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0. INTRODUCTIOHN

The general programming problem consists of determining values of n
variables Xps ooy X which optimize the function, § = f(xl, 59 4 § xn),
and satisfy m constraints given by gj(xl, ceey xn) {<, =, >} bj,
j=1, ..., m. A particular case of the programming problem is a linear
programming problem which seeks to determine non-negative values of n
variables, xi_i 0, i=1, ..., n, which optimize the linear function,

5

z Ci¥X:s and satisfy the m linear constraints, X ajixi {<, =, >} bj,
i i

j=1, ..., m. All programming problems that are not linear are called
nonlinear programming problem. Although the class of nonlinear pro-
gramming problems which has been studied most extensively is that where
the constraints are linear and the objective function is nonlinear, the
other classes of nonlinear programming problems are that the constraints
are nonlinear and the objective function is linear, and that both the
constraints and the objective function are nonlinear.

A number of algorithms have been proposed for the solution of the
general nonlinear programming problem. However, only a few have been
demonstrated to be effective when applied to large-scale nonlinear pro-
gramming problems, and none of the algorithms has proved to be superior
that it can be classified as a universal algorithm for general nonlinear
programming problems (Himmelblau, 1972). No general method exists to
solve nonlinear programming problems in the sense that the simplex al-
gorithm exists to solve linear programming problems. We may recall that

linear programming problems have the following properties (Hadley, 1964).



(1) The set of feasible solutions which satisfies the constraints and
the non-negativity restrictions is a convex set. This convex set has

a finite number of corners which are referred to as extreme points.

(2) . The set of all n variables (xl, e 4 xn), which yield a specific
value of the objective function is a hyper-plane, and the hyperplanes
corresponding to different values of the objective function are
parallel (3) A local maximum or minimum is also the global maximum

or minimum of the objective function over the set of feasible selutions.
(4) If the optimal value of the objective function is bounded, the
optimal solution will be one of the extreme points of the convex set of
the feasible solution. Furthermore, if we start the search of the optimal
solution at any extreme point of the convex set of feasible solutions,
we will reach the optimal extreme point in a series of steps such that
at each step we moves only to an adjacent extreme point. No efficient
superior algorithm for nonlinear programming problems exists because
contrary to linear programming problems for any given nonlinear pro-
gramming problems, some or all of these features which characterize
linear programming problems may be violated.

When the general nonlinear programming problem has that (1) no
inequalities appear in the constraints, (2) there are no non-negativity
or discreteness restrictions on the variables, (3) the number of equality
constraints, m, is less than the number of wvariables, n, that is, m < n,
and (4) the objective function, f(x), and the functions in the equality
constraints, gj(x), j=1, ..., m are continuous and possess partial

derivatives at least through second order, the problem can be solved by



the method of Lagrange multiplier. This classical method is of use mainly
in. theoretical analyses, and is not, in general, well suited for nu-
merical calculation. The method of Lagrange multipliers can be generalized
to.handle problems involving inequality constraints and non-negative
variables. The necessary conditions for optimizing these problems are

the Kuhn-Tucker conditions. Although the theory related to the method

of the Lagrange multipliers and the Kuhn-Tucker conditions is not directly
concerned with computational techniques, it has been of fundamental im-
portance in developing a numerical procedures for solving nonlinear pro-
gramming problems, for example, quadratic programming problem.

The method of Lagrange multipliers and the Kuhn-Tucker conditions
have been studied extensively by many investigators. In 1951, Kuhn and
Tucker published an important paper "Nonlinear programming' dealing with
necessary and sufficient conditions for optimal solutions to programming
problems, which laid the foundations for a great deal of later work in
nonlinear programming. These conditions are known as the Kuhn-Tucker
conditions in their honour. They introduced the concept of constrained
qualification and rejects certain stationary points as possible optima.
Generalization of their theoretical work by other authors appeared later
in different books [Arrow, Hurwicz, and Uzawa (1958), Mangasarian (1969)]
and papers. Samuelson (1955) described the necessary and sufficient con-
ditions for local optimum of a nonlinear objective function subject to
nonlinear equality constraints. He derived these conditions from Taylor's
series expansion for single and multi equality constraints. Tucker (1957)

presented the use of Lagrange multiplier technique for minimizing a conve:



objective function subject to linear constraints. He then considered the
special case of quadratic programming problems and showed that it is
possible to solve them by linear computations. Again Wolfe (1959) intro-
duced, based on the Kuhn-Tucker conditions, the modified simplex method
for quadratic programming problems which is widely used and ié simple to
apply. Some other authors also derived thelnecessary and sufficient con-
ditions for different cases of nonlinear programming problem from the
Kuhn-Tucker conditions: the necessary and sufficient conditions for
maximizing an objective function subject to inequality constraints less
than zero was given by Dorfman (1958); those for the minimization of an
objective function subject to equality and inequality constraints and
non-negative of variables by Vajda (1961) and Wilde (1962): those for
optimizing a function subject to inequality constriants by Dorn (1963).

Teichroew (1964) summarized all these cases in the table form in
his book. Some other authors such as Beveridge and Schechter (1970),
Macmillan (1970) and Zangwill (1970) have also described the Lagrange
multiplier technique and the Kuhn-Tucker conditions in their books.
Beveridge and Schechter (1970) has given a good explaination of the
meaning of the sign of Lagrange multipliers which was origianlly covered
by Kuhn-Tucker (1951). Hadley (1964), in his book describes the duel
problem associated with optimizing an objective function subject to the
constraints and the definitions of saddle point.

This report is based upon and an extension of Dr. C. L. Hwang's
lecture notes of past two years. The purpose of this report is to give
a self-contained, brief and illustrative description of the classical

optimization procedures for solving nonlinear programming problems.



Firstly the Lagrangian multiplier technique is presented in Sections
1 through 4 for optimizing the nonlinear objective functions subject to
equality constraints. The necessary and sufficient conditions are de-
veloped from Taylor's series expansion and numerical examples are solved
to illustrate the technique. |

The Kuhn-Tucker necessary conditions for optimizing an objective
function subject to inequality constraints are presented in Sections 5
and 6, and are illustrated by a numerical example in Section 7. The
Wolfe's simplex method for optimal solution of quadratic programming
problems which is based on the Kuhn-Tucker conditions is presented
in Section 8.

The concept of convexity and concavity of functions, and of convex
set, which is basis for determining whether a local optimum is also a
global optimal, is presented in Section 9. Section 10 contains the
necessary and sufficient conditions for a global optimum.

Finally the dual problem and saddle point and the necessary and
sufficient conditions for saddle points are presented in Sections 11

and 12,



1. METHOD OF LAGRANGE MULTIPLIER

A general nonlinear programming problem is usually composed of finding

a set of x which minimize (or maximize)

S = f(xl, Xos wves xn) . (1-1)

subject to m equality constraints
gj(xl, x2, ceey X ) =0, j=1, «.., m (1-2)

The optimal solution of the problem can be obtained by the
method of Lagrange multiplier,
Let us consider a two-dimensional problem first. The necessary con-

ditions for a point (xl, x2) to be the extreme value of

8 = £(x;, x,) (1-3)
subject to the equality constraint

g(xl, xz) =0 (1-4)
are obtained by defining an unconstrained function (Lagrangian)

L(xys X5, A) = £(x;, %) - 2g(xy, x,) (1-3)

where X is the Lagrange multiplier.

Now by setting the partial derivatives of L(xl, X,, A) with respect

2!
to X X9 and X equal to zero, we obtain the necessary conditions of opti-
mality as follows

i:i-x%%:o (1-6)
1 1 '



alL of 3
e (1-7)
3x2 sz 3x2
aL
T ax - BlXp X)) = 0 (-5

By solving the above equations for xl, X and * we obtain the

2l
stationary point or extremum for the function f(xl, xz).

We may generalize the method of Lagrange multiplier by considering the
objective function given by equation (1-1) subject to m equality constraints

given by equation (1-2). The optimal solution can be obtained by setting the

partial derivatives of the Lagrangian function

mn
L{x, A) = f(xl, e xn) - jgl Aj gj(xl, vees xn) (1-9)
with respect to Xis eees Xy and Al, ""Am equal to zero.
m ag.
sl _ af _ ¢
Tl 2 "j _lax. = {i; i=1, ..., n (1-10)
i i j=1 i
al  _ _ ;.
'S'K'J:"gj(xls ""xn)_ol i=1l, ««.p,m (1-11)

The points obtained by solving the above equations will be the stationary

points.



2. GEOMETRIC INTERPRETATION OF THE METHOD OF LAGRANGE MULTIPLIER

Figure 1 shows a contour lines of a function f(xl, xz) and a con-
straint g(xl, xz) = 0,

The extreme value of f, which satisfies the constraint g(xl, x2) =0,
is the one at which a contour line of the function f(xl, x2) touches
g(xl, x2) = 0, At this point, say (54, 52), the tangents of the two
curves must have the same slope. Now the slope of the tangent is given
by the ratio of the two partial derivatives of a function. Therefore at

(54, 52), the slone of the tangent is given hy,

fxl #)
ECE, ie=t)
2 2
af af ag
where f = —, f = —, g = =—, and g = =,
xl axl x2 ax2 xl 3 1 x2 axz

Equation (2-1) can be written as

Hy

f)(
1

X
gx

jae]

(2-2)

o

1 %

and let this common ratio be denoted by a undetermined constant X, known

as Lagrange multiplier.



C \\ 1

common tangent

Fig. 1 Contour lines for a function f(xl,xz) subject to a constraint
g(xl,xz) =0
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Then we can write equation (2-2) as

fX fx
E_l - .g_l =2 (2-3)
Xl Xz

or
£, -2 =0 (2-4)
*1 *

and
fx, - Agxz =0 (2-5)

which are the same equations as equations (1-6) and (1-7). Solutions of
the above equations give the stationary points.

Figure 1 shows that the stationary point (point A) obtained is a
maximum point for the function given by equation (1-3) subject to the con-
straint, given by equation (1-4). This information is not supplied to us bv egua-
tions (2-4) and (2-5). Moreover the minimum point for the function f subject to
the constraint, g = 0, will be either point B or point C, which is also not pro-
vided by the method of Lagrange multiplier. Thus the equations (2-4) and
(2-5) give wus only the stationary point and hence are the necessary conditions
only. For knowing exactly whether this stationary point is a local maximum,
or local minimum or neither, we will have to check the sufficient conditions
discussed in the next section.

Note that it has been assumed that both f and g are differentiable in the

neighbourhood of (%] 52) and that fxz and gx2 are not zero at this point.
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3. NECESSARY AND SUFFICIENT CONDITIONS OF OPTIMALITY

A stationary point, obtained by the method of Lagrange multiplier, may
be either a local maximum point, a local minimum point or a saddle point,
The necessary and sufficient conditions for a stationary point to be a
maximum or minimum can also be developed by the expansion of Taylor's series

for the function f(xl, xz) as follows

f(x1 + Axl, X, + sz)

1

_ 1 52 3
= f(xl, x2) + df + ET'd f + g-d f+ ... (3-1)

The necessary condition of optimality is that at an extreme point

df is zero. Since Xy and X, must satisfv the relation

glx;, x;) = 0

the differential dg must be zero, that is,

38 3g_ . -
3] dx1 + e dx2 0 (3-2)
2
or
= - | 2B, 38 n
dx, [ ax. ax} dx, (3-3)
2 1
.~ 08
if = ¢# 0,
Bxl
Substituting the value of dx1 given by equation (3-3) into the dif-
ferential
_ of af -
df = o dx1 * 3 dx2 =0 (3-4)
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gives

_ 3f  8g , ag of } _
df = {(' 3%, ax, / axl) * ax,) dx, = 0 : (3=}

Since dx2 can not be zeroc, a necessary condition for df to be zero

in equation (3-5) is

(-.a_f. ﬂ/é&_ +2£..=0

Bxl ax2 axl 8x2
or
af 3 af 2
_/3._.=..__./_.g._ (3-6)
Bxl axl 3x2 ax2
Let this common ratio be denoted by 2,
of ag of ]
_/__._-_-_/_&..z,\ (3-7)
axl xl sz 3x2
we have
of og
e = (3-8)
axl axl
af 3g_ _
ax2 A ax2 =0 (3-9)

which are the same equations given by equations (1-6) and (1-7) for finding
the stationary noints.
The sufficient conditions for a stationary point to be a maximum, the
24 . : i
term d'f in Taylor's series must be negative. Assuming that x; and x, are

not independent, the second differential of the function, f, is



where

and

of
£ = -
2 %

therefore, we have

2
d°f = d(f, ) dx; + £ d(dx))

1 1

+ d(fxz) dxz + fx2 d(dxz)

_ 2
= (fxlx dxl + fx % dxz) dx1 + fx d™x

1 1%2 1 1!

2
+ (fxlxz dx1 + fx2x2 dxz) dx2 + fx2 d™x

2
f (dx,)" + 2f dx. dx, +
xlxl 1 xlxz 1772

Similarly from equation (3-2), we obtain

2

1.3

{3-10)

(3-11)

£3-12)

(3-13)

(3-14)

(3-15)
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2

2 2
d'g =g (dxlj + 2gx % dxldx2 Ll e (dxz) +

1% 1%2 2%2

g, a’x; + g, a*, = 0 | (3-16)

1 2

Now solving equation (3-16) for dzx substituting the value of dzx

1’ 1

so obtained in equation (3-15), and collecting the terms gives

3 £
2 X 2 Xy
d°f = [f - ——g ] (dx.)" + 2 [f -—g dx, dx, +
X1%q gxl xlxl 1 x1x2 gxl 1xz 1 2
fx fx
1 2 1 2
£ -——g )(dx) +[f -—g )dx (3-17)
[ XX gxl x2x2 2 Xy gxl Xy 2

In the above equation, the last term is zero hecause the factor in the
brackets is df (see equation (3-5)). Substituting the value of dx1 from

equation (3-3) and using A as defined previously, we have

fx fx
1 2
R o (3-18)
i 2
and
2 dxg
df=- — 2 {(3-19)
23
dx1

where
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Thus the function f(xl, x2) will have a maximum [or minimum) subject to
the constraint

gxy, x,) =0
if AS is positive (or negative).

If at a point both the first and second derivative vanish, then we
must examine higher order terms in order to develope sufficient conditions
for optimality. In other words if Ae is zero, then higher differentials
of the function f(xl,xz) should bhe examined to develope sufficient conditions.

The above development is only for two variables with one equalitv con-
straint. The develomment can be generalized to the case of multivariables
with more than one constraints, however, the algebra becomes tedious and the
results are not practical. The results are presented by Samuelson [1955] arnd

summarized in Teichroew [1964].
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4, NUMERICAL EXAMPLES
Example 1: Find a rectangle with maximum area among all the rectangles subject
to the constraint of having constant perimeter.

If X is the length of one side of rectangle and x, is the length of .

2

other side of rectangle, then the prohlems is to maximize the function

£(x;, X)) = XX, (4-1)
subject to
2x1 + 2x2 = ¢ (4-2)

where ¢ is a constant.
We will solve this example firstly by eliminating the constraint and

using classical calculus method and then by the method of Lagrange multiplier.

METHOD 1: CLASSICAL DIFFERENTIAL CALCULUS METHOD

In this method, variable x, will be eliminated by solving equation (4-2)

2

as follows

% o %—(c - 2x)) (4-3)

Substituting the value of x, in equation (4-1), we obtain,

2
X

_ 71 2
F(xl) = = c - x1

where % needs to be non-negative. Now, setting the first derivative

of f(xl) with respect to x. equal to zero, which is the necessary con-

1

dition for a stationary point, we have
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df C
— e - = 4-4
. "z % =0 (4-4)
1
o -
c
= — 4-5
X, =7 | ( ).
Putting the value of Xy in equation (4-3) yields
c
= = 4-6
X2°1 (A-63
c2
and therefore f = T which gives the optimum value of the function.

To check whether the stationary point is a maximum or not we
have to check the sign of the second derivative of the function with respect

to x If it is negative, it means that the stationary point is the maximum

1°
point and if it is positive, it means that the stationary point is the min-

imum point. Since

2
e P (4-7)

dxl

is negative, tihe stationary point i1s a maximum. Therefore the rectangle
which has the maximum area for a given perimeter will be the one which has

both sides equal or

METHOD 2 - LAGRANGIAN MULTIPLIER METHOD

The above example will now be solved by the method of Lagrangian

multiplier. Again, we have to maximize the function

f(xl, xz) = XX,



subject to the constraint
glxy, x2) =2x, +2x, -¢c=0
The Lagrangian function for the above problem will be

L(xl, X5 Ay = X%, - A(le + 2x2 -¢) (4-8)

Differentiating the Lagrangian function with respect to Xp0 %y and X gives

EE— = x2 - 2 0 (4-9)

Loy im0 | (4-10)

oL
a3 - = 4-11
N 2xl + 2x2 c 0 ( )

Solving equation (4-9) for Xy gives

X, = 2X (4-12)

Solving equation (4-10) for x, gives,

1

X, = 2A (4-13)

Substituting the values of x, and X, from equations (4-12) and (4-13) in

2

equation (4-11) gives

8x

n
(g}

or

A =1c¢/8

18



Substituting the value of X in equations (4-9) and (4-10) gives,

c/4

=
1

b c/4

2

which gives the same result as obtained earlier by the method-of classicai
calculus.

Again a stationary point, obtained by the method of Lagrange multiplier,
may be either a local maximum point, a local minimum or neither. To find
whether the point obtained above is a maximum or minimum, we will have to
check the sufficient conditions discussed in Section 3, where the value

t

of 53 is calculated as

X, X

2
B 2 = {g (£ - Ag
3 X . o, 4 b B o 1%2 1%2

] -2g ¢, [f - Ag ]
5 AN 1% % %2 i

- Ag ]}
1 Aaha %a%s

For the stationary point to be a maximum, the value of as should be

positive. Now the various variables in the above equation for this examnle

are

£ =%y, f =0, g. = 2, g =0,
xl 2 xlxl xl xlxl
f =X, f =0, g =2; g =0!
xz 1 x2x2 xz xzx2
fx x, = L Ex.x, ~ g
172 172
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By substituting the above values in the equation for 4., we have

3!

AS = 8

which is positive and so the stationary point is a maximum point when
5 = c/4.

Thus, we see that the results obtained by the method of Lagrange
multiplier are just the same as that obtained by the method of classical
calculus. But the method of Lagrange multiplier has the advantage that it
supplies the value of X also alongwith the values of 3 and Xyt Moreover
when the number of variable and constraints increases more than two, it

becomes difficult to eliminate the variables in the method of classical

calculus.

Example 2: Find the dimensions of a closed cylindrical tank of given volume

V which has the minimum surface area A,

Solution:

Let us define

1]

R = the radius of the cylinder

H = the hight of the cylinder.

Then the problem is to minimize
£ = A(R,H) = 27R% + 27RH
subject to the constraint

g(R,H) = 7R%H - V = 0

where V is given.
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The Lagrangian function is

L(R,H,A) = (27R% + 2vRH) - A (+R%H - V)

Differentiating the function with respect to R and I and equating to zero

yields

3L , _
5= 47R + 2mH - 2ATRH = O

%[j-=21rR'1rAR2=O

Combining these equations with the constraint equation

g(R, 1) = - gk = R%H -V = 0

gives us three unknowns with three simultaneous equations. The solutions cf

these equations give two sets of the stationary points. They are

2 4
A= E or A = ﬁ-
(R,H) = (0,0)

and

R = (_2%]1/3, Z[J}I/BJ

The first stationary point, (R,H) = (0,0), contradicts the restriction
regarding the fixed size of the volume (V # 0) except for the trivial case
V = 0, This example illustrates that the derived stationary point of the
Lagrangian function must always be checked to ensure that they do satisfy

the system constraints.



The second stationary point does give the minimum area of

2/3
_ v
A= 6H[2ﬂ]

The character of this stationary point can be examined by checking
the sufficient condition discussed in Section 3 using equations (3-19)
and (3-20).

For the stationary point to be a minimum, the value of AS

given by equation (3-20) should be negative. The values of terms in

equation (3-20) for this example are
fx = fR = 47R + 27H, fx = fH = 27R
1 2
= = 27RH = = R2
g, N s By T By g
1 2
f = f = 47, £ =f__ =27
xlxl RR xl}sz RH
f = f . =0, g =g = 21H
x2x2 HH xlxl RR
g =g = 2uR, g = =0
x1x2 RH x2x2 gHH
Then
_ 3, V.4/3
A3 = - 12 (Zﬂ)

which is negative so that the stationary point is a minimum.
The character of the stationary point, however, should not be

examined using the Lagrangian function (an unconstrained functiomn). Fer

22



example, applying Sylvester's theorem to the Lagrangian function at this

stationary point gives

2
E—%=4T:'-2TTJ\H
oR
= 47 - 2ﬂ(+ %}H
= - 47
2
5L
m—Zﬂ 2TY3\R ]
_ 2
= - 2
2L
._._2__0
aH
2
1 3L
A =h = - —= = - 27
11
23R2
2
- _ =1 3L _
B o=hyy=hy =o5mn ="
C =nh =0

22

Since



A= lhlll = - 2n < 0
and
9 hll hlZ 9
AC - B = =-7" <0
hyy By

which represents a saddle point in the Lagrangian with respect R and H
at this stationary point. No information is therefore available about
the character of the stationary peint in f when using only the method

of Lagrangian multipliers.

24



5. THE KIJHN-TUCKER CONDITIONS
A general nonlinear programming problem as described in Section 1 can also

be composed of finding a set of x which minimizes (or maxinizes) a function

S = f(xl, b , x.) (5-1)

93 e e

subject to m inequality constrains

- i=1, ..., m (5-2}

gj(xl, Xos wees xn) _<_bJ

To obtain the optimal solution for the above problem, certain conditiorns
must be satisfied at the optimal point known as the Kuhn-Tucker conditions.

In this section, we will firstly develope these conditions to maximize
(or mimimize) an objective function of two variables

S = f(Xl, Xz) (5-3}
subject to one ineguality constraint
glxy;, x,) <0 (5-4)

and then generalize them for the ohjective function given by equation (5-1)
suhject to the constraints given by equation (5-2).
The inequality constraint given by equation (5-4) can be converted to an

equality constraint by adding a slack variable z2 such as
{(x,, x,) + 22 =0 5-5
g 1) 2 = (_)

Therefore, the problem becomes maximizing the objective function (equation
(5-3))subject to the equality constraint (equation (5-5)).
This prohlem can now be solved by the method of Lagrange multiplier as

the constraint is an equality. The Lagrangian function is
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L(xy,s x5, A, 2) = £Ux,, X,) - Melxy, x,) + 22] (5-6)

The necessary conditions for stationary noints are

3L af ?

3L 3t 8 .9 (5-7)
axl ax1 axl
oL of 3
LT SN (5-8)
sz axz sz

2

SR gxy, k) v 20 = 0 (5-9)

Le-m=o0 (5-10)

Conditions (5-7) through (5-10) should all he satisfied at the optimum
of f(xl, xz). Equation (5-10) can be satisfied when either X = 0 or z = 0.
If z is equal to zero, then from equation (5-9), g(xl, x2} is also equal to zero.
If z is not equal to zero, then X should he zero. Then, it is apparant that

both conditions (5-9) and (5-10} state that
Ag(xl, xz) =0 (5-11)

Therefore the necessary conditions for the local optimum are given by
equations (5-7), (5-8), (5-11) and the unequality constraint, equation (5-4),
itself. These are the Kuhn-Tucker conditions for the optimization of a function
subject to inequality constraint.

Here, we may look in the condition given by equation (5-10) again.
According to this equation either A = 0 or z = 0. 1If A = 0, the Lagrangian

multiplier vanishes and the stationary point exists enly in the interior,



[S%]
~

that is, g < 0, 22 >0, If X #0, anon-zero Lagrangian multiplier implies

that the solution is on the boundary, since z = 0 which implies g alsc equals
zero.

Now, in a summary, the necessary conditions for a point (xl, xz) to be
a local optimum of a function

S = f(xl, xz)
subject to the constraint

g(xy, x,) <0

are that A and (xl, xz) satisfy the following relations

These conditions are also sufficient for a stationary point to be a maximun

if f is concave and the constraint 1is convex and to be a minimum if the

function is convex and the constraint 1is convex. (Refer to later Secctions’.



6. GENERAL STATEMENT OF THE KUHN-TUCKER CONDITIONS
The Kuhn-Tucker conditions can now be generalized as follows.

A point (xl, % S xn) which optimizes a function

2,

ceey X)) : (B=1).
subject to the inequality constraints
g (xl, ey X)) 20, i=1, «oey m (6-2)

exists if there is a set of A E g lm that satisfies the following

1’

set of conditions.

m g,
aL af "
radal el N ljg}—c-l=0, i=1, ..., n (6-3)
i i 3=1 i
Ajgj =0, j=1, «v., m (6-4)
gj_i 0, j=1, «e., m (6-5)
Aj >0, i=1, ..., m (for maximization)
(6-6a)
or
A, <0, j=1, ..., m (for minimization)
4 (6-6b)

These conditions are also sufficient for a global minimum if f and gj,
i=1, ..., m, are all convex and differentiable functions and for a
global maximum if f is concave and gj, j=1, «..y m, are all convex
and differentiable functions.

Similarly the necessary conditions for optimization of the function,
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equation (1), subject to the inequality constraints, equation (6-2), and

when all x to be non-negative
m J9g .,

oL _ 9f _ z A 1.

X, IX, j 9x, —
i = i

or

ag
1 3 %~

oL af
X, o0x,
i

x [
v I A

>
Iv

or
A, <

are

0,

1,

1,

ve., 0 (for maximization) (6-7a)

«eoyn (for minimization) (6-7b)

o & wiptl

¢ ¥ nh

PG

.

-

(6-8)

(6-9)

(6-10)

(6-11)

(for maximization) (6-12z2)

{(for minimization) (6-12%)

The derivation of these conditions given by equations (6-7) through (6-11)

is discussed in Section 12.

Equations (6-6a), (6-6b), (6-12a) and (6-12b) are based on the fact

that if X > 0, the stationary point can not be a minimum, and if X < O,

it can not be a maximum [Kuhn-Tucker (1951)].

Note that the sign of A

will be affected by several factors such as the type of optimization

problem (whether maximization or minimization), the type of inequality
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constraints (whether gj(x) <0 or gj(x) > 0), and the type of Lagrangian
function (whether L{x,}) = f(x) - Z Ajgj(x) or L{x,}) = f(x) + Z Ajgj(x)).
Recall that equations (6-6a), (6-6b), (6-12a) and (6-12b) are bised on
inequality constraints given by equation (6-2) (gj(x) < 0), and the
Lagrangian function of the form, L{x,A) = f{x) - Z Ajgj(x).

If there is only one constraint and there exists a stationary point

of Lagrangian, L(x,A} for which X > 0. Then this point, Xg» must lie on

the boundary, since Ag = 0 and X > 0. Therefore, we have

and only displacements which give
dg < 0

are admissible (in feasible region). Suppose that there exists a set
of displacements dxi, i=1, ..., n, such that

9g

( } dx, < 0 {6-13)

. i
1 i‘x
o

Figure 2 shows that an infinitesimal move away from the boundary stationary
point, A, will be in the direction of one of the arrows which results in
a decrease in g(x) (a move from boundary into interior). Therefore, each

move represents a displacement which could be used in equation (6-13).

At this restricted stationary point

Q2
=

= 0, B ly owwy 0

=5}
b



Fig,

Accessible regions in two dimensions.

1
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where
L{x,A) = f(x) - Arg(x)

This gives

(ﬁ—l =A{§-&-] , {1y wwes B (61
s o =

Using equation (6-14), and the summation of the set of displacements vields

T (s o fa
) [—-] dx, = ) [—&1 dx, (6-15)
: 0X, i " 9X. i
i=1 i xO i=1 i‘x
or
df = Adg

If the restricted stationary point is also an accessible stationary point,

then
df = xdg < 0

for positive A, The accessible stationary point is defined as a stationary
point such as point A in Fig. 2 for which there exists at least one

set of displacements from a boundary for which the constraining function
decreases, that is, equation (6-13) holds. Consequently, an admissible
move dxi, i=1, ..., n, into the interior has resulted in a decrease

in the objective function, f(x). Then, the stationary point on the
boundary can not be a minimum. Therefore, for the accessible

restricted point to be a maximum, it is necessary but not sufficient



that the Lagrange multiplier must be positive. Similarly, a necessary
condition for an accessible stationary point to be a minimum is that the
Lagrange multiplier is negative. It is worth noting that these are
necessary conditions but they are not sufficient. In a summary the
necessary condition on the sign of A for a single constraint,-g(x) <0,
is given by Table 1.

In general, the above argument can apply to more than one constraint
problem, and resulted equations (6-6a), (6-6b), (6-13a) and (6-13b). The
detailed discussion and expanded derivation of these conditions are given

by Kuhn and Tucker (1951) and Vajda (1961).



Table 1. Necessary

condition for A with a single constraint, g(x) < 0

Sign of Lagrange
multiplier, A

Stationary point

Location

Nature

nonzero, positive
nonzero, negative

Zero

on boundary
on boundary
on boundary or

interior of the
feasible region

Not a minimum
Not a maximum
Either a maximum

or minimum or
neither
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7. AN EXAMPLE
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The application of the Kuhn-Tucker conditions for obtaining optimal

solutions to nonlinear programming problem is illustrated by the following

example.
Maximize

f(x = xz - X - X

1°%)
gsubject to an inequality constraint

2
g(xl,xz) = X + X, = 1<0
The Lagrangian is

2 2 2, 2
L(xl,xz,l) = (xz—xl—xl) = A(xl+x2—1)

The Kuhn-Tucker conditions are (see equations (6-3) through (6-6)).

P = - 1- 2x1 - kal =0
1
5L _
T = 2x2 - ZAXZ =0
2
2 2
k(xl + Xy = 1) =0

A>0

(1)

(7-2)

(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

The point which will satisfy all the above conditions will be the
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stationary point. As a start considering first equation (7-8), the
value of X can either be = 0 or > 0. When A = 0, equations (7-4) and

(7-5) can be solved for the values of Xy and X, and we obtain X = - 0.5, and

X, = 0. This gives the point B on Figure 3. The value of the objective
function at point B is f(-0.5, 0) = 0.25.
Next, if A > 0, equations (7-4), (7-5) and (7-6) can be rewritten

as follows

1+ 2xl + zkxl =0 (7-9)
2x2 (1-2) = 0 (7-10)
2 2 _

Xy + X, = 1=20 (7-11)
From equation (7-10), it can be concluded that either X, = 0 or (1-2) = 0.

Considering first X, = 0, we will try to find the stationary point which
will satisfy all the necessary conditions. Therefore substituting X, = 0

into equation (7-11), we obtain

X = + 1 (7-12)

Equation (7-12) gives two values of X Substituting these wvalues into

equation (7-9), the values of A come out to be -3/2 and -1/2, which are
non-positive. This solution violates the condition (7-8), which states

that A > 0,and will be neglected. Therefore,x, = 0 can not be a possible

2
case for the stationary point.

Now considering the case 1-A = 0, we obtain

A=1
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Substituting this value of X into equation (7-9) gives

1+ le + 2xl = 0 (7-13)
or
X = -.25
Substituting the value of Xy into equation (7-11) gives
= + .968 (7-1%)

%
This gives points C and D on Figure 3. The value of the objective

function at these points is f(x = 1.125.

1> *2) cep
The above results, along with the objective function and the con-
straint are plotted in Figure 3, from which it is clear that among the
three stationary points given by the Kuhn-Tucker conditions only C and
D are global maximum points and B is a saddle point. This indicates that
the Kuhn~Tucker conditions are only necessary conditions for optimality
and are not sufficient. There are certain conditions of sufficiency
(described in Section 10}, which, if are satisfied, ensures the stationary
point given by the Kuhn-Tucker conditions to be global optimum. For the
present problem, the sufficient conditions for global maximum are that
the objective function should be concave and the constraint should be
convex, In this case, the objective function is a saddl because its
Hessian matrix is neither a positive definite nor a negative definite
(refer Section 9 for definitions of positive and negative definite) and
the constraint is a convex function as its Hessian matrix is a positive

definite. Therefore, the sufficient conditions are not satisfied in this

case and the stationary points given by the Kuhn-Tucker conditions may
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or may not be global maximum. This is also obvious from the three
stationary points given by the Kuhn-Tucker conditiens, from which only

two points (C and D) are global maximum and point B is a saddle point,

39
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8. QUADRATIC PROGRAMMING

Quadratic programming deals with the problems of optimizing a quadratic
objective function subject to linear constraints. A quadratic programming
problem can be written as

Maximize (or minimize)

n n

c.x. + 3 z Z q,, X%,
1 i e e ik 1xk

rofH

f(x)

]
o~

ch + xTQx (8-1)

subject to the linear conmstraints

n
gj(x) = izl a;;%; < by, 3 =1,2, ..., m (8-2)
and
x> 0, i=1,2, ..., n
where 9 = Gy 2Te given constants and elements of Q matrix.

There are several solution procedures for the special case of the
quadratic programming problem based on the concavity (for maximization)
and convexity (for minimization) of the objective function. The Wolfe
simplex method [1959] for quadratic programming is presented in this secticn
since it has been widely used and it is based on the Kuhn-Tucker con-
ditions.

The Kuhn-Tucker conditions for the quadratic programming problem

are given as follows:



aLg;}r) = aii I(x) = jgl Yn+384 (x)| <0 (8-3)
or

3L 4 m .

Egz Bt kzl 11Kk~ jgl 313745 = 0, i=1,2, ..., n (84)

The inequality in the above equation can be changed to equality by adding

s slack variables, that is

n m

g Z q. = Z 8. it ¥ =0 4
+ s
Bxi i k=1 ik™k §=1 ij n+j i

(8-5)

n
Yl
-
N
-
=]

The other Kuhn-Tucker conditions are

. %) . If a.x, +x . =b, j=1,2, v, m (8-6)
ayn+j joqp i1 n+j g8 Sl ?

X 2 0, i=1,2, ...,ntm (8-7)

¥y 2 0, i=1,2, ...,ntm (8-8)

Xy, = o, i=1,2, ...,ndm (8-9)
In the above equations A (=1, ..., m) are the Lagrange multi-

pliers and Yy (i=1, «.., n) and X (i =1, ..., m) are slack vari-

3

ables. Thus (xl, B4 ik xn) will give the stationary points if there

2’

exists values of x gaa

1 such that (xl, ww y O

X s “ s 3
» Fodm? Y17 » Yotm n+o
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Yy coes yn+m) satisfies all conditions given by equations (8-5) through
(8-9). The problem now reduces te finding a feasible solution to these
conditions which are linear programming constraints involving 2(n+m)
variables except the last restriction given by equation (8-9) (Refer to
equations (6-8) and (6-9}). The condition X¥; = 0 in equation (8-9) says
that it is not possible for both X, and y; to be basic variables when
considering basic feasible seclutions. Therefore, the problem reduces
to finding an initial basic feasible solution to any linear programming
proeblem having these normal coastraints (equations (8-5) through (8-%8)),
subject to this additional restriction (equation (8-9)) on the identity
of the basic variables.

The standard linear programming trick, when there is not an obvious
basic feasible solution is to introduce artificial varisbles which are

eventually forced to equal zero. Let Zis i=1,2, ..., n be these

artificial variables, where the only restriction on them is

Ziio! 1= Ly2, sy d

Therefore, equation (8-5) is changed to
E m
- q, % +* } a, vy .-y *te z, =c, i=1,2,...,n
k=1 ik k mi ij “ntj i i a:

Now a feasible solution to this artificial problem is feasible for the
real problem if and only if z, = 0 for i = 1,2, ..., n. Therefore,

n
Z z; should be decreased to zero in order to obtain the desired feasible
i=1

solution.



Therefore, the solution of the following problem along with a modifi-
cation of the simplex method stated below will give the optimal solution.

Minimize

subject to

‘kzlqikaJrjglaij yn+j_Y1+C1 z; = ¢, i=1,2, ..., n
n

121 a3 %y + X, = by, 1=1,2, .., m

X, >0, i=1, 2, ..., ntm

y; 2 0, i=1,2, «.., ntm

zi_i 0, i = 1y 2o waeny W

The modification is that ¥y is not permitted to become a basic vari-
able whenever Xy is already a basic variable, and vice-versa for
i=1, 2, ..., ntm. This ensures that Xy, = 0 for each value of 1.
When the optimal solution (El’ sees X 5 ¥y ovees oo 27 < Oy wsss
z = () is obtained to this problem, (Ei’ veny Eﬂ) is the optimal soluticxn

n

to the quadratic programming problem.



The stationary point obtained above will be global optimum if the
sufficient conditions described in section 10 are satisfied. Since in
this case constraints are linear, it forms a convex set. Therefore,
it will depend on the convexity (for minimization) or concavity (for
maximization) of the quadratic objective function that the point is
global optimal.

The solution procedures shall be illustrated by the following

example.

EXAMPLE 1

Maximize f(x) - (xl—3)2 - (32—3)2

2 2
6xl + 6x2 - X - X%, - 18

1 2
subject to
x| + x, <7
—Xy + 3x2 =9
3X1 - X%, <9

Using slack variables, Xas X and Xgs

equality constraints as

Xy + X, + Xq = 7=20
~Xg + 3x2 + X, - 9 =0
Ix, - x, + x. -9 =20

the inequality constraints become

44



The Lagrangian function is

2 2
1= 6xl + 6x2 - X =X, - 18 -~ ¥y (xl + %, + Xy - 7)

-y, (-xl + 3x2 +x, - 9) - Yg (3xl - Xyt %G - 9)
The Kuhn-Tucker conditions are

L

o0xX

1 =6 - 2x1 - ¥4 + ¥, = ByS &

dL

e, 6 - 2x

2"?3_3)'4'{'.?5_(.0

x,y, =0

The first and second inequality conditions above (2i < 0 and gi < 0)

1 2
can be changed to equality condition by introducing slack variables

Yy and y, as

b=

wun
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2%y +t ¥, - Y, * 3y5 -y = 6
2x2 + v,y + 3y4 - Y T Y, T 6
The problem to be selved by revised linear programming is:

Minimize

subject to

2xl + Y3 = Y, + 3y5 - ¥y + 621 = 6

2x2 + ¥, +3y4 - Y -y, t 622 =6

X, + X, + X = 7

- X +3x2 + %y = 9

3xl - Xy t X = 9
x5 > 0, i=1, ,.., 5
v % By i 2Ly woes D
z; > 0, i=1, 2
X,¥; = 0, =1, wais 5

The above problem has been solved by the modified simplex method

(satisfying Xy, < 0) as well as by an I.B.M. L.P. subroutine. The



A~
L )

solution by the modified simplex method is shown on Table 2 and the

optimal value of the variables are as follows

X = 3
Xy = 3
Xy = 1
x, = 3
Xg = 3

all other variables are zero.

The above values of the Xy and X, gives a value of the objective
function as 0. Moreover this solution gives us a value of Xy, < 0,
(i = 1,2) as the value of the variables ¥y and ¥, = 0.

The results from the IBM L.P. subroutine solution gives a value

of the variables as follows

Xy = 4
X, = 3
X, = 4
v, =2
Yo =6

All other wvariables are zero.

This solution yields a value of x = 18, which is in direct

272

conflict of the constraint, X3V = 8. The maximum value of the
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The modified simplex method solution

Tahle 2.
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objective function comes out to be -1, which is less than the value of
the objective function given by the modified simnlex method.

These constraints are plotted in Figure 4 and indicates the position
of the maximum point from both the methods. Although both the points
are in the feasible region of the original quadratic programﬁing problem,
since the basic simplex method in the IBM L.P. subroutine does not
satisfy Xy, = 0, therefore, the solution is not the optimal one.

Since the quadratic objective function is negative-definite (by
judging from the Hessian matrix), the function is concave. Therefore,
the maximum point found by the modified simplex method is a global

maximum point.



optimal solution

IBM L.P. Solution
(Violate XY, = 0)

Fig. 4 Linear programming solution of the quadratic programming
problem,
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9. CONVEXITY AND CONCAVITY OF FUNCTIONS

In this section, we will describe the procedures to recognize whether
a function is convex or concave. The concept of convexity and concavity
assists in determining whether a local optimum is alsoc a global optimum

or not.
9.1 (CONVEX FUNCTION

A function of one variable

5 = f(x)

is called convex over the domain R if for any two points x' and x" ¢ R,
and for any value of x defined by

x = (1-2) x' + Ax", 0 <x <1
The inequality

F(x) < (1-1) £(x') + A£(x") (9-1

L

must be satisfied. In the above expression

5N
M=o

The function is strictly convex if for x' # x", the sign of equation
(9-1) may be replaced by a inequality sign only. Figure 5 geometrically
illustrates astrictly convex function of one independent variable. As is
clear from the figure that within the range x' < x < x", a convex function
can not have any value larger than the values of the function obtained
by linear interpolation between f(x') and f(x"). In other words for a
convex function a line segment joining any two points on the surface will

always lie on or above the surface.



f(x%)

(l-?t)f(x-')
+ Af(x")

Fig. 5
. A convex
ex function of one
variable
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The above definition for a convex function of one variable can be extended

to the function of multivariables. Thus a function

S = f{xl, W xn]

is called convex if for any pair of sets (x!, ..., x&) and (iT, — x;)'and

for any A such that

CURTITE S Y

A= .
(xllls e s ay X;_;) = (xi’ 1eey x;l)
we have

- 1 1]
f((1 l)xl + Axl,

w e (l-k)xé + Ax;)
< (1-3) f(xi, vaes xﬂ) + Af(x;, .awy X0 (9-2)

9,2 CONCAVE FUNCTION

A function of one variable

S = £(x)

is called concave over the domain R if for any two points x' and x" ¢

R, and for any value of x defined by
x = (1-A)x' + Ax", 0<xc<l
the inequality
f(x) > (1-A)f(x') + Af(x") (9-3)

must be satisfied. In the above expression
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_x-x'

Figure & geometrically illustrate a strictly concave function of one
variable. It is clear from the figure that, a concave function can not
have any value smaller than the values of the function obtaiﬁed by linear
interpolation between f(x') and f(x").

The above definition for a concave function of one variable can be

extended to the function of multivariables. Thus a function
S = f(xl, Sivs xn)

is called concave if for any pair of sets (xi, p— xﬁ) and (xT, — x;)
and any A as defined below

(XI’ “eus xn) - (xi, ey xﬁ)

l = X3 1" - 1 T
TS W

we have

] _ t 1]
£((1-%) xi + lxl, cwen (1 A)xn + Axn) >

(1-2) £0x{s «-vs x1) + 2 £(x], .00y X) (a-4)

A function of two variable can be drawn graphically in three dimensions
by plotting the function on vertical axis (f(xl,xzj axis) and variables on

horizontal axes (x; and x, @XeS) as shown in Figures 7 and 8. It can also

2
be drawn in two dimensions (on X - %, plane) as contour lines of function
as shown again in Figures 7 and 8. A contour line is a set of points for

which objective function has a constant value. If we see the contour lines

of a convex function as shown in Figure 7, we will find that the value of the

function increases as we go outward from center. Similarly if we see the



f(x)

(1-2)£(x")
+ Af(x")

Fig. 6 A concave function of one variable.
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contour lines

)Il“
™~
"
-
™
"
S
g

Fig. 7 Convex function of two variables



f(xl’XZ) |

Fig. 8 Concave function of two variables.

Z— contour lines
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contour lines of a concave function as shown in Figure 8, we will find that
the value of the function decreases as we go to outward from center.

The functions of multivariables are hard to sketch on a paper but have
properties analogous to the functions of one or two variables.

From the above discussion it is clear that a concave function is
the reverse of a convex function and vice-versa. Thus a function f(x) is

strictly concave if - £(x) is strictly convex.

9.3 PROPERTIES OF CONVEX FUNCTIONS AND CONCAVE FUNCTIONS

A differentiable convex function has following properties.
(@) £(x") - £(x') > U £(x')(x"-x') for all x', x", (9-5)
where Vf(x') is the gradient at point x' and is denoted by

faf(x')‘
ax

vE(x') =

and VTf(x') is the transpose of VEf(x').

(b) The Hessian matrix or the matrix of the second partial derivatives
of f(x) with respect to x is a positive definite (or a nositive semidefinite)
for all x if f(x) is strictly convex (or convex].

(c) Over the domain R, f(x) has only one extremum.

When f(x) is a function of a single variable, equation (9-5) can be

written as
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df(x')  f(x" ) - f(x")

Xl < xn

dx x” - xf

This says that the slove of f(x) at x' is less than, or equal to, the slope
of the secant through the points (x', f(x')) and (x" , f(x" }). This is
geometrically shown in Figure 9.

Similarly a differntiable concave function has following properties.
fa) f(x") - f(x") < VT f(x') (x"-x') for all x', x"
where Vf(x') is the gradient of the function and VTf(x') is the transnose
of Vf(x').
(b) The Hessian metrix is a negative definite (or a negative semidefinite)
for all x if f(x) is strictlv concave (or concave),.

(¢) Over the domain R, f(x) has only one extremum.

9.4 HESSIAN MATRIX AND PRINCIPAL MINORS
A function of two variables f(xl, xz) can be expanded in the Taylor

series about the point (a,b), as below.

f(a + &xl, b + sz) - f(a, b)
af ) of
" ax) %y & 3%, Xy
a,b a,b
2 2
13°f 2 -t
* e —
2,2 Gl )™ * 3%, (8x)) (8x,)
1l 'a,b a,b
2
1 5°fFf ’ 2 -
+ —2—- B—;é— [ [sz) L (9_ ;')
2 'a,b
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f(x)
.1
_ B - f(x")
Slope2 = L
i
|
i
|
l f
! ]
| !
! )
' |
I i
' 4 L
xI xll X

Fig. © A property of a convex function of a single variable

slope 1 < slope 2
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The second order terms in the Tavlor series may also be written in the

form
3 -
G = h., Ax. Ax -0
j=1 k=1 Jk 3 7K
where
2
h., =L _3f (9-9)

ik 2 9ax.ax,
37Kk a,b

or alternately in vector matrix form as
= )T (9-10)
G = (Ax) H({ax)

where T denotes the transpose of the column matrix, Ax, that is,
Axl hll h
Ax = . [Ax)T = (Axl, AxZ), H = (g-31)

lﬁxz hyp By

J

The quantity G will be referred to as a quadratic form and the matrix Il as t:=2

liessian matrix.

In general, whether a quadratic form has a positive or a negative value

depends on the values assigned to axl and sz. If for all values of Axl and

sz, G has only positive values and is zero only if hoth Axl and sz are

zero, then G is said to be positive definite. Similarly, G is said to he

negative definite when G takes on onlv negative values.

When G takes on a plus or minus sign depending on the values of Axl and

sz, the quadratic form is said to be indefinite. A saddle point exists at
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a stationary point (a, b) where G is indefinite.

If, for all values of Ax, and Ax

1 os W have G > 0, then G is said to be

positive semidefinite, and if we have G < 0 for all values of Axy and &x,,

G is said to be negative semidefinite. For a semidefinite quadratic form,

G may be zero for values of ﬂxl and sz other than zero. Geometrically
speaking a semidefinite point is a point of inflection in one direction and
a maximum or minimum point in the other.

There are several ways in which we may determine whether or not a given

quadratic form is a positive definite quadratic form. One of the simplest

ways is to apply Sylvester's theorm [Fan, Erickson, Hwang, 1971], which states

that the necessary and sufficient condition for a quadratic form G to be
positive definite is that each of the principal minors of the matrix, H, of the

quadratic form be greater than zero. That is, if

hll h12
H =
h21 h22
with h12 = h21’ then a necessary and sufficient condition that G be greater

than zero is that each of the determinants

Hl = hll and Hz = l

be greater than zero.



63

For a negative definite quadratic form, the preceding theorem may be
applied by considering the form, minus G, that is, if the sign of every
element in the matrix H is changed, then for the new matrix H' each of the
determinants Hi and Hi should be greater than zero,

The functions which contain more than two decision variables may be

treated in a way similar to the case of the two decision variables. A

Taylor series expansion of the function

§ = £(Xys Xyr sves X) (9-12)

2'

about a stationary point a = (al, a .s an) gives

2’

f(a1 * ﬁxl, a2 + hxz, ey B * ﬁxn) - f(al, COYRRRRY an)

1 30 L% )
ax, 2 Yy 2E | axax vl (9-13)
k 2 §21 k=1 ijaxk 5 j *x

Here the quadratic form is given by

2

183{ axk

] E g

5 ; ijAxk (9-14)

In terms of matrices we may write

= (Ax)T H (Ax) (9-15)

where T denotes the transpose and where
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Sy iy Mg Pin
AX h h h
2
(A){) = '2 , (AX)T - (Axl' . Axn]‘ H = %1 22 n (9—16)
Ay hnlhns' nn
The elements, hjk' of the matrix H are
. Y 32f & 15 25 sana B ©-17)
jk 2 axjaxk a k= 15 25 ssws N

Sylvester's theorem may again be used to determine if the quadratic
form, G, is positive definite. The necessary and sufficient condition that
G be a positive definite quadratic form is that each of the principal minors

of Il be greater than zero, that is, each of the determinants

h11 h12 T hln
hll h12
h21 h22 et h2n
”1 e hll’ H2 = i 595 Hn = . (9-18)
ho1 Py N .
nl n2 """ “nn

must be greater than zero.

A necessary and sufficient condition for G to be negative definite
quadratic form is that - G be a positive definite quadratic form or that
each of the principal minors of the matrix - H be greater than zero

according to the conditions given in equation (9-18). If we wish to test Il

directly for the negative definite case, the necessary and sufficient con-
dition for G to be negative definite is that thie signs of Hi be alternately
negative and positive as i goes from 1 to n with ”1 being negative, that is,

Hy is negative if i is odd and positive if i is even.
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9.5 LINEAR FUNCTIONS AND CONVEX SET

Linear functions are both concave and convex functions, hut they are
neither strictly concave nor strictly convex.

A convex set is defined as a set of points in a n-dimensional space,
if for all pairs of two points x', X" in the set, the straight line segment
joining them is also entirecly in the set, Thus in a convex set, any point x,

where
x = (1-X)x' + ax" for 0 < X <1

is also in the set.
Figure 10 illustrate a convex and a non convex set. It is clear from
the figure that a line joining any two points will also lic within the
set for a convex set whereas it is not true for a noncovex set.
If a function g(x) is a convex function over the non-negative orthant
of the n-dimensional (euclidean) snaces, En, then, if the set of points V
satisfying

g(x) < b, x>0

is not emnty, V is a convex set. Similarly, if g(x) is a concave function

. n ;
over the non-negative orthant of E ', then if the set of noints satisfving
g(x) > b, x>0

is not emnty, V is a convex set. Consequentlv, since the intersection of

convex sets is convex, if the set of points W satisfving
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g; () {s,2 b, i=1, ..., m

X 3_0

is not emntv, then W is convex when gi(x) is a convex function over the non-
2 n . : . g s

negative orthant of E if a < sign holds for the ith constraint and gi(xJ is

a concave function over the non-negative orthant of " if a > sign holds for

the ith constraint. These statements are proved by Hadley [1964].
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10. THE NECESSARY AND SUFFICIENT CONDITIONS FOR A GLOBAL OPTIMUM

The Kuhn-Tucker conditions (the necessary conditions given by equations
(6-3) through (6-0) for -= < x < », and by equations (6-7) through (6-11)
for x > 0) provide the candidates for local minimum or local maximum points.
The sufficient conditions for a local minimum {(or local maximum) to be a
global minimum (or maximum) are that the objective function must be convex
(or concave) and the optimal point lies in a closed convex set formed by
the constraints in E-.

A general nonlinear programming problem can be again stated as:

Minimize (or maximize)

f(x) (10-1)
subject to

gj(x) 14 =3 ¥F 0, ij=1,2, ..., m (10-2)
where

s gy % W i i=1,2, ..., n (10-3)
or

X, >0 5 i=1, 2, ..., n (10-4)

In the published literature, the nonlinear programming problems are formu-
lated in eight cases presented in Table 3 and each case was treated senparately
[Case I and II by Dorn (1963), Case III by Samuelson (1955), Case V and \II by
Vajda (1961} and Derfman (1958), Case VI by Wilde (1962)and Kuhn-Tucker (1951).]

The necessary conditions (the Kuhn-Tucker conditions) for Case I through
Case IV which x can take any value (- < x < @) are given by equations (6-3)
through (6-6), and those for Case V through Case VIII which x takes onlv non-
negative value (x > 0) are given by equations (6-6) through (6-10).

The sufficient conditions for a local optimal point to be a global optimal

point for Case I and for Case V are identical. A local optimal point which



Table 3.

Classification of Nonlinear Programming Problems

—ar < x, < o Xy >0
s =il PV | i=l,...,n
Case I Case V
Min (or Max) Min (or Max)
f(x) f(x)
Subject to Subject to
gj(x) <0, j=l,....m gj(x) <0, j=1,...,m
t Case I1I Case VI
E Min (or Max) Min (or Max)
| £(x) £(x)
Subject to Subject to
; g.(x) >0, F=1 s s sm g.(x} > 0, j=1,...,m
L ] ]
{ Case III Case VII
Min (or Max) Min (or Max)
f(x) f(x)
‘ Subject to Subhject to
5 g;(0) = 0, 3=1,....m £;() = 0, =1,....m
Case IV Case VIII
Min {(or Max) Min {or Max )
f(x) f(x)
Subject to Subject to
n n
§=1 ajixi f-bj’ e R §=1 jixl < hj’ i=1l,...,m
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satisfies the Kuhn-Tucker conditions will be the global optimal point if the

objective function is convex (for minimization) or concave (for maximization),

and if the constraints form a closed convex set V in E" in which the optimal point

lies. The convexity or concavity of a function can be identified by Hessian

matrix (see Sections 9-3 and 9-4). A set of points V satisfying the constraints
gi(x) < 0, i=1, 24 ses M (10-3)

will be a closed convex set if gi(x), i=1, 2, ..., m are all convex functions.

It is worth recalling that if f(x) is a convex function, the negative of
the function, -f(x), is a concave function and vice versa. Also, if gi(x) > 0,
the negative of function will change the inequality sign, that is, -gi(x) < 0.
Therefore, a set of point V satisfying the constraints

gi(x) >0, i=1, 2, ..., m {(10-6)
will be a closed convex set if gi(x), i=1, 2, ..., mare all concave functions.
Consequently, the sufficient conditions of a optimal point for Case II and Case
VI to be a glohal optimum are that the local optimal point satisfies the Kuhn-
Tucker conditions, the objective function is convex (for minimization) or con-
cave (for maximization), and all the function, gi(x), i=1,2, ..., mare
concave.

Since the linear constraints (?ajixi E.bj) form a closed convex set, the
sufficient conditions for a local optimal point to be a global optimum for Cases
IV and VIII are that the optimal point satisfies the Kuhn-Tucker conditions,
and the objective function is convex {for minimization) and concave (for maxi-
mization).

The sufficient conditions for a local optimum to be a global optimun for
Cases II1 and VII vhich have equality constraints, g,(x) =0, 1 =1, 2, ..., n;

will be treated at the next section.



EXAMPLE
An example of Case I will be considered in detail. The problem is:
Minimize
E(x) = x> + x> — 8x, + 16 (10-7)
1 2 1
subject to

g(x)y = xi - 4x2 +2<0 (10-8)

Since the objective function and the constraint both are positive
definite, both are convex. Therefore, the objective function and the
set formed by the comstraint both satisfy the sufficient conditions
stated above and the stationary point given by the Kuhn-Tucker conditions
should be a global minimum,

The function and constraint are plotted to illustrate that the
sufficient conditions given above gives us the correct global minimum.
In Figure 1} the function and the constraint are plotted on X, and x,
axis. The object function is plotted as contour lines. In the figure,
the feasible region is shown by sectional lines. Since the objective
function is convex, it is increasing in value from centre contour line
to outward contour line. The stationary point given by the Kuhn-Tucker
conditions will be point A, because at this point the objective function
just touches the constraint, Point A gives the minimum value of the
function subject to the given constraint., As we go towards the centre
of the contour lines, the value of the function decreases but all these
values will fall outside the feasible region. Similarly if we go away
from point A outward from the centre, the value of the function fall in

the feasible region but it keeps on increasing. Thus the minimum value
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of the function, which satisfies the above constraint is at point A. So

if the sufficient conditions stated above are satisfied, the stationary
point given by the Kuhn-Tucker conditions for the function given by equation
(10-7) subject to the constraint given by equation (10-8) will be a

global minimum.

The objective function and the constraint are alsoc plotted in three
dimensions as shown in Figure 12. The plot of the function is a cone and
the plot of the constraint is a paraboloid. The function and the con-
straint are also projected on X - X, axis giving the same plot as is
shown in Figure 11, From the figure its clear that the point where cone
(the plot of function) touches the paraboliod (the plot of constraint)
is the optimum point, because that is the only point which minimizes

the function and is in the feasible region also.



Feasible R

8(x) = x> + 4x, +2 <0

Fig. 1l Plot of the objective function f(x) = x2 + x2 - 8x. + 16 and

the constraint g(x) = x% + 4x2 + 2 < 0 In two dimensions.

73
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constraint

objective
function

2

Fig. 12 Plot of the objective function f(x) = xi+x2u8x +16 and the

constraint g(x) = x%—4x2+2 < 0 in three dimensions.
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11. DUAL PROBLEM AND SADDLE POINT

Let us assume that the objective function
S = f(x) (11=1)

has a relative maximum at a point X for x satisfying the m equality

constraints,

gj(x) =b j=1, .., m (11-2)

js
T o o — :
Let Ao = (Al, £ii% Am) be a vector containing a set of Lagrange multi-

pliers corresponding to X where the Lagrangian is given by

m
L(x,2) = £(x) - § 2A,g.(x) (11-3)
jo1 373

Then, the Lagrangian, L(x,A), used to have an unconstrained relative

maximum at X that is,
L(x,ho) E_L(xo,lo) (11-4)

for all x in a certain e-neighborhood of X . Now, let us assume that
there exists a é-neighborhood of Ao in E" such that for any A in this
8-neighborhood, the Lagrangian, L{x,A), has an unconstrained relative

maximum with respect to x at a point which satisfies the condition
A, — =0, 1=1, ..., n (11-5)
i i j=1

Suppose that equation (11-5) has a unique solution for every 2

in the ¢6-neighborhood of AO, then the maximizing peint x will be a
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function of A and can be written as %(A). Then, in the 8-neighborhood
of Ao We can write
max L(x,A) = L{x,A) = h{}) (11-6)
X
that is, the maximum of the Lagrangian with respect to x will be a
function of A which is denoted by h(}). It is worth noting that the
maximum of the Lagrangian, L(x,)), at Ao will be L(xO,AD) and equals

to f(xo), that is,
h(AD) = L(xo,ko) = f(xo) (11-7)

Next, we will examine whether or not h(}) has a relative maximum
or minimum at Ao' For x satisfying the m equality constraints, equation

(11-2), and for a fixed A, the Lagrangian will be

L(x,}) = £(x)

Hence
max L{x,x) = max f(x) = f(xo) = h(lo), xe Y {(11-8)
% x

where Y is a set of points x satisfying gj(x) = bj’ =1, ..., m

Since in equation (11-8) x is limited to satisf{y the equality constraints
given by equation (11-2) whereas in equation (11-6) x is not limited to
the constraints, the value of the function h()) given by equation (11-6)
should be greater than or equal to the value of the function h(ko) given

by equation (11-8), that is,

h(x) > h(}) (11-9)
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and hence h(X) has é relative minimum at Ao. Since h{X) = L(x,}) when x
and A are related by equation (11~5)}, we may conclude that L{x,A) has
a relative minimum at Ao with respect to A subject to the constraints
given by equation (11-5) which determine x for each A.

The problem of minimizing the Lagrangian, L{x,\),given by equation
(11-3), with respect to X subject to the constraints (11-5), is called
a dual of the primal problem which seeks to maximize f(x), equation (11-1),
subject to the constraints (11-2). These dual problems have the property
that in a neighborhood of X

min L{x,}) = max f(x) = f(xo) = h(Ao) (11-10)

A X

subject to the appropriate constraints, equation (11-5) and (11-2) re-
spectively.

From equation (11-6) in the above discussion, we have

max L{x,A) = h{(})
X

and from equation (11-9), we have

min h(}) = h(Ao)
A

therefore, we can write

f(xo) = min max L(x,A) (11-11)
A X

and f(xo) is a solution to a min-max problem. A function L(x,X) is

said to have a saddle point at the point (XD,AO), if there exists an
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e > 0 such that for all x, |x - x0| < g, and for all A, |1—A0[ < g,

LGxa) < Lixgs X)) < Lix,A) (11-12)

In the above discussion, we have shown that if all assumptions made
above hold, the Lagrangian function has a saddle point at (XO,AO). However,
the saddle point is a degenerate form since the strict equality holds on

the right of the following equation.
L(xs}\o) < L(XO’;\O) = L(XO’;\)

This is deduced from our previous assumption that L(x,)) has a relative

maximum with respect to x for any X in a é-neighborhood of Ao, that is
L(x,lo) S-L(Xo’ko) = f(xo)

and recall that L(xo,l) = f(xo) since X € Y.
The material presented here is originally covered in Courant and
Hilbert (1953). The above presentation follows closely that of Hadley

(1964).

Exa@Ele

The linear programming (LP) dual problem is a special case of the
general nonlinear programming problem discussed above,

Let the primal LP problem be

i
max ¢ X

subject to



Ax < b
x>0
Then, the Lagrangian will be

Lo, %] = ol = lkx = b

The duzl problem becomes

min L{x,A) = min [ch - AT(AX - b)]
A A

subject to (equation (11-5))

T
However, ¢ - ATA = 0 implies

CTX = ATAX =0

Therefore, the dual problem reduces to the usual form of the dual

LP problem

min ATb
X

subject to

79
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12, NECESSARY AND SUFFLICIENT CONDITIONS FOR SADDLE POINTS
In the last section, we explained that a function L(x,1), x being an
n - component and A being an mcomponent vector, is said to have a saddle

point at (xo, AO) if

L(x, AO)_j L{x 10)-i L(xo, Xx) (12-1)

0°
holds for all x in an € neighborhoods of X and all X in an e neighbor-
hoods of AO' This saddle point will also be a global saddle point at
(xo, AO) if equation (12-1) holds for all x and A.

In this section, we will develop conditions which will insure in
finding the saddle point for the function L(x,)) and hence the optimum
point for the objective function f(x) subject to the constraints.

We will consider three possibilities in which variables x and A

can vary. 1) x,) are restricted to be non-negative. These will be

represented by x(l) and A(l) (x(l) > 0 and A(l) > 0). 2) x,)A are re-
stricted to be non-positive, These will be represented by x(z) and
1(2) (x(z)'i 0 and A(Z) < 0). 3) x,A are unrestricted in sign. These

will be represented by x(3) and l(3)

Now x and A in three components can be represented as follows

KD L@ 3

NP G INOINOR

where x(l) has s components, x(Z) has t-s components, and x(3) has n-t
. €D (2)
components. Similarly, A has u components, A has v-u components,
(3)
and X has m-v components.
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L(X,)\O) |
\ BL(X’)‘O)
90X, _
L(xo,lo) i X, = 0
0 e X

Fig, 14 For maximizing L(x,}\o) and non-negative X5 -g-i—- < 0 at x, = 0.



L(x, )

Fig. 15 For maximizing L(x,lo) and non-positive X BL/Bxi > 0 at Xy = 0



Let us also denote by Wl, the set of points of x such that the
components of x satisfy the above conditions, by Wz, the set of points
X such that the components of A satisfy the above conditions and by W
the set of peints [x,A] with x ¢ Wy and & e WZ.

Now the function L(x,A) is said to have a saddle point at (xo,lo)
for (x,A) ¢ W if (xO,AO) e W and there exists an e > 0 such that equation
{(12-1) holds good for all x € Wl in an ¢ neighborhood of X and all
e W2 in an € neighborhood of AO'

We will develop the Kuhn-Tucker conditions for the three cases
explained above. Case 3 will be considered first in which the components
of x and A are not restricted in signs. Therefore, if L(x,A) has a

saddle point at (XO,XO) for (x,2) e W, then from the definition of a

saddle point, (xo,lo) must satisfy the equations

f{' L(xy,h)) = 0, § =t %y s (12-2)
g
3 .

Tl L(xo,ko) =0, j=v+1, ..., m (12-3)
|

Figure 13is a plot of Lagrangian L(x,AO) as a function of X when i has
one of the values £t + 1, ..., n, and set x = xg, k#i, &A= AO’ then in
a neighborhood of xg, L(x,AO) must have a maximum point where %ET-= 0 at
(xO,AO). Under similar conditions L(XO,A) as a function of Aj’ ihere i

has one of the values vt+l, ..., m, would pass through a relative mininum

3L R
where Blj = ( at (ao,lo).

. 0 .
It should be noted that if X, # 0 for one of the first t components

of x, it must again be true that

84
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aL(x . ,A.)
0°’"0" 3
———-—————axi =0 (12-4)

and also Ag # 0 for one of the first v components of A, it must be true
that

3L(XO,AO)

3

Let us now consider the situation that xg = (0, where i has one of
the values 1, ..., t. Assume first that i comes from the set 1, ..., s,
so that X nmust be non-negative. Then in order that L(x,)o) j_L(XO,AO)
for (x,).) e W, it must true that
2 Lx 1) <0 (12-6)
X, 0'"gf —
i
Intuitively if we plot L(X,AO) as a function of X when setting x, = xg,
1.9
ki, A = lo, we must obtain something like the curve shown in Fig. 14
Similarly if i belongs to the set s+l, ..., t (xi must be non-positive)
and xg = 0, then in order that L(X,AO) j_L(xO,RO) for (x,AO) e W, it
must be true that
el Tr. ) @ 0 (12-7)
X, 070" —
i
Figure 15 illustrates this situatioen.

Similarly, if h? = 0, it must be true that

BL(XO,AO)
——'5}—"—'—"_3_'_0, =1 vauws U (12-8)
J
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BL(XO,AO)
-——757*-—-5_0, = utl, (.., ¥ (12-9)
h|

In the above discussion we have shown that it must be true that

_ _ 0 _ . _
either BL(xO,lO)/Bxi 0 or X, = 0, and either aL(xo,Ao)/BAj 0 or

A? = 0. Hence, if L(x,)) has a saddle point at (xo,lo) for (x,X) e W,

then (xO,AO) must satisfy

T L(xgshy) <0, i=1, «uu, s (12-10)
i

J . - _
Bxi L(xo,ko) > 0, i=1s5+1, g (12-11)
) s
'S;;L(XO’RO) = O, i=1t4+ 1, seeg 1IN (12_12)
where
0 . 0
X >20,i=1, .cv, 8; Xy <0, i=28+1, , B
0 ; ;
Xy unrestricted, i=t+ 1, ..., n (12-13)
The above equations can be summarized as follows
Yot e 3, 5 = B g i (12-14)
i axi 0’70 : By
Similarly
] ;
—_ L(XO,Q\O) >0, 3= 1; ese, u (12-15)

A,
J
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2 Llxgirg) < 0, JEru+l, ey v (12-16)
J
3 .

'B—-A——L(XO,}\O) = 0, j=v+1l, ..., m (12-17)
J

where

A?_i 0, J= Ly wesy U3 A?_ﬁ o, Jautl, ceey V3
0 , .

Aj wmrestricted, j=v+1, ..., m (12-18)

The above equations can be summarized as follows

Ag .. L(x

ey = 0, j=1, vou, m (12-19)

0**0’

The above equations, equations (12-10) through (12-19), represent a set

of necessary conditions which (x ) must satisfy if L(x,)) has a saddle

0"*0
point at (Xo,lo) for (x,2) & W.

Now we will develop the sufficient conditions which must be satisfied
to ensure that L{x,)A) has a saddle point at (xo,lo) for (x,») e W. Let

us define the gradient of L{x,)) with respect to x evaluated at (xO,AO)

to be

- (.28 9 ¥
Vx L(XO,AO) = (axl L(xo,lo), npy aXn L(XO,AO)] (12-20)

and the gradient of L(x,A) with respect to A evaluated at (xO,AO) to be

VA L(ko,ko) = [gx; L(xo,lo), TrP Blm L(xo,lo)] (12-21)
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Then on summing equation (12-14) over i, we have

VX L(xO,AO}XO =0 (12-22)
Similarly, on summing equation (12-19) over j we obtain

Vl L(xO,lo)AO =0 (12-23)

Now the sufficient conditions can be defined as follows. Let
(xo,lo) be a point satisfying necessary conditions (12-10) through
(12-19). Then if there exists an e neighborhood about (xo,lo) such that

for points (x,),) € W in this neighborhood

L(X!AO).E L(xO,AO) + Vx L(XD,AO) (x—xo) (12-24)
and for points (xO,A) € W in this neighborhood

L(XO,A) > L(xo,ko) + VR L(xo,ko) (R-AO) (12-25)

then L(x,)) has a saddle point at (xo,lo) for (x,X) e W. 1If equation
(12-24) and (12-25) hold for all x ¢ wl, and A € Wz, it follows that
L(x,A) has a glcbal saddle point at (XO,AO) for (x,A) e W.

The sufficient conditions can be proved as follows. Since equation

(12-22) holds at (xo,lo)

Vx L(xO,AO)(x-XO) = VXL(XO,AO)X

However, if x e W then

l’

xi_i 0, i=1, ..., s3 X, < Q, i=s5tl, ..., t

and equations (12-10) and (12-1i) hold. Then
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VXL(XO,ZO)X <0

Consequently, whenever equation (12-24) holds for x € W, L(X,AO) <
L(xo,ko). Similarly, since equations (12-23), (12-15) and (12-16)} hold

at (xo,lo), we obtain
VA L(xo,lo)(l—ko) = V)L L(xo,lo) A >0

Therefore, for any A € W, such that equation (12-25) holds, L(XO,AO) <

2

L(xo,l). Combination of these results we can conclude that for x € Wl

and A € W2 such that equations (12-24) and (12-25) hold, L(x,ko) <
L(XO,AU}_i L(x.,A), provided that (XO,AO) satisfies equation (12-10)
though (12-19). Since equations (12-24) and (12-25) hold either in an
e— neighborhood of (xo,lo)(or every where), it follows that L(x,A) has

a saddle point (or a global saddle point) at (xo,lo) for (x,x} e W.

We can also deduce one more interesting relation from the fact that
if L(x,lo) is a concave function of x then equation (12-24) holds good
and similarly if L(XO,A) is a convex function of X then equation (12~25)
holds. Thus another equivalent sufficient condition that L(x,}) has a
saddle point at (XO,AO) is that L(xo,ko) satisfied equations (12-10)
through (12-19) and that for all x ¢ Wl in an e neighborhood of xo,

L(x,AO) is a concave function of x, and for AeW, in an e neighborhood

2

of x L(xo,k) is a convex function of A. If L{x,A,) is a concave

0’
function of x for all x ¢ Wl and L(XO,K) is a convex function of A

for all X ¢ Wz, then L(x,X) has a global saddle point at (xo,lo) for

(x,X) & W.
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13, CONCLUDING REMARKS

A self-contained, brief and illustrative description of the classical
optimization procedures, the method of Lagranee multipliers and the Kuhn-
Tucker conditions, for solving nonlinear nrogramming problems has heen pre-
sented.

It is usually difficult, if not irpossible, to derive the ontimal solu-
tion for a larpe scale nonlinear prograrmmine problem directlv from the Xuhn-
Tucker conditions. However, thev do nrovide valuahle clues as to the identitv
of the optimal solution, and thev also nermit checking whether a nrorosed
solution may be optimal. It is not necessarily true that every point which
is a solution to the Kuhn-Tucker conditions will he a noint at which the
obiective function takes on a relative maximum or minimum for all X satisfies
the constraints. Illowever, everv point at which the ohjective function does
take on a relative raximum or minimum for X satisfies the constraints must
be a solution to the Kuhn-Tucker conditions. There are also manv valuahle
indirect apnlications of the Kuhn-Tucker conditions. One example of thenm

is auadratic prosrarmminge,
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ABSTRACT

The purpose of this report is to give a self-contained, brief and
illustrative descrintion of the classical optimization procedures, the method
of Lagrange multipliers and the Kuhn-Tucker conditions, for sclvinc nonlinear
programming probhlenms.

Firstly the Lagransian multinlier technigue is prescnted for ontinizine
the nonlinear ohjective functions subject to equality constraints. The
necessary and sufficient conditions are developed from Tavlor's series ex-
pansion and numerical examples are solved to illustrate the technique.

The Kuhn-Tucker necessarv conditions for ontimizing an objective func-
tion subject to inequalitv constraints are then presented and are illustrated
by a numerical examnle. The %Wolfe's sinnlex method for optimal soluticn
of quadratic programming prohlems which is based on the Kubn-Tucker condi-
tions is alse presented.

The concept of convexity and concavity of functions, and of convex
set, which is basis for determining whether a local ontirum is alsc a
global ontimal, and then the necessary and sufficient conditions for =
global optinum are included.

Finally the dual problem and saddle point and the nccessary and

sufficient conditions for saddle noints are nresented.



