 6 38 124

4 39 241 5 39 138 6 39 130

4 40 246 5 40 140 6 40 131

4 41 256 5 41 143 6 41 142

4 42 265 5 42 145 6 42 147

4 43 267 5 43 150 6 43 149

4 44 273 5 44 151 6 44 157

4 45 275 5 45 159 6 45 160

4 46 276 5 46 164 6 46 162

4 47 278 5 47 168 6 47 177

4 48 283 5 48 170 6 48 179

4 49 286 5 49 173 6 49 183

4 50 288 5 50 180 6 50 185

4 51 290 5 51 182 6 51 189

4 52 293 5 52 184 6 52 191

4 53 303 5 53 192 6 53 195

4 54 305 5 54 194 6 54 202

4 55 310 5 55 197 6 55 205

4 56 322 5 56 204 6 56 208

4 57 323 5 57 236 6 57 216

4 58 327 5 58 249 6 58 228

4 59 335 5 59 251 6 59 229

4 60 337 5 60 252 6 60 231

4 61 344 5 61 254 6 61 233

4 62 345 5 62 258 6 62 248

4 63 354 5 63 259 6 63 262

4 64 355 5 64 263 6 64 266

4 65 361 5 65 272 6 65 279

5 66 274 6 66 285

5 67 281 6 67 295

6 68 301


