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Abstract 

Increased ambient temperature and soil salinity seriously affect the productivity of wheat (Triticum 

aestivum L.) which is an important cereal second to rice as the main human food crop. However, 

wheat plant is most susceptible to high temperatures and salinity at booting and flowering stages. 

Several studies have documented the effects of individual stress like salinity and high temperature 

stress on wheat, nonetheless little is known about effects of combined salinity and high temperature 

at critical growth stages. Therefore, the objectives of this research were (i) to screen winter wheat 

germplasm for salinity tolerance at the germination stages and to determine seedling growth traits 

associated with salinity tolerance, (ii) to evaluate the independent and combined effects of high 

temperature and salinity stress on winter wheat genotypes at the booting stages through growth, 

physiological, biochemical, and yield traits, and (iii) to evaluate the independent and combined 

effects of high temperature and salinity stress on winter wheat genotypes at the flowering stages 

through growth, physiological, biochemical, and yield traits. In the first experiment, 292 winter 

wheat genotypes (winter wheat germplasm) was screened for salinity stress at germination stage 

under controlled environments. The seeds were subjected to three levels of salinity, 0, 60, and 120 

mM NaCl to quantify the effects of salinity on seed germination and seedling growth. In the second 

experiment, controlled environment study was conducted to quantity the independent and 

combined high temperature and salinity stress effects on growth, physiological, biochemical, and 

yield traits of twelve winter wheat genotypes during booting stage. Plants were grown at 20/15 °C 

(daytime maximum/nighttime minimum) temperature with 16 h photoperiod. At booting stages, 

the plants were exposed to optimum (20/15 °C) or high temperature (35/20 °C) and without (0 mM 

NaCl) and with (60, and 120 mM) NaCl. In the third experiment, plants were exposed to optimum 

or high temperature and with and without NaCl levels at flowering stages. The temperature regime 



  

and salinity levels were same as experiment II. The duration of stress was 10 d and after the stress 

period the plants were brought to optimum temperature and irrigated with normal water (0 mM 

NaCl).  The results indicated that, at 120 mM NaCl, the final germination percentage was 

decreased and the mean daily germination was delayed. Irrespective of the genotype, salinity stress 

significantly decreased the shoot and root length; seedling dry matter production, and seedling 

vigor. Based on the seedling vigor index, the genotype GAGE, OK04507, MTS0531, TASCOSA, 

ENDURANCE and GUYMON, were found to be most tolerant and CO04W320, 2174-05, 

CARSON, OK1070275, TX02A0252 and TX04M410211 were the most susceptible to salinity at 

germination stage. Combined stresses of high temperature and salinity decreased photosynthetic 

rate and grain yields. Based on grain yield, the genotype TASCOSA was found to be most tolerant 

(64 % decrease) to combined stresses, and AVALANCHE was the most susceptible to combined 

stresses (75 % decrease) at booting stages. Similarly, at flowering stage, TX04M410211 had 

greater tolerance to combined stresses (65 % decline) as compared to GAGE (83 % decline). In 

both experiments, tolerance was associated with higher spikelet number and seed set. In 

conclusion, there is genetic variability among winter wheat genotypes that can be used in breeding 

programs to improve winter wheat yield under combined high temperature and salinity stress 

conditions. 
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Abstract 

Increased ambient temperature and soil salinity seriously affect the productivity of wheat (Triticum 

aestivum L.) which is an important cereal second to rice as the main human food crop. However, 

wheat plant is most susceptible to high temperatures and salinity at booting and flowering stages. 

Several studies have documented the effects of individual stress like salinity and high temperature 

stress on wheat, nonetheless little is known about effects of combined salinity and high temperature 

at critical growth stages. Therefore, the objectives of this research were (i) to screen winter wheat 

germplasm for salinity tolerance at the germination stages and to determine seedling growth traits 

associated with salinity tolerance, (ii) to evaluate the independent and combined effects of high 

temperature and salinity on winter wheat genotypes at the booting stages through growth, 

physiological, biochemical, and yield traits, and (iii) to evaluate the independent and combined 

effects of high temperature and salinity on winter wheat genotypes at the flowering stages through 

growth, physiological, biochemical, and yield traits. In the first experiment, 292 winter wheat 

genotypes (winter wheat germplasm) was screened for salinity stress at germination stage under 

controlled environments. The seeds were subjected to three levels of salinity, 0, 60, and 120 mM 

NaCl to quantify the effects of salinity on seed germination and seedling growth. In the second 

experiment, controlled environment study was conducted to quantity the independent and 

combined high temperature and salinity stress effects on growth, physiological, biochemical, and 

yield traits of twelve winter wheat genotypes during booting stage. Plants were grown at 20/15 °C 

(daytime maximum/nighttime minimum) temperature with 16 h photoperiod. At booting stages, 

the plants were exposed to optimum (20/15 °C) or high temperature (35/20 °C) and without (0 mM 

NaCl) and with (60, and 120 mM) NaCl. In the third experiment, plants were exposed to optimum 

or high temperature and with and without NaCl levels at flowering stages. The temperature regime 



  

and salinity levels were same as experiment II. The duration of stress was 10 d and after the stress 

period the plants were brought to optimum temperature and irrigated with normal water (0 mM 

NaCl).  The results indicated that, at 120 mM NaCl, the final germination percentage was 

decreased and the mean daily germination was delayed. Irrespective of the genotype, salinity stress 

significantly decreased the shoot and root length; seedling dry matter production, and seedling 

vigor. Based on the seedling vigor index, the genotype GAGE, OK04507, MTS0531, TASCOSA, 

ENDURANCE and GUYMON, were found to be most tolerant and CO04W320, 2174-05, 

CARSON, OK1070275, TX02A0252 and TX04M410211 were the most susceptible to salinity at 

germination stage. Combined stresses of high temperature and salinity decreased photosynthetic 

rate and grain yields. Based on grain yield, the genotype TASCOSA was found to be most tolerant 

(64 % decrease) to combined stresses, and AVALANCHE was the most susceptible to combined 

stresses (75 % decrease) at booting stages. Similarly, at flowering stage, TX04M410211 had 

greater tolerance to combined stresses (65 % decline) as compared to GAGE (83 % decline). In 

both experiments, tolerance was associated with higher spikelet number and seed set. In 

conclusion, there is genetic variability among winter wheat genotypes that can be used in breeding 

programs to improve winter wheat yield under combined high temperature and salinity stress 

conditions. 
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Chapter 1 - Literature Review 

 Importance of the Wheat Crop 

Wheat (Triticum aestivum L.) is the world's most widely grown cereal crop and is a food staple 

(Carte, 2002). Wheat is a widely adapted crop and is grown from moderately irrigated to dry and 

high rainfall areas and from temperate, humid to dry and cold regions (Dubcovsky et al., 2007). 

The origin of wheat is thought to date back more than 10,000 years ago and has since spread 

worldwide to become a major crop (Dubcovsky, 2007). There are different species of wheat, 

however, the most extensively cultivated one is common wheat or Triticum aestivum (Cooper, 

2015). Global wheat production in 2015 was forecasted to be at about 735 million tones worldwide, 

and the world trade for wheat in 2015-16 was forecasted to be150 million tones (FAO, 2015). 

Approximately 95 % of the wheat crop is common wheat, which is used for making bread, cookies, 

and pastries, and 5 % is durum wheat, used for making pasta and other semolina products (Oleson, 

1994; Dubcovsky et al., 2007). Global production in 2016-17 is projected to increase due to 

increased acreage and production from several countries including Argentina, Australia, Canada, 

Russia, Serbia, Ukraine, and the United States (FAO, 2015). 

 With more than 700 million tons produced annually worldwide, wheat provides about 21 

% of the calories consumed by humans (Nechaev and Gaponenko, 2013.). Like all grains, wheat 

has two critical components, which are carbohydrates and proteins, the two important sources of 

energy for the human body. Wheat has the highest protein content of all the cereal grains (McCance  

et al., 1945; Cooper, 2015). Wheat starch itself is considered to be an important commercial by-

product of wheat, and second in economic value to wheat gluten (Cooper, 2015). Moreover, wheat 

foods are a good source of vitamins such as thiamine (vitamin B1) and other B vitamins as well as 

vitamin A. Wheat also contains large amounts of fibers, minerals, fats, and other bioactive 
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compounds that have been used as drugs for millennia. Wheat is mainly grown for use in human 

food production; however, it is used as an animal feed including an additive to pet foods (Spragg, 

2008). Wheat bran is rich in total antioxidant compounds, which play a big role in the health 

benefits because of their antioxidant activity (Gao, 2002). Industrial uses of wheat grain include 

starch for paste, alcohol, oil, and gluten. The straw was used for making newsprint, paperboard, 

and other products (Spragg, 2008(. Wheat is also used for ethanol and bio-fuel production 

(Hazzledine et al., 2011). 

 The world population has grown tremendously over the past two thousand years. In 1999, 

the world population passed six billion (Kirkham, 2005). The latest official current world 

population estimate, for mid-year 2016, is estimated to be about seven billion (7,432,663,275) 

(http://www.worldometers.info/world-population). Over the next four decades, the world’s 

population is forecasted to increase by an additional 2-4 billion people, and it will exceed  9 billion 

people by 2050 (Cohen, 2003). Recent FAO estimates specify that, to meet the expected demand, 

global agricultural production has to be increased by 60 % from its current level (Barnes and 

Shields, 1998; FAO, 2013). With wheat, maize, and rice leading the way, the Green Revolution 

reduced poverty and increased grain availability for consumption. Most of the calories that made 

that increase possible have come from these three crops. The oldest, most widespread and, until 

recently, the biggest of the three crops, is wheat (Hafner, 2003). 

Global wheat production is projected to be the same as for 2015 about 735 million tons in 

2016-17 (FAO, 2013; FAS, 2016). Currently, about 65 % of the wheat crop is used for food, 17 % 

for animal feed, and 12 % in industrial applications, including biofuels (Oleson, 1994; FAO, 2013). 

To meet demand, the world’s farmers will have to produce 40 % more grain in 2020. Most of the 

increase in world wheat production has to result from greater yield per hectare (Curtis, 2002). Both 
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genetically improved cultivars for yield and better cultural methods have contributed to the yield 

increases in the past (Oleson, 1994). Yield stability has increased substantially across 

environments largely due to the adoption of management responsive, high yielding, disease 

resistant semi-dwarf wheat cultivars throughout much of the world, particularly in developing 

countries. Improved agronomic practices play an equally important role in enhancing the 

dependability and sustainability of yields (Curtis, 2002). 

 The important wheat producing countries of the world are the United States, China, and 

Russia; however, significant production also comes from India, Europe, Canada, Argentina, and 

Australia. China has the largest land area devoted to wheat production, and then comes the United 

States, India, and Russia (Curtis, 2002). In developing countries, increments in wheat productivity 

gain is slowing, because varietal replacement has slowed compared to initial adoption.  In addition, 

environmental factors limit wheat production in developing countries (Heisey, 2002). 

 

 Botany of the Wheat Plant 

Wheat (Triticum sp.) is a cereal and a member of the family Poaceae (formerly called the 

Gramineae family). This family also includes important cereals such as rice, rye, corn, sorghum, 

and barley (Peterson, 1965). Wheat is an herbaceous annual plant. The cultivated plant is green 

when young, turning to golden-yellow as it matures. The plant has two forms of roots, the seminal 

roots and the nodal roots (adventitious roots), which arise from the lower nodes of the shoot (Kirby, 

2002). Wheat has a single main stem (culm) in addition to 2-6 tillers per plant. The stems are 

vertical and have a structure of cane, which means that they are hollow inside except at the nodes; 

however, some species have varieties with solid stems (Peterson, 1965). The leaves grow from 
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each node and include a leaf sheath that wraps around the stem and a leaf blade. Wheat has small 

auricles and these wraps around the stem at the point where the leaf sheath meets the leaf blade 

(Peterson, 1965). Flowers are grouped in spikes (also called the ear or the head). A spike forms at 

the top of the plant, and it usually has 35-50 grains (Kirby, 2002). Each spike consists of a main 

axis from which some filaments arise terminated by the glumes that enclose the flowers until they 

begin to mature (Shitsukawa et al., 2009).  Wheat flowers do not have petals or sepals. Each female 

flower consists of an ovary from which two styles emerge, and it has two feathery, sticky stigmas. 

Male flowers have three stamens that can be gold, green, or violet (Peterson, 1965). Wheat spikes 

are from two to eight inches (5 to 20 cm) long and bear from 20 to 50 kernels. Each kernel is 

protected by a pair of scale-like leaves, called glumes (Shitsukawa et al., 2009). A wheat grain 

typically weighs 30-66 mg (Gooding et al., 1997) depending on the variety and growing 

conditions. The kernel is made up of several layers of bran, forming a tough outer coat, the aleurone 

layer, rich in proteins and minerals; it also includes the endosperm that is mostly starch, but also 

contains proteins, and the embryo (Peterson, 1965). 

 

 Types and Classes of Wheat 

From the primitive variety of wheat (Triticum vulgaris) have developed different species, classes, 

and varieties that may be classified into many types of wheats. Now they are classified into groups 

depending on their genetics, growing habit, and grain quality.  

From a genetic view, there are three varieties of wheat:  

1- Diploid varieties: They have two sets of chromosomes in each cell. These varieties include 

species such as einkorn (Macdonald, 1994).  
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2- Tetraploid varieties: They have four sets of chromosomes in each cell. These varieties include 

species like Triticum turgidum that belong in the durum group (Macdonald, 1994). 

3 - Hexaploid varieties: They have six sets of chromosomes in each cell. In this group there are 

species like Triticum aestivum or Triticum spelta (Macdonald, 1994). 

Depending on grain quality, wheat is classified into two groups: 

1- Soft wheat: It is a group which includes some wheat varieties in which the protein matrix does 

not adhere to the  starch granules tightly. These varieties are destined essentially to make cakes 

and biscuits. The most abundant species within this group is the common wheat, Triticum 

aestivum. Soft wheat is grown mainly in warm and temperate regions. The grains, when broken 

open, show a difference in texture between the edge, which is harder, and the center, which is 

starchier. Their content in starch, fat, iron, phosphorus, and vitamin B is higher than in durum 

wheat (Oleson, 1994).  

2- Hard wheat: It is a group which includes some wheat varieties in which the protein matrix 

adheres tightly to the starch granules and milling causes breakage of the starch granules. It is grown 

in drier areas. It has hard grains and the appearance of the interior of the grain, when it is broken, 

is crystalline and uniform. It features a greater proportion of protein (gluten), water, and calcium 

than soft wheat. Varieties of hard wheat are most widely used for the production of bread (Oleson, 

1994). 

 

Based on growing habit or growing conditions wheat can be classified into two groups: 

1- Winter wheat: They are wheats that are planted in the fall and harvested at the beginning of 

summer (Macdonald, 1994).  
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2- Spring wheat: They are planted in the spring and harvested in late summer. They are planted 

in cooler places (Macdonald, 1994). 

3- Facultative wheat: which can be grown as either winter or spring planted. They typically lack 

strong winter hardiness and are grown in regions where there are less harsh winters (Braun and 

Sãulescu, 2002). 

Based on grain color wheat can also be classified into two groups: 

1 - Red wheat: They show a red coloration, due to their tannin content.  

2 - White wheat: They are amber, because the alleles for grain color do not expressed the reddish 

tannin pigments. (Oleson, 1994). 

 

 Growth and Developmental Stages of Wheat Plant 

Wheat plant development is classified into three broad phases: the seed germination and seedling 

establishment phase; the vegetative phase; and the reproductive and maturity phase (Hossain et al., 

2012). There are at least five scales commonly used worldwide to describe the developmental 

stages of the wheat plant. The most commonly used scales are the Zadoks, Haun, and Feekes. The 

Feekes scale is the most popular scale used in the U.S.; however, the Zadoks and Haun scales are 

more descriptive (Miller, 1992). 
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 Zadoks Growth and Developmental Stages Scale: 

Zadoks growth scale is a 0-99 scale follows plant development, which based on ten principal cereal 

growth stages (first digit). Each primary growth stage is divided into 10 secondary stages (second 

digit), extending the scale from 00 to 99. 

1. Germination stage (GS 00 – 09): Adequate temperature and moisture are needed for 

wheat seeds to germinate. Minimum moisture for germination in wheat is 35 to 45% of kernel dry 

weight (Evans et al., 1975). At germination the seminal root extends first, followed by the 

coleoptiles. Adventitious roots are produced in association with the coleoptile node.  When the 

coleoptiles emerge from the soil, their growth stops so the first real leaf pushes through its tip 

(Kirby, 2002). Under favorable conditions, seedling emergence occurs within seven days. Until 

the first leaf becomes functional, the seedling depends on energy and nutrients stored in the seed 

(Evans et al., 1975). 

2. Seedling stage (GS10 – 19): After germination the vegetative shoot apex initiates 

additional leaf primordia.  The seedling stage begins with the appearance of the first leaf and ends 

with the emergence of the first tiller (Kirby, 2002). Up to six seminal roots and three leaves support 

the plant at this stage. The crown of the plant usually becomes noticeably distinct after the third 

leaf has emerged (Kirby, 2002). 

3. Tillering stage (GS20 – 29): It begins with the emergence of lateral shoots from the axils 

of the true leaves at the base of the main stem of the plant. The tillers are formed from the auxiliary 

buds located at each crown node. Crown formation is soon followed by the appearance of tillers 

and development of a secondary or crown root system. The crown root system provides the plant 

with nutrients and water (Evans, 1975). At the base of each tiller is a sheath (small leaf like 

structure) called the prophyll, from which the tiller leaves emerge. Tillers depend on the main stem 
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for nutrition during their development. Once a tiller has developed three or more leaves, it becomes 

nutritionally independent of the main stem and forms its own root system (Evans, 1975). 

4. Stem elongation stage (GS30 – 39): At stem elongation, the stem nodes and internodes 

appear above the soil surface and become visible. During the tillering stage, the nodes from which 

leaves expand are telescoped at the crown (Miller, 1992). The beginning mark of stem elongation 

is called jointing. As jointing starts, the internal node region extends, moving the nodes and the 

growing point upward from the crown to create a long rigid stem that carries the head . This 

synchronizes the start of the stem elongation stages of the main stem and tillers. The spike at this 

stage is fully differentiated, containing all potential spikelet and florets or seed forming branches 

(Miller, 1992). 

5. Booting stage (GS40 – 49): Throughout the booting stage, the head of the wheat develops 

and becomes visible below the sheath on the stalk. At this stage the flag leaf’s ligules are visible 

and the leaf has totally emerged from the spiral. The leaf sheath extends and the head begins to 

enlarge (Miller, 1992). Also in this stage the head develops and becomes visible in the leaf sheath 

directly below the flag leaf.  Booting stage ends when the tips of the head, called awns, begin to 

emerge (Miller, 1992). 

6. Heading stage (GS50 – 59): As the stem continues to elongate, the head is pushed out of 

the flag leaf sheath, which is the beginning of the heading stage. The heading stage begins when 

the tip of the spike or the head can be seen rising from the flag leaf sheath, and emergence goes on 

until the head completely appears (Miller, 1992). 

7. Anthesis stage (GS60 – 69): Just after the wheat head has completely emerged, the 

anthesis stage (flowering) occurs. Commonly, flowering in wheat begins within three or four days 

after head emergence (Miller, 1992; Peterson, 1965). Once flowering begins, pollination will be 
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complete in about four or five days. Wheat is self-pollinating. Most florets are pollinated before 

anthers are extruded (Miller, 1992). Pollination begins in the head, starting first with the florets in 

the central spikelet. Within the next few days flowering progresses both up and down the spike 

(Miller, 1992). 

8. Grain milk stage (GS70 – 79): After anthesis, grain filling stages starts, this stage is 

known as the period during which the kernel matures. Pollination occurs within a few hours, and 

then the embryo and endosperm begin to form and photosynthetic products are transported to the 

maturing grain from the leaf. Also, starches, proteins, and all other compounds earlier produced 

and stored in leaves, stems, and roots are relocated to the maturing grain (Peterson, 1965). In this 

stage the kernel quickly increases in size; however, it does not gather much dry matter (Miller, 

1992).  During the milk stage, white milk-like liquid can be squeezed from the kernel. By the end 

of the milk stage, the embryo is fully formed (Peterson, 1965). 

9. Grain dough stage (GS80 – 89): In this stage the kernel rapidly gathers starch and other 

compounds, and, by the end of this stage, the green color begins to fade. Most of the kernel dry 

weight has accumulated by this stage. In addition, the kernel becomes solid and hard. This is 

because the kernel’s moisture content decreases. At the end of the dough stage, the kernel reaches 

its highest dry weight (Peterson, 1965). 

10. Ripening stage (GS90 – 99): When wheat begins to ripen, the kernel's moisture decreases 

rapidly. The kernel becomes very hard, and the plant turns to a straw color. Harvest can begin 

when the grain has reached a suitable moisture level (Peterson, 1965). Grain is best harvested at 

14 % moisture content (Miller, 1992). 
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 Importance of Environmental Factors on Wheat Productivity: Temperature 

and Salinity 

Crops are influenced by many climatic and environmental factors, which can be abiotic and biotic 

factors. They respond directly to changes in temperature, carbon dioxide (CO2), water, light 

intensity, the condition of the soil, and so on. Climatic change due to greenhouse gas emissions is 

predicted to increase the mean global temperature by 1.0 to 2.7 C in the next 100 years. Some 

parts of the world are likely to experience higher temperature increases than the global average 

(IPCC, 2013). The rate of change of global average temperature projected for the 21st century is in 

the range of 0.15–0.6 C per decade, which is much larger than any rates of change the climate has 

experienced for at least the past ten thousand years (Houghton, 2005). Climate change is expected 

to result in long-term shortages of water and other resources, poor soil conditions, drought and 

desertification, disease and pest outbreaks on crops, and sea-level rise (Kurukulasuriya, 2003). 

Recent growth in agricultural production has been uneven. In many regions, climate change has 

brought irregular weather patterns such as rising temperatures, violent storms, higher atmospheric 

CO2 concentrations, increasing water and or soil salinity, and flash flooding. These changes can 

either increase or decrease plant production (Ludwig and Asseng, 2005; Porter and Semenov, 

2005).  

 Abiotic stresses generally have negative impacts on plant growth and development, and 

thus decrease plant yield. In the field, crops are normally exposed to a combination of one or two 

or multiple abiotic stresses. Critical abiotic stresses that crops are commonly exposed to include 

drought, high temperature, salinity, and lack of nutrients. The most widespread stresses have in 

common their effect on plant water status. Water availability is a critical factor in determining the 

impact of climate change in many places (Kurukulasuriya, 2003). Plant species differ in their 
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sensitivity and response to the decrease in water potential caused by drought, high and low 

temperature, and high salinity. Water stress may affect plants by limiting their growth and 

productivity (Bohnert, 1995) . The three variables that have a large impact on plants, in general, 

are rainfall change, temperature change, and increase of atmospheric CO2 concentration. The 

information regarding the combined effects of changes in precipitation, temperature, and 

atmospheric CO2 concentration on wheat yield are limited. Studies have shown that drought is the 

most influential aspect in low rainfall areas (Trethowan and Pfeiffer, 1999). 

 Climate change factors could strongly affect the wheat crop that accounts for 21 % of food 

and 200 million hectares of farmland worldwide (Ortiz, 2008). Climate-change induced 

temperature increases are likely to reduce wheat production in developing countries by 20–30 % 

(Andersen et al., 1999; Asseng et al., 2015). Some studies found that global warming, as a result 

of climate change, may negatively affect wheat grain yields potentially increasing food insecurity 

and poverty; even though the magnitude and direction of climate impacts on crop yields will vary 

locally (Tubiello, 2000). High temperature has negative impact on change in average grain yield 

(Nicolas et al., 1984; Wheeler et al., 1996; Modhej et al., 2008; Narayanan et al., 2015). A recent 

study showed that global wheat production is estimated to fall by 6 % for each degree centigrade 

of further increase and become more variable in space and time. In other words, projected changes 

in future temperature and precipitation will negatively influence wheat yields (Tubiello, 2000).  

 To cope with environmental stresses, plants can develop adaptation strategies. There are 

two distinct strategies used by plants to deal with different abiotic stresses. The first strategy is 

stress avoidance, which allows the plant to avoid the exposure of plant systems to the stress factors 

by excluding those factors or their effects from plant systems. The second strategy is stress 
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tolerance, which is the ability of the plant to sustain plant function with the presence of stressed 

conditions (Touchette et al., 2007).  

Dehydration avoidance is defined as the plant’s capacity to maintain a fairly high leaf water 

potential under conditions of water stress. Plants have a number of defense mechanisms against 

water stress. The first plant response to water stress is to avoid low water content and low water 

potential and keep a balance between water uptake and water loss via transpiration. The way that 

plants achieve this is by increasing water uptake and reducing water loss via evapotranspiration. 

This requires stomatal closure, a thick cuticle, and an increase in the root system to reach and 

absorb more water. When transpiration is reduced, the water potential of the plant will be 

maintained as long as water in the soil is available for plant uptake. Under low soil water content, 

water potential of the soil will decrease and so does plant water potential. However, the plant has 

mechanisms to avoid the lowering of water potential by accumulation of solutes and cell wall 

hardening. Increasing the concentration of solutes leads to a decrease in water potential in plant 

cells as compared to the surrounding medium, and this results in water moving from the soil or 

surrounding medium (high water potential) into plant cells (low water potential). Also, leaf 

movements, leaf shedding, and leaf orientation are common responses to water stress in plants 

(Morgan, 1984; Touchette et al., 2007). By leaf movements, plants can decrease the amount of sun 

radiation that their leaves capture. Leaf movements give plants the ability to decrease the surface 

area by folding and /or rolling the leaf. The benefit of leaf rolling is to reduce the damage caused 

by increased leaf temperature, which results from solar radiation incident on leaf surfaces. With 

leaf rolling, less radiation is intercepted by leaf tissue. Another way that plants may benefit from 

leaf rolling is the reduction in transpiration rates. As the leaf is rolled up, it has a reduction in the 

surface area that transpires and, therefore, water loss by transpiration is reduced. In addition, some 
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plant species respond to water stress by changing leaf anatomy and structure, and these adaptation 

include reduction in leaf area, decrease in the number of stomata; thickening of leaf cell walls, 

waxing of leaf surfaces, and increasing root systems. Another mechanism that plants use to avoid 

dehydration is the production of abscisic acid. Dehydration stress causes loss of water from leaves, 

and this causes a loss of turgor in guard cells which induces the production of abscisic acid. 

Abscisic acid also accelerates the loss of stomatal turgor and leads to stomatal closure to reduce 

water loss. The increased stomatal resistance under stressed conditions helps a plant keep water.  

Dehydration tolerance strategies, such as osmotic adjustment and cell wall elasticity, are important 

mechanisms that some plants use to tolerate stressed condition (Touchette et al., 2007).  

 Dehydration tolerance usually involves the development of low osmotic potentials. Many 

plants have the ability to withstand dehydration stress by physical changes within the plant body 

and commonly by creating signals for changing metabolism. Major tolerance mechanisms that 

plant employ involve changes in membrane lipid composition, ion transporters, proteins, and 

antioxidants (Srivastava et al., 2012). In addition, accumulation of solutes such as proline, 

glutathione, glycine betaine, mannitol, fructose, sucrose, raffinose, and polyamines in plants cells 

results in tolerance to stresses (Krasensky and Jonak, 2012). Maintenance of turgor by 

osmoregulation is an important tolerance response to dehydration stress (Morgan, 1984). This 

increase of solutes in plant cells leads to a decrease in the osmotic potential and leads to higher 

water absorption by plant roots. Studies on some plants, including strawberry and black spruce, 

reported that plants showed a tolerance mechanism to water stress based on high elasticity of plants 

tissues (Blake et al., 1991; Save et al., 1993), and they suggested that tissue elasticity was more 

important for turgor regulation than osmotic adjustment (Blake et al., 1991). Also, abscisic acid 
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induces the expression of some drought tolerance related genes such as late embryogenesis 

abundant (LEA). 

 In general, to cope with abiotic stresses, plant responses include changes in morphological, 

physiological, biochemical, and molecular processes that decrease a plant’s stress exposure and/or 

limit damage and facilitate recovery (Potters et al., 2007). At the morphological and anatomical 

level, a plant response includes three components: inhibition of cell elongation, localized 

stimulation of cell division, and alterations in cell differentiation status. Also changes in 

anatomical characteristics of plant organs such as roots, xylem, and leaves contribute to adaptation 

of the plant to critical environmental conditions. At the physiological level, phytohormones play 

significant roles in abiotic stress tolerance. At the biochemical level, biosynthesis and 

accumulation of osmoprotectants, antioxidant enzyme activation and synthesis of antioxidants, and 

synthesis of polyamines are the mechanisms of stress tolerance (Rathinasabapathy, 2000) and at 

the molecular level, many genes are induced by abiotic stress. Products of those genes may 

function in stress response and tolerance at the cellular level. Natural stress tolerance is a very 

complex process involving several metabolites and metabolic pathways (Krasensky and Jonak, 

2012). 

 High Temperature Stress 

Temperature is an important factor controlling plant growth and development. Temperatures above 

the optimum are identified as high temperature (heat) stress by all living organisms. Most plants 

function has relatively narrow range of temperatures window. The extremes of this range may be 

considered killing frosts at about 0 ºC and death by heat and dehydration at about 40 ºC. In fact, 

each plant species grows and develops most rapidly at a favorable range of temperatures. This is 
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called the optimum growth temperature range. For most crops the optimum functional efficiency 

occurs mostly between 12  and 25 ºC (Went, 1953; Abrami, 1972).  

As a cool season crop, wheat grows best when temperatures are in a range of 21 to 25 °C; 

however, it requires different temperatures at different stages of plant growth and development.  

In wheat, the optimum temperature for wheat germination is between 12 and 25 °C, but 

germination will occur between 4 °C and 37 °C. At a temperature below or above the optimum 

temperature, germination of the seed decreases (Bowden et al., 2008). A temperature between 20-

25 °C is the ideal for vegetative and reproductive growth. The optimum temperature for wheat 

anthesis and grain filling stages ranges from 12 to 22 °C (Farooq et al., 2011). During reproductive 

development, temperature extremes beyond the optimum range affect development, 

photosynthesis, and the reproductive parts. High temperature during the reproductive and grain 

filling stage is one of the main causes of yield loss in wheat (Farooq et al., 2011). Temperatures 

above 30 °C during floret formation cause complete sterility (Saini and Aspinall, 1982). Table 1 

shows the critical temperature for each process and stage of wheat growth and development. 

 As a result of climate change, global temperature has increased and is predicted to increase 

in the near future in most of parts of the world. (IPCC, 2013). Scientists expect that an increase in 

average temperatures worldwide will lead to more frequent and extreme heat events. The change 

will vary with regions. The projection is that changes will be highest in the high latitudes of the 

northern hemisphere and that they will be significantly higher over land than over oceans. 

Increasing global temperatures will impact negatively the whole ecosystem. High temperature 

stress affects almost 7 million ha of wheat in developing countries, and terminal heat stress is a 

problem in 40 % of temperate environments, which cover 36 million ha (Reynolds et al., 2001). 
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 Effects on Physiological and Biochemical Processes 

Temperature plays an important role on plant growth and physiology. Plant growth and 

development include several biochemical reactions that are sensitive to temperature. Also, many 

physiological processes are regulated by temperature such as evapotranspiration and water stress 

(Ritchie, 1972), cold hardening (Hurry et al., 1995), vernalization (Brooking, 1996), leaf formation 

and leaf senescence (Miglietta, 1989), and photosynthesis and respiration (Evans and Rawson, 

1969; Azcon-Bieto and Osmond, 1983). High temperature stress affects the stability of many 

proteins, membranes, and RNA species and alters the efficiency of enzymatic reactions in the cell, 

which affect all major physiological processes, and these changes create metabolic imbalance 

(Hasanuzzaman et al., 2013). Increased temperature may affect water availability to the plant so 

that crop water requirements will increase with increased temperature (Simoes-Araujo et al., 

2003). This will affect physiological processes of plants. Some researchers tried to find out which 

developmental stage is the most affected by high temperature stress. They showed that 

photosynthetic capacity decreases rapidly when temperate species are exposed to high temperature 

stress during reproductive development, and they concluded that high temperature initially 

accelerated thylakoid membrane breakdown, an effect similar to normal senescence patterns 

(Harding et al., 1990; Djanaguiraman et al., 2011; Pradhan et al., 2012a). The effect of high 

temperature on higher plants is primarily on photosynthetic functions, and thylakoid membrane is 

highly susceptible to high temperature. A study by Weis and Berry (1988) indicated that CO2 

assimilation may be limited, in part, at high temperature by an imbalance in the regulation of 

carbon metabolism, which is reflected in a down regulation of ribulose-1, 5-bisphosphate 

carboxylase/ oxygenase. Also high temperature decreases leaf chlorophyll content and accelerates 

senescence (Zhao et al., 2007; Pradhan et al., 2012a). A decrease of chlorophyll content is 
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generally attributed to membrane damage and leaf senescence (Simon, 1974). High temperature 

stress decreased the photosynthetic rate because of ultrastructural damage to chloroplasts, mainly 

breakdown of chloroplasts and the plasma membrane coupled with dilation of the thylakoid 

membrane. Research on the impact of high temperature at the post anthesis period showed that a 

high temperature in the post anthesis period inhibits biomass production by promoting leaf 

senescence and reducing radiation use efficiency, and the failure of the assimilate to supply grains 

plays a dominant role in lowering grain yield in spring wheat subjected to a high temperature 

(Acevedo et al., 2002; Kobata et al., 2012). In addition, one of the major consequences of high 

temperature stress is the excess generation of reactive oxygen species (ROS) such as accumulation 

of singlet oxygen, the superoxide radical, hydrogen peroxide, and the hydroxyl radical, which leads 

to plant oxidative stress (Hasanuzzaman, 2012; Narayanan et al., 2015). 

 Effects on Growth and Yield 

High temperature stress is one of the major abiotic stresses limiting the growth and development 

of cool-season plants. High temperature stress is defined as the rise in temperature beyond a 

threshold level for a period of time sufficient to cause permanent damage to plant growth and 

development (Wahid et al., 2007). In general, crops usually grow more quickly in higher 

temperatures, which will create a shorter growing season and less time to produce grains. Because 

high nighttime temperatures increase the respiration rate, it reduced growth and yields of crops 

(Narayanan et al., 2015). Many studies found that high temperatures severely limit plant growth 

and yields (Prasad and Staggenborg, 2008; Prasad et al., 2008; Pradhan et al., 2012b; Hatfield and 

Prueger, 2014; Narayanan et al., 2015). Also a study of maize showed that a decreasing diurnal 

temperature amplitude increased leaf night respiration rate, which resulted in decreased 

carbohydrate content and a decrease in overall biomass accumulation (Sunoj et al., 2016).  
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 The effects of increased temperature on plant growth depend on the location, so that an 

increasing temperature for crops that grow in cold regions may result in increased yields, which is 

not the case with crops that grow in warmer regions. That means increasing temperature will lead 

to decreased yields in those places, whereas change in cropping systems or a change in planting 

dates and selection of tolerant varieties may be needed to avoid high temperature events. Some 

studies also have reported that high temperature is a major determinant of wheat development and 

growth. For instance, one study by Gibson et al. (1999) found that yields decreased by 3 to 5 % 

per 1 °C increase above 15 °C in plants under controlled conditions. Under high temperatures, 

wheat plants tend to alter the phenological duration of different stages and the whole life period is 

reduced. This leads to reduced germination period, days to booting, days to anthesis and maturity 

and shorter grain filling periods, which negatively affect yield components (Nahar et al., 2010). 

High temperature affects plant growth and development at all growth stages. The germination 

stage is very sensitive to high temperature. It may result in reduced germination percentage, low 

germination rate, reduced plant emergence, abnormal seedlings, decreased seedling vigor, reduced 

root and shoot growth of germinated seedlings, and reduced dry matter production (Wahid et al., 

2007; Kumar et al., 2011; Iloh et al., 2014).  Also, high temperature stress during germination to 

emergence results in seedling mortality and a poor crop stand (Acevedo et al., 2002). However; 

high temperatures occur frequently during reproductive growth of temperate species and strongly 

influence many plant processes during the reproductive stages. A recent study found that 

pollination is one of the most sensitive stages to high temperature across all species and during 

this developmental stage high temperature will significantly affect fertilization. The same study 

concluded that the major impact of high temperatures is during the reproductive stages of 

development, and, in all cases, grain yield is significantly reduced by temperatures that do not fall 
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within the optimum range 80–90 % of the time (Hatfield and Prueger, 2014). Many studies also 

found that yield and yield components are highly affected by high temperatures (Ferris et al., 1998; 

Lobell et al., 2005; Rahman et al., 2009; Kumar et al., 2011; Kobata et al., 2012). The grain filling 

stage is very sensitive to high temperature, and, when it occurs at this stage, yield reduction is great 

(Rahman et al., 2009; Kobata et al., 2012). In regard to the most sensitive development stages of 

wheat, Prasad and Staggenborg (2008) reported that the most sensitive stages of development to 

high temperature stress are generally during panicle development and during flowering. Another 

study suggested that, since high temperature periods appear to be more severe around anthesis, 

they may affect pollination processes (Prasad et al., 2011) and seed-set set are found to be the most 

sensitive stages (Prasad et al., 2008; Narayanan et al., 2015).  

 Recent study on wheat to quantify the impacts of short episodes of high temperature stress 

and to identify the sensitive stages and thresholds for temperature and duration of temperature was 

conducted. . The results showed that two periods (first at 6 to 8 d before anthesis and second at 0 

to 2 d before anthesis) during reproductive stages of development were most sensitive to short 

episodes (2 or 5 d) of high temperature stress (Prasad and Djanaguiraman, 2014). They also 

observed that short episodes (5 d) of mean daily temperatures > 24 °C imposed at start of heading 

quadratically decreased floret fertility, with the values reaching close to zero around mean daily 

temperature of 35 °C. The floret fertility and individual grain weight decreased linearly with 

increasing duration (in the range from 2 to 30 d) of high temperature stress when imposed at start 

of heading or start of grain filling, respectively. The combination of lower floret fertility (leading 

to decreased grain numbers) and decreased individual grain weight can cause decreases in grain 

yield under high temperature stress. 
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 Some studies concluded that grain set is reduced by temperatures warmer than 30 °C during 

the period from the onset of meiosis in the male generative tissue to the completion of anthesis 

(Smika and Shawcroft, 1980; Ferris et al., 1998). Many researchers found that high temperature 

accelerates the increase in grain dry weight, but shortens the grain filling period which causing a 

yield reduction. The acceleration of the increase in grain dry weight cannot compensate for the 

shortening of the grain filling period, and the reduction in yield is primarily caused by a failure of 

the sink function (Nicolas et al., 1984; Wheeler et al., 1996; Dupont and Altenbach, 2003; Zahedi 

and Jenner, 2003; Prasad et al., 2006; Modhej et al., 2008; Pradhan et al., 2012b). Wheat grain 

yield and flour quality are strongly influenced by the effects of environment during the grain filling 

period (Labuschagne et al., 2009). Temperature influences the rate and duration of wheat grain 

development, protein accumulation, and starch deposition in unique ways and by different 

mechanisms (Nicolas et al., 1984; Dupont and Altenbach, 2003; Zahedi and Jenner, 2003; 

Labuschagne et al., 2009). Recent studies have been done to address the effect of high temperature 

on different genotypes of wild wheat (Aegilops species), and they showed that high temperature at 

the late grain filling period decreased yield of wild wheat, and the decrease in yield was mainly 

due to a decline in individual grain weight. This study revealed that high temperature decreased 

leaf chlorophyll by 38 % due to electrolytic leakage from thylakoid membranes. The same study 

found that high temperature decreased grain yield per plant by 70 % (Pradhan et al., 2012a). Other 

studies have suggested that different genetic traits responded differently to temperature stress 

(Prasad and Staggenborg, 2008; Rahman et al., 2009; Laghari et al., 2012). 

 Response to High Temperature Stress 

Each plant species has its own optimal temperature for growing, and its distribution is determined 

to some extent by the temperature range in which it can survive and function.  Also, genotypes 
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may vary in their responses to high temperature stress (Asthir et al., 2012). Wheat is widely grown 

cereal in temperate and tropical environments, where it is often grown as the winter season crop 

in rotation with a number of other crops (Reynolds et al., 2001). It is grown under a wide range of 

environmental conditions where climatic factors such as temperature, drought, and light combined 

with cropping practices, such as fertilizer and irrigation practices, have different effects on plant 

growth and development. However, plant response to high temperatures varies with variation of 

temperatures, duration of exposure, crop growth stages, and the level of crop tolerance. Under field 

conditions, it may be possible to regulate some environmental stresses, but air temperature is 

impossible to regulate. Hence, breeding for high temperature tolerance is needed. High 

temperature tolerance is an essential characteristic for crop production worldwide. Developing 

high productivity genotypes that are tolerant to high temperatures will be very important to 

improve crop production. However; under field condition, effects of high temperature are often 

confused by the effects of drought stress. It is also possible that crops face combined effects of 

high temperature and drought at the same time (Pradhan et al., 2012b). Plants have a number of 

tolerance and avoidance mechanisms to deal with high temperature stress situations. To cope with 

the high temperature stress in many plants, they synthesize some proteins known as heat shock 

proteins. These proteins provide protection and repair the cellular damage caused by high 

temperatures (Mitra and Bhatia, 2008). Major tolerance mechanisms that plants employ are 

changes in membrane lipid composition, ion transporters, proteins, and antioxidants (Srivastava el 

al., 2012; Narayanan et al., 2015). In term of morphological and anatomical defense, plants adapt 

to high temperature by transpiration cooling, increasing root growth, decreasing leaf area, or even 

narrowing the leaf, changing the leaf direction, and developing leaves with thick wax coatings on 

the surface (Pandey et al., 2015). In semi-arid regions considerable increases in day temperature 
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during the period from anthesis to ripening of wheat are common  (February to April). However it 

can also often increase risk of freeze and frost damage in many areas. Therefore, planting dates 

would be one way to avoid high temperature stress as well as low temperature stress. Other 

agricultural practice can be used to minimize high temperature stress, and they could be important 

ways to increase yield in these environments. These practices include planting date, seeding rate, 

fertilizer application, and water supply. 

 

 Salinity Stress 

Salinity is a major factor reducing plant growth and productivity throughout the world. The FAO 

expects that over 800 million ha will be affected by salinity in the near future, and it considers 

salinity as a major limitation to food production for an increasing population (Rengasamy, 2006; 

FAO, 2008). The exact extent of salt affected soils is unknown due to absence of updated 

information. However, based on Pessarakli and Szabolcs, as cited in Behnassi et al. (2013), around 

954.8 million ha of land has salt affected soils worldwide. It is important to produce more crops 

that require effective utilization of salt affected land and saline water resources. Qadir et al. (2008) 

reported that at least 20 % of the world’s irrigated land is salt affected and/or irrigated with saline 

waters. In addition, about two million ha of cropped land are deteriorating because of salinity every 

year (Rengasamy, 2006; Tuteja, 2007). As a result of increased salinization of agricultural land, it 

is projected that about 50 % of cropped land will be lost by the middle of the 21st century (Wang 

et al., 2007).  In arid and semi-arid regions, high temperatures during the summer season cause 

severe evaporation losses, which leaves behind large amounts of salts. However, the problem 

exists even in some of the world's sub-humid and humid regions, especially in coastal areas. 
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 The term salinity refers to the presence of the major dissolved inorganic solutes (essentially 

Na+, Mg2+, Ca2+, K+, Cl-, SO4
-, HCO3

-, NO3
- and CO3

-) in water and soil (Bernstein 1975; Tanji, 

1990; Rhoades et al., 1999).  The relationships of these salts to each other as well as other ions are 

important and may differ greatly at different sites. A salinity problem occurs when salt accumulates 

in the crop root zone to a concentration that causes a loss in yield (Francois et al., 1999). In irrigated 

areas, these salts often come from a saline, high water table or from salts in the applied water and 

they are prevalent with a shallow water table. Irrigation is considered to be an important sources 

of salinity (Munns et al., 2004; Plaut et al., 2013). This is because irrigation water transports 

additional salts and releases immobilized salts into the soil through mineral dissolution and 

weathering. Also water lost through evapotranspiration will concentrate the dissolved salts in the 

soil solution (Gupta et al., 1990; Plaut et al., 2013; Francois et al., 1999). Naturally founded salty 

soils also are a major cause for salinity. Salty soils are most found where rainfall is fairly low and 

in coastal regions where salty water has entered the soil or salt spray has been absorbed by plants 

and soil (Tanji, 1990). However, even in regions with sufficient rainfall, salt can accumulate in a 

soil with poor drainage. Another source for soil salinity is substantial use of fertilizers (Plaut et al., 

2013). Atmospheric salt deposition, especially in coastal regions, is an important source for salinity 

in soils (Gupta et al., 1990). The relative impact of each source in contributing soluble salts 

depends on the natural drainage conditions, soil properties, water quality, soil water content, and 

cropping systems and management practices used for crop production (Tanji, 1990). When soils 

have the problem of excessive soil moisture in addition to high levels of soluble salts in the root 

zone, plant growth is either limited or totally prevented (Gupta et al., 1990). Salinity affects crop 

plants in three major ways: (1) osmotic stress, decreasing water availability; (2) ionic stress, 

causing ion homeostasis; and (3) changes in the cellular ionic balance, which in turn leads to 
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deficiency and/or toxicity of some nutrients (Kirst, 1989; Ahmad et al., 2010; Azooz et al., 2011; 

Carillo et al., 2011). Saline water has a low osmotic potential that results in decreased availability 

of water to root cells, which, in turn, exposes the plant to secondary osmotic stress. All the 

physiological responses that are the result of water deficit stress can also be observed under salinity 

stress (Qadir et al., 2008). 

 

 Effects on Physiological and Biochemical Processes  

In general, water is taken up by the fine roots of plants by the process of osmosis, which involves 

the movement of water from states of low salt concentration to states of high salt concentration. 

However, when salt concentration in the soil is high, the movement of water from the soil to the 

root is delayed. When the salt concentrations in the soil are higher than inside the root cells, the 

soil will pull the water from the root. This is the simple way in which salinity affects plant growth 

and reproduction (FAO, 2005). High salinity affects plant growth and development in many ways: 

causing water stress, resulting in ion toxicity, causing nutritional disorders, alteration of metabolic 

processes, reducing the photosynthetic leaf area, and reducing cell division and expansion (Munns, 

2002). Physiologically, salinity may have negative impacts on many processes, but the most 

important impacts are reduced cell growth and decreased leaf area, biomass, and yield (Shannon, 

1998; Acevedo et al., 2002). Plant biomass production depends on the accumulation of carbon 

products by photosynthesis. In fact, photosynthesis is determined by two main components: the 

rate of photosynthesis per unit leaf area and the area of leaf surface available for photosynthesis 

(Terry and Waldron, 1984). Many studies have shown that total dry matter production by cereals 

is correlated with the amount of photosynthetic active radiation intercepted, which depends on leaf 

growth and the balance between photosynthesis and respiration (Gallagher and Biscoe, 1979). In 
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addition, reactive oxygen species (ROS) such as the superoxide radical (O2
-), hydrogen peroxide 

(H2O2), and the hydroxyl radical (OH-) are also produced during salinity stress and these free 

radicals cause severe damage to membranes and other essential macromolecules such as 

chlorophyll pigments, proteins, and fats (Sairam et al., 2005; Krieger-Liszkay et al., 2008; Behairy 

et al., 2012; Djanaguiraman and Prasad, 2013). 

 Effects on Growth and Yield 

Salinity is one of the major abiotic stresses affecting germination, crop growth, and productivity 

(Munns and Tester, 2008).  Plants that grow in saline soils are affected by high levels of solutes, 

which result in yield losses. Most plants are glycophytes, including most crop plants. They grow 

under low soil salinity conditions and do not show salt tolerance. Therefore, they will not grow at 

a high level of salinity and are severely inhibited or even destroyed by 100-200 mM NaCl (Munns 

and Termaat, 1986). Francois et al. (1986) reported that salinity above 4.5 dSm-1 electrical 

conductivity of the saturation extract decreases the percentage of plants established per unit area, 

and, at 8.8 dSm-1, the emergence of wheat plants decreased to 50 percent. Salinity stress symptoms 

include reduced seed germination, plant growth, and plant yield. Some studies showed that the 

reduction of leaf area is often the first indication of salinity stress (Bernstein, 1975; Kingsbury et 

al., 1984; Volkmar et al., 1998; Acevedo et al., 2002; Cicek, 2002). Shoot and root growth also 

are reduced by salinity, but the shoot is usually more sensitive due to the inhibitory effect of salt 

on cell division and enlargement in growing point, which, in turn, affects the normal growth of 

wheat and the viability of tillers and decreases the number of primary and secondary tillers. Many 

studies have reported that wheat is the most sensitive to salinity during germination and during 

tiller appearance (Ayers et al., 1952). In wheat, tillering capacity is also reduced with increasing 

salt concentrations.  The number of effective ears per plant is the most seriously affected yield 
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component in wheat under saline conditions (Maas and Hoffmann, 1977; Munns et al., 2006). In 

addition, salinity causes reduction in the number of leaves in the main shoot and reduction of the 

number of spikelets in the main spike, which result in reduction of seed set and grain yield (Maas 

and Grieve, 1986; Frank et al., 1987). 

 Responses to Salinity Stress 

In an agronomic context, salt tolerance is described as a complex function of yield decline across 

a range of salt concentrations (Maas and Hoffman, 1977; van Genuchten, 1984; Munns, 2002). 

The ability of plant species to tolerate salinity is described in relative terms and is generally divided 

into four categories: sensitive, moderately sensitive, moderately tolerant, and tolerant (Francois 

and Maas, 1999). Plant salinity tolerance is basically thought of in terms of the inherent ability of 

the plant species to tolerate the effects of high salts in the root zone or on the plant’s surfaces 

without a significant adverse effect on the plant (Munns and James, 2003). Salinity resistance is 

another term that is mainly used for this phenomenon, although some have tried to differentiate 

the two terms (Shannon, 1998). Plant species and genotypes within species show differential 

responses to salinity stress (Djanaguiraman and Prasad, 2013). The physiological responses of 

cereals to salinity stress differ at different stages of growth and development and depend on the 

time of exposure and the severity of the stress. Moreover, the nature of the salts present in the soil 

may affect the response of plants to salinity stress. However, continued growth of cereal plants 

under saline conditions is dependent on their ability to control the influx of salts into their shoots 

through the transpiration stream (Greenway and Munns, 1980; Da-Silva et al., 2008). Salt tolerance 

in some plants can be developed by identification of new genetic materials through screening for 

individual and combinations of different adaptation mechanisms. The various traits used for 

selection was accumulation of osmoprotectants, exclusion of sodium and chloride, tissue tolerance 
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to accumulated sodium and chloride, and detoxification of ROS (Rathinasabapathy, 2000; Zhang 

et al., 2001; Munns and Tester, 2008; Ashraf et al., 2010; Djanaguiraman and Prasad, 2013). Plant 

species vary in regards to salinity tolerance. For example, some crops such as barley, cotton, and 

sugarbeet, are salt tolerant and they grow well in moderately saline environments (Maas and 

Grattan, 1999). However, some plant species adapt to saline conditions and become tolerant to 

salinity. Wheat has a moderate tolerance to salinity (Maas and Hoffman, 1977; Acevedo, 2002).  

However, some wheat species are more tolerant than others.  For example, bread wheat, seem to 

be more tolerant to salinity than durum wheat (Maas and Grieve, 1986).  

 To survive under salinity stress, plant species have evolved a number of physiological, 

biochemical, and molecular mechanisms to tolerate salinity by adjusting their metabolic processes. 

These mechanisms include ion compartmentalization, ion transport and uptake, biosynthesis of 

osmoprotectants, antioxidant enzyme activation, synthesis of antioxidants and polyamines, and 

hormonal adjustment (Rathinasabapathy, 2000; Gupta and Huang, 2014). To deal with high Na+ 

and Cl-, plants have developed a mechanism to keep ion balance within plant cells, and this 

mechanism is called ion hemostats (Niu Xiaomu et al., 1995). High concentrations of Na+ and Cl- 

in the soil solution reduce nutrient-ion activities and create extreme ratios of Na+ /Ca2+,  Na+/ K+,  

Ca2+/Mg2+, and Cl-/NO3
-, which in turn, result in osmotic and specific ion injury (Alam, 1999; 

Grattana and Grieveb, 1999). However, some plant species have the ability to maintain ion balance 

within plant tissue. This mechanism mainly regulates Na+ transport within plant cells. Na+ ion 

transport to the cell’s vacuole is affected through Na+/H+ antiporters. Proteins and enzymes that 

regulate this process and encode plasma membrane Na+/H+ antiporters play an important role. As 

a result, plants undergo synthesis of such proteins that tend to maintain ion balance within plant 

cells (Niu Xiaomu et al., 1995; Hasegawa 2013). Another mechanism that regulates ion balance is 
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the ability of a plant species to increase K+ uptake and reduce Na+ uptake its roots. This process 

also is regulated by some proteins and enzymes (Sairam and Tyagi, 2004). In addition some plants 

have the ability to exclude salt. Salt tolerance in plants, to some extent, depends on the ability and 

efficiency of root system (Alam, 1999).  One function of plant roots, especially in a drying soil, is 

to sense water stress. The performance of many crops depends upon the ability of their root systems 

to obtain water and nutrients. In fact, in saline soils, roots act as highly effective filters and about 

95 % of soil salt can be excluded by the root (Gucci and Tattini, 1997). This degree of exclusion 

occurs in most halophytes and in highly salt tolerant crop species. In some salt-tolerant species 

roots maintain K+ uptake despite competitive inhibition by Na+ due to selectivity of K+ uptake over 

Na+. However, salt contamination of soils can exploit and damage plant roots depending upon the 

sensitivity of the species and environmental variables (Bernstein and Kafkafi, 2002).  Plant species 

have the ability to exclude Na+ from leaf blades; however, excluding Na+ by roots reduces Na+ 

toxicity (Munns and Tester, 2008). Moreover; salt treated plants have lower stomatal conductance 

and relative growth rate. Several studies showed that there is a relationship between salt tolerance 

and stomatal conductance.  Stomatal conductance affects CO2 assimilation and growth rate (Munns 

and Tester, 2008). Another pathway to overcome the deleterious effects of Na+ and Cl- is by the 

accumulation in plant cells of solutes such as proline, glutathione, glycine betaine, mannitol, 

sucrose, and polyamines, and this results in resistance to salinity stress because they contribute to 

the osmotic pressure (Munns and Tester, 2008). This increase of solutes in plant cells leads to a 

decrease in the osmotic potential.  It is well known that salinity stress induces the production of 

ROS such as OH-, O2
-, and H2O2; however tolerant plants have a mechanism that detoxifies ROS 

by synthesis of protective chemicals including antioxidants such as ascorbic acid and glutathione 

and enzymes such as peroxidases, catalases, and superoxide dismutase (Gupta and Huang, 2014). 
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Another mechanism that plants use to tolerate salinity stress is by the production and regulation of 

some plant hormones such as abscisic acid and salicylic acid. Abscisic acid accelerates the loss of 

stomatal turgor and leads to stomatal closure to reduce water loss (Popova et al., 1995).  

 Combination of High Temperature and Salinity Stress 

In the field, crops are normally exposed to a combination of different biotic and abiotic stresses. 

Abiotic stresses such as drought, high and low temperatures, nutrient deficiency, high light 

intensity, and salinity stress can delay growth and development, decrease productivity, and may 

cause plant death (Krasensky and Jonak, 2012). Under natural conditions, combinations of two or 

more stresses, such as drought and salinity, salinity and high temperature, and drought, high 

temperature, and light are common in many cultivated regions, especially in coastal areas all 

around the world. Combined stresses become more acute and lethal threats to plant growth and 

development compared to individual stresses (Rizhsky et al., 2004; Mittler, 2006; Ramegowda and 

Senthil-Kumar, 2015). The general effect of combined stresses on plants depends mainly on the 

age of a plant, the inherent stress-resistant or susceptible nature of a plant, and the harshness of the 

two stresses (Pandey et al., 2015). In many areas, like arid and semi-arid regions, crops encounter 

a combination of these stresses, such as high temperature stress and salinity stress. 

 Effect of Combined Stresses on Physiological and Biochemical Processes 

The first steps of germination are imbibition and water absorption by seeds. Temperature plays an 

important role in water absorption so that elevation of temperature, to some extent, accelerates the 

imbibition process. However, under saline conditions water absorption is decreased due to the low 

water potential of the saline water. Water absorption by seeds depends on the water potential 

gradient between the seeds and the soil solution. Under saline conditions, as a result of dissolved 

salts, there will be a decrease in that gradient, which will decrease water uptake by seeds, and this 



30 

will affect germination and seedling growth. Both high temperature and salinity cause a depletion 

in cellular water content and osmotic potential, thus causing osmotic stress and yield reduction. 

Saline water has a low water potential; therefore, salinity always results in plant water stress. Also 

high temperatures in many cases lead to water stress. Therefore, plant grown under high 

temperature and saline conditions are subjected to water stress and reduced plant water potential.  

 High temperature stress usually enhances transpiration, and, with combination of salinity 

stress, this could result in enhanced uptake of salt, which may cause salt toxicity (Keles and Oncel, 

2002). Temperature affects the movement of salts in the soil, uptake of salts, overall biochemical 

processes in a plant, and transpiration (Gale, 1975). Hampson and Simpson (1990) in their study 

showed that adverse temperature intensified the harmful effects of osmotic stress on germination 

and early growth stages of wheat. High temperature and salinity stress induce alterations in ion 

transport and compartmentalization (Munns, 2002). A study on wheat plants showed that both of 

these stresses reduced net photosynthesis and increased the substomatal CO2 level, leading to 

lowered CO2 assimilation by Rubisco. This study also reported that salinity and high temperature 

stresses damaged gas exchange properties of the flag leaf, yield, yield components of some 

varieties of wheat plants (Anjum et al., 2008). Gas exchange and chlorophyll a fluorescence 

transients were studied in leaves of sorghum grown under salt and high temperature stress by Yan 

et al. (2012). They found that during salt treatment, photosynthetic rate decreased due to stomatal 

closing. A study on wheat seedlings reported that high temperature inhibited growth and increased 

the carotenoids and growth regulator activities of seedlings when they were grown under saline 

conditions (Keles and Oncel, 2002). This study concluded that the effects of temperature stresses 

on the antioxidative defense system may be altered by salinity stress. Another study on wheat 

seeding growth showed that heat shock increased the harsh effect of salinity on seed germination 
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and seedling growth, and it increased soluble carbohydrates and proline (Hamada and Khulaef, 

1995). 

 Effects on Growth and Yield 

High temperature and salinity stresses affect plant growth and development at all growth stages of 

plant development. The germination stage, for example, is affected by the combination of 

temperature and salinity. Many studies have been done to address the effects of high temperature 

and salinity on germination of different plants. One of these studies found that in sunflower plants 

at the optimum temperature for germination seeds were more tolerant to higher salinity levels and 

lower osmotic potentials than at high temperatures (Maftoun and Sepaskhah, 1979). Also, 

investigations done with many plants including wheat and barley, have reported that the more the 

temperature differed from the optimum for germination the more final germination became 

dependent on the osmotic potential. They also have found that germination rate is affected by 

temperature and that osmotic potential is dependent on temperature (Tadmor et al., 1969; Sharma, 

1976). Ahi and Powers (1938) reported that temperature is a main factor in the germination and 

growth of plants under saline conditions. They suggested that temperature relations should be 

considered before recommending certain crops for saline soils. Salinity and high temperature 

stresses affect not only the germination stages of the plants, but they are highly damaging to plant 

growth and reduce productivity. The combined stresses affects yield of many plants. A study on 

bread wheat showed that high temperature and salinity stresses had effects on grain number per 

spike, which led to decreased grain yield and harvest index (Anjum et al., 2008). This study also 

suggested that salinity stress was relatively more damaging to grain filling and final yield than 

high temperature. There is a shortage of information in the literature in regards to the effects of 

high temperature and salinity on wheat plants.  However, the effects of temperature and salinity 



32 

have been investigated on barley plants. An investigation found that there is significant interaction 

of temperature and salinity on the number of tillers and growth of shoots and roots. The study 

concluded that barley plants produced the highest number of tillers and the highest dry matter 

under saline conditions when the root temperature was at intermediate levels of 15 to 20 C. The 

study suggested that the adverse effects of salinity on the growth of barley could be reduced if the 

temperature of the rooting media could be kept at about 15 to 20 C (Mozafar and Oertli, 1992). 

Another study on barley showed that high temperature may stimulate plant growth and reduce 

some of the negative effects of salinity stress, and it also showed that high temperature affected 

the transcription of several stress related genes (Faralli et al., 2015).  

 Response to Plants to Combined Stresses 

Under field conditions, plants are often exposed to several abiotic stresses at the same time, which 

may result in yield loss. However, plants do not respond equally in their reaction to the combined 

effect of salt and other climatic factors. Therefore, some crops are reduced equally in relative yield 

at a given salt concentration regardless of climate condition, whereas most crop yields at the same 

salt concentration are decreased more in high temperature than in low temperature (Magistad et 

al., 1943). Many plants have developed several physiological, biochemical, and molecular 

adaptations to defend themselves under such combined stresses (Rivero et al., 2014; Pandey et al., 

2015). Natural stress tolerance is a complex process involving several metabolites and metabolic 

pathways (Krasensky and Jonak, 2012). Plants’ responses to a combination of stresses are 

distinctive from individual stress responses. Plants also show common responses that are common 

to individual stresses and stress combinations (Suzuki et al., 2014; Rivero, 2014; Pandey et al., 

2015). Under saline conditions, plants tend to maintain a high concentration of K+ and a low 

concentration of Na+ in the cytosol. They have the ability to do that by regulating the expression 
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and activity of K+ and Na+ transporters and of H+ pumps that generate the driving force for 

transport (Zhu, 2003). Many plants have to cope with osmotic stress and molecular denaturation 

caused by salinity and high temperature. They produce and accumulate osmoprotectants such as 

different sugars, proline, and amino acids. These biochemical compounds stabilize proteins and 

membranes against the denaturing effects of high temperature and high concentrations of salts 

(Kuznestov and Shevyakova, 1997; Yancey, 2005). A study on wheat seeding growth showed that 

heat shock and salinity increased the production of soluble carbohydrates and proline, which may 

cause resistance to the stresses (Hamada and Khulaef, 1995). Salinity and high temperature stresses 

have a strong impact on gene expression, because many genes coding for enzymes involved in 

cellular metabolism are differentially expressed upon stress (Krasensky and Jonak, 2012). Also, 

plant growth regulators, such as GA and kinetin, are effective in alleviating the inhibitory effects 

of salinity under high and low salinity conditions (Khan and Rizvi, 1994).  

 A study on tomato had contrasting results concerning the effects of the combined stresses 

of high temperature and salinity compared to the studies reviewed above. This study showed a 

positive effect of combined stresses on plant growth. The study found that the combination of high 

temperature and salinity offered a level of protection to tomato plants compared to the effects of 

salinity alone (Rivero et al., 2014). Rivero et al. (2014) detected a specific response of plants to 

the stress combination that included accumulation of glycine betaine and trehalose. This study 

concluded that the accumulation of these compounds under the stress combination was linked to 

the maintenance of a high K+ concentration and a reduction in the Na+/K+ ratio, which resulted in 

a better performance of the cell water status and photosynthesis as compared with salinity alone.  

 Nevertheless, even though there have been numerous investigations to study the effect of 

individual stresses on wheat , little is known about the biochemical and physiological mechanisms 
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underlying the tolerance of wheat  to a combination of two different stresses such as high 

temperature and salinity. Therefore, this work will give a better understanding of their combined 

effects on genotypes of winter wheat. 

  

 Dissertation Hypotheses 

• The genetic variability for salinity tolerance in winter wheat germplasm can be explained 

by mean daily germination percentage and seedling vigor index under salinity stress. 

• The combined effects of salinity and high temperature stress during booting and flowering 

stages is more detrimental than the individual effects of salinity and high temperature stress 

in winter wheat genotypes. 

• The decreased grain yield under salinity, high temperature and its combined stresses during 

booting and flowering stages will be associated with spikelet and grain number. 

  

 Dissertation Objectives 

The objectives of this research were (i) to screen winter wheat genotypes for salinity tolerance 

at the germination stages and to identify seedling growth traits associated with salinity tolerance, 

(ii) to evaluate the independent and combined effects of high temperature and salinity stress on 

winter wheat genotypes at the booting stages through growth, physiological, biochemical, and 

yield traits, and (iii) to evaluate the independent and combined effects of high temperature and 

salinity stress on winter wheat genotypes at the flowering stages through growth, physiological, 

biochemical, and yield traits. 
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Potential Outputs: 

• Expand the knowledge of the biochemical and physiological basis of high temperature and 

salinity stress tolerance in winter wheat.  

• Novel screening tools for identifying high temperature and salinity stress tolerant 

genotypes under controlled conditions will be known.  

• Offer diverse high temperature and/or salinity tolerant genetic materials to breeders for use 

in their breeding programs. 
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 Figures and Tables 

 

Table 1-1 Summary of temperature ᵒC for various processes and growth stages in wheat as 

reported in Porter and Gawith’s diary (cited in Porter and Semenov, 2005). 

 

Process Minimum 

Temperature (Tmin) 

Optimum  

Temperature (Topt) 

Maximum  

Temperature (Tmax) 

Vernalization -1.3 4.9 15.7 

Emergence 3.5 22.0 32.7 

Leaf initiation -1.0 22.0 24.0 

Shoot growth 3.0 20.3 > 20.9 

Root growth 2.0 < 16.3 > 25.0 

Terminal spikelet 1.5 10.6 > 20.0 

Anthesis 9.5 21.0 31.0 

Grain filling 9.2 20.7 35.4 
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Chapter 2 - Screening Winter Wheat Germplasm for Salinity 

Tolerance during Germination Stage 

 Abstract 

Salinity is one of the major abiotic stresses which limits wheat growth, development, and 

yield. Identification of salinity tolerant genotypes is critical for yield improvement. Therefore, a 

series of control environment experiments were carried out to evaluate the response of 292 winter 

wheat cultivars (Triticum aestivum L.) to different levels of salinity. The experiments were 

designed in a randomized complete block design (RCBD) with four replications. Twenty seeds of 

each germplasm were placed on pre-moistened filter paper in petri dishes, and placed in incubator 

at 20 °C. The seeds were subjected to three levels of salinity 0, 60, and 120 mM NaCl. Seedlings 

were harvested after eight d and data on final germination percentage, rate of germination, mean 

daily germination, shoot and root length, and seedling fresh and dry weight was recorded. The 

results indicated that the genotypes differed significantly for germination percentages, rate of 

germination, mean daily germination, shoot and root lengths, and seedling fresh and dry weight. 

At higher concentration of NaCl the germination rate and mean daily germination was delayed and 

final germination percentage was decreased in most of the genotypes. The data also showed that 

increasing salinity level, significantly decreased shoot and root length, seedling dry weight and 

seedling vigor was recorded. Principal component analysis separated genotypes in to three groups 

viz., tolerant, moderately tolerant and susceptible to salinity. The genotypes GAGE, OK04507 and 

MTS0531 and AVALANCHE, NE05496 and ENHANCER were classified as tolerant and 

moderately tolerant. The genotypes CO04W320, 2174-05, and CARSON were found to be 

susceptible to salinity. 



59 

 Introduction 

Climate change has brought irregular weather patterns such as rising temperatures, violent 

storms, higher atmospheric CO2 concentration, increasing water and soil salinity, and flash 

flooding (Ludwig and Asseng, 2005). Salinity is a major abiotic factor reducing plant growth and 

productivity throughout the world. It is estimated that over 800 million ha will be affected by 

salinity in the near future (Rengasamy, 2006; FAO, 2008). Recent tendency and future 

demographic projections propose that it is important to produce more crops which require effective 

utilization of salt affected land and saline water resources. Qadir et al. (2008) found that at least 

20 percent of the world’s irrigated land is salt affected and/or irrigated with saline water. About 

two million additional ha of cropping land are affected by salinity every year (Rengasamy, 2006; 

Tuteja, 2007). As a result of salinization increases of agriculture land, it is projected that about 50 

% of crop land will be lost by the middle of the 21st century (Wang et al., 2007). Saline soils are 

found where rainfall is fairly low and in coastal regions where saline water has entered the soil 

(Tanji, 1990). However, even in regions with sufficient rainfall, salt can be accumulated in the soil 

with poor drainage soils. Another source for soil salinity is substantial use of fertilizers (Plaut et 

al., 2013). 

Wheat (Triticum aestivum L.) is the world's most widely grown cereal crop for food (Carte, 

2002). Wheat is a generally grown in irrigated, dry and high rainfall areas and also from temperate, 

humid to dry and cold conditions (Dubcovsky et al., 2007). With 620 million tonnes produced 

annually worldwide, wheat provides about one-fifth of the calories consumed by human (FAO, 

2006). Taking into account the importance of wheat on an economic basis, the demand for wheat 

is expected to increase in the future with the increase in global population (Barnes and Shields, 

1998). Global wheat production is projected to be about 735 million tons in 2016-17 (FAO, 2013). 
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Currently, about 65 % of the wheat crop is used for food, 17 % for animal feed, and 12 % in 

industrial applications, including biofuels (Oleson, 1994; FAO, 2013). To meet the demand, 40 

percent more grain in 2020 is required (Andersen et al., 1999). Increases in cultivated area are 

expected to contribute only about one-fifth of the global cereal production between 1995 and 2020 

(Andersen et al., 1999). Therefore, improvements in crop yields will be required to bring about the 

necessary production increases. 

Germination of seed is an important for seedling establishment for ensuing plant stand. 

Salinity can affect germination and seedling growth by producing an osmotic pressure that 

prevents or reduces water uptake. Also, salinity may affect germination due to Na and Cl ions 

toxicity (Munns, 2006). Wheat has a moderate tolerance to salinity (Maas and Hoffman, 1977; 

Acevedo, 2002). Francois et al. (1986) found that salinity level of > 4.5 dSm-1 electrical 

conductivity of the saturation extract decreases the percentage of plants establishment per unit area 

and at 8.8 dSm-1 the wheat plants emergence decreased to 50 per cent (Francois et al., 1986). 

Salinity stress symptoms include, reduced seed germination, plant growth, and plant yield. 

However, plant species and genotypes within species show differential responses to salinity stress 

(Djanaguiraman and Prasad, 2013). To our knowledge, screening winter wheat germplasms to 

salinity stress and understanding the genetic variability for seedling character was not studied in 

detail. Therefore, the objective of this study is to screen winter wheat genotypes for salinity 

tolerance at the germination stages and to determine seedling growth traits associated with salinity 

tolerance. 
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 Material and Methods 

 Plant Materials 

The Hard Winter Wheat Association Mapping Panel (HWWAMP), developed by the Triticeae 

Coordinated Agricultural Project (TCAP), containing about 300 cultivars and advanced lines 

(Appendix 1) were used in this study. Germplasm included 193 cultivars and 106 breeding lines, 

of which 258 were hard red winter wheat and 41 were hard white winter wheat. Nine public 

breeding programs contributed 270 entries and four private breeding programs contributed 27 

entries. The public breeding programs that contributed were Colorado, Kansas, Michigan, 

Montana, Nebraska, North Dakota, Oklahoma, South Dakota, and Texas. The private breeding 

programs were AgriPro-Syngenta (APS), WestBred-Monsanto (WES), and a private breeding 

sources (Hardeman) Grain and Seed. The historic entries included in this panel were the landrace 

from Turkey; the two ancestral cultivars Cheyenne and Kharkof; and five cultivars released before 

1960 (Comanche, Wichita, Kiowa, Bison, and Tascosa) (Awad, 2015; Grogan, 2015). 

Experimental and Treatment Conditions 

The experiments were conducted in controlled environmental facilities at Crop Physiology 

Laboratory, Department of Agronomy, Kansas State University. The plant material consisted of 

about 292 genotypes of winter wheat and three different concentrations of NaCl (0, 60, and 120 

mM NaCl with EC value of < 0.7, 7.5 and 14.5 dSm-1) were used as salinity treatments. Salinity 

solution prepared by dissolving the required amount of NaCl in tap water. Healthy seeds of each 

genotype were surface sterilized with 5 % sodium hypochlorite solution for five min and washed 

with distilled water, dried in air and used for the experiment. A set of 20 seeds were placed in a 

Petridish with moisturized Whatman no. 1 filter paper discs. The filter paper was moisturized daily 

by adding 5 mL of the appropriate NaCl solution. The filter papers were changed once every 2 d 
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to prevent salt accumulation. The Petridishes were placed in the dark throughout the germination 

period at 20 ± 2 °C in an incubator (Low temperature Illuminated incubator, Model 818) USA. 

Seeds were considered germinated when both shoot and root extended more than 2 mm from the 

seed. The germination rate and speed of germination, mean daily germination, shoot and root 

length, seedling fresh and dry weight traits were collected on eight d. 

 Data Collection  

Germination percentage (G %) was expressed according to Nasri et al., 2011. The G % = (Number 

of seeds germinated at the end of the experiment (8 d after sowing) / (Total number of seed sown) 

x 100. Germination count was taken after 24 h from sowing to end of experiment (8 d). 

Germination index (GI %) was calculated according to the equation given by Karim et al. (1992). 

GI= (Germination % in each treatment)/ (Germination % in the control) x100. Number of seeds 

germinated on daily basis was counted from first d of germination to 8 d after sowing. From this 

data the germination rate (GR) was calculated according to the equation given by Rubio-Casal, 

(2003). GR = (n1t1) + (n2t2) + ……. + (nxtx) / Xn. (Where: n1 is the number of seed germinated 

on the first day of germination, t1 is the days from start to fist germination and Xn is the total 

number of seeds germinated). Mean daily germination (MDG) was calculated as per Gairola et al.  

(2011). MDG = Total number of germinated seeds/total number of d to final germination. 

 Thereafter, 5 seedlings were selected from each replicate and dissected into shoot and root 

to record the fresh and dry weight. The fresh weight was recorded using a balance (SALTER 

BRECKNELL, MODEL ESA-600 China) and then the shoot and root were dried in oven 

maintained at 70 °C for 2 d to record the dry weight and expressed as mg seedling-1. The distance 

from seed to the tip of the leaf blade were recorded and expressed in cm as the shoot length. The 

distance from the seed to the tip of the root were recorded and expressed in cm as the root length.  
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The salinity tolerance (ST) index calculated according to the equation given by Tregay et al. 

(2014). The ST= Seedling dry weight of NaCl treated/seedling dry weight in control x 100. 

Seedling vigor index (SVI) calculated according to the equation given by Abdoli1 et al. (2013) 

SVI= seedling length (cm) x germination percentage / 100. 

 

 Experiment Design and Data Analysis 

The experiment design was a randomized complete block design (RCBD) with four replications. 

The principal component analysis was done using XLstat program The analysis of variance of the 

data and the comparison of the means was done using least significant difference (LSD) using SAS 

9.4 (SAS Institute Inc., Cary, NC, USA). 

 

 Results 

Analysis of variance results showed that salinity had significant effect (P < 0.05) on germination 

%, germination index, mean daily germination, germination rate and seedling vigor index. 

However, genotype and salinity x genotypes interaction had no significant effect on these 

parameters (Table 2.3). Also the results showed that salinity, genotype and their interaction had 

significant effect (P < 0.0001) on all seedling characteristics studied (Tables 2.3 and 2.4). All mean 

values of the 292 winter wheat genotypes for germination and seedling characteristics were 

presented in appendixes B and C, however in the result section only result of twelve genotypes 

was presented. These twelve genotypes were selected randomly from the 292 genotypes of winter 

wheat after grouping the 292 genotypes based on the seedling vigor index, such that those with the 

smallest and largest percent reduction over the control were ranked respectively as the most and 
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least tolerant genotypes At 120 mM NaCl these genotypes were (1) tolerant to salinity at 

germination stage (GAGE, MTS0531, TASCOSA, and GUYMON) (2) moderately tolerant to 

salinity at germination stage (AVALANCHE, OK05108, TX86A5606 and ONAGA) and (3) 

susceptible to salinity at germination stage (CO04W320, 2174-05, CARSON, and 

TX04M410211). 

 Germination Parameters  

Germination percentage (G %) of wheat genotypes was significantly (P < 0.05) reduced by 

increasing salinity level. Genotypes GAGE, OK04507, GUYMON and MTS0531 were tolerant to 

salt stress, whereas, genotypes O04W320, 2174-05, and CARSON were sensitive to salt stress at 

120 mM NaCl. Mostly increasing level of salinity stress resulted in the decrease in germination 

percentage over control. However, in some genotypes, the germination percentage were not 

affected at 60 mM NaCl, but decreased by 70 % at 120 mM NaCl over the control (0 mM NaCl; 

Fig. 2.4a).  

 The results showed that salinity significantly reduced germination index (GI) at all 

concentrations with the largest decrease at 120 mM NaCl. The results showed a decline by 70 % 

in germination index in some wheat genotypes 2174-05, CO04W320 and CARSON under high 

level of salinity 120 mM NaCl. However, under the same level of salinity, genotypes MTS0531 

and TASCOSA had about 11 % decline in term of germination index (Fig. 2.4b). In addition, the 

analysis of variance showed that salinity significantly increased (P < 0.05) germination rate (GR) 

(Tables 2.3 and 2.4). Figure 2.4c showed that increasing salinity concentration resulted in dramatic 

increase in germination rate. Genotypes 2174-05 and ONAGA showed an increase in germination 

rate over the control by 77 % and 81 %, respectively at 120 mM NaCl, whereas, genotypes 

GUYMON, and MTS0531 had percent increase of 23 % at the same level of salinity 120 mM 
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NaCl over the control. Mean daily germination (MDG) was strongly decreased with salt stress in 

all genotypes. The result showed that, in some genotypes, moderate salinity decreased mean daily 

germination by lesser extent and severe stress decreased to a greater extent. Genotypes 2174-05 

CO04W320, CARSON and TX04M410211 showed decline over the control by 85, 81, 80 and  

81 %, respectively, whereas, genotypes GUYMON, GAGE, MTS0531 and TASCOSA showed 

decline over the control by 47, 46, 42 and 49 %, respectively (Fig 2.4d). 

 Seedling Parameters 

All seedling parameters decreased with increasing salinity level (Tables 2.3 and 2.4). Under non-

saline conditions genotypes showed no significant differences in terms of shoot length. However, 

under both levels of NaCl condition there were significant differences in response of genotypes to 

salinity levels (Fig. 2.5a). Under high level of salinity, 120 mM NaCl, the genotypes 2174-05, 

TX04M410211, ONAGA and TX86A5606 had the greatest decrease in shoot length and genotypes 

GUYMON and GAGE had the lowest decrease in shoot length. Similarly, there were significant 

differences among genotypes in terms of root length in response to salinity stress. Increasing NaCl 

level resulted in a significant decrease in root elongation as compared to the control. Increasing 

salinity levels inhibited the root length of wheat genotypes. In fact, root length was more affected 

by salt stress than shoot length. Genotypes 2174-05, TX04M410211 and TX86A5606 showed a 

percent decline of above 70 % (Fig. 2.5b). In addition, increasing salinity level consistently 

reduced the growth and biomass production of almost all wheat genotypes used in this study. In 

comparison with control, maximum reduction in seedling fresh weight was observed in 2174-05, 

TX04M410211 with a per cent reduction of 42 and 39 %, respectively. Seedling dry weight was 

also decreased with increasing salt concentrations, (60 to 120 mM NaCl; Fig. 2.5c). The seedling 

dry weight was decreased to higher level than fresh weight under high level of salinity 120 mM 
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NaCl the highest decline of fresh weight was by 42 % in 2174-05, whereas the dry weight declined 

by 78 % in the same line.  Results regarding salt tolerance (ST) of different winter wheat genotypes 

showed that genotypes GUYMON and GAGE were tolerant to salinity stress at germination stage, 

whereas genotypes TX04M410211 and 2174-05 were sensitive to salinity stress.  On the basis of 

tolerance at germination stage, genotypes were grouped as tolerance, moderate, and sensitive 

genotypes based on salinity tolerance index. The result showed that genotypes GUYMON, GAGE, 

and TASCOSA had a per cent reduction of 47, 48, and 49 %, respectively over control. Therefore, 

these genotypes were more tolerance to salinity stress, while the genotypes 2174-05, CO04W320, 

and TX04M410211 had a per cent reduction of 77, 72 and 71 %, respectively and therefore these 

genotypes were sensitive to salt stress at germination stages (Fig. 2.5d). Increasing salinity 

concentrations from 0 to 120 mM NaCl gradually decreased seedling vigor index. The highest 

seedling vigor index was observed in control, while salinity at 60 and 120 mM NaCl decreased 

significantly seedling vigor index. Significant decrease was observed at 120 mM NaCl salinity in 

genotype 2174-05. Data showed that the genotype 2174-05 had 92 % decline over control, while 

the GUYMON has 45 % decline over control (Fig. 2.5e). 

Grouping of genotpes was done using principal component analysis. (Table 2.1). The plot 

of the PCA (Fig. 2.1) showed that the first two components (PCA1 and PCA2), account for about 

76 % of the total variance (Table 2.1 and Fig. 2.1). The first PCA was related to seedling vigor 

index and seedling length, whereas the second PCA was related to germination index and 

germination % (Table 2. 1). The traits, which contributed more positively to PCA1, were seedling 

length, root length, shoot length, mean daily germination, and seedling dry weight, suggesting that 

these components reflected the salinity tolerance. In addition, the traits, which contributed 

positively to PCA2, were germination index and germination percentage. Correlation coefficients 



67 

for all the traits showed that salinity tolerance positively correlated with all the traits. The most 

noticeable relationships (shown in Figure 2.2) were a strong positive relationship between 

germination % and germination index and seedling vigor; between mean daily germination and 

salinity tolerance; between seedling dry weight and root length; between shoot length, seedling 

length and fresh weight as indicated by the small obtuse angles between their vectors. There was 

a negative correlation between germination rate and seedling length (Fig. 2.2). Table 2.2 showed 

that seedling vigor showed significant positive correlation with all traits except for germination 

rate. Germination per cent and mean daily germination showed strong correlation with germination 

index. Shoot and root length showed positive strong correlation with seedling length. In addition, 

seedling fresh weight showed positive correlation with seedling dry weight, and seedling dry 

weight showed strong positive correlation with salinity tolerance index (Table 2.2). 

 Ranking of Genotypes Based on PCA 

The genotypes was ranked based on the seedling vigor index, such that those with the smallest and 

largest percent reduction over the control were ranked respectively as the most and least tolerant 

genotypes at 120 mM NaCl. According to that, genotypes were divided into three categories. (1) 

tolerant to salinity at germination stage (GAGE, OK04507, MTS0531, TASCOSA, 

ENDURANCE and GUYMON), (2) moderately tolerant to salinity at germination stage 

(AVALANCHE, NE05496, ENHANCER, OK05108, TX86A5606 and ONAGA), and (3) 

susceptible to salinity at germination stage (CO04W320, 2174-05, CARSON, OK1070275, 

TX02A0252 and TX04M410211). 
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Discussion 

Wheat is considered to be moderately tolerant to salinity. The PCA is multivariate data analysis 

procedure used to know the relationship between various parameters for salinity tolerance. All the 

ten parameters were taken for PCA. PCA analysis reduced the variables to two components 

accounting for about 76 % of the total variation. The first component accounted for 58.68 % of the 

variability and the second component accounted for 16.93 % of the variability. Principal 

component analysis and correlation coefficients analysis in winter wheat genotypes simplify the 

identification of desirable traits and their correlation with salinity tolerance and consistent 

classification of genotypes, 

 The results showed that by increasing NaCl concentrations, the germination in winter 

wheat genotypes was delayed and decreased, also the germination percentage germination index, 

germination rate and mean daily germination were significantly (P < 0.05) decreased by salinity 

stress. Similar results were reported by Rahman et al. (2008); Khayatnezhad, and Gholamin, 

(2010); Kumar et al. (2012); and Hussain et al. (2013). These studies reported that there exists  

genetic variability among wheat germplasm for salinity tolerance based on seed germination 

percentage and seedling growth. Salinity affects germination in two ways: (1) high concentration 

of salt in the growth medium decreased the osmotic potential to a level that prevented water uptake 

and reduced utilization of nutrients essential for germination, and (2) Na+ and Cl- ions are toxic to 

the embryo (Kayani et al., 1990; Munns, 2006). Winter wheat genotypes responded differently to 

salinity level. It appears that at concentration up to 120 mM NaCl in the growth solution, the water 

potential of the seeds is still sufficiently low to bring adequate amount of water for the several 

metabolic processes that lead to germination. Other studies reported that the difficulty of growth 

under salinity stress may result from decreased water potential of the seeds (Rahman et al., 2008; 
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Muhammad and Hussain, 2012). The results in this study are analogous to those described by other 

researchers (Catalan et al., 1994; Kazemi and Eskandari, 2011; Muhammad and Hussain, 2012). 

Physiologically, salinity stress has negative impact on many processes, however the most 

significant effects are reducing cell division and expansion, which result in decreasing shoot and 

root length. With increasing NaCl concentration, it affected seedling fresh and dry weight. 

Reduction of seedling dry weight relatively depended on shoot and root lengths and branches. The 

results obtained in this study were consistent with previous findings that have indicated significant 

differences in the salt tolerance of wheat genotypes and their differential responses to increased 

salt concentrations (Catalan et al., 1994; Rahman et al., 2008; Adjel et al., 2013). In addition, the 

results showed that the most sensitive growth characters to salinity were root length and dry matter 

production, while germination percentage was least sensitive under salinity. Nevertheless; the 

genotypes which had higher germination percentage also had higher root length, shoot length, and 

dry matter production. For this reason, seedling length and dry weight are considered as selection 

criteria for salinity tolerance. It is estimated that in addition to higher dry weight, longer shoots 

and roots development will allow more successful selection for high salt tolerance. Yet, root length 

and dry weight can be considered as selection criteria only when there is a high germination 

percentage. For these reasons, the seedling vigor index, which is a function of both germination 

percentage and seedling length, was determined to be a more consistent selection criterion. 

Genotypes such GUYMON and TASCOSA were considered as salinity tolerant genotypes.  

 Conclusions 

In conclusion, this investigation was carried out to screen winter wheat genotypes for salinity 

tolerance and to evaluate the effects of salinity on germination and seedling growth of 292 winter 

wheat genotypes. Genotypic variability for salt tolerance was found among different winter wheat 
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genotype. Seedling vigor index is a good parameter for evaluating salinity tolerance at germination 

stages. According to that the genotypes were ranked based on the seedling vigor index, such that 

those with the smallest and largest per cent reduction over the control were ranked respectively as 

the most and least tolerant genotypes at 120 mM NaCl. According to that genotypes were divided 

in to three categories (1) tolerant to salinity at germination stage (GAGE, OK04507, MTS0531, 

TASCOSA, ENDURANCE and GUYMON), (2) moderately tolerant to salinity at germination 

stage (AVALANCHE, NE05496, ENHANCER, OK05108, TX86A5606 and ONAGA), and (3) 

susceptible to salinity at germination stage (CO04W320, 2174-05, CARSON, OK1070275, 

TX02A0252 and TX04M410211). Overall, it can be determined that under control (0 mM NaCl) 

conditions, all winter wheat genotypes had good germination and growth attributes. However, 

wheat genotypes showed differential response at higher levels of salinity. Yet, salinity reduced all 

germination traits of wheat genotypes. These results indicate that genetic variation exists among 

winter wheat genotypes in terms of germination under salinity stress condition. Further studies are 

needed to see the effect of salt stress on the germination and seedling growth of theses germplasms 

under field conditions.  
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 Tables and Figures 

Figure 2-1 Scree plot showing eigenvalues in response to number of components for the 

estimated variables of winter wheat germination. The first principal component (PC1) explains 

58.68 % of the variance, and the second principal component (PC2) explains 16.93 % of the 

variance.  
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Figure 2-2 Plot of the first two PCAs showing relation among various traits measured in winter 

wheat germplasms. 
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Figure 2-3 Biplot of wheat genotypes based on first and second components. The biplot did not 

show all genotypes, it only presents some genotypes. 
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Figure 2-4 The effects of different salinity levels (0, 60,120 mM NaCl) on (A) germination 

percentage, (B) germination index (%), (C) mean daily germination and (D) germination rate (d) 

of twelve winter wheat genotypes. Percent decline of each trait due to high level of salinity (120 

mM NaCl) as compared to control is indicated. Vertical lines on top of bars indicate standard error 

of means (n = 4). 
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Figure 2-5 Effect of different salinity levels (0, 60,120 mM NaCl) on (A) shoot length (cm), (B) 

root length (cm), (C) seedling dry weight (g) (D) salt tolerance index, and (E) seedling vigor index 

of twelve winter wheat genotypes. Percent reduction in all traits due to high level of salinity (120 

mM NaCl) as compared to control is indicated. Vertical lines on top of bars indicate standard error 

of means (n = 20). 
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Table 2-1 Principal component analysis for the measured traits in winter wheat and the 

contribution of the traits (%) of winter wheat germination. F1-F5 represent the contribution of all 

the ten parameters taken for principal component analysis (PCA). 

Traits  PC1 PC2 PC3 PC4 PC5 

Germination % 6.101 31.670 0.017 0.204 0.577 

Mean daily germination 10.217 2.346 16.203 3.557 1.689 

Germination rate (d-1) 3.721 9.783 38.976 12.790 12.580 

Germination index 5.811 31.901 0.132 0.139 0.284 

Shoot length (cm) 11.263 7.094 0.249 8.693 4.515 

Root length (cm) 12.368 4.161 0.056 6.036 4.240 

Seedling fresh weight (g) 7.718 2.303 18.084 1.256 50.676 

Seedling dry weight (g) 9.103 1.512 19.747 9.189 1.322 

Seedling length (cm) 12.537 5.903 0.145 7.785 4.653 

Salinity tolerance 7.206 0.036 6.130 46.921 18.383 

Seedling vigor index 13.956 3.291 0.261 3.429 1.080 

Eigenvalue 6.455 1.863 1.007 0.743 0.456 

Variability (%) 58.684 16.932 9.155 6.757 4.145 

Cumulative % 58.684 75.616 84.771 91.528 95.673 
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Table 2-2 Correlation matrix (Pearson (n-1)) Values in bold are different from 0 with a 

significance level alpha=0.05.  

Variables G% MDG GR GI ShL RL SFW SDW SL ST SVI  

G % 1 
          

MDG 0.654 1 
         

GR 0.000 -0.577 1 
        

GI 0.977 0.635 -0.014 1 
       

ShL 0.262 0.575 -0.497 0.254 1 
      

RL 0.345 0.633 -0.471 0.332 0.882 1 
     

SFW 0.305 0.384 -0.247 0.274 0.607 0.638 1 
    

SDW 0.341 0.470 -0.269 0.320 0.623 0.644 0.715 1 
   

SL 0.312 0.622 -0.499 0.301 0.971 0.969 0.641 0.652 1 
  

ST 0.368 0.505 -0.305 0.361 0.469 0.529 0.434 0.704 0.514 1 
 

SVI 0.795 0.798 -0.333 0.776 0.773 0.823 0.580 0.612 0.822 0.557 1 

Germination % (G %), Mean daily germination (MDG), Germination rate (GR), Germination 

index (GI), Shoot length (ShL), Root length (RL), Seedling fresh weight (SFW), Seedling dry 

weight (SDW), Seedling length Salinity (SL), tolerance Seedling (ST) and Seedling vigor index 

(SVI)  
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Table 2-3 Probability values of effects of salinity (S), genotype (G) and salinity x genotype 

interaction on germination percentage, germination index (%), mean daily germination, 

germination rate (d), shoot length (cm), root length (cm), seedling length (cm), seedling fresh 

weight (g), seedling dry weight (g), salt tolerance index and seedling vigor index of 292 winter 

wheat genotypes. 

Traits Salinity (S) Genotype (G) SxG 

Germination % 0.0105 0.4565 0.4982 

Germination index (%) 0.0119 0.5206 0.5548 

Mean daily germination 0.0032 0.2690 0.4327 

Germination rate (d -1) 0.0048 0.3493 0.4163 

Shoot length (cm) < 0.0001 < 0.0001 < 0.0001 

Root length (cm) < 0.0001 < 0.0001 < 0.0001 

Seedling length (cm) < 0.0001 < 0.0001 < 0.0001 

Seedling fresh weight (g) < 0.0001 < 0.0001 < 0.0001 

Seedling dry weight (g) < 0.0001 < 0.0001 < 0.0001 

Salt tolerance index < 0.0001 < 0.0001 < 0.0001 

Seedling vigor index 0.0023 0.2350 0.3749 
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Table 2-4 Effect of salinity stress on germination percentage, germination index (%), mean daily 

germination, germination rate (d), shoot length (cm), root length (cm), seedling length (cm), 

seedling fresh weight (g), seedling dry weight (g), salt tolerance index and seedling vigor index of 

292 winter wheat genotypes. Individual datum is the mean of four replications. Means that have 

the same letter in each trait are not significantly different (p ≤ 0.05) from each other. 

 

Traits NaCl levels (mM) 

0  60  120  

Germination % 98 a 92 b 60c 

Germination index (%) 100a 94a 60b 

Mean daily germination 7 a 4b 2c 

Germination rate (d -1) 2c 3b 4a 

Shoot length (cm) 8a  5b 2c 

Root length (cm) 7a 4b 2c 

Seedling length (cm) 14a 9b 4c 

Seedling fresh weight (g) 0.16a 0.13b 0.09c 

Seedling dry weight (g) 0.06a 0.04b 0.02c 

Salt tolerance index 100a 63b 33c 

Seedling vigor index 14a 9b 2c 
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Chapter 3 - The Combined Effects of Salinity and High 

Temperature on Winter Wheat at Booting Stage 

 Abstract 

Salinity and high temperatures are the major environmental factors that limit wheat 

(Triticum aestivum L.) productivity. Climate change model forecast that in the future inland 

salinity and short or long episodes of high temperature can decrease the crop productivity. 

Therefore, the objective of this study was to evaluate the independent and combined effects of 

high temperature and salinity on winter wheat genotypes at the booting stages through growth, 

physiological, biochemical, and yield traits Twelve genotypes of winter wheat were grown in non-

saline conditions at optimum temperatures (25/15 °C: d/ n; daytime maximum and nighttime 

minimum) until booting stage. At booting stages, plants were irrigated with three different levels 

of NaCl (0, 60, 120 mM) and exposed to two temperature regimes [optimum or high temperature 

(35/ 20 °C d/ n)] for 10 d. High temperature, when combined with salinity stress during booting 

stage, negatively affected the gas exchange, decreased contents of soluble sugars, starch, soluble 

proteins proline, MDA and grain yield. Greater impact on photosynthesis, stomatal conductance, 

proline accumulation, soluble sugar, soluble protein and grain yield was observed at the combined 

stresses compared with individual effects of salinity and/or high temperature. In addition, the study 

showed considerable variation in high temperature and salinity tolerance among winter wheat 

genotypes for leaf photosynthesis, chlorophyll concentration, sugars, proline and soluble proteins 

accumulation, seed set, grain number and grain yield per plant. The study conclude that genotypes 

varied in their response to independent and combined stresses and that genotype GUYMON, 

TX04M410211 and TASCOSA were the more tolerant genotypes.  
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 Introduction 

Wheat plants mature from seed germination to harvesting through distinct developmental phases 

include, germination, seedling emergence, vegetative, and reproductive phase. Each of these 

phases classified into distinct growth stages. Booting stage (Feekes 10, Zadoks 45) begins when 

the head of wheat is fully developed, but has not yet emerged from the leaf sheath below the flag 

leaf. The head can be seen in the swollen section of the leaf sheath below the flag leaf (Miller, 

1992). The leaf sheath containing the fully developed head is called the boot (Herbek and Lee, 

2009). This stage ends when the head is first visible at the flag leaf collar and the leaf sheath is 

forced open by the head. The initiation of the pollen in the anthers and the embryo sac in the carpel 

starts with booting stages (Acevedo et al., 2002). This stage is very sensitive to environmental 

stresses such that high temperature, drought, light and low temperature. In wheat, meiosis starts in 

the middle of the spike, continuing later above and below this zone (Zadoks et al., 1974). Abiotic 

stress include high temperature and drought stress around this stage is very critical for grain yield 

as it ultimately leading to seed-set failure (Acevedo et al., 2002; Alghabari et al., 2014). 

Temperature plays an important role on wheat growth and development. Many biochemical 

and physiological processes are regulated by temperature such as evapotranspiration and water 

stress (Ritchie, 1972), cold hardening (Hurry et al., 1995), vernalization (Brooking, 1996), leaf 

formation and leaf senescence (Miglietta, 1989), photosynthesis and respiration (Evans and 

Rawson, 1969; Azcon-Bieto and Osmond, 1983), yield (Ferris et al., 1998; Lobell et al., 2005; 

Rahman et al., 2009; Kobata et al., 2012), and grain filling (Rahman et al., 2009; Kobata et al., 

2012). High temperature stress is defined as the rise in temperature beyond a threshold level for a 

period of time sufficient to cause permanent damage to plant growth and development (Wahid et 

al., 2007). Scientists expect that an increase in average temperatures worldwide will lead to more 
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frequent and extreme heat events (Aydinal and Cresser, 2008; Bita and Gerats, 2013). High 

temperature usually affects water availability to the plant so that crop water requirements will 

increase with increased temperature (Simoes-Araujo et al., 2003; Saeedipour and Morad, 2011; 

Pradhan et al., 2012; Barber et al, 2015). The effect of high temperature on plants is primarily on 

photosynthetic functions. Many studies indicated that CO2 assimilation is limited, in part, at high 

temperature by an imbalance in the regulation of the carbon metabolism, which is reflected in a 

down regulation of the ribulose-1,5-bisphosphate carboxylase oxygenase (Weis and Berry, 1988; 

Apel and Hirt, 2004; Pradhan et al., 2012; Narayanan et al., 2015). Another study by 

Djanaguiraman et al. found that high temperature stress during flowering decreased the 

photosynthetic rate because of ultra-structural damaging to chloroplast (Djanaguiraman et al., 

2011; Pradhan et al., 2012). Many researchers agree that high temperature accelerates the increase 

in grain dry weight, but shortens the grain filling period, causing a yield reduction, that is, 

acceleration of the increase in grain dry weight cannot recompense for the shortening of the grain 

filling period and the reduction in yield is mainly caused by a failure of the sink function (Nicolas 

et al., 1984; Wheeler et al., 1996; Modhej et al., 2008; Kunar et al., 2013; Narayanan et al., 2015).  

In addition, high temperature stress induces synthesis of some harmful compounds such as reactive 

oxygen species (ROS) like super oxides and peroxides. ROS damage membranes and causing 

cellular damage (Djanaguiraman and Prasad, 2013; Narayanan et al., 2015). 

Salinity affects crop plants in three major ways: (1) osmotic stress, decreasing water 

availability; (2) ionic stress; and (3) changes in the cellular ionic balance, which are in turn leading 

to deficiency and/or toxicity of some nutrients such as Ca2+ and K+ (Kirst, 1989; Munns and 

Jermaat, 2003; Ahmad et al., 2010; Azooz et al., 2011). As a result of high concentration in soil 

solution the plant root are unable to uptake as much water from the soil as they require. At early 
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growth stage, water stress inhibits cell elongation and cell division, which results in reduced leaf 

area and so reduce photosynthesis rate (Prasad and Staggenborg, 2008). In wheat plant, salinity 

causes reduction of number of leaves in the main shoot and reduction of the number of spikelet in 

the main spike (Maas and Grieve, 1986). ROS damage membranes and causing cellular damage 

(Djanaguiraman and Prasad, 2013). This lead to oxidative damages in several cellular components 

such as proteins, lipids, nucleic acids and membranes (Pastori and Foyer, 2002; Apel and Hirt, 

2004).  

The studies on the response of wheat to abiotic stresses have been carried out widely and 

advanced significantly during the last decade. However, the majority of these studies on the 

response of wheat to abiotic stressors have focused on a single stress factor. It has been reported 

that the response of plants to a combination of drought and high temperature is different from the 

response of plants to each of these stressors applied individually (Pradhan et al., 2012). 

Temperature stress usually enhances transpiration, and with combination of salinity stress, this 

could result in enhanced movement and uptake of salt (Gale, 1975). Regardless of the many 

researchers have been carried out to study the effect of individual stress factor and in fact, little is 

known about the molecular, biological, and physiological mechanisms underlying the acclimation 

of plants to a combination of temperature and salinity stresses. Some studies showed that salinity 

has little effect on germination at low temperature, but that the effect of salinity is increasingly 

inhibitory as temperature increased (Khan and Rizvi, 1993; Khan et al., 2004). Salinity and high 

temperature can decrease the gas exchange properties of flag leaf and yield and yield components 

of some varieties of wheat (Anjum et al., 2008). Numerous works has been done to study the effect 

of high temperature alone and/or salinity alone. But, limited research has been done to study the 

interaction between high temperature and salinity stress and its impacts on wheat growth at 
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heading and reproductive stages. Therefore, the objectives of this study were to provide better 

understanding of individual and combined effects high temperature and salinity on winter wheat 

genotypes; and to evaluate the interaction effects of salinity and high temperature stress on 

physiological, biochemical, growth and yield of selected winter wheat genotypes. 

 

 Materials and Methods 

This study was conducted in controlled environment facilities at the Department of 

Agronomy, Kansas State University Manhattan, KS, USA. Experiments were conducted in spring 

and summer of 2015 to determine the impact of salinity and high temperature stress on 

physiological, biochemical, growth and yield, of winter wheat genotypes.  

 

 Plant Material  

Twelve genotypes were used in the study and these genotypes were selected based on earlier 

germination experiment. These genotypes were classified as tolerant to salinity include genotypes 

(GAGE, MTS0531, TASCOSA AND GUYMON). Moderately tolerant include genotypes 

(AVALANCHE, OK05108, TX86A5606 and ONAGA). Susceptible include genotypes 

(CO04W320, 2174-05, CARSON AND TX04M410211). 

 

 Experimental and Growth Conditions 

Seeds of twelve winter wheat genotypes were sown in 4-cm deep trays containing 

commercial Sunshine Metro Mix 360 potting soil (Hummert International, Topeka, KS, USA). 

Seeds were sown at a depth of about 2 cm. The seedlings were raised in a growth chamber 

(Conviron Model CMP 3244, Winnipeg, MB, Canada) maintained at 25/15 °C d/ n. After 8 d the 
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seedlings were vernalized for 56 days at 4 °C with 8 h photoperiod. Following vernalization, three 

seedlings of the same genotype were transplanted into 1.6-L pots (24 cm length and 10 cm width, 

MT49 Mini-Treepot, Stuewe & Sons, Inc., Tangent, OR, USA). Rooting medium in pots was 

commercial Sunshine Metro Mix 360 potting soil. The rooting medium was fertilized with 

Osmocote (Scotts, Marysville, OH, USA), a controlled-release fertilizer with 14: 14: 14 N: P2O5:, 

K2O respectively, at 5 g per pot before transplanting. Two growth chamber were used for the study. 

both growth chambers were maintained at optimum temperature (OT; 25/15 °C d/ n) until booting 

stage. At booting, one growth chamber was maintained at optimum temperature (OT; 25/15 °C d/ 

n) and the other growth chamber was maintained at high temperature (HT; 35/25 °C d/ n) for 10 

d. In each growth chamber there were 15 trays, and each tray has 12 pots. Twelve winter wheat 

genotypes were in each tray, with a total of 180 pots in the growth chamber. Pots were watered 

daily and kept in trays containing about 1 cm water during the experiment to avoid water stress. 

Pots were moved randomly for each week to avoid positional effects. After seedling establishment, 

seedlings were thinned to two per pot, which was maintained until maturity. At thinning, a systemic 

insecticide, Marathon 1 % G (a.i.: Imidacloprid: 1–((6–Chloro–3–pyridinyl) methyl)–N–nitro–2–

imidazolidinimine), was applied at 1.5 g per pot to avoid infestation of sucking insect pests. The 

plants were maintained at a photoperiod of 16 h with a light intensity of 800 µmol m-2 s1 and 70 

% relative humidity. The daytime maximum temperature/nighttime minimum temperature was 

maintained for 8 h with a transition period between daytime and night time temperatures of 4 h to 

imitate the diurnal temperature fluctuation of outside atmospheric condition and vice-versa. Both 

growth chambers were divided into three sets each set consist of 5 trays representing five 

replications. At the onset of booting stages (Feekes growth stage 10.0), one set of plants were 

irrigated with distilled water and served as control and the other two served as salinity treatment. 
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Two levels of salinity (60 and 120 mM of NaCl, EC value of 7.5 and 14.5 dSm-1) solution was 

used to irrigate the plants. Salinity treatments were applied by irrigating each plant with 250 mL 

of NaCl solution to all treated plants and as mentioned above in both growth chambers for 10 d. 

Also, at the same time plants grown at high temperature were exposed to high temperature (HT; 

35/25 °C d/ n) for 10 d after that, the plants were returned optimum temperature (OT; 25/15 °C d/ 

n) and irrigated with normal water till plants attained physiological maturity. Similar management 

practices were followed in both experiments. 

 

 Data Collection 

At booting stages, the main stem of all plants was tagged for the measurements of chlorophyll 

content, chlorophyll a fluorescence, and gas exchange. Measurements were taken on three plants 

of each genotype in each treatment at 2, 5, and 10 d after stress imposition. Leaf samples were 

collected for biochemical analysis on 2, 5, and 10 d after stress imposition and at maturity, plant 

height, tiller number per plant, spike number per plant, spike length, spikelet number per spike, 

and grain number per spike were measured. All the above traits were measured on attached fully 

expanded flag leaves of the main stems of three plants per genotype from each treatment during 

10:00 and 14:30 h. The leaf chlorophyll was measured using a self-calibrating chlorophyll meter 

(SPAD-502, Spectrum Technologies, Plainfield, IL, USA) on the fully expanded flag leaf of the 

main stem. Each time, data were taken four times from the middle portion of the leaf and the 

readings were averaged to get a single value for a plant. The Chlorophyll a fluorescence parameters 

were measured using a modulated fluorometer (OS30p; OptiSciences, Hudson, NH, USA). The 

minimum fluorescence (Fo) and maximum fluorescence (Fm) measurements were taken after the 

flag leaf was dark adapted for 1 h. The maximum quantum yield of PS II is the ratio of variable 



94 

fluorescence [difference between maximum and minimum fluorescence (Fv) to maximum 

fluorescence (Fm)], which decreases with stress (Rohacek, 2002). The leaf level photosynthesis 

was measured using the LI-COR 6400 portable photosynthesis system (LI-COR, Lincoln, NE, 

USA). Measurements were taken at daytime growth temperature and ambient CO2 conditions (390 

mol-1). The internal light emitting diode (LED) light source in the LI-COR 6400 was set at 1600 

mol m-2 s-1.  For all the biochemical analysis, the flag leaf and next leaves from main stem were 

collected at 2, 5, and 10 d during the stress period. Samples placed in aluminum paper and 

immediately frozen in liquid nitrogen and transported to the laboratory where samples were stored 

at - 80 °C until processing.  

 Carbohydrate content: A known weight of (0.2 g) frozen leaf sample from each treatment 

was ground in liquid nitrogen to a fine powder using a  pestle and mortar followed by the  addition 

of 10 mL of 80 % ethanol  and kept in a preheated (70 C) water bath for 30 min. After the expiry 

of time, the homogenate was filtered through Whatman No. 1 filter paper and then re-extracted 

using 80 % ethanol (10 mL) and dried in a water bath to evaporate the ethanol and then 10 mL of 

distilled water  was added and vortexed for 2 min. These extractions then used to determine soluble 

sugars, reducing sugar and non-reducing sugars. 

 Soluble sugars were determined based on the method of phenol sulphuric acid described 

by Dubois et al. (1956). Briefly, 0.2 ml of sample exact was used with 0.8 ml distilled water. To 

the diluted extract, 1 mL of phenol reagent and 5 mL of 96 % sulphuric acid were added and 

incubated for 30 min at 30 ᵒC. The optical density reading was taken at 490 nm using a UV- 

spectrophotometer. 

 The reducing sugars were quantitatively estimated in the obtained extract following the 

method of Somogyi (1952). Briefly, 0.2 ml of sample exact was taken and 0.8 mL of distilled water 
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and 1 mL of alkaline copper tartrate was added and the reaction mixture was heated for ten min in 

a boiling water bath and cooled rapidly in an ice bath. Then 1 mL of arsenomolybdate reagent and 

10 mL of distilled water were added and mixed well. The reaction mixture was incubated for ten 

min at room temperature. The optical density reading was measured at 620 nm using UV- 

spectrophotometer. 

 The difference between total sugar and reducing sugar corresponds to the non-reducing 

sugar. Starch content was determined using anthrone (Hedge and Hofreiter, 1962). A known 

weight of 0.2 g of frozen leaf samples from each treatment were ground in liquid nitrogen to a fine 

powder and homogenized in a pestle and mortar using 10 mL of 80 % ethanol and kept in preheated 

(70 C) water bath for 30 min. The homogenate was filtered through Whatman No. 1 filter paper 

and then re-extracted using 10 mL of 80 % ethanol for removing the soluble sugars. The residue 

was retained and was washed with hot 20 % ethanol till the washings did not give color with 

anthrone reagent. Sample residue was dried in oven at 70 ᵒC. To the dry sample residue, 5 ml of 

distilled water and 6.5 ml of 52 % perchloric acid were added. Starch was extracted at 0 °C for 20 

min. The extract was retained after centrifugation. The extraction was repeated with fresh 

perchloric acid. The extracts were pooled after centrifugation and the volume was made up to 50 

mL with distilled water. To 0.2 ml of the extract, 0.8 ml of distilled water and 4 ml of anthrone 

reagent were added. The reaction mixture was heated for 8 min in a boiling water bath and cooled 

rapidly in ice bath. The optical intensity was read at 630 nm using a UV- spectrophotometer. 

 Free proline content was quantified according to the method of Bates et al. (1973). Briefly, 

0.5 g of frozen leaf sample from each treatment was ground in liquid nitrogen to a fine powder and 

homogenized in a pestle and mortar in 3 % (w/v) sulfosalicylic acid, and the residue was removed 

by centrifugation. From the supernatant, 2 mL was mixed with 2 mL of glacial acetic acid and with 
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2 mL of acid ninhydrin (1.25 g of ninhydrin was warmed in a mixture of 30 mL of glacial acetic 

acid and 20 mL of 6 mM phosphoric acid until dissolved) for 1 h at 100 °C; the reaction was 

terminated in an ice bath. The reaction mixture was extracted with 4 mL of toluene. The 

chromophore-containing toluene was warmed to room temperature and its optical density was 

measured at 520 nm using UV- spectrophotometer. Proline content was calculated according to 

Bates et al. (1973).  

 Lipid peroxidation was measured in terms of content of malondialdehyde (MDA, Ɛ = 155 

mmol-1 cm-1) a product of lipid peroxidation, following the method of Heath and Packer (1968). 

Briefly, 0.5 g of frozen leaf samples from each treatment were ground in liquid nitrogen to a fine 

powder and homogenized in a pestle and mortar with 10 mL of extraction buffer (0.1% trichloro 

acetic acid (TCA). The homogenate was centrifuged for 10 min at 10,000 rpm. For every 1 mL of 

the aliquot, 4 mL of 20 % TCA containing 0.5% thio barbituric acid (TBA) was added. The mixture 

was kept in water bath at 95 °C for 30 min and cooled rapidly in an ice bath to stop the reaction. 

The optical density reading of the mixture was immediately taken at 532 nm using UV- visible 

spectrophotometer, and the value for the non-specific absorption at 600 nm was subtracted. The 

concentration of malondialdehyde (MDA) was calculated using coefficient of absorbance of 155 

mM-1 cm-1. MDA content expressed as mmol/g fw. The MDA content was calculated as follows: 

MDA concentration =(Abs532-Abs600) xVx1000/ (Ɛ x W). Where: V = extraction volume, Ɛ = 

extinction coefficient and W = sample weight. 

 Total soluble protein content was determined as by Bradford (1976). Briefly, 0.5 g of 

frozen leaf sample from each treatment was ground in liquid nitrogen to a fine powder and 

homogenized in a pestle and mortar with 15 mL of extraction buffer (0.1M Tris buffer 8 pH) and 

then centrifuged at 12000 rpm at 4 °C for 15 min. Then 5 ml of Coomasie brilliant blue reagent 
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(CBB) and 0.5 ml of distilled water were added to 0.5 ml of the supernatants. Spectrophotometer 

cuvettes and absorbance were measured using a UV- visible spectrophotometer at 595 nm. 

 At maturity, plants were hand-harvested by cutting them at the soil level. Data on plant 

height, number of tillers plant-1, spike number per plant, and spike length were recorded at the day 

of harvesting on five plants per genotype from all the temperature and salinity levels. Plant height 

was determined as the distance between base of the plant and the spike. For vegetative dry weight 

measurements, plant parts - leaves, stems, and spikes (main spike and other spikes separately) were 

collected and dried at 40 °C for 10 d. Vegetative dry weight was determined as the weight of 

leaves, stems, and spikes per plant. After drying for 5 d, spikelet number was counted for main 

spike, then main spikes were hand threshed to separate grains, and grain number per spike was 

counted manually. Grain yield for main spike and per plant were calculated and individual grain 

weight was calculated by dividing grain yield per spike by grains number per spike. Harvest index 

was calculated as the ratio of grain yield to the total vegetative dry weight for each plant. 

 

 Experiment Design and Data Analysis 

The experimental design was a randomized complete block with a split split-plot treatment 

structure in five replications. Temperature was the main plot factor, salinity was assigned to sub-

plots and genotypes to sub-sub-plots. For the treatments, temperature had two levels (OT and HT), 

salinity had three levels (0, 60, 120 mM NaCl), and genotype had twelve levels (GAGE, MTS0531, 

TASCOSA, GUYMON, AVALANCHE, OK05108, TX86A5606, ONAGA, CO04W320, 2174-

05, CARSON AND TX04M410211). Data were analyzed using MIXED procedure in statistical 

software SAS 9.4 for mean and standard error estimation. Separation of means was carried out 
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using the LSD test (P < 0.05). The PROC MIXED procedures were used with block, temperature, 

salinity, and genotypes as class variables. 

 Results 

The P-values for physiological, biochemical, growth and yield traits obtained with SAS PROC 

MIXED are presented in tables 3.1, 3.2 and 3.3. The independent effects of high temperature and 

salinity were significant (P < 0.001) on leaf photosynthesis, stomatal conductance, maximum 

quantum yield of PS II, thylakoid membrane damage, chlorophyll concentration, soluble sugars, 

reducing sugars, non-reducing sugars, starch, proline content, soluble proteins, MDA, plant height, 

tiller number, spike number, spike length spikelet number, dry weight, grain number, individual 

grain weight, grain yield, and harvest index. The main effect of genotype was significant for leaf 

photosynthesis, stomatal conductance, maximum quantum yield of PS II, thylakoid membrane 

damage, chlorophyll concentration, soluble sugars, reducing sugars, non-reducing sugars, starch, 

proline content, soluble proteins, MDA, plant height, tiller number, spike number, spikelet number, 

dry weight, grain number, and grain yield. Interaction effects of temperature x salinity were 

significant (P < 0.05) for leaf photosynthesis, stomatal conductance, maximum quantum yield of 

PS II, thylakoid membrane damage, chlorophyll concentration, soluble sugars, reducing sugars, 

non-reducing sugars, starch, proline content, soluble proteins, MDA, spike length, spikelet 

number, grain number, individual grain weight, grain yield, and harvest index. Interaction effects 

of temperature x genotype were significant (P < 0.05) for maximum quantum yield of PS II, 

thylakoid membrane damage, chlorophyll concentration, soluble sugars, reducing sugars, non-

reducing sugars, proline content, soluble proteins, MDA, spikelet number, grain number, and grain 

yield. Interaction effects of salinity x genotype were significant (P < 0.05) for leaf photosynthesis, 

stomatal conductance, thylakoid membrane damage, chlorophyll concentration, soluble sugars, 
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reducing sugars, proline content, soluble proteins, and MDA content. The temperature x salinity x 

genotype interactions, were significant for thylakoid membrane damage, chlorophyll 

concentration, soluble sugars, reducing sugars, non-reducing sugars, proline content, soluble 

proteins, and MDA content. 

 

 Physiological Traits 

Results of the effect of high temperature, salinity and combined stresses on leaf level 

photosynthesis are presented in (Table 3.1 and Figures 3.1a, 3.2a, and 3.4a). The photosynthetic 

rate was significantly decreased by high temperature (28 %), salinity (17 %) and combined high 

temperature and salinity stress (40 %) (Figures 3.1a, 3. 2a, 3.4a). Genotypes responded differently 

to the stresses. Figure 3.3a shows that the genotypes GUYMON, TX04M410211 and TASCOSA 

had the highest level of leaf photosynthesis. Temperature and genotype interaction also affect leaf 

photosynthesis Fig. 3.5a shows the percent reduction over the control in all genotypes due to high 

temperature. GUYMON, TX04M410211 and TASCOSA had the lowest reduction of leaf 

photosynthesis, which was about 24 %, whereas other genotypes had reductions of 30 %. Salinity 

and genotype interaction decreased leaf photosynthesis by 11 % in genotype TASCOSA as lowest 

reduction and 21% in genotypes 2174-05 and CO04W320 as the highest reduction (Fig. 3.6a). The 

interactions of high temperature, salinity and genotypes reduced leaf level photosynthesis in all 

genotypes with genotypes GUYMON, TX04M410211 and TASCOSA having the lowest 

reduction (Fig. 3.7a). 

 Stomatal conductance was significantly affected by high temperature, salinity and 

combined stresses (Table 3.1). Results of the effect of high temperature, salinity and combined 

high temperature and salinity stress on stomatal conductance are presented in (Table 3.1 and 
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Figures 3. 1b, 3.2b, and 3.4b). The mean values of stomatal conductance were 0.68 mmol m-2 s-1. 

stomatal conductance was significantly decreased by high temperature 56 %, high salinity level 28 

% and combined stresses 66 % (Figures 3.1b, 3.2b, 3.4b), which indicates decreased stomatal 

conductance due to high temperatures, salinity and their interaction. Genotypes responded 

differently to the stresses. The values of stomatal conductance ranged between 0.73 and 0.65 mmol 

m-2 s-1.  The result showed that genotypes GUYMON, TX04M410211 and TASCOSA had the 

lowest reduction (Fig 3.3b and Table 3.1). High temperature and genotype interaction had no 

significant effect on stomata conductance. Salinity and genotype interaction also affect stomata 

conductance where stomata conductance reduced by 20 % in genotypes GUYMON, 

TX04M410211 and by 34 % in genotype 2174-05 (Fig. 3.6b). In addition, high temperature, 

salinity and genotypes interactions significantly affected stomata conductance in all genotypes 

tested (Table 3.1 and Fig. 3.7b).  

 Significant differences were observed in maximum quantum yield of PS II by high 

temperature and salinity. The genotypes were also significantly (P < 0.05) differed themselves for 

maximum quantum yield of PS II (Table 3. 1). Values of Fv/Fm ratio were significantly decreased 

by high temperature 10 %, salinity 8 % and combined stresses 18 % (Figures 3.1c, 3.2c and 3.4c), 

which indicates decreased photochemical efficiency of PS II due to high temperatures, salinity and 

their interaction. Genotype also significantly effects maximum quantum yield of PS II in all 

genotype tested (data not shown). In addition, maximum quantum yield of PS II was significantly 

affected by temperature and genotype interaction (Table 3.1). However, salinity and genotype 

interaction as well as high temperature, salinity, and genotype interactions had no significant effect 

on maximum quantum yield of PS II (Table 3.1). 
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 Thylakoid membrane damage (Fo/Fm) was significantly affected by high temperature 

salinity, genotype and combined stresses as well as their interactions (Table 3. 1). Values of Fo/Fm 

ratio were significantly increased by high temperature (19 %), salinity (10 %) and combined 

stresses (34 %) (Figures 3.1d, 3.2d, 3.4d.), which indicates increased thylakoid membrane damage 

due to high temperatures, salinity and their interaction. Genotype also significantly effects 

thylakoid membranes in all genotype tested. Figure 3.3c showed that genotypes TX04M410211 

and TASCOSA had the lowest value of thylakoid membrane damage, whereas genotype OK05108 

had the highest membrane damage. In addition, thylakoid membrane damage was significantly 

affected by temperature and genotype interaction (Fig. 3.5c). The result indicated that genotypes 

had diverse response to high temperature. The percent increase in membrane damage was 12 % in 

GUYMON and 25 % in ONAGA. Salinity and genotype interaction also affected membrane 

damage in all genotypes tested (data not shown), and the same trend was found in high temperature, 

salinity and genotype interactions (Table 3.1), where all genotypes show varied respond in 

increased thylakoid membrane damage due to high temperature x salinity interaction (data not 

shown). 

 Chlorophyll concentration was significantly affected by high temperature, salinity and 

combined stresses (Table 3.1). Values of SPAD unit were significantly decreased by high 

temperature 9 %, salinity 7 % and combined stresses 14 % (data not shown), which indicates 

decreased chlorophyll concentration due to high temperatures, salinity and their interaction. 

Genotypes responded differentially to high temperature and salinity (data not shown). Interaction 

effect of salinity and genotype; and high temperature, salinity and genotype was also significant 

on chlorophyll concentration (Fig 3.7c). However; high temperature and genotype interaction had 

no effect on chlorophyll concentration (Table 3.1) 
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 Biochemical Traits 

Analysis of variance for soluble sugars, reducing and non- reducing sugars, starch, proline, soluble 

proteins and MDA obtained with SAS PROC MIXED are presented in table 3. 2. The independent 

effects of temperature, salinity, and genotypes; and interaction effects of temperature x salinity 

were significant (P < 0.0001) for total soluble sugars, reducing and non-reducing sugars, starch, 

proline, soluble protein, and MDA contents (Table 3.2). Interaction effect of temperature x 

genotype was significant (P < 0.05) for total soluble sugars, reducing and non-reducing sugars, 

proline, soluble protein, and MDA contents. Interaction effects of salinity x genotype was 

significant (P < 0.05) for soluble sugars, proline, soluble protein, and MDA contents. Interaction 

effects of temperature x salinity; and temperature x salinity x genotype were significant (P < 0.05) 

for total soluble sugars, reducing and non-reducing sugars, proline, soluble protein, and MDA 

contents (Table 3.2). 

 

 Total Soluble Sugars, Reducing Sugars, Non-Reducing Sugars, and Starch Contents 

The mean value of starch, soluble sugars, reducing sugars, and non-reducing sugars were, 75, 54, 

21, and 80 gkg-1, respectively The main effect of high temperature reduced starch content by 24 % 

and increased soluble sugar, reducing sugar, and non-reducing sugar, by 42, 49 and 25 %, 

respectively (Fig. 3.8a-d). Whereas, salinity stress reduced starch content by 10 % and increased 

soluble sugar, reducing sugar, and non-reducing sugar by 25, 23 and 30 %, respectively (Fig. 3.9a-

d). The combination of high temperature and salinity also resulted in a significant decrease in 

starch content with about 34 % reduction over control and increase in soluble sugar, reducing sugar 

and non-reducing sugar which were about 84, 83, 86 % of control, respectively (Fig. 3.11a-d).  
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Genotype responded differently to stresses. Total soluble sugars ranged between 72 and 77 g/kg. 

The result showed that genotypes 2174-05, TX04M410211 and TASCOSA had the highest value 

in soluble sugar accumulations (Fig. 3.10a). High temperature and genotype interaction had 

significant effect (P < 0.05) on soluble sugar accumulation. Figure 3.12a shows the increase in 

soluble sugars accumulation in each genotypes due to high temperature effect.  The result showed 

that genotypes OK05108 and GAGE had 47 % increase in soluble sugar.  Salinity and genotype 

interaction also affect soluble sugar accumulations (P < 0.0001). Soluble sugars increased by 17 - 

30 % across all genotypes, with ONAGA accumulating the highest amount of soluble sugars and 

TX86A5606 accumulating the lowest amount. In addition, high temperature, salinity and 

genotypes interactions significantly (P < 0.0001) affected soluble sugar accumulation in all 

genotypes tested (Fig. 3.14a). The genotype TASCOSA showed the best performance under 

combined stresses condition. 

 Genotypes responded differently to these stresses in term of reducing sugars with values 

of reducing sugars ranging between 51 and 56 g/kg. The result showed that genotypes 

AVALANCHE, TX04M410211 and TASCOSA had the highest value in reducing sugar 

accumulations (Fig 3.10b). High temperature x genotype interaction had significant effect (P < 

0.0001) on reducing sugar accumulation.  The results showed that in genotypes GAGE and 

TASCOSA the reducing sugars increased by 64 and 60 % respectively and by 40 % in CO04W320 

and CARSON genotypes (Fig. 3.12b). Reducing sugar accumulation also increased due to salinity 

x genotype interaction. The interaction effect increased reducing sugar by 16-30 % in all 

genotypes, with genotype ONAGA, AVALANCHE and MTS0531 accumulated the highest 

quantity and genotype CARSON accumulated the lowest quantity. Reducing sugars significantly 

affected (P < 0.01) by temperature x salinity x genotypes interaction (Fig. 3.14b). The genotype 
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TASCOSA showed the best performance under combined stresses condition. Non- reducing sugars 

significantly (P < 0.0001) affected by high temperature, salinity and combination of high 

temperature and salinity stresses. The main effect of genotype significantly (P < 0.0001) affected 

non-reducing sugar accumulation. (Table 3.2). The values of non-reducing sugars ranged between 

19 and 23 g/kg. Figure 3.10c show that genotypes ONAGA had the highest amount of non-

reducing sugars accumulation as compared to other genotypes. High temperature x genotype 

interaction had significant (P < 0.0001) effect on non-reducing sugar accumulation. The result 

showed that in genotype 2174-05, the non-reducing sugars increased by 41 % and only by 7 % in 

CARSON genotype (Fig 3.12c). Salinity x genotype interaction had no effect on non-reducing 

sugars accumulations. On the contrast, high temperature x salinity x genotype interactions had 

significant (P < 0.05) effect on non-educing sugars accumulation (Fig. 3.14c). The genotypes 

GUYMON, ONAGA and 2174-05 showed the best performance under combined stresses 

condition. In addition, the amount of starch in wheat leaves were significantly decreased by high 

temperature, salinity and combined high temperature and salinity stress. Genotypes responded 

differentially to high temperature and salinity stress (data not shown). Interaction effect of high 

temperature x genotypes, salinity x genotype; and high temperature x salinity x genotype had no 

significant effect on starch content.  

 

 Proline, Soluble Protein, and MDA contents 

The mean value of proline, soluble protein and MDA were, 4 µmoles/g, 15 g/kg and 3 µmol/g, 

respectively. The main effect of high temperature resulted in a significant (P < 0.0001) increase 

proline soluble protein, and MDA content in almost all genotypes tested. High temperature 

increased proline, soluble protein and MDA 197 62 and 147 %, respectively (Fig. 3.15). While, 
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salinity stress increased proline, soluble protein and MDA by 83, 24, and 68 %, respectively (Fig. 

3.16a-c). The combination of salinity stress and high temperature also resulted in a significant (P 

< 0.0001) increase in proline, soluble protein and MDA, which were 913, 95 and 450 % of control, 

respectively (Fig. 3.18a-c).  

 Proline content in all genotypes increased with increase in the level of temperature, salinity, 

and combined high temperature and salinity stress (Fig. 3.15a, 3.16a and 3.18a), and genotypes 

responded differently to the stresses as the values of proline ranged between 3.6 and 4.6 µmoles/g 

and genotype GUYMON, TX04M410211 and TASCOSA had maximum values for proline 

content as compared to the other genotypes. In contrast genotype MTS0531 possessed the least 

amount of proline (Fig. 3.17a). Temperature and genotypes interaction was significant (P < 0.0001) 

on proline accumulation. Salinity and genotype interaction had significant (P < 0.05) effect on 

accumulation of proline. Figure 3.19a showed that accumulation of proline increased in all 

genotypes with percent increase between 148-278 % in genotype CO04W320 and 2174-05, 

respectively.  A percent increase between 52 and 95 % were recorded in CARSON and 

AVALANCHE genotype, respectively (Fig. 3.20a). An increase of proline accumulation was 

significant (P < 0.001) due to temperature x salinity and genotype interaction (Fig 3.21a). The 

genotypes GUYMON, TX04M410211 and TASCOSA showed the best performance under stress 

condition.  

 Salinity and high temperature significantly (P < 0.0001) increased total soluble protein 

concentrations in all genotypes (Fig. 3.15b and 3.16b) and a significant (P < 0.0001) interaction 

between salinity and high temperature was seen in term of total soluble protein. Protein content of 

all genotypes tested varied at high temperature and high salinity levels (120 mM NaCl) treatments 

when averaged across all genotypes (Fig. 3.18b). The values of soluble proteins ranged between 
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14 and 15 g/kg. Genotypes TX04M410211 and TASCOSA had the highest accumulation of 

soluble proteins and genotypes OK05108, GAGE, and CO04W320 had the lowest protein 

accumulation (Fig 3.17b). High temperature and genotype interaction effect was significant (P < 

0.05), in which genotypes showed increase in soluble protein accumulation due to high 

temperature as compared to optimum temperature. Genotypes include GAGE, and ONAGA 

showed percent increase of about 70 %, and genotype CO04W320 showed 52 % percent increase 

in protein accumulation. (Fig. 3.19b). Salinity and genotypes interaction had significant (P < 

0.0001) effect on protein accumulation. Figure 3.20b showed that genotypes GUYMON possessed 

maximum values with percent increase of 38 % followed by genotype TASCOSA 36 % increase 

in soluble protein content as compared to the other genotypes. In contrast genotype CARSON 

possessed the lowest amount of protein with increase of 17 % of soluble protein. Also high 

temperature, salinity and genotypes interactions had significant (P < 0.05) effect on soluble protein 

accumulation (Fig. 3.21b). The genotypes GUYMON, TASCOSA, and TX04M410211 showed 

the best performance under combined stresses condition. 

 The main effect of high temperature, salinity, and genotypes resulted in a significant (P < 

0.0001) increase in MDA production.  An enhanced level of lipid peroxidation was observed in 

wheat leave with increase of 147 % in response to high temperature, 68 % in response to salinity, 

and 450 % in respond to combined high temperature and salinity stress when averaged across 

genotypes (Fig. 3.15c, 3.16c and 3.18c). MDA values ranged between 2.7 and 3.3 (µmol/g). Figure 

3.17c showed that genotypes GUYMON, TASCOSA, and TX04M410211 accumulated less MDA 

and genotypes GAGE and MTS0531 accumulated high amount of MDA.  High temperature and 

genotype interaction significantly (P < 0.0001) increased MDA content in wheat leaves. An 

increase of 155 % in MDA was seen in genotype AVALANCHE due to high temperature, whereas 
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genotypes GUYMONE accumulated less MDA (134 %) under the same condition (Fig. 3.19c). 

Salinity and genotype interaction was also significant (P < 0.001). MDA induced in all genotypes 

due to high salinity level. An increase of 74 % was seen in genotypes TX86A5606 and the lesser 

increase 62 % was seen in genotype TASCOSA (Fig. 3. 20c). Also high temperature, salinity and 

genotypes interactions had significant (P <0.05) effect on MDA production (Fig. 3. 21c). The 

genotypes GUYMON and TASCOSA showed the best performance as they accumulate less MDA 

under combined stresses condition. 

 

 Growth and Yield Traits  

The mean effect of high temperature was significant (P < 0.0001) on plant height, tiller number, 

number of spike, spike length, spikelet number, dry weight, grain number, individual grain weight, 

grain yield, and harvest index (Tables 3.3, 3.4, and 3.5). The mean effect of salinity was significant 

(P < 0.0001) on spikelet number, dry weight, grain number, individual grain weight, grain yield, 

and harvest index, and it was significant (P < 0.05) for plant height, tiller number, number of spike, 

and spike length. The interaction effect of high temperature and salinity was significant (P < 0.05) 

on spike length and grain number per spike, and it was significant (P < 0.0001) for spike length, 

spikelet number, grain yield, and harvest index. However, plant height, number of tiller, number 

of spike, biomass dry weight, and grain number per plant were not significantly influenced by 

combined high temperature and salinity stress. The main effect of genotype was significant (P < 

0.0001) on plant height, tiller number, number of spike, spikelet number, and grain number, and  

it was significant (P < 0.05) for dry weight, grain number per spike, grain yield, and harvest index. 

High temperatures x genotype interaction was significant (P < 0.05) on spikelet number, grain 

number, grain yield per spike. Salinity x genotype interaction and high temperature x salinity x 
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genotype interactions had not significant effect on all yield traits measured in the experiment 

(Table 3. 3) 

 The main effect of high temperature, salinity, genotype, and combined stresses of high 

temperature and salinity stress significantly (P < 0.0001) decreased spikelet number per spike by 

22, 17 and 35 %, respectively (Figures 3.22a, 3.23a, and 3.25a). The same trend (P < 0.0001) was 

found in the effect for high temperature, salinity, and genotype on grain number per plant. Figures 

(Figures 3.22b, 3.23b, and 3.25b) showed number of grains per plant significantly decreased due 

to high temperature, salinity, and combined stresses by 30, 21 and 46 %, respectively. Also high 

temperature, salinity, and combined stresses significantly decreased individual grain weight by 27, 

19 and 39 %, respectively. Grain yield per plant significantly (P < 0.0001) decreased by 49, 36 and 

67 % due to high temperature, salinity, and combined high temperature and salinity stress 

respectively (Figures 3.22ac 3.23c, and 3.25c). In addition, the main effect of high temperature, 

salinity, and combined high temperature and salinity stresses significantly (P < 0.0001) decreased 

harvest index by 42, 30, and 59 %, respectively (Figures 3.22d, 3.23d, and 3.25d).  

 Genotypes responded differently to the stress in term of spikelet number, grain number, 

and grain yield and harvest index. The value of spikelet number ranged between and 17 and 18 

spikelet per spike, the value of grain number ranged between 226 and 256 grains per plant, the 

value of grain yield ranged between 8 and 10 gram per plant, and the value of harvest index ranged 

between 0.43 and 0.46.  Figure 3.24a, b and c showed that genotypes such as GUYMON, 

TX04M410211 and TASCOSA had the highest value in term of spikelet number per spike, grain 

number per plant, grain yield per plant, and harvest index. Whereas, genotypes 2174-05, OK05108 

and MTS0531 had the lowest value in term of spikelet number per spike, grain number per plant, 

grain yield per plant. High temperature x genotype interaction had significant (P < 0.01) effect 
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only on spikelet number, number of grain per spike and grain yield per spike (Table 3.3). Figure. 

3. 26a, b, and c shows the percent reduction in spikelet number, number of grain per spike and 

grain yield per spike for all genotypes tested. Salinity x genotype interaction as well as temperature 

x genotype x salinity interactions showed no significant effect on all yield traits. 

 

 Discussion 

 Under natural conditions in arid and semi-arid regions, wheat plant mostly subjected to 

combined stresses of salinity and high temperature. Exposure to high temperatures and salinity 

stress may vary with the stage of plant development, but all vegetative and reproductive stages are 

affected by high temperature stress (Wahid et al., 2007) and salinity stress (Munns and Termaat, 

1986; Maas and Grattan, 1999). Under high temperature and salinity stress condition, plants may 

subjected to water stress which may result in reduced in leaf photosynthesis and stomata 

conductance, damaged thylakoid membrane, reduced seed set, spikelet number per spike, and grain 

number per plant, harvest index and ultimate yield per plant. Under stress condition, plants are 

induced to synthesize many biochemical substances such as proline, sugars, and soluble proteins. 

Such biochemicals are called osmoprotectants (Hamada and Khulaef, 1995; Yang et al., 2009; 

Radi et al., 2013; Sabbagh et al., 2014).  

In this study, we investigated the response of different winter wheat genotypes to an 

individual and combination of salinity and high temperature stress in order to evaluate the response 

of wheat to these stresses. The results suggest that there is genetic variability among winter what 

genotypes so that some genotypes were capable of adapting to salinity stress. More importantly, 

our results revealed that in addition to their ability to adapt to high salinity, these genotypes are 

also capable of adapting to high temperature stress also. 
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Elevated temperature and salinity directly affected photosynthetic enzymes and decreased 

gas exchange and light reactions (Wahid et al., 2007; Djanaguiraman et al., 2011; Sabbagh et al., 

2014). Comparisons of leaf photosynthesis, stomata conductance, Fv/Fm, Fo/Fm, and chlorophyll 

concentration between high temperature, salinity, and a combination of salt stress and high 

temperature indicate that there was significant decrease of leaf photosynthesis, stomata 

conductance, chlorophyll concentration, Fv/Fm, and increase in Fo/Fm under a combination of salt 

stress and high temperature than under high temperature and/ or salinity individually. These results 

suggest that salt-stressed plants led to enhanced sensitivity of plants to high temperature. High 

temperature, salinity and the combination of salt stress and high temperature led to a decrease in 

stomatal conductance and such the decrease was greater under the combination of salt stress and 

high temperature than under high temperature alone. These results indicated that high temperature 

and the combination of salt stress and high temperature were accompanied by closing of stomata, 

which may cause reduction in CO2 uptake by wheat leaves. In this study, photosynthetic rate, 

stomatal conductance and limitation to CO2 uptake were decreased under salinity but severely 

dropped with the addition of high temperature stress. This finding agreed with a study that 

concluded that the combined stresses was much more severe on gas exchange and photosynthesis 

processes under combined stresses than individual stresses (Anjum et al., 2008; Dadkhah and 

Rassam, 2016). These results suggest that the combination of salinity stress and high temperature 

stress affects wheat plants differently than if salt stress or high temperature are applied 

individually. The interaction effect was hypo-additive (negative interaction) the combined effect 

(high temperature and salinity) was less than the sum of the individual effect (high temperature or 

salinity) on all physiological traits (Fig. 3.4a-d). In addition, the present study found that genotypes 

responded differently to the individual and combined stresses and that some genotypes such as 
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GUYMON, TX04M410211 and TASCOSA performed well under individual and combined 

stresses as compared to other genotypes (Fig. 3.3a-c). The tolerance of photosynthetic system to 

salinity may be related to the capacity of some plant species to successfully compartmentalize the 

salts in the vacuole (Sabbagh et al., 2014). 

Salinity and high temperature induced an accumulation of sugars, proline, and soluble 

protein and reduction in starch content in wheat leaves. In fact, the accumulation of soluble 

compounds in plants has been widely reported as a response to salinity and temperature (Yang et 

al., 2009; Sabbagh et al., 2014; Dadkhah and Rassam, 2016). It is well known that soluble sugars 

play an important role in plant metabolism such as products of hydrolytic processes, substrates in 

biosynthetic processes, and energy production. The present study indicates that salinity and high 

temperature stress individually and/or in combination increased proline, soluble protein and 

soluble sugars. The increase in proline and sugar content may be due to osmotic regulation. Some 

plants are able to stand salinity by reducing the cellular osmotic potential as a result of a net 

increase in inorganic and solute accumulation (Yang et al., 2009; Sabbagh et al., 2014). Numerous 

studies have tried to link the increase of soluble carbohydrate to temperature stress tolerance (Radi 

et al., 2013) and salinity stress tolerance (Ashraf and Tufail, 1995). The present result is in 

agreement with other results on wheat seedling treated with high temperature and salinity, which 

also found that high temperature and salinity treatments resulted in a significant increase in soluble 

sugar, reducing and non-reducing sugar, soluble protein and proline in some genotypes (Hamada 

and Khulaef, 1995). The study herein reported that the interaction effect was additive or synergistic 

(positive interaction) the combined effect (high temperature and salinity) was higher than the sum 

of the individual effect (high temperature or salinity) on solute sugar accumulation (Fig. 3.11a-d). 

High temperature and salinity treatments resulted in a significant increase, in the total of soluble 
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sugar, reducing and non-reducing sugar in all genotypes, however there was a trend that some 

genotypes accumulated high amount of these carbohydrates. TX04M410211 and TASCOSA 

genotype were more tolerant to high temperature and salinity stress (Fig 3.10). Starch is the most 

abundant storage carbohydrate produced in plants. The result of this study found that starch 

contents in wheat leaves of all genotypes were reduced as a result of high temperature and salinity 

stress. The result herein agreed with a study on the effect of water stress on wheat plant (Saeedipour 

and Morad, 2011). The study reported that decreased starch content was due to decreased 

photosynthesis rate, also increased soluble sugars may have related to degradation of starch in 

wheat leaves. Another explanation of high sugar content in wheat leaves at the same time reduction 

in starch content may be due to the inhibition of distribution of these sugars to storage tissues. 

However, another study had reported contrasting result and stated that starch concentration of 

wheat leaves increased with increasing salinity (Dadkhah and Rassam, 2016). 

Proline is critical for osmoprotection in many plants, and one of the most common 

responses of many plants subjected to abiotic stresses is the accumulation proline (Hare and Cress, 

1997; Ashraf and Foolad, 2007). It has been reported that proline plays a protective role in plants 

exposed to stress and is thought to be acting as a cellular osmotic regulator and plays a role in ROS 

detoxification. (Hare and Cress, 1997; Ashraf and Foolad, 2007; Tatar and Gevrek 2008; Yu et al., 

2015). In the present study an increase of proline was seen in all genotypes tested and that the 

interaction effect was hypo-additive (negative interaction) the combined effect (high temperature 

and salinity) was less than the sum of the individual effect (high temperature or salinity) on proline 

accumulation (Fig. 3.18a-c).  Genotypic variation in proline accumulation under high temperatures 

were reported in this study as the increase was greater in GUYMON, TX04M410211 and 

TASCOSA genotypes and lowest in AVALANCHE and MTS0531 genotypes (Fig. 3.17a-c). 
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Similar result was obtained in another study reported that genotypic differences in proline 

accumulation under high temperatures were seen in 20 wheat genotypes (Ahmed and Hassan, 

2011). In addition, many studies found that proteins play a key role in salt stress acclimation and 

plant cellular regulation as these proteins are utilized in many cellular processes associated with 

salt acclimation (Farooq et al., 2011; Kosová et al., 2013). In this study an increase in soluble 

proteins was found in all genotypes, however some genotypes accumulated more proteins than 

others. Other studies also agreed with this study and they concluded that soluble protein were 

increased under high temperature stress (Farooq et al., 2011) and under also in salinity stress 

condition (Radi et al., 2013). The MDA content is linked with the oxidization of the cell membrane 

and  the content of MDA is often used as an indicator of lipid peroxidation resulting from oxidative 

stress. MDA has been considered an indicator of salt-induced oxidation in cell membranes and a 

tool for determining salt tolerance in plants (Ghafiyehsanj et al., 2013; Radi et al., 2013). In this 

study, MDA content were significantly increased by high temperature, salinity and combined 

stresses. However, the accumulation of MDA content was increased to a greater degree in some 

genotypes than in other genotypes, this suggest that within the genotypes tested there were some 

susceptible genotypes that accumulated more MDA such as MTS053 and GAGE; and some were 

tolerant genotypes include GUYMON, TX04M410211 and TASCOSA. Many studies agree that 

increasing  MDA content is linked with increasing the degree of stress in wheat plants (Tatar and 

Gevrek, 2008; Mansoor and Naqvi 2013) and that plants that accumulate less MDA are more 

tolerant. 

In wheat, yield is determined by the number of spikes per plant and yield components such 

as spikelet number, grain number and grain weight (El-Hendawy et al., 2005). The result from this 

study showed that spikelet number per spike had a positive and highly significant relationship with 
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grain yield under high temperature and salinity stress. This result agree with other studies, which 

concluded that there was a reduction of spikelet number per spike and grain number per spike and 

per plant under high temperature stress (Nahar et al., 2010; Pradhan et al., 2012; Narayanan et al., 

2015), under salinity condition (Maas and Grieve, 1990; Sairam et al., 2002), under combined 

salinity and high temperature stress (Anjum et al., 2008)) and under combined high temperature 

and drought stress (Pradhan et al., 2012; Alghabari et al., 2015). The different yield components 

showed different responses to high temperature, salinity and combined stresses. The individual 

grain weight was least sensitive to salinity at booting stage. This is because of the fact that grain 

weight is determined between flowering and maturity, which was after the time of stress for the 

plants in this study. However, spikelet number and grain number were the most sensitive yield 

component at booting stage.  This because of the fact that spikelet number and grain number are 

determined during the period of spike emergence to flowering, which in this experiment was the 

stress period. This result agreed with (El-Hendawy et al., 2005). The study herein reported that 

spikelet number per spike was reduced due to high temperature and salinity stress. This could be 

due to the fact that spikelet number initiation occurs at the vegetative stage and stress may have 

resulted in shortening the vegetative stage, in turn causing a reduction in number of spikelet per 

spike. This agreed with the another study which reported a positive correlation between the length 

of the vegetative phase and the number of spikelet number per spike and that the increase the 

duration of the vegetative stage of the apex induces more spikelet numbers per spike (Rahman et 

al., 1977). However, another study showed that the actual number of spikelet is determined by the 

length of the reproductive phase and reveled that short days from double ridge to terminal spikelet 

initiation stimulate a large number of spikelet (Rahman and Wilson, 1978). This suggests that 

assessment for combined stresses of high temperature and salt tolerance among genotypes can be 
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based on the genetic diversity in spikelet number per spike. The yield component (seed set and 

grain yield) reduction is positively related to some environmental conditions such as high 

temperature, drought, light and cold during the stem elongation phase until after anthesis (Prasad 

et al., 2008). Harvest index also had very significant relationship with grain yield under stress 

condition. The study found that grain yield and harvest index of the twelve wheat genotypes tested 

in this experiment significantly decreased with increasing temperature and salinity levels. The 

study revealed that genotypes include GUYMON, TX04M410211 and TASCOSA showed highest 

grain yield and genotypes 2174-05 and OK05108 showed the lowest grain yield and harvest index 

values. These results were similar to the results reported from other studies (El-Hendawy et al., 

2005; Asgari et al., 2012, Prasad et al., 2008; Narayanan et al., 2015). These studies reported that 

grain yield and harvest index were reduced under stress and that the interaction effect was hypo-

additive (negative interaction) the combined effect (high temperature and salinity) was less than 

the sum of the individual effect (high temperature or salinity) on grain yield and harvest index 

(Fig. 3.25a-d). From this study we found that genotypes who performed well under stress were the 

same genotypes that had high yield component. These genotypes had a high level of photosynthesis 

and high chlorophyll content, higher proline, soluble sugar and soluble protein content in their 

leave. A good explanation for that is that accumulation of osmo-protectant may have enhanced the 

maintenance of turgor by osmotic adjustment which may led to stomata opening and maintain CO2 

level to the level required for photosynthesis. In this study and based on grain yield reduction, 

genotype TASCOSA was the most tolerant to high temperature stress (46 % decline) and genotype 

GUYMON was the most tolerant to salinity stress (32 % decline) at booting stage. These genotypes 

are best adapted to the High Plains regions, which expected to have better drought tolerance and 

because  high temperature and salinity are a dehydration stresses, therefore these genotypes were 



116 

high temperature and salinity tolerance. Whereas, genotypes CARSON was highly susceptible to 

high temperature stress (52 % decline) and AVALANCHE was highly susceptible to salinity stress 

(42 % decline) at booting stage.  

 Conclusions 

In conclusion, high temperature 35 ºC and salinity 120 mM NaCl and their combined 

effects at booting stage were negatively influenced wheat growth and yield. Combined stresses 

was more damaging to wheat than the individual effect of each stress, which indicated that the 

interaction effect was additive. High temperatures, salinity and their interaction at booting stage, 

had negative effects on wheat physiology, biochemical, yield and yield component as indicated by 

the reduced leaf level photosynthesis, reduced chlorophyll content, starch content, increased 

sugars, proline and soluble proteins, increased MDA level, and reduced grain yield and harvest 

index. Also the study concludes that winter wheat genotypes diverse in their response to 

combination stress of high temperature stress and salinity stress. Genotypes GUYMON, 

TX04M410211 and TASCOSA were the more tolerant ones. There were some traits that can be 

selected for breeding programs such as photosynthesis rate, leaf chlorophyll content, grain number 

and weight. However, the screening for wheat genotypes can be based on characteristics related to 

high yields under stress condition. These criteria better be stable and easy to evaluate especially 

with the need to screen a high number of genotypes. Still, further research is needed to confirm 

these interaction effects with other wheat genotypes and under field condition.  
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 Figures and Tables 

Figure 3-1 The main effect of high temperature on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) 

stomata conductance (mmol m-2 s-1), (C) maximum quantum yield of PS II (Fv/Fm ratio; unit less), 

and (D) thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, three replications of each genotype 

and three measurements taken on each plant on d 2, 5 and 10 d during the stress period. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

or decrease in each trait due to high temperature as compared to optimum temperature is indicated.  
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Figure 3-2 The main effect of salinity on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) stomata 

conductance (mmol m-2 s-1), (C) maximum quantum yield of PS II (Fv/Fm ratio; unitless), and (D) 

thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, three replications of each genotype and three 

measurements taken on each plant on d 2, 5 and 10 d during the stress period. Each datum indicates 

mean value and vertical lines on top of bars indicate standard error of means. Means and standard 

errors were estimated using the MIXED procedure in SAS. Percent increase or decrease in each 

trait due to salinity as compared to the control is indicated. 
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Figure 3-3 The effect of genotype on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) stomata 

conductance (mmol m-2 s-1), and (C) thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve 

winter wheat genotypes.  Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means. Separation of means was carried out using the LSD test (P < 

0.05). Means with different letters are significantly different according to the LSD test at P < 0.05. 
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Figure 3-4 The effect of combined stresses of high temperature and salinity on (A) leaf 

photosynthetic rate (µmol m-2 s-1), (B) stomata conductance (mmol m-2 s-1), (C) maximum 

quantum yield of PS II (Fv/Fm ratio; unitless), and (D) thylakoid membrane damage (Fo/Fm ratio; 

unitless) of twelve winter wheat genotypes. Data are averaged across two experiments, twelve 

genotypes, three replications of each genotype and three measurements taken on each plant on d 

2, 5 and 10 d  during the stress period. Each datum indicates mean value and vertical lines on top 

of bars indicate standard error of means. Means and standard errors were estimated using the 

MIXED procedure in SAS. Percent increase or decrease in each treatment as compared to control 

is indicated.  
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Figure 3-5 The interaction effect of high temperature and genotype on (A) leaf photosynthetic rate 

(µmol m-2 s-1), and (B) thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, three replications of each 

genotype and three measurements taken on each plant on d 2, 5 and 10 d during the stress period. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

or decrease due to high temperature as compared to optimum temperature is indicated.  
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Figure 3-6 The interaction effect of salinity and genotype on (A) leaf photosynthetic rate (µmol 

m-2 s-1), (B) stomata conductance (mmol m-2 s-1), and (C) thylakoid membrane damage (Fo/Fm 

ratio; unitless) of twelve winter wheat genotypes. Data are averaged across two experiments, 

twelve genotypes, three replications of each genotype and three measurements taken on each plant 

on d 2, 5 and 10 d during the stress period. Each datum indicates mean value and vertical lines on 

top of bars indicate standard error of means. Means and standard errors were estimated using the 

MIXED procedure in SAS. Percent increase or decrease in each trait due to salinity as compared 

to the control is indicated. 
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Figure 3-7 The interaction of high temperature, salinity and genotype on (A) leaf photosynthetic 

rate (µmol m -2 s -1) (B) stomata conductance (mmol m-2 s-1) and (C) chlorophyll index (SPAD 

units) of twelve winter wheat genotypes Data are averaged across two experiments, twelve 

genotypes, three replications of each genotype and three measurements taken on each plant on 

days 2, 5 and 10 d during the stress period. Each datum indicates mean value and vertical lines on 

top of bars indicate standard error of means. Means and standard errors were estimated using the 

MIXED procedure in SAS. 
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Figure 3-8 The main effect of high temperature on (A) total soluble sugar (g/kg), (B) reducing 

sugar (g/kg), (C) non-reducing sugar (g/kg), and (D) starch content (g/kg) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means. Means and standard errors were estimated using the MIXED procedure in SAS. 

Percent increase or decrease in each trait due to high temperature as compared to optimum 

temperature is indicated.  
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Figure 3-9 The main effect of salinity on (A) total soluble sugar (g/kg), (B) reducing sugar (g/kg), 

(C) non-reducing sugar (g/kg), and (D) starch content (g/kg) of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, and five replications of each 

genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard error 

of means. Means and standard errors were estimated using the MIXED procedure in SAS. Percent 

increase or decrease in each trait due to salinity as compared to the control is indicated. 
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Figure 3-10 The main effect of genotype on (A) total soluble sugar (g/kg), (B) reducing sugar 

(g/kg), and (C) non-reducing sugar (g/kg) of twelve winter wheat genotypes. Data are averaged 

across two experiments, twelve genotypes, and five replications of each genotype. Each datum 

indicates mean value and vertical lines on top of bars indicate standard error of means. Separation 

of means was carried out using the LSD test (P < 0.05). Means with different letters are 

significantly different according to the LSD test at P < 0.05. 
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Figure 3-11 The interaction of combined stresses of high temperature and salinity on (A) total 

soluble sugar (g/kg), (B) reducing sugar (g/kg), (C) non-reducing sugar (g/kg), and (D) starch 

content (g/kg) of twelve winter wheat genotypes. Data are averaged across two experiments, 

twelve genotypes, and five replications of each genotype. Each datum indicates mean value and 

vertical lines on top of bars indicate standard error of means. Means and standard errors were 

estimated using the MIXED procedure in SAS. Percent increase or decrease in each treatment as 

compared to control is indicated.  
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Figure 3-12 The interaction of high temperature and genotype on (A) total soluble sugar (g/kg), 

(B) reducing sugar (g/kg), and (C) non-reducing sugar (g/kg) of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, and five replications of each 

genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard error 

of means. Means and standard errors were estimated using the MIXED procedure in SAS. Percent 

increase in each trait due to high temperature as compared to optimum temperature is indicated on 

each genotype. 
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Figure 3-13 The interaction of salinity and genotype on (A) total soluble sugar (g/kg), (B) reducing 

sugar (g/kg) and (C) non-reducing sugar (g/kg) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means.  

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

in each trait due to high salinity as compared to the control is indicated. 
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Figure 3-14 The interaction of high temperature, salinity and genotype on (A) total soluble sugar 

(g/kg), (B) reducing sugar (g/kg), and (C) non-reducing sugar (g/kg) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means.  Means and standard errors were estimated using the MIXED procedure in SAS. 
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Figure 3-15 The main effect of high temperature on (A) proline content (µmoles/g), (B) soluble 

protein content (g/kg) and (C) MDA content (µmoles/g) of twelve winter wheat genotypes. Data 

are averaged across two experiments, twelve genotypes, and five replications of each genotype. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

in each trait due to high temperature as compared to optimum temperature is indicated.  
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Figure 3-16 The main effect of salinity on (A) proline content (µmoles/g), (B) soluble protein 

content (g/kg) and (C) MDA content (µmoles/g) of twelve winter wheat genotypes Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

in each trait due to salinity as compared to the control is indicated. 
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Figure 3-17 The main effect of genotype on (A) proline content (µmoles/g), (B) soluble protein 

content (g/kg) and (C) MDA content (µmoles/g) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means.. 

Separation of means was carried out using the LSD test (P < 0.05). Means with different letters 

are significantly different according to the LSD test at P < 0.05. 
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Figure 3-18 The interaction of high temperature and salinity stress on (A) proline content 

(µmoles/g), (B) soluble protein content (g/kg) and (C) MDA content (µmoles/g) of twelve winter 

wheat genotypes. Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means. Means and standard errors were estimated using the MIXED 

procedure in SAS. Percent increase in each treatment as compared to control is indicated.  
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Figure 3-19 The interaction of high temperature and genotype on (A) proline content (µmoles/g), 

(B) soluble protein content (g/kg) and (C) MDA content (µmoles/g) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means. Means and standard errors were estimated using the MIXED procedure in SAS. 

Percent increase in each trait due to high temperature as compared to optimum temperature is 

indicated on each genotype. 
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Figure 3-20 The interaction of salinity and genotype on(A) proline content (µmoles/g), (B) soluble 

protein content (g/kg) and (C) MDA content (µmoles/g) of twelve winter wheat genotypes. Data 

are averaged across two experiments, twelve genotypes, and five replications of each genotype. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means.  

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

in each trait due to salinity as compared to the control is indicated. 

 

54%
66%

70% 63% 95% 87%
52%

79%

67%
69%

81%

68%

0

2

4

6

P
ro

li
n
e 

co
n
te

n
t

(µ
m

o
l/

g
)

(A) 0 mM/L NaCl 120 mM/L NaCl

24%
38%

19% 22% 18% 20% 17%

33%

21% 18%

36%

21%

0

5

10

15

20

S
o

lu
b
le

 p
ro

te
in

s

(g
/k

g
)

(B)

62%

69%

72% 66% 73% 67% 70%

71%

74% 61%

62%

71%

0

2

4

6

M
D

A
 c

o
n
te

n
t

(µ
m

o
l/

g
 f

w
)

Genotypes

(C)



147 

Figure 3-21 The interaction of high temperature, salinity and genotype on (A) proline content 

(µmoles/g), (B) soluble protein content (g/kg) and (C) MDA content (µmoles/g) of twelve winter 

wheat genotypes. Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means.  Means and standard errors were estimated using the MIXED 

procedure in SAS. 
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Figure 3-22 The main effect of high temperature on (A) spikelet number per spike, (B) grain 

number per plant, (C) grain yield per plant (g), and (D) harvest index of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means. Means and standard errors were estimated using the MIXED procedure in SAS. 

Percent decrease in each trait due to high temperature as compared to optimum temperature is 

indicated.  
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Figure 3-23  The main effect of salinity on (A) spikelet number per spike, (B) grain number per 

plant, (C) grain yield per plant (g), and (D) harvest index of twelve winter wheat genotypes. Data 

are averaged across two experiments, twelve genotypes, and five replications of each genotype. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent decrease 

in each trait due to salinity as compared to the control is indicated.  
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Figure 3-24 The effect of genotype on (A) spikelet number per spike, (B) grain number per plant, 

(C) grain yield per plant (g), and (D) harvest index of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Separation of means was carried out using the LSD test (P < 0.05). Means with different letters 

are significantly different according to the LSD test at P < 0.05. 
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Figure 3-25 The interaction of high temperature and salinity stress on (A) spikelet number per 

spike, (B) grain number per plant, (C) grain yield per plant (g), and (D) harvest index of twelve 

winter wheat genotypes. Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means. Means and standard errors were estimated using the MIXED 

procedure in SAS. Percent decrease in each treatment as compared to control is indicated.  
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Figure 3-26 The interaction of high temperature and genotype on (A) spikelet number per spike 

(B) grain number per spike, (C) grain yield per spike (g) of twelve winter wheat genotypes. Data 

are averaged across two experiments, twelve genotypes, and five replications of each genotype. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent decrease 

in each trait due to high temperature as compared to optimum temperature is indicated on each 

genotype. 
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Table 3-1 Probability values of effects of temperature (T), salinity (S), genotype (G), T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various physiological 

traits. 

Traits Tempera

ture (T) 

Salinity 

(S) 

Genotyp

e (G) 

T x S T x G S x G T x G x S 

Maximum quantum 

yields of PS II (Fv/Fm 

ratio; unitless) 

<0.0001 <0.0001 <0.0001 <0.0001 0.0011 0.3041 0.2904 

Thylakoid membrane 

damage (Fo/Fm ratio; 

unitless) 

<0.0001 <0.0001 <0.0001 0.0267 <0.0001 <0.0001 0.0324 

Leaf photosynthesis 

(µmol m-2 s-1) 

<0.0001 <0.0001 <0.0001 0.0031 <0.0001 <0.0001 0.7034 

Stomatal Conductance 

(mmol m² s¹) 

<0.0001 <0.0001 <0.0001 <0.0001 0.1526 0.0424 0.0502 

Chlorophyll index 

(SPAD units) 

0.0012 <0.0001 <0.0001 0.0002 0.0933 <0.0001 0.0001 
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Table 3-2 Probability values of effects of temperature (T), salinity (S), genotype (G), T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various biochemical 

traits. 

Traits Tempera

ture (T) 

Salinity 

(S) 

Genotyp

e (G) 

T x S T x G S x G T x G x S 

Soluble sugars content 

(g/kg) 

<0.0001 <0.0001 <0.0001 <0.0001 0.0016 <0.0001 <0.0001 

Reducing sugars 

content (g/kg) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0005 0.0085 

Non reducing sugars 

content (g/kg) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1877 0.0047 

Starch content (g/kg) <0.0001 <0.0001 <0.0001 <0.0001 0.8232 0.7235 0.2812 

Proline content content 

(µmol/g) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0338 0.0004 

Soluble proteins 

content (g/kg) 

<0.0001 <0.0001 <0.0001 <0.0001 0.0304 <0.0001 0.0371 

MDA content (µmol/g) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0009 0.0233 
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Table 3-3 Probability values of effects of temperature (T), salinity (S), genotype (G), T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various yield traits. 

Traits Tempera

ture (T) 

Salinity 

(S) 

Genoty

pe (G) 

T x S T x G S x G T x G x 

S 

Plant height (cm) <0.0001 0.0060 <0.0001 0.3020 0.3355 0.3046 0.5863 

Tiller number (plant-1) <0.0001 0.0004 <0.0001 0.6678 0.4230 0.8834 0.7249 

Spike number (plant-1) <0.0001 0.0043 <0.0001 0.1880 0.9975 0.9951 0.8873 

Spike length (cm) <0.0001 0.0002 0.0973 0.0324 0.8675 0.0852 0.9213 

Spikelet number (spike-1) <0.0001 <0.0001 <0.0001 <0.0001 0.0006 0.8450 0.8607 

Dry weight (g plant-1)  <0.0001 <0.0001 0.0018 0.4682 0.1803 0.9972 0.5578 

Grain number (spike-1) <0.0001 <0.0001 0.0226 0.0041 0.0052 0.4582 0.2076 

Grain number (plant-1) <0.0001 <0.0001 <0.0001 0.2872 0.9851 0.9976 0.8953 

Grain yield (g spike-1)  <0.0001 <0.0001 0.7469 <0.0001 0.0064 0.7202 0.8994 

Individual grain weight (mg)  <0.0001 <0.0001 0.9706 <0.0001 0.2369 0.6501 0.8540 

Grain yield (plant-1) <0.0001 <0.0001 0.0008 <0.0001 0.6761 0.9919 0.9855 

Harvest index <0.0001 <0.0001 0.1909 <0.0001 0.8698 0.9896 0.8839 
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Table 3-4 Mean growth and morphological parameters for twelve winter wheat genotypes. 

Separation of means was carried out using the LSD test (P < 0.05). Means with different letters 

are significantly different according to the LSD test at P < 0.05. 

 

 

  

Genotypes Plant height  Number of 

tillers plant-1 

Spike number 

panicle-1 

Vegetative biomass 

(g plant-1) 

2174-05 68.5e 8.4de 6.4cd 19.9abc 

GUYMON 70.2d 8.6bcd 6.7bc 19.7bc 

OK05108 70.4cd 8.4e 6.3d 19.4c 

GAGE 70.2d 8.6bcd 6.7bc 20.3ab 

AVALANCHE 71.3abcd 8.3e 6.5cd 19.4c 

CO04W320 71.5abc 8.5cde 6.6cd 19.7bc 

CARSON 71.9a 8.6bcd 6.6cd 19.4c 

TX04M410211 71.2abcd 8.8a 7a 20.5a 

TX86A5606 71.5abc 8.7abc 6.7bc 20ab 

MTS0531 71.6abc 8.7ab 6.6c 19.4c 

TASCOSA 71.8ab 8.7ab 6.9ab 20.2ab 

ONAGA 70.6bcd 8.5bcde 6.6bc 19.8bc 
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Table 3-5 Mean growth and yield parameters for twelve winter wheat genotypes. Separation of 

means was carried out using the LSD test (P < 0.05). Means with different letters are significantly 

different according to the LSD test at P < 0.05. 

Genotypes Spikelet number 

(spike-1) 

Grain yield (g 

plant-1) 

Grain number 

plant-1 

Harvest 

index 

2174-05 17.2d 8.6de 227.2cd 0.43b 

GUYMON 17.8ab 9.1abc 245.7ab 0.46a 

OK05108 17.5c 8.4e 225.6d 0.43b 

GAGE 17.4cd 8.9bcde 238.8bc 0.43ab 

AVALANCHE 17.5 8.7cde 229.7cd 0.44ab 

CO04W320 17.6bc 8.8cde 234bcd 0.44ab 

CARSON 17.5cd 8.8cde 234.4bcd 0.44ab 

TX04M410211 17.9a 9.5a 255.8a 0.45a 

TX86A5606 17.3cd 9bcd 240.1bc 0.44ab 

MTS0531 17.3cd 8.7cde 236.3bcd 0.44ab 

TASCOSA 17.8ab 9.4ab 254.7a 0.46a 

ONAGA 17.3cd 8.8cde 237.bcd 0.44ab 
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Chapter 4 - The Combined Effect of Salinity and High Temperature 

on Winter Wheat at Flowering Stages 

 Abstract 

Salinity and high temperature are the major abiotic stresses that reduce plant growth and 

crop productivity worldwide. The objectives of this study were to quantify independent and 

combined effects of salinity and high temperature on physiological, biochemical, growth and yield 

characters of winter wheat genotypes and to define if responses varied among winter wheat 

genotypes. 12 genotypes of winter wheat were grown in non-saline medium and at optimum 

temperatures (25/15 °C; daytime maximum/nighttime minimum; d/n) until flowering stages. At 

flowering plants were irrigated with three different salinity levels (0, 60, 120 mM NaCl) and 

exposed to optimum and high temperature (35/ 20 °C day/night) for 10 d. Physiological, 

biochemical data were collected during treatment period and yield data were collected at full 

maturity. The study indicated that high temperatures, salinity and their interaction at flowering 

stage, had negative effects on wheat physiology, biochemical and yield component as indicated by 

the reduced leaf level photosynthesis, reduced chlorophyll content, starch content, increased 

sugars, proline and soluble proteins, increased MDA level, and reduced grain yield and harvest 

index. Additionally, the study showed considerable variation in high temperature and salinity 

tolerance among winter wheat genotypes for leaf photosynthesis, chlorophyll concentration, 

sugars, proline and soluble proteins accumulation, seed set, grain number and grain yield per plant. 

The study conclude that there is genetic variability among winter wheat genotypesand that 

genotypes varied in their response to independent and combined stresses and that genotype 

CARSON, TX04M410211 and TASCOSA were the more tolerant genotypes.   
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 Introduction 

Flowering stage (Feekes growth stage 10.5.1, Zadoks 62). It starts just a few day after 

heading is completed. Once flowering begins, pollination will be complete in about four or five d 

(Peterson, 1965). Flowering begins in the head and it is starting first with the florets in the central 

spikelet then progresses both up and down the spike. Flowering is usually noted by extrusion of 

the anthers from each floret (Herbeck and Lee, 2009). If the anthers within a floret are yellow or 

gray rather than green, it is reasonably certain that pollination of the floret has occurred. The period 

of pollination within a single head is about three to five d (Herbeck and Lee, 2009). During this 

stage the kernels per spike are determined by the number of flowers that are pollinated (Acevedo 

et al., 2002). This stage is very sensitive to environmental stresses such as high temperature, 

drought, and salinity. Under extreme environmental stress, all of the florets in each spikelet at the 

top and bottom of the head may terminate prior to flowering (Warrington et al., 1977). 

High temperatures severely limit wheat yield and decreases total above-ground biomass 

and grain yield (Acevedo et al., 2002). Wheat is particularly subjected to high temperature stress 

around anthesis stages and the effect is marked by the reduction in kernel number and grain yield 

(Nicolas et al., 1984; Fischer, 1985; Wheeler et al., 1996; Acevedo et al., 2002; Modhej et al., 

2008; Barnabas et al., 2008; Farooq et al., 2011). The decrease in grain yield of wheat under high 

temperature stress is due to the reduction in number of spikes, number of fertile spikes per plant 

or number of grain per spike and grain weight (Acevedo et al., 2002; Narayanan et al., 2015). High 

temperature stress reduces plant photosynthetic due to the oxidative damage of chloroplast, which 

result in grain yield reduction (Seeman et al., 1984; Farooq et al., 2011). Also high temperature 

decreases leaf chlorophyll content and accelerates senescence (Zhao et al., 2007; Pradhan et al., 

2012). High temperature decreases the duration of each growth stage and affects crop performance 
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and yield. High night temperature resulted in decrease in time to flowering, grain set, and 

physiological maturity in spring wheat (Prasad et al., 2008). During flowering stages, high 

temperature stress affected morphological abnormalities in pollen, stigma and style, which resulted 

in decreased grain numbers, decreased individual grain weights and decreases in grain yield 

(Prasad and Djanaguiraman, 2014). High temperature tolerance is associated with membrane 

stability, increased compatible solutes, increased protein stability and the synthesis of heat shock 

proteins (Acevedo et al., 2002). Plants have developed adaptive mechanism to high temperature 

stress. These mechanisms include morphological, physiological, and biochemical changes such 

that leaf orientation, leaf anatomy, stomata conductance, changes in membrane lipid composition, 

ion transporters, and synthesize protective chemicals including proteins, proline, antioxidants such 

as ascorbic acid, glutathione, peroxidase and superoxide dismutase (Morgan, 1984; Touchette et 

al., 2007; Srivastava el al., 2012). 

Agricultural productivity is severely affected by soil salinity. Soil and water salinity is 

caused by the presence of excessive amounts of salts. Most commonly, high Na+ and Cl- cause the 

salt stress. Wheat is moderately tolerant to salinity stress (Shannon, 1997). However, salt stress 

effects plant as it reduces water potential, cause ions imbalance, disturbances in ion homeostasis, 

and toxicity (Maas, and Grattan. 1999; Munns, 2002; Sairam, 2002). This results in changing of 

water status, which leads to initial growth reduction and limitation of plant productivity due to 

reduced cell growth and leaf area (Acevedo et al., 2002). Under saline condition, relative water 

content, leaf water potential, water uptake, transpiration rate, water retention, and water use 

efficiency decreased (Nishida et al., 2009). Photosynthesis, altogether with cell growth, is among 

the primary processes to be affected by salt stress due to the production of ROS such as the 

superoxide radical (O2
-), hydrogen peroxide (H2O2), and the hydroxyl radical (OH-). These free 
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radicals are produced during salinity stress and cause severe damage to membranes and other 

essential macromolecules such as chlorophyll pigments, proteins, and fats (Sairam et al., 2005; 

Krieger-Liszkay et al., 2008; Behairy et al., 2012; Djanaguiraman and Prasad, 2013). Also, salinity 

hastens all phenological phases (Grieve et al., 1994), decreases number of fertile tillers (Mass et 

al., 1994; Abbas et al., 2013), reduces the number of spikelet number per spike (Frank et al., 1987), 

kernel weight (Abbas et al., 2013). As a result grain yield and aboveground biomass are reduced 

due to salt stress. Additionally, the number of effective ears per plant is the most seriously affected 

yield component in wheat under saline conditions (Maas and Hoffmann, 1977; Munns et al., 2006). 

Plant salinity tolerance is the inherent ability of the plant species to tolerate the effects of high salts 

without a significant adverse effect on the plant (Munns and James, 2003). Some plant have 

developed different adaptation mechanisms, which include the accumulation of osmo-protectants, 

exclusion of sodium and chloride, tissue tolerance to accumulated sodium and chloride, and 

detoxification of ROS by producing antioxidants compounds (Rathinasabapathy, 2000; Zhang et 

al., 2001; Munns and Tester, 2008; Ashraf et al., 2010; Djanaguiraman and Prasad, 2013). 

Due to increased climatic variability and more frequent events of extreme conditions also 

effect in plants being exposed to not only one single abiotic stress but also multiple abiotic stresses 

at different stage of plant growth and development. Under filed condition, wheat plant is subject 

to combination of high temperature and salinity stress. Combined stresses become more acute and 

lethal threats to plant growth and development compared to individual stresses (Rizhsky et al., 

2004; Mittler, 2006; Ramegowda and Senthil-Kumar, 2015). High temperature and salinity 

stresses cause water stress leading to loss of turgor in guard cell which induces the production of 

stress hormone, abscissic acid (ABA). As abscissic is produce it accelerates stomatal closure, 

which limits the gas exchange and reduce CO2 concentration in mesophyll tissues. This leads to 
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reduction in photosynthetic rate. High temperature stress influence germination (Tadmor et al., 

1969; Sharma, 1976), and enhances transpiration, and, with combination of salinity stress, this 

could result in enhanced uptake of salt, which may cause salt toxicity (Keles and Oncel, 2002; 

Atkinson and Urwin, 2012). High temperature and salt stress inhibit growth and increase the 

carotenoids and growth regulator activities (Keles and Oncel, 2002), induce alterations in ion 

transport and compartmentalization (Munns, 2002), damage gas exchange properties of the flag 

leaf, yield, yield components of some varieties of wheat plants (Anjum et al., 2008). Plants 

recognize and respond to these stresses by rapidly altering gene expression along with 

physiological and biochemical alterations. The combined effect of high temperature and salinity 

stress has received comparatively little study. Therefore the objective of this research was to 

investigate the effect of salinity, high temperature, and their interactions at flowering stage of 

winter wheat genotypes. 

 

 Materials and Methods 

This study was conducted in controlled environment facilities at the Department of Agronomy, 

Kansas State University Manhattan, KS, USA. Experiments were conducted in spring and summer 

of 2016 to determine the impact of salinity and high temperature stress on physiological, 

biochemical, growth and yield, of winter wheat genotypes.  

 

 Plant Material 

12 genotypes were used in the study and these genotypes were selected based on earlier 

germination experiment. These genotypes were classified as tolerant to salinity (GAGE, 

MTS0531, TASCOSA AND GUYMON), moderately tolerant (AVALANCHE, OK05108, 
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TX86A5606 and ONAGA) and susceptible (CO04W320, 2174-05, CARSON AND 

TX04M410211) to salinity stress 

 

 Experimental and Growth Conditions 

Seeds of twelve winter wheat genotypes were sown in 4-cm deep trays containing commercial 

Sunshine Metro Mix 360 potting soil (Hummert International, Topeka, KS, USA). Seeds were 

sown at a depth of about 2 cm. The seedlings were raised in a growth chamber (Conviron Model 

CMP 3244, Winnipeg, MB, Canada) maintained at 25/15 °C (daytime maximum/nighttime 

minimum; d/n). After 8 d, the seedlings were vernalized for 56 days at 4 °C with 8 h photoperiod. 

Following vernalization, three seedlings of the same genotype were transplanted into 1.6-L pots 

(24 cm length and 10 cm width, MT49 Mini-Treepot, Stuewe & Sons, Inc., Tangent, OR, USA). 

Rooting medium in pots was commercial Sunshine Metro Mix 360 potting soil. The rooting 

medium was fertilized with Osmocote (Scotts, Marysville, OH, USA), a controlled-release 

fertilizer with 14: 14: 14 N: P2O5:, K2O respectively, at 5 g per pot before transplanting. Two 

growth chamber were used for the study. Both growth chamber were maintained at optimum 

temperature (OT; 25/15 °C d/n) until flowering stage. At flowering, one growth chamber was 

maintained at optimum temperature (OT; 25/15 °C d/n) and the other growth chamber was 

maintained at high temperature (HT; 35/25 °C d/n) for 10 d. In each growth chamber there were 

15 trays, and each tray has 12 pots. Twelve winter wheat genotypes were in each tray, with a total 

of 180 pots in the growth chamber. Pots were watered daily and kept in trays containing about 1 

cm water during the experiment to avoid water stress. Pots were moved randomly for each week 

to avoid positional effects. After seedling establishment, seedlings were thinned to two per pot, 

which was maintained until maturity. At thinning, a systemic insecticide, Marathon 1 % G (a.i.: 
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Imidacloprid: 1–((6–Chloro–3–pyridinyl) methyl)–N–nitro–2–imidazolidinimine), was applied at 

1.5 g per pot to avoid infestation of sucking insect pests. The plants were maintained at a 

photoperiod of 16 h with a light intensity of 800 µmol m-2 s-1 and 70 % relative humidity. The 

daytime maximum temperature/nighttime minimum temperature was maintained for 8 h with a 

transition period between daytime and night time temperatures of 4 h to imitate the diurnal 

temperature fluctuation of outside atmospheric condition and vice versa. Both growth chambers 

were divided into three sets each set consist of 5 trays representing five replications. At the onset 

of flowering stages (Feekes growth stage 10.0), one set of plants were irrigated with distilled water 

and served as control and the other two served as salinity treatment. Two levels of salinity (60 and 

120 mM NaCl solution, EC value of 7.5 and 14.5 dSm-1) was used to irrigate the plants. Salinity 

treatments were applied by irrigating each plant with 250 mL of NaCl solution to all treated plants 

and as mentioned above in both growth chambers for 10 d. Also, at the same time plants grown at 

high temperature were exposed to high temperature (HT; 35/25 °C d/ n) for 10 d. After that, the 

plants were returned to optimum temperature (OT; 25/15 °C d/ n) and irrigated with normal water 

till plants attained physiological maturity. Similar management practices were followed in both 

experiments. 

 

 Data Collection 

At flowering stages, the main stem of all plants was tagged for the measurements of chlorophyll 

content, chlorophyll a fluorescence and gas exchange. Measurements were taken on three plants 

of each genotype in each treatment at 2, 5, and 10 d after stress imposition Leaf samples were 

collected for biochemical analysis on 2, 5, and 10 d after stress imposition. Leaf samples were 

collected for biochemical analysis on 2, 5, and 10 d after stress imposition and at maturity, plant 
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height, tiller number per plant-1, spike number per plant-1, spike length, spikelet number per  

spike-1, and grain number per spike-1 were measured. All the above physiological traits were 

measured on attached fully expanded flag leaves of the main stems of three plants per genotype 

from each treatment during 10:00 and 14:30 hours. The leaf chlorophyll was measured using a 

self-calibrating chlorophyll meter (SPAD-502, Spectrum Technologies, Plainfield, IL, USA) on 

the fully expanded flag leaf of the main stem. Each time, data were taken four times from the 

middle portion of the leaf and the readings were averaged to get a single value for a plant. The 

Chlorophyll a fluorescence parameters were measured using a modulated fluorometer (OS30p; 

OptiSciences, Hudson, NH, USA). The minimum fluorescence (Fo) and maximum fluorescence 

(Fm) measurements were taken after the flag leaf was dark adapted for 1 h. The maximum quantum 

yield of PS II is the ratio of variable fluorescence (difference between maximum and minimum 

fluorescence (Fv) to maximum fluorescence (Fm), which decreases with stress (Rohacek, 2002). 

The leaf level photosynthesis was measured using the LI-COR 6400 portable photosynthesis 

system (LI-COR, Lincoln, NE, USA). Measurements were taken at daytime growth temperature 

and ambient CO2 conditions (390 mol-1). The internal light emitting diode (LED) light source in 

the LI-COR 6400 was set at 1600 mol m-2 s-1.  For all the biochemical analysis, the flag leaf and 

second leaf from the top were collected at 2, 5, and 10 d during the stress period. Samples placed 

in aluminum paper and immediately frozen in liquid nitrogen and transported to the laboratory 

where samples were stored at -80 °C until processing.  

 Total carbohydrate content (g/kgdry weight; dw) :  A known weight of (0.2 g) frozen leaf 

samples from each treatment was ground in liquid nitrogen to a fine powder using a  pestle and 

mortar followed by the  addition of 10 mL of 80 % ethanol  and kept in a preheated (70 C) water 

bath for 30 min. After the expiry of time, the homogenate was filtered through Whatman No. 1 
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filter paper and then re-extracted using 80 % ethanol (10 mL) and dried in a water bath to evaporate 

the  ethanol and then 10 mL of distilled water  was added and vortexed for 2 min. These 

extractswere used to determine soluble sugars, reducing sugar and non-reducing sugars. 

 Soluble sugars (g/kg dw) contents were determined based on the method of phenol 

sulphuric acid as described by Dubois et al. (1956). Briefly, 0.2 ml of sample exact was mixed 

with 0.8 ml of distilled water. To the diluted extract, 1 mL of phenol reagent and 5 mL of 96 % 

sulphuric acid were added and incubated for 30 min at 30 ᵒC. The optical density reading was taken 

at 490 nm using a UV- spectrophotometer. 

 The reducing sugars (g/kg dw) content were quantitatively estimated in the obtained extract 

following the method of Somogyi (1952). Briefly, 0.2 ml of sample exact was taken and 0.8 mL 

of distilled water and 1 mL of alkaline copper tartrate was added and the reaction mixture was 

heated for ten min in a boiling water bath and cooled rapidly in an ice bath. Then 1 mL of 

arsenomolybdate reagent and 10 mL of distilled water were added and mixed well. The reaction 

mixture was incubated for ten min at room temperature. The optical density reading was measured 

at 620 nm using UV- spectrophotometer. The difference between total sugar and reducing sugar 

corresponds to the non-reducing sugar (g/kg dw). 

 Starch content (g/kg dw) was determined using anthrone method (Hedge and Hofreiter, 

1962). A known weight of 0.2 g of frozen leaf samples from each treatment were ground in liquid 

nitrogen to a fine powder and homogenized in a pestle and mortar using 10 mL of 80 % ethanol 

and kept in preheated (70 C) water bath for 30 min. The homogenate was filtered through 

Whatman No. 1 filter paper and then re-extracted using 10 mL of 80 % ethanol for removing the 

soluble sugars. The residue was retained and was washed with hot 20 % ethanol till the washings 

did not give color with anthrone reagent. Sample residue was dried in oven at 70 C. To the dry 
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sample residue, 5 ml of distilled water and 6.5 ml of 52 % perchloric acid were added. Starch was 

extracted at 0 °C for 20 min. The extract was retained after centrifugation. The extraction was 

repeated with fresh perchloric acid. The extracts were pooled after centrifugation and the volume 

was made up to 50 mL with distilled water. To 0.2 ml of the extract, 0.8 ml of distilled water and 

4 ml of anthrone reagent were added. The reaction mixture was heated for 8 min in a boiling water 

bath and cooled rapidly in ice bath. The optical intensity was read at 630 nm using a UV- 

spectrophotometer. 

 Free proline content was quantified according to the method of Bates et al. (1973). Briefly, 

0.5 g of frozen leaf samples from each treatment was ground in liquid nitrogen to a fine powder 

and homogenized in a pestle and mortar in 3% (w/v) sulfosalicylic acid, and the residue was 

removed by centrifugation. From the supernatant, 2 mL was mixed with 2 mL of glacial acetic 

acid and with 2 mL of acid ninhydrin (1.25 g of ninhydrin was warmed in a mixture of 30 mL of 

glacial acetic acid and 20 mL of 6 mol/L phosphoric acid until dissolved) for 1 h at 100 °C; the 

reaction was terminated in an ice bath. The reaction mixture was extracted with 4 mL of toluene. 

The chromophore-containing toluene was warmed to room temperature and its optical density was 

measured at 520 nm using UV- spectrophotometer. Proline content was calculated according to 

Bates et al. (1973).  

 Lipid peroxidation was measured in terms of content of malondialdehyde (MDA, Ɛ = 155 

mmol-1 cm-1 a product of lipid peroxidation, following the method of Heath and Packer (1968). 

Briefly, 0.5 g of frozen leaf samples from each treatment were ground in liquid nitrogen to a fine 

powder and homogenized in a pestle and mortar with 10 mL of extraction buffer (0.1% trichloro 

acetic acid (TCA). The homogenate was centrifuged for 10 min at 10,000 rpm. For every 1 mL of 

the aliquot, 4 mL of 20 % TCA containing 0.5 % thio barbituric acid (TBA) was added. The 
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mixture was kept in water bath at 95 °C for 30 min and cooled rapidly in an ice bath to stop the 

reaction. The optical density reading of the mixture was immediately taken at 532 nm using UV- 

visible spectrophotometer, and the value for the non-specific absorption at 600 nm was subtracted. 

The concentration of malondialdehyde (MDA) was calculated using coefficient of absorbance of 

155 mM-1cm-1. MDA content expressed as mmol/g fresh weight; fw. The MDA content was 

calculated as follows: MDA concentration = (Abs532-Abs600) xVx1000/(Ɛ x W). Where: V = 

extraction volume, Ɛ = extinction coefficient and W = sample weight. 

 Total soluble protein content was determined as by Bradford (1976). Briefly, 0.5 g of 

frozen leaf samples from each treatment was ground in liquid nitrogen to a fine powder and 

homogenized in a pestle and mortar with 15 mL of extraction buffer (0.1M Tris buffer 8 pH) and 

then centrifuged at 12000 rpm at 4 °C for 15 min. Then 5 ml of Coomasie brilliant blue reagent 

(CBB) and 0.5 ml of distilled water were added to 0.5 ml of the supernatants. Spectrophotometer 

cuvettes and absorbance were measured using a UV- visible spectrophotometer at 595 nm. 

 At maturity, plants were hand-harvested by cutting them at the soil level. Data on plant 

height, number of tillers plant-1, spike number per plant, spike length were recorded at the day of 

harvesting on five plants per genotype from all the temperature and salinity levels. Plant height 

was determined as the distance between base of the plant and the spike. For vegetative dry weight 

measurements, plant parts - leaves, stems, and spikes (main spike and other spikes separately) were 

collected and dried at 40 °C for 10 d. Vegetative dry weight was determined as the weight of 

leaves, stems, and spikes per plant. After drying for 5 d, spikelet number was counted for main 

spike, then main spikes were hand threshed to separate grains, and grain number per spike was 

counted manually. Grain yield for main spike and per plant were calculated and individual grain 
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weight was calculated by dividing grain yield per spike by grains number per spike. Harvest index 

was calculated as the ratio of grain yield to the total vegetative dry weight for each plant. 

 

 Experiment Design and Data Analysis 

The experimental design was a randomized complete block with a split split-plot treatment 

structure in five replications. Temperature was the main plot factor, salinity was assigned to sub-

plots and genotypes to sub-sub-plots. For the treatments, temperature had two levels (optimum and 

high temperature), salinity had three levels (0, 60, 120 mM NaCl), and genotype had twelve levels 

(GAGE, MTS0531, TASCOSA, GUYMON, AVALANCHE, OK05108, TX86A5606, ONAGA, 

CO04W320, 2174-05, CARSON AND TX04M410211). Data were analyzed using MIXED 

procedure in statistical software SAS 9.4 for mean and standard error estimation. Separation of 

means was carried out using the LSD test (P < 0.05). The PROC MIXED procedures were used 

with block, temperature, salinity, and genotypes as class variables. 

 

 Result 

The P-values for physiological, biochemical, growth and yield traits obtained with SAS PROC 

MIXED are presented in Tables 4.1, 4.2 and 4.3. The independent effects of temperature, was 

significant (P < 0.0001) for maximum quantum yield of PS II, thylakoid membrane damage, leaf 

photosynthetic rate, soluble sugars, reducing and non-reducing sugars, starch, proline, soluble 

proteins contents, MDA content, spike length, spikelet number, dry weight, grain number, grain 

yield, individual grain weight, and harvest index. The independent effect of salinity stress was 

significant (P < 0.0001) for maximum quantum yield of PS II, thylakoid membrane damage, leaf 

photosynthesis, stomatal conductance, soluble sugars, reducing sugars, starch, proline, soluble 
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proteins contents, MDA content, plant height, spikelet number, dry weight, grain number, grain 

yield, and harvest index.  The independent effect of genotype was significant (P < 0.0001) for 

maximum quantum yield of PS II, thylakoid membrane damage, leaf photosynthetic rate, 

chlorophyll content, reducing sugars, starch, soluble proteins, MDA contents, plant height, spike 

length, spikelet number, grain number, grain yield, and harvest index. Interaction effects of 

temperature x salinity were significant (P < 0.05) maximum quantum yield of PS II, thylakoid 

membrane damage, leaf photosynthetic rate, stomatal conductance, soluble sugars, reducing and 

non-reducing sugars, starch, proline, soluble proteins, MDA content, plant height, tiller number, 

spikelet number, dry weight, grain number, grain yield, and harvest index. Interaction effect of 

temperature x genotypes were significant (P < 0.05) for thylakoid membrane damage, leaf 

photosynthetic rate, chlorophyll content, soluble sugars, reducing and non-reducing sugars, starch, 

proline, soluble proteins, MDA content, spikelet number, grain number, grain yield and harvest 

index. Interaction effects of salinity x genotype were significant (P < 0.05) for leaf photosynthetic 

rate, chlorophyll content, soluble sugars, reducing and non-reducing sugars, starch, proline 

content, spikelet number, dry weight, and grain number. The temperature x salinity x genotypes 

interactions, was significant (P < 0.05) on soluble sugars, reducing and non-reducing sugars, 

starch, proline content, spikelet number, grain yield, and harvest index. 

 

 Physiological Traits 

Results of the main effect of high temperature, salinity and combined stresses on leaf level 

photosynthesis was presented in table 4.1. The mean value of photosynthesis was 19 µmol m-2 s-1. 

Values of photosynthesis were significantly decreased by high temperature 27 %, salinity 16 % 

and combined high temperature and salinity stress 39 % (Figures 4.1a, 4.2a, 4.4a), which indicates 
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decreased leaf level photosynthesis due to high temperatures, salinity and their interaction. Also 

genotypes showed different response to these stresses, the value of photosynthesis ranged between 

18 and 20 µmol m-2 s-1. Figure 4.3a show that genotypes GUYMON, CARSON, TX04M410211 

and TASCOSA had the highest level of leaf photosynthesis. Temperature and genotype interaction 

also significantly affected leaf photosynthesis (P < 0.001). Fig. 4.5a shows a percent reduction 

over the control in all genotypes due to high temperature the result showed that genotypes 

GUYMON, CARSON, TX04M410211 and TASCOSA had the lowest reduction of leaf 

photosynthesis which was about 24 %, whereas other genotypes had reduction of 29 %. Salinity 

and genotype interaction also reduced leaf photosynthesis by 17 %. The interactions of high 

temperature, salinity and genotype had no effect of leaf level photosynthesis. 

 Stomatal conductance was significantly (P < 0.001) affected by high temperature, salinity 

and combined stresses (Table 4.1). Results of the effect of high temperature, salinity and combined 

stresses on stomatal conductance were presented in table 1 and Figures 4.1b, 4.2b, and 4.4b. The 

mean value of stomatal conductance was 0.86 mmol m-2 s-1. The values of stomatal conductance 

were significantly decreased by high temperature 67 %, high salinity level 31 % and combined 

stresses 78 % (Figures 4.1b, 4.2b, 4.4b), which indicates decreased stomatal conductance due to 

high temperatures, salinity and their interaction. Besides, genotypes were significantly different 

for stomatal conductance.  The values of stomatal conductance ranged between 0.82 and 0.90 

mmol m-2 s-1. The result showed that genotypes GUYMON, TX04M410211 and TASCOSA had 

the lowest reduction for stomatal conductance (Fig. 4.3b). High temperature x genotype 

interaction; salinity x genotype interaction; as well as high temperature x salinity x genotypes 

interaction had no significant effect on stomata conductance.  
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 Maximum quantum yield of PS II (Fv/Fm ratio; unitless) were significantly (P < 0.0001) 

affected by high temperature, salinity and genotype (Table 4.1). Values of Fv/Fm ratio were 

significantly decreased by high temperature 10 %, salinity 7 % and combined stresses 18 % 

(Figures 4.1c, 4.2c and 4.4c), which indicates decreased photochemical efficiency of PS II due to 

high temperatures, salinity and their interaction. The values of Fv/Fm ranged between 0.74 and 

0.76 so genotypes showed different response to the stresses in term of maximum quantum yield of 

PS II. The result showed that genotypes CARSON, TX04M410211 and TASCOSA had the lowest 

reduction (Fig. 4.3c). Temperature x genotype interaction; salinity x genotype interaction; as well 

as high temperature x salinity x genotype interactions had no significant effect on maximum 

quantum yield of PS II. 

 Thylakoid membrane damage (Fo/Fm ratio; unitless) were significantly (P < 0.0001) 

affected by high temperature, salinity, genotype and combined stresses (Table 4.1). The mean 

value of Fo/Fm ratio was 0.199. Values of Fo/Fm ratio were significantly increased by high 

temperature 24 %, salinity 6 % and combined stresses 29 % (Figures 4.1d, 4.2d, 4.4d.), which 

indicates increased thylakoid membrane damage due to high temperatures, salinity and their 

interaction. Genotypes responded differently to the stresses in term of Fo/Fm ratio. Figure 4.4c 

showed that genotypes CARSON, TX04M410211 and TASCOSA had the lowest value of 

thylakoid membrane damage, whereas genotype Ok05108 had the highest membrane damage.  In 

addition, thylakoid membrane damage was significantly (P < 0.0001) affected by temperature x 

genotype interaction (Fig. 4.5b). The result indicated that genotypes had diverse response to high 

temperature. The per cent increase in membrane damage was 17 % in genotype TASCOSA and 

by 27 % in genotype Ok05108. Salinity x genotype interaction as well as high temperature x 
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salinity x genotype interactions had no significant effect on thylakoid membrane damage (Fo/Fm 

ratio; unitless). 

 Chlorophyll concentration was significantly (P < 0.001) affected by high temperature and 

salinity stress (Table 4.1). The mean value of SPAD was 50 SPAD units, the values of SPAD were 

significantly decreased by high temperature by 10 %, salinity 7 % which indicates decreased 

chlorophyll concentration due to high temperatures and salinity respectively. Also, the result 

indicated that genotypes had diverse response to high temperature. The per cent decrease in 

chlorophyll concentration were by 7 % in genotypes TX04M410211 and TASCOSA and by 12 % 

in genotype GAGE (Fig 4.5c). High temperature x salinity interaction; salinity x genotype 

interaction; and high temperature x salinity x genotype interaction had no significant effect on 

chlorophyll concentration. 

 

 Biochemical Traits 

Analysis of variance for biochemical traits obtained with SAS PROC MIXED are presented in 

table 4. 2. The independent effects of temperature, salinity, and genotypes; and interaction effects 

of temperature x genotypes, salinity x genotype, temperature x salinity, and temperature, x salinity 

x genotypes were significant (P < 0.001) for total soluble sugar, reducing sugar, non-reducing 

sugar, starch, proline, soluble protein, and MDA contents unless indicated otherwise (Table 4. 2). 

However, there were no significant effect of salinity on non-reducing sugar. Also no significant 

effects were found as a result of the interaction of salinity x genotype; and high temperature x 

salinity x genotype interaction on total soluble protein and MDA content.  
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 Total soluble sugars, reducing sugars, non-reducing sugar, and starch contents 

The mean value of starch, soluble sugars, reducing sugars, nonreducing sugars were, 70, 63, 21, 

and 81 g/kg, respectively. The main effect of temperature reduced starch content by 18 % and 

increased soluble sugar, reducing sugar, and non-reducing sugar, by 27, 49 and 10 %, respectively 

(Fig 4.6). Whereas, main effect of salinity stress reduced starch content by 11 % and increased 

soluble sugar and reducing sugar by 16, and 23 %, respectively (Fig. 4.8a-c). The combination of 

salinity stress and high temperature also resulted in a significant decrease in starch content with 

about 28 % reduction over control and increase in soluble sugar and reducing sugar which were 

about 50, and 86 % respectively (Fig. 4.12a-c). The value of total soluble sugar accumulation 

ranged between 67 and 72 g/ kg in genotypes CARSON, TX04M410211 and TASCOSA (Fig 

4.10a). High temperature x genotype interaction had significant (P < 0.001) effect on soluble sugar 

accumulation. Figure 4.14a shows the percent increase in soluble sugars accumulation in each 

genotypes due to high temperature effect.  The result showed that genotypes 2174-05 had the 

highest quantity of soluble sugar with percent increase of 38 %. Whereas, genotype GAGE had 

the least increase in soluble sugar accumulation of about 20 %.  Salinity x genotype interaction 

also significantly (P < 0.0001) affected soluble sugar accumulation. The interaction effect 

increased soluble sugars by 8-30 % in all genotypes, with genotype GUYMON accumulated the 

highest amount of soluble sugars and genotypes MTS0531 accumulated the lowest amount (Fig 

4.16a). In addition, high temperature x salinity x genotypes interactions significantly (P < 0.0001) 

affected soluble sugar accumulation in all genotypes tested (Fig. 4.17a). In respect to reducing 

sugars, the values of reducing sugars ranged between 46 and 50 g/kg and the result showed that 

genotypes CARSON, TX04M410211 and TASCOSA had the highest value in reducing sugar 

accumulations (Fig. 4.10b). High temperature x genotype interaction had significant (P < 0.001) 
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effect on reducing sugar accumulation. Figure 4.14b showed the increase in reducing sugars 

accumulation in each genotypes due to high temperature effect.  The result showed that in genotype 

TASCOSA the reducing sugars increased by 60 %, whereas it increased by 42 % in GAGE 

genotype (Fig 4. 14b). Reducing sugar accumulation also increased significantly (P < 0.01) due to 

salinity x genotype interaction. The interaction effect increased reducing sugar by 16-36 %, with 

genotype GUYMON accumulated the highest quantity of reducing sugars and genotypes 

AVALANCHE accumulated the lowest quantity (Fig. 4.16b). Reducing sugars significantly (P < 

0.001) affected by temperature x salinity x genotypes interaction (Fig. 3.17b). The genotype 

TASCOSA showed the best performance under combined stresses condition. Non- reducing sugars 

significantly (P < 0.0001) affected by high temperature and salinity x temperature interaction. High 

temperature x genotype interaction had significant (P < 0.0001) effect on non-reducing sugar 

accumulation. The result showed the increase in reducing sugars accumulation in each genotypes 

due to high temperature effect and that in genotype TASCOSA the non-reducing sugars increased 

by 34 and only by 2 % in ONAGA and OK05108 genotypes (data not shown). Salinity x genotype 

interaction; and high temperature x salinity x genotypes interactions had significant (P < 0.0001) 

effect on non-educing sugars accumulation (data not shown). The amount of starch in wheat leave 

were significantly (P < 0.0001) decreased by high temperature salinity and combined high 

temperature and salinity stress. Genotypes responded differentially to the stresses. The value of 

starch accumulated ranged between 80 and 84 g/kg. Figure 4. 10c, showed the starch content in all 

genotypes and that genotypes include TX04M410211, CARSON and TASCOSA had the highest 

amount of starch as compared to other genotypes. Interaction effect of high temperature x 

genotypes was significant (P < 0.0001) and in some genotypes such as genotype CO04W320 the 

starch contend decreased by 23 % and in genotypes TX04M410211 and TASCOSA the starch 
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content was reduced by 15 % (Fig 4.14c). In addition, salinity x genotype interaction and high 

temperature x salinity x genotype interactions significantly (P < 0.0001) decreased starch content 

in all wheat genotypes (data not shown). 

 

 Proline, Soluble protein, and MDA contents 

The mean value of proline, soluble protein and MDA were, 3 µmoles/ g, 13 g/ kg and 2.4 (µmol/g), 

respectively. The main effect of high temperature resulted in a significant (P < 0.0001) increase 

proline content in all genotypes tested. High temperature increased proline by 239 % (Fig. 4.7a). 

While, salinity stress (P < 0.0001) increased proline content by 66 % (Fig. 4.9a). The combination 

of salinity and high temperature stress also resulted in a significant (P < 0.0001) increase in proline, 

which was 567 % increase of proline content (Fig. 4.13a) and genotypes responded differently to 

the stress where the value of proline accumulation ranged between 3.2 and 3.7 µmoles/g some 

genotype include CARSON, TX04M410211 and TASCOSA accumulated maximum values for 

proline content as compared to the other genotypes (Fig. 4.11a). Temperature x genotypes 

interaction had significant (P < 0.0001) effect on proline accumulation. Figure 4. 15a showed that 

accumulation of proline increased in all genotypes with percent increase between 159 -213 % in 

genotype CARSON and TX04M410211, respectively.  Salinity x genotype interaction had 

significant (P < 0.05) effect on accumulation of proline. A per cent increase between 76 and 113 

% were reported in CARSON and GUYMON genotypes respectively (Fig. 4.16c). In addition, an 

increase of proline accumulation was significant (P < 0.05) due to temperature x salinity x 

genotype interactions (Fig 4.17c).  

 The main effect of high temperature, salinity and genotypes resulted in a significant (P < 

0.0001) increase soluble protein content. High temperature increased soluble protein by 56 % (Fig. 
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4. 7b). While, salinity stress increased soluble protein 14 % (Fig. 4.9b). The combination of salinity 

stress and high temperature also resulted in a significant (P < 0.001) increase in soluble protein 

with percent increase of 80 % (Fig. 4.13b). Genotypes act differently in response to the stress, 

where genotypes TX04M410211 and MTS0531 had the highest accumulation of soluble proteins 

and genotype GUYMON had the least protein accumulation (Fig. 4.11b). High temperature x 

genotype interaction effect was significant (P < 0.01), all genotypes showed increase in soluble 

protein accumulation due to high temperature as compared to optimum temperature. Genotype 

CARSON showed percent increase of about 64 %, and genotype ONAGA showed 47 % per cent 

increase in protein accumulation. (Fig. 4.15b). Salinity x genotype interaction and temperature x 

salinity x genotype interactions had no significant effect on soluble protein accumulation. 

 The main effect of high temperature, salinity and genotypes resulted in a significant (P < 

0.0001) increase in MDA content. High temperature increased MDA by 190 % (Fig. 4.7c). While, 

salinity stress increased MDA content by 68 % (Fig. 4.9c). The combination of salinity stress and 

high temperature also resulted in a significant (P < 0.001) increase in MDA content with percent 

increase of 427 % over the control (Fig. 4.13c) and genotype acted differently as the value of MDA 

ranged between 2.1 and 2.9 µmol/g. Figure 4.11c showed that genotypes CARSON and 

TX04M410211 accumulated less MDA and genotype CO04W320 accumulated high amount of 

MDA.  High temperature x genotype interaction significantly (P < 0.0001) increased MDA content 

in wheat leaves. A per cent increase of 217 % in MDA content was seen in genotype ONAGA due 

to high temperature, whereas genotypes CARSON accumulated less MDA (157 %) under the same 

condition (Fig. 4.15c). Salinity x genotype interaction as well as high temperature x salinity x 

genotypes interactions had no significant effect on MDA. 
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 Growth and Yield Traits  

 Plant Height, Tiller Numbers, Spike Numbers, Spike Length and Vegetative Dry Biomass 

The main effect of high temperature was significant (P < 0.001) on plant height, spike length, and 

biomass dry weight (Tables 4.3, 4.4, and 4.5), but there was no effect of high temperature on tiller 

number and spike number per plant. The main effect of salinity was significant (P < 0.0001) on 

plant height and biomass dry weight, but not significant on tiller number, spike number per plant 

and spike length (Tables 4.3, 4. 4, and 4.5). Also genotype effect was significant (P < 0.0001) on 

plant height and spike length, but not significant on tiller number, spike number per plant, and 

biomass dry weight. Combined stresses of high temperature and salinity was significant (P < 0.05) 

on plant height, tiller number, and dry weight but not significant on spike number per plant and 

spike length. However, high temperature x genotype interaction, salinity x genotype interaction 

and high temperature x salinity x genotype interactions had no significant effect on all parameters 

mentioned above. 

 

 Spikelet Numbers, Grain Numbers, Grain Yield, Individual Grain Weight, and Harvest 

Index 

The main effect of high temperature stresses was significant (P < 0.0001) on spikelet number; 

grain number, grain yield, individual grain weight and harvest index. The results showed that high 

temperature significantly decreased spikelet number by 19 %; grain number by 53 %; grain yield 

by 59 % and harvest index by 58 % (Figures 4. 18). The main effect of salinity stress (120 mM) 

was significant (P < 0.0001) on spikelet number, grain number, grain yield; and harvest index. The 

results reported that salinity significantly decreased spikelet number by 14 %; grain number by 34 

%; grain yield by 37 % and harvest index by 35 % (Figures 4. 19). The interaction effect of high 
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temperature x salinity was significant (P < 0.0001) on spikelet number, grain number, grain yield, 

and harvest index. The results showed significant decrease in spikelet number by 31 %; grain 

number by 72 %; grain yield by 77 % and harvest index by 75 % (Figures 4.21a-d). Genotype 

responded differently to the stresses in term of spikelet number, grain number, grain yield, 

individual grain weight, and harvest index. Figure 4.20 a-d showed that genotypes such as 

GUYMON, TX04M410211 and TASCOSA had the highest value in term of spikelet number per 

spike and genotypes TX04M410211, CARSON and TASCOSA had the highest value in term of 

grain number per plant, grain yield per plant and harvest index (Fig. 4.20a-c). High temperature x 

genotype interaction had significant (P < 0.05) effect on spikelet number, grain number, grain 

yield, individual grain weight and harvest index (Table 4. 3). Figure. 4.22aand b showed the per 

cent reduction, for all genotypes tested. The reduction in grain yield was between 48 % in 

genotypes CARSON and TX04M410211 and 64 % in genotypes GUYMON, OK05108 and 2174-

05 (Fig. 4.22a). Also Fig 4.22b shows the per cent decrease in harvest index. It showed that 

genotype TX04M410211 had per cent reduction of 47 % and genotypes GUYMON had per cent 

reduction of 64 %. In addition, salinity x genotype interaction had significant (P < 0.05) effect on 

some yield traits include spikelet number and grain number, but it had no significant effect of grain 

yield and harvest index. The reduction of spikelet number ranged between 9 and 18 % (Fig. 4. 

23a); ad the reduction of grain number ranged between 27 and 41 % (Fig. 4.23b). High temperature 

x salinity x genotypes also significantly (P < 0.05) affected most of yield traits. Figure 4.24a and 

b shows the reduction on grain yield and harvest index due to salinity x high temperature x 

genotype and their interactions genotypes include CARSON, TX04M410211 and TASCOSA 

showed good performance under combined stresses. 
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 Discussion 

High temperature and salinity stresses affect plant growth and development at all growth stages. 

However, wheat plants are more sensitive to high temperature stress during reproductive stages 

than at vegetative stages. Plants growing under high temperature and saline condition are subjected 

to suffer from drought stress, ion toxicity, and nutrient imbalance which may lead to reduced 

growth and productivity. Exposure to high temperatures and salinity stress may vary with the stage 

of plant development, but all vegetative and reproductive stages are affected by high temperature 

stress (Wahid et al., 2007; Farooq et al., 2011; Sultan et al., 2012) and salinity stress (Munns and 

Termaat, 1986; Maas and Grattan, 1999). Flowering stage in wheat is the transition between two 

growth stages, which are the vegetative stages and the grain filling stages. During vegetative the 

reproductive initiation, and reproductive development occur and determine the final yield potential 

and provide the photosynthetic factory essential for maximum yield. At the flowering stages, 

fertilization has been shown to be highly sensitive to high temperatures in various plants. Therefore 

stress in this stage mostly result in yield decline. Though, there are limited studies on the combined 

and independent effects of high temperature and salinity during this stage on winter wheat. Under 

high temperature and salinity stress plants are encounter to water stress, which results in reduced 

leaf photosynthesis, stomata conductance, caused thylakoid membrane damage, reduced seed set, 

spikelet number per spike, grain number per plant, harvest index and ultimate yield per plant. In 

such situations many plants accumulate some osmo-protective compounds such as proline, 

glycine-betaine, and carbohydrates (Poustin et al., 2007; Sultan et al., 2012; Ghafiyehsanj et al., 

2013; Sabbagh et al., 2014; Yu et al., 2015; Tavakoli1 et al., 2016). 

 This study has been done to evaluate the response of different winter wheat genotypes to 

an individual and combination of salinity and high temperature stress. This study reported that 
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high temperature and salinity stresses had significant effect on physiological, biochemical, and 

yield traits of winter wheat genotypes. The study also reported that, while the negative impact of 

high temperature stress was higher than the impact of salinity stress, the combined stresses of high 

temperature and salinity was much greater than each individual stress. 

 The study found that high temperature and salinity stresses directly influences 

photosynthetic process and influences gas exchange and causes thylakoid membrane damage. Also 

stomatal conductance become more negative under high temperature and salinity stress, which led 

to stomata closing and reduce CO2 concentration in leave. These results are in agreement with 

other studies that have been done on the effect of high temperature on wheat (Wahid et al., 2007; 

Djanaguiraman et al., 2010; Farooq et al., 2011; Sabbagh et al., 2014), and on the effect of salinity 

on photosynthesis and gas exchange in wheat (Kingsbury et al., 1984; Sharma et al., 2005; 

Dadkhah and Rassam, 2016). This study also in agreement with a study on the effect of combined 

stresses on gas exchange and photosynthesis process under combined stresses than individual 

stress (Anjum et al., 2008; Dadkhah and Rassam, 2016). These results suggest that salt-stressed 

plants led to enhanced sensitivity of plants to high temperature. These results indicated that the 

combination of salinity stress and high temperature led to closing of stomata, which may cause 

reduction in CO2 uptake by wheat leaves. In this study, salinity, high temperature and the 

combination of salinity and high temperature decreased leaf chlorophyll content. In addition, high 

temperature induces lipid peroxidation of chloroplast membranes that decreases leaf chlorophyll, 

which is in agreement with previous research in sorghum and wheat (Esfandiari et al., 2007; 

Djanaguiraman et al., 2010; Narayanan et al., 2015). This study also found that under combined 

stresses environments, damage of photosystem II was greater than the damage caused by high 

temperature or salinity alone. The study herein reported that the interaction effect was additive or 
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synergistic (positive interaction) the combined effect (high temperature and salinity) was higher 

than the sum of the individual effect (high temperature or salinity) on leaf photosynthesis and 

thylakoid membrane damage (Fig. 4.4a and d). On the other hand the interaction effect was hypo-

additive (negative interaction) on stomata conductance and maximum quantum yield of PS II (Fig. 

4.4b and c. Moreover, the present study found that genotypes responded differently to the 

individual and combine stress and that some genotypes such as CARSON, TX04M410211 and 

TASCOSA had performed well under individual and combined stresses as compared to other 

genotypes (Fig. 4.3-c). The tolerance of photosynthetic system to salinity stress may be related to 

the capacity of some plant species to successfully compartmentalize the salts in the vacuole 

(Sabbagh et al., 2014). Also the tolerance of photosynthetic system to high temperature and salinity 

could be due to the production of some antioxidant enzymes which may cause ROS detoxification 

(Esfandiari et al., 2007; Khan et al., 2015; Narayanan et al., 2015). 

 Under stress condition many plants accumulate some osmoprotective compounds such as 

proline, glycine-betaine, and carbohydrates (Hamada and Khulaef. 1995; Poustin et al., 2007; 

Sultan et al., 2012; Ghafiyehsanj et al., 2013; Sabbagh et al., 2014; Yu et al., 2015; Tavakoli1 et 

al., 2016). Soluble sugars, reducing sugars and non-reducing sugars have significant role in plant 

metabolism such as products of hydrolytic processes, substrates in biosynthetic processes, and 

energy production. The present study indicates that salinity and high temperature stress 

individually and in combination increased sugar compounds. The increase of these substances may 

play an important role in osmotic regulation. Some plants are able to stand salinity by reducing the 

cellular osmotic potential as a result of a net increase in inorganic and solute accumulation (Yang 

et al., 2009; Sabbagh et al., 2014). Numerous studies have tried to linke the increase of soluble 

carbohydrate to temperature stress tolerance (Radi et al., 2013) and salinity stress tolerance (Ashraf 
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and Tufail, 1995). The present result is in agreement with other result which reported that high 

temperature and salinity stress resulted in a significant increase, in the total of soluble sugar, 

reducing sugar and non-reducing sugar in some wheat genotypes (Hamada and Khulaef, 1995). 

This study indicated that high temperature and salinity treatments resulted in a significant increase, 

in the total of soluble sugar, reducing and non-reducing sugar in all genotypes, however there was 

a trend that some genotypes accumulated high amount of these carbohydrates. The genotype 

CARSON, TX04M410211 and TASCOSA showed to be more tolerant to stress as compared to 

other genotypes (Fig. 4.10a-c). In addition the result of this study found decrease in starch content 

in all wheat genotypes tested, which agree with previous study on the effect of water stress on 

wheat plant (Saeedipour and Morad, 2011). This reduction in starch content is due to decreased 

photosynthetic rate, the main source of starch, under stress condition. 

 Proline accumulation has been demonstrated to be correlated with stress tolerance in plants 

(Hare and Cress, 1997; Ashraf and Foolad, 2007; Tatar and Gevrek 2008). The proline 

accumulation observed in this study provides other evidence that increased proline levels create 

an adaptive response for plants during water stress. This result is in agreement with previous 

studies about high temperature stress on wheat (Sultan et al., 2012) and salinity stress on wheat 

(Ashraf and Foolad 2007; Poustin et al., 2007; Ghafiyehsanj et al., 2013; Yu et al., 2015; Tavakoli1 

et al., 2016). In the present study, high temperature and salinity stress at flowering stages, increased 

significantly the proline accumulation in all the wheat genotypes tested. And the increase was 

greater in CARSON and TASCOSA and lowest in GUYMON and MTS0531 (Fig. 4.11a).  

 One of the most common responses of many plant species exposed to abiotic stresses is the 

accumulation stress related proteins (Farooq et al., 2011; Kosová et al., 2013; Kumar et al., 2013; 

Radi et al., 2013). In the present study, increase in total leaf soluble protein under high temperature 
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and salinity stress was perceived at flowering stages. This increase in total soluble proteins under 

stress condition is due to the production of stress proteins such as heat chock proteins and other 

related stress proteins. These proteins are shown to be one adaptive strategy for many plants. 

Variability was also found among different wheat genotypes for soluble proteins accumulation 

under salt and high temperature stress where the accumulation of soluble proteins was grater in 

TX04M410211 and lower in GUYMONR (Fig. 4.11b). 

 MDA has been considered an indicator of stress induced oxidation in cell membranes and 

a tool for determining stress tolerance in plants (Dhyani et al., 2013; Ghafiyehsanj et al., 2013; 

Radi et al., 2013). In this study, MDA content was significantly increased due to high temperature, 

salinity and combined stresses. However, the accumulation of MDA content was higher in some 

genotypes than in other genotypes, this suggest that within the genotypes tested there were some 

susceptible genotypes that accumulated more MDA such as CO04W320; and some were tolerant 

genotypes include CARSON and TX04M410211 (Fig 4.11c). Many studies agree that increasing 

in MDA content is linked with increasing of the degree of stress in wheat plants (Tatar and Gevrek, 

2008; Dhyani et al., 2013; Mansoor and Naqvi, 2013) and that plant that accumulate less MDA 

are more tolerant. 

 Improvement of grain yield in wheat is an important objective in breeding program. 

Therefore, the assessment of final grain yield and other yield related parameters determining grain 

yield is an important feature of breeding programs. This study showed that high temperature and 

salinity at the flowering period decreased almost all yield traits of winter wheat. This research 

reported that decrease in yield was due to a decrease in spikelet number per spike and grain number 

per spike (Fig. 4.21a and b), which agree with (El-Hendawy et al., 2005). In the present study, at 

flowering stages high temperature, salinity and combined stresses significantly decreased grain set 
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per plant in all the tested wheat genotypes. This is in agreement with previous studies on high 

temperature (Owen, 1971; Saini and Aspinall, 1983; Prasad et al., 2008; Pradhan et al., 2012; 

Reynolds et al., 2012; Prasad et al., 2014; Narayanan et al., 2015), where they conclude that high 

temperature stress during reproductive stages of crop development resulted in a significant yield 

losses in wheat. That’s because the stress led to morphological abnormalities in pollen, stigma and 

style and caused florets sterility which lead to decreased grain numbers and high temperature stress 

during meiosis in wheat can reduce yield by causing abnormal ovary development, which results 

in reduced pollen tube growth and seed set (Saini and Aspinall, 1983). Also a study on salinity 

agreed that salinity stress result in reduced gain number (Maas and Grieve, 1990; Sairam et al., 

2002; El-Hendawy et al., 2005). This can be due to the fact that spikelet number and grain number 

are determined during the period of spike emergence to flowering, which in this experiment was 

the stress period. This study reported that the interaction effect was hypo-additive (negative 

interaction) the combined effect (high temperature and salinity) was less than the sum of the 

individual effect (high temperature or salinity) on grain yield and harvest index (Fig. 4.21c and d). 

In addition, the result herein reported that the highest number grains per plant counted were in 

CARSON, TX04M410211 and TASCOSA, and the lowest were in 2174-05, OK05108, and 

AVALANCHE (Fig 4.20b), which indicate that CARSON, TX04M410211 and TASCOSA are 

tolerance to stress. Combined stresses also caused great reduction on grain number, however, to 

my knowledge, no previous studies was done to evaluate the impact of combined stresses of high 

temperature and salinity on wheat at flowering stage. Therefore this observation needs to be 

confirmed with further studies. There was no effect of combined stresses on individual grain 

weight, this may be due to fact that grain weight depends on the environmental condition post 

flowering and at gain filling period, which in our study for these stages the condition was set back 



187 

to optimum condition. Therefore the study reported that at flowering stage of the wheat growth, 

grain number was the main determinant of grain yield under high temperature and salinity stress. 

In this study and based on grain yield reduction genotype TX04M410211 was the most tolerant to 

high temperature stress (48 % decline) and to salinity stress (24 % decline ) at flowering stage. 

This genotype is from Texas and is expected to be well adapted to high temperature environment. 

This genotype was also tolerant to salinity which mean that selection in hot environments may 

allow for selection of better tolerance to salinity stress. However, genotype OK05108 was highly 

susceptible to high temperature stress (65 % decline) and genotype MTS0531 was highly 

susceptible to salinity stress (41 % decline) at flowering stage. 

 

 Conclusions 

In wheat, flowering stage is the most sensitive stage to abiotic stresses such as high 

temperature and salinity. High temperature 35 °C and salinity 120 mM NaCl and their combined 

effects at flowering stage were negatively affects wheat growth and yield. The stress decreased 

physiological function and resulted in yield reduction. This study conclude that combined stresses 

was more damaging to wheat development than the individual effect of each stress, which 

indicated that the interaction effect was additive. High temperatures, salinity and their interaction 

at flowering stages had undesirable effects on wheat physiology, biochemical, yield and yield 

component as indicated by the reduced leaf level photosynthesis, reduced chlorophyll content, 

starch content, increased MDA level, and reduced grain yield and harvest index. Also the study 

concludes that winter wheat genotypes varied in their response to individual and combination 

stress of high temperature and salinity stress. Genotype TX04M410211 was the most tolerant ones. 

This study conclude that there are some traits that can be selected for breeding programs such as 
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photosynthesis rate, leaf chlorophyll content, grain number and grain yield. However, the 

screening for wheat genotypes can be based on characteristics related to high yields under stress 

condition. These criteria better be stable and easy to evaluate specially with high number of 

genotypes screening. Still, further research is needed to endorse these interaction effects with other 

wheat genotypes and under field condition. 
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Figure 4-1 The main effect of high temperature on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) 

stomata conductance (mmol m-2 s-1), (C) maximum quantum yield of PS II (Fv/Fm ratio; unitless), 

and (D) thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, three replications of each genotype 

and three measurements taken on each plant on d 2, 5 and 10 during the stress period. Each datum 

indicates mean value and vertical lines on top of bars indicate standard error of means. Means and 

standard errors were estimated using the MIXED procedure in SAS. Percent increase or decrease 

in each trait due to high temperature as compared to optimum temperature is indicated.  
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Figure 4-2  The main effect of salinity on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) stomata 

conductance (mmol m-2 s-1), (C) maximum quantum yield of PS II (Fv/Fm ratio; unitless), and (D) 

thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, three replications of each genotype and three 

measurements taken on each plant on d 2, 5 and 10 during the stress period. Each datum indicates 

mean value and vertical lines on top of bars indicate standard error of means. Means and standard 

errors were estimated using the MIXED procedure in SAS. Percent increase or decrease in each 

trait due to salinity as compared to the control is indicated. 
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Figure 4-3 The main effect of genotype on (A) leaf photosynthetic rate (µmol m-2 s-1), (B) stomata 

conductance (mmol m-2 s-1), (C) maximum quantum yield of PS II (Fv/Fm ratio; unitless), and (D) 

thylakoid membrane damage (Fo/Fm ratio; unitless) of twelve winter wheat genotypes.  Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means.. 

Separation of means was carried out using the LSD test (P < 0.05). Means with different letters 

are significantly different according to the LSD test at P < 0.05. 
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Figure 4-4 The effect of combined stresses of high temperature and salinity on (A) leaf 

photosynthetic rate (µmol m-2 s-1), (B) stomata conductance (mmol m-2 s-1), (C) maximum 

quantum yield of PS II (Fv/Fm ratio; unitless), and (D) thylakoid membrane damage (Fo/Fm ratio; 

unitless) of twelve winter wheat genotypes. Data are averaged across two experiments, twelve 

genotypes, three replications of each genotype and three measurements taken on each plant on d 

2, 5 and 10 during the stress period. Each datum indicates mean value and vertical lines on top of 

bars indicate standard error of means. Means and standard errors were estimated using the MIXED 

procedure in SAS. Percent increase or decrease in each treatment as compared to control is 

indicated.  
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Figure 4-5 The effect of high temperature and genotype interactions on (A) leaf photosynthetic 

rate (µmol m-2 s-1), (B) thylakoid membrane damage (Fo/Fm ratio; unitless) and (C) chlorophyll 

index (SPAD unit) of twelve winter wheat genotypes. Data are averaged across two experiments, 

twelve genotypes, three replications of each genotype and three measurements taken on each plant 

on d 2, 5 and 10 during the stress period. Each datum indicates mean value and vertical lines on 

top of bars indicate standard error of means. Means and standard errors were estimated using the 

MIXED procedure in SAS. Percent increase or decrease due to high temperature as compared to 

optimum temperature is indicated.  
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Figure 4-6 The main effect of high temperature on (A) total soluble sugar g/kg, (B) reducing sugar 

g/kg, (C) non-reducing sugar g/kg, and (D) starch content g/kg of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, and five replications of each 

genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard error 

of means. Means and standard errors were estimated using the MIXED procedure in SAS. Percent 

increase or decrease in each trait due to high temperature as compared to optimum temperature is 

indicated.  
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Figure 4-7 The main effect of high temperature on (A) proline content (µmol/g), (B) soluble 

protein content (g/kg), and (C) MDA content (µmol/g) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent increase 

in each trait due to high temperature as compared to optimum temperature is indicated.  
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Figure 4-8 The main effect of salinity on (A) total soluble sugar (g/kg), (B) reducing sugar (g/kg), 

and (C) starch content (g/kg), of twelve winter wheat genotypes. Data are averaged across two 

experiments, twelve genotypes, and five replications of each genotype. Each datum indicates mean 

value and vertical lines on top of bars indicate standard error of means. Means and standard errors 

were estimated using the MIXED procedure in SAS. Percent increase or decrease in each trait due 

to salinity as compared to the control is indicated. 
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Figure 4-9 The main effect of salinity on (A) proline content (µmol/g), (B) soluble protein content 

(g/kg), and (C) MDA content (µmol/g)  of twelve winter wheat genotypes Data are averaged across 

two experiments, twelve genotypes, and five replications of each genotype. Each datum indicates 

mean value and vertical lines on top of bars indicate standard error of means. Means and standard 

errors were estimated using the MIXED procedure in SAS. Percent increase in each trait due to 

salinity as compared to the control is indicated. 
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Figure 4-10 The main effect of genotype on (A) total soluble sugar (g/kg), (B) reducing sugar 

(g/kg) and (C) starch content (g/kg) of twelve winter wheat genotypes. Data are averaged across 

two experiments, twelve genotypes, and five replications of each genotype. Each datum indicates 

mean value and vertical lines on top of bars indicate standard error of means. Means and standard 

errors were estimated using the MIXED procedure in SAS. Separation of means was carried out 

using the LSD test (P < 0.05). Means with different letters are significantly different according to 

the LSD test at P < 0.05. 
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Figure 4-11 The main effect of genotype on (A) proline content (µmol/g), (B) soluble protein 

content (g/kg), and (C) MDA content (µmol/g) of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Separation of 

means was carried out using the LSD test (P < 0.05). Means with different letters are significantly 

different according to the LSD test at P < 0.05. 
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Figure 4-12 The effect of combined stresses of high temperature and salinity on (A) total soluble 

sugar (g/kg), (B) reducing sugar (g/kg) and (C) starch content (g/kg) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means. Means and standard errors were estimated using the MIXED procedure in SAS. 

Percent increase or decrease in each treatment as compared to control is indicated. 
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Figure 4-13 The effect of combined stresses of high temperature and salinity on (A) proline 

content (µmol/g), (B) soluble protein content (g/kg), and (C) MDA content (µmol/g) of twelve 

winter wheat genotypes. Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means. Means and standard errors were estimated using the MIXED 

procedure in SAS. Percent increase in each treatment as compared to control is indicated.  
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Figure 4-14 The effect of high temperature and genotype interactions on (A) total soluble sugar 

(g/kg), (B) reducing sugar (g/kg) and (C) starch content (g/kg) of twelve winter wheat genotypes. 

Data are averaged across two experiments, twelve genotypes, and five replications of each 

genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard error 

of means. Means and standard errors were estimated using the MIXED procedure in SAS. Percent 

increase or decrease in each trait due to high temperature as compared to optimum temperature is 

indicated on each genotype. 
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Figure 4-15 The effect of high temperature and genotype interactions on (A) proline content 

(µmol/g), (B) soluble protein content (g/kg), and (C) MDA content (µmol/g) of twelve winter 

wheat genotypes. Data are averaged across two experiments, twelve genotypes, and five 

replications of each genotype. Each datum indicates mean value and vertical lines on top of bars 

indicate standard error of means. Means and standard errors were estimated using the MIXED 

procedure in SAS. Percent increase in each trait due to high temperature as compared to optimum 

temperature is indicated on each genotype. 
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Figure 4-16 The effect of salinity and genotype interaction on (A) total soluble sugar (g/kg), (B) 

reducing sugar (g/kg) and (C) proline content of twelve winter wheat genotypes. Data are averaged 

across two experiments, twelve genotypes, and five replications of each genotype. Each datum 

indicates mean value and vertical lines on top of bars indicate standard error of means.  Means and 

standard errors were estimated using the MIXED procedure in SAS. Percent increase in each trait 

due to high salinity as compared to the control is indicated. 
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Figure 4-17 The effect of high temperature, salinity and genotype interaction on (A) total soluble 

sugar (g/kg), (B) reducing sugar(g/kg), and (C) proline content (µmol/g) of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means.  Means and standard errors were estimated using the MIXED procedure in SAS. 
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Figure 4-18 The main effect of high temperature on (A) spikelet number per spike, (B) grain 

number per plant, (C) grain yield per plant (g), and (D) harvest index of twelve winter wheat 

genotypes. Data are averaged across two experiments, twelve genotypes, and five replications of 

each genotype. Each datum indicates mean value and vertical lines on top of bars indicate standard 

error of means. Means and standard errors were estimated using the MIXED procedure in SAS. 

Percent decrease in each trait due to high temperature as compared to optimum temperature is 

indicated.  

 
 

  

-19%

0

5

10

15

20

S
p
ik

el
et

s 
(s

p
ik

e-1
) 

(A)

-53%

0

100

200

300

G
ra

in
 n

u
m

b
er

 (
p
la

n
t-1

)

(B)

-59%

0

5

10

15

25 35

G
ra

in
 y

ie
ld

 (
g
  
p
la

n
t-1

)

Temperature (°C)

(C)

-58%

0

0.2

0.4

0.6

25 35

H
ar

v
es

t 
in

d
ex

Temperature (°C)

(D)



218 

Figure 4-19 The main effect of salinity on (A) spikelet number per spike, (B) grain number per 

plant, (C) grain yield per plant (g), and (D) harvest index of twelve winter wheat genotypes. Data 

are averaged across two experiments, twelve genotypes, and five replications of each genotype. 

Each datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Percent decrease 

in each trait due to salinity as compared to the control is indicated.  
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Figure 4-20 The effect of genotype on (A) spikelet number per spike, (B) grain number per plant, 

(C) grain yield per plant (g), and (D) harvest index of twelve winter wheat genotypes. Data are 

averaged across two experiments, twelve genotypes, and five replications of each genotype. Each 

datum indicates mean value and vertical lines on top of bars indicate standard error of means. 

Means and standard errors were estimated using the MIXED procedure in SAS. Separation of 

means was carried out using the LSD test (P < 0.05). Means with different letters are significantly 

different according to the LSD test at P < 0.05. 
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Figure 4-21 The effect of combined stresses of high temperature and salinity on (A) spikelet 

number per spike, (B) grain number per plant, (C) grain yield per plant (g), and (D) harvest index 

of twelve winter wheat genotypes. Data are averaged across two experiments, twelve genotypes, 

and five replications of each genotype. Each datum indicates mean value and vertical lines on top 

of bars indicate standard error of means. Means and standard errors were estimated using the 

MIXED procedure in SAS. Percent decrease in each treatment as compared to control is indicated.  
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Figure 4-22 The effect of high temperature and genotype interactions on (A) grain yield per plant 

(g) and (B) harvest ibdex of twelve winter wheat genotypes. Data are averaged across two 

experiments, twelve genotypes, and five replications of each genotype. Each datum indicates mean 

value and vertical lines on top of bars indicate standard error of means. Means and standard errors 

were estimated using the MIXED procedure in SAS. Percent decrease in each trait due to high 

temperature as compared to optimum temperature is indicated on each genotype. 
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Figure 4-23 The effect of salinity and genotype interactions on (A) spikelet number per spike and 

(B) grain number per plant of twelve winter wheat genotypes. Data are averaged across two 

experiments, twelve genotypes, and five replications of each genotype. Each datum indicates mean 

value and vertical lines on top of bars indicate standard error of means. Means and standard errors 

were estimated using the MIXED procedure in SAS. Percent decrease in each trait due to high 

salinity level as compared to control is indicated on each genotype. 
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Figure 4-24 The effect of high temperature, salinity and genotype interaction on (A) grain yield 

per plant and (B) harvest index of twelve winter wheat genotypes. Data are averaged across two 

experiments, twelve genotypes, and five replications of each genotype. Each datum indicates mean 

value and vertical lines on top of bars indicate standard error of means.  Means and standard errors 

were estimated using the MIXED procedure in SAS. 
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Table 4-1 Probability values of effects of temperature (T), salinity (S), genotype (G),T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various physiological 

traits. 

Traits Temperat

ure (T) 

Salinity 

(S) 

Genotyp

e (G) 

T x S T x G S x G T x G x S 

Maximum quantum 

yields of PS II (Fv/Fm 

ratio; unitless) 

<0.0001 <0.0001 <0.0001 0.0003 0.3678 0.9043 0.9959 

Thylakoid membrane 

damage (Fo/Fm ratio; 

unitless) 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1204 0.4414 

Leaf photosynthesis 

(µmol m-2 s-1) 

<0.0001 <0.0001 <0.0001 0.0004 0.0005 0.0114 0.7861 

Stomatal Conductance 

(m² s¹) 

0.0003 <0.0001 0.0008 0.0005 0.7393 0.1077 0.0986 

Chlorophyll index 

(SPAD units) 

0.0008 0.0002 <0.0001 0.2035 <0.0001 0.2670 0.4021 
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Table 4-2 Probability values of effects of temperature (T), salinity (S), genotype (G),T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various biochemical 

traits. 

Traits Tempera

ture (T) 

Salinity 

(S) 

Genotyp

e (G) 

T x S T x G S x G T x G x S 

Soluble sugars content (g/kg) <0.0001 <0.0001 0.0104 0.0216 0.0008 <0.0001 <0.0001 

Reducing sugars content (g/kg) <0.0001 <0.0001 0.0001 0.0036 0.0004 0.0027 0.0001 

Non reducing sugars content 

(g/kg) 

<0.0001 0.5887 0.0174 <0.0001 <0.0001 <0.0001 <0.0001 

Starch content (g/kg) <0.0001 <0.0001 <0.0001 0.0004 <0.0001 <0.0001 <0.0001 

Proline content (µmol/g) <0.0001 <0.0001 0.0049 <0.0001 <0.0001 0.0144 0.0299 

Soluble proteins content (g/k) <0.0001 <0.0001 <0.0001 0.0010 0.0045 0.7893 0.1918 

MDA content (µmol/g) <0.0001 <0.0001 <0.0001 0.0006 <0.0001 0.7371 0.5532 
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Table 4-3 Probability values of effects of temperature (T), salinity (S), genotype (G),T x S 

interaction, T x G interaction, S x G interaction and T x G x S interaction on various yield traits. 

Traits Tempera

ture (T) 

Salinity 

(S) 

Genotyp

e (G) 

T x S T x G S x G T x G x S 

Plant height (cm) 0.0003 <.0001 <.0001 <.0001 0.1231 0.1207 0.7424 

Tiller number (plant-1) 1000 0.6690 0.1780 0.0124 0.5618 0.5092 0.4416 

Spike number (plant-1) 0.1076 0.9186 0.2523 0.2738 0.9161 0.7042 0.3715 

Spike length (cm) < 0.0001 0.9626 < 0.0001 0.1137 04705 0.8192 0.1940 

Spikelet number (spike-1) < 0.0001 < 0.0001 < 0.0001 0.0006 0.0204 0.0111 0.0387 

Dry weight (g plant-1)  < 0.0001 < 0.0001 0.0945 0.0003 0.9016 0.0084 0.1783 

Grain number (spike-1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Grain number (plant-1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0015 < 0.0001 

Grain yield (g spike-1)  < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0003 0.1898 < 0.0001 

Individual grain weight 

(mg)  

< 0.0001 0.3934 0.0288 0.7907 0.7105 0.9860 0.4022 

Grain yield (plant-1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0020 0.3512 < 0.0001 

Harvest index < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0108 0.1154 0.0171 
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Table 4-4 Mean growth and morphological parameters for twelve winter wheat genotypes. 

Separation of means was carried out using the LSD test (P < 0.05). Means with different letters 

are significantly different according to the LSD test at P < 0.05. 

 

 

  

Genotypes Plant height 

(cm) 

Number of 

tillers plant-1 

Spike number 

plant-1 

Vegetative biomass 

(g plant-1) 

2174-05 67.2cd 8.4c 6.5b 23.0bcd 

GUYMON 70.0a 8.5abc 6.7ab 23.5a 

OK05108 69.1ab 8.4bc 6.5b 22.8d 

GAGE 69.8abc 8.7ab 6.8a 23.4ab 

AVALANCHE 68.6abc 8.6abc 6.6ab 23.2abcd 

CO04W320 67.8bc 8.7ab 6.7ab 23.3abc 

CARSON 68.7abc 8.5abc 6.6ab 22.8cd 

TX04M410211 68.9abc 8.5abc 6.6ab 23.1abcd 

TX86A5606 64.9e 8.7a 6.6ab 23.3abc 

MTS0531 68.5abc 8.6ab 6.7ab 23.3abc 

TASCOSA 68.1abc 8.5abc 6.6ab 23.1abcd 

ONAGA 65.6de 8.5abc 6.6ab 23.0bcd 



229 

Table 4-5 Mean growth and yield parameters for twelve winter wheat genotypes. Separation of 

means was carried out using the LSD test (P < 0.05). Means with different letters are significantly 

different according to the LSD test at P < 0.05. 

Genotypes Spikelet number 

(spike-1) 

Grain yield (g 

plant-1) 

Grain number 

plant-1 

Harvest 

index 

2174-05 17.9c 9.0defg 198.5f 0.39cde 

GUYMON 19.1a 8.7fg 209.0de 0.37e 

OK05108 17.8c 8.7g 206.2ef 0.38cde 

GAGE 17.7c 8.9efg 209.7cde 0.38de 

AVALANCHE 17.7c 9.1defg 204.4ef 0.39cde 

CO04W320 17.9c 9.6abcd 228.3b 0.41bc 

CARSON 17.7c 10.1ab 241.3a 0.44a 

TX04M410211 18.5b 9.9abc 247.2a 0.43ab 

TX86A5606 17.5c 9.5bcde 217.9c 0.41bcd 

MTS0531 17.5c 9.4cdef 211.7cde 0.40bcd 

TASCOSA 18.6b 10.2a 242.4a 0.44a 

ONAGA 16.9c 8.7g 215.8cd 0.38de 

 

.   

 

 

  



230 

 

Chapter 5 - General Conclusions and Future Direction 

In this research three experiments were conducted under the controlled environment conditions. 

The objectives of this research were (i) to screen winter wheat genotypes for salinity tolerance at 

the germination stages and to determine seedling growth traits associated with salinity tolerance. 

(ii) to evaluate the independent and combined effects of high temperature and salinity on winter 

wheat genotypes at the booting stages through growth, physiological, biochemical, and yield traits; 

and (iii) to evaluate the independent and combined effects of high temperature and salinity on 

winter wheat genotypes at the flowering stages through growth, physiological, biochemical, and 

yield traits. Important conclusions from each experiment are as follows:  

 

Experiment 1: Screening of 292 winter wheat genotypes for salinity tolerance at the germination 

and seedling stage.  

This research indicated that genotypic variability for salt tolerance was found among 

different winter wheat genotypes and the variation was best explained by mean daily germination 

percentage and vigor index. The genotypes were ranked based on the seedling vigor index, such 

that those with the smallest and largest percent reduction over the control were ranked respectively 

as the most and least tolerant germplasm at 120 mM NaCl. According to that genotypes were 

divided into three categories (1) tolerant to salinity at germination stage (genotypes like GAGE, 

OK04507, MTS0531, TASCOSA, ENDURANCE and GUYMON), (2) moderately tolerant to 

salinity at germination stage genotypes like AVALANCHE, NE05496, ENHANCER, OK05108, 

TX86A5606 and ONAGA) and (3) susceptible to salinity at germination stage (CO04W320, 2174-

05, CARSON, OK1070275, TX02A0252 and TX04M410211). Wheat genotypes showed 
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differential response to higher levels (120 mM NaCl) of salinity. Yet, salinity reduced all seed 

germination and seedling attributes of wheat genotypes. The salinity tolerant genotypes identified 

herein may be used in salininty breeding program. 

 

Experiment 2: Assessing the independent and combined effects of high temperature and salinity 

on winter wheat genotypes at the booting stage  

The experiment indicated that high temperature 35/20º C (daytime maximum and nighttime 

minimum temperature) and salinity level of 120 mM NaCl and their combined effects at booting 

stage negatively influenced wheat growth and yield. Combined stresses was more damaging to 

wheat development than the individual effect of each stress. High temperatures, salinity and their 

interactions at booting stage, had negatively influence the leaf level photosynthesis, chlorophyll 

content, photosystem II efficiency, and starch content. However, it increased the damaged 

thylakoid membrane damage, and the contents of total carbohydrates, proline and soluble proteins, 

MDA. The changes in the above physiological traits have resulted in decreased grain yield and 

harvest index. Also the study concludes that winter wheat genotypes diverse in their response to 

combined high temperature and salinity stress. Genotype GUYMON, TX04M410211 and 

TASCOSA were the most tolerant ones. The traits like  photosynthetic rate, leaf chlorophyll 

content, grain number and grain yield  can be used for breeding salinity and high temperature stress 

tolerant wheat breeding program... 

 

Experiment 3: Assessing the independent and combined effects of high temperature and salinity 

on winter wheat genotypes at flowering stage 
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High temperature 35/20 ºC (daytime maximum and nighttime minimum temperature) and salinity 

level of 120 mM  NaCl and their combined effects at flowering stages negatively influenced wheat 

growth and yield. The study showed that combined effects of high temperature and salinity stress 

was more detrimental than the individual effect of each stress. High temperatures, salinity and their 

interaction at flowering stages had undesirable effects on yield and yield component. The study 

showed that genotypes varied in their response to combined effects of high temperature and 

salinity stress, and genotype CARSON, TX04M410211 and TASCOSA were the most tolerant  as 

indicated by increased leaf level photosynthesis, photosystem II efficiency, chlorophyll content, 

starch content, and decreased MDA level resulting in increased  grain yield and harvest index. In 

conclusion there are some traits that can be used for breeding programs such as photosynthesis 

efficiency, leaf chlorophyll content, grain number and grain yield. However, the screening for 

wheat genotypes can be based on characteristics related to high yields under stress condition. These 

criteria should be stable and easy to evaluate specially with high number of genotypes screening.  

 From second and third experiments we conclude that spikelet number and grain number 

were the yield component associated with the stress tolerance at the booting and flowering stages. 

In addition, from these experiments we conclude that high temperature and salinity stress at both 

stages of wheat growth and development severely reduced the performance of all tested wheat 

genotypes. Yet, severity being higher at flowering stage than booting stages. In this study and 

based on grain yield reduction, genotype TASCOSA was the most tolerant to high temperature 

stress (46 % decline) and genotype GUYMON was the most tolerant to salinity stress (32 % 

decline) at booting stage. These genotypes are best adapted to the High Plains, which expected to 

have better drought tolerance, therefore these genotypes were high temperature and salinity 

tolerance. Whereas, genotypes CARSON was highly susceptible to high temperature stress (52 % 
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decline) and AVALANCHE was highly susceptible to salinity stress (42 % decline) at booting 

stage. In addition, genotype TX04M410211 was the most tolerant to high temperature stress (48 

% decline) and to salinity stress (24 % decline) at flowering stage. This genotype is from Texas 

and is well adapted to high temperature environment, and may have salinity tolerance, which mean 

that selection in hot environments may allow for selection of tolerance to salinity stress. However, 

genotype OK05108 was highly susceptible to high temperature stress (65 % decline) and genotype 

MTS0531 was highly susceptible to salinity stress (41 % decline) at flowering stage. However 

genotype GUYMON flipped from tolerant at germination and booting stages and susceptible at 

flowering stage and genotypes TX04M410211 flipped from susceptible at germination and booting 

stages and  tolerant at flowering stage This may due to the fact that plants respond to the stress is 

highly depend on the growth stage of plant development and that response is different at different 

developmental stages. However, further studies are needed to validate these interactions under 

filed conditions and  future studies should give more attention to physiological parameters such as 

leaf water potential, and osmotic potential as well as some biochemical analysis such as Na+ and 

Cl- content in plant tissue and antioxidant enzymes. 

 

 Overall Outputs 

 Mean daily germination and seedling vigor index was the best germination traits that canbe 

used as a selection criterion for salinity tolerance in wheat. Based on those genotypes 

GUYMON, MTS0531, TASCOSA, GAGE, and ENDURANCE were identified as tolerant 

genotypes to salinity stress at germination stages.   
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 The combined effects of salininty and high temperature stress during booting and flowering 

stages was greater than the individual effects of salinity and high temperature stress as 

evidenced by seed number and grain yield. 

  Grain yield and harvest index are the key traits responsible for high temperature and 

salinity stress tolerance. Therefore, genotype TASCOSA was the most tolerant genotype 

to combined high temperature and salinity stress at the booting stages; and genotype 

TX04M410211 was the most tolerant genotype to combined high temperature and salinity 

stress at flowering stages. 

 

 Future Research Opportunities 

These investigations showed existence of significant genetic variability in winter wheat lines for 

salinity stress at germination stages as well as for the combined stresses of high temperature and 

salinity at booting and flowering stage. Therefore, additional research might be directed towards 

following: 

1) There is need to develop new screening technique to identify large germplasm 

collection for salinity tolerance during germination and seedling stages of 

development.  

2) Studies comparing the genotypes identified as tolerant from this study with other 

known salt tolerant genotypes (check) will increase our knowledge on mechanism 

of tolerance and novel traits conferring tolerance to these stresses.  
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3) Investigate the effects of high temperature and salinity stress at the booting and 

flowering stages of these tolerant and susceptible genotypes under field conditions 

to validate the results of study. 

4) To validate the cross-tolerance for salininty and high temperature in the available 

genotypes, so that it can ne used for breeding salinity and high temperature stress 

5) This study focused on the effect of high temperature and salinity stress at booting 

and flowering stages, therefore further research on the effects of high temperature 

and salinity stress during the post-flowering stages, (grain filling and seed 

development) is needed to evaluate the effect of these stress at later stages of wheat 

growth and development. 
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Appendix A - List of entries in the hard winter wheat association mapping panel 

(HWWAMP) used in this study with their names, year of release, type (C, cultivar; L, landrace; B, 

breeding line), origin, NSGC accession number, and pedigree. 

ENTRY  NAME  Year  Type†  Origin  NSGC 

Accession  

Pedigree  

142  CO03064  .  B  CO  .  CO970547/Prowers 99  

125  CO03W043  .  B  CO  .  KS96HW94/CO980352  

126  CO03W054  .  B  CO  .  Arlin/KS89H20 (KS96HW94)/6/Trego/5/(CO960293) 

PI 222668 / TAM 107 /4/(CO0850034) Novi Sad 14 / 

Novi Sad 603 // Newton /3/ Probrand 835  

128  CO04025  .  B  CO  .  CO940610/CO960293//CO99W189  

129  CO04393  .  B  CO  .  Stanton/CO950043  

130  CO04499  .  B  CO  .  Above/Stanton  

131  CO04W320  .  B  CO  .  CO950635/CO99W1126  

283  CO050337-

2  

.  B  CO  .  CO980829/TAM 111  

120  CO940610  .  B  CO  GSTR10702  H15A13333 /5* Larned // Eagle / Sage /3/ TAM 105 

(KS87H22) /4/ (MW09) Clark's Cream/5*KS75216 

(Newton Sib)  

84  TAM107-

R7  

.  B  CO  GSTR11601  CO850034 / PI372129 //5* TAM107  

141  ABOVE  2001  C  CO  PI631449  TAM 110*4/FS2  

146  AKRON  1994  C  CO  PI584504  TAM 107 / Hail  

285  ANTERO  2013  C  CO  PI 667743  Trego/Betty sib (KS01HW152-1)//TAM 111  

121  AVALANC

HE  

2001  C  CO  PI620766  RL6005 / RL6008 // Larned /3/ Cheney / Larned /4/ 

Bennett sib /5/ TAM107 (KS87H325) /6/ Rio Blanco  

143  BILL 

BROWN  

2007  C  CO  PI653260  Yumar/Arlin  

122  BOND CL  2004  C  CO  PI639924  Yumar//TXGH12588-120*4/FS2  

284  BYRD  2011  C  CO  PI 664257  TAM112//(CO970547-7) Ike/Halt  

133  CARSON  1986  C  CO  PI501534  Anza / Scout // Centurk  
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100  DAWN  1982  C  CO  CItr17801  II 21031 / Trapper /4/(CO 652363) Warrior // Kenya 58 

/ Newthatch /2*( Cheyenne / Tenmarq / Mediterranean 

)/ Hope /3/ Parker  

282  DENALI  2011  C  CO  PI 664256  Yuma/T-57//CO850034/3/4*Yuma/4/NEWS12 

(CO980829)/5/Tam 111  

136  DUKE  1981  C  CO  CItr17856  3* Sonora 64 / Warrior // Selkirk /2* Cheyenne /5/ 

Scout /4/ Quivera /3/ Tenmark // Marquis 1 / Oro  

134  HAIL  1982  C  CO  PI470927  Mexican / USA // Scout /3/ Mara /4/ Scout /5/ Ciano 

/6/ Trapper /7/ Parker  

137  HALT  1994  C  CO  PI584505  Sumner / CO820026 // PI372129 /3/ TAM 107  

138  HATCHER  2004  C  CO  PI638512  Yuma / PI 372129 // TAM 200 /3/4* Yuma /4/ 

KS91H184 / Vista  

147  JULES  1993  C  CO  PI564851  Warrior *5/ Agent // Agate sib (NE76667)/3/ Hawk  

132  LAMAR  1988  C  CO  PI559719  74 F878 ( Mexican dwarf )/ Wings // Vona  

124  LINDON  1975  C  CO  CItr17440  Andes 64A / Sonora 64 // Tacuari (II21183)/4/(CO 

652363) Warrior 2 / Kenya 58 / Newthatch // Cheyenne 

/ Tenmark / Mediterranean / Hope /3/ Parker/5/ Lancer 

/3/(KS 62136) Norin 16 / CI 12500 // Kaw  

234  OGALLAL

A  

1993  C  CO  PI573037  TX81V6187 / Abilene  

139  PRAIRIE 

RED  

2000  C  CO  PI605390  CO850034 / PI 372129 //5* TAM 107  

145  PROWERS  1997  C  CO  PI605389  CO850060 / PI 372129 //5* Lamar  

144  RIPPER  2006  C  CO  PI644222  PI 220127/P5//TAM-200/KS87H66 

(CO940606)/3/(TAM107R-2) CO850034/PI 

372129//5*TAM 107  

135  SANDY  1981  C  CO  CItr17857  Sonora 64A / Tezanos Pintos Precoz / Yaqui 54 //( 

Frontana / Kenya 58 / Newthatch )/ Norin 10 / Brevor / 

Gabo 55B / Trapper // Centurk  

127  THUNDER 

CL  

2008  C  CO  PI655528  FS2/KS97HW150//KS97HW349 (KS01-

5539)/3/(CO99W165) KS92WGRC25/Halt  

119  VONA  1976  C  CO  CItr17441  Andes 64A / Sonora 64 // Tacuari (II 21183) /4/ (CO 

652363) Warrior // Kenya 58 / Newthatch /2*( 

Cheyenne / Tenmarq / Mediterranean / Hope /3/ Parker 

/5/ Lancer /4/ KS 62136  

148  YUMA  1992  C  CO  PI559720  NS14 / NS25 //2* Vona  

140  YUMAR  2000  C  CO  PI605388  Yuma / PI 372129 , F1 // CO850034 /3/4* Yuma  
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115  HV906-865  .  B  KS  .  G980039/Onaga  

110  HV9W03-

1379R  

.  B  KS  .  B1127/3/B1551W//ROWDY/RWA 671 MONT  

108  HV9W03-

1551WP  

.  B  KS  .  B1043/PL2180  

111  HV9W03-

1596R  

.  B  KS  .  B1397-1/WGRC33  

112  HV9W05-

1280R  

.  B  KS  .  SPARTANKA/G980761  

113  HV9W06-

504  

.  B  KS  .  G982231/G982159//KS920709W  

244  KS00F5-20-

3  

.  B  KS  .  0  

237  W04-417  .  B  KS  .  BULK POPULATION  

251  WB411W  .  B  KS  .  G3006/ARLIN  

242  2145  2002  C  KS  PI 631087  HBA142A/HBZ621A//Abilene  

183  2180  1989  C  KS  PI532912  TAM W-101 / Pioneer W603 // Pioneer W558  

85  ARLIN  1992  C  KS  PI564246  Selection from population of intercrossed hard red 

winter wheat and hard red spring wheat genotypes  

226  BAKER'S 

WHITE  

2004  C  KS  PI 633865  Ponderosa/Jagger  

222  BISON  1956  C  KS  CItr12518  Chiefkan // Oro / Tenmarq  

227  BURCHET

T  

2004  C  KS  PI 633863  W91-126/WI88-052-05  

210  CHENEY  1978  C  KS  CItr17765  Scout / Tascosa  

225  COMANCH

E  

1942  C  KS  CItr11673  Oro / Tenmarq  

247  COSSACK  1998  C  KS  PI 606780  BCD1828/83  

228  CUTTER  2002  C  KS  PI 631389  JAGGER//(WI89-189-14)Tam200/Stallion sib  

280  DANBY  2007  C  KS  PI 648010  Trego/Jagger 'S'  

208  DODGE  1986  C  KS  PI506344  KS73H530 ( Newton sib )/ KS76HN1978-1 ( Arkan 

sib )  

229  DUMAS  2001  C  KS  PI 619199  WI90-425/WI89-483  

217  EAGLE  1970  C  KS  CItr15068  Selection from Scout  

248  ENHANCE

R  

1998  C  KS  PI606779  1992 Nebraska bulk selection  
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246  FULLER  2007  C  KS  PI 653521  Ogallala/KS95WGRC33//Jagger  

109  G1878  1995  C  KS  PI 591622  Hawk/Sturdy//Plainsman V  

243  HEYNE  2001  C  KS  PI612577  KS82W422 / SWM754308 / KS831182 / KS82W422  

230  HONDO  1999  C  KS  PI 603958  W84-179/W81-

171/5/Sturdy/Hawk/4/Vona/3/NDD63/CO652643//Cen

turk  

231  JAGALENE  2002  C  KS  PI 631376  JAGGER/ABILENE  

78  JAGGER  1994  C  KS  PI593688  KS82W418 / Stephens  

207  KARL 92  1992  C  KS  PI564245  Selection from Karl = Plainsman V /3/ Kaw / Atlas 50 

// Parker *5/ Agent  

220  KAW61  1960  C  KS  CItr12871  purification and re - release of Kaw = Oro // 

Mediterranean / Hope /3/ Early Blackhull / Tenmarq  

252  KEOTA  2007  C  KS  PI 648007  CUSTER/JAGGER  

223  KIOWA  1950  C  KS  CItr12133  Chiefkan // Oro / Tenmarq  

214  KIRWIN  1973  C  KS  CItr17275  Parker *3/ Bison  

204  LAKIN  2002  C  KS  PI617032  KS89H130 / Arlin  

212  LARNED  1976  C  KS  CItr17650  Ottawa /5* Scout  

232  LONGHOR

N  

1991  C  KS  PI552813  NS2630-1 / Thunderbird  

233  NEOSHO  2006  C  KS  PI 639739  W91-376-20/W95-084  

211  NEWTON  1978  C  KS  CItr17715  Pitic 62 / Chris sib //2* Sonora 64 /3/ Klein Rendidor 

/4/ Scout  

209  NORKAN  1986  C  KS  PI506345  Plainsman V /3/2*( KS76H3705 ) Larned / Eagle // 

Sage  

238  NUFRONTI

ER  

2002  C  KS  PI 619089  2180/HBZ356A//Mesa  

239  NUHORIZ

ON  

2001  C  KS  PI 619198  WI89-282/Arlin  

240  ONAGA  1998  C  KS  .  HT43-231-19 (Pioneer bulk)  

245  OVERLEY  2004  C  KS  PI 634974  TAM-107 *3/TA 2460 (U1275-1-4-2-2)//Heyne 

‘S’/3/Jagger  

219  PARKER  1966  C  KS  CItr13285  Quivira /3/ Kanred / Hard Federation // Prelude / 

Kanred /4/ Kawvale / Marquillo // Kawvale / Tenmarq  

213  PARKER 76  1976  C  KS  CItr17685  Parker *5/ Agent  

123  PLATTE  1997  C  KS  PI 596297  Tesia 79 / Chat'S' // Abilene  
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235  POSTROC

K  

2006  C  KS  PI 643093  Ogallala/KSU94U261//Jagger  

241  RONL  2007  C  KS  PI 648020  Trego/3/(CO9600293) PI222668/TAM 

107//CO850034  

215  SAGE  1973  C  KS  CItr17277  Agent /4* Scout  

249  SANTA FE  2006  C  KS  PI 641772  G1878/Jagger  

218  SHAWNEE  1967  C  KS  CItr14157  Mediterranean / Hope // Pawnee /3/ Oro / Illinois No. 

1// Comanche  

118  SHOCKER  2006  C  KS  PI 646185  FREEDOM/TOMAHAWK//JAGGER  

117  SMOKYHI

LL  

2006  C  KS  PI 646184  97 8/64 MASA (Population developed by combining 

several crosses with a common female "G2500")  

114  SPARTAN  2007  C  KS  .  RL8400193/PL2180  

205  STANTON  2002  C  KS  PI617033  PI 220350 / KS87H57 // TAM200 / KS87H66 /3/ 

KS87H325  

116  TARKIO  2006  C  KS  .  OK90604/KSSB-369-7//SnowWhite  

236  THUNDER

BOLT  

2000  C  KS  PI 608000  ABILENE/KS90WGRC10  

206  TREGO  1999  C  KS  PI612576  RL6005 / RL6008 // Larned /3/ Cheney / Larned /4/ 

Bennet sib /5/ TAM107 (KS87H325)/6/ Rio Blanco  

216  TRISON  1973  C  KS  CItr17278  Triumph / Bison  

250  VENANGO  2000  C  KS  .  HBE1066-105/HBF0551-137  

76  WICHITA  1944  C  KS  CItr11952  Early Blackhull / Tenmarq  

224  WICHITA  1944  C  KS  CItr11952  Early Blackhull / Tenmarq  

281  E2041  .  B  MI  .  Pioneer Brand 2552/Pioneer Brand 2737W  

199  MT0495  .  B  MT  .  MT9640/NB1133  

202  MT06103  .  B  MT  .  Composite cross  

191  MT85200  .  B  MT  .  Froid/Winoka/3/TX55-391-56-D8/Westmont//Trader  

193  MT9513  .  B  MT  .  NuWest/MT8030  

194  MT9904  .  B  MT  .  MT85200/Tiber  

195  MT9982  .  B  MT  .  Promontory/Judith  

200  MTS0531  .  B  MT  .  L'Govskaya167/Rampart//MT9409  

279  BIG SKY  2001  C  MT  PI619166  NuWest / Tiber  

188  CREST  1967  C  MT  CItr13880  Westmont *2/ PI 178383  

201  DECADE  2010  C  MT  PI660291  Composite  

196  GENOU  2004  C  MT  PI640424  Lew/Tiber//Redwin (MTS92015)/3/Vanguard/Norstar  

203  JUDEE  2011  C  MT  PI 665227  Vanguard/Norstar//Judith/3/NuHorizon  
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190  JUDITH  1989  C  MT  PI584526  Lancota / Froid // NE69559 / Winoka  

197  NORRIS  2005  C  MT  PI643430  BigSky//TAM110sib*4/FS2  

192  NUSKY  2001  C  MT  PI619167  NuWest / Tiber  

189  ROSEBUD  1981  C  MT  PI473570  Lancer /2* BWH 1376-8  

198  YELLOWS

TONE  

2005  C  MT  PI643428  Selected from a composite of F2 seed from two closely 

related populations: Promontory/Judith and Judith-

phenotypic dwarf selection/Promontory  

83  JERRY  2001  C  ND  PI632433  Roughrider // Winoka / NB66425 /3/ Arapahoe  

287  NE02558  .  B  NE  .  JAGGER/ALLIANCE  

289  NE04490  .  B  NE  .  NE95589/3/(NE94632) 

ABILENE/NORKAN//RAWHIDE/4/(NE95510)ABIL

ENE/ARAPAHOE  

290  NE05430  .  B  NE  .  IN92823A1-1-4-5/NE92458  

291  NE05496  .  B  NE  .  KS87H325/RIO BLANCO (KS95HW62-

6)//HALLAM  

294  NE06607  .  B  NE  .  KS89H50-4/3/(NE90518)BRL//SXL/BENN 

(NE98466)/4/WESLEY  

63  NE99495  .  B  NE  .  ALLIANCE/KARL 92  

296  NI06736  .  B  NE  .  KM602-90/NE89657//ARLIN 

(NW97S312)/3/(KS96HW10-3) KS91HW29// RIO 

BLANCO/KS91H184  

297  NI06737  .  B  NE  .  KM602-90/NE89657//ARLIN 

(NW97S312)/3/(KS96HW10-3) KS91HW29// RIO 

BLANCO/KS91H184  

298  NI07703  .  B  NE  .  919021/B725//K92 (G97343, R-148)/5/(NI00436) BEZ 

1/CTK78//ARTHUR/CTK78/3/BENNET/4/NORKAN  

299  NI08707  .  B  NE  .  Yuma/T-57//CO850034/3/4*Yuma/4/NEWS1 

(CO980829)/5/Wesley  

300  NI08708  .  B  NE  .  Yuma/T-57//CO850034/3/4*Yuma/4/NEWS1 

(CO980829)/5/Wesley  

288  NW03666  .  B  NE  .  N94S097KS/NE93459  

41  AGATE  1979  C  NE  CI17463  Ponca /3* Cheyenne // Kenya 58 / Newthatch //2*( 

Cheyenne / Tenmarq / Mediterranean / Hope )/3/ Scout  

42  ALLIANCE  1993  C  NE  PI573096  Arkan/Colt//Chisholm (sib)  

43  ANTELOPE  2005  C  NE  PI633910  Pronghorn / Arlin  

81  ANTON  2007  C  NE  PI651044  WA691213-27 / PI 559717 // Platte  
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44  ARAPAHO

E  

1988  C  NE  PI518591  Brule /3/ Parker *4/ Agent // Belocerkovskaja 198 / 

Lancer  

45  BENNETT  1978  C  NE  CI17723  Scout /3/ Quivira / Tenmarq // Marquillo / Oro /4/ 

Homestead  

46  BUCKSKIN  1973  C  NE  CI17263  Scout/3/Quivera/Tenmarq//Marquillo/Oro  

61  CAMELOT  2008  C  NE  PI653832  KS91H184/ARLIN 

SIB//KS91HW29/3/NE82761/REDLAND 

(NE91631)//VBFO168  

47  CENTURA  1983  C  NE  PI476974  Warrior*5/Agent/NE68457/3/Centurk78  

48  CENTURK 

78  

1978  C  NE  CItr17724  Selection from Centurk  

50  COLT  1983  C  NE  PI476975  Agate sib ( NE69441 )// ( Tx65A1503-1 ) 391-56-D8 / 

Kaw  

51  COUGAR  2000  C  NE  PI613098  Warrior *5/ Agent // Kavkaz /4/ NE63218 / Kenya 58 

/3/ Newthatch /2* CTMH // Ponca /* 2 Cheyenne 

(NE85707)/5/ Thunderbird ( CTMH = Cheyenne / 

Tenmarq / Mediterranean / Hope )  

52  CULVER  1999  C  NE  PI606726  NE82419/Arapahoe  

293  FREEMAN  2013  C  NE  PI 667038  ABI86*3414/Jagger//Karl 92 (KS92-946-B-15-

1)/3/ALLIANCE  

53  GAGE  1963  C  NE  CItr13532  Ponca /3/ Mediterranean / Hope // Pawnee  

54  GOODSTR

EAK  

2002  C  NE  PI632434  Len // Butte / ND526 (ND604) /6/ (SD2971) Agent /3/ 

ND441 // Waldron / Bluebird /4/ Butte /5/ Len 

(SD3055) /7/ KS88H164 /8/ NE89646  

55  HALLAM  2006  C  NE  PI638790  Brule / Bennett // Niobrara  

56  HARRY  2002  C  NE  PI632435  Brule /4/ Parker *4/ Agent // Beloterkovskaia 198 / 

Lancer /3/ Newton / Brule (NE90614) /5/ (NE87612) 

Newton // Warrior *5/ Agent /3/ Agate sib  

57  HOMESTE

AD  

1973  C  NE  CI17264  Scout /4/ Kenya / Newthatch // Cheyenne / Tenmarq / 

Mediterranean / Hope /3/ Pawnee / Cheyenne  

58  INFINITY 

CL  

2006  C  NE  PI639922  Windstar//Millennium sib/Above sib  

79  LANCER  1963  C  NE  CItr13547  Turkey Red / Cheyenne // Hope /2* Cheyenne  

82  MACE  2007  C  NE  PI651043  Yuma//PI 

372129/3/CO850034/4/4*Yuma/5/KS91H184/Arlin 

S//KS91HW29/3/NE89526  
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286  MCGILL  2010  C  NE  PI659689  Vona // Chisholm / PlainsmanV (OK83201)/3/Redland 

(NE92458 )/4/ Ike  

60  MILLENNI

UM  

2000  C  NE  PI613099  Arapahoe / Abilene /4/ Colt /3/ Warrior *5/ Agent // 

Kavkaz  

96  NEKOTA  1994  C  NE  PI584997  Bennett/TAM 107  

64  NIOBRAR

A  

1994  C  NE  PI584996  TAM 105*5/AMIGO//Brule  

65  NUPLAINS  1998  C  NE  PI605741  Abilene / KS831872 = Abilene /3/ Plainsman V // 

Newton / Arthur 71  

62  OVERLAN

D  

2007  C  NE  PI647959  Millennium sib//(ND8974) Seward/Archer  

292  PANHAND

LE  

2014  C  NE  .  BRIGANTINA/2*ARAPAHOE (NE97426)//NE98574  

66  PRONGHO

RN  

1996  C  NE  PI593047  Centura/Dawn//Colt  

67  RAWHIDE  1990  C  NE  PI543893  Warrior *5/ Agent // Kavkaz /4/ Parker *4/ Agent // 

Belocerkovskaja 198 / Lancer /3/ Vona  

68  REDLAND  1986  C  NE  PI502907  Selection from Brule  

295  ROBIDOU

X  

2010  C  NE  PI659690  Odesskaya P / Cody // Pavon 76 /3* Scout 66 

(NE96644)/3/ Wahoo sib  

69  SCOUT 66  1967  C  NE  CI13996  composite of 85 selections from Scout, CItr 13546 

(Scout = Nebred // Hope / Turkey /3/ Cheyenne / 

Ponca)  

80  SETTLER 

CL  

2009  C  NE  PI653833  Wesley sib // Millennium sib / Above sib  

70  SIOUXLAN

D  

1984  C  NE  PI483469  Warrior*5/Agent*2//Kavkaz  

72  VISTA  1992  C  NE  PI562653  Warrior // Atlas 66 / Comanche /3/ Comanche / Ottawa 

(NE68513)/5/(NE68457) Ponca /2* Cheyenne /3/ 

Illinois No. 1//2* Chinese Spring /T. timopheevii /4/ 

Cheyenne / Tenmarq // Mediterranean / Hope /3/ Sando 

60 /6/ Centurk / Brule  

73  WAHOO  2000  C  NE  PI619098  Arapahoe *2/ Abilene  

74  WARRIOR  1960  C  NE  CItr13190  Pawnee / Cheyenne  

75  WESLEY  1998  C  NE  PI605742  KS831936-3 / NE86501 = Sumner sib ( Plainsman V / 

Odesskaya 51 )// Colt / Cody  
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77  WINDSTA

R  

1996  C  NE  PI597379  TAM103 / Newton sib (TX79A2729)// Caldwell / 

Brule field sel .6/3/ Siouxland  

49  CHEYENN

E  

1933  L  NE  CI8885  selection from Crimean, CI 1435  

71  TURKEY  1874  L  NE  CI 12137  The original Turkey (Nebr. No. 1) grown at Lincoln 

since 1897. From it were selected Nebr. 6, 60, etc.  

16  OK02405  .  B  OK  .  Tonkawa/GK50  

23  OK04111  .  B  OK  .  2174*2/Jagger  

24  OK04415  .  B  OK  .  N563/OK98G508W  

19  OK04505  .  B  OK  .  OK91724/2*Jagger  

21  OK04507  .  B  OK  .  OK95593/Jagger//2174  

20  OK04525  .  B  OK  .  FFR525W/Hickok//Coronado  

27  OK05108  .  B  OK  .  Lut 13686/2174//Jagger  

28  OK05122  .  B  OK  .  KS94U337/NE93427  

30  OK05134  .  B  OK  .  OK97411/TX91D6825  

34  OK05204  .  B  OK  .  SWM866442/OK95548  

31  OK05303  .  B  OK  .  OK95548/TXHBG0358  

32  OK05312  .  B  OK  .  TX93V5919/WGRC40//OK94P549/WGRC34  

33  OK05511  .  B  OK  .  TAM 110/2174  

25  OK05711W  .  B  OK  .  G1878/OK98G508W  

26  OK05723W  .  B  OK  .  SWM866442/Betty  

22  OK05830  .  B  OK  .  OK93617/Jagger  

36  OK06114  .  B  OK  .  KS97P0630-4-5/CM95560//X920879-C15-

1/3/X84WO63-9-18/U1324-25-1-4  

37  OK06210  .  B  OK  .  KS90175-1-2/CMSW89Y271//K92/3/ABI 

86*3414/X86035*-BB-34//HBC 302E  

39  OK06318  .  B  OK  .  HBG0358/2174//2145  

38  OK06319  .  B  OK  .  Enhancer/2174  

40  OK06336  .  B  OK  .  Magvars/2174//Enhancer  

276  OK07231  .  B  OK  .  OK92P577-RMH 3099/Duster  

277  OK07S117  .  B  OK  .  [ALTAR84/AE.SQ//OPATA]/OK98G508W  

278  OK08328  .  B  OK  .  GK Keve/Ok101//OK93P656-RMH3299  

273  OK09634  .  B  OK  .  OK95616-98-6756/Overley  

274  OK10119  .  B  OK  .  JEI 110/Overley  

265  OK1067071  .  B  OK  .  TX98V9437/OK00316//Farmec  

266  OK1067274  .  B  OK  .  GA961912-8-4-5/OK02129//Kristi-K.K  
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267  OK1068002  .  B  OK  .  EFECT/Jagalene//Deliver  

268  OK1068009  .  B  OK  .  LADA/Jagalene//G980122  

269  OK1068026  .  B  OK  .  ERYTHROSPERMUM 270/TAM 111//OK99212  

270  OK1068112  .  B  OK  .  Farmec/Jagalene  

272  OK1070267  .  B  OK  .  VI.9/Guymon//G980411W  

271  OK1070275  .  B  OK  .  KNJAZHNA/KS00HW175-4//OK00611W  

5  2174-05  1998  C  OK  PI602595  IL71-5662/PL145(Newton sib)//2165  

18  BILLINGS  2009  C  OK  PI656843  N566/OK94P597  

12  CENTERFI

ELD  

2006  C  OK  PI644017  TXGH12588-105*4/FS4//2*2174  

3  CENTURY  1986  C  OK  PI502912  Payne // TAM W-101 / Amigo  

2  CHISHOL

M  

1983  C  OK  PI486219  Sturdy sib / Nicoma  

4  CUSTER  1994  C  OK  .  F-29-76/TAM-105//Chisholm  

10  DELIVER  2004  C  OK  PI639232  Yantar/2*Chisholm (OK91724)//Karl  

14  DUSTER  2006  C  OK  PI644016  W0405D/NE78488//W7469C/TX81V6187  

9  ENDURAN

CE  

2004  C  OK  PI639233  HBY756A/Siouxland//2180  

275  GALLAGH

ER  

2013  C  OK  PI 667569  OK99711/Duster  

35  GARRISON  2011  C  OK  PI661992  OK95616-1/Hickok//Betty  

13  GUYMON  2005  C  OK  PI643133  Intrada/Platte  

6  INTRADA  2000  C  OK  PI631402  Rio Blanco / TAM 200  

11  OK 

BULLET  

2005  C  OK  PI642415  KS96WGRC39/Jagger  

15  OK RISING  2009  C  OK  PI656382  KS96WGRC39/Jagger  

7  OK101  2001  C  OK  PI631493  OK87W663/Mesa//2180  

8  OK102  2002  C  OK  PI632635  2174/Cimarron  

17  PETE  2009  C  OK  PI656844  N40/OK94P455  

29  RUBY LEE  2011  C  OK  PI661991  KS94U275/OK94P549  

1  TRIUMPH 

64  

1964  C  OK  CItr13679  Danne Beardless Blackhull /3/ Kanred / Blackhull // 

Florence /4/ Kanred / Blackhull // Triumph  

92  SD01058  .  B  SD  .  XH1877/NE967430  

91  SD01237  .  B  SD  .  UNKNOWN  

93  SD05118  .  B  SD  .  Wesley/NE93613  

94  SD05210  .  B  SD  .  SD98444/SD97060  
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95  SD05W018  .  B  SD  .  SD98W302/SD98W175  

86  ALICE  2006  C  SD  PI644223  Abilene/Karl.  

104  BRONZE  1974  C  SD  CItr14013  Hume / Gage /4/ Hume /3/ NE61943 , Mida / Kenya 

117A //2* Hope /2* Turkey Red  

98  CRIMSON  1997  C  SD  PI601818  TAM-105 / Winoka  

87  DARRELL  2006  C  SD  PI644224  2076-W12-11/Karl92  

88  EXPEDITI

ON  

2002  C  SD  PI629060  Tomahawk / Bennett  

106  GENT  1974  C  SD  CItr17293  Agent /4* Scout  

107  HARDING  1999  C  SD  PI608049  Brule // Bennett / Chisholm /3/ Arapahoe  

105  HUME  1965  C  SD  CItr13526  crosses involving: Minter, Kharkof, Wichita, Nebred, 

Cheyenne, and others  

90  LYMAN  2009  C  SD  PI 658067  KS93U134/Arapahoe  

102  NELL  1981  C  SD  CItr17803  Scout selection / Capitan  

103  RITA  1980  C  SD  CItr17799  Seu Seun / Denton 8 // Westmont /3/ (SD 6689) Ponca 

//3* Cheyenne / Kenya58 / Newthatch //2*( Cheyenne / 

Tenmarq // Mediterranean / Hope )  

99  ROSE  1979  C  SD  CItr17795  Seu Seun / Denton 8 // Westmont /4/ Hume /3/ NE 

63265  

97  TANDEM  1997  C  SD  PI601817  Brule / Agate  

89  WENDY  2004  C  SD  PI638521  Gent/Siouxland (SD89333) // Abilene  

101  WINOKA  1969  C  SD  CItr14000  Selection from Winalta  

180  TX00V1131  .  B  TX  .  TX87V1613/KS91WGRC11  

168  TX01A5936  .  B  TX  .  JAGGER/3/PSN 'S'/BOW 'S'//T200  

179  TX01M500

9-28  

.  B  TX  .  MASON/JAGGER//PECOS  

174  TX01V5134

RC-3  

.  B  TX  .  TAM-200/JAGGER  

171  TX03A0148  .  B  TX  .  TX89A7137/TIPACNA  

172  TX03A0563  .  B  TX  .  X96V107/OGALLALA  

173  TX04A0012

46  

.  B  TX  .  TX95V4339/TX94VT938-6  

175  TX04M410

164  

.  B  TX  .  MIT/TX93V5722//W95-301  

176  TX04M410

211  

.  B  TX  .  MASON/JAGGER//OGALLALA  
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177  TX04V0750

80  

.  B  TX  .  JAGGER/TX93V5722//TX95D8905  

260  TX05A0011

88  

.  B  TX  .  T107//TX98V3620/Ctk78/3/TX87V1233/4/N87V106//

TX86V1540/T200  

253  TX05A0018

22  

.  B  TX  .  2145/X940786-6-7  

258  TX05V7259  .  B  TX  .  T107//TX78V3620/Ctk78/3/TX87V1233/4/Arap//TX8

6V1540/T200  

259  TX05V7269  .  B  TX  .  HBG0358/4/T107//TX78V3620/Ctk78/3/TX87V1233  

255  TX06A0011

32  

.  B  TX  .  HBG0358/4/T107//TX78V3620/Ctk78/3/TX87V1233  

254  TX06A0012

63  

.  B  TX  .  UNKNOWN  

256  TX06A0012

81  

.  B  TX  .  TX98VR8422/U3704A-7-7  

257  TX06A0013

86  

.  B  TX  .  TX99A6030/CUSTER  

264  TX06V7266  .  B  TX  .  TX99U8617/TX97U2001  

261  TX07A0012

79  

.  B  TX  .  X930332-4-1/TX97V2838  

262  TX07A0013

18  

.  B  TX  .  TX98VR8431/TX95A3091  

263  TX07A0014

20  

.  B  TX  .  U1254-1-5-2-1/TX81V6582//DESCONOCIDO  

185  TX86A5606  .  B  TX  .  TAM 105*4/AMI*4//LGO  

186  TX86A6880  .  B  TX  .  TAM 105*4/AMI*4//LGO  

187  TX86A8072  .  B  TX  .  TAM 105*4/AMI*4//LGO  

182  TX96D1073  .  B  TX  .  TX86D1310/Kavkaz//TX86D1308 (=WX87D144-10-

99-12-18)  

178  TX99A0153

-1  

.  B  TX  .  OGALLALA/TAM-202  

181  TX99U8618  .  B  TX  .  TX84V1237/TX71C8130R  

167  CAPROCK  1969  C  TX  CItr14516  Sinvalocho / Wichita // Hope / Cheyenne /3/ Wichita 

/4/ Seu Seun 27  

184  HG-9  2000  C  TX  PI614118  TAM 200 outcross selection  

163  LOCKETT  2001  C  TX  PI604245  TX86V1540 / TX78V2430-4  
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166  MIT  1980  C  TX  CItr17896  Sinvalocho / Wichita // Hope / Cheyenne /3/ Wichita 

/4/ Seu Seun 27 (TX391-56-D1 - 24)/6/T. dicoccoides / 

Aeg. speltoides , amphiploid //2* Austin /3/ Supremo 

(TX55C907)/4/ Bison /5/ Caddo/7/ Frontana / Westar  

164  STURDY  1966  C  TX  CItr13684  Sinvalocho / Wichita // Hope / Cheyenne /3/2* Wichita 

/4/ Seu Seun 27  

165  STURDY 

2K  

2005  C  TX  PI636307  Sturdy Resel.  

150  TAM 105  1979  C  TX  CItr17826  ' short wheat' / Sturdy composite bulk selection  

151  TAM 107  1984  C  TX  PI495594  TAM 105 *4/ Amigo  

152  TAM 109  1991  C  TX  PI554606  TAMW-101 *5/ CI9321  

153  TAM 110  1996  C  TX  PI595757  TAM 107*5/Largo  

154  TAM 111  2002  C  TX  PI631352  TAM 107 // TX78V3630 / Centurk 78 /3/ TX87V1233 

= TAM 107 /4/ Sturdy sib / Kaw // Centurk /3/ Centurk 

78 /5/ Sturdy sub / Kaw // Centurk /3/ Jupetaco / 

Bluejay  

155  TAM 112  2007  C  TX  PI643143  TAM 200/TA2460 (U1254-7-9-2-1)//(TXGH10440) 

TAM 107*5/Largo  

170  TAM 113  2013  C  TX  PI 666125  TX90V6313/TX94V3724  

156  TAM 200  1986  C  TX  PI578255  Sturdy sib / Tascosa // Centurk *3/3/ Amigo  

157  TAM 202  1992  C  TX  PI561933  Siouxland outcross  

158  TAM 203  2009  C  TX  PI655960  TX89V4132/704 L I-2221  

159  TAM 302  1998  C  TX  PI605910  Probrand 812 / Caldwell // (TX86D1310) TAM300 sib  

160  TAM 303  2006  C  TX  .  TX89D1253*2/TTCC404 (=WX93D208-9-1-2)  

161  TAM 304  2009  C  TX  PI655234  TX92U3060/TX91D6564  

162  TAM 400  2001  C  TX  PI614876  TAM-200//(TX82D5668) Era/TAMW-101  

169  TAM 401  2010  C  TX  PI658500  Mason/Jagger  

149  TAM W-

101  

1971  C  TX  CItr15324  Norin 10 /3/ Nebraska 60 // Mediterranean / Hope /4/ 

Bison  

221  TASCOSA  1959  C  TX  CItr13023  Kanred / Hard Federation // Tenmarq /3/ Mediterranean 

/ Hope /4/ Cimarron  

59  KHARKOF  1900  L  Ukrain

e  

PI5641  KHARKOF  



249 

Appendix B - The mean values for germination %, germination index, mean daily 

germination and germination rate of 292 winter wheat genotypes treated with three level of salinity 

(0, 60 and 120 mM/L-1). 

Genotype  name Salinity 

level 

Germination 

% 

Std 

Dev 

Germination 

index 

Std 

Dev 

Mean daily 

germination 

Std 

Dev 

Germination 

Rate 

Std 

Dev 

TRIUMPH64 0 98.8 2.5 100 0 6.6 0.17 2.2 0.01 

CHISHOLM 0 97.5 2.9 100 0 6.5 0.19 2.2 0.04 

CUSTER 0 96.3 4.8 100 0 6.4 0.32 2.1 0.05 

2174-05 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

INTRADA 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

OK101 0 97.5 2.9 100 0 6.5 0.19 2.2 0.04 

OK102 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

ENDURANCE 0 96.3 4.8 100 0 6.4 0.32 2.1 0.03 

DELIVER 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

OK_BULLET 0 100.0 0.0 100 0 6.7 0.00 2.1 0.04 

CENTERFIELD 0 98.8 2.5 100 0 6.2 0.96 2.2 0.05 

GUYMON 0 98.8 2.5 100 0 8.2 1.79 2.0 0.03 

DUSTER 0 97.5 5.0 100 0 6.5 0.33 2.2 0.03 

OK_RISING 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

OK02405 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

PETE 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

BILLINGS 0 96.3 7.5 100 0 6.4 0.50 2.1 0.04 

OK04505 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

OK04525 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

OK04507 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

OK05830 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

OK04111 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

OK04415 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

OK05711W 0 97.5 5.0 100 0 6.5 0.33 2.2 0.06 

OK05723W 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

OK05108 0 98.8 2.5 100 0 7.4 1.42 2.1 0.06 

OK05122 0 97.5 5.0 100 0 6.5 0.33 2.1 0.02 

OK05526 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

OK05134 0 98.8 2.5 100 0 6.2 0.79 2.2 0.06 

OK05303 0 98.8 2.5 100 0 6.2 0.79 2.2 0.03 

OK05312 0 98.8 2.5 100 0 6.2 0.79 2.2 0.05 

OK05511 0 98.8 2.5 100 0 6.2 0.79 2.2 0.04 

OK05204 0 98.8 2.5 100 0 6.2 0.79 2.2 0.04 

GARRISON 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 
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OK06114 0 96.3 7.5 100 0 6.4 0.50 2.2 0.04 

OK06210 0 100.0 0.0 100 0 6.3 0.83 2.2 0.06 

OK06319 0 98.8 2.5 100 0 6.6 0.17 2.2 0.06 

OK06318 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

OK06336 0 97.5 5.0 100 0 6.5 0.33 2.2 0.02 

AGATE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.00 

ALLIANCE 0 98.8 2.5 100 0 6.2 0.79 2.2 0.04 

ANTELOPE 0 98.8 2.5 100 0 6.2 0.79 2.2 0.05 

ARAPAHOE 0 98.8 2.5 100 0 6.2 0.79 2.2 0.07 

BENNETT 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

BUCKSKIN 0 100.0 0.0 100 0 6.7 0.00 2.2 0.05 

CENTURK78 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

CHEYENNE 0 97.5 5.0 100 0 7.3 1.17 2.1 0.04 

COLT 0 100.0 0.0 100 0 6.3 0.83 2.2 0.04 

COUGAR 0 98.8 2.5 100 0 7.4 1.73 2.1 0.05 

CULVER 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

GAGE 0 98.8 2.5 100 0 8.2 1.79 2.0 0.03 

GOODSTREAK 0 100.0 0.0 100 0 7.5 1.67 2.1 0.06 

HALLAM 0 97.5 5.0 100 0 7.3 1.81 2.1 0.05 

HARRY 0 98.8 2.5 100 0 6.2 0.79 2.2 0.04 

HOMESTEAD 0 100.0 0.0 100 0 7.5 1.67 2.1 0.06 

INFINITY_CL 0 98.8 2.5 100 0 6.6 0.17 2.1 0.06 

KHARKOF 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

MILLENNIUM 0 100.0 0.0 100 0 7.5 1.67 2.1 0.06 

CAMELOT 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

OVERLAND 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

NE99495 0 100.0 0.0 100 0 8.3 1.92 2.0 0.05 

NIOBRARA 0 98.8 2.5 100 0 6.6 0.17 2.1 0.04 

NUPLAINS 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

PRONGHORN 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

RAWHIDE 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

REDLAND 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

SCOUT66 0 100.0 0.0 100 0 6.7 0.00 2.1 0.04 

SIOUXLAND 0 97.5 2.9 100 0 6.1 0.92 2.2 0.03 

TURKEY_NEBSEL 0 97.5 2.9 100 0 6.5 0.19 2.2 0.00 

VISTA 0 97.5 2.9 100 0 6.1 0.74 2.1 0.07 

WAHOO 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

WARRIOR 0 100.0 0.0 100 0 8.3 1.92 2.1 0.09 

WESLEY 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

WICHITA 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

WINDSTAR 0 98.8 2.5 100 0 6.2 0.79 2.2 0.05 
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LANCER 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

ANTON 0 97.5 5.0 100 0 7.3 1.81 2.1 0.06 

MACE 0 98.8 2.5 100 0 5.8 1.04 2.2 0.03 

TAM107-R7 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

ARLIN 0 96.3 4.8 100 0 6.0 0.72 2.2 0.04 

ALICE 0 100.0 0.0 100 0 6.3 0.83 2.2 0.07 

DARRELL 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

EXPEDITION 0 97.5 2.9 100 0 6.5 0.19 2.1 0.00 

WENDY 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

SD00111-9 0 97.5 2.9 100 0 6.5 0.19 2.1 0.03 

SD01237 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

SD01058 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

SD05118 0 100.0 0.0 100 0 6.7 0.00 2.1 0.05 

SD05210 0 96.3 2.5 100 0 6.4 0.17 2.2 0.05 

SD05W018 0 97.5 2.9 100 0 6.5 0.19 2.1 0.02 

NEKOTA 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

TANDEM 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

CRIMSON 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

ROSE 0 97.5 2.9 100 0 6.5 0.19 2.2 0.00 

DAWN 0 97.5 5.0 100 0 6.5 0.33 2.1 0.06 

WINOKA 0 97.5 2.9 100 0 6.5 0.19 2.3 0.02 

NELL 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

RITA 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

BRONZE 0 98.8 2.5 100 0 6.6 0.17 2.3 0.02 

HUME 0 97.5 5.0 100 0 6.5 0.33 2.2 0.03 

GENT 0 96.3 4.8 100 0 6.4 0.32 2.1 0.05 

HARDING 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

HV9W03-1551WP 0 100.0 0.0 100 0 6.7 0.00 2.2 0.05 

G1878 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

HV9W03-1379R 0 98.8 2.5 100 0 6.6 0.17 2.3 0.01 

HV9W03-1596R 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

HV9W05-1280R 0 97.5 5.0 100 0 6.5 0.33 2.1 0.02 

HV9W06-504 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

SPARTAN 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

HV906-865 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

TARKIO 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

SMOKYHILL 0 93.8 2.5 100 0 6.3 0.17 2.2 0.03 

SHOCKER 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

VONA 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

CO940610 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

AVALANCHE 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 
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BOND_CL 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

PLATTE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

LINDON 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

CO03W043 0 100.0 0.0 100 0 6.7 0.00 2.2 0.05 

SNOWMASS 0 96.3 4.8 100 0 6.4 0.32 2.1 0.03 

THUNDER_CL 0 97.5 5.0 100 0 6.5 0.33 2.1 0.05 

CO04025 0 97.5 2.9 100 0 6.1 0.74 2.3 0.04 

CO04393 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

CO04499 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

CO04W320 0 98.8 2.5 100 0 7.4 1.42 2.1 0.04 

LAMAR 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

CARSON 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

HAIL 0 97.5 2.9 100 0 6.5 0.19 2.3 0.01 

SANDY 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

DUKE 0 96.3 4.8 100 0 6.4 0.32 2.2 0.02 

HALT 0 100.0 0.0 100 0 6.7 0.00 2.2 0.05 

HATCHER 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

PRAIRIE_RED 0 97.5 5.0 100 0 6.5 0.33 2.2 0.02 

ABOVE 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

CO03064 0 97.5 2.9 100 0 6.5 0.19 2.2 0.03 

BILL_BROWN 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

RIPPER 0 97.5 2.9 100 0 6.5 0.19 2.2 0.02 

PROWERS 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

AKRON 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

JULES 0 100.0 0.0 100 0 6.7 0.00 2.1 0.04 

YUMA 0 97.5 2.9 100 0 6.5 0.19 2.2 0.03 

TAMW-101 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

TAM105 0 98.8 2.5 100 0 6.2 0.79 2.2 0.05 

TAM107 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

TAM109 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

TAM110 0 98.8 2.5 100 0 6.2 0.96 2.2 0.03 

TAM111 0 96.3 4.8 100 0 6.4 0.32 2.2 0.01 

TAM112 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

TAM200 0 98.8 2.5 100 0 6.2 0.79 2.2 0.07 

TAM202 0 96.3 4.8 100 0 6.4 0.32 2.2 0.02 

TAM203 0 96.3 4.8 100 0 6.4 0.32 2.2 0.05 

TAM302 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

TAM303 0 100.0 0.0 100 0 7.5 1.67 2.1 0.09 

TAM304 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

TAM400 0 97.5 2.9 100 0 7.3 1.78 2.2 0.13 

LOCKETT 0 100.0 0.0 100 0 7.5 1.67 2.1 0.06 
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STURDY 0 97.5 2.9 100 0 6.5 0.19 2.1 0.02 

STURDY_2K 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

MIT 0 97.5 2.9 100 0 6.5 0.19 2.2 0.02 

CAPROCK 0 97.5 5.0 100 0 6.5 0.33 2.1 0.05 

TX01A5936 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

TAM401 0 100.0 0.0 100 0 6.3 0.83 2.1 0.07 

TX02A0252 0 97.5 2.9 100 0 6.5 0.19 2.3 0.04 

TX03A0148 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

TX03A0563 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

TX04A001246 0 95.0 4.1 100 0 6.3 0.27 2.1 0.03 

TX01V5134RC-3 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

TX04M410164 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

TX04M410211 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

TX04V075080 0 97.5 2.9 100 0 6.5 0.19 2.1 0.03 

TX99A0153-1 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

TX01M5009-28 0 98.8 2.5 100 0 6.2 0.79 2.2 0.07 

TX00V1131 0 96.3 2.5 100 0 8.0 1.98 2.0 0.05 

TX99U8618 0 100.0 0.0 100 0 7.5 1.67 2.1 0.04 

TX96D1073 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

2180 0 95.0 7.1 100 0 6.3 0.47 2.1 0.01 

HG-9 0 96.3 2.5 100 0 7.2 1.54 2.1 0.04 

TX86A5606 0 98.8 2.5 100 0 7.4 1.42 2.1 0.04 

TX86A8072 0 100.0 0.0 100 0 7.5 1.67 2.1 0.03 

CREST 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

ROSEBUD 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

JUDITH 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

MT85200 0 100.0 0.0 100 0 7.5 1.67 2.0 0.03 

NUSKY 0 97.5 2.9 100 0 5.7 0.95 2.2 0.07 

MT9513 0 98.8 2.5 100 0 7.4 1.42 2.1 0.05 

MT9904 0 97.5 5.0 100 0 7.3 1.81 2.1 0.05 

NORRIS 0 98.8 2.5 100 0 6.6 0.17 2.1 0.00 

YELLOWSTONE 0 100.0 0.0 100 0 6.7 0.00 2.1 0.04 

MT0495 0 98.8 2.5 100 0 6.6 0.17 2.1 0.00 

MTS0531 0 98.8 2.5 100 0 8.2 1.79 2.1 0.05 

DECADE 0 97.5 2.9 100 0 6.5 0.19 2.1 0.05 

MT06103 0 96.3 4.8 100 0 6.4 0.32 2.2 0.02 

JUDEE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

LAKIN 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

STANTON 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

TREGO 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

KARL_92 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 
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DODGE 0 96.3 4.8 100 0 6.4 0.32 2.2 0.02 

NORKAN 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

CHENEY 0 98.8 2.5 100 0 6.6 0.17 2.1 0.00 

NEWTON 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

LARNED 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

PARKER76 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

KIRWIN 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

SAGE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

TRISON 0 96.3 4.8 100 0 6.4 0.32 2.1 0.04 

EAGLE 0 97.5 2.9 100 0 6.5 0.19 2.2 0.04 

SHAWNEE 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

PARKER 0 98.8 2.5 100 0 6.6 0.17 2.1 0.00 

KAW61 0 96.3 7.5 100 0 6.4 0.50 2.1 0.02 

TASCOSA 0 97.5 2.9 100 0 8.1 1.64 2.0 0.03 

BISON 0 97.5 2.9 100 0 6.5 0.19 2.2 0.01 

KIOWA 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

WICHITA 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

COMANCHE 0 97.5 2.9 100 0 7.3 1.48 2.0 0.03 

BAKERS_WHITE 0 95.0 7.1 100 0 6.3 0.47 2.1 0.03 

BURCHETT 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

CUTTER 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

DUMAS 0 96.3 4.8 100 0 6.4 0.32 2.2 0.02 

HONDO 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

JAGALENE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

LONGHORN 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

NEOSHO 0 98.8 2.5 100 0 6.6 0.17 2.1 0.02 

OGALLALA 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

POSTROCK 0 96.3 4.8 100 0 6.4 0.32 2.1 0.03 

THUNDERBOLT 0 97.5 2.9 100 0 6.5 0.19 2.2 0.05 

W04-417 0 97.5 2.9 100 0 6.5 0.19 2.1 0.02 

NUFRONTIER 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

NUHORIZON 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

ONAGA 0 98.8 2.5 100 0 7.4 1.42 2.1 0.04 

RONL 0 98.8 2.5 100 0 6.6 0.17 2.2 0.00 

2145 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

HEYNE 0 96.3 4.8 100 0 6.4 0.32 2.2 0.04 

KS00F5-20-3 0 96.3 4.8 100 0 6.4 0.32 2.1 0.05 

OVERLEY 0 98.8 2.5 100 0 6.6 0.17 2.2 0.01 

FULLER 0 97.5 2.9 100 0 6.5 0.19 2.1 0.04 

COSSACK 0 96.3 4.8 100 0 6.4 0.32 2.1 0.03 

ENHANCER 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 
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SANTA_FE 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

VENANGO 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

WB411W 0 100.0 0.0 100 0 6.7 0.00 2.1 0.05 

KEOTA 0 97.5 2.9 100 0 6.5 0.19 2.2 0.05 

TX05A001822 0 96.3 4.8 100 0 6.4 0.32 2.2 0.05 

TX06A001263 0 98.8 2.5 100 0 6.6 0.17 2.2 0.01 

TX06A001132 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

TX06A001281 0 97.5 5.0 100 0 6.5 0.33 2.2 0.04 

TX06A001386 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

TX05V7259 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

TX05V7269 0 98.8 2.5 100 0 6.6 0.17 2.2 0.02 

TX05A001188 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

TX07A001279 0 97.5 5.0 100 0 6.5 0.33 2.2 0.04 

TX07A001318 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

TX07A001420 0 100.0 0.0 100 0 6.7 0.00 2.1 0.04 

TX06V7266 0 98.8 2.5 100 0 6.6 0.17 2.2 0.00 

OK1067071 0 96.3 4.8 100 0 6.4 0.32 2.1 0.04 

OK1067274 0 100.0 0.0 100 0 6.7 0.00 2.2 0.04 

OK1068002 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

OK1068009 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

OK1068026 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

OK1068112 0 98.8 2.5 100 0 6.6 0.17 2.2 0.04 

OK1070275 0 100.0 0.0 100 0 6.7 0.00 2.2 0.00 

OK1070267 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

OK09634 0 97.5 2.9 100 0 6.5 0.19 2.2 0.03 

OK10119 0 97.5 2.9 100 0 6.5 0.19 2.2 0.04 

GALLAGHER 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

OK07231 0 98.8 2.5 100 0 6.6 0.17 2.1 0.04 

OK07S117 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

OK08328 0 98.8 2.5 100 0 6.6 0.17 2.1 0.00 

BIG_SKY 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

DANBY 0 98.8 2.5 100 0 6.6 0.17 2.2 0.05 

E2041 0 97.5 5.0 100 0 6.5 0.33 2.2 0.03 

DENALI 0 96.3 4.8 100 0 6.4 0.32 2.1 0.02 

CO050337-2 0 96.3 7.5 100 0 6.4 0.50 2.1 0.05 

BYRD 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

CO07W245 0 100.0 0.0 100 0 6.7 0.00 2.2 0.03 

MCGILL 0 96.3 4.8 100 0 6.4 0.32 2.2 0.05 

NE02558 0 97.5 5.0 100 0 6.5 0.33 2.1 0.02 

NW03666 0 98.8 2.5 100 0 6.6 0.17 2.2 0.00 

NE04490 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 
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NE05430 0 100.0 0.0 100 0 6.3 0.83 2.2 0.08 

NE05496 0 98.8 2.5 100 0 6.6 0.17 2.2 0.03 

NE05548 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

NE06545 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

NE06607 0 98.8 2.5 100 0 6.6 0.17 2.1 0.03 

ROBIDOUX 0 100.0 0.0 100 0 6.7 0.00 2.1 0.03 

NI06736 0 98.8 2.5 100 0 6.6 0.17 2.1 0.05 

NI06737 0 96.3 4.8 100 0 6.4 0.32 2.1 0.04 

NI07703 0 97.5 5.0 100 0 7.3 1.81 2.1 0.05 

NI08707 0 97.5 5.0 100 0 6.5 0.33 2.2 0.02 

NI08708 0 96.3 4.8 100 0 6.4 0.32 2.2 0.04 

EVEREST 0 97.5 5.0 100 0 6.5 0.33 2.1 0.03 

TRIUMPH64 60 90.0 7.1 91.2 7.5 3.8 0.66 2.9 0.17 

CHISHOLM 60 90.0 7.1 92.4 8.6 4.0 0.50 2.7 0.11 

CUSTER 60 88.8 2.5 92.4 5.1 4.2 1.24 2.8 0.20 

2174-05 60 87.5 6.5 88.6 5.0 3.9 0.46 2.7 0.18 

INTRADA 60 91.3 2.5 92.4 2.8 3.9 0.43 2.9 0.13 

OK101 60 91.3 2.5 93.6 2.4 3.7 0.10 3.0 0.12 

OK102 60 92.5 5.0 93.6 2.8 3.7 0.20 3.0 0.11 

ENDURANCE 60 93.8 2.5 97.6 6.7 4.5 0.45 2.5 0.15 

DELIVER 60 93.8 2.5 96.4 6.5 3.8 0.10 3.0 0.09 

OK_BULLET 60 92.5 2.9 92.5 2.9 3.9 0.55 3.0 0.14 

CENTERFIELD 60 82.5 2.9 83.6 2.4 3.5 0.35 2.9 0.23 

GUYMON 60 96.3 2.5 97.5 2.9 5.6 1.02 2.5 0.15 

DUSTER 60 85.0 0.0 87.4 4.7 3.4 0.00 2.9 0.15 

OK_RISING 60 88.8 2.5 88.8 2.5 3.8 0.49 2.8 0.12 

OK02405 60 92.5 2.9 93.7 2.5 3.7 0.12 2.9 0.08 

PETE 60 93.8 2.5 94.9 0.1 4.0 0.52 3.0 0.21 

BILLINGS 60 81.3 2.5 84.8 6.7 3.3 0.10 3.0 0.20 

OK04505 60 92.5 2.9 92.5 2.9 3.9 0.39 2.8 0.23 

OK04525 60 90.0 4.1 90.0 4.1 3.6 0.16 2.8 0.04 

OK04507 60 93.8 2.5 93.8 2.5 4.0 0.35 2.7 0.12 

OK05830 60 91.3 2.5 93.8 4.8 3.9 0.43 2.9 0.18 

OK04111 60 93.8 2.5 95.0 4.1 3.8 0.10 3.1 0.27 

OK04415 60 91.3 2.5 91.3 2.5 3.9 0.43 3.0 0.15 

OK05711W 60 93.8 2.5 96.4 6.5 3.8 0.10 2.9 0.12 

OK05723W 60 95.0 0.0 95.0 0.0 3.8 0.00 2.9 0.05 

OK05108 60 95.0 0.0 96.3 2.5 3.8 0.00 3.0 0.05 

OK05122 60 86.3 2.5 88.6 4.5 3.5 0.10 3.1 0.17 

OK05526 60 92.5 2.9 92.5 2.9 3.7 0.12 3.1 0.08 

OK05134 60 93.8 2.5 95.0 4.1 3.8 0.10 3.0 0.05 
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OK05303 60 91.3 2.5 92.4 2.8 3.7 0.10 3.0 0.04 

OK05312 60 93.8 2.5 95.0 4.1 4.0 0.52 3.0 0.16 

OK05511 60 91.3 4.8 92.5 6.5 3.7 0.19 3.0 0.18 

OK05204 60 93.8 2.5 95.0 4.1 3.8 0.10 3.1 0.11 

GARRISON 60 95.0 0.0 97.6 5.3 4.3 0.55 2.8 0.22 

OK06114 60 93.8 2.5 97.9 9.5 3.8 0.10 3.1 0.13 

OK06210 60 93.8 2.5 93.8 2.5 3.8 0.10 2.8 0.05 

OK06319 60 92.5 2.9 93.7 2.5 3.7 0.12 3.1 0.03 

OK06318 60 85.0 16.8 85.0 16.8 3.4 0.67 3.1 0.14 

OK06336 60 95.0 0.0 97.6 5.3 3.8 0.00 2.9 0.18 

AGATE 60 93.8 2.5 94.9 0.1 4.0 0.52 2.9 0.10 

ALLIANCE 60 91.3 7.5 92.5 8.7 3.7 0.30 2.9 0.04 

ANTELOPE 60 95.0 0.0 96.3 2.5 3.8 0.00 3.1 0.05 

ARAPAHOE 60 95.0 0.0 96.3 2.5 4.3 0.55 2.9 0.19 

BENNETT 60 95.0 0.0 95.0 0.0 3.8 0.00 3.1 0.11 

BUCKSKIN 60 92.5 2.9 92.5 2.9 3.7 0.12 2.8 0.05 

CENTURK78 60 95.0 0.0 96.3 2.5 4.0 0.48 2.9 0.18 

CHEYENNE 60 95.0 0.0 97.6 5.3 4.0 0.48 2.9 0.25 

COLT 60 92.5 2.9 92.5 2.9 3.7 0.12 2.9 0.12 

COUGAR 60 93.8 4.8 94.9 4.1 4.0 0.54 2.8 0.15 

CULVER 60 95.0 4.1 96.2 2.5 3.8 0.16 3.0 0.07 

GAGE 60 96.3 2.5 97.5 2.9 4.8 0.13 2.6 0.02 

GOODSTREAK 60 95.0 4.1 95.0 4.1 3.8 0.16 3.0 0.09 

HALLAM 60 93.8 2.5 96.4 6.5 3.8 0.10 3.1 0.03 

HARRY 60 95.0 0.0 96.3 2.5 3.8 0.00 3.1 0.12 

HOMESTEAD 60 93.8 4.8 93.8 4.8 4.0 0.39 2.8 0.10 

INFINITY_CL 60 93.8 2.5 94.9 0.1 3.8 0.10 2.9 0.12 

KHARKOF 60 93.8 2.5 93.8 2.5 4.2 0.49 2.7 0.13 

MILLENNIUM 60 92.5 2.9 92.5 2.9 3.7 0.12 3.0 0.04 

CAMELOT 60 96.3 2.5 97.5 2.9 3.9 0.10 3.0 0.11 

OVERLAND 60 95.0 0.0 96.3 2.5 3.8 0.00 3.0 0.09 

NE99495 60 96.3 2.5 96.3 2.5 3.9 0.10 2.9 0.09 

NIOBRARA 60 92.5 2.9 93.8 4.8 3.9 0.55 2.8 0.21 

NUPLAINS 60 93.8 4.8 95.0 5.8 4.0 0.54 2.7 0.04 

PRONGHORN 60 93.8 2.5 94.9 0.1 4.0 0.35 2.9 0.17 

RAWHIDE 60 92.5 2.9 93.8 4.8 3.7 0.12 2.9 0.13 

REDLAND 60 95.0 4.1 96.3 6.4 3.8 0.16 3.0 0.15 

SCOUT66 60 92.5 2.9 92.5 2.9 3.7 0.12 3.0 0.05 

SIOUXLAND 60 83.8 2.5 85.9 2.4 3.6 0.30 2.8 0.19 

TURKEY_NEBSEL 60 95.0 0.0 97.5 2.9 3.8 0.00 3.1 0.04 

VISTA 60 91.3 2.5 93.6 2.4 3.9 0.43 2.8 0.19 
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WAHOO 60 93.8 4.8 93.8 4.8 3.8 0.19 3.1 0.17 

WARRIOR 60 95.0 4.1 95.0 4.1 4.0 0.50 2.8 0.20 

WESLEY 60 93.8 2.5 95.0 4.1 4.0 0.52 2.9 0.09 

WICHITA 60 93.8 6.3 93.8 6.3 3.8 0.25 2.9 0.06 

WINDSTAR 60 93.8 6.3 94.9 4.3 3.8 0.25 3.1 0.17 

LANCER 60 92.5 2.9 92.5 2.9 3.7 0.12 3.0 0.12 

ANTON 60 91.3 2.5 93.8 4.8 3.7 0.10 2.9 0.21 

MACE 60 93.8 4.8 95.1 7.2 3.8 0.19 2.9 0.09 

TAM107-R7 60 92.5 2.9 93.7 2.5 3.7 0.12 2.9 0.03 

ARLIN 60 93.8 2.5 97.5 2.9 3.8 0.10 3.0 0.14 

ALICE 60 96.3 2.5 96.3 2.5 3.9 0.10 2.9 0.18 

DARRELL 60 95.0 0.0 96.3 2.5 4.0 0.48 2.9 0.23 

EXPEDITION 60 92.5 2.9 94.9 4.1 3.7 0.12 3.0 0.08 

WENDY 60 96.3 2.5 96.3 2.5 3.9 0.10 3.0 0.03 

SD00111-9 60 93.8 2.5 96.3 4.8 3.8 0.10 3.0 0.07 

SD01237 60 93.8 2.5 94.9 0.1 4.0 0.52 2.9 0.20 

SD01058 60 96.3 2.5 97.5 2.9 4.1 0.45 2.9 0.23 

SD05118 60 95.0 0.0 95.0 0.0 4.7 1.20 2.7 0.22 

SD05210 60 91.3 7.5 94.8 7.4 4.3 1.40 2.8 0.20 

SD05W018 60 93.8 2.5 96.3 4.8 3.8 0.10 3.0 0.11 

NEKOTA 60 95.0 0.0 96.3 2.5 4.0 0.48 2.9 0.17 

TANDEM 60 95.0 0.0 97.6 5.3 3.8 0.00 3.0 0.06 

CRIMSON 60 96.3 2.5 96.3 2.5 3.9 0.10 3.0 0.11 

ROSE 60 91.3 4.8 93.7 6.3 4.1 0.51 2.8 0.18 

DAWN 60 96.3 2.5 98.9 5.0 3.9 0.10 3.0 0.07 

WINOKA 60 93.8 2.5 96.3 4.8 3.8 0.10 2.9 0.09 

NELL 60 93.8 2.5 95.0 4.1 4.2 0.61 2.8 0.17 

RITA 60 93.8 4.8 95.1 7.2 3.8 0.19 2.9 0.18 

BRONZE 60 95.0 4.1 96.3 4.8 3.8 0.16 3.0 0.12 

HUME 60 93.8 6.3 96.1 2.6 3.8 0.25 3.0 0.12 

GENT 60 93.8 2.5 97.6 5.3 3.8 0.10 2.9 0.15 

HARDING 60 93.8 4.8 93.8 4.8 3.8 0.19 3.0 0.09 

HV9W03-1551WP 60 95.0 0.0 95.0 0.0 3.8 0.00 2.9 0.04 

G1878 60 93.8 2.5 93.8 2.5 3.8 0.10 2.9 0.13 

HV9W03-1379R 60 95.0 4.1 96.2 2.5 3.8 0.16 3.0 0.07 

HV9W03-1596R 60 93.8 2.5 95.0 4.1 3.8 0.10 2.9 0.06 

HV9W05-1280R 60 93.8 2.5 96.3 2.5 3.8 0.10 3.0 0.12 

HV9W06-504 60 95.0 0.0 96.3 2.5 3.8 0.00 3.1 0.11 

SPARTAN 60 93.8 2.5 94.9 0.1 3.8 0.10 3.0 0.08 

HV906-865 60 95.0 0.0 95.0 0.0 3.8 0.00 3.0 0.13 

TARKIO 60 93.8 2.5 95.0 4.1 3.8 0.10 2.9 0.03 
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SMOKYHILL 60 85.0 0.0 90.7 2.5 3.6 0.43 2.9 0.13 

SHOCKER 60 93.8 2.5 94.9 0.1 4.0 0.52 2.8 0.14 

VONA 60 93.8 4.8 93.8 4.8 3.8 0.19 3.0 0.14 

CO940610 60 93.8 2.5 93.8 2.5 3.8 0.10 3.0 0.10 

AVALANCHE 60 97.5 2.9 98.8 2.5 4.8 1.10 2.8 0.29 

BOND_CL 60 93.8 2.5 93.8 2.5 3.8 0.10 2.9 0.07 

PLATTE 60 93.8 2.5 95.0 4.1 3.8 0.10 3.0 0.07 

LINDON 60 95.0 4.1 96.3 4.8 3.8 0.16 3.0 0.11 

CO03W043 60 96.3 2.5 96.3 2.5 3.9 0.10 3.0 0.08 

SNOWMASS 60 92.5 2.9 96.2 2.5 3.9 0.39 2.8 0.20 

THUNDER_CL 60 93.8 2.5 96.4 6.5 3.8 0.10 2.9 0.09 

CO04025 60 95.0 4.1 97.4 3.0 3.8 0.16 3.0 0.10 

CO04393 60 92.5 2.9 95.1 7.3 3.9 0.55 2.8 0.15 

CO04499 60 95.0 0.0 95.0 0.0 3.8 0.00 3.1 0.18 

CO04W320 60 77.5 5.0 78.6 6.0 4.5 0.64 2.6 0.01 

LAMAR 60 93.8 4.8 93.8 4.8 4.2 0.64 2.7 0.11 

CARSON 60 86.3 2.5 87.4 2.7 3.9 0.44 3.0 0.33 

HAIL 60 88.8 2.5 91.1 4.7 3.6 0.10 2.9 0.11 

SANDY 60 93.8 2.5 93.8 2.5 3.8 0.10 2.9 0.09 

DUKE 60 95.0 0.0 98.9 5.0 3.8 0.00 3.0 0.06 

HALT 60 93.8 2.5 93.8 2.5 3.8 0.10 3.0 0.07 

HATCHER 60 82.5 2.9 82.5 2.9 3.3 0.12 3.3 0.25 

PRAIRIE_RED 60 93.8 2.5 96.4 6.5 3.8 0.10 3.0 0.11 

ABOVE 60 96.3 2.5 96.3 2.5 3.9 0.10 3.0 0.03 

CO03064 60 93.8 2.5 96.3 4.8 3.8 0.10 3.0 0.08 

BILL_BROWN 60 88.8 2.5 89.9 4.0 3.6 0.10 3.2 0.27 

RIPPER 60 91.3 2.5 93.6 2.4 3.7 0.10 3.0 0.12 

PROWERS 60 93.8 2.5 95.0 4.1 3.8 0.10 3.0 0.15 

AKRON 60 92.5 2.9 92.5 2.9 3.7 0.12 3.0 0.13 

JULES 60 93.8 4.8 93.8 4.8 3.8 0.19 2.9 0.15 

YUMA 60 93.8 2.5 96.2 2.5 3.8 0.10 3.1 0.15 

TAMW-101 60 93.8 2.5 96.4 6.5 3.8 0.10 3.1 0.07 

TAM105 60 95.0 0.0 96.3 2.5 3.8 0.00 3.0 0.07 

TAM107 60 91.3 2.5 92.5 5.0 3.7 0.10 2.9 0.13 

TAM109 60 96.3 2.5 97.6 5.1 3.9 0.10 3.0 0.07 

TAM110 60 93.8 2.5 95.0 4.1 3.8 0.10 2.9 0.15 

TAM111 60 95.0 0.0 98.9 5.0 3.8 0.00 3.0 0.13 

TAM112 60 93.8 2.5 95.0 4.1 3.8 0.10 3.0 0.13 

TAM200 60 95.0 4.1 96.2 2.5 4.0 0.50 2.8 0.15 

TAM202 60 78.8 4.8 81.8 2.8 3.3 0.32 2.9 0.13 

TAM203 60 95.0 0.0 98.9 5.0 4.0 0.48 3.0 0.26 
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TAM302 60 95.0 0.0 95.0 0.0 3.8 0.00 2.9 0.05 

TAM303 60 87.5 2.9 87.5 2.9 3.5 0.12 3.0 0.07 

TAM304 60 93.8 2.5 95.0 4.1 4.0 0.52 2.9 0.16 

TAM400 60 80.0 0.0 82.1 2.4 3.2 0.00 3.2 0.06 

LOCKETT 60 93.8 2.5 93.8 2.5 3.8 0.10 3.2 0.23 

STURDY 60 85.0 4.1 87.2 4.8 3.8 0.38 2.9 0.25 

STURDY_2K 60 93.8 6.3 95.0 7.1 3.8 0.25 3.2 0.23 

MIT 60 87.5 6.5 89.7 4.4 4.6 1.05 2.8 0.32 

CAPROCK 60 92.5 2.9 95.0 4.1 3.7 0.12 2.9 0.12 

TX01A5936 60 95.0 4.1 95.0 4.1 3.8 0.16 3.0 0.16 

TAM401 60 95.0 4.1 95.0 4.1 4.0 0.50 2.9 0.26 

TX02A0252 60 95.0 0.0 97.5 2.9 3.8 0.00 2.9 0.10 

TX03A0148 60 88.8 2.5 88.8 2.5 3.6 0.10 3.1 0.05 

TX03A0563 60 87.5 2.9 88.6 2.4 3.5 0.12 3.0 0.14 

TX04A001246 60 91.3 4.8 96.1 5.0 4.1 0.35 2.8 0.27 

TX01V5134RC-3 60 97.5 2.9 97.5 2.9 3.9 0.12 2.9 0.09 

TX04M410164 60 90.0 4.1 91.2 4.7 3.6 0.16 3.0 0.23 

TX04M410211 60 95.0 0.0 96.3 2.5 4.0 0.48 2.8 0.14 

TX04V075080 60 85.0 0.0 87.2 2.6 3.4 0.00 3.1 0.07 

TX99A0153-1 60 87.5 6.5 87.5 6.5 4.2 0.68 2.6 0.13 

TX01M5009-28 60 87.5 5.0 88.6 4.7 3.5 0.20 2.9 0.05 

TX00V1131 60 92.5 2.9 96.1 2.6 3.7 0.12 3.0 0.07 

TX99U8618 60 93.8 4.8 93.8 4.8 3.8 0.19 2.9 0.13 

TX96D1073 60 91.3 4.8 92.5 6.5 4.3 0.41 2.7 0.27 

2180 60 95.0 4.1 100.5 9.8 3.8 0.16 2.9 0.15 

HG-9 60 88.8 4.8 92.3 6.5 3.6 0.19 3.0 0.12 

TX86A5606 60 95.0 4.1 96.3 4.8 4.0 0.33 2.8 0.12 

TX86A8072 60 90.0 4.1 90.0 4.1 4.5 0.20 2.6 0.04 

CREST 60 96.3 7.5 96.3 7.5 4.1 0.13 2.9 0.23 

ROSEBUD 60 95.0 0.0 96.3 2.5 3.8 0.00 2.9 0.04 

JUDITH 60 91.3 4.8 92.5 6.5 4.1 0.51 2.8 0.22 

MT85200 60 92.5 5.0 92.5 5.0 4.4 0.46 2.6 0.11 

NUSKY 60 91.3 6.3 93.7 7.7 3.7 0.25 2.9 0.10 

MT9513 60 91.3 4.8 92.4 3.0 4.1 0.73 2.7 0.12 

MT9904 60 93.8 2.5 96.4 6.5 4.0 0.35 2.8 0.16 

NORRIS 60 91.3 4.8 92.4 5.0 3.7 0.19 2.9 0.12 

YELLOWSTONE 60 95.0 4.1 95.0 4.1 3.8 0.16 2.9 0.14 

MT0495 60 92.5 2.9 93.7 2.5 3.7 0.12 3.0 0.09 

MTS0531 60 98.8 2.5 100.1 4.2 4.9 1.26 2.7 0.19 

DECADE 60 95.0 4.1 97.6 6.6 3.8 0.16 3.0 0.05 

MT06103 60 88.8 2.5 92.4 6.4 4.0 0.46 2.7 0.14 
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JUDEE 60 88.8 2.5 89.9 4.0 3.6 0.10 3.0 0.14 

LAKIN 60 91.3 2.5 92.4 2.8 3.7 0.10 3.1 0.05 

STANTON 60 92.5 2.9 93.8 4.8 3.7 0.12 3.0 0.14 

TREGO 60 90.0 4.1 91.2 4.7 4.3 0.33 2.6 0.15 

KARL_92 60 92.5 5.0 93.8 6.3 3.7 0.20 2.9 0.05 

DODGE 60 93.8 4.8 97.6 6.6 3.8 0.19 2.9 0.13 

NORKAN 60 93.8 2.5 95.0 4.1 3.8 0.10 2.9 0.07 

CHENEY 60 91.3 7.5 92.4 6.5 3.7 0.30 2.9 0.04 

NEWTON 60 91.3 4.8 92.5 6.5 3.9 0.28 2.8 0.13 

LARNED 60 91.3 7.5 92.5 8.7 3.9 0.36 2.8 0.08 

PARKER76 60 92.5 2.9 93.8 4.8 3.7 0.12 3.0 0.11 

KIRWIN 60 95.0 4.1 96.3 4.8 3.8 0.16 3.0 0.04 

SAGE 60 95.0 4.1 96.3 4.8 3.8 0.16 2.8 0.08 

TRISON 60 93.8 2.5 97.6 6.7 3.8 0.10 2.9 0.11 

EAGLE 60 90.0 5.8 92.4 6.5 3.6 0.23 2.8 0.08 

SHAWNEE 60 95.0 4.1 96.2 2.5 3.8 0.16 3.1 0.07 

PARKER 60 93.8 6.3 95.0 7.1 4.0 0.21 2.8 0.14 

KAW61 60 93.8 2.5 97.9 9.5 4.2 0.61 2.6 0.17 

TASCOSA 60 95.0 4.1 97.6 6.6 5.1 0.60 2.5 0.07 

BISON 60 91.3 4.8 93.6 4.9 3.7 0.19 2.9 0.13 

KIOWA 60 96.3 4.8 97.5 5.0 3.9 0.19 2.9 0.15 

WICHITA 60 91.3 2.5 92.5 5.0 4.1 0.47 2.8 0.16 

COMANCHE 60 91.3 4.8 93.7 6.3 3.7 0.19 2.8 0.08 

BAKERS_WHITE 60 91.3 4.8 96.3 6.9 3.7 0.19 2.9 0.03 

BURCHETT 60 93.8 2.5 94.9 0.1 3.8 0.10 3.0 0.09 

CUTTER 60 93.8 6.3 95.0 7.1 4.0 0.21 2.8 0.21 

DUMAS 60 92.5 2.9 96.2 2.5 3.9 0.55 2.8 0.21 

HONDO 60 93.8 6.3 95.0 7.1 4.7 0.31 2.6 0.04 

JAGALENE 60 92.5 2.9 93.7 2.5 3.7 0.12 3.0 0.06 

LONGHORN 60 92.5 5.0 93.8 6.3 3.7 0.20 3.0 0.08 

NEOSHO 60 91.3 2.5 92.4 2.8 3.7 0.10 3.0 0.14 

OGALLALA 60 93.8 4.8 94.9 4.1 3.8 0.19 3.0 0.11 

POSTROCK 60 93.8 2.5 97.5 2.9 3.8 0.10 3.0 0.08 

THUNDERBOLT 60 91.3 6.3 93.8 8.6 3.9 0.32 2.8 0.17 

W04-417 60 96.3 2.5 98.8 2.5 3.9 0.10 3.0 0.08 

NUFRONTIER 60 92.5 2.9 93.8 4.8 3.7 0.12 3.0 0.11 

NUHORIZON 60 91.3 2.5 92.4 2.8 3.9 0.43 2.9 0.16 

ONAGA 60 96.3 4.8 97.6 6.6 4.1 0.48 2.9 0.26 

RONL 60 92.5 6.5 93.8 7.5 3.7 0.26 3.0 0.04 

2145 60 90.0 0.0 91.2 2.4 3.8 0.45 2.8 0.13 

HEYNE 60 91.3 4.8 95.1 9.3 3.7 0.19 2.9 0.11 
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KS00F5-20-3 60 95.0 4.1 98.8 4.9 4.0 0.33 2.9 0.15 

OVERLEY 60 95.0 4.1 96.3 6.4 3.8 0.16 3.0 0.05 

FULLER 60 91.3 2.5 93.6 2.4 3.9 0.43 2.8 0.12 

COSSACK 60 91.3 6.3 94.9 5.9 3.7 0.25 2.9 0.07 

ENHANCER 60 90.0 7.1 91.1 5.1 3.6 0.28 2.9 0.11 

SANTA_FE 60 95.0 4.1 96.3 6.4 3.8 0.16 3.0 0.08 

VENANGO 60 91.3 4.8 92.4 3.0 3.7 0.19 2.9 0.03 

WB411W 60 88.8 6.3 88.8 6.3 4.0 0.39 2.7 0.20 

KEOTA 60 95.0 4.1 97.4 3.0 3.8 0.16 3.1 0.07 

TX05A001822 60 90.0 4.1 93.8 7.5 3.8 0.62 2.8 0.18 

TX06A001263 60 92.5 6.5 93.7 6.3 3.7 0.26 3.0 0.11 

TX06A001132 60 90.0 4.1 91.1 2.6 4.1 0.66 2.7 0.23 

TX06A001281 60 92.5 2.9 95.0 4.1 3.7 0.12 2.9 0.07 

TX06A001386 60 95.0 7.1 96.3 8.6 4.0 0.18 2.8 0.17 

TX05V7259 60 90.0 7.1 91.1 5.1 4.3 0.44 2.7 0.08 

TX05V7269 60 91.3 7.5 92.5 8.7 3.9 0.10 2.9 0.16 

TX05A001188 60 92.5 2.9 93.8 4.8 3.9 0.55 2.9 0.18 

TX07A001279 60 93.8 4.8 96.3 4.8 3.8 0.19 3.0 0.05 

TX07A001318 60 90.0 9.1 91.1 7.7 3.8 0.45 2.8 0.13 

TX07A001420 60 88.8 7.5 88.8 7.5 3.8 0.43 2.8 0.23 

TX06V7266 60 93.8 6.3 95.0 7.1 4.0 0.57 2.8 0.09 

OK1067071 60 91.3 4.8 94.9 4.3 3.9 0.60 2.8 0.22 

OK1067274 60 91.3 7.5 91.3 7.5 3.9 0.76 2.9 0.16 

OK1068002 60 86.3 10.3 87.2 9.0 4.2 0.57 2.8 0.34 

OK1068009 60 93.8 6.3 93.8 6.3 3.8 0.25 3.0 0.05 

OK1068026 60 93.8 6.3 95.0 7.1 3.8 0.25 3.0 0.08 

OK1068112 60 90.0 7.1 91.2 7.5 3.6 0.28 2.9 0.07 

OK1070275 60 97.5 2.9 97.5 2.9 3.9 0.12 3.0 0.06 

OK1070267 60 88.8 4.8 89.9 4.1 3.8 0.52 2.7 0.17 

OK09634 60 92.5 6.5 94.9 7.1 3.9 0.28 2.9 0.16 

OK10119 60 92.5 2.9 94.9 4.1 4.2 0.55 2.8 0.12 

GALLAGHER 60 91.3 6.3 91.3 6.3 3.9 0.49 2.8 0.10 

OK07231 60 87.5 8.7 88.8 10.3 3.7 0.73 2.7 0.16 

OK07S117 60 91.3 4.8 91.3 4.8 3.7 0.19 2.9 0.03 

OK08328 60 87.5 6.5 88.8 8.5 3.5 0.26 2.9 0.09 

BIG_SKY 60 93.8 2.5 93.8 2.5 3.8 0.10 2.9 0.08 

DANBY 60 93.8 6.3 95.0 7.1 4.0 0.21 2.8 0.15 

E2041 60 95.0 4.1 97.8 9.2 3.8 0.16 3.0 0.03 

DENALI 60 87.5 6.5 91.1 8.5 3.9 0.60 2.7 0.18 

CO050337-2 60 88.8 4.8 92.9 12.8 4.0 0.62 2.7 0.17 

BYRD 60 93.8 6.3 95.0 7.1 3.8 0.25 2.9 0.07 
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CO07W245 60 90.0 9.1 90.0 9.1 3.8 0.28 2.8 0.14 

MCGILL 60 93.8 6.3 97.6 8.8 3.8 0.25 2.9 0.07 

NE02558 60 90.0 4.1 92.5 6.5 3.6 0.16 2.9 0.06 

NW03666 60 92.5 2.9 93.7 2.5 3.7 0.12 2.9 0.00 

NE04490 60 90.0 4.1 91.2 4.7 3.6 0.16 2.8 0.06 

NE05430 60 91.3 4.8 91.3 4.8 3.9 0.46 2.8 0.15 

NE05496 60 91.3 7.5 92.5 8.7 3.7 0.30 2.9 0.15 

NE05548 60 91.3 4.8 92.5 6.5 4.1 0.51 2.8 0.15 

NE06545 60 88.8 4.8 89.9 4.1 3.8 0.36 2.8 0.17 

NE06607 60 91.3 7.5 92.6 9.7 3.9 0.36 2.8 0.20 

ROBIDOUX 60 88.8 4.8 88.8 4.8 4.0 0.62 2.7 0.17 

NI06736 60 93.8 6.3 94.9 4.3 4.0 0.21 2.8 0.15 

NI06737 60 91.3 4.8 95.1 8.4 3.7 0.19 2.9 0.09 

NI07703 60 92.5 5.0 94.9 0.3 3.7 0.20 2.9 0.07 

NI08707 60 91.3 7.5 93.6 6.3 3.9 0.36 3.0 0.26 

NI08708 60 92.5 5.0 96.4 8.7 3.7 0.20 2.9 0.09 

EVEREST 60 91.3 7.5 93.9 10.5 3.7 0.30 2.9 0.07 

TRIUMPH64 120 65.0 5.8 65.9 7.0 2.4 0.04 3.5 0.29 

CHISHOLM 120 86.3 4.8 88.4 2.8 3.2 0.19 3.1 0.20 

CUSTER 120 38.8 7.5 40.2 6.7 1.6 0.18 3.4 0.44 

2174-05 120 28.8 2.5 29.1 2.9 1.1 0.13 3.7 0.45 

INTRADA 120 45.0 5.8 45.5 5.2 1.7 0.27 3.6 0.49 

OK101 120 41.3 6.3 42.3 6.1 1.7 0.07 3.6 0.49 

OK102 120 42.5 5.0 43.0 4.8 1.6 0.15 3.8 0.53 

ENDURANCE 120 81.3 4.8 84.5 3.9 2.8 0.29 3.4 0.27 

DELIVER 120 42.5 8.7 44.0 11.6 1.8 0.37 3.4 0.19 

OK_BULLET 120 42.5 9.6 42.5 9.6 1.5 0.43 3.7 0.34 

CENTERFIELD 120 60.0 7.1 60.9 8.0 1.9 0.21 4.0 0.11 

GUYMON 120 86.3 2.5 87.4 2.7 4.3 0.13 2.5 0.06 

DUSTER 120 60.0 4.1 61.8 7.3 2.1 0.11 3.8 0.16 

OK_RISING 120 51.3 4.8 51.3 4.8 1.9 0.30 3.7 0.43 

OK02405 120 52.5 2.9 53.2 2.4 1.8 0.10 3.9 0.34 

PETE 120 51.3 2.5 51.9 2.4 1.7 0.08 4.0 0.14 

BILLINGS 120 56.3 2.5 58.7 4.7 1.9 0.08 4.0 0.11 

OK04505 120 68.8 4.8 68.8 4.8 2.2 0.09 3.9 0.48 

OK04525 120 47.5 10.4 47.5 10.4 2.0 0.52 3.3 0.15 

OK04507 120 87.5 2.9 87.5 2.9 2.8 0.27 3.8 0.17 

OK05830 120 53.8 2.5 55.3 4.5 1.7 0.20 4.1 0.24 

OK04111 120 41.3 10.3 41.7 10.0 1.5 0.23 3.8 0.49 

OK04415 120 45.0 9.1 45.0 9.1 1.8 0.14 3.5 0.33 

OK05711W 120 68.8 4.8 70.7 6.7 2.4 0.19 3.6 0.18 
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OK05723W 120 70.0 4.1 70.0 4.1 2.5 0.27 3.5 0.31 

OK05108 120 60.0 4.1 60.9 5.6 2.7 0.40 3.2 0.32 

OK05122 120 53.8 4.8 55.3 6.1 2.0 0.36 3.8 0.47 

OK05526 120 48.8 2.5 48.8 2.5 1.6 0.08 4.1 0.13 

OK05134 120 46.3 13.1 46.8 13.1 1.5 0.44 4.1 0.06 

OK05303 120 47.5 5.0 48.1 4.7 1.6 0.17 4.1 0.29 

OK05312 120 55.0 4.1 55.7 3.1 1.8 0.14 4.2 0.14 

OK05511 120 47.5 6.5 48.2 6.9 1.6 0.22 3.7 0.17 

OK05204 120 48.8 6.3 49.4 6.6 1.6 0.21 4.1 0.16 

GARRISON 120 70.0 0.0 71.9 3.9 2.3 0.00 4.1 0.06 

OK06114 120 47.5 2.9 49.7 6.5 1.6 0.10 4.4 0.16 

OK06210 120 82.5 6.5 82.5 6.5 2.8 0.22 3.7 0.27 

OK06319 120 50.0 4.1 50.7 4.3 1.7 0.14 4.2 0.15 

OK06318 120 58.8 2.5 58.8 2.5 2.1 0.24 4.0 0.39 

OK06336 120 51.3 2.5 52.6 3.1 1.7 0.08 4.0 0.21 

AGATE 120 41.3 6.3 41.7 5.7 1.5 0.37 3.8 0.44 

ALLIANCE 120 51.3 2.5 51.9 2.4 1.6 0.17 4.4 0.28 

ANTELOPE 120 42.5 8.7 43.1 9.0 1.4 0.29 4.0 0.14 

ARAPAHOE 120 38.8 8.5 39.4 9.7 1.4 0.27 3.9 0.32 

BENNETT 120 50.0 0.0 50.0 0.0 2.1 0.83 3.6 0.60 

BUCKSKIN 120 40.0 4.1 40.0 4.1 1.5 0.52 4.1 0.78 

CENTURK78 120 46.3 9.5 46.8 9.1 1.8 0.31 3.5 0.59 

CHEYENNE 120 72.5 5.0 74.6 7.5 2.5 0.34 3.8 0.24 

COLT 120 48.8 2.5 48.8 2.5 1.8 0.25 3.7 0.31 

COUGAR 120 75.0 4.1 76.0 4.5 2.5 0.14 4.1 0.06 

CULVER 120 57.5 2.9 58.3 4.0 2.0 0.27 3.9 0.30 

GAGE 120 85.0 0.0 86.1 2.2 4.4 0.94 2.6 0.12 

GOODSTREAK 120 86.3 2.5 86.3 2.5 2.9 0.08 3.8 0.08 

HALLAM 120 86.3 2.5 88.8 7.5 2.8 0.13 3.8 0.30 

HARRY 120 38.8 2.5 39.3 3.0 1.7 0.40 3.4 0.49 

HOMESTEAD 120 73.8 2.5 73.8 2.5 2.5 0.08 3.9 0.09 

INFINITY_CL 120 50.0 8.2 50.7 8.3 1.7 0.27 3.8 0.07 

KHARKOF 120 68.8 4.8 68.8 4.8 2.3 0.16 4.0 0.14 

MILLENNIUM 120 45.0 8.2 45.0 8.2 1.8 0.33 3.5 0.37 

CAMELOT 120 42.5 9.6 42.9 8.9 1.6 0.33 3.8 0.48 

OVERLAND 120 48.8 8.5 49.3 8.3 1.6 0.28 3.8 0.14 

NE99495 120 83.8 4.8 83.8 4.8 2.7 0.31 3.8 0.11 

NIOBRARA 120 83.8 6.3 84.7 4.5 2.8 0.21 3.8 0.14 

NUPLAINS 120 71.3 2.5 72.2 2.6 2.5 0.22 4.0 0.41 

PRONGHORN 120 48.8 2.5 49.4 3.2 1.6 0.08 4.1 0.36 

RAWHIDE 120 58.8 2.5 59.5 3.4 2.0 0.08 4.0 0.34 
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REDLAND 120 53.8 4.8 54.5 5.2 2.0 0.22 3.6 0.28 

SCOUT66 120 71.3 4.8 71.3 4.8 2.4 0.16 3.9 0.19 

SIOUXLAND 120 56.3 8.5 57.6 7.4 2.2 0.48 3.6 0.28 

TURKEY_NEBSEL 120 67.5 2.9 69.3 3.6 2.2 0.22 3.9 0.16 

VISTA 120 58.8 4.8 60.4 6.6 2.4 0.19 3.4 0.02 

WAHOO 120 56.3 2.5 56.3 2.5 1.9 0.08 3.9 0.29 

WARRIOR 120 67.5 6.5 67.5 6.5 2.3 0.22 3.9 0.09 

WESLEY 120 85.0 4.1 86.2 6.2 2.8 0.14 4.0 0.15 

WICHITA 120 67.5 2.9 67.5 2.9 2.3 0.10 3.9 0.11 

WINDSTAR 120 57.5 6.5 58.3 7.0 1.9 0.28 3.8 0.17 

LANCER 120 63.8 2.5 63.8 2.5 2.0 0.15 4.3 0.23 

ANTON 120 53.8 2.5 55.1 0.3 1.9 0.23 3.9 0.30 

MACE 120 46.3 10.3 46.7 9.7 1.7 0.49 3.7 0.50 

TAM107-R7 120 46.3 2.5 46.8 2.4 1.6 0.15 3.8 0.28 

ARLIN 120 51.3 6.3 53.6 9.3 1.7 0.21 4.0 0.21 

ALICE 120 55.0 4.1 55.0 4.1 1.9 0.23 4.0 0.24 

DARRELL 120 72.5 2.9 73.5 4.3 2.4 0.10 3.9 0.11 

EXPEDITION 120 66.3 2.5 68.0 2.1 2.2 0.08 3.9 0.15 

WENDY 120 85.0 7.1 85.0 7.1 2.6 0.37 4.0 0.34 

SD00111-9 120 52.5 8.7 53.9 9.7 2.0 0.46 3.9 0.68 

SD01237 120 72.5 2.9 73.4 2.4 2.4 0.10 3.9 0.20 

SD01058 120 48.8 2.5 49.4 3.2 1.9 0.28 3.6 0.60 

SD05118 120 77.5 6.5 77.5 6.5 2.6 0.22 4.2 0.08 

SD05210 120 55.0 4.1 57.2 5.4 2.2 0.16 3.5 0.06 

SD05W018 120 72.5 5.0 74.3 4.4 2.4 0.20 4.1 0.43 

NEKOTA 120 62.5 2.9 63.3 2.4 2.1 0.10 4.1 0.18 

TANDEM 120 72.5 2.9 74.4 3.2 2.4 0.10 3.9 0.20 

CRIMSON 120 58.8 2.5 58.8 2.5 2.0 0.08 4.0 0.16 

ROSE 120 36.3 6.3 37.3 7.3 1.5 0.26 3.5 0.41 

DAWN 120 72.5 5.0 74.6 7.5 2.4 0.17 3.9 0.18 

WINOKA 120 36.3 9.5 37.1 9.1 1.4 0.22 3.9 0.13 

NELL 120 73.8 7.5 74.7 7.1 2.5 0.25 4.0 0.13 

RITA 120 72.5 2.9 73.5 4.3 2.4 0.10 4.0 0.09 

BRONZE 120 51.3 2.5 52.0 3.9 1.7 0.08 4.1 0.21 

HUME 120 48.8 6.3 50.3 8.6 1.8 0.16 3.7 0.45 

GENT 120 51.3 2.5 53.3 2.5 2.1 0.10 3.1 0.05 

HARDING 120 56.3 4.8 56.3 4.8 1.9 0.16 4.1 0.29 

HV9W03-1551WP 120 43.8 4.8 43.8 4.8 1.5 0.14 3.8 0.41 

G1878 120 58.8 2.5 58.8 2.5 2.0 0.08 4.0 0.20 

HV9W03-1379R 120 47.5 5.0 48.2 5.6 1.6 0.17 4.1 0.21 

HV9W03-1596R 120 72.5 2.9 73.5 4.3 2.4 0.10 3.9 0.22 
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HV9W05-1280R 120 47.5 5.0 48.8 4.8 1.6 0.17 4.1 0.19 

HV9W06-504 120 71.3 2.5 72.2 4.5 2.7 0.44 3.5 0.19 

SPARTAN 120 63.8 2.5 64.6 3.5 2.0 0.15 3.9 0.15 

HV906-865 120 66.3 2.5 66.3 2.5 2.0 0.15 4.0 0.14 

TARKIO 120 50.0 7.1 50.6 6.6 1.7 0.24 3.9 0.18 

SMOKYHILL 120 56.3 2.5 60.1 4.4 1.9 0.08 4.1 0.13 

SHOCKER 120 68.8 4.8 69.7 5.4 2.3 0.16 4.2 0.16 

VONA 120 53.8 4.8 53.8 4.8 1.8 0.16 4.1 0.21 

CO940610 120 63.8 4.8 63.8 4.8 2.1 0.16 3.8 0.08 

AVALANCHE 120 61.3 8.5 62.2 9.9 3.2 1.01 3.0 0.18 

BOND_CL 120 58.8 2.5 58.8 2.5 2.0 0.08 3.8 0.13 

PLATTE 120 51.3 6.3 51.8 5.6 1.7 0.21 4.0 0.19 

LINDON 120 47.5 5.0 48.2 6.4 1.6 0.26 3.9 0.49 

CO03W043 120 72.5 5.0 72.5 5.0 2.6 0.49 3.6 0.44 

SNOWMASS 120 75.0 4.1 78.1 7.2 2.5 0.14 3.9 0.20 

THUNDER_CL 120 72.5 2.9 74.6 6.3 2.4 0.10 3.9 0.10 

CO04025 120 67.5 2.9 69.2 0.9 2.3 0.10 3.9 0.07 

CO04393 120 73.8 2.5 75.8 5.5 2.5 0.08 3.9 0.15 

CO04499 120 71.3 4.8 71.3 4.8 2.4 0.16 4.1 0.06 

CO04W320 120 36.3 2.5 36.7 2.4 1.4 0.25 3.4 0.50 

LAMAR 120 77.5 5.0 77.5 5.0 2.5 0.04 4.0 0.06 

CARSON 120 36.3 2.5 36.8 3.6 1.5 0.19 3.3 0.44 

HAIL 120 37.5 2.9 38.5 3.2 1.3 0.10 3.7 0.15 

SANDY 120 51.3 4.8 51.3 4.8 1.7 0.16 4.0 0.23 

DUKE 120 48.8 2.5 50.8 4.5 1.6 0.08 4.1 0.16 

HALT 120 57.5 2.9 57.5 2.9 1.9 0.10 4.0 0.21 

HATCHER 120 36.3 6.3 36.3 6.3 1.4 0.16 3.6 0.51 

PRAIRIE_RED 120 63.8 10.3 65.6 11.2 2.1 0.34 3.8 0.21 

ABOVE 120 71.3 4.8 71.3 4.8 2.4 0.16 3.9 0.16 

CO03064 120 57.5 2.9 59.1 4.7 2.1 0.25 3.5 0.29 

BILL_BROWN 120 36.3 2.5 36.8 3.6 1.4 0.25 3.7 0.68 

RIPPER 120 35.0 0.0 35.9 1.1 1.4 0.28 3.5 0.58 

PROWERS 120 78.8 2.5 79.7 0.5 2.6 0.08 3.9 0.15 

AKRON 120 47.5 2.9 47.5 2.9 1.6 0.10 4.1 0.23 

JULES 120 61.3 4.8 61.3 4.8 2.0 0.15 3.9 0.15 

YUMA 120 62.5 5.0 64.1 4.4 2.1 0.17 4.2 0.10 

TAMW-101 120 72.5 2.9 74.6 6.3 2.4 0.10 4.1 0.11 

TAM105 120 66.3 2.5 67.2 4.3 2.2 0.08 4.0 0.07 

TAM107 120 50.0 4.1 50.6 3.2 1.9 0.57 4.1 0.83 

TAM109 120 75.0 4.1 76.0 4.5 2.4 0.11 4.0 0.27 

TAM110 120 75.0 0.0 76.0 2.0 2.5 0.00 3.8 0.18 
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TAM111 120 57.5 2.9 59.9 5.0 1.9 0.10 4.0 0.21 

TAM112 120 76.3 2.5 77.2 2.6 2.5 0.08 4.0 0.14 

TAM200 120 57.5 2.9 58.2 2.4 2.0 0.27 3.9 0.22 

TAM202 120 28.8 2.5 30.0 3.6 1.6 0.48 3.0 0.71 

TAM203 120 48.8 2.5 50.7 3.4 1.6 0.08 3.8 0.16 

TAM302 120 82.5 6.5 82.5 6.5 2.6 0.25 3.8 0.15 

TAM303 120 37.5 2.9 37.5 2.9 2.1 0.74 2.9 0.65 

TAM304 120 66.3 6.3 67.2 8.2 2.2 0.21 4.0 0.17 

TAM400 120 35.0 4.1 35.9 4.4 1.4 0.39 3.6 0.55 

LOCKETT 120 57.5 2.9 57.5 2.9 2.0 0.15 3.8 0.27 

STURDY 120 30.0 0.0 30.8 0.9 1.5 0.41 3.2 0.27 

STURDY_2K 120 53.8 2.5 54.4 1.2 1.8 0.08 3.7 0.20 

MIT 120 47.5 2.9 48.8 3.3 1.9 0.44 3.7 0.44 

CAPROCK 120 71.3 2.5 73.2 3.9 2.4 0.08 3.8 0.23 

TX01A5936 120 70.0 4.1 70.0 4.1 2.3 0.14 4.1 0.18 

TAM401 120 75.0 4.1 75.0 4.1 2.5 0.14 4.1 0.14 

TX02A0252 120 36.3 9.5 37.1 9.1 1.5 0.34 3.4 0.73 

TX03A0148 120 35.0 0.0 35.0 0.0 1.5 0.29 3.3 0.21 

TX03A0563 120 37.5 2.9 38.0 2.5 1.5 0.36 3.7 0.51 

TX04A001246 120 75.0 4.1 79.0 4.0 2.7 0.21 3.5 0.26 

TX01V5134RC-3 120 86.3 4.8 86.3 4.8 2.9 0.16 3.7 0.09 

TX04M410164 120 57.5 2.9 58.2 2.4 1.9 0.10 3.9 0.16 

TX04M410211 120 38.8 2.5 39.2 1.6 1.4 0.13 3.3 0.25 

TX04V075080 120 36.3 4.8 37.2 4.8 1.4 0.50 3.7 0.78 

TX99A0153-1 120 47.5 2.9 47.5 2.9 1.6 0.10 4.1 0.38 

TX01M5009-28 120 52.5 2.9 53.2 2.4 2.1 0.48 3.4 0.28 

TX00V1131 120 48.8 2.5 50.7 2.5 1.8 0.25 3.8 0.48 

TX99U8618 120 83.8 6.3 83.8 6.3 2.8 0.21 3.8 0.15 

TX96D1073 120 62.5 2.9 63.4 4.1 2.1 0.10 4.0 0.11 

2180 120 47.5 2.9 50.3 6.0 1.7 0.12 3.9 0.38 

HG-9 120 37.5 6.5 38.9 6.6 1.4 0.16 3.9 0.60 

TX86A5606 120 58.8 4.8 59.5 4.2 2.5 0.24 3.3 0.23 

TX86A8072 120 66.3 4.8 66.3 4.8 2.1 0.16 4.0 0.29 

CREST 120 52.5 2.9 52.5 2.9 1.8 0.10 3.9 0.05 

ROSEBUD 120 58.8 4.8 59.6 6.3 2.0 0.16 3.8 0.04 

JUDITH 120 63.8 2.5 64.6 3.5 2.1 0.08 4.0 0.14 

MT85200 120 65.0 8.2 65.0 8.2 2.2 0.27 3.6 0.17 

NUSKY 120 38.8 4.8 39.8 5.5 1.7 0.27 3.3 0.42 

MT9513 120 77.5 2.9 78.6 4.4 2.6 0.10 3.7 0.11 

MT9904 120 72.5 5.0 74.4 5.2 2.4 0.17 3.7 0.31 

NORRIS 120 72.5 2.9 73.4 2.4 2.4 0.10 3.8 0.19 
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YELLOWSTONE 120 58.8 2.5 58.8 2.5 2.1 0.10 3.8 0.31 

MT0495 120 40.0 7.1 40.4 6.3 1.5 0.41 3.7 0.47 

MTS0531 120 87.5 6.5 88.6 6.3 4.8 1.06 2.5 0.08 

DECADE 120 71.3 8.5 73.0 8.0 2.9 0.76 3.6 0.59 

MT06103 120 68.8 2.5 71.5 1.8 2.4 0.27 3.8 0.40 

JUDEE 120 47.5 2.9 48.1 2.4 1.5 0.16 4.2 0.24 

LAKIN 120 67.5 6.5 68.3 5.3 2.2 0.14 4.1 0.06 

STANTON 120 60.0 4.1 60.7 3.0 2.0 0.14 4.1 0.16 

TREGO 120 73.8 2.5 74.7 3.7 3.0 0.10 3.3 0.11 

KARL_92 120 73.8 6.3 74.6 4.7 2.5 0.21 4.0 0.15 

DODGE 120 76.3 2.5 79.5 6.6 2.5 0.08 4.0 0.14 

NORKAN 120 56.3 2.5 57.0 2.4 2.1 0.64 3.9 0.75 

CHENEY 120 36.3 4.8 36.6 4.1 1.5 0.36 3.5 0.77 

NEWTON 120 63.8 4.8 64.5 4.2 2.1 0.16 4.0 0.13 

LARNED 120 75.0 4.1 76.0 4.5 2.5 0.14 4.1 0.13 

PARKER76 120 70.0 4.1 71.0 5.8 2.3 0.14 4.1 0.17 

KIRWIN 120 77.5 2.9 78.6 4.4 2.6 0.10 3.9 0.14 

SAGE 120 65.0 4.1 65.9 5.7 2.2 0.14 4.2 0.10 

TRISON 120 57.5 5.0 60.0 8.2 1.9 0.17 4.0 0.23 

EAGLE 120 52.5 5.0 53.8 4.3 2.0 0.39 3.7 0.57 

SHAWNEE 120 57.5 2.9 58.3 4.0 2.1 0.41 3.8 0.72 

PARKER 120 72.5 6.5 73.4 5.2 2.4 0.22 3.8 0.17 

KAW61 120 72.5 2.9 75.6 5.1 2.9 0.12 3.4 0.13 

TASCOSA 120 86.3 2.5 88.6 4.6 4.1 0.33 2.6 0.24 

BISON 120 75.0 4.1 76.9 3.0 2.5 0.14 4.0 0.25 

KIOWA 120 73.8 2.5 74.7 3.7 2.5 0.08 4.2 0.07 

WICHITA 120 66.3 2.5 67.2 4.3 2.2 0.08 4.1 0.20 

COMANCHE 120 72.5 6.5 74.3 4.8 2.4 0.22 3.9 0.17 

BAKERS_WHITE 120 48.8 4.8 51.5 6.5 1.6 0.16 4.1 0.24 

BURCHETT 120 36.3 4.8 36.7 4.7 1.5 0.36 3.5 0.60 

CUTTER 120 72.5 2.9 73.5 4.3 2.9 0.12 3.6 0.17 

DUMAS 120 57.5 5.0 59.9 6.4 1.9 0.24 4.2 0.42 

HONDO 120 41.3 2.5 41.8 2.4 2.0 0.55 3.2 0.58 

JAGALENE 120 66.3 4.8 67.1 4.8 2.0 0.20 4.2 0.11 

LONGHORN 120 57.5 2.9 58.3 4.0 1.9 0.10 4.0 0.40 

NEOSHO 120 73.8 2.5 74.7 3.7 2.5 0.08 3.9 0.08 

OGALLALA 120 53.8 4.8 54.4 4.3 1.7 0.19 4.5 0.71 

POSTROCK 120 40.0 4.1 41.6 3.9 1.7 0.32 3.3 0.59 

THUNDERBOLT 120 75.0 0.0 77.0 2.3 2.5 0.00 4.1 0.08 

W04-417 120 36.3 6.3 37.1 5.7 1.7 0.64 3.3 0.59 

NUFRONTIER 120 55.0 8.2 55.7 8.3 1.8 0.25 4.1 0.45 
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NUHORIZON 120 66.3 4.8 67.1 4.8 2.2 0.16 3.9 0.10 

ONAGA 120 60.0 9.1 60.7 8.2 2.2 0.39 3.7 0.43 

RONL 120 62.5 2.9 63.4 4.1 2.1 0.10 4.3 0.15 

2145 120 48.8 2.5 49.4 3.2 1.9 0.25 3.7 0.49 

HEYNE 120 60.0 4.1 62.6 7.2 2.0 0.22 4.1 0.59 

KS00F5-20-3 120 43.8 6.3 45.3 4.7 1.8 0.32 3.4 0.72 

OVERLEY 120 42.5 8.7 43.0 8.5 1.6 0.22 3.7 0.50 

FULLER 120 72.5 5.0 74.3 4.4 2.5 0.34 3.9 0.22 

COSSACK 120 75.0 0.0 78.1 4.0 2.5 0.00 3.8 0.14 

ENHANCER 120 75.0 4.1 75.9 2.8 2.5 0.14 4.0 0.20 

SANTA_FE 120 62.5 2.9 63.3 2.4 2.1 0.10 4.1 0.13 

VENANGO 120 71.3 2.5 72.2 2.6 2.4 0.08 4.1 0.19 

WB411W 120 72.5 2.9 72.5 2.9 2.3 0.15 4.0 0.20 

KEOTA 120 67.5 6.5 69.3 7.8 2.2 0.30 4.0 0.13 

TX05A001822 120 43.8 4.8 45.7 6.6 1.8 0.60 3.6 0.75 

TX06A001263 120 50.0 4.1 50.6 3.2 1.7 0.14 4.1 0.05 

TX06A001132 120 57.5 5.0 58.2 4.7 2.0 0.20 3.9 0.27 

TX06A001281 120 67.5 6.5 69.3 6.5 2.2 0.34 4.2 0.11 

TX06A001386 120 61.3 6.3 62.0 5.4 2.0 0.21 4.0 0.14 

TX05V7259 120 70.0 4.1 71.0 5.8 2.3 0.22 4.2 0.23 

TX05V7269 120 43.8 4.8 44.3 4.3 1.4 0.22 4.2 0.37 

TX05A001188 120 43.8 2.5 44.3 3.1 1.5 0.19 4.1 0.45 

TX07A001279 120 63.8 7.5 65.4 7.1 2.1 0.25 4.0 0.18 

TX07A001318 120 72.5 2.9 73.4 2.4 2.4 0.10 3.9 0.19 

TX07A001420 120 72.5 2.9 72.5 2.9 2.4 0.10 4.0 0.07 

TX06V7266 120 71.3 2.5 72.2 2.6 2.4 0.08 4.1 0.11 

OK1067071 120 50.0 4.1 52.1 6.1 1.6 0.08 4.0 0.18 

OK1067274 120 70.0 4.1 70.0 4.1 2.3 0.14 3.9 0.16 

OK1068002 120 76.3 8.5 77.1 7.1 2.6 0.23 3.8 0.43 

OK1068009 120 71.3 4.8 71.3 4.8 2.4 0.16 4.1 0.09 

OK1068026 120 48.8 4.8 49.3 4.3 2.3 0.31 3.1 0.05 

OK1068112 120 45.0 4.1 45.5 3.3 1.7 0.40 3.6 0.64 

OK1070275 120 42.5 5.0 42.5 5.0 1.6 0.32 3.6 0.45 

OK1070267 120 72.5 2.9 73.5 4.3 2.5 0.32 3.8 0.17 

OK09634 120 48.8 2.5 50.0 2.1 1.8 0.45 3.9 0.67 

OK10119 120 42.5 6.5 43.5 5.5 1.6 0.48 3.6 0.65 

GALLAGHER 120 73.8 4.8 73.8 4.8 2.4 0.28 3.9 0.47 

OK07231 120 71.3 4.8 72.1 3.4 2.4 0.16 4.0 0.09 

OK07S117 120 66.3 4.8 66.3 4.8 2.2 0.16 4.0 0.16 

OK08328 120 62.5 6.5 63.4 8.0 2.1 0.51 3.9 0.45 

BIG_SKY 120 71.3 2.5 71.3 2.5 2.4 0.08 3.8 0.14 
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DANBY 120 68.8 6.3 69.5 4.9 2.3 0.21 3.9 0.13 

E2041 120 46.3 6.3 47.5 6.5 1.9 0.55 3.5 0.53 

DENALI 120 73.8 6.3 76.5 3.6 2.4 0.17 3.9 0.26 

CO050337-2 120 75.0 0.0 78.3 6.6 2.5 0.00 3.9 0.14 

BYRD 120 70.0 0.0 70.9 1.8 2.3 0.17 4.1 0.60 

CO07W245 120 71.3 4.8 71.3 4.8 2.4 0.16 3.8 0.12 

MCGILL 120 52.5 5.0 54.5 4.3 1.8 0.17 3.7 0.16 

NE02558 120 57.5 5.0 59.0 4.9 2.1 0.37 3.5 0.35 

NW03666 120 66.3 2.5 67.2 4.3 2.2 0.08 4.0 0.22 

NE04490 120 73.8 2.5 74.7 0.7 2.5 0.08 3.9 0.19 

NE05430 120 48.8 6.3 48.8 6.3 1.9 0.62 3.8 0.70 

NE05496 120 67.5 2.9 68.4 4.2 2.3 0.10 4.0 0.19 

NE05548 120 57.5 2.9 58.3 4.0 1.9 0.20 4.4 0.56 

NE06545 120 52.5 2.9 53.2 2.4 2.0 0.37 3.7 0.52 

NE06607 120 67.5 2.9 68.4 4.2 2.3 0.10 4.0 0.17 

ROBIDOUX 120 51.3 6.3 51.3 6.3 2.0 0.24 3.7 0.58 

NI06736 120 45.0 4.1 45.7 5.2 1.6 0.20 3.8 0.36 

NI06737 120 62.5 5.0 65.0 4.3 2.0 0.25 4.1 0.58 

NI07703 120 73.8 2.5 75.8 5.5 2.5 0.08 3.9 0.22 

NI08707 120 63.8 4.8 65.7 8.4 2.1 0.16 4.1 0.19 

NI08708 120 71.3 4.8 74.2 6.7 2.3 0.17 3.9 0.28 

EVEREST 120 70.0 5.8 72.1 8.9 2.3 0.19 4.0 0.30 

Appendix C - The mean values for shoot length (cm), root length (cm), seedling fresh 

weight (g), seedling dry weight (g), salinity tolerance and seedling vigor index of 292 winter 

wheat genotypes treated with three level of salinity (0, 60.120 mM/L-1). 

Genotype name salinity 
level 

Shoot 
length 

Std 
Dev 

Root 
length 

Std 
Dev 

Seedling 
fresh 

weight 

Std 
Dev 

Seedling 
dry 

weight 

Std 
Dev 

Salinity 
Tolerance 

Std 
Dev 

Seedling 
vigor 

index 

Std 
Dev 

TRIUMPH64 0 8 0.4 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.5 

CHISHOLM 0 8 0.5 6 0.5 0.15 0.02 0.06 0.01 100 0 14 0.9 

CUSTER 0 8 0.2 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.6 

2174-05 0 8 0.6 7 0.6 0.16 0.01 0.07 0.01 100 0 15 0.2 

INTRADA 0 8 0.8 6 0.6 0.15 0.01 0.06 0.00 100 0 14 0.5 

OK101 0 8 0.3 6 0.3 0.16 0.01 0.05 0.00 100 0 14 0.4 

OK102 0 8 0.3 6 0.4 0.15 0.01 0.05 0.01 100 0 14 0.4 

ENDURANCE 0 8 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

DELIVER 0 8 0.7 6 0.3 0.15 0.01 0.05 0.00 100 0 14 0.8 

OK_BULLET 0 8 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.3 

CENTERFIELD 0 8 0.5 6 0.3 0.15 0.01 0.06 0.00 100 0 14 0.6 
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GUYMON 0 8 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.1 

DUSTER 0 7 0.6 6 0.4 0.15 0.01 0.05 0.01 100 0 12 0.7 

OK_RISING 0 8 0.5 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.2 

OK02405 0 8 0.4 6 0.3 0.16 0.01 0.06 0.01 100 0 14 0.4 

PETE 0 8 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 14 0.6 

BILLINGS 0 7 0.3 6 0.3 0.16 0.01 0.05 0.01 100 0 13 1.1 

OK04505 0 7 0.6 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.7 

OK04525 0 7 0.2 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.2 

OK04507 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.5 

OK05830 0 7 0.3 6 0.3 0.15 0.01 0.06 0.01 100 0 13 0.6 

OK04111 0 7 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.2 

OK04415 0 8 0.4 6 0.4 0.15 0.01 0.06 0.01 100 0 14 0.3 

OK05711W 0 8 0.6 6 0.6 0.16 0.01 0.06 0.01 100 0 14 1.1 

OK05723W 0 8 0.8 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.3 

OK05108 0 8 0.6 7 0.5 0.16 0.01 0.07 0.01 100 0 15 0.3 

OK05122 0 8 0.6 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

OK05526 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.3 

OK05134 0 7 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.4 

OK05303 0 7 0.4 6 0.3 0.15 0.01 0.05 0.01 100 0 13 0.3 

OK05312 0 7 0.4 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.2 

OK05511 0 7 0.4 6 0.4 0.15 0.01 0.06 0.01 100 0 13 0.5 

OK05204 0 7 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

GARRISON 0 8 0.5 7 0.6 0.16 0.01 0.06 0.01 100 0 14 1.0 

OK06114 0 8 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 13 1.4 

OK06210 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.7 

OK06319 0 8 0.8 6 0.5 0.16 0.01 0.06 0.01 100 0 14 1.2 

OK06318 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.3 

OK06336 0 8 0.8 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.9 

AGATE 0 8 0.5 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.4 

ALLIANCE 0 8 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.5 

ANTELOPE 0 7 0.4 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.3 

ARAPAHOE 0 7 0.4 6 0.2 0.16 0.01 0.06 0.01 100 0 13 0.4 

BENNETT 0 8 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.7 

BUCKSKIN 0 8 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.5 

CENTURK78 0 8 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 14 0.3 

CHEYENNE 0 7 0.5 6 0.5 0.15 0.01 0.06 0.01 100 0 13 0.8 

COLT 0 8 0.7 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.3 

COUGAR 0 8 0.7 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.5 

CULVER 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.3 

GAGE 0 8 0.5 7 0.5 0.16 0.01 0.05 0.01 100 0 15 0.4 

GOODSTREAK 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.4 
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HALLAM 0 7 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 14 1.0 

HARRY 0 7 0.6 6 0.4 0.15 0.01 0.06 0.00 100 0 13 0.3 

HOMESTEAD 0 8 0.6 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

INFINITY_CL 0 8 0.5 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.2 

KHARKOF 0 8 0.7 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.3 

MILLENNIUM 0 7 0.9 7 0.7 0.16 0.01 0.06 0.01 100 0 14 1.2 

CAMELOT 0 7 0.5 6 0.3 0.16 0.01 0.06 0.00 100 0 13 0.6 

OVERLAND 0 7 0.6 7 0.7 0.15 0.01 0.06 0.01 100 0 14 0.3 

NE99495 0 8 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

NIOBRARA 0 8 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 14 0.4 

NUPLAINS 0 8 0.3 6 0.2 0.16 0.00 0.06 0.01 100 0 14 0.5 

PRONGHORN 0 7 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.5 

RAWHIDE 0 7 0.4 6 0.6 0.15 0.01 0.06 0.01 100 0 14 0.3 

REDLAND 0 7 0.4 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.6 

SCOUT66 0 8 0.7 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.8 

SIOUXLAND 0 7 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.6 

TURKEY_NEBSEL 0 7 0.4 6 0.2 0.16 0.00 0.06 0.01 100 0 13 0.7 

VISTA 0 8 0.5 6 0.2 0.16 0.01 0.06 0.01 100 0 13 0.5 

WAHOO 0 8 0.8 7 0.6 0.16 0.01 0.06 0.01 100 0 15 0.5 

WARRIOR 0 7 0.6 6 0.5 0.16 0.01 0.06 0.00 100 0 14 0.5 

WESLEY 0 8 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.0 

WICHITA 0 8 0.5 7 0.2 0.16 0.01 0.06 0.01 100 0 14 0.1 

WINDSTAR 0 7 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.7 

LANCER 0 8 0.5 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.2 

ANTON 0 7 0.3 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.8 

MACE 0 7 0.3 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.3 

TAM107-R7 0 7 0.4 6 0.5 0.16 0.01 0.06 0.01 100 0 13 0.5 

ARLIN 0 8 0.5 6 0.5 0.16 0.01 0.06 0.01 100 0 13 0.9 

ALICE 0 8 0.4 7 0.5 0.15 0.01 0.06 0.01 100 0 15 0.5 

DARRELL 0 8 0.5 6 0.3 0.16 0.01 0.06 0.01 100 0 14 0.4 

EXPEDITION 0 8 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.2 

WENDY 0 8 0.5 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.4 

SD00111-9 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.7 

SD01237 0 7 0.4 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.3 

SD01058 0 7 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.6 

SD05118 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.5 

SD05210 0 8 0.7 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

SD05W018 0 7 0.4 6 0.5 0.16 0.01 0.06 0.01 100 0 13 0.2 

NEKOTA 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.8 

TANDEM 0 8 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 14 1.0 

CRIMSON 0 7 0.3 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.2 
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ROSE 0 7 0.4 6 0.5 0.16 0.01 0.06 0.01 100 0 13 0.5 

DAWN 0 8 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.8 

WINOKA 0 7 0.5 6 0.2 0.15 0.01 0.06 0.01 100 0 12 0.2 

NELL 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

RITA 0 7 0.4 6 0.3 0.15 0.01 0.06 0.01 100 0 13 0.2 

BRONZE 0 7 0.3 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.4 

HUME 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.6 

GENT 0 7 0.5 6 0.3 0.15 0.01 0.06 0.01 100 0 13 0.6 

HARDING 0 7 0.4 6 0.3 0.15 0.01 0.06 0.01 100 0 13 0.2 

HV9W03-1551WP 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.6 

G1878 0 8 0.6 7 0.4 0.17 0.01 0.06 0.01 100 0 15 0.3 

HV9W03-1379R 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.1 

HV9W03-1596R 0 7 0.4 6 0.3 0.16 0.01 0.06 0.01 100 0 13 0.5 

HV9W05-1280R 0 7 0.4 6 0.2 0.15 0.01 0.05 0.01 100 0 12 0.5 

HV9W06-504 0 7 0.2 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

SPARTAN 0 7 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.3 

HV906-865 0 8 0.9 7 0.8 0.16 0.01 0.07 0.01 100 0 15 0.5 

TARKIO 0 7 0.3 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

SMOKYHILL 0 7 0.5 6 0.6 0.16 0.01 0.06 0.01 100 0 13 0.6 

SHOCKER 0 7 0.5 7 0.7 0.16 0.01 0.06 0.01 100 0 13 0.6 

VONA 0 7 0.4 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.3 

CO940610 0 7 0.5 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.3 

AVALANCHE 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.4 

BOND_CL 0 7 0.5 6 0.5 0.16 0.01 0.06 0.01 100 0 13 0.4 

PLATTE 0 7 0.4 6 0.3 0.16 0.01 0.05 0.01 100 0 13 0.4 

LINDON 0 7 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.7 

CO03W043 0 7 0.6 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

SNOWMASS 0 7 0.6 6 0.5 0.16 0.01 0.06 0.01 100 0 13 1.1 

THUNDER_CL 0 8 0.5 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.7 

CO04025 0 7 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 13 0.2 

CO04393 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 1.1 

CO04499 0 7 0.5 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.3 

CO04W320 0 9 0.9 7 0.5 0.16 0.01 0.07 0.01 100 0 16 0.5 

LAMAR 0 8 0.6 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.5 

CARSON 0 9 0.9 8 0.7 0.17 0.01 0.07 0.01 100 0 16 0.5 

HAIL 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

SANDY 0 7 0.3 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.4 

DUKE 0 7 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 13 0.9 

HALT 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.6 

HATCHER 0 7 0.3 6 0.2 0.15 0.01 0.06 0.01 100 0 13 0.1 

PRAIRIE_RED 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 1.0 
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ABOVE 0 7 0.4 6 0.5 0.16 0.01 0.06 0.00 100 0 13 0.3 

CO03064 0 7 0.3 6 0.5 0.15 0.01 0.06 0.01 100 0 13 0.6 

BILL_BROWN 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.4 

RIPPER 0 7 0.5 7 0.6 0.16 0.01 0.06 0.01 100 0 14 1.1 

PROWERS 0 8 0.8 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.8 

AKRON 0 8 0.5 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.3 

JULES 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.6 

YUMA 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.7 

TAMW-101 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 15 1.2 

TAM105 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.6 

TAM107 0 7 0.3 6 0.5 0.16 0.01 0.05 0.01 100 0 13 0.3 

TAM109 0 7 0.4 6 0.2 0.15 0.01 0.05 0.01 100 0 13 0.1 

TAM110 0 8 0.5 7 0.6 0.16 0.01 0.05 0.00 100 0 14 0.9 

TAM111 0 8 0.6 7 0.6 0.16 0.01 0.05 0.00 100 0 14 1.0 

TAM112 0 8 0.4 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.6 

TAM200 0 7 0.5 6 0.5 0.16 0.00 0.05 0.01 100 0 13 0.4 

TAM202 0 7 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 14 1.0 

TAM203 0 7 0.4 7 0.6 0.16 0.00 0.05 0.00 100 0 13 0.9 

TAM302 0 8 0.7 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.5 

TAM303 0 8 0.4 7 0.8 0.15 0.01 0.05 0.01 100 0 14 0.8 

TAM304 0 7 0.3 6 0.6 0.16 0.01 0.05 0.00 100 0 14 0.7 

TAM400 0 8 0.6 7 0.4 0.16 0.01 0.05 0.00 100 0 14 0.6 

LOCKETT 0 8 0.5 7 0.7 0.16 0.01 0.06 0.01 100 0 14 0.6 

STURDY 0 7 0.5 7 0.4 0.16 0.01 0.05 0.00 100 0 13 0.6 

STURDY_2K 0 7 0.3 6 0.3 0.15 0.01 0.06 0.01 100 0 13 0.4 

MIT 0 7 0.3 6 0.4 0.16 0.01 0.05 0.00 100 0 13 0.3 

CAPROCK 0 8 0.5 7 0.7 0.16 0.01 0.05 0.00 100 0 14 0.8 

TX01A5936 0 7 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 13 0.5 

TAM401 0 8 0.7 7 0.6 0.16 0.01 0.05 0.00 100 0 15 0.7 

TX02A0252 0 6 0.5 6 0.2 0.16 0.01 0.05 0.00 100 0 12 0.7 

TX03A0148 0 7 0.5 6 0.3 0.15 0.01 0.05 0.01 100 0 13 0.3 

TX03A0563 0 7 0.5 6 0.2 0.15 0.01 0.06 0.01 100 0 13 0.6 

TX04A001246 0 8 0.6 7 0.6 0.17 0.01 0.06 0.01 100 0 13 0.6 

TX01V5134RC-3 0 8 0.5 7 0.3 0.16 0.01 0.05 0.00 100 0 15 0.2 

TX04M410164 0 6 0.6 6 0.3 0.15 0.01 0.06 0.01 100 0 12 0.2 

TX04M410211 0 9 0.8 8 0.5 0.17 0.01 0.07 0.01 100 0 16 0.4 

TX04V075080 0 8 0.3 7 0.3 0.16 0.01 0.05 0.01 100 0 15 0.6 

TX99A0153-1 0 7 0.5 6 0.2 0.15 0.01 0.06 0.00 100 0 13 0.4 

TX01M5009-28 0 8 0.5 7 0.5 0.16 0.01 0.05 0.00 100 0 15 0.5 

TX00V1131 0 7 0.5 7 0.5 0.15 0.01 0.06 0.01 100 0 13 0.9 

TX99U8618 0 7 0.4 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.6 
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TX96D1073 0 7 0.6 7 0.6 0.16 0.01 0.05 0.00 100 0 14 0.8 

2180 0 7 0.5 6 0.3 0.16 0.01 0.05 0.01 100 0 13 1.2 

HG-9 0 7 0.5 6 0.3 0.15 0.01 0.05 0.01 100 0 12 0.7 

TX86A5606 0 9 0.7 8 0.5 0.17 0.01 0.07 0.01 100 0 16 0.4 

TX86A8072 0 8 0.7 7 0.6 0.16 0.01 0.06 0.01 100 0 15 0.4 

CREST 0 7 0.3 6 0.4 0.16 0.01 0.05 0.00 100 0 13 0.5 

ROSEBUD 0 8 0.7 7 0.6 0.16 0.01 0.05 0.01 100 0 15 0.2 

JUDITH 0 7 0.5 6 0.4 0.15 0.01 0.05 0.01 100 0 13 0.7 

MT85200 0 8 0.4 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.2 

NUSKY 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 1.2 

MT9513 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.4 

MT9904 0 8 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.9 

NORRIS 0 8 0.4 7 0.6 0.16 0.01 0.06 0.01 100 0 15 0.5 

YELLOWSTONE 0 8 0.4 7 0.6 0.16 0.01 0.06 0.01 100 0 15 0.4 

MT0495 0 7 0.7 7 0.7 0.16 0.01 0.05 0.01 100 0 14 1.0 

MTS0531 0 8 0.4 7 0.4 0.16 0.01 0.05 0.01 100 0 15 0.3 

DECADE 0 8 0.5 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.7 

MT06103 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 14 1.0 

JUDEE 0 8 0.5 6 0.3 0.15 0.01 0.06 0.01 100 0 14 0.4 

LAKIN 0 7 0.7 6 0.5 0.15 0.01 0.06 0.01 100 0 14 0.8 

STANTON 0 7 0.6 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.6 

TREGO 0 8 0.5 7 0.6 0.16 0.01 0.05 0.01 100 0 15 0.4 

KARL_92 0 7 0.5 6 0.4 0.15 0.01 0.05 0.01 100 0 13 0.5 

DODGE 0 8 0.6 7 0.5 0.15 0.01 0.06 0.01 100 0 14 1.1 

NORKAN 0 7 0.6 6 0.5 0.15 0.01 0.06 0.01 100 0 14 0.4 

CHENEY 0 7 0.6 6 0.4 0.15 0.01 0.05 0.01 100 0 13 0.6 

NEWTON 0 8 0.8 7 0.6 0.15 0.01 0.06 0.01 100 0 15 0.6 

LARNED 0 8 0.5 6 0.5 0.16 0.00 0.06 0.01 100 0 14 0.7 

PARKER76 0 7 0.7 6 0.3 0.15 0.01 0.05 0.01 100 0 13 0.9 

KIRWIN 0 8 1.0 7 0.6 0.15 0.01 0.05 0.01 100 0 14 1.2 

SAGE 0 8 0.6 6 0.5 0.15 0.01 0.06 0.01 100 0 14 1.1 

TRISON 0 7 0.8 7 0.4 0.15 0.01 0.05 0.01 100 0 14 0.7 

EAGLE 0 7 0.4 6 0.2 0.15 0.01 0.05 0.01 100 0 13 0.4 

SHAWNEE 0 8 0.4 7 0.4 0.14 0.02 0.05 0.01 100 0 14 0.5 

PARKER 0 8 0.5 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.4 

KAW61 0 8 0.4 7 0.5 0.15 0.01 0.06 0.00 100 0 14 1.1 

TASCOSA 0 8 0.4 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.5 

BISON 0 8 0.4 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.5 

KIOWA 0 8 0.5 6 0.4 0.15 0.01 0.06 0.01 100 0 14 0.6 

WICHITA 0 7 0.5 6 0.2 0.15 0.01 0.06 0.00 100 0 13 0.6 

COMANCHE 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.7 
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BAKERS_WHITE 0 8 0.6 7 0.4 0.15 0.00 0.06 0.01 100 0 13 1.4 

BURCHETT 0 7 0.7 6 0.2 0.15 0.01 0.06 0.01 100 0 13 0.4 

CUTTER 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

DUMAS 0 7 0.7 6 0.3 0.15 0.01 0.05 0.00 100 0 13 0.3 

HONDO 0 7 0.6 6 0.2 0.15 0.01 0.06 0.01 100 0 13 0.6 

JAGALENE 0 7 0.5 6 0.3 0.15 0.01 0.05 0.01 100 0 13 0.6 

LONGHORN 0 7 0.4 6 0.2 0.15 0.01 0.05 0.00 100 0 13 0.3 

NEOSHO 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.6 

OGALLALA 0 7 0.6 6 0.3 0.15 0.01 0.05 0.00 100 0 13 0.7 

POSTROCK 0 7 0.4 6 0.2 0.15 0.01 0.06 0.01 100 0 13 0.9 

THUNDERBOLT 0 8 0.3 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.3 

W04-417 0 7 0.5 6 0.4 0.15 0.01 0.05 0.01 100 0 13 0.6 

NUFRONTIER 0 8 0.5 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.3 

NUHORIZON 0 7 0.5 6 0.4 0.15 0.00 0.05 0.01 100 0 13 0.5 

ONAGA 0 9 0.9 8 0.7 0.16 0.01 0.06 0.01 100 0 17 0.9 

RONL 0 7 0.5 6 0.6 0.15 0.01 0.06 0.00 100 0 14 0.4 

2145 0 8 0.5 6 0.4 0.15 0.01 0.06 0.01 100 0 14 0.5 

HEYNE 0 7 0.5 6 0.5 0.15 0.01 0.06 0.00 100 0 13 0.4 

KS00F5-20-3 0 7 0.4 6 0.5 0.15 0.01 0.06 0.01 100 0 13 0.7 

OVERLEY 0 7 0.6 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.7 

FULLER 0 8 0.1 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.4 

COSSACK 0 8 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.8 

ENHANCER 0 8 0.0 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.3 

SANTA_FE 0 8 0.0 7 0.3 0.15 0.01 0.05 0.01 100 0 15 0.3 

VENANGO 0 8 0.4 7 0.4 0.15 0.01 0.05 0.01 100 0 14 0.5 

WB411W 0 8 0.4 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.2 

KEOTA 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

TX05A001822 0 7 0.5 7 0.5 0.15 0.01 0.06 0.00 100 0 13 0.7 

TX06A001263 0 7 0.5 6 0.4 0.15 0.01 0.06 0.01 100 0 13 0.7 

TX06A001132 0 7 0.6 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.9 

TX06A001281 0 8 0.4 6 0.4 0.15 0.01 0.05 0.01 100 0 14 0.9 

TX06A001386 0 7 0.4 6 0.4 0.15 0.01 0.06 0.00 100 0 13 0.5 

TX05V7259 0 8 0.4 7 0.4 0.15 0.01 0.06 0.01 100 0 14 0.5 

TX05V7269 0 8 0.4 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.6 

TX05A001188 0 8 0.3 6 0.5 0.16 0.01 0.06 0.01 100 0 14 0.4 

TX07A001279 0 7 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.5 

TX07A001318 0 8 0.5 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.4 

TX07A001420 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.2 

TX06V7266 0 8 0.4 7 0.6 0.16 0.01 0.06 0.01 100 0 14 0.8 

OK1067071 0 8 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.9 

OK1067274 0 8 0.4 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.2 
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OK1068002 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

OK1068009 0 8 0.8 7 0.5 0.16 0.01 0.05 0.00 100 0 15 0.3 

OK1068026 0 8 0.7 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.8 

OK1068112 0 8 0.5 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.6 

OK1070275 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 14 0.3 

OK1070267 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

OK09634 0 8 0.4 7 0.5 0.15 0.01 0.06 0.01 100 0 14 0.3 

OK10119 0 8 0.4 7 0.5 0.15 0.01 0.06 0.00 100 0 14 0.3 

GALLAGHER 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.3 

OK07231 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.6 

OK07S117 0 8 0.5 7 0.6 0.15 0.01 0.06 0.01 100 0 15 0.3 

OK08328 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.7 

BIG_SKY 0 8 0.5 6 0.4 0.16 0.01 0.06 0.01 100 0 14 0.2 

DANBY 0 8 0.3 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.6 

E2041 0 8 0.5 7 0.5 0.15 0.01 0.06 0.01 100 0 15 0.8 

DENALI 0 8 0.4 7 0.4 0.16 0.01 0.06 0.01 100 0 14 1.2 

CO050337-2 0 8 0.7 7 0.3 0.15 0.01 0.06 0.00 100 0 14 1.3 

BYRD 0 8 0.3 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.3 

CO07W245 0 8 0.5 7 0.5 0.15 0.01 0.06 0.00 100 0 15 0.2 

MCGILL 0 8 0.1 7 0.3 0.15 0.01 0.05 0.01 100 0 15 0.9 

NE02558 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.6 

NW03666 0 8 0.3 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.3 

NE04490 0 8 0.4 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.6 

NE05430 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.3 

NE05496 0 8 0.3 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.4 

NE05548 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.7 

NE06545 0 8 0.4 7 0.3 0.16 0.01 0.06 0.01 100 0 15 0.4 

NE06607 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.5 

ROBIDOUX 0 8 0.5 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.4 

NI06736 0 8 0.5 7 0.5 0.16 0.01 0.06 0.01 100 0 15 0.4 

NI06737 0 8 0.4 7 0.3 0.16 0.01 0.06 0.01 100 0 14 0.8 

NI07703 0 8 0.6 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.7 

NI08707 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 14 1.1 

NI08708 0 8 0.7 7 0.5 0.16 0.01 0.06 0.01 100 0 14 0.7 

EVEREST 0 8 0.6 7 0.4 0.16 0.01 0.06 0.01 100 0 15 0.5 

TRIUMPH64 60 6 0.6 4 0.3 0.12 0.02 0.04 0.00 66 11 9 1.0 

CHISHOLM 60 6 0.3 4 0.6 0.14 0.01 0.05 0.01 77 9 10 0.7 

CUSTER 60 6 0.5 4 0.3 0.13 0.01 0.04 0.00 75 15 9 0.4 

2174-05 60 5 0.6 4 0.6 0.14 0.01 0.04 0.01 58 9 9 0.8 

INTRADA 60 5 0.4 4 0.4 0.13 0.01 0.03 0.00 50 8 8 0.4 

OK101 60 5 0.3 4 0.4 0.14 0.01 0.03 0.01 65 15 8 0.5 
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OK102 60 6 0.5 4 0.7 0.13 0.01 0.03 0.01 60 12 9 0.7 

ENDURANCE 60 6 0.2 5 0.3 0.15 0.01 0.04 0.00 76 10 11 0.4 

DELIVER 60 5 0.4 4 0.8 0.14 0.01 0.03 0.01 58 17 9 1.0 

OK_BULLET 60 5 0.5 4 0.6 0.14 0.01 0.03 0.01 57 14 8 0.2 

CENTERFIELD 60 5 0.4 4 0.6 0.12 0.01 0.03 0.01 59 11 8 0.6 

GUYMON 60 7 1.0 6 0.8 0.14 0.01 0.05 0.01 80 15 12 1.1 

DUSTER 60 5 0.4 4 0.5 0.14 0.01 0.03 0.01 52 13 8 0.5 

OK_RISING 60 5 0.4 4 0.5 0.13 0.01 0.05 0.01 81 14 8 0.5 

OK02405 60 5 0.3 4 0.6 0.14 0.01 0.03 0.01 60 18 9 0.9 

PETE 60 5 0.3 4 0.6 0.14 0.00 0.04 0.01 75 13 9 0.4 

BILLINGS 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 65 14 8 0.7 

OK04505 60 5 0.5 4 0.3 0.14 0.01 0.04 0.01 78 13 9 0.5 

OK04525 60 6 0.3 4 0.4 0.13 0.01 0.03 0.00 51 9 9 0.4 

OK04507 60 6 0.4 4 0.3 0.14 0.01 0.04 0.01 71 14 9 0.3 

OK05830 60 6 0.4 4 0.8 0.13 0.01 0.03 0.00 51 9 9 0.6 

OK04111 60 5 0.5 4 0.8 0.14 0.01 0.04 0.01 64 14 9 0.5 

OK04415 60 5 0.3 4 0.7 0.13 0.01 0.03 0.01 59 15 8 0.4 

OK05711W 60 5 0.4 4 0.4 0.15 0.01 0.04 0.01 71 14 9 0.6 

OK05723W 60 5 0.3 5 0.5 0.15 0.01 0.04 0.01 76 11 9 0.4 

OK05108 60 6 0.7 5 0.9 0.15 0.01 0.05 0.01 71 16 10 0.3 

OK05122 60 5 0.4 4 0.4 0.12 0.02 0.04 0.01 77 13 8 0.5 

OK05526 60 5 0.5 4 0.7 0.13 0.01 0.04 0.01 62 12 9 0.2 

OK05134 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 65 14 9 0.7 

OK05303 60 5 0.3 4 0.6 0.14 0.01 0.03 0.01 65 10 8 0.5 

OK05312 60 5 0.3 4 0.6 0.14 0.01 0.03 0.00 57 11 9 0.7 

OK05511 60 5 0.4 4 0.7 0.13 0.01 0.03 0.00 59 11 9 0.4 

OK05204 60 5 0.3 4 0.6 0.13 0.01 0.04 0.01 65 11 9 0.2 

GARRISON 60 5 0.3 4 0.4 0.14 0.01 0.05 0.01 77 8 9 0.2 

OK06114 60 6 0.3 4 0.6 0.14 0.01 0.03 0.00 54 7 9 0.3 

OK06210 60 5 0.4 5 0.4 0.15 0.01 0.04 0.01 74 9 9 0.5 

OK06319 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 72 11 9 0.7 

OK06318 60 6 0.5 4 0.2 0.13 0.01 0.04 0.01 74 9 8 1.6 

OK06336 60 5 0.3 4 0.5 0.12 0.01 0.03 0.00 58 8 9 0.1 

AGATE 60 5 0.3 4 0.3 0.13 0.02 0.03 0.00 53 9 8 0.3 

ALLIANCE 60 6 0.3 4 0.2 0.12 0.01 0.03 0.00 56 9 9 0.8 

ANTELOPE 60 5 0.3 4 0.5 0.13 0.01 0.03 0.00 53 10 9 0.3 

ARAPAHOE 60 6 0.3 4 0.5 0.13 0.01 0.03 0.00 57 8 9 0.5 

BENNETT 60 6 0.2 5 0.5 0.14 0.01 0.04 0.01 77 13 10 0.4 

BUCKSKIN 60 5 0.4 4 0.6 0.14 0.01 0.04 0.01 70 17 9 0.6 

CENTURK78 60 5 0.3 4 0.3 0.14 0.01 0.05 0.00 78 12 9 0.3 

CHEYENNE 60 5 0.4 4 0.5 0.14 0.01 0.04 0.01 73 10 9 0.6 
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COLT 60 5 0.4 4 0.7 0.13 0.02 0.03 0.00 58 11 9 0.2 

COUGAR 60 5 0.4 4 0.7 0.13 0.02 0.03 0.00 58 8 9 0.9 

CULVER 60 5 0.4 4 0.7 0.13 0.01 0.03 0.01 61 12 9 0.7 

GAGE 60 7 0.7 5 0.7 0.14 0.01 0.04 0.01 81 16 11 0.6 

GOODSTREAK 60 5 0.4 4 0.4 0.15 0.01 0.04 0.01 75 10 8 0.6 

HALLAM 60 4 0.4 3 0.2 0.13 0.01 0.04 0.01 66 12 7 0.2 

HARRY 60 5 0.4 4 0.6 0.14 0.01 0.03 0.00 54 5 9 0.8 

HOMESTEAD 60 6 0.5 4 0.3 0.14 0.01 0.04 0.01 73 9 9 0.7 

INFINITY_CL 60 5 0.3 4 0.6 0.13 0.01 0.04 0.01 64 10 9 0.5 

KHARKOF 60 5 0.4 4 0.4 0.14 0.01 0.05 0.00 76 8 9 0.3 

MILLENNIUM 60 5 0.3 4 0.7 0.14 0.01 0.04 0.01 61 10 8 0.5 

CAMELOT 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 60 9 9 0.6 

OVERLAND 60 5 0.4 4 0.4 0.14 0.01 0.03 0.01 58 11 9 0.4 

NE99495 60 4 0.2 4 0.2 0.14 0.01 0.05 0.01 74 9 8 0.2 

NIOBRARA 60 5 0.3 4 0.2 0.14 0.01 0.04 0.01 71 10 8 0.5 

NUPLAINS 60 5 0.4 4 0.3 0.13 0.02 0.04 0.01 60 13 8 0.7 

PRONGHORN 60 5 0.4 4 0.6 0.14 0.01 0.03 0.00 60 13 8 0.5 

RAWHIDE 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 63 14 9 0.3 

REDLAND 60 5 0.3 4 0.7 0.13 0.01 0.03 0.00 60 14 9 0.2 

SCOUT66 60 5 0.4 4 0.4 0.14 0.01 0.04 0.01 73 11 9 0.6 

SIOUXLAND 60 6 0.4 4 0.6 0.14 0.01 0.04 0.01 61 13 8 0.6 

TURKEY_NEBSEL 60 5 0.5 4 0.5 0.13 0.02 0.04 0.01 65 12 9 0.4 

VISTA 60 5 0.5 4 0.5 0.13 0.02 0.03 0.00 55 8 9 0.3 

WAHOO 60 5 0.3 4 0.6 0.12 0.02 0.03 0.01 58 11 9 0.7 

WARRIOR 60 5 0.4 4 0.5 0.14 0.01 0.04 0.01 72 9 9 0.4 

WESLEY 60 5 0.3 4 0.2 0.14 0.01 0.04 0.01 73 12 8 0.4 

WICHITA 60 5 0.5 4 0.4 0.14 0.00 0.04 0.01 74 9 9 1.0 

WINDSTAR 60 5 0.5 4 0.5 0.13 0.01 0.03 0.01 60 8 9 0.8 

LANCER 60 5 0.5 4 0.3 0.14 0.01 0.05 0.01 75 7 8 0.6 

ANTON 60 6 0.4 4 0.3 0.13 0.02 0.04 0.01 62 11 8 0.4 

MACE 60 5 0.4 4 0.3 0.11 0.02 0.04 0.00 64 9 8 0.5 

TAM107-R7 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 60 14 9 0.6 

ARLIN 60 6 0.5 4 0.5 0.14 0.01 0.04 0.01 68 16 9 0.4 

ALICE 60 5 0.4 4 0.3 0.13 0.02 0.03 0.00 59 11 9 0.3 

DARRELL 60 5 0.3 4 0.3 0.13 0.01 0.03 0.00 57 10 9 0.4 

EXPEDITION 60 5 0.3 4 0.3 0.13 0.01 0.03 0.01 60 10 8 0.3 

WENDY 60 5 0.3 4 0.2 0.14 0.01 0.04 0.01 68 10 8 0.3 

SD00111-9 60 5 0.4 4 0.3 0.13 0.02 0.03 0.00 57 8 8 0.5 

SD01237 60 5 0.3 4 0.5 0.12 0.02 0.03 0.00 57 9 9 0.4 

SD01058 60 5 0.4 4 0.5 0.13 0.02 0.03 0.00 58 9 9 0.2 

SD05118 60 5 0.5 4 0.4 0.14 0.01 0.04 0.01 72 12 9 0.6 
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SD05210 60 5 0.3 4 0.6 0.13 0.02 0.03 0.00 55 10 8 1.0 

SD05W018 60 5 0.3 4 0.6 0.13 0.01 0.03 0.00 56 9 9 0.4 

NEKOTA 60 5 0.5 4 0.3 0.14 0.01 0.05 0.01 78 11 9 0.4 

TANDEM 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 71 9 9 0.2 

CRIMSON 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 57 11 9 0.3 

ROSE 60 5 0.3 4 0.5 0.13 0.02 0.03 0.00 57 10 8 0.8 

DAWN 60 5 0.4 4 0.3 0.14 0.01 0.05 0.01 76 12 9 0.3 

WINOKA 60 5 0.4 4 0.3 0.14 0.01 0.03 0.00 57 17 8 0.4 

NELL 60 5 0.5 4 0.5 0.14 0.01 0.04 0.00 73 12 9 0.3 

RITA 60 5 0.5 4 0.5 0.13 0.02 0.03 0.00 61 12 9 0.6 

BRONZE 60 5 0.3 4 0.5 0.11 0.02 0.03 0.00 56 8 9 0.2 

HUME 60 5 0.4 4 0.7 0.13 0.02 0.03 0.00 52 12 9 0.0 

GENT 60 5 0.4 4 0.4 0.13 0.02 0.03 0.01 62 16 8 0.6 

HARDING 60 5 0.4 4 0.4 0.13 0.02 0.03 0.00 58 10 8 0.8 

HV9W03-1551WP 60 5 0.5 4 0.2 0.14 0.01 0.04 0.01 76 13 9 0.6 

G1878 60 5 0.4 4 0.5 0.13 0.01 0.05 0.01 75 12 9 0.5 

HV9W03-1379R 60 5 0.5 4 0.4 0.13 0.02 0.03 0.00 52 7 9 0.9 

HV9W03-1596R 60 5 0.6 4 0.5 0.13 0.01 0.03 0.00 55 11 8 0.6 

HV9W05-1280R 60 5 0.4 4 0.5 0.13 0.02 0.04 0.01 71 15 9 0.4 

HV9W06-504 60 5 0.4 4 0.7 0.13 0.01 0.03 0.00 61 11 9 0.4 

SPARTAN 60 5 0.5 4 0.4 0.13 0.01 0.04 0.01 64 16 9 0.8 

HV906-865 60 5 0.5 4 0.3 0.13 0.01 0.05 0.01 71 8 9 0.4 

TARKIO 60 5 0.5 4 0.5 0.13 0.01 0.03 0.00 57 10 9 0.6 

SMOKYHILL 60 6 0.5 4 0.5 0.12 0.02 0.04 0.01 68 13 8 0.6 

SHOCKER 60 5 0.4 4 0.4 0.13 0.01 0.03 0.01 57 11 8 0.5 

VONA 60 5 0.4 4 0.4 0.13 0.02 0.03 0.00 54 9 8 0.6 

CO940610 60 5 0.4 4 0.5 0.12 0.02 0.03 0.00 55 11 8 0.6 

AVALANCHE 60 6 0.9 5 0.7 0.13 0.01 0.04 0.01 69 15 10 0.8 

BOND_CL 60 5 0.5 4 0.6 0.13 0.02 0.03 0.00 59 10 9 0.5 

PLATTE 60 5 0.5 4 0.6 0.13 0.01 0.03 0.00 61 11 9 0.4 

LINDON 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 62 11 8 0.7 

CO03W043 60 5 0.5 4 0.5 0.13 0.01 0.03 0.01 60 12 9 0.4 

SNOWMASS 60 5 0.5 4 0.5 0.13 0.02 0.03 0.01 59 10 8 0.4 

THUNDER_CL 60 5 0.4 4 0.2 0.13 0.01 0.04 0.01 72 10 9 0.5 

CO04025 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 57 11 9 0.7 

CO04393 60 5 0.5 4 0.4 0.13 0.01 0.04 0.00 74 11 9 0.4 

CO04499 60 5 0.4 4 0.4 0.14 0.01 0.03 0.00 54 9 9 0.6 

CO04W320 60 6 0.9 5 1.0 0.14 0.01 0.04 0.01 56 17 9 0.7 

LAMAR 60 5 0.4 4 0.5 0.14 0.01 0.04 0.01 69 10 9 0.8 

CARSON 60 6 0.9 5 0.8 0.15 0.01 0.04 0.01 59 8 10 0.1 

HAIL 60 5 0.2 4 0.7 0.14 0.01 0.03 0.00 52 5 8 0.7 
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SANDY 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 56 8 9 0.7 

DUKE 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 57 8 9 0.4 

HALT 60 5 0.5 4 0.4 0.14 0.01 0.05 0.01 73 10 9 0.2 

HATCHER 60 5 0.4 4 0.6 0.13 0.01 0.03 0.00 57 8 8 0.5 

PRAIRIE_RED 60 5 0.5 5 0.4 0.13 0.01 0.04 0.01 63 14 9 0.4 

ABOVE 60 5 0.3 4 0.6 0.13 0.00 0.03 0.00 57 9 9 0.6 

CO03064 60 5 0.3 4 0.6 0.13 0.01 0.04 0.01 68 13 9 0.6 

BILL_BROWN 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 59 12 8 0.3 

RIPPER 60 5 0.4 4 0.6 0.12 0.02 0.03 0.00 53 6 9 0.3 

PROWERS 60 5 0.4 4 0.3 0.13 0.01 0.04 0.01 64 11 8 0.4 

AKRON 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 67 14 9 0.6 

JULES 60 5 0.4 4 0.3 0.14 0.01 0.04 0.01 66 11 9 0.9 

YUMA 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 66 11 8 0.7 

TAMW-101 60 5 0.4 4 0.3 0.13 0.01 0.04 0.01 67 10 8 0.4 

TAM105 60 5 0.4 4 0.4 0.14 0.01 0.03 0.01 58 10 9 0.4 

TAM107 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 65 10 8 0.2 

TAM109 60 5 0.4 4 0.5 0.13 0.01 0.04 0.00 73 10 9 0.3 

TAM110 60 5 0.4 4 0.2 0.14 0.01 0.04 0.00 70 10 9 0.5 

TAM111 60 5 0.5 4 0.4 0.14 0.01 0.04 0.01 76 17 9 0.5 

TAM112 60 5 0.5 4 0.2 0.12 0.01 0.04 0.00 77 10 8 0.4 

TAM200 60 5 0.3 4 0.3 0.13 0.02 0.04 0.01 77 13 8 0.3 

TAM202 60 5 0.5 4 0.3 0.13 0.01 0.03 0.01 62 12 7 0.8 

TAM203 60 5 0.5 4 0.2 0.13 0.01 0.04 0.00 75 8 8 0.5 

TAM302 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 71 9 8 0.3 

TAM303 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 63 14 8 0.6 

TAM304 60 5 0.4 4 0.2 0.13 0.01 0.04 0.01 67 11 8 0.4 

TAM400 60 5 0.3 4 0.3 0.14 0.01 0.03 0.01 65 10 7 0.2 

LOCKETT 60 5 0.5 4 0.4 0.14 0.01 0.03 0.01 63 11 9 0.6 

STURDY 60 5 0.3 4 0.5 0.13 0.01 0.04 0.01 70 14 8 0.6 

STURDY_2K 60 5 0.5 4 0.6 0.13 0.01 0.04 0.00 79 12 9 0.3 

MIT 60 5 0.4 4 0.3 0.13 0.02 0.04 0.01 74 14 8 0.6 

CAPROCK 60 5 0.4 4 0.4 0.13 0.01 0.04 0.00 71 10 9 0.5 

TX01A5936 60 5 0.6 4 0.2 0.13 0.01 0.03 0.00 61 13 8 0.4 

TAM401 60 5 0.4 4 0.5 0.13 0.01 0.04 0.00 72 10 9 0.3 

TX02A0252 60 5 0.5 4 0.4 0.13 0.01 0.04 0.01 80 12 9 0.5 

TX03A0148 60 5 0.4 4 0.6 0.13 0.01 0.04 0.01 71 12 8 0.2 

TX03A0563 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 64 12 8 0.8 

TX04A001246 60 5 0.3 4 0.5 0.12 0.02 0.05 0.01 84 13 8 0.7 

TX01V5134RC-3 60 4 0.4 4 0.3 0.13 0.01 0.04 0.00 76 11 8 0.1 

TX04M410164 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 66 13 8 0.6 

TX04M410211 60 6 0.6 5 0.8 0.15 0.01 0.04 0.01 59 17 11 0.6 
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TX04V075080 60 5 0.4 4 0.4 0.13 0.01 0.04 0.00 72 8 7 0.4 

TX99A0153-1 60 5 0.4 4 0.6 0.14 0.01 0.04 0.01 63 9 8 0.6 

TX01M5009-28 60 5 0.4 4 0.5 0.13 0.01 0.04 0.00 75 8 8 0.8 

TX00V1131 60 5 0.4 4 0.6 0.13 0.01 0.04 0.00 71 9 9 0.3 

TX99U8618 60 4 0.4 4 0.4 0.13 0.01 0.04 0.01 64 12 8 0.8 

TX96D1073 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 69 11 8 0.4 

2180 60 5 0.3 4 0.6 0.14 0.01 0.03 0.00 58 9 9 0.6 

HG-9 60 5 0.4 4 0.5 0.14 0.01 0.04 0.01 69 15 8 0.4 

TX86A5606 60 6 0.7 5 0.7 0.15 0.01 0.05 0.01 69 9 11 0.5 

TX86A8072 60 5 0.4 4 0.4 0.14 0.01 0.04 0.00 77 9 8 0.4 

CREST 60 5 0.5 4 0.4 0.13 0.01 0.04 0.01 68 12 9 0.9 

ROSEBUD 60 5 0.5 4 0.4 0.13 0.01 0.04 0.00 70 9 9 0.3 

JUDITH 60 5 0.5 4 0.6 0.13 0.01 0.04 0.01 65 10 8 0.6 

MT85200 60 5 0.5 4 0.3 0.14 0.01 0.04 0.01 71 15 9 0.8 

NUSKY 60 5 0.4 4 0.5 0.14 0.01 0.03 0.00 59 13 8 0.8 

MT9513 60 5 0.3 4 0.5 0.14 0.01 0.04 0.01 69 13 8 0.5 

MT9904 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 72 11 9 0.2 

NORRIS 60 5 0.3 4 0.5 0.14 0.01 0.03 0.01 59 9 8 0.2 

YELLOWSTONE 60 5 0.4 4 0.5 0.14 0.01 0.03 0.01 57 12 9 0.9 

MT0495 60 5 0.4 4 0.5 0.12 0.02 0.04 0.01 78 15 8 0.3 

MTS0531 60 6 0.9 5 0.8 0.13 0.01 0.04 0.01 80 14 11 1.5 

DECADE 60 6 0.4 4 0.3 0.13 0.01 0.04 0.01 68 16 9 0.5 

MT06103 60 5 0.4 4 0.5 0.14 0.01 0.04 0.01 64 11 8 0.5 

JUDEE 60 5 0.3 4 0.3 0.13 0.00 0.04 0.01 63 11 8 0.1 

LAKIN 60 5 0.4 4 0.4 0.13 0.01 0.03 0.00 59 10 9 0.5 

STANTON 60 6 0.5 4 0.4 0.13 0.01 0.04 0.01 67 12 9 0.2 

TREGO 60 5 0.3 4 0.4 0.14 0.01 0.04 0.00 70 13 9 0.7 

KARL_92 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 62 9 9 0.5 

DODGE 60 5 0.3 4 0.5 0.13 0.01 0.04 0.01 71 21 9 0.5 

NORKAN 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 63 10 9 0.6 

CHENEY 60 5 0.4 4 0.4 0.13 0.01 0.03 0.00 61 11 8 0.4 

NEWTON 60 5 0.4 4 0.4 0.12 0.02 0.04 0.01 64 11 8 0.6 

LARNED 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 67 13 8 0.7 

PARKER76 60 5 0.3 4 0.6 0.13 0.01 0.03 0.00 59 6 8 0.2 

KIRWIN 60 5 0.4 4 0.4 0.12 0.01 0.03 0.00 60 6 9 0.7 

SAGE 60 5 0.5 4 0.6 0.12 0.02 0.03 0.00 61 10 9 0.5 

TRISON 60 5 0.4 4 0.6 0.12 0.02 0.03 0.00 60 13 9 0.5 

EAGLE 60 5 0.4 4 0.6 0.12 0.02 0.03 0.00 57 7 8 0.5 

SHAWNEE 60 5 0.4 4 0.6 0.13 0.02 0.03 0.00 60 11 8 0.5 

PARKER 60 5 0.4 4 0.3 0.14 0.01 0.04 0.01 65 14 9 1.0 

KAW61 60 5 0.4 4 0.3 0.13 0.01 0.03 0.01 59 8 8 0.5 
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TASCOSA 60 7 0.8 5 0.9 0.14 0.01 0.04 0.01 79 16 11 0.3 

BISON 60 5 0.3 4 0.5 0.12 0.02 0.03 0.01 62 14 9 0.7 

KIOWA 60 5 0.5 4 0.2 0.13 0.02 0.03 0.01 64 12 8 0.5 

WICHITA 60 5 0.4 4 0.2 0.13 0.01 0.04 0.01 64 12 8 0.1 

COMANCHE 60 5 0.4 4 0.4 0.13 0.01 0.04 0.01 58 9 8 0.4 

BAKERS_WHITE 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 60 9 8 0.5 

BURCHETT 60 5 0.4 4 0.6 0.13 0.01 0.03 0.00 54 7 8 0.4 

CUTTER 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 58 13 9 0.9 

DUMAS 60 5 0.3 4 0.6 0.13 0.02 0.03 0.01 64 10 8 0.5 

HONDO 60 5 0.4 4 0.5 0.13 0.02 0.03 0.00 56 6 8 1.0 

JAGALENE 60 5 0.4 4 0.4 0.13 0.01 0.03 0.00 62 12 9 0.5 

LONGHORN 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 62 10 8 0.5 

NEOSHO 60 5 0.4 4 0.5 0.13 0.01 0.03 0.00 54 8 9 0.5 

OGALLALA 60 5 0.4 4 0.6 0.13 0.01 0.03 0.00 57 5 9 0.7 

POSTROCK 60 5 0.3 4 0.8 0.13 0.01 0.03 0.00 53 7 8 0.8 

THUNDERBOLT 60 5 0.4 4 0.7 0.13 0.01 0.03 0.01 55 11 8 0.4 

W04-417 60 5 0.4 4 0.6 0.13 0.01 0.03 0.01 54 8 9 0.4 

NUFRONTIER 60 5 0.3 4 0.6 0.12 0.02 0.03 0.00 57 6 8 0.3 

NUHORIZON 60 5 0.5 4 0.5 0.13 0.01 0.03 0.00 57 9 8 0.3 

ONAGA 60 6 0.5 5 0.7 0.15 0.01 0.04 0.01 64 9 11 0.9 

RONL 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 53 11 8 0.7 

2145 60 5 0.4 4 0.4 0.13 0.01 0.03 0.00 49 9 8 0.3 

HEYNE 60 5 0.5 4 0.2 0.13 0.01 0.03 0.01 50 10 8 0.4 

KS00F5-20-3 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 52 8 9 0.8 

OVERLEY 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 51 8 9 0.4 

FULLER 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 50 9 8 0.5 

COSSACK 60 5 0.4 4 0.4 0.13 0.01 0.03 0.01 55 11 8 0.8 

ENHANCER 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 52 6 8 0.9 

SANTA_FE 60 5 0.4 4 0.6 0.13 0.01 0.03 0.00 54 8 9 0.2 

VENANGO 60 5 0.4 4 0.5 0.12 0.02 0.03 0.00 54 8 8 0.5 

WB411W 60 5 0.4 4 0.6 0.13 0.01 0.03 0.00 56 10 8 0.8 

KEOTA 60 5 0.5 4 0.5 0.13 0.00 0.03 0.00 53 5 9 0.4 

TX05A001822 60 6 0.4 4 0.6 0.13 0.00 0.03 0.00 52 5 8 0.4 

TX06A001263 60 5 0.5 4 0.5 0.13 0.00 0.03 0.00 56 8 8 0.7 

TX06A001132 60 5 0.4 4 0.5 0.13 0.00 0.03 0.00 56 8 8 0.7 

TX06A001281 60 5 0.4 4 0.5 0.13 0.00 0.03 0.00 56 6 9 0.5 

TX06A001386 60 5 0.4 4 0.4 0.13 0.00 0.03 0.00 55 6 9 0.8 

TX05V7259 60 5 0.4 4 0.6 0.13 0.02 0.03 0.00 50 9 8 0.6 

TX05V7269 60 5 0.4 4 0.5 0.13 0.00 0.03 0.00 55 5 8 0.8 

TX05A001188 60 5 0.3 4 0.5 0.13 0.00 0.03 0.00 54 5 8 0.3 

TX07A001279 60 5 0.4 4 0.6 0.13 0.00 0.03 0.00 57 8 9 0.7 
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TX07A001318 60 5 0.4 4 0.6 0.13 0.00 0.03 0.00 58 11 8 0.7 

TX07A001420 60 6 0.5 4 0.5 0.13 0.01 0.03 0.01 58 7 8 0.9 

TX06V7266 60 5 0.5 4 0.5 0.13 0.00 0.03 0.01 61 8 9 0.7 

OK1067071 60 5 0.4 4 0.4 0.13 0.00 0.04 0.01 64 12 8 0.9 

OK1067274 60 5 0.4 4 0.4 0.13 0.00 0.03 0.00 57 7 9 0.8 

OK1068002 60 5 0.4 4 0.4 0.13 0.00 0.04 0.01 62 10 8 1.1 

OK1068009 60 6 0.5 4 0.7 0.13 0.00 0.03 0.00 62 10 9 0.9 

OK1068026 60 5 0.4 4 0.5 0.12 0.02 0.03 0.00 57 9 9 0.6 

OK1068112 60 5 0.4 4 0.5 0.13 0.02 0.03 0.01 59 10 8 0.6 

OK1070275 60 5 0.3 4 0.7 0.13 0.00 0.03 0.00 60 9 9 0.5 

OK1070267 60 6 0.5 4 0.5 0.13 0.00 0.03 0.01 59 6 8 0.6 

OK09634 60 5 0.3 4 0.5 0.13 0.00 0.03 0.00 61 9 9 0.8 

OK10119 60 5 0.4 4 0.5 0.13 0.00 0.03 0.00 59 7 8 0.4 

GALLAGHER 60 5 0.5 4 0.5 0.13 0.01 0.03 0.01 58 7 9 0.9 

OK07231 60 5 0.4 4 0.5 0.13 0.00 0.03 0.01 64 15 8 0.9 

OK07S117 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 60 10 8 0.8 

OK08328 60 5 0.4 4 0.6 0.13 0.00 0.03 0.00 59 7 8 0.9 

BIG_SKY 60 5 0.3 4 0.4 0.13 0.01 0.03 0.01 62 10 8 0.2 

DANBY 60 6 0.5 4 0.6 0.13 0.01 0.03 0.01 59 10 9 0.5 

E2041 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 55 7 9 0.5 

DENALI 60 5 0.4 4 0.3 0.13 0.01 0.03 0.00 55 9 8 0.8 

CO050337-2 60 5 0.4 4 0.3 0.13 0.00 0.03 0.00 58 11 8 0.5 

BYRD 60 5 0.4 4 0.3 0.13 0.01 0.03 0.01 56 8 9 0.8 

CO07W245 60 5 0.4 4 0.4 0.13 0.00 0.03 0.00 60 10 8 0.7 

MCGILL 60 5 0.5 4 0.5 0.13 0.01 0.03 0.00 61 10 9 0.5 

NE02558 60 5 0.4 4 0.4 0.13 0.01 0.03 0.01 62 11 8 0.6 

NW03666 60 5 0.4 4 0.3 0.13 0.01 0.04 0.01 70 17 8 0.2 

NE04490 60 5 0.4 4 0.4 0.13 0.01 0.03 0.01 62 9 8 0.5 

NE05430 60 5 0.5 4 0.3 0.13 0.01 0.04 0.01 62 9 8 0.2 

NE05496 60 5 0.4 4 0.5 0.13 0.00 0.04 0.01 63 7 9 0.7 

NE05548 60 5 0.4 4 0.5 0.13 0.00 0.04 0.01 63 8 8 0.3 

NE06545 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 62 12 8 1.0 

NE06607 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 65 10 8 0.8 

ROBIDOUX 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 62 8 8 0.2 

NI06736 60 5 0.4 4 0.5 0.13 0.01 0.03 0.01 59 8 8 0.4 

NI06737 60 5 0.5 4 0.5 0.13 0.01 0.03 0.01 59 10 8 0.5 

NI07703 60 5 0.3 4 0.5 0.13 0.01 0.03 0.01 57 12 8 0.7 

NI08707 60 5 0.4 4 0.4 0.13 0.00 0.03 0.01 61 11 8 0.4 

NI08708 60 5 0.4 4 0.5 0.13 0.01 0.04 0.01 61 9 8 0.3 

EVEREST 60 5 0.5 4 0.5 0.13 0.01 0.04 0.01 61 7 8 0.8 

TRIUMPH64 120 2 0.6 2 0.4 0.08 0.01 0.02 0.01 28 11 3 0.5 
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CHISHOLM 120 3 0.5 2 0.4 0.10 0.01 0.02 0.01 35 16 4 0.5 

CUSTER 120 3 0.6 2 0.5 0.09 0.01 0.02 0.01 38 16 2 0.4 

2174-05 120 3 0.8 2 0.7 0.10 0.02 0.02 0.01 23 11 1 0.2 

INTRADA 120 2 0.5 1 0.4 0.08 0.01 0.01 0.01 26 10 2 0.3 

OK101 120 3 0.6 2 0.3 0.10 0.01 0.02 0.01 41 18 2 0.4 

OK102 120 3 0.5 2 0.4 0.08 0.01 0.02 0.01 31 15 2 0.4 

ENDURANCE 120 4 0.3 3 0.2 0.10 0.01 0.03 0.01 44 7 6 0.4 

DELIVER 120 3 0.6 1 0.4 0.09 0.01 0.02 0.01 30 16 2 0.5 

OK_BULLET 120 3 0.6 2 0.4 0.09 0.01 0.02 0.01 33 12 2 0.6 

CENTERFIELD 120 3 0.6 2 0.4 0.09 0.01 0.02 0.01 28 13 3 0.2 

GUYMON 120 6 1.0 4 0.6 0.11 0.01 0.03 0.01 53 18 8 0.4 

DUSTER 120 3 0.6 2 0.5 0.08 0.01 0.02 0.01 31 16 3 0.5 

OK_RISING 120 3 0.4 2 0.4 0.10 0.01 0.02 0.01 30 17 2 0.5 

OK02405 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 28 15 2 0.3 

PETE 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 38 17 2 0.3 

BILLINGS 120 2 0.5 2 0.5 0.08 0.01 0.02 0.01 33 15 2 0.4 

OK04505 120 2 0.4 1 0.5 0.10 0.01 0.01 0.01 26 17 2 0.5 

OK04525 120 3 0.6 2 0.5 0.09 0.01 0.02 0.01 29 15 2 0.6 

OK04507 120 3 0.3 3 0.3 0.10 0.01 0.02 0.01 38 13 5 0.4 

OK05830 120 3 0.5 2 0.5 0.09 0.01 0.02 0.01 32 19 2 0.3 

OK04111 120 3 0.5 2 0.4 0.09 0.01 0.02 0.01 31 15 2 0.5 

OK04415 120 3 0.5 2 0.4 0.09 0.01 0.01 0.01 27 14 2 0.6 

OK05711W 120 3 0.6 2 0.2 0.10 0.01 0.02 0.01 35 16 3 0.2 

OK05723W 120 2 0.4 1 0.3 0.10 0.01 0.01 0.01 26 16 2 0.3 

OK05108 120 3 0.6 2 0.6 0.11 0.01 0.02 0.01 32 9 3 0.1 

OK05122 120 3 0.6 2 0.4 0.09 0.01 0.02 0.01 41 19 2 0.4 

OK05526 120 3 0.6 2 0.5 0.09 0.01 0.02 0.01 28 14 2 0.4 

OK05134 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 27 15 2 0.8 

OK05303 120 2 0.6 2 0.5 0.09 0.01 0.02 0.01 36 15 2 0.5 

OK05312 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 30 15 2 0.3 

OK05511 120 3 0.6 2 0.4 0.09 0.01 0.01 0.01 25 14 2 0.5 

OK05204 120 3 0.4 2 0.4 0.10 0.01 0.02 0.01 39 18 2 0.5 

GARRISON 120 3 0.4 2 0.4 0.10 0.01 0.02 0.01 35 13 3 0.3 

OK06114 120 3 0.5 2 0.6 0.09 0.01 0.02 0.01 27 13 2 0.5 

OK06210 120 3 0.4 2 0.3 0.10 0.01 0.02 0.01 41 17 4 0.4 

OK06319 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 33 17 2 0.4 

OK06318 120 2 0.4 2 0.3 0.10 0.01 0.02 0.01 35 17 2 0.2 

OK06336 120 2 0.2 2 0.5 0.10 0.01 0.02 0.01 37 16 2 0.3 

AGATE 120 2 0.3 1 0.4 0.10 0.01 0.01 0.01 25 14 1 0.4 

ALLIANCE 120 2 0.4 1 0.5 0.09 0.01 0.01 0.01 26 16 2 0.1 

ANTELOPE 120 2 0.3 1 0.5 0.08 0.01 0.01 0.01 23 16 2 0.5 
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ARAPAHOE 120 2 0.4 1 0.6 0.10 0.01 0.02 0.01 29 13 1 0.6 

BENNETT 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 34 15 2 0.3 

BUCKSKIN 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 34 17 2 0.2 

CENTURK78 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 37 16 2 0.6 

CHEYENNE 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 37 17 3 0.2 

COLT 120 2 0.4 1 0.6 0.10 0.01 0.02 0.01 29 15 2 0.4 

COUGAR 120 2 0.5 2 0.6 0.09 0.01 0.02 0.01 29 15 3 0.6 

CULVER 120 2 0.6 2 0.5 0.08 0.01 0.02 0.01 32 18 2 0.4 

GAGE 120 4 0.5 3 0.8 0.10 0.01 0.03 0.01 52 19 7 0.5 

GOODSTREAK 120 3 0.2 2 0.3 0.10 0.01 0.02 0.01 36 15 5 0.1 

HALLAM 120 3 0.3 2 0.2 0.09 0.01 0.01 0.01 26 14 4 0.2 

HARRY 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 28 14 1 0.3 

HOMESTEAD 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 34 16 3 0.1 

INFINITY_CL 120 2 0.4 2 0.4 0.09 0.01 0.02 0.01 29 18 2 0.5 

KHARKOF 120 3 0.6 2 0.3 0.10 0.01 0.02 0.01 34 16 3 0.3 

MILLENNIUM 120 2 0.5 2 0.4 0.09 0.01 0.02 0.01 32 15 2 0.4 

CAMELOT 120 2 0.4 1 0.4 0.09 0.01 0.02 0.01 27 13 2 0.5 

OVERLAND 120 3 0.6 2 0.4 0.09 0.01 0.02 0.01 34 17 2 0.5 

NE99495 120 3 0.3 2 0.2 0.10 0.01 0.02 0.01 33 14 5 0.3 

NIOBRARA 120 4 0.4 3 0.2 0.10 0.01 0.02 0.01 38 18 5 0.5 

NUPLAINS 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 26 16 3 0.4 

PRONGHORN 120 2 0.3 2 0.5 0.09 0.01 0.02 0.01 28 16 2 0.2 

RAWHIDE 120 2 0.4 1 0.6 0.09 0.02 0.02 0.01 35 19 2 0.3 

REDLAND 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 30 15 2 0.4 

SCOUT66 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 36 18 3 0.2 

SIOUXLAND 120 2 0.5 1 0.5 0.09 0.01 0.02 0.01 32 13 2 0.3 

TURKEY_NEBSEL 120 2 0.4 2 0.6 0.09 0.01 0.02 0.01 32 18 3 0.4 

VISTA 120 2 0.5 1 0.5 0.09 0.01 0.02 0.01 34 19 2 0.5 

WAHOO 120 2 0.5 1 0.6 0.09 0.01 0.01 0.01 25 16 2 0.4 

WARRIOR 120 3 0.6 2 0.6 0.09 0.01 0.02 0.01 35 13 3 0.3 

WESLEY 120 3 0.2 2 0.5 0.10 0.01 0.02 0.01 38 18 5 0.5 

WICHITA 120 3 0.6 2 0.6 0.09 0.01 0.02 0.01 38 16 3 0.3 

WINDSTAR 120 2 0.5 2 0.6 0.09 0.01 0.02 0.01 30 19 2 0.6 

LANCER 120 2 0.6 2 0.7 0.10 0.01 0.02 0.01 33 15 3 0.3 

ANTON 120 2 0.5 1 0.6 0.09 0.01 0.02 0.01 34 15 2 0.4 

MACE 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 25 18 2 0.5 

TAM107-R7 120 2 0.5 2 0.5 0.09 0.01 0.01 0.01 23 16 2 0.3 

ARLIN 120 3 0.7 2 0.4 0.10 0.01 0.02 0.01 40 19 2 0.3 

ALICE 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 28 12 2 0.5 

DARRELL 120 2 0.4 2 0.7 0.09 0.01 0.02 0.01 32 12 3 0.5 

EXPEDITION 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 30 18 3 0.3 
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WENDY 120 3 0.3 2 0.3 0.11 0.01 0.02 0.01 41 13 5 0.5 

SD00111-9 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 30 12 2 0.5 

SD01237 120 2 0.4 2 0.6 0.09 0.01 0.02 0.01 32 15 3 0.4 

SD01058 120 2 0.4 1 0.4 0.09 0.01 0.02 0.01 32 13 2 0.2 

SD05118 120 3 0.7 2 0.6 0.10 0.01 0.02 0.01 37 18 3 0.3 

SD05210 120 2 0.5 1 0.4 0.09 0.01 0.01 0.01 27 17 2 0.3 

SD05W018 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 27 14 3 0.6 

NEKOTA 120 3 0.6 2 0.3 0.10 0.01 0.02 0.01 38 16 3 0.2 

TANDEM 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 35 17 3 0.2 

CRIMSON 120 2 0.4 1 0.6 0.09 0.01 0.02 0.01 31 15 2 0.4 

ROSE 120 2 0.3 1 0.5 0.09 0.01 0.02 0.01 27 16 1 0.2 

DAWN 120 3 0.4 2 0.5 0.10 0.01 0.02 0.01 35 14 3 0.4 

WINOKA 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 31 20 1 0.6 

NELL 120 3 0.5 2 0.5 0.10 0.01 0.02 0.01 36 16 3 0.5 

RITA 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 30 16 3 0.3 

BRONZE 120 2 0.5 1 0.4 0.08 0.01 0.02 0.01 28 15 2 0.3 

HUME 120 3 0.5 2 0.4 0.09 0.01 0.02 0.01 31 14 2 0.4 

GENT 120 2 0.4 2 0.6 0.09 0.01 0.02 0.01 28 15 2 0.5 

HARDING 120 2 0.6 1 0.5 0.09 0.01 0.02 0.01 32 16 2 0.4 

HV9W03-1551WP 120 2 0.6 2 0.3 0.10 0.01 0.02 0.01 33 17 2 0.2 

G1878 120 2 0.5 2 0.6 0.10 0.01 0.02 0.01 34 16 2 0.3 

HV9W03-1379R 120 2 0.3 1 0.5 0.09 0.01 0.01 0.01 26 16 2 0.3 

HV9W03-1596R 120 2 0.4 2 0.6 0.08 0.01 0.02 0.01 28 16 3 0.4 

HV9W05-1280R 120 2 0.6 2 0.7 0.09 0.01 0.02 0.01 33 19 2 0.6 

HV9W06-504 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 30 16 3 0.3 

SPARTAN 120 2 0.5 1 0.6 0.09 0.01 0.02 0.01 28 16 2 0.4 

HV906-865 120 2 0.6 2 0.6 0.10 0.01 0.02 0.01 36 16 3 0.4 

TARKIO 120 2 0.5 1 0.6 0.09 0.01 0.02 0.01 32 18 2 0.3 

SMOKYHILL 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 33 17 2 0.5 

SHOCKER 120 2 0.4 1 0.5 0.10 0.01 0.02 0.01 27 16 2 0.4 

VONA 120 2 0.4 2 0.5 0.08 0.01 0.02 0.01 31 16 2 0.4 

CO940610 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 32 16 2 0.3 

AVALANCHE 120 3 0.9 2 0.8 0.10 0.01 0.02 0.01 40 17 3 0.4 

BOND_CL 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 29 16 2 0.5 

PLATTE 120 2 0.3 1 0.6 0.09 0.01 0.02 0.01 32 14 2 0.4 

LINDON 120 2 0.4 1 0.5 0.08 0.01 0.02 0.01 32 18 2 0.2 

CO03W043 120 2 0.5 1 0.6 0.10 0.01 0.02 0.01 29 12 3 0.4 

SNOWMASS 120 2 0.5 2 0.5 0.09 0.01 0.02 0.01 28 11 3 0.8 

THUNDER_CL 120 3 0.5 2 0.4 0.10 0.01 0.02 0.01 33 15 3 0.4 

CO04025 120 2 0.4 2 0.6 0.09 0.01 0.02 0.01 30 16 3 0.5 

CO04393 120 3 0.4 2 0.5 0.10 0.01 0.02 0.01 37 16 4 0.5 
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CO04499 120 2 0.5 2 0.6 0.09 0.01 0.01 0.01 25 17 3 0.9 

CO04W320 120 4 0.7 2 0.8 0.11 0.01 0.02 0.01 28 11 2 0.5 

LAMAR 120 3 0.5 2 0.5 0.10 0.01 0.02 0.01 35 18 3 0.4 

CARSON 120 4 0.7 2 0.9 0.10 0.02 0.02 0.01 33 10 2 0.3 

HAIL 120 2 0.7 2 0.5 0.10 0.01 0.02 0.01 28 13 1 0.2 

SANDY 120 2 0.5 2 0.5 0.10 0.01 0.02 0.01 30 16 2 0.4 

DUKE 120 2 0.6 1 0.6 0.09 0.01 0.02 0.01 31 14 2 0.3 

HALT 120 3 0.5 2 0.5 0.10 0.01 0.02 0.01 33 16 3 0.1 

HATCHER 120 2 0.5 2 0.4 0.09 0.01 0.01 0.01 27 15 1 0.4 

PRAIRIE_RED 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 33 17 3 0.7 

ABOVE 120 2 0.4 2 0.5 0.10 0.01 0.02 0.01 30 16 3 0.5 

CO03064 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 33 18 2 0.4 

BILL_BROWN 120 2 0.5 1 0.6 0.09 0.01 0.02 0.01 27 16 1 0.2 

RIPPER 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 30 12 1 0.2 

PROWERS 120 3 0.5 2 0.6 0.10 0.01 0.02 0.01 34 17 4 0.4 

AKRON 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 35 17 2 0.2 

JULES 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 33 17 3 0.3 

YUMA 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 29 18 2 0.4 

TAMW-101 120 2 0.4 1 0.5 0.10 0.01 0.02 0.01 34 17 3 0.3 

TAM105 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 32 18 2 0.4 

TAM107 120 2 0.4 1 0.4 0.08 0.01 0.02 0.01 30 14 2 0.6 

TAM109 120 2 0.4 1 0.4 0.08 0.01 0.02 0.01 39 21 3 0.6 

TAM110 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 40 18 3 0.2 

TAM111 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 31 15 3 0.4 

TAM112 120 3 0.5 2 0.5 0.09 0.01 0.02 0.01 36 18 3 0.2 

TAM200 120 3 0.3 2 0.3 0.09 0.01 0.02 0.01 31 15 3 0.2 

TAM202 120 2 0.4 2 0.4 0.09 0.01 0.02 0.01 29 11 1 0.2 

TAM203 120 2 0.4 2 0.6 0.09 0.01 0.02 0.01 29 15 2 0.4 

TAM302 120 3 0.2 3 0.3 0.10 0.01 0.02 0.01 35 14 5 0.5 

TAM303 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 33 19 1 0.3 

TAM304 120 2 0.3 1 0.3 0.09 0.01 0.01 0.01 27 16 2 0.2 

TAM400 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 31 14 1 0.3 

LOCKETT 120 3 0.5 2 0.1 0.10 0.01 0.02 0.01 39 15 3 0.2 

STURDY 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 34 16 1 0.1 

STURDY_2K 120 2 0.4 1 0.5 0.08 0.01 0.02 0.01 31 17 2 0.3 

MIT 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 28 15 2 0.3 

CAPROCK 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 35 15 3 0.4 

TX01A5936 120 2 0.2 1 0.3 0.08 0.00 0.02 0.01 33 17 2 0.3 

TAM401 120 2 0.3 2 0.4 0.10 0.01 0.02 0.01 32 17 3 0.5 

TX02A0252 120 2 0.4 1 0.5 0.09 0.01 0.01 0.01 29 17 1 0.4 

TX03A0148 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 28 16 1 0.3 
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TX03A0563 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 31 17 1 0.3 

TX04A001246 120 2 0.2 1 0.5 0.09 0.01 0.02 0.01 31 22 2 0.4 

TX01V5134RC-3 120 3 0.2 2 0.5 0.10 0.01 0.02 0.01 39 14 5 0.2 

TX04M410164 120 2 0.2 1 0.3 0.09 0.01 0.01 0.01 24 14 2 0.3 

TX04M410211 120 3 0.7 2 0.7 0.10 0.01 0.02 0.01 29 15 2 0.3 

TX04V075080 120 2 0.4 1 0.5 0.09 0.01 0.02 0.01 32 13 1 0.4 

TX99A0153-1 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 27 17 2 0.2 

TX01M5009-28 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 35 12 2 0.3 

TX00V1131 120 2 0.6 1 0.5 0.08 0.01 0.02 0.01 38 20 2 0.3 

TX99U8618 120 3 0.1 2 0.3 0.10 0.01 0.02 0.01 34 16 4 0.4 

TX96D1073 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 26 14 2 0.1 

2180 120 2 0.3 1 0.5 0.09 0.01 0.02 0.01 30 16 2 0.2 

HG-9 120 2 0.4 2 0.5 0.09 0.01 0.01 0.01 27 15 1 0.4 

TX86A5606 120 3 0.7 2 0.7 0.11 0.01 0.03 0.01 40 11 3 0.5 

TX86A8072 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 38 15 3 0.5 

CREST 120 3 0.5 2 0.2 0.09 0.01 0.02 0.01 30 16 2 0.2 

ROSEBUD 120 3 0.5 2 0.3 0.10 0.01 0.02 0.01 37 19 3 0.3 

JUDITH 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 28 16 2 0.3 

MT85200 120 3 0.5 2 0.6 0.10 0.01 0.02 0.01 36 18 3 0.3 

NUSKY 120 2 0.5 1 0.5 0.08 0.01 0.02 0.01 30 19 1 0.4 

MT9513 120 2 0.6 2 0.5 0.10 0.01 0.02 0.01 37 16 3 0.3 

MT9904 120 3 0.7 2 0.5 0.10 0.01 0.02 0.01 35 14 3 0.7 

NORRIS 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 32 14 3 0.4 

YELLOWSTONE 120 2 0.5 1 0.5 0.10 0.01 0.02 0.01 32 14 2 0.3 

MT0495 120 2 0.3 1 0.4 0.08 0.01 0.02 0.01 30 18 1 0.3 

MTS0531 120 4 0.7 4 0.7 0.10 0.01 0.03 0.01 50 19 7 0.6 

DECADE 120 2 0.4 1 0.5 0.10 0.01 0.02 0.01 32 18 3 0.5 

MT06103 120 2 0.2 1 0.4 0.10 0.01 0.02 0.01 33 18 2 0.3 

JUDEE 120 2 0.4 2 0.5 0.09 0.01 0.02 0.01 30 17 2 0.3 

LAKIN 120 2 0.3 1 0.4 0.10 0.01 0.02 0.01 34 19 2 0.5 

STANTON 120 2 0.3 1 0.5 0.09 0.01 0.02 0.01 31 18 2 0.3 

TREGO 120 2 0.1 1 0.3 0.10 0.01 0.02 0.01 32 19 2 0.0 

KARL_92 120 2 0.4 1 0.4 0.09 0.01 0.02 0.01 32 17 3 0.3 

DODGE 120 2 0.4 2 0.4 0.09 0.01 0.02 0.01 32 18 3 0.4 

NORKAN 120 2 0.2 1 0.3 0.08 0.01 0.01 0.01 28 18 2 0.1 

CHENEY 120 2 0.4 1 0.4 0.08 0.01 0.02 0.01 30 16 1 0.3 

NEWTON 120 2 0.2 1 0.4 0.08 0.01 0.01 0.01 28 15 2 0.4 

LARNED 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 32 15 3 0.2 

PARKER76 120 2 0.2 1 0.4 0.09 0.01 0.02 0.01 32 14 2 0.3 

KIRWIN 120 2 0.5 2 0.5 0.10 0.01 0.02 0.01 30 16 3 0.4 

SAGE 120 2 0.4 1 0.5 0.08 0.01 0.01 0.01 28 18 2 0.3 
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TRISON 120 2 0.3 1 0.5 0.08 0.01 0.01 0.01 30 18 2 0.2 

EAGLE 120 2 0.3 1 0.3 0.08 0.01 0.02 0.01 29 18 2 0.1 

SHAWNEE 120 2 0.1 1 0.4 0.08 0.01 0.01 0.01 27 18 2 0.1 

PARKER 120 2 0.4 2 0.6 0.10 0.01 0.02 0.01 36 16 3 0.5 

KAW61 120 2 0.4 2 0.5 0.10 0.01 0.02 0.01 29 12 3 0.4 

TASCOSA 120 4 0.5 3 0.5 0.11 0.01 0.03 0.01 51 14 7 0.1 

BISON 120 2 0.6 1 0.5 0.08 0.01 0.02 0.01 30 19 3 0.3 

KIOWA 120 2 0.2 1 0.2 0.09 0.01 0.01 0.01 28 17 2 0.2 

WICHITA 120 2 0.2 1 0.4 0.09 0.01 0.02 0.01 29 19 2 0.2 

COMANCHE 120 2 0.5 2 0.5 0.10 0.01 0.02 0.01 34 16 3 0.6 

BAKERS_WHITE 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 29 16 2 0.1 

BURCHETT 120 2 0.5 1 0.4 0.08 0.01 0.01 0.01 25 15 1 0.3 

CUTTER 120 3 0.5 2 0.5 0.10 0.01 0.02 0.01 33 17 3 0.3 

DUMAS 120 2 0.3 1 0.4 0.08 0.01 0.01 0.01 28 15 2 0.2 

HONDO 120 2 0.1 1 0.2 0.08 0.01 0.01 0.01 27 16 1 0.1 

JAGALENE 120 2 0.4 2 0.4 0.09 0.01 0.02 0.01 30 18 3 0.3 

LONGHORN 120 2 0.1 1 0.2 0.08 0.01 0.01 0.01 28 13 2 0.1 

NEOSHO 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 26 14 3 0.4 

OGALLALA 120 2 0.2 1 0.4 0.08 0.01 0.01 0.01 28 16 2 0.4 

POSTROCK 120 3 0.5 2 0.5 0.09 0.02 0.02 0.01 39 23 2 0.4 

THUNDERBOLT 120 2 0.4 2 0.4 0.10 0.01 0.02 0.01 35 16 3 0.3 

W04-417 120 2 0.2 1 0.3 0.09 0.01 0.02 0.01 29 16 1 0.2 

NUFRONTIER 120 3 0.5 2 0.6 0.08 0.01 0.02 0.01 31 17 3 0.3 

NUHORIZON 120 2 0.2 1 0.3 0.10 0.01 0.02 0.01 29 17 2 0.2 

ONAGA 120 4 0.7 2 0.5 0.12 0.02 0.02 0.01 37 11 4 0.5 

RONL 120 2 0.2 1 0.3 0.09 0.01 0.02 0.01 29 17 2 0.1 

2145 120 2 0.2 1 0.2 0.09 0.01 0.01 0.01 26 16 1 0.0 

HEYNE 120 2 0.2 1 0.2 0.09 0.01 0.01 0.01 27 15 2 0.1 

KS00F5-20-3 120 2 0.3 1 0.3 0.08 0.01 0.01 0.01 25 14 1 0.2 

OVERLEY 120 3 0.7 1 0.6 0.09 0.01 0.02 0.01 33 19 2 0.4 

FULLER 120 3 0.6 2 0.4 0.10 0.01 0.02 0.01 30 13 3 0.5 

COSSACK 120 3 0.6 2 0.5 0.10 0.01 0.02 0.01 33 15 3 0.4 

ENHANCER 120 3 0.3 2 0.2 0.10 0.01 0.02 0.01 31 16 4 0.4 

SANTA_FE 120 2 0.2 1 0.3 0.10 0.01 0.01 0.01 28 14 2 0.2 

VENANGO 120 2 0.3 1 0.3 0.08 0.01 0.01 0.01 28 18 2 0.1 

WB411W 120 2 0.4 2 0.4 0.10 0.01 0.02 0.01 30 11 3 0.4 

KEOTA 120 2 0.4 1 0.5 0.09 0.01 0.01 0.01 25 14 2 0.1 

TX05A001822 120 2 0.2 1 0.3 0.08 0.01 0.01 0.01 25 17 1 0.1 

TX06A001263 120 2 0.3 1 0.3 0.08 0.01 0.01 0.01 27 18 2 0.1 

TX06A001132 120 2 0.3 1 0.3 0.08 0.01 0.01 0.01 27 18 2 0.3 

TX06A001281 120 2 0.7 1 0.5 0.10 0.01 0.02 0.01 38 22 3 0.4 
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TX06A001386 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 28 14 2 0.2 

TX05V7259 120 2 0.2 1 0.5 0.09 0.01 0.02 0.01 30 15 2 0.3 

TX05V7269 120 2 0.2 1 0.2 0.08 0.01 0.01 0.01 25 12 1 0.2 

TX05A001188 120 2 0.2 1 0.2 0.08 0.01 0.02 0.01 28 16 1 0.1 

TX07A001279 120 2 0.3 1 0.3 0.08 0.01 0.01 0.01 28 15 2 0.4 

TX07A001318 120 2 0.2 1 0.2 0.10 0.01 0.02 0.01 27 14 2 0.2 

TX07A001420 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 30 13 3 0.3 

TX06V7266 120 2 0.3 1 0.4 0.09 0.01 0.01 0.01 27 14 2 0.1 

OK1067071 120 2 0.2 1 0.3 0.08 0.01 0.02 0.01 28 15 2 0.2 

OK1067274 120 3 0.4 2 0.3 0.10 0.01 0.02 0.01 32 15 3 0.5 

OK1068002 120 3 0.5 2 0.2 0.10 0.01 0.02 0.01 35 16 4 0.4 

OK1068009 120 2 0.2 1 0.2 0.10 0.01 0.02 0.01 33 12 2 0.2 

OK1068026 120 2 0.1 1 0.3 0.08 0.01 0.01 0.01 27 17 2 0.2 

OK1068112 120 2 0.2 1 0.2 0.08 0.01 0.01 0.01 25 16 1 0.1 

OK1070275 120 2 0.2 1 0.2 0.08 0.01 0.01 0.01 26 18 1 0.1 

OK1070267 120 2 0.3 2 0.5 0.10 0.01 0.02 0.01 32 17 3 0.3 

OK09634 120 2 0.2 1 0.3 0.08 0.01 0.02 0.01 30 18 1 0.1 

OK10119 120 2 0.1 1 0.3 0.08 0.01 0.02 0.01 31 18 1 0.2 

GALLAGHER 120 2 0.2 1 0.3 0.10 0.01 0.02 0.01 36 16 2 0.0 

OK07231 120 2 0.5 1 0.4 0.10 0.01 0.02 0.01 31 18 3 0.4 

OK07S117 120 3 0.6 1 0.5 0.09 0.01 0.02 0.01 39 23 3 0.4 

OK08328 120 2 0.2 1 0.3 0.09 0.01 0.02 0.01 29 17 2 0.1 

BIG_SKY 120 2 0.2 1 0.3 0.09 0.01 0.02 0.01 29 14 2 0.2 

DANBY 120 2 0.4 1 0.3 0.10 0.01 0.02 0.01 30 15 2 0.3 

E2041 120 2 0.2 1 0.2 0.09 0.01 0.01 0.01 25 15 1 0.1 

DENALI 120 2 0.5 2 0.5 0.10 0.01 0.02 0.01 33 13 3 0.7 

CO050337-2 120 2 0.3 1 0.4 0.10 0.01 0.02 0.01 30 15 3 0.2 

BYRD 120 2 0.5 2 0.4 0.10 0.01 0.02 0.01 33 13 3 0.3 

CO07W245 120 3 0.2 2 0.2 0.10 0.01 0.02 0.01 33 18 4 0.3 

MCGILL 120 2 0.2 1 0.3 0.09 0.01 0.02 0.01 31 19 2 0.2 

NE02558 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 31 19 2 0.2 

NW03666 120 2 0.5 1 0.5 0.10 0.01 0.02 0.01 30 17 2 0.5 

NE04490 120 2 0.6 2 0.5 0.10 0.00 0.01 0.01 27 15 3 0.3 

NE05430 120 2 0.1 1 0.3 0.08 0.01 0.01 0.01 27 17 1 0.2 

NE05496 120 3 0.5 2 0.5 0.09 0.01 0.02 0.01 30 18 4 0.3 

NE05548 120 2 0.2 1 0.3 0.10 0.01 0.02 0.01 29 19 2 0.1 

NE06545 120 2 0.2 1 0.3 0.09 0.01 0.01 0.01 25 18 2 0.1 

NE06607 120 2 0.3 1 0.4 0.09 0.01 0.02 0.01 28 12 2 0.2 

ROBIDOUX 120 2 0.2 1 0.2 0.09 0.01 0.01 0.01 25 14 1 0.3 

NI06736 120 2 0.2 1 0.2 0.09 0.01 0.02 0.01 30 17 1 0.2 

NI06737 120 2 0.2 1 0.3 0.10 0.01 0.02 0.01 30 15 2 0.2 
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NI07703 120 2 0.0 1 0.3 0.10 0.01 0.02 0.01 31 11 2 0.2 

NI08707 120 3 0.3 2 0.5 0.09 0.01 0.02 0.01 31 16 4 0.6 

NI08708 120 2 0.2 1 0.3 0.10 0.01 0.02 0.01 35 16 2 0.2 

EVEREST 120 2.6 0.6 2 0.5 0.10 0.01 0.02 0.01 38 14 3 0.4 

 

Appendix D - Pictures. 

Picture 1. Growth chambers used in the experiments. 

 

 

Picture 2. Winter wheat seedlings were raised in 4 cm tray. (B) After vernalization, they were 

transplanted into plastic pots (Chapter 3 and 4). 
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Picture 3. Sample instruments used in collecting physiological data. 

(A) SPAD Meter (to measure leaf chlorophyll); and (B) Chlorophyll Fluorometer (to measure 

Maximum Quantum yield of Photosystem II) 
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(C) LI-6400XT Portable Photosynthesis System (to measure gas exchange and photosynthesis). 
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