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NOMENCLATURE

coefficient of discharge
supply pressure, psig
discharge pressure, psig
pressure (left side), psig
pressure (right side), psig
load force, 1bf_

mass of piston, lbm
mass of load, lbm

lb,-sec
damping coefficient of piston, ——fgg——-
1bf-sec
damping coefficient of load,

in
coulomb type friction, 1bf
spring constant, lbf/in
external force, lbf
area of piston, in?
valve opening, in
diameter of spool, in
flow rate (left side), ina/sec
flow rate (right side), in3/sec
| lbeo-sec

density of working fluid,—=——7p—
: in

bulk modulus of working fluid, lbf/in2
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NOMENCLATURE (Contd.)

maximum valve opening, in

piston travel, in

length of c¢ylinder, in

piston width, in

velocity of piston, ip/sec

rate of change of velocity of piston, in/sec2

horse power

iriitial position of piston from reference surface, in
amplitude of load motion, in

design frequency of load motion, rad/sec

3

volume of valve, in
volume of transmission lines, in3
dimensionless pressure (left side)
dimensionléss pressure (right side)
dimensionless force on piston

dimensionless piston velocity

dimensionless horse power

dimensionless valve opening
dimensionless flow rate (left side)
dimensionless flow rate (right side)

time interval in computer solution



CHAPTER 1

INTRODUCTION

Before electric power was invented, hydraulic power
(water as the working fluid) was widely used in industries
which used steam driven engines and mills. The ease of
transmitting electric power from generating station to farthest
point left the hydraulic power far behind in the race. Only
for last few decades the hydraulic power (oil as the working
fluid) is again put to numerous uses. Developments and research
in the field of hydraulic power started again at rapid rate
when demand power and types of performances which are impossible
to obtain with the use of electric power grew more and more.
The present demand for large power and high speed of response
drew the attention of scientists and engineers towards the
development of hydraulic power. The present sophisticated
aircraft and numerous defense applications require large
power to weight ratio and high frequency response. In case
of earth moving equipment and numerous other applications
it may be necessary to hold the load at a particular position
for some length of time, Among all the presently available
techniques hydraulic power is the best suited for these
applications. The hydraulic power system has some disadvantages
" but the advantages in most applications outweigh the

disadvantages.,



Generally, the hydraulic power system can be divided
into four major segments. The pressure generation or power
input segment, the power transmission segment, the power
control segment and the power output segment. The power
input segment consists of pump and accumulators, power
transmission segment consists of tubing etc., power control
segment consists of directional, pressure, or flow control
valves and power output segment consists of linear or rotary
actuator, or hydraulic motor.

' The purpose of this report is to study the use of the

maximum power design technique to design the directional -

type valve power control segment and the linear actuator

type power output segment and to make some inference that

if a system is designed using this technique then how closely
will the actual system perform to desired design performance
specifications? 1In this report a zero lapped, four-way,
directional-type control valve and double-acting double-
ended piston-type actuator has been used for the purpose

of studying the maximum power design technique.



CHAPTER II

DERIVATION OF DESIGN EQUATIONS

The four-way zero lapped directional type control valve
and linear actuator chosen for study is shown in Figure 1.

The valve shown in the figure is spool-type valve, the actuator
is double-acting double-ended piston-type actuator and in
general the load could consist of mass, viscous damping,
coulomb friction, spring and external force. The system shown
here is an open loop system., The maximum power design technique
considered in this report is used to determine the spool
diameter d, the maximum valve opening Xmax and piston area A.
The technique derives its name due to the fact that design is
based on the maximum power the load will require for a sin-
usoidal motion of amplitude and frequency, determined by the
dynamic performance requirement desired for the designed
systems For example, the frequency selected will be related

to desired bandwidth if the valve and actuator are to become
part of a closed loop servo system.

Operation of the actuating system is as follows. The
load initially is at rest when valve opening X is zero. Now
assume a sinusoidal motion is applied to X. As X increases
in one direction, say to the right, the flow rates through
' the valve openings change and the pressure at the left side,

and also at the right side, of the piston changes. This



In General

FL(t) = M'Lé + BLé + Fe ? + KC + Fu
\el

Figure 1. Four4way Zero-lapped and Double Acting

Actuator



pressure difference exerts a force on piston and load starts

to move towards right. (Since the system is not linear, the
load motion C(t), will not be exactly sinusoidal for sinusoidal
X(t). But in using the maximum power design technique this
motion is assumed to be sinusoidal). Let the velocity at some
instant be é. As the valve opening goes on increasing the
pressure at the left side and the right side of the piston
changes. This change in pressure changes the force F acting

on ram which in turn changes the velocity é at which ram moves.,
A graph can be plotted between force on the piston at any
instant and corresponding velocity ¢ at that instant. This
graph is called load locus. Figure 2. shows a typical load
locuss The dotted curve in Figure 2, is a constant power curve,
HP = FC = constant, which is a hyperbola, A family of constant
power curves can be plotted for different values of horsepower,
One such constant power curve will touch the load locus at

a single points This point is the maximum power point.
Summary of Maximum Power Design Technique

Steps required in applying the maximum power technique can

be summarized as followss

l. Using equations for valve flow-pressure and for force acting
on piston, develop velocity-force equation for valve-actuat-
or system. Determine equations for spool diameter d, max-

imum valve opening X and piston area A, based on maximum

max
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3.

power point, from these equations.

C
Assume sinusoidal load motion, C = Co + gax sinaJdt._

with specified design values for Cm andcdh. Then

ax
substitute the derivatives of C in the force equation,

[ 4

_ FEJ . C
FL = (Mp + ML)C + (Bp + BL)C + Fc TET + KC + Fu

This will give F for any value of time. Now construct the
velocity-force characteristics for load and use this to
determine point of maximum power required to drive the load

with the assumed sinusoidal motion.,

Substitute the wvalues of é and F obtained for the maximum
power point in step 2 into the equations for d, xmax and A

derived in step 1 and calculate values of d, Xmax and A.

Assumptions for Derived Equations

In order to derive the valve flow-pressure equations and

actuator force-velocity equations the following assumptions

have been made.,

g
]

const,.

0,625 = const. (same for all flow areas)

Q
I

Pd = 0 psig = const,

Leakage is negligible

Valve body and cylinder walls are rigid



Transmission lines are rigid

Pressure drop in lines is negligible.

Valve Flow-Pressure Equations

1. Case I, x>0
a. Left hand side PS>P1

Q = -Cy mdX Jre (P, = Py)
b. Left hand side PB<P1

Ql = -Cd md X/ ZZPl -P857Q

Ce Right hand side Pr>o

Q.= -CqmdXJ2P./Q

d. Right hand side P_<0

Q. = Cq XS Z [P [ /R

2. Case II. X<0
2. Right hand side Ps>Pr

Q.= CagmaxJ2(P_ - P /%

be Right hand side E <P,

(1)

(2)

(3)

(&)

(5)



Q. =Cyqmd XS 2(P, - Py) /% (6)

c. Left hand side; Pl>0

Q =Cqmd XS 2P /¢ (7)

d., Left hand sidej P1<O

Q1=-Cdﬂd'x./2|1‘-‘l| /% (8)

Now, to make the equations(l) through(8)dimensionless defines

Q" =Cymdx 2P /¢ (9)
also let

/e =7

Q. / Q' =Qq,

P, /P =P

B, /Py = B,
and

X/ X =X

Dimensionless Valve Flow-Pressure Equations

Dividing equations(l) through(8) by Q'



1. Case 1. >0

- 1

b.

Coe

de

2. Case

b.

if Ps>P1

61=xJ1-P1

if Ps<Pl

IT. X<0

if Ps>Pr

ql=-xJPj1

10

(10)

(11)

(12)

(13)

(14)

(15)

(16)



b 3

q, = X4 [7] (17)

Velocity-Force Equation

Taking summation of the forces acting on piston

A Pl(t) - A Pr(t) - MpC - ch - FL(t) =0 (18)

Sum of the forces on load

c-BGC-p S . F,(t) - KC =0 (19)

Fr(t) - My I ¢ 1]

Solving equation (19) for FL and substituting this value of
FL in equation (18) gives

A Pl(t? - A P(t) - (M + ML)E - (B, + BL)é
¢
-'Fc E'I— - Fu(‘t) «- KC =20 (20)

_ Fu(t) + KC (21)

Let F(t) = (MP + ML)C + (Bp + BL)C # E. ]

Therefore equation (20) becomes

A Pl(t) - A.Pr(t) = F(t) (22)

. & 7
In this report it will be assumed that FCTET is ‘small

compared to inertia and viscous damping and can be neglected.



Further it will be assumed that there is no external force

(Fu = 0) and no spring (K = 0)s Then F(t) becomes

F(t) = (Mp + ML)C + (Bp + BL)G
Therefore equation (22) can now be written as
A Pl(t) - A Pr(t) = (Mp + ML)C + (Bp + BL)C
Dimensionless Velocity-Force Equation

To make equation {22) dimensionless define

AP = F*

I
|

F/F' =

Divide equation (22) by F' = A Py

then
Pi - Pr = F

Control Volume Flow (Left side)
Consider a control volume on left side

- QR+ F— P (V + v +4C) =0
or .
- QR+QAC + (V,_ + V A
1 # L¥, l+AC)-—ﬁ“———O

12

(23)

(24)

(25)
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where
¢- 22
[:(VV +V
Assuming
A
compressibility effect since A is 200,000 or greater

L+ AC) -1 .
A > > Pl' i.e. neglecting

Q, = AC , (26)
To make equation (26) dimensionless, let

Q' = Aé'
Dividing equation (26) by Q' = AG? gives

q, =¢ (27)

Control Volume Flow (Right Side)

Consider control volume on right hand side

?Qr+%jc—[vv+vl+'A(L—c-b)]Q=o

" or

. P '
\’Qr+QA(-C) +[VV+V1+A(L-C -b)]/i—€=o
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where .

L

Vv + V + A(L-C - Db) .

Assuming ﬁ >> P ”
then .

Q. = AC (28)

5
To make equation (28) dimensionless divide Q' = AC'

Therefore

q, = ¢ (29)

Condition for Maximum Power

Substituting the values of Ei and ar from equations (10)
and (12) in equations (28) and (29) gives

Ql=iJ1-%'=E (for X> 0) (30)

[
it
> |
Cx

(for X> 0) (31)

e
R (32)
X
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Solving equation (31) for ﬁr

P, =~ : (33)

Substituting values of ?1 and ﬁr from equations (32) and (33)

into equation (25) gives

T2 %2 _
1--5 -5 =F (34)
X X
Solving equation (34) for ] gives
- — _— —
¢ = X/ —l—E—E (X > 0) (35)

Dimensionless power can be defined as

W =FC

or
=_ 55/ 1-F
HP = F 3

Assume maximum power is developed when X = X sy then for zero

max

lapped valve Kpax = 1. Therefore

ﬁ§=jﬁ%%-m

Now maximize power with respect to force
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___:_'__g.%_[ J(ZF-BF)
a4 F F (1 -F

This gives

F = 2/3 @ HP = ﬁ?max (36)

Deriving Design Equation for 4, X o and A

actuator

F(HP = max

ax)
s A

"d

F(HP = max) actuator

Substituting the value of F for HP = max from equation (36)
gives
F(HP = max) actuator

3 Ps A

or

3 F(HP = max) actuator
2 PS

A=
If load is directly connected to piston, then

F(HP = max) actuator F(HP =max) load

therefore

P w maxd load

A=
2 P | (37)
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Equation (37) is the design equation for calculating the
size of piston required. Substituting value of F from

equation (36) in equation (35) (X = 1) gives

c(ﬁ? = max) actuator ~ ¥ 176

but
¢ = ad/qQ’

or

AC o _ .
(HP = ma%%_actugtor - JI/%

or, substituting equation (9) for Q' and solving for X .

gives

- /6 AC(HP = max) actuator

X
max
2
Cq ™ d 47 P

If load is directly connected to piston, then
C(HP = max) actuator ~ c(HP = max) load

therefore
_ 6 AC _
Ko ™ (HP -.max) load (38)
2
Cd nd ¢ PS



This is the design equation for calculating X

that a value for 4 must be assumed before xmax can be

calculated,

Equations for Plotting Load Locus

From equation (23)

F = (Mp + ML)b + (Bp + B )C

18

Note

(23R)

Assuming that load moves sinusoidally with amplitude equal

to Cmax and frequency equal ﬁohﬁd.
Hence
C=2¢C +cmax sinw  t
0 2 d

Differentiating equation (39) gives

_ _max
G = e “’d coswdt

and

W sinw .t

(39)

(40)

(k1)

" Substituting these values of C and ¢ in equation (23) gives
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C
e max w 2 .
F = (Mp + ML) ( < M3 31n(uat)

C
max
+ (Bp + B) 5 W,y cosw,t (42)

If the values of Mp, ML' BL!LUd and cmax are known the force
F can be calculated from equation (42) and C from equation (40)
for different values of time t: these values of F and C can
now be plotted to obtain a graph known at the load locus.

Now the design equations have been derived and a method
to construct load locus has been discussed. These equations
will now be applied (hence maximum power design technique) to
an example problem consisting of mass and viscous damper.
Also since the compressibility effects were neglected in getting

the design equations an attempt will be made to determine

limitations, if any, when this assumption is made.
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CHAPTER III

APPLYING MAXIMUM POWER TECHNIQUE
TO EXAMPLE PROBLEM

In Chapter II the design equations were derived and pro-
cedure to plot load locus was discussed. Here in this chapter
an example problem will be assumed and the values of max imum
valve opening Xmax’ spobl diameter d aﬁd piston area A will be

calculated for the example problem.
Constructing Load Locus for Example Problem

Assume that for the example problem

cmax = 0.5 inches
wgq = 10 mrad/sec
ML = 575 lbm
Mp = 25 1bm
lbf - sec
BL = 90 in
1bf - sec
By = W0 —p—

Also assume

Pg

1000 psig = const.
0,625

Cq
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Notes The values of Mp and Bp are not known when design is
started. Therefore some reasonable values of Mp and Bp have
to be assumed. If assumed values prove to be unsatisfaétory
for an actual physical design they can be changed and the

problem can be reworked.

Now substituting the values of cmax'“’d' Mp, 1 Bp and
B; in equations (40) and (41) gives
C =(0.5/2) (10 m)cos (10 w t) (42)

and

P = -(532 %3)(10 m? sin (10 7 1) +(200) (%)

(10 m)ecos (10 ™ t) (43)

These two equations can now be used to calculate the
values of F and C for different values of t. A graph (load
locus) can now be plotted for these values of F and &. Figure
3_shows the load locus for the example problem. From the load
locus the maximum power point can now be obtained by plotting
a constant power curve, HP = F( = const., which is tangent to
load locus plot at one point. This point gives HP ox (load)
which establiéhes values for F(HP‘= max)load and 6 (HP = max)
load FC be used in design equations (37) and (38). In equation

- (38) there are two unknown, X and ds Any combination of

max
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X ax @nd d which satisfy equation (28) will give a valve of

correct size.,

In choosing the valve spool dimensidns;the following
condition should be kept in mind,

Spool diameter d is inversely proportional to xmax'
Therefore if xmax is large d will be small. But due to fine
surface finish required for spool and the mating surfaces of

valve body, d should probably not be chosen less than 0.25 inch

in order to facilitate its fabrication.
Design Calculation for Example Problem

From Fig. 3 at maximum power point
F(HP = max)load = 856,0 Ibg’

C(HP = max)load = 7,6 in/sec

l, Piston Area
Substituting the value for F(HP = max)load in equation (37)
and specifying Ps = 1000 psig as the system supply pressure to

be used, the piston area A can be calculated as

e 3x856

= s 2
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2a Valve Size

Substituting the calculated value of A and the value of

C(HP = max)load in equation (38) gives

o 6 x 1.284 x 7.6
0.625 x 314 x o 20007? x d

xmax

For the example problem the value of ¢ was assumed to be

" 1bf - se02
g = 8.13 x 10 — 7

in

and if diameter of spool is taken as d = 0.25 in, then

Xmax = 0,00982 in

This is an appropriate value for xmax if the valve and
piston are to be used in a closed loop servo system. The reason
is that in such a system the displacement X is generated by a
force motor which is limited to displacements on the order of

plus and minus 0,010 inches.
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CHAPTER IV

EVALUATION OF MAXIMUM POWER DESIGN TECHNIQUE
WHEN APPLIED TO EXAMPLE PROBLEM

In Chapter II, the maximum power fechnique used for
establishing the design point was discussed and the design
equations to calculate the piston area, spool diameter and
the maximum valve opening were derived., In implementing
this technique it was necessary to neglect the compressibility
of 0il. Therefore a prime question is, will a valve-actuator
designed (using this technique) to drive a given load with
a specified sinusoidal load motion, be able to reproduce the
specified load motion? Here in this chapter an attempt is
made to answer this question by solving the dynamic equations
for a "designed" valve-actuator system using a digital computer.

Derivation of Dynamic Equations
Using Control Volumes

1. Consider a control volume for the left hand side of
the valve-actuator system of Figure 1. For this control

volume, using continuity equation and assuming X > 0

-Q1€+at Q(VV+V1+AC) =0

or it can be shown
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. l .
Q; = AC + 5 (V, + V; +AC) Py (43)

%

Y

2, Similarly consider a control volume for the right hand

side. Using continuity equation and assuming X>0,

9Qr-§§[?vv+vl+A(L—b-C)] =0

or it can be shown

-* Pr
Qr=-AC+[Vv+Vl+A(L-b—G)73— (L)

Equations (43) and (44) are the general equations. For
x>0, Ql will be positive and Qr will be negative, for X = 0,
Q, and Q, will both be zero and for X<0 Q; will be negative
and Q. will be positive. The values of Ql and Q.» from equations
(1) through (8) can now be substituted in equations (43) and (44)

to obtain all the dynamic equations for different cases.
Combining Control Volume and Valve Flow Equations
l. Case I, (X>0, PS>P1)

a« Left hand side



2,

be

Case

= Aé +

e,

cdndx./%(Ps-Pl)

= AC +)% (v, i Vi + AC) él

Right hand side (Pr>0)

2
-Cdnd.XJyPr
-_-.--Aé+-3-'-Er + Vv +A(L-b-0ﬂl3
‘ﬂ v 1 r
Right hand side (Pr<0)

cgmaxdEle| |

" R - h - -
= -AC +/3EJV+ Vv, + AL - b C)]Pr

11, (¥>0, PS<P

1)

Left hand side

2
=, ¢ )

md X4 (Pl-P

d s

1

A

(Vv + V., + AC) P1

1

27

(45)

(46)

(47)

(48)
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b.

Coe

Right hand side (Pr>o)

. ndXJ2 P =

d e r

-AC+—[V + vy +A(L-b—C)]

Right hand side (P,.<0)

cdnde [Pl =

-AC+—[V +V1+A(L-b-CJPr

Case III, (X<0, PS>Pr)

a, Left hand side (P1>O)

b,

‘Cd md X/

'QHO
|_.:
t

AC + 2 (V_ + V, + AC) Py

1

,s

Left hand side (P,<0)

-Cq ™ dX o IP]_I

[ ] ' 1 -
AC +)§ (Vv + gl +AC) Pl

28

(49)

(50)

(51)

(52)



29

ce Right hand side

2
—Cdﬂdx'j?‘ PS-PI‘) =
-Ac+-—[v +V1+A(L-b-C)] P (53)
b, Case IV, (X<0, Ps<Pr)
a. Left hand side (P1>0)
/2 -
Cd md X q Pl
AC+X (V. + v +A“)f> (54)
L By 1 ~ 1
be Left hand side (P;<0)
/ 2 -
-Cd md X '-e* lPl‘ =
AC +/3(V + V; + AC) P (55)
cs Right hand side
2 .
Cd md X Jé ( - PS)
-AC+/—5[V +V +A(L-b-C)JPr R (56)
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5 Case Vy, X =0
a, Left hand side
- A0 4 X r
0 = A -+}‘5(Vv 4 Vl + AC) Pl (57)

be Right hand side

0=-Aé+ﬁ[vv+vl+A(L-b-C)—-]f>r (58)

Summation of Forces Acting on Piston

Forces acting on Piston, inecluding load consisting of

mass and viscous damping, are:

A Py(t) - A P(t) = (M, + Ml)b' + (B, + Bl)é (59)

Dynamic Response of Actuating System Designed
For Example Problem

For the purpose of proceeding with evaluation of the
maximum power design technique, the example problem considered

- in Chapter III will be used here.



1. Specified design values for example problem

=
+
=
i

600 lbm

1bf - gec
B + B, = 100 ———p——e

P L in
CO = 0.5 in
Ciaz = 0.5 in
Wy = 1Onrad/sec

2, Assumed values for example problem i

V. 4+ V., = 100 cu. in

v 1
L =4 in
b = 0.5 in
- 1b, - sec?
¢ = B8.13 x 10 =

in

365,000 1b,/in?

/3

3« Calculated values for example problem

31
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A = 1,284 in®

d = 0-25 in

xmax = 0,00982 in
= 0.981 H-Pu

Maximum Power
A complete computer program to calculate C, é. Pl' Pr
and force, F = A Pl - A Pr’ is given in Appendix 1. In this
program a standard scientific subroutine RKG has been used.
This program works in the following way:
First initial values (time t = 0) of C, C, P, and P,
mugt be specified,

Here these values were assumed to be

C(0) = 0.5 in

¢(0) = 0,0 in/sec
Pl(O) = 0,0 psig
P.(0) = 0,0 psig

With these initial values of C, é. Pl and Pr' the values

- -

of C, P1 and Pr' for time t = 0 can be calculated using
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equations (57), (58) and (59). Then these values are -
multiplied by h to get new values of é, Pl' Pr and C, At

this point the following checks have to be made.

Is X > 07 Is X = 07 Is X < 07
Is Ps > Pl? or PS < Pl? Is PS > Pr? or PS < Pr?
Is Pr > 0?7 or Pr < 07 Is Pl > 0? or Pl < 0%

According to conditions existing a proper choice of
equations has to be made and then new values of G, C, ?l and
?r calculated. Then multiplying these values by h, new values
of C, C, P, and P can be calculated. Proceeding this way all
the values of C, C, P1 and Pr can be calculated for any duration
of time desired. Computer program given in Appendix 1 does
all this. In the computer program the following definitions

have been used:

= Y(l)l

C = DY(2)
C = Y(2) él = DY(3)
P, = ¥(3) P_ = DY(4)
P = Y(4)

Verification of the Calculated Response
of the "Designed" System
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To initiatly veriry tnat compuiea results were correct,
the frequency response of the designed system (for example
problem) was calculated for input frequencies to the spool
ranging from 2nrad/sec to 150mrad/sec and was compared to the
theoretical frequency response which is expected for such a
system. The theoretical open loop transfer function for the
actuating system of Figure 1, can be obtained by linearizing
the non-linear dynamic .equations. This transfer function is

of the form

G(s) = gg:% = s(K,s2 flst + 1) (60)
The Bode diagram for a system whose transfer function is
given above will be similar to that shown in Fig. 4. Bode
diagram is method of analysing frequency response of the system.
This is a plot between log-magnitude and angle vs log fregquency.
The advantages of Bode plot for frequency response analysis are

as follows:

l. The multiplication and division of transfer function
which are particularly tedious are simplified.
Multiplication is replaced by addition while division
is replaced by subtractionjphase angle is also added

for multiplication and subtracted for division.

2. The phase angle is related to the slope of the log
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modulus characteristics,

3 Gain and phase margin may be established from in-

formation on Bode diagram.

Iy, Bode attentuation plots and phase attentuation
plot may be obtained from experimental frequency
analysis of components for which actual transfer
functions are not known. The plots‘may then be

used to establish actual transfer function.

The Figure (5) shows the Bode diagram as obtained by
calculation.s The solid line shows the log~magnitude vs log
frequency plot and the dotted line shows the phase angle vs
log frequency plot. If the theoretical Bode plot of Fige. (4)
and Bode plot of Figure (5) obtained by calculation are
compared, it can be seen that the two are nearly same. Fig.
(5) shows that the slope of log-magnitude is =1 unit/decade for
frequency of 6 c¢/s or less, As the frequency is further
increased the slope of the log-magnitude plot changes and at
frequency 25 ¢/s and more the slope becomes -3 unit/decade,
This is what is theoretically expected from the transfer function
of type given by equation (60). The log-magnitude plot Fig.
(4) obtained from the theoretical transfer function has a slope
. of =1 unit/decade for low frequencies and the slope changes

to =3 unit/decade for higher frequencies. Therefore the two
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plots are similar. The phase angle is -90° at zero frequency
and changes rapidly in intermediate range of frequencies and
goes to —2?0° as the frequency approaches infinity. Phase
angle plot of Fig.4 (obtained from transfer function of
equation(60) )also starts at --90o for zero frequency and goes
to -270° as frequency approaches infinity. This verifies
that the calculated output response of the designed system is

righ‘t-

Evaluate Results Obtained Using Design Technique

In the last section it was established that the equations
and calculations are correct., In this section results will

be evaluated in the following ways

(1)« By comparing the amplitude obtained by calcula-
tion with specified design amplitude. This
will be done by taking different values of
specified design frequency, keeping design
amplitude constant, and by taking different
values of design amplitude, keeping design

frequency constant,

(2)e By comparing the maximum power obtained by
calculation with maximum power for assumed

sinusoidal load motion for the cases mentioned
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in step 1.

This evaluation is done in order to determine the
feasibility of using the ma;imum power design techpique to
design an actuating system which can satisfy the desired
deéign specifications. Results obtained here are based on
the behaviour observed from the graphs. It is beyond the scope
of this report to give any mathematical or experimental,;

explanation for these behaviours because the equations involved

are non-linear.

le Comparison between calculated amplitude and specified

design amplitude for different design frequencies.

Figure 6(a) shows a plot between different design frequen-
cies and the ratio of amplitude obtained by calculation to
specified design amplitude (same for all design frequencies).
The figure shows that when design frequency is low, 2nrad/sec
or less the ratio is less than 1. Bﬁt. for the design frequen-
cies of U4nrad/sec and more the ratio is always greater than 1.
This means that for the design frequencies of 2nrad/sec and
less the amplitude obtained by calculation is less than
specified design amplitude and for design frequencies of
brrad/sec and more the amplitude obtained by calculations is
‘more than the specified design amplitude. For design. frequencies

of Lnrad/sec or more this gives an added "factor of safety",
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This is desirable since the calculated results are based on
several assumptions which are not 100% realizable in a real
phsical actuating systems i.e., constant-supply pressure,

constant discharge coefficient, etc.

2. Comparison between calculated amplitude and different

specified design amplitudes for same design frequency.

Figure 6(b) shows .the plot between different design
amplitudes and the ratio of amplitude obtained by calculation
to specified design amplitude (design frequency of lOmrad/sec
for all cases). The figure shows that when the specified design
amplitude is small (of the order of 0.5 in or less) the
amplitude ratio is higher than when specified design amplitude
is large. It shows that this ratio decreases slightly as the
specified design amplitude is increased. But the change obtain-
ed is small and it could be concluded that a system designed
using maximum power method will (based on calculated results)
reproduce the specified load motion with an amplitude at least
10% greater than the specified design amplitude and that this

is true for design amplitudes ranging from 0.5 to 2.0 inches,

' 3. Comparison of calculated and specified load velocity-

force characteristic for different design frequencies,

Figures (7) and (8) show the velocity-force curves for the
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gsame specified design amplitude, but different design frequencies.
Figure 7 shows that when the design frequency is low (2mrad/sec)
the shape of the load velocity-force curve, obtained by calcula-
tion, is almost the same as that for the assumed sinusoidal

load motion, but for higher design frequencies, as shown by
Figure 8, it varies considerably. This could mean that the
highér the design frequency the more prominent are the non
linear and compressibility effects. No definite explanation is
given here for this behaviour of load curve because analysis

of non-linear equations is very complex and beyond the scope

of this report. But it could be said that this behaviour of
load curve is certainly undesirable. Fig. 9(a) shows the

plot between ratio of maximum power obtained by calculation and
the maximum power for assumed sinusoidal load motion and design
frequency. It shows that maximum power obtained by calcuiation
is higher than the maximum power for assumed mofion for design
frequencies less than l0mrad/sec. For design frequencies higher
than 10nrad/sec this ratio is less than 1. Though the variation
obtained is small (within 10%), it desirable to have the

maximum power obtained by calculation higher than maximum

power for assumed load motion, because such a system will not
change the required performance specification due to small

fluctuations is load.



max calculated

HP

max calculated

HP

max assumed

HP

max assumed

HP

=
)
N

f—
[
j)

[
.
o

(=)
L ]
(Vo]

o
L ]
@

45

Cmax,aesign =31n
V, + Vy = 100 in’
207 407 60T 80r

\__/\_\ —“a

Design Frequency(rad/sec)

(a) HP .. Ratio Vs Design Frequency

Wd, design ~ 3 rad/sec
- < 3
Vv + Vl = 100 in
—~— &

: max
0.5 1.0 1.5 2.0

Design Amplitude (inch)

(b) HP ax Ratio Vs Design Amplitude

Figure 9,



Lé

b, Comparison of calculated and specified velocity-force

characteristics for different design amplitudes.

Figure 10 shows the velocity=-force curves obtained by
caculation and based on assumed sinusoidal load motion for
two different design amplitudes, 0.5 inches and 2.0 inches.
Note that the design frequency remains the same, 1l0mrad/sec
for both cases, It is evident from the figure that the assumed
load motion velocity-force curve follows closely the velocity-
force curve obtained by calculation for relatively small design
amplitudes but varies considerably for fairly large design
amplitudes. This variation in velocity=-force curves for the
larger 'design amplitude could be because of the nonlinearity
of the dynamic equations and fluid compressibility effects.
'Figure 9(b) shows the plot between ratio of maximum power
obtained by calculation and maximum power the system is design-
ed for and design amplitude. This figure indicates that as the
designh amplitude is increased, the maximum power obtained by
calculation decreases, Therefore a system desighed using the
maximum power technique can be expected to deliver more power than
it was designed for, at small design amplitudes. The consequent
additional "factor of safety" is certainly desirable. Therefore

it is advantageous to base the design on small design amplitudes.

In evaluating the maximum powér design technique in this

chapter, the results obtained indicate that with this technique,
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the designed system very nearly reproduces the assumed sinusoidal
load motion for low design frequency and small design amplitude.
No attempt has been made here %o specify exactly how low the

design frequency and how small the design amplitude should bte,

However, Figures 7, 8, 9 and 10 can be used as guides for
insight into the differences between assumed and calculated
motion for different design frequencies and different design

amplitudes.
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CHAPTER V

COMPRESSIBILITY EFFECTS

In the previous chapters a value of 100 cu in was assumed
for the volume of o0il in the transmission line and valve body.
All the calculations were then made using this value for
compressed volume, But if equations (45) and (46) and the
equations which could be obtained by solving these two equations

for bl and ir are examined, then it can be seen that compressed

volume does play an important part in compressibility factorl

of these equations. From equation (45) it can be seen that the

compressed volume and Pl or Pr are in the numerator in the

compressibility factor. But in equations for Pl and Pr the
compressed volume is in denominator, which indicates that the
values of bl and ﬁr will be reduced if compressed volume is
increased. This presents two opposing situations and it is
difficult to predict, just by looking at these equations, what

compressed volume will be most satisfactory in order that the

compressibility effects are negligible.

1"Compressibility factor" is the factor which was originally
omitted in applying maximum power design technique. The term
compressibility factor as is used here stands for

AV, + v+ a0) Bpor Zlv, + v + AL -b-c)) B
in equations (45) and (46) respectively.
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An attempt was made here to 6btain a compromise between
these two opposing situations and make some recommendation
about limitations on value of compressed volume for systems
designed by use of the maximum power design technique. This
was done by selecting different values of compressed volume
and then studying effect of such changes on calculated amplitude

of load motion and calculated maximum power at the load.

Effect of Changes in Compressed Volume
on Amplitude of Load Motion

Figure 11 shows calculated load motion C for a design
frequency of 10Onrad/sec and a design amplitude of 0.5 inch,
but for different compressed volumes., As can be seen from
Figure 11, the load motion tends to become unstable as the
compressed volume 1is increased. Further it can also be seen
the amplitude of motion goes on decreasing as volume is
increased. Figure 12(a) shows the ratio of calculated amplitudes
to design amplitude plotted against compresséd,volume. This
figure shows that for smaller compressed volumes the ratio is
greater than 1, but for larger compressed volumes, this ratio

becomes less than 1.
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Effect of Changes in Compressed Volume
on Ratio of Calculated Power
to Assumed Design Power

Figure 13 shows the velocity-force curves for different
compressed volumes. This figure shows that the shape of the
load locus obtained by calculation differ considerably from
the shape of the load locus (velocity-force curve) as shown
by Figure 10 for assumed sinusoidal load motion at small
volume, but at higher compressed volume the shape of both
the curves is nearly same. Figﬁre 12(b) shows the graph
between ratio of maximum power, based on calculated load
motion, to power based on assumed sinusoidal load motion, and
the compressed volume. The figure shows that this ratio is
greater than 1 for small compressed volumes and decreases
steadily as the volume is increased.

From the above discussion it is clear that as the compress-
ed volume is increased the load motion tends to become unsteady
and the amplitude of load motion decreases. Also the maximum
power obtained at load decreases as the compressed volume is
increased. Both these effects are undesirable for satisfactory
performance of the designed system. This indicates that com-
pressibility effects are more pronounced when compressed
volume is large. Therefore it could be concluded that for the
designed system to behave closely to the required design
specifications, compressed volume should be kept as small as
| possible (to fealize this locate valve close to cylinder, i.e.,

keep lines short),
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the maximum power design technique
can be successfully applied in designing a hydraulic actuating
system, (1) if the specificed design frequency of the assumed
sinusoidal load motion is low (5w to lOmrad/sec) and (2).
specified design amplitude is small (0.5 in)e. It is further
concluded that for satisfactory performance of such a designed
system the compressed volume should be as low as possible (keep
transmission iines short).

In the process of evaluating maximum.power design
technique, in this report, it was assumed that the system is
free of coulomb friction and stiction force. Also, it was
assumed thét transmission lines are rigid. In an actual
physical system all these assumptions are seldom true. Further
work could be done by taking all these factors in consideration.

No attempt was made in this report to study the effect of change

In supply pressure. Results obtained in this report could not

be varified experimentally because of the author's inability to

obtain a suitable system for experimentation.
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APPENDIX I

(Computer Program)
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10

11

20

13

DIMENSION Y{(4),0Y{4),Q1(4)
NEQ=4

DO 1C I=1,NEQ

QUI}=0.0

XMAX=C.02211

A=1.926

wWD=10.0

AN=0,2

H=AN/100

Y{11=C.50

Y{2)=0.0

Yi3)=C.00

Y{4}=C.0

T=0.00

DO 20 L=1,400

CALL RKG{NEQsH,T,Y¥40Y,Q)
F={Y(3)-Y(4))%A
POWER=Y{2)*F

PRINT 11y Te¥Y(1),Y1(2)4Y(3)yY(4)yFePOWER
FORMAT{//,7F18.7)
CONTINUE

sSTOP

END

SUBROUTINE RKGUINEQsHXeY,DY,Q)

2R B N SN BN B R N I A I B I B R A
I SR I IR O BN N IR I I AN O B O IR NI
THE INDEPENDENT VARIABLE X IS INCREMENTED IN THIS
Y{I) AND DY(I)} ARE THE DEPENDENT VARIABLE AND ITS
ALL THE Q1) MUST BE INITIALLY SET TO ZERD IN THE

NEQ = NUMBER OF FIRSYT ORDER EQUATICONS
H = INTERVAL SIZE

A SUBROUTINE DERIVINEQ,X.Y,CY) MUST BE PROVIDED
RN NN EE R

¥ ¥ ¥ & ¥ % ¥ ¥ ¥ ¥ % & ¥ & ¥k ¥ ¥ ¥ ¥ ¥ ¥} % ¥ ¥ ¥

DIMENSION A{(2)

DIMENSION Y(NEQ),DY(NEQ},QINEQ)
Al1)1=0.292893218813452475
A{2)=1.70710678118654752
H2=.5%*H

CALL CERIV(NEQ:X.Y,DY)

00 13 I=1,NEQ
B=H2*CY(I)-Q(I)
Y{I)=Y(I)+B
QUI}=C{I)+3.%B8-H2%DY(1)
X=X+H2

00 20 J=1,2

CALL CERIVINEQ¢XoY,DY)

DO 20 I=1,NEQ
B=AlJ)*(H*DY(I)=-Q(I))
Y(I)=Y(I)+B

#* »
#* %
#*

* ¥ %k *
* &k k %

PROGRAM

* %
* ¥

DERIVATIVE

MAIN PROGRAM

* *

* *
#*

1
1

PR
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26

75

80

85

Q{IN=CUI)+3.%B-A(J)*H2DY(])

X=X+H2

CALL CERIVINEQ.X,Y,DY)

DO 26 I=1,NEQ
B=0.1666666666666566668%(H*DY(1)~-2.%Q(1))
Y{l)=y(1)+B

QtI)=C{I})+3,%¥B~HZ2*DY({I)

RETURN

END :

SUBROUTINE DPERIVINEQ.TsY,0DY)

DIMENSION Y(NEQ),DY{INEQ)

XMAX=0.02211

AREA=1.926

W0=10.0

AMTCT=386.0/600.0

BM=345000.0 '

PHI=WD*3,1415926%T

X=XMAX*SIN(PHI ) - \
DI1A=(0.25 ‘ :
AX=X

IF{XeLTo0Qe0) AX==X

IF{AX.LT,0.000001) X=0.,0000000
IF(X.LT.0.00) GC TO 75

60 T0O 80

PSD=Y{3)-Y(4)

PDIFS=Y(3)

PDIF=1000.0-Y{ 4)

GO TO 85

PSO=Y{3)-Y(4)

PDIFS=1000.0-Y1{3)

. PDIF=Y{4)

IF{PCIF.LT.0.0) PDIF==-PDIF

IF{PDIFS.LT«0.0) PDIFS ==PDIFS

DY({1)=Y(2)}

DY{2)=(AREA*PSD-100.0%Y({2))*AMTOT
SFLOW=0,625#%3,14159%D1A*X%S5LRT{(2.0#100000./8.13)*PDIFS)
DFLOW=0.625%3.14159%DIA*X*SCRT({2.0%100000.,/8.13)%PDIF)
IF(XeGTe0s0:AND.10000.LTuY(3)} SFLOW=-SFLOW
IF(XeCToa0,0.ANDaY(4) el To0es0) DFLOW==DFLONW
IF(XeLTo040ANDLY(3) el Tu0.0) SFLCW==-SFLONW
IF(XalT20.0.ANDL1000.0.LT.Y{4)) DFLOW=-DFLOW
DY{3)={SFLOW-AREA*Y(2))*BM/(100.0+AREA*Y(1))
DY(4)a{AREA*Y{2)~DFLCW)*BM/(100.0+AREA*({3,5-Y(1)))
RETURN

END
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ABSTRACT

In this report the maximum power design technique to
design a hydraulic actuéting system is discussed. First the
design equations for maximum power point were derived from
flow-pressure equations for valve and velocity-force equation
for actuator. Then assuming a sinusoidal load motion a load
locus was plotted to obtain the values of force and velocity for
maximum power point. The design values were obtained by sub-
stituting these values of force and velocity in design equations.
The dynamic equations for the designed valve-actuator systems
were derived. These equations were solved using digital computer.
Calculations were checked by comparing the Bode diagram, for
theoretical transfer function for the actuating system and Bode
diagram obtained from the calculations for the designed system.
Results were then evaluated by comparing amplitude obtained by
calculation with specified desigﬁ amplitude and by comparing
the maximum power obtained from calculation with maximum power
for assumed sinusoidal load motion. Finally the effect of
compressed volume on performance of the design system was
evaluated by taking different values for compresséd,volume.
Results indicate that the maximum power design technique could
be éuccessfully applied for designing hydraulic actuating
system if the design frequency is low(5m to lom rad/sec) and

~design amplitude is small (0.5 in)



