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Abstract 
 

In our study, five different bioenergy crops: wheat straw (Triticum aestivum), forage sorghum 

stover (sorghum bicolor), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and 

sweet sorghum baggase (Sorghum bicolor) were evaluated for bio-ethanol production at 20% (w/v) 

initial substrate concentration under separate hydrolysis and fermentation (SHF) process. The 

substrates were ground to pass through 600µm mesh size and treated with 2% (w/v) NaOH at 121
o
C 

for 30 minutes. The washed and neutralized pretreated residues were subjected to saccharification 

using cellulase and β-glucosidase enzymes (ratio 1:1.25) at concentrations of 25 filter paper unit 

(fpu)/g and 31.25fpu/g, respectively, in pH 5.0 citrate buffer in an orbital incubator shaker at 150 

rpm for 72 h. The hydrolysate obtained was centrifuged and supernatant was collected for 

fermentation. Fermentation was performed in shake flasks using Saccharomyces cerevisiae at 10% 

(w/v) inoculum concentration at 100 rpm for 24 h. 

 

Alkali treatment was effective in delignification of all the biomass feedstocks. The highest percent 

removal on raw biomass basis was attained for sorghum stover BMR-DP (81.3%, w/w) followed by 

miscanthus (79.9%, w/w), sorghum stover BMR-RL (69.2 %, w/w), wheat straw (68.0 %, w/w), 

switchgrass (66.0%, w/w), and sorghum baggase (65.4%, w/w). Glucan saccharification varied 

from 56.4-72.6 % (w/w) corresponding to a glucose levels of 0.45-0.34 g/g of dry substrate. Highest 

saccharification was observed for wheat straw while lowest was observed for miscanthus after 48 

hours of hydrolysis. A maximum final ethanol concentration of 4.3% (w/v) was observed for wheat 

straw followed by sorghum baggase (4.2%), sorghum RL-BMR (3.6%), miscanthus (3.4%), 

sorghum DP-BMR (3.4%), and switchgrass (3.2%). From our studies, it is evident that high 

substrate concentration used for enzymatic hydrolysis was able to provide high final ethanol 



 
 

concentration. The lignin content and its arrangement in different biomass feedstocks may have 

affected saccharification and subsequent ethanol production. 

 

Bulk density and flowability are the two major key parameters that should be addressed to reduce 

processing cost of biomass for bioethanol production. Pelleting of biomass can increase the bulk 

density, thereby reducing the handling and transportation costs. In addition to above study, I 

analyzed the changes in chemical composition due to pelletization and pretreatment, and its effect 

on ethanol production by comparing unpelleted and pelleted biomass ethanol production efficiency. 

Wheat straw and big bluestem pelleted and unpelleted biomass were compared for their ethanol 

production efficiency.  

Pelleted and unpelleted wheat straw (Triticum aestivum) and bigblue stem (Andropogon gerardii 

Vitman) at a substrate concentration of 10% (w/v) were subjected to 2% NaOH treatment at 121
0
C 

for 30 min and the resulting residues were analyzed for changes in chemical composition. 

Saccharification of residue was done at substrate concentration of 12% (w/v) for 48 h. The sugars 

obtained were fermented to ethanol using Saccharomyces cerevisiae. Pelletization did not 

significantly affect the chemical composition of biomass in terms of glucan, xylan and lignin 

content. Delignification of pelleted biomass was greater than unpelleted biomass. Pelletization did 

not influence final ethanol production for both substrates. 
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CHAPTER 1- Introduction 

The current dependence on oil for energy and for production of numerous chemicals and 

materials and concomitant climate change caused by fossil fuels has put tremendous focus on 

finding alternative renewable sources for the production of fuels and chemicals. In this respect, 

biomass will be the major contributor in the future supply of energy and chemicals (Herrera, 

2006; Ragauskas et al., 2006). Bioethanol can be produced from domestic cellulosic biomass 

resources such as herbaceous and woody plants, agricultural and forestry residues, and a large 

portion of municipal solid waste and industrial waste streams (Demirbas, 2005). The billion ton 

study of Perlack et al., (2005) estimated that total amount of available biomass that can be 

sustainably removed from agricultural land is  194 million dry tons annually. In the future, 

through a combination of technology changes (e.g. higher crop yield and improved residue 

collection technology), adoption of no-till cultivation and changes in land use to accommodate 

large scale production of perennial crops, this amount can increase fivefold in next 35-40 years 

to reach nearly 1 billion dry tons of biomass annually. This amount is sufficient to produce 

cellulosic ethanol production goals to 21 billion gallons annually by 2020. Biomass conversion 

will also decouple the production of food and bioenergy thereby increasing the value of world’s 

production from agriculture and forestry, contributing favorably to the reduction of CO2 

emission, and ensuring a more stable supply of energy (Larsen et al., 2008). 

Ethanol production from lignocellulosics involves three major steps (Fig1.1) (1) size 

reduction and pretreatment of biomass to remove lignin and make cellulose and hemicelluloses 

more accessible to the enzymes, (2) enzymatic hydrolysis of pretreated biomass to produce 

sugars, and (3) fermentation of sugars by pentose and hexose-fermenting microorganism to 



 

2 
 

ethanol. The lignin and residue generated can be used to produce other chemicals or burn to 

generate heat and electricity.  

 

 

 

 

 

 

Fig1.1. Flowchart of the process for ethanol production from lignocellulosics 

With advancements in the pretreatment processes and development of efficient 

genetically modified microbial strains with high volumetric productivity for bioethanol 

production from lignocellulosics, the commercialization of the process seems to be feasible in 

the near future.  Several established chemical companies are now seriously visualizing and 

evaluating biorefinery concepts based on renewable resources (Bansal et al., 2010).  However, a 

commercial lignocellulosic ethanol based plant can be feasible only if it is flexible enough to 

utilize a number of different raw materials without much change in the annual productivity, as a 

particular biomass may not be available in a particular area throughout the year. The amount and 

type of sugars that can be produced and the conditions required to achieve the optimum 

production during pretreatment and enzymatic treatment are largely dependent on the chemical 

composition and structure of biomass materials (Zheng et al., 2007). This requires analyzing 
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feedstock Pretreatment  Enzymatic 

hydrolysis  

Lignin  

Sugars  Fermentation   Ethanol  

Lignin and residue 

Chemicals, feed or combustion 

for generation of energy 
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different biomass feedstock in terms of their chemical and structural composition and its effects 

on the sugars production during hydrolysis and subsequent fermentation to ethanol. 

Low-cost ethanol production from lignocellulosic materials such as straw, corn stover, 

bagasse, wood and wood residues are still limited by a number of factors: price and  performance 

of enzymes, efficient fermentation of all sugars (pentoses and hexoses),  pretreatment costs and 

ability to handle lignocellulosic materials at high-solid concentrations (Jorgensen et al., 2007). 

Increasing ethanol titer in the fermentation broth is crucially important for cost reduction of 

cellulosic ethanol due to the great energy demand of ethanol distillation (Galbe et al., 2007; 

Larsen et al., 2008). Production of fermentable sugars from biomass materials is an important 

step for biobased chemicals and biofuels production. For lignocellulosic materials, sugars are 

primarily derived from hemicellulose and cellulose components. High glucose concentration 

after hydrolysis is preferable for the fermentation process to achieve high ethanol titer. This can 

be achieved by using high solids concentration (20-30% w/w) during the hydrolysis step. The 

use of very high gravity (VHG) fermentations (mashes with more than 27% (w/w) dissolved 

solids) improves plant productivity and process economics by reducing capital, energy, 

distillation and labour costs (Bayrock and Ingeldew., 2001). The high solids loading will also 

contribute to the reduction of water use for ethanol production (Gerbens-Leenesetal. 2009).  

High solid loading means higher lignin content in the reaction mixture, which in turn 

leads to greater enzyme inhibition and ultimately lower cellulose hydrolysis. Lignin limits the 

rate of enzymatic hydrolysis by acting as a physical barrier, preventing the digestible parts of the 

substrate to be hydrolyzed (Chang and Holtzapple, 2000).  Besides, lignin appears to 

reduce cellulose hydrolysis by non-productively binding cellulolytic enzymes (Esteghlalian et 

al., 2001).  
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This necessitates the choice of efficient pretreatment method that can effectively remove 

lignin from lignocellulosics.  Efficient pretreatment of the biomass improves cellulose 

accessibility to enzymes by removing hemicellulose, lignin and/or reducing crystallinity of 

cellulose. The alkali pretreatment along with steam explosion is very well known in effectively 

removing lignin and its degradation products, thereby exposing the cellulose and hemicellulose 

components to the enzymes (Sun and Chang, 2003). Alkaline treatment has the benefits of less 

sugar degradation and many of the caustic salts can be recovered and/or regenerated ((Mcdonald 

et al., 1983; Elshaefi et al., 1991). Alkaline pretreatment also removes acetyl and various uronic 

acid substitutions on hemicellulose that reduce the accessibility of hemicellulose and cellulose to 

enzymes (Chang and Holtzapple,  2000). The extent of delignification varies depending on the 

biomass type. Therefore,  it is important to study the effect of pretreatment on the biomass 

feedstocks in terms of its compositional changes and subsequent enzymatic hydrolysis. 

In cellulosic ethanol process, 35-50% of the total production cost is contributed by the 

biomass feedstock cost (Foust et al., 2007), which, in turn, is affected by a number of factors 

such as biomass species, yield, location, climate, local economy and the systems used to harvest, 

collect, pre-process, transport and handle the material (Perlack et al., 2006). Logistics associated 

with moving the biomass from land to conversion facility can account for 50-75% of the 

feedstock cost (Hess et al., 2006). Bulk density and flowability are two major key parameters 

that must be addressed to reduce these costs. Increasing biomass bulk density and converting it to 

a standardized bulk flowable form near feedstock source can contribute toward reducing these 

costs (Hess et al., 2007). 

Grinding biomass is one way to increase the bulk density as compared to baled biomass 

(Wright et al., 2006);  However grinding adversely affects biomass flowability and hinders its 
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proper unloading, transport and storage in a biorefinery. Additional conveyer systems will be 

needed to overcome flowability issues and this makes grinding a costly option (Hess et al, 2006). 

Baling biomass is expensive and the bales have low bulk densities and tend to be difficult to 

handle in large scale. Bulfk density can be increased by pelleting but pelleting requires higher 

energy requirements than grinding because steam is needed to gelatinize starch. There is a 

possibility to produce pellets with high moisture levels without the use of steam. It can increase 

the bulk density of biomass to the levels of corn grain so that same handling equipment can be 

utilized without any additional cost. The bulk density of biomass pellet is 4–10 times that of as 

raw biomass (Karwandy, 2007). Loose biomass in its raw form has bulk density in the range of 

64-96kg/m
3
, which can be increased to 128-160kg/m

3
 when biomass is ground to 300 microns. 

Chopping and pelleting of biomass can results in high bulk density of pellets in the range of 320-

480kg/m
3
. Ground and pelletized biomass flows like cereal grains and can use the existing well-

developed handling infrastructure for grains (Cushman et al., 2003). 

Pelleting of biomass is usually accomplished by applying heat and pressure to bind the 

particles. Additionally, a lot of heat is generated during the pelleting process, which can affect 

the biomass chemical and physical properties. These changes in turn may affect enzymatic 

hydrolysis and fermentation during ethanol production. Ethanol production from pelleted 

materials should be analyzed to determine if pellets produce levels of ethanol comparable with 

current feedstock pre-processing methods. If not, then may pellets require development of new 

processing technologies. 

The thesis has two parts. In the first part, the objectives were: 

To compare ethanol production efficiency of alkali pretreated wheat straw (Triticum 

aestivum), forage sorghum stover (sorghum bicolor), switchgrass (Panicum virgatum), 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4YH490C-6&_user=508790&_coverDate=07%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000025157&_version=1&_urlVersion=0&_userid=508790&md5=6cd5e8db887baa98fa84eadf612a0609#bib23
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miscanthus (Miscanthus giganteus) and sweet sorghum baggase (Sorghum bicolor) using a 

sequential high solid saccharification and fermentation process. In the second part, the 

effectiveness of pelleting wheat straw and big bluestem (Andropogon gerardii Vitman) on 

ethanol production efficiency was examined. The Thesis chapters 2 through 5 describe the two 

objectives. Chapter 2,3, 4 deals with pretreatment, enzymatic hydrolysis of pretreated material at 

high solid levels, fermentation of enzymatic hydrolysate, respectively.. Chapter 5 deals with the 

effect of pelleting on the ethanol production. References cited in chapter 1 through 5 are listed in 

pages 48-53.   

  



 

7 
 

CHAPTER 2- Alkali pretreatment of different biomass 

feedstocks 

 

Introduction 

Lignocellulose is the primary building block of plant cell walls. Plant biomass is mainly 

composed of cellulose, hemicellulose, and lignin, along with smaller amounts of pectin, protein, 

extractives (soluble nonstructural materials such as nonstructural sugars, nitrogenous material, 

chlorophyll, and waxes), and ash (Jorgensen et al., 2007). The composition of these constituents 

can vary from one plant species to another. For example, hardwood has greater amounts of 

cellulose, whereas wheat straw and leaves have more hemicelluloses (Table 2.1.). 

Table 2.1. The cellulose, hemicellulose and lignin contents in some common agricultural 

residues and wastes  

Lignocellulosic material Cellulose (%) Hemicellulose(%) Lignin(%) 

Hardwood stem 40-55 24-40 18-25 

Softwood stems 45-50 25-35 25-35 

Nutshells  25-30 25-30 30-40 

Corn cobs  45 35 15 

Grasses  25-40 35-50 10-30 

Paper 85-99 0 0-15 

Wheat straw 50 30 15 

Sorted refuse  60 20 20 

Leaves 15-20 80-85 0 

Cotton seed hairs 80-95 5-20 0 

News paper 40-55 25-40 18-30 

Waste papers from 

chemical pulp 

60-70 10-20 5-10 

Coastal Bermuda grass 25 35.7 6.4 

Switchgrass  45 31.4 12 

Source: Sun and Cheng (2003) 
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In addition, the ratios between various constituents within a single plant vary with age, 

stages of growth, and other conditions (Perez et al., 2002). The secondary cell wall of plants 

contains cellulose microfibrils and hemicelluloses, which are embedded in the lignin matrix. (Fig 

2.1). The lignin is resistant to microbial degradation and protects cellulose and hemicellulose by 

the microorganisms present in the nature. 

 

 

Fig2.1. Grass secondary cell wall (CW) structure. Components are arranged so that the 

cellulose microfibrils and hemicelluloses chains are embedded in lignin. Specific linkages and 

components of non-core lignin are shown for a generalized grass secondary CW. Non-core lignin 

components include p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, sinapic acid and 

cinnamic acid. 

Source: http://digital.library.okstate.edu/OAS/oas_image_files/v72/p51_56Fig1.jpg 

Cellulose is the main structural constituent in plant cell walls and is found in an 

organized fibrous structure. This linear polymer consists of D-glucose subunits linked to each 

http://digital.library.okstate.edu/OAS/oas_image_files/v72/p51_56Fig1.jpg
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other by β-(1,4)-glycosidic bonds. Cellobiose is the repeat unit established through this linkage, 

and it constitutes cellulose chains (Fig 2.2.). 

 

Fig 2.2 Chemical structure of cellulose 

Source (http://www.chemistry.oregonstate.edu/courses/ch130/latestnews/hycell.gif) 

The long-chain cellulose polymers are linked together by hydrogen and Van der Waals 

bonds, which cause the cellulose to be packed as microfibrils. Hemicelluloses and lignin cover 

the microfibrils. Cellulose in biomass is present in both crystalline and amorphous forms. 

Crystalline cellulose comprises the major portion of cellulose, whereas a small percentage of 

unorganized cellulose chains form amorphous cellulose. Cellulose is more susceptible to 

enzymatic degradation in its amorphous form (Beguin and Aubert, 1994). Unlike cellulose, 

hemicellulose has branches with short lateral chains consisting of different sugars. These 

monosaccharides include pentoses (xylose, rhamnose, and arabinose), hexoses (glucose, 

mannose, and galactose), and uronic acids (e.g., 4-o-methylglucuronic, D-glucuronic, and D-

galactouronic acids). The backbone of hemicellulose is either a homopolymer or a heteropolymer 

with short branches linked by β-(1,4)-glycosidic bonds and occasionally β-(1,3)-glycosidic bonds 

(Kuhad et al., 1997). 

Lignin is a complex, large molecular structure containing cross-linked polymers of phenolic 

monomers. It is present in the primary cell wall, imparting structural support, impermeability, 

Cellobiose unit 

http://www.chemistry.oregonstate.edu/courses/ch130/latestnews/hycell.gif
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and resistance against microbial attack (Perez et al., 2002). Three phenyl propionic alcohols exist 

as monomers of lignin: coniferyl alcohol (guaiacyl propanol), coumaryl alcohol (p-

hydroxyphenyl propanol), and sinapyl alcohol (syringyl alcohol). Alkyl−aryl, alkyl−alkyl, and 

aryl−aryl ether bonds link these phenolic monomers together. In general, herbaceous plants such 

as grasses have the lowest contents of lignin, whereas softwoods have the highest lignin contents 

(Jorgensen et al., 2007).  

Chemical composition of lignocellulosic feedstocks is a key factor affecting efficiency of 

biofuel production during conversion processes (Hamelinck et al., 2005; Hames et al., 2003). 

The structural and chemical composition of lignocellulosic feedstocks is highly variable because 

of genetic and environmental influences and their interactions. 

The digestibility of cellulose present in lignocellulosic biomass is hindered by many 

physical, structural and compositional factors (Kumar et al., 2009). The presence of lignin and 

hemicellulose makes the accessibility of cellulase enzymes to cellulose more difficult, thus 

reducing the efficiency of the hydrolysis process. Pretreatment is required to alter the size and 

structure of the biomass, as well as its chemical composition, so that the hydrolysis of the 

carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. 

Chang and Holtzapple (2000) reported correlations between enzymatic digestibility and three 

structural factors: lignin content, crystallinity, and acetyl content. Their results indicate that an 

effective lignocellulose treatment process should remove all of the acetyl groups and reduce the 

lignin content to about 10% in the treated biomass. Pretreatment process, by removal of lignin 

and hemicellulose, reduction of cellulose crystallinity, and increase of porosity, can significantly 

enhance enzymatic hydrolysis lignocellulosic by eliminating non-productive adsorption sites and 

by increasing access of enzymes to cellulose and hemicellulose (Kumar et al., 2009).  



 

11 
 

Alkali pretreatment processes utilize lower temperatures and pressures than other 

pretreatment technologies (Mosier et al., 2005). Compared with acid processes, alkaline 

processes cause less sugar degradation, and many of the caustic salts can be recovered and/or 

regenerated (Mcdonald et al., 1983; Elshaefi et al., 1991). Kong et al. (1992) reported that alkali 

remove acetyl groups from hemicellulose (mainly xylan), thereby reducing the steric hindrance 

of hydrolytic enzymes and greatly enhancing carbohydrate digestibility. They concluded that the 

sugar yield in enzymatic hydrolysis is directly associated with acetyl group content. Alkaline 

pretreatment is basically a delignification process, in which a significant amount of 

hemicellulose is solubilized. The mechanism of action is believed to be saponification of 

intermolecular ester bonds cross-linking xylan hemicelluloses and other components, for 

example, lignin and other hemicelluloses (Zheng et al., 2009). Sodium, potassium, calcium, and 

ammonium hydroxides are suitable alkaline pretreatment agents. Of these four, sodium 

hydroxide has been studied the most (Soto et al., 1994). Dilute NaOH treatment of 

lignocellulosic materials has been found to cause swelling, leading to an increase in internal 

surface area, a decrease in the degree of polymerization, a decrease in crystallinity, separation of 

structural linkages between lignin and carbohydrates, and disruption of the lignin structure (Fan 

et al., 1987). The digestibility of NaOH-treated hardwood was reported to increase from 14% to 

55% with a decrease of lignin content from 24-55% to 20%. Dilute NaOH pretreatment was also 

found to be effective for the hydrolysis of straws with relatively low lignin contents of 10-18% 

(Bjerre et al., 1996). Hu et al., (2007) found that alkali loading of 0.2 g NaOH/g biomass was 

optimum for maximum lignin removal from switchgrass in a radio frequency based dielectric 

heating assisted NaOH treatment at 90
o
C, and leveled off in the range of 0.2 to 0.3 g NaOH/g 

biomass. Wang et al., (2010) also found that delignification of coastal bermuda grass increased 
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upto 2% NaOH pretreatment at 121
0
C for 30 minutes and levels off thereafter. Hence 2% (w/v) 

NaOH at 121
0
C was taken as the optimized conditions for pretreatment and for comparing its 

effect on all the biomass feedstocks in the present study.  

There are very few previous studies on the effect of alkaline pretreatment on different 

biomass feedstocks on the extent of delignification and compositional changes. This study was 

therefore undertaken to evaluate the effect of alkali pretreatment on the chemical composition of 

biomass feedstocks especially on lignin which is a major hindrance for the enzymatic hydrolysis 

of cellulose and hemicellulose. This study will also help to determine whether major process 

parameter changes will be needed for enzymatic hydrolysis, while using different biomass 

feedstocks interchangeably in a commercial plant.  

Material and Methods 

Feedstocks 

Two varieties of forage sorghum (Sorghum bicolor) known as Brown Mid Rib (BMR) 

sorghum grown in Riley county (RL) and Doniphan county (DP), Kansas;  switchgrass (Panicum 

virgatum), miscanthus (Miscanthus giganteus) and sorghum baggase (Sorghum bicolor) were 

obtained from research plots in 2007-2008 managed by the Department of Agronomy, Kansas 

State University. The two sorghum varieties were kept separate during the study to see the effect 

of location on the ethanol production. Additionally, wheat straw was obtained from local fields 

in Manhattan, Kansas. All the biomass samples were chopped to small pieces and transported to 

laboratory in small gunny bags or paper bags. The chopped samples were ground in a hammer 

mill (Eliminator Hammermill Bliss Ind. Inc., Ponca, OK) to a small particle size capable of 

passing through 600µm mesh size.  
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Alkali Pretreatment 

Ground biomass (30 g) of each crop was placed in a 1000ml Erlenmeyer flask and 300 ml 

of 2% (w/v) NaOH solution was added to it. The flask was cotton plugged and autoclaved at 

121
o
C for 30 min. The material obtained after treatment was dark in color which was then 

filtered through muslin cloth and washed under running distilled water until no color was visible 

in the wash water. The neutralized residue was pressed manually to remove excess water and 

used for the enzymatic hydrolysis. A small portion of the treated biomass was dried in the oven 

at 70
o
C for 24 h and ground to fine particle size in a Laboratory Mill (3303, Perten Instruments, 

springfield, IL) for the compositional analysis studies (see below). All the experiments were 

replicated three times during 2009-2010. 

Compositional analysis 

The moisture content of the biomass feedstocks was determined by the Infrared Moisture 

analyser, (Model IR35, Denver Instruments, Germany). The carbohydrate content and lignin of 

each biomass was determined by a two-step quantitative hydrolysis according to NREL/TP-510-

42618 (www.nrel.gov/biomass/pdfs/42618). In a 125 ml Erlenmeyer flask, 0.3g dried, ground 

sample was taken and hydrolyzed by adding 3 ml of 72% sulphuric acid and agitated for 1h. This 

was followed by a second hydrolysis at 121
o
C in 4% (w/w) sulphuric acid (adjusted by diluting 

the above mixture with 84ml water) for 1 hour in an autoclave. The hydrolysate was then filtered 

through Whatman filter paper No. 1 to remove solids from the liquid. The filtrate was neutralized 

by slowly adding calcium carbonate while shaking the flasks. Each sample was then centrifuged 

to remove calcium carbonate to get a clear liquid. The liquid is further filtered through 0.45µm 

RC membranes into the HPLC vials and placed in the autosampler tray (Prominence, SIL-20AC) 

http://www.nrel.gov/biomass/pdfs/42618
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and maintained at 4
o
C. Sugars were quantified by the binary HPLC system (Shimadzu Scientific 

Instruments, Columbia, MD) using the Refractive Index (RI) detector (RID-10A) and 

Phenomenex RPM monosaccharide column (300 x 7.8 mm, Phenomenex, USA). Deionised 

water was collected from the Milli Q (Direct Q, Millipore Inc, Billerica, Massachusetts), 

degassed using ultrasonicator (FS 60, Fisher Scientific, Pittsburgh, PA) and was used as mobile 

phase. The column oven (Prominence CTD-20A) was maintained at 80
o
C, RID at 65

o
C and the 

mobile phase was pumped at a flow rate of 0.6 ml/ min through the binary pump (Prominence 

LC-20AB). The glucan and xylan content was obtained by multiplying glucose and xylose 

content with a factor of 0.9 and 0.88 as correction for the water molecule that is added during 

hydrolysis of glucan and xylan respectively. The acid insoluble residue (AIR) retained on the 

filter paper was removed with spatula and put in a pre-weighed porcelain crucible. The crucible 

was dried in a hot air oven (Fischer Scientific) at 105
o
C for 24 h. The crucibles containing dried 

AIR were weighed again and kept in a muffle furnace (Fischer Scientific, US) at 575
o
C for 24 h. 

The crucibles with ash were removed from the furnace into a dessicator and weighed accurately 

after cooling for 30 minutes. Percentage acid insoluble lignin (%AIL) was calculated using the 

following formula:  

 

 Percent delignification was calculated by using the formula: 
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Data Analysis 

All the experiments were done in triplicates. Levene’s test was performed to test the 

homogeneity of variances using (SAS 2002-2003). The variance was found to not differ 

significantly hence there was no need to transform the data and different treatments were 

compared using one-way ANOVA, and differences among means were separated using Ryan-

Einot-Gabriel-Welsch test (REGWQ). All the difference were considered significant at the α = 

0.05 level.  

Results and Discussion 

Composition 

The glucan and xylan contents were in the range of 38.8-41.7% (w/w) and 16.8-22.3% 

(w/w), respectively (Table 2.3).  The highest glucan was found in wheat straw and lowest in 

sorghum baggase, while the highest xylan was observed for switchgrass and lowest for sorghum 

(BMR-DP). The glucan content did not vary significantly between the biomass sources, while 

differences were found in the xylan content of different biomass types. Two sorghum varieties 

were found to have different xylan contents. The difference observed in chemical composition 

might be due to the genetic and environmental factors. The acid insoluble lignin varied 

significantly from 9.0-18.3 % (w/w). Forage sorghum varieties BMR-RL and BMR-DP showed 

relatively very low lignin content as compared to other biomass feedstocks. As the lignin 

removal is the primary purpose of pretreatment, hence these varieties might prove to be better in 

terms of less severe pretreatment conditions and hence lower overall costs than other feedstocks. 

Wheat straw was found to have highest lignin content. Compositions of various herbaceous 

biomass feedstocks from a number of sources was summarized and mean value is reported by 
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Lee et al. (2007) and presented in Table 2.2. Our results compared well with the previous results. 

The mean values for different sources from around the world varied slightly, which is expected. 

Also the hemicellulose content is lower in our results because xylan reported in our study  

includes only xylose sugars whereas in the table values for xylose and other sugars, were 

reported in the hemicellulose component.  

Table 2.2 Composition of herbaceous feedstocks (Source: Lee et al., 2007) 

Biomass feedstock Cellulose % (w/w) Hemicellulose% 

(w/w) 

Lignin % (w/w)
a
 

Wheat straw 38 29 15 

Miscanthus 43 24 19 

Switchgrass 37 29 19 

Forage sorghum 34 17 16 

Sweet sorghum 23 14 11 

All the values are mean values obtained from a number of sources. 

*a = Lignin is total lignin (acid soluble lignin + acid insoluble lignin) 

 

Effect of pretreatment on composition 

Alkali treatment caused a relative increase in glucan and xylan content of all the biomass 

samples as a result of removal of lignin. (Table 2.4).  Hemicellulose solubilization displayed an 

obvious difference from cellulose degradation during sodium hydroxide pretreatment of all 

biomass types, primarily because hemicellulose is more vulnerable by chemical pretreatment 

than cellulose (Schmidt and Thomsen, 1998). The results indicate that lignin removal and xylan 

degradation account for the major parts of total solid loss during sodium hydroxide pretreatment. 

The pretreated feedstocks did not vary significantly in terms of glucan, xylan and lignin content. 

The difference observed in xylan and lignin contents between untreated biomass types 

disappeared after treatment due to removal of xylan and lignin to different extents. Highest 
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delignification was observed for the sorghum BMR-DP (81.3% w/w) followed by the miscanthus 

(79.9% w/w), while the lowest was observed for the sorghum baggase (65.4% w/w). Our results 

are comparable to the results obtained by Wang et al. (2010) observed 82.1% (w/w) of 

delignification coastal Bermuda grass (CBG) pretreated at 10% substrate level using 2% NaOH 

121
o
C for 30 min and our results showed similar levels of delignifiation.  The extent of 

delignification varied significantly among feedstocks. It may be due to the difference in 

structural arrangement and chemical bonding of these components among different biomass 

types. The effectiveness of alkali pretreatment varies with the substrate and treatment conditions. 

In general, alkali pretreatment is more effective on hardwood, herbaceous crops, and agricultural 

residues with low lignin content than on softwood with high lignin content (Bjerre et al., 1996). 

 

Conclusions 

The alkali pretreatment of the biomass feedstocks were done at 10% (w/v) substrate 

concentration with 2% NaOH solution at 121
o
C. It can be concluded that glucan and xylan 

content became similar after pretreatment hence different biomasses can be easily interchanged 

for the enzymatic hydrolysis step without much modification in terms of initial substrate 

concentration. However, lignin content of feedstocks differed significantly for the tested biomass 

types. Hence pretreatment conditions need to be adjusted accordingly, particularly for low lignin 

containing biomass types such as sorghum BMR in which case less severe conditions can be 

applied to get the same delignification thereby reducing the cost of pretreatment. Alkali 

treatment was found to effectively remove lignin from all the biomass types. Because lignin 

impedes enzymatic hydrolysis;removal of lignin through pretreatment allowed access to the use 

of high substrate concentration needed for enzymatic hydrolysis. Detailed study of structural 
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changes at the microscopic levels using Scanning electron microscopy (SEM) and X-Ray 

diffraction can help understanding the difference in the delignification of different feedstocks. 
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Table2.3 Composition of raw biomass feedstocks 

Biomass Type Components (%, w/w) 

 Glucan
a
 Xylan Acid insoluble lignin 

   

Wheat straw 41.7 ± 1.3 22.3 ± 0.6a 18.3 ± 0.5a 

Miscanthus 39.7 ± 0.5 21.9 ± 0.6a 17.2 ± 0.3ab 

Switchgrass 40.2 ± 1.3 22.3 ± 0.74a 16.3 ± 0.8ab 

Sorghum brown mid rib 

(BMR-RL) 

40.1 ± 0.1 19.9 ± 0.4b 10.4 ± 0.2c 

Sorghum brown mid rib 

(BMR-DP) 

39.7 ± 0.6 16.8 ± 0.2c 9.0 ± 0.4c 

Sorghum baggase 38.8 ± 1.5 18.9 ± 0.1b 15.6 ± 0.7b 

Each mean is based on three replications 

Means with in the column followed by different letters are significantly different (p < 0.005; 

REGWQ) 
a 
The glucan content was not significantly different among the biomass materials (F= 0.90; df = 

5,12; P = 0.51; one way ANOVA) 
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Table 2.4 Effect of alkali treatment on the composition of different biomass feedstocks 

Biomass Type Components (%, w/w) 

Glucan
a
 Xylan

b 
Acid insoluble 

lignin
c 

delignification 

    

Wheat straw 61.4 ± 2.4 23.8 ± 4.0 3.5 ± 0.2 68.0 ± 0.8bc 

Miscanthus 60.5 ± 3.1 24.1 ± 2.1 3.5 ± 0.4 79.9 ± 1.6a 

Switchgrass 58.2 ± 1.0 22.5 ± 0.6 3.2 ± 0.3 65.9 ± 1.1dc 

Sorghum brown 

mid rib (BMR-

RL) 

58.9 ± 3.5 26.7 ± 2.6 3.0 ± 1.4 69.2 ± 0.7b 

Sorghum brown 

mid rib (BMR-

DP) 

57.7 ± 2.8 24.6 ± 0.4 2.9 ± 1.1 81.3 ± 1.0a 

Sorghum 

baggase 

59.9 ± 3.1 24.8 ± 1.3 2.3 ± 0.1 65.4 ± 0.5d 

Each mean is based on three replications 

Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ) 
a 
The glucan content was not significantly different among the biomass materials (F= 0.77; df = 

5,12; P = 0.58, one way ANOVA) 
b 

The xylan content was not significantly different among the biomass materials (F= 0.1.01; df = 

5,12; P = 0.45; one way ANOVA) 
c
 The acid insoluble lignin content was not significantly different among the biomass materials 

(F= 1.0; df = 5,12; P = 0.46; one way ANOVA) 
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CHAPTER 3- Enzymatic hydrolysis of alkali pretreated biomass 

feedstocks residues using cellulase enzyme complex 

Introduction 

Cellulose is the most abundant organic material on earth. It has huge potential to serve as 

a renewable source of energy and carbon to meet the burgeoning demand for fuels and 

chemicals. One of the chief roadblocks for its utilization is the recalcitrance of lignocellulosic 

biomass toward hydrolysis to yield constituent sugars, a primary requirement for processing 

them further to desired products (Himmel et al., 2007). In nature, what is one of the most 

important process for carbon recycling, is carried out by some fungi and bacteria. Cellulolytic 

fungi produce a host of hydrolases, collectively referred to as cellulase enzymes complex, which 

acts in tandem to progressively breakdown cellulose. Bacteria have complex cellulase systems 

called polycellulosomes organelles that are exposed on the bacterial cell surface and aid in 

efficient uptake of the released glucose by preventing loss by diffusion (Zhang and Lynd, 2004) 

The widely accepted mechanism for enzymatic hydrolysis involves synergistic actions by 

endoglucanase (EC 3.2.1.4), exoglucanase or cellobiohydrolase (EC 3.2.1.91),and β-glucosidase 

(EC 3.2.1.21). Endoglucanase hydrolyze accessible intramolecular β-1-4-glucosidic bonds of 

cellulose chains randomly to produce new chain ends; exoglucanase progressively cleaves 

cellulose chains at the ends to release soluble cellobiose or glucose; and β-glucosidase hydrolyze 

cellobiose to glucose. All these enzymes work synergistically to hydrolyze cellulose by creating 

new accessible sites for each other removing obstacles and relieving product inhibition (Eriksson 

et al., 2002; Valjamae et al., 2003). 
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Enzymatic hydrolysis of lignocellulosic is confronted by a number of obstacles that diminish the 

enzyme performance as shown in Fig 3.1.  

 

Source: Jorgensen et al. (2007) 

Fig 3.1 Simplistic overview of factors affecting the enzymatic hydrolysis of cellulose (symbolized by 

straight lines). are: 1. Product inhibition of β-glucosidases and cellobiohydrolases by glucose and 

cellobiose, respectively; 2. Unproductive binding of cellobiohydrolases onto a cellulose chain. Due to the 

processivity of cellobiohydrolases and their strong binding of cellulose chain in their catalytic core, 

obstacles can make the enzyme halt and become unproductively bound. 3 and 4. hemicellulose and lignin 

associated with or covering the microfibrils prevent the cellulases from accessing the cellulose surface 5. 

Enzymes (both cellulase and hemicellulases) can be unspecifically adsorbed onto lignin particles or 

surfaces 6. Denaturation or loss of enzyme activity due to mechanical shear, proteolytic activity or low 

thermostabilty  

 

For almost any application, high sugar concentrations after the hydrolysis are preferable 

for the fermentation process. This will increase the product concentration and facilitate the 

downstream   processing and product recovery. However, the use of high substrate 

concentrations increases the level of product inhibition, which results in lower performance of 
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the enzymes. The presence of lignin, which shields the cellulose chains and adsorbs the enzymes, 

is also a major obstacle for efficient hydrolysis. Thus effective pretreatment has to be applied to 

remove lignin. Tengborg et al., (2001) found that washing the pretreated material results in faster 

conversion of cellulose due to the removal of inhibitors. The present study employed the alkali 

pretreatment and washing of pretreated material to remove inhibitors so that high substrate 

concentrations upto 20% (w/v) can be used to get high sugar concentrations. Performing 

hydrolysis process at high initial substrate concentrations above 10-15% has also been 

technically difficult, particularly at laboratory scale due to initial high viscosity, which makes the 

mixing difficult and results in enhanced mass transfer limitations (Mohagegi et al., 1992; Fan et 

al., 2003; Fan and Lynd, 2007). In our study, high speed shaking (150 rpm) is employed to 

properly mix the enzyme and substrate and attain higher conversion efficiency. 

Material and methods 

Enzymes 

The enzymes used, NS50013 (cellulase complex) and NS50010 (β-glucosidase) were 

obtained from the Novozymes North America Inc. (Franklinton, NC) and were a part of their 

complete biomass hydrolysis kit. They were stored at 4
0
C in plastic bottles, in laboratory 

refrigerator. The enzyme activity of cellulase complex  was calculated in term of filter paper 

units (fpu) and that of  β-glucosidase in terms of Endoglucanase units (egu) using standard 

IUPAC method described by Ghose (1987).  One fpu is defined as the amount of enzyme that 

releases 1.0 µmol of reducing sugar equivalents in 1 min from Whatman No. 1 filter paper strips 

at 50
o
C and pH 4.8. One egu is defined as the amount of enzyme which releases 1.0 µmol of 

glucose units from cellobiose per min under the assay conditions. The activities of cellulase 
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complex and β-glucosidase were found to be 75fpu/ml and 250egu/ml, respectively. All 

colorimetric observations were recorded using the multiprocessor-based UV-Vis 

spectrophotometer (UV-1650 PC Shimadzu Scientific Instruments).  

Enzymatic hydrolysis 

Enzymatic hydrolysis was performed in 250ml screw cap conical plastic flasks. The 

moist pretreated residues were analyzed for their moisture content using Infrared moisture 

analyzer (Denver Infrared Moisture Analyser, IR35, Denver Instruments, Germany). The amount 

of moist pretreated residue (triplicate per sample) containing 10g of dry pretreated biomass was 

calculated using moisture data and added to each flask. The substrate concentration for the 

enzymatic hydrolysis was adjusted to 20% (w/w) using citrate buffer (50mM, pH 4.8). Sodium 

azide (0.3%, w/v) was added to the hydrolysis mixture to prevent microbial growth. Enzymes 

were added at a concentration of 25 fpu/g and 31.3 egu/g of dry pretreated biomass, respectively. 

The flasks were incubated at 50
o
C and 150 rpm in a controlled environment incubator shaker 

(Model Innova 2025, New Brunswick Scientific, Edison, NJ). Samples were collected at regular 

intervals of 24h for a period of 72h and analyzed for sugars. Enzyme and substrate blanks were 

run in the hydrolysis step and analyzed for sugars. They were found to contain no detectable 

sugars at all the time intervals.  

Data analysis 

Saccharification efficiency was calculated as: 
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 (The factor, f of 0.9 was used for glucose and 0.88 for xylose) 

All the experiments were done in triplicates. Levene’s test was performed to test the 

homogeneity of variances using (SAS 2002-2003). The variance was found to not differ 

significantly hence there was no need to transform the data and different treatments were 

compared using one-way ANOVA, and differences among means were separated using Ryan-

Einot-Gabriel-Welsch test (REGWQ). All the difference were considered significant at the α = 

0.05 level.  

Results and discussion 

Saccharification of different biomass feedstocks 

The saccharification efficiency of different pretreated biomass feedstocks as a result of 

hydrolysis by cellulase enzyme complex at high solids loading of 20% (w/v) is shown in table 

3.1. The saccharification increased significantly from 24 h up to 48 h and then remained constant 

at 72 h in all the feedstocks (Fig. 3.2). Hence, 48 h can be taken as the optimum time for the 

enzymatic hydrolysis of all the biomass types. Our results are in line with results of Brijwani et 

al., (2010) who reported a sharp increase in saccharification of 1.0% (w/v) NaOH treated rice 

straw upto 48 h of hydrolysis after which the saccharification increased very slowly to reach a 

final level of 0.3 g sugars per gram of dry substrate. Percent saccharification varied significantly 

among all the biomass sources at all the time intervals taken. Glucan saccharification varied from 

56.4-72.6 % (w/w) which corresponds to glucose levels of 0.45-0.34 g/g of dry substrate. At 48 

h, the highest saccharification was observed in case of wheat straw and the lowest for the 

miscanthus. Lu et al., (2010) reported around 55.9% cellulose conversion for steam exploded and 

washed corn stover at 20% (w/w) solids loading in 48 h.  Similar trends were observed for the 
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xylan saccharification with an increase up to 48 h and thereafter a slight decrease at 72 h (Fig. 

3.3). Xylan saccharification ranged from 48.3-71.0% (w/w) with maximum in case of wheat 

straw and minimum in case of miscanthus. The glucan (63.2 %) and xylan saccharification (53.3 

%) observed in first 24 h were higher than previously reported results of Jorgensen et al., (2007) 

where they observed only 32% and 49% (w/w) cellulose and xylose conversion for the steam 

pretreated wheat straw in a counter current flow reactor in 24 h at 20% (w/w) solids loading. 

Kaar and Holtzapple,  (2000) reported 60% and 47% cellulose and xylose conversion for lime 

pretreated corn stover in 72 h of hydrolysis at enzyme loadings of 25fpu/g dry biomass. As the 

lignin content was similar in all the pretreated biomass sources, the difference observed in the 

saccharification may reflect differences in qualities of lignin, cellulose and hemicellulose and 

their structural arrangement in the treated biomass, which might have affected cellulase enzyme 

binding and its action on the various biomass types. Esteghlalian et al. (2001) reported that non 

productive binding of cellulase to lignin is influenced by the nature of the substrate.  

The saccharification was not complete in any of the biomass. It may be due to either β-

glucosidase inhibition by glucose or cellobiose or due to relative increase in the lignin content of 

the biomass as a result of hydrolysis of cellulose and hemicelluloses in the pretreated residue. 

Kaya et al. (2000) reported that cellulase has a higher binding affinity toward lignin than toward 

carbohydrates. The β-glucosidases from typical cellulase-producing microorganisms are to some 

extent also inhibited by glucose (Ki of most β-glucosidase is 1-14 mmol L
-1

 glucose) (Decker et 

al., 2000; Yun et al., 2001). This results in accumulation of cellobiose, which is a potent inhibitor 

of cellobiohydrolases (Holtzapple et al., 1990; Tolan et al., 1999). Kristensen et al. (2009) 

reported that neither the lignin content nor the hemicelluloses derived inhibitors affected the 

sugar yield in high solid saccharification; rather it was the inhibition of enzyme due to adsorption 
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by hydrolysis products that appear to be the main cause of the decreasing yields. Oberoi et al. 

(2010) reported the deposition of lignin globules on the surface of cellulose microfibrils by 

scanning electron microscopy, after acid pretreatment which resulted in low amount of 

saccharification of rice straw. If different biomass feedstocks have to be used interchangeably in 

a commercial conversion facility, change in the process conditions like enzyme dosage, substrate 

concentration, pretreatment method etc. have to be considered to obtain identical sugar yield and 

subsequently the similar ethanol concentration and productivity. Further studies involving the 

integrated use of techniques like X-Ray Diffraction (XRD), fourier transformation infrared 

(FTIR) spectroscopy and microscopic imaging (scanning electron microscopy, transmission 

electron microscopy), mass spectrophotometery (MS) may help in understanding the mechanism 

of enzyme action on the different biomass at the physical and chemical structural levels by 

revealing important facts about enzyme interaction with the lignin and carbohydrates during the 

reaction. For example FTIR and MS can provide useful information about the transient chemical 

species formed during the hydrolysis while XRD and imaging can help elaborate structural 

changes in cellulose, hemicelluloses and lignin polymers at different stages of hydrolysis. 

 

Conclusions 

Five different biomass materials after alkali pretreatment were evaluated for their 

saccharification potential using commercial cellulase at high substrate loading of 20% (w/v) with 

high speed mixing. All the pretreated biomass materials were hydrolyzed efficiently to yield a 

high saccharification efficiency and sugar concentration in the hydrolysate. The observed 

differences in saccharification efficiency for the different materials tested may be attributed to 
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the quantity and quality of lignin and its degradation products. Because lignin differs in terms of 

its constituent monomers and their arrangement with carbohydrates within each biomass 

material, the rate of enzyme activity and hydrolysis rates may have varied during 

saccharification. The study confirmed that under identical conditions differences in 

saccharification among different biomass materials is unavoidable. If different biomass materials 

have to be used interchangeably in a commercial conversion facility, change in the process 

conditions like enzyme dosage, substrate concentration and pretreatment method among others 

should be considered or altered to obtain identical sugar and ethanol yields. Further studies 

involving the integrated use of techniques like X-Ray Diffraction (XRD), fourier transformation 

infrared (FTIR) spectroscopy and microscopic imaging (scanning electron microscopy, 

transmission electron microscopy), mass spectrophotometery (MS) may help in understanding 

the mechanism of enzyme action on the different biomasses at the physical and chemical 

structural levels by revealing important facts about enzyme interaction with the lignin and 

carbohydrates during the reaction. For example FTIR and MS can provide useful information 

about the transient chemical species formed during the hydrolysis while XRD and imaging can 

help elaborate structural changes in cellulose, hemicelluloses and lignin polymers at different 

stages of hydrolysis.  
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Table 3.1 Comparison of enzymatic hydrolysis of different biomass feedstocks  

Biomass Saccharification (% w/w),  glucan basis Saccharification  (% w/w), xylan basis 

24h 48h 72h 24h 48h 72h 

Wheat straw  63.2 ± 1.7a 72.64 ± 1.0a 71.2 ± 0.6a 53.3 ± 0.8a 71.0 ± 0.7a 69.5 ± 0.5a 

Miscanthus  35.7 ± 1.3e 56.4 ± 0.3c 55.2 ± 0.3c 34.4 ± 1.2cd 48.3 ± 1.2c 47.4 ± 0.7c 

Switchgrass  46.0 ± 0.5c 56.9 ± 0.9c 56.0 ± 1.4c 37.6 ± 0.1c 48.7 ± 1.5c 48.1 ± 1.3c 

Sorghum brown mid rib 

(BMR-RL)  

42.4 ± 0.1cd 62.5 ± 0.2b 61.7 ± 0.3b 33.2 ± 0.2d 57.0 ± 0.3b 56.0 ± 0.3b 

Sorghum brown mid rib 

(BMR-DP)  

40.2 ± 1.5d 60.6 ± 1.1b 59.9 ± 1.1b 35.0 ± 0.2dc 50.2 ± 0.2c 49.1 ± 0.4c 

Sorghum baggase 56.8 ± 0.3b 71.1 ± 0.6a 70.0 ± 0.1a 49.2 ± 1.6b 67.6 ± 2.3a 66.8 ± 2.5a 

Each mean is based on three replications 

Means with in a column followed by different letters are significantly different (p < 0.005; REGWQ; one way analysis of variance)
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Fig 3.2 Glucan saccharification of biomass feedstocks at different time intervals 
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Fig 3.3 Xylan saccharification of biomass feedstocks at different time intervals 
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CHAPTER 4- Fermentation of sugars derived by enzymatic 

hydrolysis of pretreated biomass feedstocks  

Introduction 

After the sugars have been released by the action of enzymes, the next step in the 

bioethanol production process is the fermentation of sugars to ethanol. Several bacteria, yeast 

and fungi have been reportedly used for the ethanol production. Historically, the most commonly 

used microbe has been yeast; and among the yeasts, Saccharomyces cerevisiae, which can 

produce ethanol at high concentration of 18% (w/v) in the fermentation broth, is the preferred 

one for most ethanol fermentation. This yeast can grow both on simple sugars, such as glucose, 

and on the disaccharide sucrose.  As with many microorganisms, S. cerevisiae metabolizes 

glucose by the Embden–Meyerhof Parnas (EMP) pathway. For every mole of glucose utilized two 

moles of ethanol are produced with a theoretical ethanol yield of 0.51g/g of glucose. The overall 

reaction can be summarized as: 

                                             

 

Contrary to sucrose and starch-based ethanol production, lignocellulose-based production 

is a mixed-sugar fermentation in the presence of inhibiting compounds,  low molecular weight 

organic acids, furan derivatives, phenolics and inorganic compounds, released and formed during 

pretreatment and/or hydrolysis of the raw material (Larsson et al., 2000). In 

ethanolic yeast fermentation, in-situ biological detoxification occurs when carbonyl compounds 

such as furans and phenolics, are reduced to the corresponding alcohols (Martin and 

EMP pathway Decarboxylation 

Dehydrogenation 
C6H12O6  

(Glucose) 
Pyruvic acid   2C2H5OH   + 

(Ethanol) 

 

2CO2    + 2ATP 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCW-4M4CMSD-1&_user=508790&_coverDate=12%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000025157&_version=1&_urlVersion=0&_userid=508790&md5=d59aea98087c3901eed7816b88d8cda0#bib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCW-4M4CMSD-1&_user=508790&_coverDate=12%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000025157&_version=1&_urlVersion=0&_userid=508790&md5=d59aea98087c3901eed7816b88d8cda0#bib52
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Jonsson., 2001; Horvath et al., 2003), which are less inhibitory to yeast (Taherzadeh et al., 2000). 

Due to its wide use in ethanol industry, robustness to tolerate inhibitory compounds and ethanol 

toxicity, Sacccharomyces cerevisiae Ferm Pro
TM

 (Danville, KY) was used in the present study to 

minimize the effect of different types of compounds released during the pretreatment and 

enzymatic hydrolysis. However, lignocellulosic raw materials, in particular hardwood and 

agricultural raw materials, can contain 5–20% (or more) of the pentose 

sugars xylose and arabinose, which are not fermented to ethanol by the Saccharomyces 

cerevisiae. Hydrolysates from lignocellulosic materials are generally low in nutrients and 

nitrogen. Pretreated wheat straw contains only around 0.4% total nitrogen on a dry weight basis, 

whereas mashes used in the traditional fuel ethanol production contains ten times more nitrogen 

(Jones and Ingledew, 1994; Linde et al., 2008). Wheat straw might contain sufficient inorganic 

salts and trace metals to support the yeast, but during the pretreatment process some of these may 

be extracted (Larsen et al., 2008). Considering the low availability of nutrients, the hydrolysate 

produced after enzymatic saccharification was supplemented with the extra nutrients like yeast 

extract and ammonium sulphate to maintain proper C:N ratio and supply sufficient minerals and 

cofactors for fermentation. 

In bioethanol production, the commercial feasibility of the process is an important factor. 

Very high solid content (30% and above) is widely used in fuel ethanol industry based on starch 

(Bayrock and Ingledew, 2001). Operation with high substrate loading will increase the product 

concentration and facilitate the downstream process and product recovery, which may have a 

significant effect on capital cost and operating cost due to reduced energy expenditure for 

distillation and decreases the number of operations to reach the same ethanol output. A report on 

Energy Efficiency and Renewable Energy shows that about 10% overall operation cost may be 
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reduced when the solid level was increased from 20% to 30% (Schell, 2005). Several studies also 

have demonstrated that the ethanol concentration should reach about 4% to 5% (w/v) to make the 

process economically feasible. It is reported that the energy demand reduced  by about two-thirds 

by increasing the initial ethanol concentration from 1% to 5% in a single distillation unit for final 

concentration of 94.5% (w/w) (Zacchi and Axelsson, 1989). In the present study, 20% solids 

were used in the enzymatic hydrolysis step to attain a final ethanol concentration between 4-5% 

(w/v). Also the effect of biomass composition and lignin concentration on the final ethanol 

concentration was evaluated. 

 

Material and Methods 

Yeast and Inoculum preparation 

Active dry yeast strain Saccharomyces cerevisiae (FermPro
TM 

)
 
was obtained from 

bioethanol production plant located in Scandia, Kansas. It was stored under refrigerated 

conditions (4
o
C).  For inoculum preparation, 2g of dry yeast was added to 250 ml of sterilized 

Yeast Peptone Dextrose (YPD) broth in an Erlenmeyer flask. The flask was incubated at 32
o
C 

for 24 hours after which the cell count of the broth was approximately10
9 

cells/ml.   

Fermentation of enzymatic hydrolysate 

After the enzymatic hydrolysis, the hydrolysate was centrifuged at 15000 rpm for 15 min 

in a high speed refrigerated centrifuge (Sorvall RCB2, GMI Inc. Ramsey, Minnesota) to remove 

solids from the liquid stream. Fermentation was performed in 150ml polycarbonate screw-

capped flasks containing 50 ml of the enzymatic hydrolysate supplemented with 0.5% (w/v) 

yeast extract and 0.3% (w/v) ammonium sulphate. The yeast was added at the rate of 10% (v/v). 
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The flasks were capped and incubated at 32 ± 2
o
C for 15 h. After the fermentation, samples were 

collected and centrifuged in 1.00 ml eppendorf tubes at 16001 g units for 10 min at 4
o
C. The 

supernatant was analyzed for the sugar and ethanol concentrations. All the experiments were 

performed in triplicates. 

Data analysis 

Ethanol yield (Yp/s) is calculated as: 

 

The maximum theoretical yield of ethanol from glucose is 0.51g/g. The productivity is 

calculated by ethanol in grams present per litre divided by the time taken for the fermentation.  

All the experiments were done in triplicates. Levene’s test was performed to test the 

homogeneity of variances using (SAS 2002-2003). The variance was found to not differ 

significantly hence there was no need to transform the data and different treatments were 

compared using one-way ANOVA, and differences among means were separated using Ryan-

Einot-Gabriel-Welsch test (REGWQ). All the difference were considered significant at the α = 

0.05 level.  

Results and Discussion 

Ethanol production efficiency of different biomass feedstocks 

Table 4.1 shows the results of fermentation of enzymatic hydrolysate of pretreated 

biomass feedstocks. All the glucose present initially was consumed within 15 hours. However 
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the xylose present in the fermentation broth remained unutilized as the yeast S. cerevisiae does 

not possess the ability to ferment pentose sugars. Ethanol concentration in the range of 3.3-4.3 

(%, w/v) was obtained, which is of commercial significance (Zacchi and Axelsson, 1989). 

Maximum ethanol was observed for the wheat straw followed by sorghum baggase, sorghum 

BMR, switchgrass and lowest for miscanthus. Our results are better than Maas et al. (2008) who 

obtained a final ethanol concentration of 21.4 g/l after 53 hours of incubation in an SSF process, 

using yeast S. cerevisae and a commercial enzyme mix GC 220, from lime pretreated wheat 

straw at a substrate concentration of 35% (w/v). Ohgren et al., (2006) reported a final ethanol 

concentration of 28 g/l from steam pretreated corn stover at 12% (w/w) substrate concentration 

in SSF process, using commercial enzymes and genetically engineered strain of S. cerevisiae 

TMB3400 for xylose utilization, in 96 h. Jorgensen et al., (2008) reported a highest ethanol 

concentration of 32.6 g/l by the fermentation of wheat straw hydrolysate containing yeast extract, 

corn steep liquor and magnesium sulphate, obtained from saccharification of steam pretreated 

and washed wheat straw residue at a substrate concentration of 30% dry matter/weight. The 

ethanol concentration in final fermentation broth varied significantly for the different feedstocks 

as a consequence of varied amounts of glucose released during the saccharification, which was 

fermented to ethanol efficiently without any difference in the ethanol yield. Productivity also 

varied similar to ethanol concentration as the fermentation was completed in the same time for 

all the biomass types. 

Conclusions 

Limited studies were conducted in the past to compare the ethanol production efficiency 

of different feedstocks. The study undertaken showed that alkali pretreatment was successful in 

delignification of biomass to an extent that is supposed to be non-inhibitory to the cellulase when 
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solid loadings of 10% or less are used for saccharification. However, when the saccharification 

was conducted at 20% (w/v) solids loading, it was observed that the cellulose conversion was not 

complete and leveled off to different extents in different biomass materials. This may be due to 

several reasons such as: (1) relative increase in the amount of lignin and sugars with time which 

resulted in non-competitive and competitive inhibition of the cellulase complex (2) The quality 

of lignin and its degradation products which affected the enzymes to different extents and 

Degradation of enzyme with time. All these causes needs to be verified using refined techniques 

such as XRD, FTIR, imaging etc. to better understand the mechanism of enzyme action and 

inhibition and to better design the hydrolysis process for each biomass separately. One of the 

benefits of high solid loadings was achievement of comparatively higher glucose concentrations 

which resulted in higher final ethanol concentrations. The ethanol concentration of 4% or above 

is considered to be of commercial significance. In that respect only wheat straw and sorghum 

baggase fulfilled the criteria under this procedure. Other biomass materials were close but 

conditions for them require certain modifications to get the higher sugars which are possible with 

detailed knowledge of enzyme substrate interactions during hydrolysis.  
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Table 4.1 Ethanol production at shake flask level for the different biomass feedstocks 

Biomass Initial glucose 

concentration 

(% w/v) 

Ethanol 

concentration 

(% w/v) 

Yield (g/g)
a
 Productivity 

 (gl
-1

h
-1

) 

Wheat straw  8.7 ± 0.0a 4.3 ± 0.0a 0.492 ± 0.0 2.8 ± 0.0a 

Miscanthus  6.9 ± 0.1c 3.4 ± 0.0cd 0.489 ± 0.0 2.2 ± 0.0cd 

Switchgrass  6.6 ± 0.1c 3.2 ± 0.0d 0.492 ± 0.0 2.1 ± 0.0d 

Sorghum brown 

mid rib (BMR-

RL)  

7.5 ± 0.1b 3.6 ± 0.1b 0.488 ± 0.0 2.4 ± 0.0b 

Sorghum brown 

mid rib (BMR-

DP)  

7.0 ± 0.2c 3.4 ± 0.1bc 0.492 ± 0.0 2.3 ± 0.1bc 

Sorghum 

baggase 
8.5 ± 0.2a 4.2 ± 0.1a 0.494 ± 0.0 2.8 ± 0.1a 

Each mean is based on three replications 

Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ t-test) 
a 
The yield was not significantly different among the biomass materials (F= 1.2; df = 5,12; P = 

0.90; one way analysis of variance) 
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CHAPTER 5- Comparison of ethanol production efficiency of 

pelleted and unpelleted biomass feedstocks 

Introduction 

Agricultural biomass will be available in abundance in United States as determined by 

the Billion Ton study of Perlack et al. (2005), to meet the goal of 30% of energy derived from 

the renewable sources by 2030. However the low bulk density of agricultural biomass compared 

to grains is a limitation for their economical use as bioenergy feedstock due to high costs of 

handling and transportation. For cellulosic ethanol process, 35-50% of the total production cost 

is contributed by the biomass feedstock cost (Foust et al., 2007), which in turn is affected by a 

number of factors such as biomass species, yield, location, climate, local economy and the 

systems used to harvest, collect, preprocess, transport and handle the material (Perlack et al., 

2006). Logistics associated with the moving the biomass from land to conversion facility can 

account for 50-75% of the feedstock cost (Hess et al., 2006). Bulk density and flowability are the 

two major key parameters that has to be addressed to reduce the processing cost. Increasing 

biomass bulk density and converting it to a standardized bulk flowable form near feedstock 

source can contribute toward reducing these costs (Hess et al., 2007). 

Grinding biomass is one way to increase the bulk density as compared to baled biomass 

(Wright et al., 2006); however, the poor flowability of ground biomass due to its physical 

properties, hinders its proper unloading, transport and storage in a biorefinery. Additional 

conveyer systems will be needed to transport the ground biomass (Hess et al, 2006), which will 

add to the overall cost. Baling biomass is expensive and the bales have low bulk densities and are 

difficult to handle at large scale. Pelleting is another method to increase bulk density; however; it 
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needs higher energy requirements than grinding due to the use of steam to gelatinize starch. 

Recent advances now enable to produce pellets with high moisture levels without the use of 

steam. It can increase the bulk density of biomass to the levels of corn grain so that same 

handling equipment can be utilized without any additional costs. The bulk density of biomass 

pellet is 4–10 times that of as received biomass (Karwandy, 2007). Loose biomass in its raw 

form has bulk density in the range of 4–6 lb/ft
3
, which can be increased to 8–10 lb/ft

3
 when 

biomass is ground to 1/8inch. Chopping and pelleting of biomass can results in high bulk density 

of pellets in the range of 20–30 lb/ft
3
. Ground and/or pelletized biomass flows like cereal grains 

and can use the existing well-developed handling infrastructure for grains (Cushman et al., 

(2003). 

Pelleting of biomass is usually accomplished by applying heat and pressure to bind the 

particles and also heat generated during the extrusion process can affect the chemical and 

physical properties of biomass. These changes in turn may affect the biomass deconstruction, 

and consequently the enzymatic hydrolysis and fermentation during the ethanol production. 

Present study was undertaken to analyze the changes in chemical composition due to 

pelletization and pretreatment, and its effect on ethanol production by comparing unpelleted and 

pelleted biomass ethanol production efficiency.    

 

Material and Methods 
 

Pelleted and unpelleted biomass 

Wheat straw and big bluestem bales were collected from Research farms of Department 

of Agronomy, Kansas State University, Manhattan, Kansas and taken to a farm located east of 

Manhattan.  Each bale was loaded separately into a tub grinder.  Large cardboard totes were 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4YH490C-6&_user=508790&_coverDate=07%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000025157&_version=1&_urlVersion=0&_userid=508790&md5=6cd5e8db887baa98fa84eadf612a0609#bib23
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placed under the spout to collect the product.  The tub grinder was flushed after each forage type 

to prevent contamination.   Bulk densities were measured for each forage type after grinding and 

they are as follows: wheat-47.7 kg/m
3
, and big bluestem-46.6 kg/m

3
.The tub grinder was 

powered by a diesel engine and each bale was powdered in approximately 20 seconds. The boxes 

were then transported to the Bioprocessing and Industrial Value Added Program (BIVAP) 

facility located on Kimball Avenue in Manhattan, Kansas. Forages were subjected to further 

particle size reduction through a Schutte Buffalo Hammermill Model 18-7-300.  Screen sizes of 

1/8” were used. Forages were pelleted at K-State Pilot Feed Mill located in Shellenberger Hall 

using a Master Model Series 200 California Pellet Mill and were ran through a ¼” x 1 ¼” die. 

Pelleting runs consisted of 10.3 kg ground forage and 1.04 kg water, which total to a weight of 

11.34 kg for each run. Due to compression of biomass, the temperature of the pellets coming out 

of die rose to 70-75
o
C approximately. 

Compositional analysis 

The unpelleted biomass and pellets were ground to fine particle size using laboratory mill 

and analyzed for the carbohydrates and lignin by standard NREL laboratory analytical 

procedures (NREL/TP-510-42618) for “Determination of structural carbohydrates and lignin in 

biomass” by two stage acid hydrolysis and HPLC analysis as described in chapter 2. 

Alkaline pretreatment, enzymatic saccharification and fermentation 

For alkali pretreatment, 25 g of either pelleted or unpelleted biomass was placed in 

1000ml Erlenmeyer flask and 250 ml of 2% (w/v) NaOH solution was added to it. The flask was 

cotton plugged and autoclaved at 121
0
C for 30 min. Pretreated residue was obtained in the same 

way as described in Chapter 2. For the enzymatic saccharification, 12% (w/v) solids loading was 
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used. The saccharification was performed in the 250 ml Erlenmeyer flasks with a working 

volume of 50 ml. The pH was set at 4.8 using 50 mM citrate buffer. Sodium azide was added at a 

concentration of 0.3% (w/v) to avoid contamination. The flasks were kept at 50
o
C in an 

incubator shaker at a speed of 150 rpm for 48 h. One ml samples were drawn at an interval of 24 

h. The samples were centrifuged at 10000 rpm for 10 min at 4
o
C in refrigerated centrifuge 

(Eppendorf  centrifuge 5415R, Hauppauge, NY) and clear supernatant obtained was used for the 

analysis of sugars by HPLC as described by Oberoi et al. (2010). The saccharification efficiency 

was calculated as: 

 

Factor 1.1 is used to accommodate addition of a water molecule during hydrolysis  

The fermentation was performed in 125 ml polycarbonate screw capped flasks with a 

working volume of 50 ml. The slurry obtained after enzymatic hydrolysate was centrifuged to 

separate the solid and liquid fractions. The liquid part containing sugars were supplemented with 

the yeast extract (0.5% (w/v)) and ammonium sulphate (0.3%, w/v).  The flasks were capped and 

incubated at 32 ± 2
o
C for 15 h after which the samples were collected and centrifuged in 1ml 

Eppendorf tubes at 10000 rpm for 10 min at 4
o
C. The supernatant obtained was analyzed for the 

sugars and ethanol using HPLC. 

Data analysis 

All the experiments were done in triplicates. Levene’s test was performed to test the 

homogeneity of variances using (SAS 2002-2003). The variance was found to not differ 
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significantly hence there was no need to transform the data and different treatments were 

compared using one-way ANOVA, and differences among means were separated using Ryan-

Einot-Gabriel-Welsch test (REGWQ). All the difference were considered significant at the α = 

0.05 level.  

Results and Discussion 

Effect of pretreatment on composition of PWS and UPWS and PBBS and 

UPBBS 

The results of compositional analysis and effect of alkali treatment on the composition of 

pelleted and unpelleted wheat straw and big blue stem are presented in Table 5.1. There was no 

significant difference observed in the chemical composition in terms of glucan and xylan content 

of the untreated pelleted and unpelleted biomass, which suggests that the biomass quality is 

unaltered due to pelleting process. After the alkali treatment, the glucan content of pelleted wheat 

straw and bigblue stem was higher than the unpelleted biomass. The difference in relative 

increase in glucan content of pelleted wheat straw and big blue stem biomass over unpelleted 

were 8.5% (w/w) and 5.3% (w/w), respectively.  This can be directly related to higher 

delignification of pelleted biomass than the unpelleted biomass (Table 5.1). The delignification 

of big blue stem pellets (88.2%, w/w) was higher than unpelleted biomass (83.0%, w/w). Similar 

case was found for wheat straw although the difference in the delignification was not statistically 

significant. There was no difference between the xylan content of pelleted and unpelleted 

biomass feedstocks. The difference in xylan increase was 1.26% (w/w) and 2.17% (w/w), 

respectively, for wheat straw and big blue stem pellets over unpelleted feedstock. This may be 
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due to higher removal of xylan from the wheat straw and big blue stem pellets as compared to 

the unpelleted mass, which compensated for delignification differences.    

Saccharification of PWS and UPWS 

Table 5.2 summarizes the saccharification results for the pelleted wheat straw (PWS) and 

unpelleted wheat straw (UPWS). Glucan saccharification of alkali treated UPWS and PWS 

reached 86.9% (w/w) and 80.9% (w/w) in first 24 h, respectively, and then increased very slowly 

to reach 89.6% and 81.5% in the next 24 h. Glucan saccharification of UPWS was significantly 

higher than PWS, though the delignification trends were opposite. This might be due to 

difference in lignin byproducts after pretreatment and arrangement of insoluble lignin with the 

cellulose and hemicelluloses. The trend of xylan saccharification was different than glucan 

saccharification. During the first 24 h, xylan hydrolysis of UPWS reached 61.9% (w/w) which 

was much higher than the PWS. In the next 24 h, the xylan saccharification decreased negligibly. 

In the PWS, the xylan saccharification started slowly as only 42.2% (w/w) xylan was hydrolysed 

in first 24 h as compared to 61.9% in case of UPWS, but reached 66.1% (w/w) in 48 h similar to 

the levels attained in unpelleted feedstock. The reason for slow hydrolysis might be the different 

arrangement of lignin and xylan after pretreatment, which might have affected the binding of 

xylanase and cellulase to their respective substrates differently.  

Saccharification of PBBS and UPBBS 

The results of saccharification of alkali treated unpelleted big blue stem (UPBBS) and 

pelleted big blue stem (PBBS) are presented in table 5.3. The Glucan and xylan saccharification 

of PBBS was found to be lower than the UPBBS after 48 h of hydrolysis. Trends were almost 

similar to the wheat straw, expect xylan saccharification of PBBS and UPBBS was identical after 
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24 h of hydrolysis. This might again be due to quality of lignin and its degradation product which 

affect the binding and action of cellulase and xylanases.        

Ethanol production efficiency of PWS and UPWS 

The fermentation parameters of enzymatic hydrolysate of pretreated PWS and UPWS are 

presented in the Table 5.4. The results showed that pelletization of biomass did not affect their 

bioethanol production efficiency. All the glucose produced during the saccharification was 

fermented very efficiently without any significant difference in the yield. However, all the xylose 

remained unutilized as strain of S. cerevisiae used cannot ferment xylose. The ethanol 

concentration of UPWS and PWS was 2.6% (w/v) with an ethanol yield of 0.22 g/g. These 

results showed that there was no inhibition of yeast by the lignin byproducts present in the 

enzymatic hydrolysate.   

Ethanol production efficiency of PBBS and UPBBS 

Table 5.5 summarizes the ethanol production parameters of enzymatic hydrolysate of 

pretreated PWS and UPWS. It was clear that pelletization of biomass did not affect bioethanol 

production efficiency. No residual glucose was detected in the broth after 15h of fermentation 

without any significant difference in the yield. However, all the xylose remained in the broth, as 

strain of S. cerevisiae used was not able to ferment it. The ethanol concentration of UPBBS and 

PBBS was found to be 3.1% (w/v) and 2.8% (w/v) with yields of 0.26 g/g of treated UPBBS and 

0.23g/g of treated PBBS, respectively.  

 

 



 

45 
 

Conclusions 

Separate hydrolysis and fermentation of NaOH treated pelleted and unpelleted wheat 

straw and big bluestem was carried out to compare their ethanol production efficiency at shake 

flask level. It was found that pelletization did not have any negative or positive effect on the 

ethanol production efficiency. Pelletization had no significant effect on the chemical composition 

of biomass in terms of glucan, xylan and lignin. Alkali pretreatment resulted in higher relative 

glucan increase in case of pelleted biomass as compared to unpelleted biomass which can be 

directly attributed to higher delignification of pelleted biomass. However, unequal loss of xylan 

during alkali treatment, the xylan content of treated unpelleted and pelleted biomass did not 

differ much. The delignification was better for big blue stem pellets as compared to loose 

biomass while pelletization of wheat straw did not affect delignification by NaOH. Pelletization 

showed a negative effect on cellulose hydrolysis of both biomass types, though delignification of 

pelleted biomass was more as compared to unpelleted biomass. Hence it can be concluded that 

quantity of lignin alone is not the only factor affecting enzymatic hydrolysis. There could be 

other factors, which affect the arrangement of carbohydrates and lignin after pretreatment that 

are responsible for the difference in hydrolysis rates and overall saccharification efficiency. 

Pelletization did not have any effect on the fermentation of enzymatic hydrolysate of wheat straw 

and big bluestem, which directly indicate that the concentration of lignin byproducts and sugar 

produced were within the tolerable limits of the yeast.  

Overall it can be said that pelletization of biomass has great potential to be one of the 

prominent method for the handling of biomass and its transportation as it does not affect any of 

the ethanol production parameters. It can be beneficial to cut down the cost of ethanol production 

if pellets can be produced with reduced energy than grinding biomass. 
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Table 5.1 Effect of alkali treatment on composition of PWS and UPWS 

Biomass Components (% w/v) 

Glucan Xylan Acid insoluble lignin 

Untreated
a
 Treated Untreated

b
 Treated

c 
Untreated

d
 Treated

e
 Delignification

f
 

Wheat straw 39.6 ± 2.3 55.1 ± 0.7b 24.0 ± 2.4 28.6 ± 1.0 17.2 ± 0.8 5.1 ± 0.4 83.7 ± 1.2 

Wheat straw pellets 38.4 ± 1.5 60.4 ± 0.5a 22.9 ± 1.3 27.8 ± 1.9 15.7 ± 1.0 5.1 ± 0.2 86.3 ± 1.2 

Each mean is based on three replications, Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ t-test) 
a 
The glucan content was not significantly different for untreated PWS and UPWS (F= 0.68; df = 1,4; P = 0.46) 

b
F=0.44; df = 1,4; P = 0.54, 

c
F= 0.4; df = 1,4; P =0.55 , 

d
F=3.9; df = 1,4; P =0.12 , 

e
F= 0.02; df = 1,4; P =0.88  

f
F=7.2; df = 1,4; P =0.05; One way analysis of variance  

 
 

Table 5.2 Effect of alkali treatment on composition of PBBS and UPBBS  

Biomass Components (% w/v) 

Glucan Xylan Acid insoluble lignin 

Untreated
a
 Treated Untreated

b
 Treated

c 
Untreated

d
 Treated Delignification 

Big bluestem 44.8 ± 1.1 65.7 ± 0.2b 27.1 ± 0.9 30.5 ± 0.5 19.4 ± 0.1 6.4 ± 0.3a 83.0 ± 1.2b 

Big bluestem pellets 42.5 ± 1.0 67.6 ± 0.5a 26.5 ± 0.5 30.5 ± 0.2 18.1 ± 0.7 5.2 ± 0.1b 88.2 ± 0.8a 

Each mean is based on three replications, Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ t-test) 
a 
The glucan content was not significantly different for untreated PBBS and UPBBS (F=2.2 ; df = 1,4; P =0.21) 

 
b
F=0.3; df = 1,4; P =0.61)  

c
F= 0.0; df = 1,4; P =0.96, 

d
F=2.9; df = 1,4; P =0.16; one way analysis of variance. 
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Table 5.3 Saccharification of pretreated PWS and UPWS 

Biomass Saccharification (%) Glucan basis Saccharification (%) Xylan basis 

24h 48h 24h
a
 48h

b
 

Wheat straw 
86.9 ± 1.7a 89.6 ± 1.3a 61.9 ± 4.2 60.2 ± 0.9 

Wheat straw 

pellets 80.9 ±  2.5b 81.5 ± 2.1b 42.2 ± 4.7 66.1 ± 4.0 

Each mean is based on three replications,  

Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ t-test) 
a 
The saccharification xylan basis (24 h) was not significantly different for PWS and UPWS 

(F=1.1 ; df = 1,4; P =0.35; one way analysis of variance) 

 
b
 The saccharification xylan basis (48 h) was not significantly different for PWS and UPWS 

(F=6.18; df = 1,4; P =0.07, one way analysis of variance) 
  
 
 
 
 
 
 

Table 5.4 Saccharification of pretreated PBBS and UPBBS 

Biomass Saccharification (%) Glucan basis Saccharification (%) Xylan basis 

24h
a
 48h 24h

b 
48h 

Big bluestem 77.8 ± 1.7 78.2 ± 1.5a 64.4 ± 1.5 65.3 ± 0.6a 

Big bluestem 

pellets 

70.6 ± 2.4 69.0 ± 1.8b 61.6 ± 0.9 60.1 ± 0.5b 

Each mean is based on three replications,  

Means with in a column followed by different letters are significantly different (p < 0.005; 

REGWQ t-test) 
a 
The saccharification glucan basis (24 h) was not significantly different for PBBS and UPBBS 

F=5.9; df = 1,4; P =0.07; 

 
b
 The saccharification xylan basis (24 h) was not significantly different for PBBS and UBBS 

(F=2.17; df = 1,4; P =0.18, one way analysis of variance) 
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Table 5.5 Ethanol production from PWS and UPWS  

Biomass 

Initial glucose 

concentration 

(% w/v)
a
 

Ethanol 

concentration 

(% w/v)
b
 

Yield (g/g)
c
 Productivity 

(gl
-1

h
-1

)
d
 

Wheat straw 5.4 ± 0.6 2.6 ± 0.2 0.48 ± 0.02 1.7 ± 0.1 

Wheat straw 

pellets 5.5 ± 0.2 2.6 ± 0.2 0.48 ± 0.01 
1.8 ± 0.1 

Each mean is based on three replications, Means with in a column followed by different letters 

are significantly different (p < 0.005; REGWQ t-test) 
a 
Initial glucose concentration was not significantly different for PWS and UPWS (F=0.0.02; df = 

1,4; P =0.89; one way analysis of variance) 
b
F=0.0; df = 1,4; P =0.96,. 

c
F= 0.2; df = 1,4; P =0.65,  

d
F=0; df = 1,4; P=0.97 one way analysis of variance 

 

 

 

Table 5.6 Ethanol production from PBBS and UPBBS  

Biomass 

Initial glucose 

concentration 

(% w/v)
a
 

Ethanol 

concentration 

(% w/v)
b
 

Yield (g/g)
c
 Productivity 

(gl
-1

h
-1

)
d
 

Big bluestem 6.1 ± 0.1 3.1 ± 0.1 0.497 ± 0.01 2.03 ± 0.1 

Big bluestem 

pellets 

5.7 ± 0.2 2.8 ± 0.2 0.49 ± 0.01 1.9 ± 0.1 

Each mean is based on three replications, Means with in a column followed by different letters 

are significantly different (p < 0.005; REGWQ t-test) 
a 
Initial glucose concentration was not significantly different for PBBS and UPBBS (F=2.6; df = 

1,4; P =0.21; one way analysis of variance) 
b
F=1.7; df = 1,4; P =0.61 

c
F= 0.1; df = 1,4; P =0.96 

d
F= 1.8; df = 1,4; P =0.25 one way analysis of variance 
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