
Nitrogen economy in corn-soybean farming systems

by

Adrian Alejandro Correndo

B.S., Universidad de Buenos Aires, 2011
M.S., Universidad de Buenos Aires, 2018

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Agronomy
College of Agriculture

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2021



Abstract

Nitrogen (N) is the most limiting nutrient for producing maize (Zea mays L.) and soybean

[Glycine max (L.) Merr.] crops. The complex system governing the soil-plant N dynamics 

requires exploring multiple perspectives. Concomitantly, there is a marked need to deploy data-

driven models that account for uncertainty in the processes of interest to provide improved N 

recommendations in both crops. Therefore, the objectives of this dissertation were: (i) to assess 

the contribution of environmental and crop management factors on the prediction of inherent 

maize productivity without N fertilizer; (ii) to identify the main drivers of both, expected values 

and uncertainties, of key components describing the process models for the maize yield response 

to N fertilizer; (iii) to summarize the impact of N and water management practices in maize grain

quality; (iv) to study the residual effects of N management in maize on the following soybean 

crop; and, (v) to evaluate statistical techniques for the assessment of agreement between 

predictions and observations. 

In a joint effort between different academic and industry institutions in the US and 

Canada, a database with more than 1,200 maize N fertilization experiments (1999-2019) was 

built. Crop management factors such as previous crop and irrigation in combination with soil 

organic matter contributed to explain half of the variability of maize yield without N fertilization,

while including spring weather variables (March-May) resulted in a similar performance than a 

framework including weather during the entire season. Crop management factors largely affected

the prediction of the expected yield without N fertilizer, but just slightly impacted (<5%) the 

uncertainty of the response (and their components) of yield to N fertilizer. Conversely, weather 

variables were, undeniably, the most relevant factors and roughly contributing to 80% of the 

explained variance to predict the uncertainties on the yield response to N. On the other hand, a 



meta-analysis using a database of 92 site-years revealed that N fertilization not only increases 

yields but also shows a positive impact on the grain protein concentration, however, both starch 

and oil remained relatively constant under contrasting N fertilization levels. In contrast, water 

stress resulted in an erratic effect on all the evaluated grain quality components, possibly due to 

changes in the moment, severity, and extent of the stress. Evaluating two case studies under a 

maize-soybean rotation in Kansas, we documented that N fixation and soybean yields were 

marginally or not affected by the N management in the previous crop. Lastly, a novel and simple 

methodology on the use of linear regression to assess the prediction ability of simulation models 

is presented, also suggesting a derived decomposition of the prediction error into lack of 

accuracy and lack of precision along with the R-code to assist potential users.

Forthcoming projects on N economy in maize and soybean farming systems should 

expand, provide incentives, and discuss standards in collaborative research, which represented a 

foundational component of this project. This dissertation highlights the advantages of deploying 

cutting-edge data analysis techniques for addressing research gaps on the N economy in maize-

soybean farming systems. Machine learning, meta-analysis, and Bayesian statistics bring new 

horizons for improving  forecast models as well as their interpretability. Future generations of 

predictive models in agriculture must be able to capture complex interactions as well as to 

emulate how farmers deal with uncertainties in the real world. Under this context, the awareness 

about uncertainties and their drivers should become one of the pillars of the dynamic N 

recommendations, which is crucial to convey wise information to stakeholders. Undoubtedly, we

must move from static to dynamic crop models in order to design optimized GxM adaptation 

strategies under future climates. 
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Abstract

Nitrogen (N) is the most limiting nutrient for producing maize (Zea mays L.) and soybean

[Glycine max (L.) Merr.] crops. The complex system governing the soil-plant N dynamics 

requires exploring multiple perspectives. Concomitantly, there is a marked need to deploy data-

driven models that account for uncertainty in the processes of interest to provide improved N 

recommendations in both crops. Therefore, the objectives of this dissertation were: (i) to assess 

the contribution of environmental and crop management factors on the prediction of inherent 

maize productivity without N fertilizer; (ii) to identify the main drivers of both, expected values 

and uncertainties, of key components describing the process models for the maize yield response 

to N fertilizer; (iii) to summarize the impact of N and water management practices in maize grain

quality; (iv) to study the residual effects of N management in maize on the following soybean 

crop; and, (v) to evaluate statistical techniques for the assessment of agreement between 

predictions and observations. 

In a joint effort between different academic and industry institutions in the US and 

Canada, a database with more than 1,200 maize N fertilization experiments (1999-2019) was 

built. Crop management factors such as previous crop and irrigation in combination with soil 

organic matter contributed to explain half of the variability of maize yield without N fertilization,

while including spring weather variables (March-May) resulted in a similar performance than a 

framework including weather during the entire season. Crop management factors largely affected

the prediction of the expected yield without N fertilizer, but just slightly impacted (<5%) the 

uncertainty of the response (and their components) of yield to N fertilizer. Conversely, weather 

variables were, undeniably, the most relevant factors and roughly contributing to 80% of the 

explained variance to predict the uncertainties on the yield to N response process. On the other 



hand, a meta-analysis using a database of 92 site-years revealed that N fertilization not only 

increases yields but also shows a positive impact on the grain protein concentration, however, 

both starch and oil remained relatively constant under contrasting N fertilization levels. In 

contrast, water stress resulted in an erratic effect on all the evaluated grain quality components, 

possibly due to changes in the moment, severity, and extent of the stress. Evaluating two case 

studies under a maize-soybean rotation in Kansas, we documented that N fixation and soybean 

yields were marginally or not affected by the N management in the previous crop. Lastly, a novel

and simple methodology on the use of linear regression to assess the prediction ability of 

simulation models is presented, also suggesting a derived decomposition of the prediction error 

into lack of accuracy and lack of precision along with the R-code to assist potential users.

Forthcoming projects on N economy in maize and soybean farming systems should 

expand, provide incentives, and discuss standards in collaborative research, which represented a 

foundational component of this project. This dissertation highlights the advantages of deploying 

cutting-edge data analysis techniques for addressing research gaps on the N economy in maize-

soybean farming systems. Machine learning, meta-analysis, and Bayesian statistics bring new 

horizons for improving  forecast models as well as their interpretability. Future generations of 

predictive models in agriculture must be able to capture complex interactions as well as to 

emulate how farmers deal with uncertainties in the real world. Under this context, the awareness 

about uncertainties and their drivers should become one of the pillars of the dynamic N 

recommendations, which is crucial to convey wise information to stakeholders. Undoubtedly, we

must move from static to dynamic crop models in order to design optimized GxM adaptation 

strategies under future climates.  
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Chapter 1: General Introduction

Nitrogen (N) is the most limiting nutrient for crop production worldwide and probably 

the most complex nutrient to study due to the set of spatio-temporal interactions governing plant 

growth dynamics, soil processes cycling, and environmental effects on the plant-soil system 

(Mesbah et al., 2017; Lemaire and Ciampitti, 2020; Briat et al., 2020). Therefore, characterizing 

the degree to which the N supply fails to meet crop N demand results imperative to the 

development of more efficient and environmentally sound N management guidelines. In North 

America, maize (Zea mays L.) - soybean [Glycine max (L.) Merr.] rotation is among the most 

common cropping sequences (Gaudin et al., 2015; Vanhie et al., 2015). For both crops, 

improving the prediction ability of N economy components and identifying their sources of 

uncertainty should be of a high priority for current and future research efforts.

Deploying modern yield forecast tools

In spite of decades of research, addressing the uncertainty on the crop growth and N 

demand in maize is still a major concern due to the collateral impacts of misuse of fertilizer and 

low N use efficiency (Morris et al., 2018; Sela et al., 2018). Refining the management of a 

complex system such as the one governing soil-plant N dynamics requires understanding the 

processes generating the yield response to N using multiple perspectives. In parallel, there is a 

clear need to develop data-driven predictive algorithms that account for uncertainty in the 

processes of interest, underpinning the maize yield response to N to provide new fertilization 

guidelines. By using state-of-the-art statistical and machine learning models, this project aimed 

to tackle the development of unprecedented maize yield forecast models with yield response to N

and its uncertainty components at the center of the attention. In a joint effort between fourteen 

researchers pertaining to ten different academic and industry institutions in the US and Canada, a
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database with more than 1,200 maize experiments (1999-2019) was built. Thus, in chapters 2 and

3, we made use of these massive experimental database to develop yield and N responsiveness 

forecast models while assessing the role of crop management, soil, and weather variables. 

Maize yield response to N

A first key component of yield responsiveness to N fertilization, is the inherent maize 

productivity without N fertilizer. The N responsiveness depends on both the yield under non-

limiting N supply as well as on the inherent productivity under zero N fertilizer, herein expressed

as Y0. Developing predictive frameworks while disentangling the driving factors of Y0 will 

enhance the optimization of N fertilization in maize. Using a conditional random forest 

algorithm, in Chapter 2, we assess the predictability of Y0 while identifying the most 

determinant factors related to crop management, soil and weather. 

As an appropriate summary of the N responsiveness process, the response to N fertilizer 

rates in maize is normally described using regression models (Kyveryga et al., 2007). 

Nevertheless, the degree of uncertainty on the parameters (e.g. intercept, slope, curvature) and 

derived quantities (e.g. optimum rate, maximum yield, fertilizer N efficiency) describing these 

models is extensively overlooked in the scientific literature (Hernandez et al., 2007). For this 

review, using a refined database of 779 studies, a hierarchical Bayesian framework was applied 

in combination with extreme gradient boosting algorithm (machine learning) to study the 

influence of soil, weather, and crop management factors on both the value and the magnitude of 

uncertainty on the parameters and quantities describing the N responsiveness process in maize.

Maize grain quality response to N and water management

Concomitantly pursuing superior maize productivity with grain quality is essential for 

food security (Motukuri, 2019). In parallel with the impact of N nutrition, water stress is one of 
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the major limiting abiotic factors related to climate change, adversely impacting the yield and 

quality of many field crops (Butts-Wilmsmeyer et al., 2019). Even tough maize grain quality 

have received more emphasis in recent years, yet the published data have not been synthesized to

better understand generalized effects across all the studies. For this purpose, meta-analysis is a 

method that can help with integrating knowledge and results from diverse studies and evaluate 

the impact of treatment on sets of target variables and provides quantitative estimates of effect 

sizes (Borenstein et al., 2009). Consequently, in Chapter 4, we aimed to evaluate the effects of 

water and N fertilization on the following three main components of maize grains: protein, 

starch, and oil concentrations.

Footprints of maize N management on the following soybean

Historically, literature have concentrated most of the attention to the concept of N credits 

from the preceding soybean to maize crops (Bundy, 2008; Morris et al., 2018). However, the 

consequences of the N management for maize on the following soybean crop have received less 

attention. The N fertilizer management in the preceding maize crop could affect multiple process

directly or indirectly impacting soybean N nutrition, and eventually seed yields. Besides the 

contribution to plant N demand from soil N supply, soybean establishes a symbiosis with 

Bradyrhizobium spp. that may contribute, in average, with 50-60% of N requirements 

(Salvagiotti et al., 2008; Di Ciocco et al., 2011), via the symbiotic N fixation (SNF) process. 

Nonetheless, there is a well-documented antagonism between the soil N supply and N derived 

from SNF process (Allos and Bartholomew, 1955; Sinclair and De Wit, 1975). Thus, soil N 

changes induced by different N management in the preceding maize may affect how the soybean 

crop satisfies its N requirements. In Chapter 5, we used two cases studies in Kansas to assess the 
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residual effects of maize N fertilization management on the seed yields, and the seasonal 

contribution of SNF and soil N supply to the N nutrition in the following soybean crop.

A novel and simple approach to evaluate models’ performance

Lastly, assessing the quality of predictions is a crucial step in models’ evaluation 

(Wallach and Makowski, 2019), either using machine learning or other prediction frameworks. 

However, the use and interpretation of statistical models and error metrics to evaluate 

performance are still controversial in the literature. A myriad of scoring rules and statistical 

criteria have been developed for model evaluation (Gupta et al., 2009; Moriasi et al., 2007; 

Willmott et al., 2012). Before this overwhelming world of model evaluation criteria, modelers 

and users might feel submerged under “The Paradox of Choice”, and then simply choose the 

most popular metric (e.g. linear regression, R2). In the agricultural research and related 

disciplines, using a scatter plot and a regression line to visually and quantitatively assess 

agreement between model predictions and observed values is an extensively adopted approach 

(Piñeiro et al., 2008), even more within the simulation modeling community (Yang et al., 2014). 

Thus, in Chapter 6, a novel and simple perspective about the use of linear regression to assess the

prediction ability of simulation models is offered. Concomitantly, we suggest a simple 

decomposition of the prediction error into lack of accuracy and lack of precision. In order to 

assist potential users, an open-access code tutorial to compute the proposed assessment of 

agreement using R-software is presented.

General Objectives

Therefore, the following five chapters of the present dissertation are aligned with the 

following five general objectives: 
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1) to assess the contribution of soil, weather, and crop management factors on the 

prediction of inherent maize productivity without N;

2) to identify the main drivers of both, expected values and uncertainties, of key 

components describing the process models for the maize yield response to N fertilizer;

3) to summarize the impact of water and N management practices in maize grain quality;

4) to study the residual effects of N management in maize on the following soybean crop;

and,

5) to evaluate statistical techniques for the assessment of agreement between predictions 

and observations.
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Chapter 2: Assessing the uncertainty of maize yield without nitrogen

fertilization

*Published in Field Crops Research.
Correndo, A.A.,  Rotundo, J.L.,  Tremblay,  N., Archontoulis,  S.,  Coulter,  J.A.,  Ruiz-Diaz,  D.,
Franzen,  D.,  Franzluebbers,  A.J.,  Nafziger,  E.,  Schwalbert,  R.,  Steinke,  K.,  Williams,  J.,
Messina, C.D., Ciampitti, I.A., 2021. Assessing the uncertainty of maize yield without nitrogen
fertilization. Field Crops Res. 260, 107985. https://doi.org/10.1016/j.fcr.2020.107985

Abstract

Maize (Zea mays L.) yield responsiveness to nitrogen (N) fertilization depends on the 

yield under non-limiting N supply as well as on the inherent productivity under zero N fertilizer 

(Y0). Understanding the driving factors and developing predictive algorithms for Y0 will 

enhance the optimization of N fertilization in maize. Using a random forest algorithm, we 

analyzed data from 679 maize N fertilization studies (1031 Y0 observations) conducted between 

1999–2019 in the United States and Canada. Predictability of Y0 was assessed while identifying 

determinant factors such as soil, crop management, and weather. The inclusion of weather 

variables as predictors improved the model efficiency (ME) from 51 up to 64 %, and reduced the

root mean square error (RMSE) from 2.5 to 2.0 Mg ha−1, 34 to 27 % in relative terms (RRMSE). 

The most relevant predictors of Y0 were previous crop, irrigation, and soil organic matter 

(SOM), while the most influential weather data was linked to the radiation per unit of thermal 

time (Q quotient) around flowering and spring precipitations. The crop rotation effect resulted in 

Alfalfa (Medicago sativa L.) as the previous crop with the highest Y0 level (IQR = 11.5–15.0 

Mg ha−1) as compared to annual legumes (IQR = 5.6–10.0 Mg ha−1) and other previous crops 

(IQR = 3.6–7.8 Mg ha−1). The Q quotient around flowering positively affected Y0, while spring 

precipitations and extreme temperature events during grain filling showed a negative association 

to Y0. Overall, these results reinforce the concept that yields are controlled not only by soil N 
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supply but also by factors modifying plant demand and ability to capture N. Lastly, we foresee a 

promising future for the use of machine learning to address both prediction and interpretation of 

maize yield to obtain more reliable N guidelines.

2.1. Introduction

Decades of research on yield response to N application has not yet produced accurate 

algorithms to issue N recommendations for maize in North America. Addressing the uncertainty 

on N needs for maize (Zea mays L.) is still a major concern (Morris et al., 2018; Raun et al., 

2019) because of the unintentional impacts of misuse of N and low N use efficiency (Sela et al., 

2018a, 2018b). Estimations of N recovery efficiency in the region are typically below 50 % of 

the applied N, which may reflect a higher uptake efficiency from indigenous sources (soil) than 

for applied fertilizer (Cassman et al., 2002). This scenario is linked to the complex process of 

fertilizer N losses such as leaching, denitrification, and volatilization (Baker and Johnson, 1981; 

Francis et al., 1993; Bowles et al., 2018). Despite genetic improvement for N use efficiency 

(Mueller et al., 2019) there are further opportunities to develop prescription algorithms to 

improve N management and fertilizer recommendations.

For most of the twentieth century, N recommendations in North America have been 

mostly based on estimation of yield and production goals (Stanford et al., 1966; 1973), that is the

N demand dictated the amount of N to be added as fertilizer after the estimation of a simplified N

balance that considered N credits and other subtractions and additions (Morris et al., 2018). 

Refined N guidelines for maize has been addressed following different systems over time and 

across states (Heady and Pesek, 1954; Bundy and Andraski, 1995; Scharf et al., 2005; Kyveryga 

et al., 2007; Kitchen et al., 2010; Setiyono et al., 2011; Wortmann et al., 2011; Yost et al., 2014; 

Sindelair et al., 2015). Lory and Scharf (2003) have described an approach using delta yield, as 
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the yield difference between non-N-limited and non-N-fertilized plots (Y0), assuming the latter 

as a proxy of indigenous soil N supply (Cassman et al., 1996). More recently, utilizing a large 

database of N response trials, the “maximum return to N (MRTN) recommendation system 

represented an approach to adjust estimations of the economic optimum N rate (EONR) grouping

response functions according to several factors of interest including management and soil 

features (Sawyer et al., 2006). Likewise, the integration of multiple site-years expanding 

combinations of soil, crop management and weather scenarios, might lead to the use of 

complementary predictive models (e.g., supervised learning techniques) with more focus on 

forecasting the N needs for maize crop rather than an ex-post analysis.

The dissection of the yield response to N can inform decisions to manage a complex 

system such as the one governing the soil-plant N dynamics. For a given site-year, we may 

depict the Y0 as the intercept of the function that along with non-N-limited yield (plateau) 

defines a yield response to N fertilization for a given curvature. Thus, defining realistic 

expectations for EORN predictions will inevitably rely on accurate predictions of Y0. Recent 

attempts to address the problem of forecasting yield response to N have been pursued with 

limited datasets that restrict our inference space (Puntel et al., 2019) or used yield simulations 

that restrict the inference to the set of parameters and model assumptions (Shahhosseini et al., 

2019; Archontoulis et al., 2020). Yield under non-N-limiting scenario is largely determined by 

temperature and solar radiation (van Ittersum et al., 2013) and it is adequately captured within 

dynamic crop growth model frameworks (Monteith, 1972; Messina et al., 2009). In contrast, soil 

processes governing N cycling and its interactions with the plant and environment system are 

complex and less well represented in models. Predicting N deficiency level and Y0 poses a much

difficult problem to solve than non-N-limited yield (Puntel et al., 2018; Archontoulis et al., 
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2020), in particular for experiments conducted in small plots (Tao et al., 2018). The combination 

of mechanistic models for predicting non-N-limited yield and data-driven machine learning 

models for predicting Y0 could open up opportunities to increase the predictability of complex 

systems (Messina et al., 2020).

Methodologically, science is entering an entirely new phase that involves data-intensive 

practices (Tolle et al., 2011). Machine learning is one method, laying at the intersection of 

computer science and statistics (Jordan and Mitchell, 2015) useful to identify repeatable patterns 

in large datasets. Belonging to the family of supervised learning techniques, tree-based methods 

such as decision trees, boosting and random forest (RF) are robust and versatile techniques as 

demonstrated in remote sensing applications (Belgiu and Drãgut, 2016; Schwalbert et al., 2018) 

and more recently in agriculture (Khaki and Wang, 2019; Ramanantenasoa et al., 2019). For 

forecasting purposes, a minimum set of candidate predictors including as early as possible 

metadata during the crop growing season is desirable. Since most substantial uncertainties are 

inherent to weather, with very limited predictability beyond 10−15 days (Stern and Davidson, 

2015; Zhang et al., 2019), then those variables are the main candidates to perform a sensitivity 

analysis. A model with no-weather, assuming it as completely unknown and stochastic, may 

serve as a reference prediction framework to later assess the value of adding weather 

information. On the other hand, spring weather is likely to be known by the time of planting and 

including weather predictors may be useful in forecasting applications for N availability in 

production fields (Puntel et al., 2016). Lastly, defined seasonal weather patterns could serve as 

model limits.

The main goal of this work is to describe properties of Y0 on a large database of maize 

fertilization studies performed in the United States and Canada, an develop a prediction model 
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with potential to improve N management systems. The specific goals for this manuscript are to i)

rank and identify the main soil, management and weather features impacting Y0, and ii) assess 

the prediction performance of different frameworks involving soil and management factors but 

varying the inclusion of weather features: a) no weather variables; b) spring weather known 

around planting; and c) weather known for the entire crop growing season.

2.2. Material and methods

2.2.1. Data collection

A database was built through meeting certain requirements as follows: i) experiments 

performed during the last two decades (1999–2019) in order to reduce the noise related to 

different hybrids eras (Woli et al., 2016); ii) only replicated field trials having N treatments 

either on small plots or strip-plots; iii) absolute yield data reported for the zero-N control 

treatment; iv) top-soil analysis results and/or soil series reported; v) data of previous crop and 

tillage system; vi) latitude and longitude coordinates, or nearest town reported in order to retrieve

weather and missing soil data; vii) starter-N and manure treatments were excluded to minimize 

confounding effects; and viii) general crop management (e.g., planting date, row spacing, other 

nutrients, weed and pest management) was assumed to have been set to maximize yield under 

each site-specific condition. Published manuscripts were the first source of data through an 

engine-search in Web of Science® filtering by the following keywords: “corn/maize” and 

“nitrogen fertilizer” or “nitrogen fertilization” and “United States” and/or “Canada”. In order to 

reduce publication bias effect (Dickersin and Min, 1993), unpublished data (e.g., dissertations, 

field reports, unpublished experiments) were also included in the database as long as they met 

the established criteria. After filtering and selection processes, 679 site-years resulting in 1031 
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treatments of maize without N fertilizer were gathered from 59 different data sources, including 

published and unpublished studies (Supplementary Table 1).

2.2.2. Data analysis

2.2.2.1. Response and explanatory variables

Yield that resulted from treatments receiving zero-N application (Y0, Mg ha−1) was used 

as the response variable in the analysis. Grain yield was standardized at a water content of 155 g 

kg−1. Average values (3–5 replications) were considered as an unbiased central tendency-values 

of Y0.

A set of weather, soil, and crop management variables were considered as explanatory 

variables, predictors or features. Soil related variables were topsoil (0−15 cm) soil organic matter

(SOM, %) and soil texture (clay, silt and sand, %). Soil data were collected from original 

sources, accessed from authors' records when not reported in manuscripts, or retrieved from 

gridded POLARIS soil data engine (Chaney et al., 2016), a raster optimization based on 

SSURGO data with a spatial resolution of 1 km2. When SOM data were reported at 0–20 or 0−30

cm, values were standardized to 0−15 cm using stratification factors based on data from previous

research on grain crops trials (Al-Kaisi et al., 2005; Varvel and Wilhelm, 2011; Franzluebbers, 

2010; Villamil et al., 2015).

Daily weather data were accessed via the Google Earth Engine platform (Gorelick et al., 

2017) using reported latitude-longitude coordinates of the trials or nearest town. With a spatial 

resolution of 1 km2, precipitation (PP), temperature (T, oC, maximum and minimum) and vapor 

pressure deficit (vpd, kPa) were obtained from the Parameter-elevation Regressions on 

Independent Slopes Model -PRISM- (Daly et al., 2015); while incident shortwave solar radiation

during daylight period –Rad, MJ m−2- plus day-length were retrieved from Daymet (Thornton et 
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al., 2018). Weather data were transformed into bi-monthly basis (as sum or average) following 

Carter et al. (2018a). We divided the weather data into three main periods: i) April-May (AM) as

proxy of the early-growth period; ii) June-July (JJ) as proxy of the flowering period; and iii) and 

August-September (AS) as a proxy of grain filling period. In addition, we also considered PP and

mean temperature of March as spring weather with the intent to represent typical weather data 

accessible to farmers when planting and N fertilizer decisions are made.

A series of additional weather variables were calculated in order to capture environmental

differences that might not be captured by analyzing standard weather information. For example, 

the Shannon Diversity Index (SDI) as described by Tremblay et al. (2012) was included to 

describe the distribution of PP during each period. Extreme PP events were included as the 

number of days with precipitations greater than 25 mm as a proxy of excessive rainfall events 

(Puntel et al., 2019). Crop development was described by crop heat units (CHU; Tremblay et al., 

2012). Extreme temperature events (ETE, defined as the number of days with mean maximum 

temperature over 30 °C) were also included as a proxy of heat stress risk (Butler and Huybers, 

2013; Ye et al., 2017). The photo-thermal quotient (Q) was calculated as the ratio between 

cumulative Rad and CHU, as an indicator of the solar radiation available to the crop per unit of 

thermal time during each period, related to yield potential (Bannayan et al., 2018).

2.2.2. Prediction models

Three prediction models were tested with models differing in the weather features 

included:

i.   a “No-weather” model includes only management and soil features;

ii.  a “Spring-weather” model includes precipitations and mean temperature during March

and April-May as proxy of pre-plant and early vegetative periods; and
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iii. a “Full-weather” model includes all features from April 1st through September 30th 

(Table 1). This model is descriptive and enables assessing the relevance of seasonal weather and 

interactions with soil properties and management on Y0.

2.2.2.3. Machine learning algorithm

A tree-based algorithm was selected over other learning alternatives because as a non-

parametric tool, it allows constructing prediction rules based on the simultaneous use of 

categorical and continuous predictors without making prior assumption on normality or on the 

form of associations with the response variable (Probst et al., 2019). While a single regression 

tree might be easier to interpret, its prediction power is normally low (and easy to overfit), so it is

considered a “weak learner”. As an ensemble of trees, the RF is considered as a “strong learner” 

being much more capable in terms of prediction power (Breiman, 2001). Random Forest is 

primarily used here for two purposes: i) as a prediction tool, and ii) to assess the relevance of 

features on prediction.

Among the RF alternatives, we used conditional inference trees to build the ensembles 

(forests) using the party package (Hothorn et al., 2006) for R software (R Core Team, 2021). The

function cforest() from party implements safeguards at the tree level to ensure the feature 

selection is not biased towards continuous predictors and/or those with many possible splits 

(Strobl et al., 2009; Probst et al., 2019), which is not available in randomForest() and ranger() 

functions. The permutation variable importance measure (Breiman, 2001; Strobl et al., 2007) has

been demonstrated to reduce bias as compared with other alternatives (Strobl et al., 2007; 

Boulesteix et al., 2012). Moreover, since our dataset includes correlated features (Supplementary

Figures 2 and 3), we evaluated the variable importance with a “conditional” permutation test to 
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minimize the overestimation on importance scores of correlated features (Strobl et al., 2008; 

Probst et al., 2019).

2.2.2.4. Cross-validation scheme

For each prediction model, a nested cross-validation (CV) scheme was applied to avoid

over-fitting during the model selection process (Zhang and Yang, 2015). This type of CV 

encompasses the use of an inner-loop for optimization and an outer-loop to assess the 

generalization performance (Krstajic et al., 2014). Acknowledging our dataset as relatively small

for machine learning purposes (Zhang and Ling, 2018), we increased the k value (folds) with 

respect to the traditional 5 or 10-folds as a safeguard to reduce potential bias on the 

generalization error (Cawley and Talbot, 2010). Thus, an outer 20-fold scheme was used, setting 

aside a different 5 % of observations at a time to be used later as the testing data. At the inner 

loop, a 10-fold-CV was applied over each outer-training set, dividing 90 % for training and 10 %

for validation. A grid-search was performed to optimize model hyper-parameters of interest: i) 

ntree, as the number of trees in the forest, and ii) mtry, as the number of random variables 

considered at each tree node-split across the forests. Best combinations were selected based on 

average performance on the inner-validation set. With the optimized hyper-parameters, 

performance metrics and features importance were assessed using the outer-training sets (20) to 

predict the observations on the outer-testing sets.

Six complementary metrics were used to evaluate models performance: i) the mean 

absolute error (MAE, Mg ha−1) as an average magnitude of the errors; ii) the root mean square 

error (RMSE, Mg ha−1) as an average squared errors-based statistic that penalizes large residuals 

more heavily than MAE; iii) the normalized or relative RMSE (RRMSE, %) as a metric of 

percentage deviation from the average yield (Yang et al., 2014); iv) the mean bias error (MBE, 
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Mg ha−1) as the average difference of predicted values with respect to observed, for which 

positive values mean a systematic over-prediction while negative mean under-prediction; v) the 

Nash–Sutcliffe model efficiency (ME) as a normalized analogous statistic to the coefficient of 

determination (Nash and Sutcliffe, 1970; Krause et al., 2005); and vi) the concordance 

correlation coefficient (CCC) as a normalized metric that weighs the Pearson correlation 

coefficient (r) by an index of accuracy (Lin, 1989). The medians (50th percentile) of each metric 

based on the 20-folds-CV were selected as their unbiased central-tendency statistic.

2.3. Results

2.3.1. Database description

Maize experiments were distributed across 21 US states (AL, AR, IA, IL, IN, KS, KY, 

MI, MN, MO, NC, ND, NE, OH, OK, PA, SD, TN, TX, VA and WI) and two Canada provinces 

(ON and QC) (Figure 2.1A). In temporal terms, 19.7 %, 31.0 %, 31.2 %, and 18.1 % were 

distributed between 1999–2004, 2005–2009, 2010–2014, and 2015–2019, respectively 

(Supplementary Figure 2.1). A total of 831 (81 %) and 200 trials (19 %) were conducted under 

rainfed and irrigated conditions, respectively. Under rainfed conditions, Y0 ranged from 0.73 to 

17.7 Mg ha−1, with a mean of 6.97 Mg ha−1 and a median of 6.41 Mg ha−1 (inter-quartile range, 

IQR25−75 = 4.21−9.49 Mg ha−1). Under irrigation, Y0 varied from 1.29 to 16.1 Mg ha−1, with a 

mean of 9.10 Mg ha−1 and a median of 9.50 Mg ha−1 (IQR25−75 = 6.84-11.65 Mg ha−1). Based on 

available observations of above-ground plant N uptake at maturity (n = 279), estimations of 

apparent indigenous soil N supply varied from at least 23 kg N ha−1 to 411 kg N ha−1, 

representing apparent N requirements from 11. 8–22.1 kg N Mg grain yield−1 (Figure 2.1B). 

Complementary, observations of grain N uptake and grain dry biomass (n = 305) were used to 

estimate a grain N nutrition index (NNI) following the ear-N dilution curve (%Nc = 2.22 * 
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Grain−0.26; Zhang et al., 2020), which was able to portray the positive effect of alfalfa as 

previous crop on maize N nutrition (Figure 2.1C).

In terms of soil, experiments represented 11 soil textural groups (Soil Survey Staff, 

2014) (Figure 2.1D). Soil organic matter at topsoil (%, 0−15 cm) ranged from 0.46 % to 11.3 %, 

with a mean of 3.49 % and a median of 3.40 % (IQR25−75 = 2.12 %–4.91 %). In terms of 

weather, studies were exposed to a wide range of mean seasonal temperatures (Figure 2.1E) that 

ranged from 13.5 °C to 26.6 °C, with a mean of 18.9 °C and a median of 18.7 °C (IQR25−75 = 

17.2–20.9 °C); and seasonal precipitations -April-September- (Figure 2.1F) ranged from 165 mm

to 1167 mm, with a mean of 613 mm and a median of 593 mm (IQR25−75 = 502–703 mm). A total

of 630 (61 %) and 401 trials (39 %) were reported under conventional tillage (TI) and no-tillage 

(NT) systems, respectively. Previous crops were alfalfa (n = 83), soybean and annual legumes (n 

= 497), and cereals and others (n = 451). Planting dates were reported in 643 cases (62 % of 

database), which in 95 % of cases ranged between March-20th to May-28th and were centered 

around May-5th (IQR25−75 = April-23rd to May-11th).

Exploratory correlation matrix was calculated (Supplementary Figure 2.2) and 

principal components analysis (Supplementary Figure 2.3) conducted to understand the main 

relationship patterns between the continuous explanatory variables. The first component, 

explaining 36 % of variability, can be interpreted a temperature-dimension where temperature 

variables (Temp, CHU, ETE) showed a high correlation to each other and were negatively 

correlated with latitude and Q index. The second component, explaining 11 % of variability, 

discriminates levels of precipitation and radiation. In total, five interpretable components 

explained about 70 % of variability in both, rainfed and irrigated conditions (Supplementary 

Figure 2.3).
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2.3.2. Prediction performance

Performance metrics improved with increasing number of weather predictors 

accessible to the model (Full > Spring > No Weather, Figure 2.2). The model “No weather” that 

did not include weather predictors accounted for roughly half of the variation in Y0 (ME = 0.51),

with CCC = 0.66, MAE = 1.94 Mg ha−1, RMSE = 2.46 Mg ha−1, RRMSE = 33.7 %, and MBE = -

0.107 Mg ha−1. The “spring model” improved the accuracy relative to “No weather” model by 

adding mean temperature and precipitations of March and April-May periods. Prediction metrics 

medians were ME = 0.59, CCC = 0.75, MAE = 1.72 Mg ha−1, RMSE = 2.16 Mg ha−1, RRMSE 

= 29.3 %, and MBE = -0.036 Mg ha−1. The “Full weather” model accounted for 64 % the 

variation in Y0 (ME = 0.64), with CCC = 0.77, MAE = 1.56 Mg ha−1, RMSE = 2.01 Mg ha−1, 

RRMSE = 27.1 %, and MBE = –0.043 Mg ha−1.

2.3.3. Features importance

Conditional importance analysis indicated that the most important factors driving Y0 

variability were previous crop and irrigation for all models (Figure 3). These factors were several

times more relevant than the evaluated soil and weather features. Regarding the previous crop 

effect, Y0 levels were the greatest with alfalfa as previous crop, followed by annual legumes and 

others, respectively (Figure 4A). Irrigation positively influenced Y0 of maize, especially with 

annual legumes as previous crop, increasing yields differences over other previous crops that did 

not reflect a positive effect of irrigation as annual legumes (Figure 4A). Soil factors decreased in 

relative importance as weather features were introduced. However, SOM ranked as the most 

important soil variable for Y0 regardless of the model (Figure 3). Regarding soil texture, its 

relevance resulted inconsistent with no fraction resulting particularly relevant.
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When the weather features were introduced to the model, they improved the prediction 

accuracy, reduced the relevance of soil factors, and increased the relevance of management 

factors (Figure 3B; C). Precipitations and mean temperature during April-May ranked as the 

most important features for the Spring weather. Although including all weather variables still 

refined the prediction accuracy (Figure 2), signs of redundant features with only a marginal 

effects on performance were observed. Since importance scores were estimated conditional to 

the presence of correlated features, general low scores and a considerable fragmentation was 

observed across all the weather variables. Thus, relative importance of weather in the Full-

weather model did considerable not increase with respect to the Spring-weather model. 

Notwithstanding, it is noticeable that the Full model allowed better ensemble structures that 

increased the relevance of previous crop and Irrigation factors (Figure 2.3C), which resulted in 

increased prediction accuracy (Figure 2.2). Moreover, several important insights emerged from 

the ranking of weather predictors. The occurrence of extreme precipitation events (EPE_AM, 

daily PP>25 mm) during early-growth stages exhibited a negative effect on Y0 (Figure 2.4C). 

The amount of radiation per unit of thermal time (Q quotient) during April-May (Figure 2.4D) 

but particularly during June-July (Figure 2.4E) exhibited a positive effect on predicted Y0 until 

reaching an optimum level (about 1.0 unit for Q_AM, and 0.6 units for Q_JJ). Likewise, a 

negative association of Y0 with extreme temperature events (>30 °C) during August-September 

(ETE_AS) (Figure 2.4F) as well as with the mean temperature of April-May (data not shown), as

both weather features are moderately correlated (Supplementary Figures 2.2 and 2.3). Although, 

only simple dependencies are shown, this did not preclude existence of significant higher-level 

interactions.
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High-level interactions arose from this analysis. However, it is remarkable that two out 

of the five most important weather variables in the full model were from early stages (EPE_AM, 

and Q_AM), plus the high relevancy of PP_AM and Tm_AM for the Spring weather model. 

These results indicate that early spring weather data already provides relevant information 

relative to the interaction between plant N demand and soil N supply.

2.4. Discussion

This study combined a comprehensive collection of maize experiments and advanced 

analytics to: i) describe properties of Y0 under a large variation of production conditions, and ii) 

to assess the importance of environmental and agronomic determinants of variation in this 

important descriptor of maize productivity. The outlined model could be used in combination 

with mechanistic models to improve prediction accuracy and decision making in N fertilization 

(Messina et al., 2020). This study also determined uncertainty levels for the forecast of Y0 under 

alternative prediction frameworks, which defines limits of predictability. Awareness about 

uncertainty on Y0 is crucial to set realistic expectations on prediction accuracy for yield response

to N, EONR, and ex-ante N recommendations.

Further insights on the main driving factors of Y0 have implications for its use as a 

proxy of indigenous soil N supply (Cassman et al., 2002) or as a metric of biological buffering 

capacity (Morris et al., 2018). Available data on plant N uptake at crop maturity (R6) on this 

database indicates that under zero-N fertilizer, a maize crop needed at least between 11.8–22.1 

kg available N ha−1 per Mg of grain yield (Figure 2.1B), acknowledging that the crop is not a 

merely passive sink for N (Fox and Piekielek, 1995; Vanotti and Bundy, 1994; Meisinger et al., 

2008; Soufizadeh et al., 2018). Undoubtedly, addressing the soil-N-supply and plant-demand 
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trade-offs (Briat et al., 2020) from complementary perspectives plays a key role for the design of 

N management strategies in maize crop. For a reduced portion of our dataset (<30 %), Figure 

2.1C shows that following the concept of N dilution curves (Plénet and Lemaire, 2000; Lemaire 

and Ciampitti, 2020), estimates of N nutrition index (NNI) could provide a mechanistic-

approximation of N uptake satisfied by a given soil condition (Devienne-Baret et al., 2000). This 

estimation of grain NNI at harvest using ear-N dilution curve as reference (Zhang et al., 2020) 

was able to portray differences of zero-N maize under different previous crops. However, a 

major limitation at a regional scale relies on the lack available and relevant data (co-variables) 

such as on whole-plant biomass and plant N uptake at specific stages (e.g., flowering) in order to 

represent contrasting management, soil, and weather conditions.

For the above-mentioned purposes, it is noteworthy that collecting field data on Y0 

would be fairly scalable. Similarly, collecting initial soil data and obtaining precise spring 

weather data for building a simple but an effective prediction approach would also be fairly 

scalable. The reasonable performance of our data assessment framework across a wide 

geographic region suggests that cross-state guidelines could be pursued, a pending aspect for 

most of current N guidelines (Morris et al., 2018). Further efforts should recognize the value of 

combining collaborative research with increasing computational resources, data sources and type

of models (Messina et al., 2020).

This study also offers an ex-ante approach using a large database of field studies to 

develop forecast models for Y0. Past efforts were mostly focused on: i) describing N response 

curves ex-post (Morris et al., 2018); ii) predicting the EONR via simulation models (Melkonian, 

2008; Setiyono et al., 2011; Puntel et al., 2018); or iii) predicting EONR via machine learning 

using datasets of limited size that constrain the generalization of outcomes (Qin et al., 2018; 
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Ransom et al., 2019). The vast majority of models in literature use all the available data for 

training, but not out-of-sample data is used for testing how well they predict unseen 

observations. Predicting EONR faces the issue of defining a reference value, and its degree of 

uncertainty is generally overlooked (Hernandez and Mulla, 2008), highly depending on the best 

fitted model (Jaynes, 2011) and on the fertilizer to grain price ratio (Kim et al., 2013). Machine 

learning with small datasets (up to few hundred observations) is likely to suffer of high bias, 

limiting the detection of patterns and restricting the predictive ability in unexplored domains 

(Zhang and Ling, 2018). Still yet, limited efforts were focused specifically on the prediction of 

Y0 (Puntel et al., 2019), also with constraints on data availability to explore benefits of machine 

learning-type models.

We acknowledge issues limiting the scope of this approach: i) achieving a balanced 

and more detailed dataset, ii) research plot data has limitations, and iii) the trade-off between 

prediction power and interpretability of machine learning. For the first point, our dataset suffered

from unevenly reported metadata and a lack of relevant features such as soil N availability tests, 

plant biomass and N uptake, planting and maturity dates, among other data descriptors that could

eventually result in improved performance. From the scalability perspective, yields in well-

managed research experiments are generally greater than yield with the same practices applied 

by farmers in production fields (Cassman et al., 2002). Regarding the interpretability limitations, 

this is currently shared by most of the machine learning algorithms (Khaki and Wang, 2019). 

Nonetheless, as computing power and algorithms exponentially grow, we will likely overcome 

the “black-box” limitation in the foreseeable future with refined methods to assess features role 

on prediction (Springenberg et al., 2015). Meta-learning models as ensembles of learning 

algorithms (Makowski et al., 2015) coupled with simulations (Shahhosseini et al., 2019; Messina
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et al., 2020) and cross-scales models (Wu et al., 2019) may contribute to this process. Finally, 

Bayesian statistics are also likely to contribute to yield forecast models as they offer more 

inference options on dealing with yield uncertainty (Iizumi et al., 2009).

A noteworthy outcome of this study is that a large fraction of the Y0 variability was 

explained just by management and soil factors ( 50 %). Weather contributed to improving the ∼

overall performance (+15 %). The “Full weather” and the “Spring weather” models reduced the 

RRMSE by 7 % and 4 %, respectively, with respect to the “No weather” model. While the 

reduction in RRMSE of the “Spring weather” model is lower than the “Full weather” model, it 

could be utilized for prediction. Prediction errors in the range of RMSE 2 Mg ha∼ −1 (RRMSE 

from 27 % to 34 %) still represent a moderate performance and significant remaining uncertainty

(Liu et al., 2013). Taking into consideration the observed range of apparent N requirement to 

produce 1 Mg yield ha−1 (Figure 2.1B), those values can be translated into an uncertainty in soil 

N supply of at least from 23 to 44 kg N ha−1 (considering an ideal, 100 %, N uptake efficiency). 

However, this also represents an opportunity for improvement. For example, a similar research 

approach on the prediction of rainfed maize yield using 2267 field studies across the US obtained

a RRMSE up to 11 % using deep neural networks (Khaki and Wang, 2019), although 

encompassed more than 140,000 observations for training, as well as a much a more balanced 

and detailed database in terms soil, weather, in addition to the use of genetic markers data.

Across all models, the positive influence of legumes residues into crop rotations is 

clearly highlighted among management factors. The effect of alfalfa on the following maize N 

response has been well documented affecting soil N availability as well as soil physical 

conditions (Yost et al., 2012, 2013; 2014; Riedell, 2014). At the cropping system level, better 

coupling of C and N cycling processes can be achieved by relying more on organic rather than 

22



inorganic nutrient inputs (Drinkwater and Snapp, 2007). On the other hand, as one of the most 

limiting factors of maize yields (Mueller et al., 2012; Elliott et al., 2013; Meng et al., 2016), 

water supply was also a critical management factor for Y0, particularly enhancing yields of 

annual legumes as previous crops more than for cereals (Figure 2.4A), as the first group is 

comparatively less likely to suffer N-limitations. Counter-intuitively, our analysis did not show 

the expected influence of factors such as tillage on improving the estimation of Y0. Nonetheless, 

a lack of differences in yield response was also noted from the MRTN database (Sawyer and 

Nafziger, 2005). At a regional scale of our analysis, marginal effects are likely distorted by 

higher level interactions and by systematic differences in experimental methods. At a field level, 

however, it is well documented that tillage can modify soil aggregation, water holding capacity, 

soil temperature, and consequently soil N mineralization (Bruce et al., 1990; Andraski and 

Bundy, 2008; Coulter and Nafziger, 2008).

Considered an essential part of the soil and farming systems (Lal, 2004), SOM played 

the most influential role among soil features. A recent global meta-analysis documented a 

positive trend of maize yields with SOM with leveling off at 3.4 % (Oldfield et al., 2019). This∼

study estimated that the same yield would be achievable with zero-N input in a soil with SOM of

3.4 % as with 50 kg N ha−1 with SOM of 0.9 %. However, N mineralization and the total organic 

carbon pool shows inconsistent relationship across the literature (Fox and Piekielek, 1984; 

Narteh and Sahrawat, 1997; Schomberg et al., 2009; Soon et al., 2007; Sainz Rozas et al., 2008), 

potentially related to differences in the most active of SOM fractions (Schmidt et al., 2011). In 

this sense, indices of soil N mineralization would theoretically improve the utilization of SOM 

and a simple index from soil-test biological activity appears noteworthy (Franzluebbers, 2018). 

Lastly, the soil texture is sometimes presented in association with soil N mineralization, but the 
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relationship is variable across studies in the literature (Hassink, 1997; Franzluebbers et al., 1996; 

Yoo and Wander, 2006; Zhu et al., 2009; Dessureault-Rompré et al., 2010; Ros et al., 2011; Cai 

et al., 2016). For instance, a meta-analysis including 51 experiments in North-America have 

reported higher maize N responses under finer soil textures (Tremblay et al., 2012), while only 

marginal effects of spatial variability for soil texture relative to variation across years were also 

reported in other studies (van Es et al., 2005v; Tremblay and Bélec, 2006; Kyveryga et al., 

2009).

Weather factors are determinants of both N supply and demand (Soufizadeh et al., 

2018). In this study, the excess of rainfall early in the season enter in prediction models 

consistent with the negative impact of high precipitation on drainage, water-logging and 

increased N losses (Cameron et al., 2013; Wang et al., 2014). Spring precipitations have been 

reported to account for 74 % of inter-annual variation in mean soil residual N at pre-sidedress 

(Balkcom et al., 2003). Similarly, every 10 mm of April precipitation above historical average 

delayed planting date for 1 day in the main 12 central US states (Kucharik, 2008). Although it is 

unlikely that yields under N limitations were limited by solar radiation (DeBruin et al., 2013; 

Soufizadeh et al., 2018), radiation per unit of thermal time (Q quotient) during June-July (JJ) and

early in the season (AM) positively affected yields (Andrade et al., 2000; Carter et al., 2018; 

Soufizadeh et al., 2018) until variable optimum levels, exhibiting the trade-off with the 

temperature effects on radiation use efficiency (Andrade et al., 1993) and biomass partitioning to

the ear (Wilson et al., 1995). Regarding temperature, the occurrence of extreme temperatures 

during the reproductive period (ETE_AS) resulted in one of the most relevant features 

suggesting that the positive effect of temperature on soil N mineralization (Dalias et al., 2002; 

Wu et al., 2008; Fernández et al., 2017) could be offset by a negative impact of supra-optimal 
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temperatures on plant growth (e.g., shortening the grain filling duration) and plant N demand 

(Muchow et al., 1990; Soufizadeh et al., 2018). Overall, the high relevance of weather features at

early stages (spring) appraises to invest more resources in the aggregation and analysis of 

massive databases that allow to further explore the development of prediction frameworks for Y0

that can be applied in practice.

2.5. Conclusions

Management factors such as previous crop and irrigation in combination with top-soil 

SOM accounted for the largest portion of variation in Y0, while the inclusion of weather features

refined the prediction accuracy. In a practical sense, a simple framework including weather 

variables of spring (March-May) might result comparable in performance to a framework 

including all-season weather. Future attempts should assess alternative statistical and machine 

learning approaches offering performance and interpretability improvements. Refined prediction 

frameworks for Y0 could provide new insights on N responsiveness and represent a step-forward

towards more collaborative and regional-scale N recommendation guidelines.
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Table 2.1. Explanatory variables included for the prediction of maize yield under N omission 
(Y0). *Periods: AM = April-May, JJ = June-July, AS = August-September. 

Management

Previous Crop
alfalfa; annual legumes;

 others (maize, sorghum, wheat, barley, rye, sunflower)
Tillage system Till; no-till

Irrigation Irrigated; Rainfed
Soil

Variable Units Depth
SOM = Soil Organic Matter

% 0-15 cm
Clay
Silt

Sand
Weather

Variable Units Periods

PP = Precipitations mm March, 
AM (Apr-May),

 JJ (Jun-Jul),
AS (Aug-Sept)

Tm = Mean Temperature oC

SDI = Shannon Diversity Index 0-1 (uneven - even)

AM (Apr-May),
JJ (Jun-Jul),

AS (Aug-Sept)

EPE = Extreme PP Events # days PP > 25 mm
vpd = Vapor Pressure Deficit (sum) KPa

Rad = Incident radiation (sum) MJ m-2

CHU = Crop Heat Units oC
Q = Photothermal quotient MJ m-2 / CHU
ETE = Extreme T Events # days Tmax > 30oC JJ, AS
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Figure 2.1.  A: Geographical distribution of maize nitrogen fertilization trials under study (1031 
Y0 observations from 679 site-years) performed in the USA and Canada during the period 1999-
2019. B: Relationship between total above-ground N uptake at crop maturity (R6, n = 279) and 
yield under zero-N (Y0). C: Estimated grain N Nutrition Index (NNI, n = 305) of zero-N maize 
for different previous using ear N dilution curve as reference (Zhang et al., 2020). D: variability 
of soil texture (0-15 cm), E: distribution of mean temperature, and F: total precipitation (mm) 
from April 1st to September 30th.
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Figure 2.2.  Out of bag (OOB) prediction performance of conditional random forest considering 
three alternative models: NW – No weather, only soil and crop management features; Spring 
weather – including March, April and May mean temperature and precipitations; and Full 
weather – including all weather variables during the cropping season (April-September). Violin 
plots represent variability of performance metrics assessed on a 20-fold cross-validation scheme. 
Internal boxes represent the inter-quartile range (25th to 75th percentile) and whiskers the 5th to 
95th percentiles. Model Efficiency (ME) and concordance correlation coefficient (CCC) are 
dimensionless (Dl) indices.
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Figure 2.3.  Variable importance of management, soil, and weather features on the prediction of 
Y0 at three alternative frameworks assessed via conditional permutations on random forest 
models (Strobl et al., 2008) re-scaled to percentage. Within each framework, boxes represent the 
inter-quartile range (25th to 75th percentile) and whiskers the 5th to 95th percentiles of conditional 
importance under a 20-fold cross-validation scheme. Abbreviations from Table 2.1.
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Figure 2.4.  Partial main dependencies of predicted maize grain yield under N omission (Y0, Mg
ha−1) on the most relevant features related to management, soil, and weather (Figure 3). In A, 
Boxes represent the inter-quartile range (25th to 75th percentile) and whiskers the 5th to 95th 
percentiles. Out-of-bag predictions from 20-fold cross-validation for the Full weather 
framework.
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Chapter 3: Unraveling uncertainty drivers of the maize yield

response to nitrogen: A Bayesian and machine learning approach

*Published in Agric. For. Meteorol.
Correndo, A.A., Tremblay, N., Coulter, J.A., Ruiz-Diaz, D., Franzen, D., Nafziger, E., Prasad, V.,
Moro  Rosso,  L.H.,  Steinke,  K.,  Du,  J.,  Messina,  C.D.,  Ciampitti,  I.A.,  2021.  Unraveling
uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning
approach. Agric. For. Meterol. 311, 108668.
https://doi.org/10.1016/j.agrformet.2021.108668

Abstract

Development  of predictive  algorithms  accounting  for  uncertainty  in  processes

underpinning the maize (Zea  mays L.) yield response to nitrogen (N) are needed in order to

provide  new N fertilization  guidelines.  The  aims  of  this  study  were  to  unravel  the  relative

importance of crop management, soil, and weather factors on both the estimate and the size of

uncertainty of the main components of the maize yield response to N: i) yield without N fertilizer

(B0);  ii)  yield  at  economic  optimum N rate  (YEONR);  iii)  EONR;  and iv)  the  N fertilizer

efficiency (NFE) at the EONR. Combining Bayesian statistics to fit the N response curves and a

machine learning algorithm (extreme gradient  boosting) to assess features importance on the

predictability of the process, we analyzed data of 730 response curves from 481 site-years (4297

observations)  in  maize  N rate  fertilization  studies  conducted  between 1999 and 2020 in the

United States and Canada. The EONR was the most difficult attribute to predict, with an average

uncertainty of 50 kg N ha-1, increasing towards low (<100 kg N ha-1) and high (>200 kg N ha-1)

EONR  expected  values.  Crop  management  factors  such  as  previous  crop  and  irrigation

contributed substantially (~50%) to the estimation of B0, but minorly to other components of the

maize yield response to N. Weather contributed about two-thirds of explained variance of the
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estimated values of YEONR, EONR, and NFE, and governed the uncertainty (72% to 81%) of

all  components.  Soil  factors provided a consistent  but limited  (10% to 23%) contribution  to

explain both expected N response as well as its associated uncertainties. Efforts to improve N

decision support tools should consider the uncertainty of models as a type of risk, potential in-

season weather scenarios, and develop probabilistic frameworks for improving this data-driven

decision-making process of N fertilization in maize.

3.1. Introduction

Nitrogen (N) is probably the most complex plant nutrient to study due to an intricate

set  of  spatio-temporal  interactions  governing  plant  growth  dynamics,  soil  biogeochemical

cycling, and environmental effects on the plant-soil system (Mesbah et al., 2017; Briat et al.,

2020). Despite decades of research, addressing the uncertainty on the growth and demand of N in

maize (Zea mays L.) is still a major concern (Babcock, 1992; Morris et al., 2018, Raun et al.,

2019), as indicated by the collateral impacts of misuse of fertilizer and low N use efficiency due

to uncertainty of fertilizer rate needed (Sela et al., 2018a; 2018b). Refining the management of a

complex system such as the one governing soil-plant N dynamics requires understanding the

processes generating the yield response to N using multiple perspectives (Lory and Scharf, 2003;

Martinez-Feria et al., 2018; Correndo et al., 2021a). 

Yield responses to N fertilizer are often modeled using non-linear regression models,

which are considered a practical way to provide summaries of the N response. Field trials with

various fertilizer N rates are used to estimate optimum rates, mostly under the economic return

criteria. Under this scenario, uncertainty is inevitable due to the multiple interactions between the

crop with the  agronomic  management,  soil  processes,  and weather  factors  (Kyveryga et  al.,

2007). The degree of uncertainty on the parameters describing the N response functions (e.g.,
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intercept,  slope, curvature) and derived quantities (e.g., intercept,  optimum N rate, maximum

yield,  efficiencies)  represent  a measure of risk (Babcock,  1992),  however,  they are typically

overlooked in the scientific literature (Hernandez and Mulla, 2008). The unpredictable nature

that environment has on N dynamics and crop yield dictate the need for models accounting for

stochastic components (Tmusiime et al., 2011; Raun et al., 2019).

From the statistical standpoint, the N response curves have been mostly studied using a

frequentist approach, for which only the data are considered random, and unknown parameters of

interest  are treated as fixed variables.  In contrast,  the Bayesian approach treats  the unknown

model parameters and derived quantities as random variables. Within the Bayesian framework,

we aim to estimate the best model parameters given two main components: i) prior knowledge of

the process of interest (the N response curve), and ii) the available observed data (Wakefield,

2013). Literature or expert knowledge is used to define prior distributions of model parameters,

and the data are used as new evidence to update our prior beliefs through inferences based on

probability distributions (posteriors). Therefore, not only the estimates of the parameters but also

their  uncertainties are components of interest in a Bayesian framework. Given the increasing

computational power and development of new algorithms, Bayesian methods are becoming more

common, and are increasingly being used in agricultural research (Lacasa et al., 2020; Laurent et

al., 2020; Ciampitti et al., 2020). 

Machine learning algorithms are suitable to identify complex association patterns in

large  datasets  (Jordan  and  Mitchel,  2015).  Belonging  to  the  family  of  supervised  learning

techniques,  classification  and  regression  tree-based  methods  such  as  decision  trees,  random

forests and boosting are robust and powerful techniques as recently demonstrated in agricultural

research  (Shahhosseini  et  al.,  2019;  Schwalbert  et  al.,  2020).  For  example,  Correndo  et  al.
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(2021a) used conditional random forests to compare forecast frameworks for predicting maize

yield without N fertilization while evaluating the contribution of management, soil, and weather

features on those predictions. Alternatively, boosting methods consist of fitting multiple decision

trees to the data, where each tree is  sequentially grown using the residuals from previous trees

(James et al., 2013). Extreme gradient boosting (xgboost; Chen and Guestrin, 2016), one of the

implementations of gradient boosting machines (Friedman, 2001), is known as one of the best

performing algorithms for both regression and classification problems (Osman et al., 2021; Park

and  Kim,  2021).  Besides  its  prediction  capabilities,  xgboost allows  the  estimation  of  a

permutation-based feature importance, which serves as a useful interpretation tool to examine the

decrease in a scoring rule (e.g., mean square error) when features values are randomly shuffled

(Breiman, 2001). 

The objectives of this research were to study the importance of crop management, soil,

and weather factors on both estimate and the magnitude of uncertainty of the main components

—a yield without N (B0), economic optimum N rate (EONR), yield at the EONR (YEONR), and

N fertilizer efficiency (NFE) at the EONR— describing the maize yield response to N.

3.2. Materials and methods

3.2.1. Review

A database was built by including experimental data that met certain requirements as

follows: 1) Collected on experiments during the last two decades (1999-2020) in order to reduce

the yield variability associated with genetic advancement of yield potential (Woli et al., 2016); 2)

Collected  from replicated  field  trials  with  N treatments  in  small  plots  or  field  strips;  3)  A

minimum of four N rate treatments, including a control (zero-N) and a maximum rate of at least
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Corn 168 kg N ha-1 in order to limit the chances of N limitation for achieving an environmentally

attainable yield maximum; 4) Trials with positive response but without reaching a yield-plateau

were removed from the analysis since EONR and YEONR expected values resulted out of the

data  range  and their  uncertainties  extremely  high,  and  no  associations  with  specific  soil  or

weather conditions were found, indicating a most likely experimental design limitation (data not

shown); 5) Absolute yield data; 6) Planting date; 7) Topsoil crop nutrient analysis results and/or

soil series; 8) Previous crop and tillage system; 9) Latitude and longitude coordinates, or report

the nearest town in order to retrieve archived weather and/or missing soil series data; 10) No

manure as treatments or as a past management input. General crop management (hybrid, row

spacing,  other  nutrients,  weed  and  pest  management)  was  assumed  to  have  been  chosen  to

maximize yield under each site-specific condition.

Published manuscripts were the first source of data, accessed using an engine-search in

Web of Science® filtering by the following keywords: “corn/maize” and “nitrogen fertilizer” or

“nitrogen fertilization” and “United States” and/or “Canada”. In order to reduce publication bias

effect (Dickersin and Min, 1993), unpublished data (e.g., dissertations, field reports, unpublished

experiments) that met criteria were also included. After filtering and selection processes, 481

site-years distributed across United States and Canada (Figure 3.1A) resulting in 730 N response

curves  of  maize  were  gathered  from  32  different  data  sources  (Supplementary  Table  1),

including  published  and  unpublished  studies  (Supplementary  Table  3.1).  Grain  yield  was

standardized at a water content of 155 g kg-1, and each yield point at a given N rate was the

average value of 3 to 5 replications.

The database used partially coincides with a previous study by Correndo et al. (2021a),

who  focused solely on developing a predictive algorithm to forecast maize yield without N.
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However, this current study is dissimilar mainly in the following points: 1) this study pay special

attention on assessing the uncertainty on the entire N response process rather than on a single

component, maize yield without N (Correndo et al., 2021a); 2) the present work uses function

parameters of the N response process (Bayesian regression analysis) and their uncertainties as

the object of study, while Correndo et al. (2021a) used observed yields without N as the only

response variable; 3) the current manuscript considers only experiments with a set of fertilizer N

rate  treatments  satisfying  certain  minimum  requirements  (481  site-years,  4297  yield

observations), while Correndo et al. (2021a) only considered studies presenting observed maize

yields without N fertilization (679 site-years, 1031 yield observations); and lastly, 4) this study

only uses trials that reported “sowing date” in order to produce more refined weather variables

with the planting date as a reference to adjust the weather summaries (Table 3.1), while Correndo

et al. (2021a) used only weather variables summarized by calendar months.

3.2.2. Metadata

Soil  related variables  were topsoil  (0-15 cm)  soil  organic  matter  (SOM, %) and soil

texture (clay, silt and sand, %). Soil data were collected from original sources, accessed from

authors' records when not reported in manuscripts, or retrieved from gridded POLARIS soil data

engine  (Chaney  et  al.,  2016),  a  raster  optimization  based  on  SSURGO data  with  a  spatial

resolution of 1 km2. When SOM data were reported at 0-20 or 0-30 cm, values were standardized

to 0-15 cm using stratification factors based on data from previous research on grain crops trials

(Al-Kaisi et al., 2005; Varvel and Wilhelm, 2011; Franzluebbers, 2010; Villamil et al., 2015).

Daily  weather  data  were accessed via  the Daymet  (Thornton et  al.,  2019)  API-client

source  developed  for  R-software  (package  daymetr)  using  reported  latitude-longitude

coordinates of the trials or nearest town. With a spatial resolution of 1 km2, precipitation (PP),
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maximum  and  minimum  temperature  (T,  °C,),  vapor  pressure  deficit  (vpd,  kPa),  incident

shortwave solar radiation during daylight period (Rad, MJ m−2) and day-length. Weather data

were transformed into monthly basis (as sum or average) using reported sowing dates as the

reference (das: days after sowing). We divided the weather data into five main periods: i) pre-

sowing, as the weather of 30 days before sowing; ii) 1st month after sowing (0-30 das), as proxy

of the establishment period; ii) 2nd month after sowing (31 to 60 das), as a proxy of the most

active growth vegetative period; iii) 3rd month after sowing (61 to 90 das), as proxy of the period

around flowering; and iv) 4th month after planting (91-120 dfs), as a proxy of the grain filling

period.

A  series  of  additional  weather  variables  were  calculated  to  capture  environmental

differences that might not have been captured by analyzing standard weather information. For

example, the Shannon Diversity Index (SDI) as described by Tremblay et al. (2012) was included

to describe the distribution of PP during each period. Extreme PP events were included as the

number of days with precipitations greater than 25 mm as a proxy of excessive rainfall events

(Puntel et al., 2019; Correndo et al., 2021a). Crop development was described by crop heat units

(CHU; Tremblay et al., 2012). Extreme temperature events (ETE, defined as the number of days

with maximum temperature greater than 30°C) were also included as a proxy of heat stress risk

(Butler and Huybers, 2013; Ye et al., 2017). The photo-thermal quotient (Q) was calculated as

the ratio between cumulative Rad and CHU, as an indicator of the solar radiation available to the

crop per unit of thermal time during each period, related to yield potential (Bannayan et al.,

2018).

3.2.3. Data analysis

3.2.3.1. Nitrogen response process
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We fit  quadratic  and  quadratic-plateau  regression  models  using  grain  yield  as  the

response variable and N rate as the explanatory variable. The quadratic and the quadratic-plateau

models are  the most  extensively used in the literature as  they have parameters with a  clear

interpretation for developing N recommendations (Cerrato and Blackmer, 1990; Wortmann et al.,

2011;  Kyveryga  et  al.,  2007).  Besides  its  simplicity,  the  quadratic  model  presents  a  great

flexibility in terms of possible shapes of the response including flat-, negative or positive linear-,

and bell-shaped curves. For each particular case, we selected the model that resulted in the best

performance  (>R2 median  from  Bayesian  posteriors).  Overall,  we  have  observed  a  better

performance of the quadratic model in the majority of cases (n=513) (Supplementary Figure 3.1),

with less uncertain estimates, especially in terms of key descriptors of interest such as EONR and

NFE (Supplementary Figure 3.2). The quadratic-plateau model resulted the best option in 217

cases, particularly when the response curve was very well defined -high R2 for both models-

(Supplementary  Figure  3.1).  In  contrast,  with  less  defined  N  responsiveness  patterns,  the

quadratic-plateau model may result in a more erratic convergence. Since many of the sites used

in this study are in areas of the USA where high wind is possible, the quadratic response for

maize may also be most appropriate due to yield decrease due to high-wind-induced ‘green snap’

under  high N conditions,  while  the quadratic-plateau model  assumes there is  no penalty for

greater N rates. 

The N response measured through a quadratic model is normally estimated as follows

[Eq. (3.1)]:

 y i=B0+B1 xi − B2 x i
2 (3.1)
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where, for the ith observation, y represents the maize yield (Mg ha-1), x represents the N rate (kg

N ha-1), B0 is the intercept (yield without N fertilizer), B1 is the linear slope, as the response in

yield per unit of change in initial N availability, and B2 is the quadratic coefficient.

Sharing  the  same  parameters  than  Eq.  (3.1),  the  N  response  measured  through  a

quadratic-plateau model is normally estimated as follows [Eq. (3.2)]:

yi=B0+B1 xi − B2 x i
2 , if xi<AONR ,

B0+B1 AONR− B2 AONR2 , if x i≥ AONR
(3.2)

where, AONR stands for the agronomic optimum N rate, which corresponds to the level of xi

when the first derivative of the function is equal to zero (AONR = B1 / 2B2)).

Once the model was selected, we considered four main descriptors of the N response

process  (Figure  3.2:  i)  B0  (yield  without  N  fertilizer);  ii)  the  grain  yield  at  the  economic

optimum N rate (YEONR, Mg ha-1); iii) the EONR (kg N ha-1); and iv) N fertilizer efficiency at

the  EONR (NFE,  kg  yield  (kg  applied  N)-1).  The  B0 was  estimated  as  the  intercept  of  the

response  curves.  The  YEONR  and  the  EONR  were  estimated  as  the  level  of  y,  and  x,

respectively, when the first derivative of Eq. (1) is equal to the nitrogen:maize prices ratio (Mg

grain  kg N-1).  Lastly,  the NFE was estimated as  the  quotient  between the  N responsiveness

(YEONR - B0) and the EONR.

A novelty of this analysis was to include an uncertainty component associated with

maize grain and fertilizer N prices. For this purpose, we considered the prices ratio as a random

variable. Thereby, each time the EONR was estimated, instead of considering a fixed ratio, the

value was sampled from a probability distribution. Including a gamma prior distribution into the

Bayesian framework,  we simulated the historical  prices  ratio  variability  observed during the

period 1998-2018 (USDA-ERS, 2021a; 2021b). For maize grain we considered the future price
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at each April, whereas for fertilizer N we considered the average price of anhydrous ammonia

(82-0-0) and urea (46-0-0) at each April or March. The historical average prices of maize were

152 $ Mg grain-1 and  0.763 $ kg N-1, with an average prices ratio of 0.0053 Mg grain kg N-1

(standard deviation of 0.0014 Mg grain kg N-1). With a mean of 0.0055 kg grain kg N-1 and a

standard deviation of 0.0016 Mg grain kg N-1, the simulated prior for the prices ratio (~ gamma

(shape = 11, rate = 2)) showed a distribution equivalent to the actual historical PR variability

(Supplementary Figure 3.3). 

3.2.3.2. Bayesian N response models

The four descriptors of interest were obtained by fitting the quadratic or the quadratic-plateau

regression model under a hierarchical Bayesian framework using the following priors [Eq. (3.3-

3.8)]:

y i∼Gaussian ( μi ,σ i
2) (3.3)

ui=B0+B1 x − B2 x2 (3.4a)

ui=B0+B1 xi − B2 x i
2 , if xi<AONR ,

B0+B1 AONR− B2 AONR2 , if x i≥ AONR
(3.4b)

B0∼U ( 0,18 ) ; (3.5)

B1∼U (0,0.2 ); (3.6)

B2∼ gamma (1,10 ) ; (3.7)

σ i
2∼ gamma (2,2) ; (3.8)

where for each trial, yi represents the yield at the ith N rate, ui represents the underlying process

(3.4a if quadratic, 3.4b if quadratic-plateau), σ i
2 is the variance of the process, and Gaussian, U,

and gamma stands for normal, uniform, and gamma distributions for priors. Weakly informative
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priors  were  defined  following  previous  experience  on  maize  observed  yield  without  N

fertilization (B0) (Correndo et al., 2021a), linear response to N of quadratic models (B1), and

curvature (B2) (Correndo et al., 2021b; Lacasa et al., 2020). Uniformly distributed priors for B0

and B1 were used to ensure adaptability of the priors to each case. In the case of B 2 and  σ i
2,

gamma priors were used to support positive values of the parameters, similar to Lacasa et al.

(2020) in a study maize yield response to plant density. Particularly for , a gamma prior provides

a  more  suitable  alternative  than  uniform  priors,  which  are  proven  to  lead  to  a  positive

miscalibration (overestimation) of the variance (Gelman, 2006).

From each  model,  the  expected  estimates  of  the  descriptors  were  retrieved  as  the

median (50th percentile) of the posterior distributions. Similarly, the magnitude of uncertainty for

each  descriptor  was  obtained  as  the  length  of  the  95%-credible  intervals  (2.5 th to  97.5th

percentile) from the posterior distributions.

Bayesian models were fit in R-software (R Core Team, 2021), using the rjags package

v4-10 (Plummer  et  al.,  2019),  which  applies  Gibbs  sampling  (Geman and Geman,  1984),  a

Markov Chain Monte Carlo (MCMC) algorithm to generate a sequence of samples approximated

to a posterior probability distribution function of parameters. We used 4 parallel  chains with

20,000 iterations, including 5,000 as burn-in, and a thinning interval of 10.

3.2.3.3. Feature importance assessment

In order to reproduce complex association patterns between the descriptors of the N

response process and crop management,  soil,  and weather  variables,  we applied the  xgboost

algorithm (Chen  and  Guestrin,  2016).  The  target  variables  were  eight,  as  both  the  estimate

(median) and the uncertainty (95%-credible interval length) of the four N response descriptors:

B0, YEONR, EONR, and NFE (Figure 3.2). The model inputs were the crop management, soil,
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and weather variables described in Table 3.1. Since  xgboost only handles numerical matrices,

categorical variables such as previous crop, tillage and irrigation were transformed using one-

hot-encoding. As a result, previous crop -containing three levels (Table 3.1)-was split into two

dummy variables: i) ALF, equal to 1 if previous crop was “alfalfa” (Medicago sativa L.), or equal

to 0 if not, and ii) LEG, equal to 1 if previous crop was an “annual legume”, equal to zero if

previous crop was “other”, otherwise (ALF = 1) always equal to 0.

Since the main purpose of using xgboost here was to assess features importance rather

than developing a forecasting model, we considered the entire seasonal weather as if these data

were known or perfectly predictable. 

For each model, a nested cross-validation (CV) that encompassed the use of an inner-

loop for optimization and an outer-loop to assess the generalization performance (Krstajic et al.,

2014). We used an outer 20-fold scheme, setting aside a different 5% of observations at a time to

be used later as the testing data. At the inner loop, a 10-fold-CV was applied over each outer-

training set, dividing 90% for training and 10% for validation. For each model, we performed a

grid-search to optimize the hyper-parameters of interest: i) nrounds, as the number of trees in the

forest, ii) eta, as the gradient or learning rate, iii) maxdepth, as the maximum depth of trees in the

forest, iv) alpha, as the L1 (LASSO) regularization coefficient, and v) lambda, as the L2 (Ridge)

regularization  coefficient.  Regularization  through  alpha and  lambda was  used  to  reduce  the

influence of collinearity due to the presence of correlated covariates (Supplementary Figure 3.4).

We fixed ncolsamples at 0.7 (70% of features randomly selected) and early_stopping_rounds at

3. The rest of parameters were set to  default options. Best combinations were selected based on

average  performance  on  the  inner-validation  set.  With  the  optimized  hyper-parameters,

performance metrics and features importance were assessed using the outer-training sets (20) to
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predict  the observations  on the outer-testing sets.  The importance of data input  features  was

quantified using permutation tests (Breiman, 2001). 

To evaluate models performance, we used: i) the root mean square error (RMSE, Mg

ha-1) as an average squared errors-based statistic that penalizes large residuals; ii) the normalized

or relative RMSE (RRMSE, %) as a metric of percentage deviation from the average yield (Yang

et al., 2014); iii) the mean bias error (MBE) as the average difference of predicted values with

respect to observed, for which positive values mean a systematic over-prediction while negative

mean  under-prediction;  iv)  the  Nash–Sutcliffe  (ME),  and  v)  the  Kling-Gupta  (KGE)  model

efficiencies, as a normalized analog to the coefficient of determination (Nash and Sutcliffe, 1971;

Kling et al., 2012); vi) the concordance correlation coefficient (CCC) as a normalized metric that

weighs the correlation coefficient (precision) by an index of accuracy (Lin, 1989); and vii) the

classical coefficient of determination (R2) that represents a measure of precision (not accuracy).

Formulae of metrics can be found at Supplementary Table 3.2. The medians (50th percentile) of

each metric based on the 20-folds-CV were selected as their unbiased central-tendency statistic.

3.3. Results

3.3.1. Database description

Maize N rate trials under study were distributed across 19 US states (AL, IA, IL, IN,

KS, MI, MN, MO, NC, ND, NE, OH, OK, PA, SD, TN, TX, VA, and WI) and two Canada

provinces (ON and QC) (Figure 3.1A).  The majority of experiments were concentrated during

the period 2004-2014 (n=499, 68%), 103 trials were conducted between 1999-2003 (14%), and

128 between 2015-2020 (18%). A total of 601 (82%), and 129 (18%) trials were under rainfed

and irrigated conditions, respectively. In terms of tillage management, 466 trials were reported
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under conventional tillage (64%), and 264 under no-tillage (36%).  Previous crops were alfalfa

(n=82), annual legumes (n=368), and cereals or others (n=280). Sowing dates (day of the year)

varied from days 61 (March 1st) to 155 (June 4th), with a median at day 120, and inter-quartile

range (IQR, percentiles 25th to 75th) between days 103 to 136. From sowing to 120 das, mean

temperature ranged from 15.7 oC to 25.9 oC, with a median of 20.6 oC (IQR = 19.4 oC – 21.9 oC),

and accumulated precipitations ranged from 117 mm to 727 mm, with a median of 420 mm (IQR

= 350 mm – 480 mm). Soils represented 11 soil textural classes (Soil Survey Staff, 2018) (Figure

6.1B), and SOM values (%) ranged from 0.5% to 7.9% with a median of 3.6% (IQR = 2.4%-

5.2%).

Maximum N rates varied from 168 to 366 kg N ha-1, with a median of 248 kg N ha-1.

The reported metadata concerning N fertilization strategy resulted incomplete in the majority of

cases.  Thus,  only 284,  490, and 642, and  284 reported  details  on fertilizer application form,

source,  and timing,  respectively.  Reported  forms  of  N application  were  broadcasted  (n=94),

injected  (n=176),  banded  (n=7),  and  incorporated  (n=7).  Reported  N  sources  were  urea-

ammonium nitrate (32-0-0, n=238), ammonium nitrate (34-0-0; n= 169), urea (46-0-0, n=35),

calcareous-ammonium nitrate (15-0-0, n=24), and anhydrous-ammonia (82-0-0; n=23). Lastly,

reported N application timings were between V2-V6 (n=280), at sowing (n=198), pre-sowing

(n=81), split applications between planting and V4-V6 (n=58), and between V7-V9 (25).

Observed yields varied from a minimum of 0.35 Mg ha-1 to a maximum of 19.0 Mg ha-

1. Yield without N averaged 7.93 (IQR = 5.31-10.24 Mg ha-1), maximum yield averaged 12.23

(IQR = 10.61-14.16 Mg ha-1), and the apparent N responsiveness (maximum yield minus yield

without N) averaged 4.30 Mg ha-1 (IQR = 2.28-6.20 Mg ha-1).
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3.3.2. Bayesian analysis of N response descriptors

The analysis of the 730 regression curves using the Bayesian approach produced most 

probable values of the four maize N response descriptors as well as their corresponding 

uncertainties (Figure 3.3A-D). For B0, the estimates ranged from 0.5 to 17.5 Mg ha-1 with a 

median of 7.9 Mg ha-1, and uncertainty ranged from 0.3 to 4.0 Mg ha-1 with a median of 1.4 Mg 

ha-1. For YEONR, estimates ranged from 1.5 to 19.0 Mg ha-1 with a median of 12.4 Mg ha-1, and 

uncertainty ranged from 0.2 to 8.2 Mg ha-1 with a median of 1.6 Mg ha-1. For EONR, estimates 

ranged from 0 to 368 kg N ha-1 with a median of 158 kg N ha-1, and uncertainty ranged from 8 to 

261 kg N ha-1 with a median uncertainty magnitude of 49 kg N ha-1. Lastly, NFE estimates 

ranged from 4.2 to 68.8 kg yield kg N-1 with a median of 22.1 kg yield kg N-1, and uncertainty 

ranged from 2.1 to 39.5 kg yield kg N-1 with a median uncertainty of 7.1 kg yield kg N-1. The 

uncertainty in B0, YEONR and NFE showed a poor association with the estimated values 

(Figure 3.3E, F, H), while EONR uncertainty was more closely related to estimates, with a trend 

of higher uncertainties with at both low as well as at high EONR estimated values (Figure 3.3G).

3.3.3. Prediction performance

As expected, the xgboost algorithm showed better performance in predicting estimated

values than in predicting uncertainties  (Figure 3.4).  The prediction of estimates showed RMSE

medians of 1.90 Mg ha-1 for B0 (RRMSE = 24%), 1.68 Mg ha-1 for YEONR (RRMSE = 14%),

52 kg N ha-1 for EONR (RRMSE = 34%), and 10.2 kg yield kg fertilizer N -1 for NFE (RRMSE =

40%). The prediction of uncertainties resulted in RMSE of  0.52 Mg ha-1 for B0 (RRMSE =

36%), 1.17 Mg ha-1 for YEONR (RRMSE = 72%), 44 kg N ha-1 for EONR (RRMSE = 69%), and

6.2 kg yield kg fertilizer N -1 for NFE (RRMSE = 66%). The rest of the dimensionless metrics,
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although with different error penalization rules, indicated that the uncertainty magnitudes were

much more complex to predict than the estimates (Figure 3.4). For example, R2 ranged from 0.36

to 0.71 when predicting estimates,   while varied from 0.08 to 0.22 in the case of predicting

uncertainties.

3.3.4. Features contribution

The permutation importance test served as an indicator of the relative contribution of

features  (Figure  3.5)  to  explained  variability  by  the  xgboost  algorithm (Figure  3.4).  Results

indicate  that  the  crop  management  factors  under  study  were  more  relevant  to  predict  the

estimates rather than the uncertainties of the N response process. Particularly for the estimate of

B0,  crop management  contributed  50% of  explained  variability  (Figure  3.4A),  while  it  only

contributed about 1% of explained uncertainty (Figure  3.4B). For YEONR, EONR and NFE

estimates,  crop  management  contributed  16%,  19%,  and  12%,  respectively,  of  explained

variance. In contrast, crop management contributed only 4%, 4%, and 3% of explained variance

of YEONR, EONR, and NFE uncertainties, respectively. Regardless of the descriptor estimate or

uncertainty,  the  contribution  of  soil  variables  to  explained  variances  was  more  consistent,

ranging from 10% to 23% of explained variance of the N response. Lastly, and as expected, the

contribution  of  weather  variables  to  explained variance  was more  relevant  for  prediction  of

uncertainties than for prediction of estimates. Regardless of the N response descriptor, weather

contributed from 72% to  81% of explained variance of uncertainties. In the case of estimates,

weather was particularly useful for the prediction of YEONR (64%), EONR (67%), and NFE

(78%) components.

Among the crop management components affecting B0 value prediction, previous crop

contributed about 37% of explained variance, while irrigation contributed about 13%. In terms of
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B0 uncertainty, however, previous crop and irrigation showed a negligible influence (Figure 3.5).

The most influential weather variable for the B0 expected value was vpd during the pre-sowing

period (6%), while  precipitations during the late vegetative period (Pp_2) and vpd during grain

filling  (vpd_4),  and  clay  content,  respectively,  were  the  most  relevant  variables,  each

contributing about 6% of explained variance of B0 uncertainty. In the case of YEONR estimates,

the most relevant feature resulted SOM with ca. 11% of explained variance, while irrigation and

previous  crop  contributed  with  ca.  14%.  Although  precipitations  and  radiation  around  the

flowering  period  (Pp_3,  6%;  Rad_3,  5%)  and  distribution  of  precipitations  during  the  late-

vegetative period (SDI_2, 3%) resulted among the most important weather features, importance

patterns highlight an evenly distributed contribution of evaluated weather variables. Similarly,

although precipitations during late vegetative period (PP_2) resulted the most important weather

variable (ca.  6%), most of  features  evenly  contributed to explain YEONR uncertainty. Lastly,

soil variables contributed with ca. 23% of explained variance, with silt (9%) and SOM (6%) as

the  most  important  features,  while  crop  management  variables  showed  an  insignificant

contribution to YEONR uncertainty (5%).

Previous  crop  was  the  most  important  variable  to  predict  expected  EONR values,

explaining about 17% of variance.  Nonetheless, as stated above, crop management showed a

trivial contribution to explain EONR uncertainty. The silt fraction contributed with ca. 5% of

explained variance of EONR estimates and ca. 10% of EONR uncertainty. However, we were

not able to observe a clear set of most important weather variables defining either estimates or

uncertainties,  denoting the complex association patterns involving EONR.  Similarly, previous

crop exerted the most important influence on NFE estimates (ca. 11%), however, the rest of

evaluated variables evenly contributed to predict NFE. In terms of the NFE uncertainty, as the
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most important variables,precipitations  around grain filling period (Pp_4) contributed with ca.

5% of explained variance, while  clay, SOM, and clay contributed with ca.  5%, 4%, and 4% of

explained NFE-uncertainty variance, respectively.

3.4. Discussion

This  study  provides  an  unprecedented  assessment  of  the  N  response  in  maize,

combining  Bayesian  statistics  with  machine  learning  to  unraveling  the  contribution  of  crop

management, soil, and weather factors to the prediction of both the expected response and its

related  uncertainties.  Highlighting  the  stochastic  nature  of  the  process,  this  work  offers  a

decomposition of the N response into simple and interpretable components (Figure 3.2A). In the

scientific literature, scarce attempts can be highlighted related to considering the parameters of

the yield response to N supply as random variables (Hernandez and Mulla, 2008; Tembo et al.,

2016; Boyer et al., 2013). However, none of the existing literature on this topic has addressed the

investigation of the drivers behind the uncertainty magnitude in the estimated parameters of the

maize yield to N supply responses for a given environment.

Improving the awareness of the uncertainties is critical to convey wise information to

stakeholders,  moving from a static/experience based to a more dynamic/data-driven decision-

making  process.  Similar  insights  have  been  recently  offered  by  Laurent  et  al.  (2020)  when

discussing the benefits of reporting credibility intervals and probability of mean effect size for

on-farm network trials. Enhancing the capability of current models to capture uncertainty and to

provide sensitivity analysis is the foundation for deploying Bayesian frameworks (Makowski et

al., 2004; van de Schoot et al., 2014) to become one of the new pillars for the improved crop N

recommendation systems around the globe.
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A valuable novelty in our approach is considering the stochastic nature of prices when

estimating the EONR. In this regards, although the uncertainties in maize and fertilizer N prices

are both major factors deciding fertilization strategy (Blackmer and Kyveryga, 2012), the clear

majority of the literature studying the EONR only considered fixed prices for simplicity (e.g.,

Scharf et  al.,  2005; Kyveryga et  al.,  2007; Alotaibi et  al.,  2018),  missing a relevant  random

component when developing N guidelines. Hence information on historical series of prices at

local and/or regional levels should be considered when estimating the EONR (Yost et al., 2014;

Nigon et al., 2019). From an economic standpoint, an  ex-ante approach is the most  adequate

when estimating EONR (Bullock and Bullock, 2000; Hernandez and Mulla, 2008), for which the

evaluation of uncertainties is crucial. In addition to model the uncertainty on the yield response

components, we have demonstrated that employing Bayesian statistics also allows to model the

variability on the prices ratio by using available historical prices data as a prior.

From the main factors linked to the estimates of the maize N response curves, previous

crop (alfalfa)  and irrigation  have been already identified  as critical  for B0 (Correndo et  al.,

2021a) mainly due to the effect of soil N supply and soil physical conditions (Yost et al., 2014;

Riedell,  2014)  and  water  as  critical  factor  limiting  productivity  for  field  crops  and  maize

(Mueller et al., 2012; Meng et al., 2016). Likewise, for YEONR, water and previous crop were

quite  relevant  from a  management  standpoint,  but  with  a  larger  role  of  SOM with a  minor

influence of clay as key soil factors for attaining high yields (Lal, 2004; Tremblay et al., 2012).

For both EONR and NFE, the influence of weather on the estimation of these factors is more

relevant in agreement with previous reports highlighting the impact of this factor on N supply

and demand (Soufizadeh et al., 2018).
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This study provides relevant insights on the importance of weather (72 to 81%) for

improving forecast models that enhance our ability to predict the uncertainties in N response.

From a weather standpoint, the most relevant features were evident 60 days after planting time.

On the one hand, this emphasizes the importance of further improving the in-season diagnosis

tool for crop N status (Scharf et al., 2011). In that regard, combining sensor data with machine

learning techniques appears as a promising approach (Wang et al., 2021a). On the other hand,

this  denotes the need for improving our understanding of future weather conditions  and our

ability of developing probability scenarios (using historical weather as a proxy)when deciding

optimal N rates to be applied in our diverse (e.g., different crop rotation, tillage, management)

farming systems. Lack of adequate spatial resolution weather data is a large constraint not only

for developing more precise forecasts  but  also for improving relevant  decision support tools

(Van Wart et al., 2015). The main challenges for estimating the economic production potential

for large field regions is generally linked to the uncertainty of weather forecasts and changes of

agricultural landscapes (Jones et al., 2000). In addition, the uncertainty of weather data and its

interpolation greatly depend on the density and distribution of weather stations within a region

(Mourtzinis et al., 2017). However, future challenges for weather data are mainly connected to

the  ease  of  access,  data  quality,  and  comprehensiveness/evaluation  for  this  information  for

relevant use on decision tools and research in agriculture (Overpeck et al., 2011).

The minor role of the evaluated crop management factors (previous crop, irrigation and

tillage) on predicting the uncertainties of the yield response to N implies the need of testing the

relevancy of  other  practices  (e.g.,  fertilization  strategy,  hybrid,  plant  density)  for explaining

residual variance. Our results also remark a consistent but limited contribution of the evaluated

soil  features to understand the uncertainty of N response process.  Nonetheless, the inference
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related to SOM and soil texture  fractions results limited since they are not direct and perhaps

inconsistent estimators of soil N mineralization (Schomberg et al., 2009; Ros et al., 2011; Cai et

al., 2016) and they may also carry confounding effects regarding geographical differences. Thus,

further soil indicators regarding soil N supply may be valuable inputs for N response prediction

models (Franzluebbers, 2018; McDaniel et al., 2020). Both results may reflect limitations in our

approach.  As described in  Correndo et  al.  (2021a),  our  database  presents  unevenly  reported

metadata and a lack of relevant features such as pre-plant and/or in-season soil N supply, plant

growth determinations,  N concentration  in  tissues  or  overall  plant  N uptake,  maturity  dates,

genetic  material,  among  other  data  descriptors  that  could  ultimately  result  on  improved

prediction performance.

Historically, fertilizer N recommendations have been based on estimated production

functions  treated  as  the  “true”  underlying  model,  largely  ignoring  the  inherent  uncertainty

existent in any relationship and its associated errors. The estimated uncertainties in our research

serve as a measure of risk magnitude when modeling the yield response functions to generate N

recommendations.  Our  main  finding  is  that  the  EONR  presents  an  significant  inherent

uncertainty, typically about 50 kg N ha-1, with an increasing risk of erratic estimates at both low

(< 100 kg N ha-1) and high (> 200 kg N ha-1) expected EONR values. Empirical evidence indicate

that the majority of US maize farmers prefer in-field management strategies as a method of

adapting  to  climate-based risk  (Mase  et  al.,  2017).  Thus,   producers  commonly  consider  N

fertilizer  as  a  risk reducing factor  (Babcock,  1992;  Scharf  et  al.,  2005).  In other  words,  the

uncertainty derived from weather or soil N supply most likely leads to increased N rates as risk-

neutral  farmers  perceive  profitable  to  reduce  the  probability  of  being  caught  short  of  N.

Notwithstanding,  our  evidence  indicates  that  increasing  the  N  fertilizer  rate  “just  in  case”
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(without a clear rationale) under high EONR uncertainty would result both environmentally and

economically riskier. 

Lastly, this study also provides insights on the opportunity to model the uncertainties of

the yield response functions, with the challenge of enhancing the quality of in-season weather

forecasts and  generating robust prediction frameworks.  Crop simulation tools such as DSSAT

(Jones et al., 2003), APSIM (Holzworth et al., 2018), or more specific models such as Adapt-N

(Melkonian et  al.,  2008;  Sela  et  al.,  2016)  combining crop management,  soil,  and in-season

weather data to optimize split applications of N fertilizer are a robust foundation. For example,

Adapt-N offers estimates of the uncertainty around the recommended rate and allows to use a set

of  risk  considerations  related  to  market  prices  and  N  dynamics. Still,  the  challenge  is  to

transform the simulation frameworks from deterministic to more probabilistic. Decision support

tools  focusing  on  N  recommendations  should  ideally provide  potential  seasonal  weather

scenarios and their probabilities to understand the level of risk taking by agronomists, farmers,

and stakeholders. The data-fusion approach of integrating observed weather data during the early

vegetative period and historical weather to create potential scenarios during  the late vegetative

and reproductive periods represent a unique opportunity to evaluate risks when deciding the N

rate (Wang et al., 2021b). The inclusion of stochastic dominance analysis (studying conditional

distributions  instead of just  means)  may also provide valuable insights about key factors to

manage risks on N decisions, as it has been made for other production factors such as genetics

(Nolan and Santos, 2019). Therefore, still major efforts on risk research should be the main focus

when fine-tuning decision tools for input utilization in farmer fields, conducting scenarios for

combinations  of types of risk based on probabilities  of historical  data (Pannel,  1997) and/or

based on better seasonal weather forecasts.
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3.5. Conclusions

This study provides relevant insights on understanding the estimation of the N response

for  maize,  with  the  additional  component  of  assessing  the  level  of  uncertainty  for  those

parameters of the response models. One of the main conclusions of this work is that the expected

values of N response components and, although more challenging, their related uncertainties are

both susceptible to be modeled. More precisely, yield without N (B0), YEONR and NFE are the

most  predictable  components  of  N  response,  while  the  biggest  difficulties  were  found  for

predicting  the  EONR component.  Although  challenging,  broadly  variable  and  susceptible  to

change by weather, we foresee that uncertainties can be modeled, especially for the B0 and NFE

components.

Weather features contributed with roughly two-thirds of explained variance of YEONR

and NFE. In addition, weather variables were, undeniably, the most relevant metadata (72% to

81%)  to  predict  the  uncertainty  of  N  response  (mainly  reflected  in  the  EONR).  Crop

management factors largely affected the prediction of the expected B0, but slightly influenced all

the other parameters of the maize N response model. Likewise, crop management displayed a

trivial influence (<5%) on the uncertainty of the N response components. Soil factors exerted a

consistent  but  limited  contribution  to  explain  both  expected  N  response  as  well  as  their

uncertainties. 

Overall, this research suggests that improvement on the decision support tools should

consider the uncertainty of yield response to N supply models as a type of risk, potential in-

season weather scenarios, and develop probabilistic  frameworks for improving the data-driven

decision-making process for N fertilization in maize. The combination of improved modeling
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approaches  along  with  artificial  intelligence  tools  and  advance  statistical frameworks  (e.g.

Bayesian) can provide more dynamic options for N management in maize and other major field

crops.
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Table 3.1. Meta-data included for studying their influence on selected descriptors of the N 
response process in maize. *CHU = crop heat units (Tremblay et al., 2012). †das = days after 
sowing.

Management

Variable Levels

Previous Crop
alfalfa; annual legumes (soybean);

 others (maize, sorghum, wheat, barley, rye, sunflower)
Tillage system Tilled; no-till

Irrigation Irrigated; Rainfed

Soil

Variable Units Depth
SOM = Soil Organic Matter

% 0-15 cm
Clay
Silt

Sand

Weather

Variable Units Periods
Pp = Precipitations (sum) mm

pre = -30 – -1 das†, 
1 = 0-30 das,
2 = 31-60 das,
3 = 61-90 das,

4 = 91-120 das,

Tm = Mean Temperature
(average)

oC

SDI = Shannon Diversity Index 0-1 (uneven - even)

EPE = Extreme PP Events
(count)

# days PP > 25 mm

vpd = Vapor Pressure Deficit
(average)

KPa

Rad = Incident radiation (sum) MJ m-2

Q = Photothermal quotient MJ m-2 / CHU*

ETE = Extreme T Events
(count)

Days w Tmax > 30oC 2,3,4
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Figure 3.1. A: Geographical distribution of maize nitrogen fertilization trials under study (730 
response curves from 481 site-years) performed in the USA and Canada during the period 1999-
2020. B: soil texture distribution (0-15 cm). 
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Figure 3.2. Conceptual representation of the N response process descriptors of interest (A), and 
the applied Bayesian analysis framework (B) to obtain both estimates and uncertainties from 
posterior distributions of: i. B0 (yield without N, Mg ha-1), ii) YEONR (yield at EONR, Mg ha-1),
iii) EONR (kg N ha-1), and iv) NFE (kg yield response kg N-1 at EONR). 
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Figure  3.3. Distribution of estimates and their  corresponding uncertainties (A-D) of the four
selected  maize  nitrogen  response  descriptors  (A:  intercept  (B0,  Mg  ha-1);  B:  yield  at  the
economic optimum N rate (EONR)(YEONR, Mg ha-1); C: EONR (kg N ha-1); and D: N fertilizer
efficiency  to  the  EONR (NFE,  kg  yield  kg  fertilizer  N-1);  and the  relationship  between  the
uncertainty  of  each descriptor  and its  estimate  (E-H).  In  A to D,  vertical  lines  indicate  the
medians of the distributions (solid: estimate, dashed: uncertainty).
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Figure  3.4. Extreme gradient boosting performance for the prediction of estimates (A-D) and
uncertainties (E-H) of  four descriptors of the maize nitrogen response process: i) intercept (B0,
Mg ha-1), ii) yield at economic optimum nitrogen rate (EONR) (YEONR, Mg ha-1), iii) EONR
(kg N ha-1), and iv) nitrogen fertilizer efficiency (NFE = kg yield response kg N-1). Data points
are pooled from 20 out-of-bag (OOB) testing samples from cross-validation procedure. Metric
values represent the medians of the OOB samples. RMSE: root mean square error; RRMSE:
relative RMSE; MBE: mean bias error; ME: Nash-Sutcliffe model efficiency; KGE: Kling-Gupta
model efficiency; CCC: concordance correlation coefficient; R2: coefficient of determination.
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Figure 3.5. Relative contribution (%) of crop management, soil, and weather variables (10 most
important)  to  expected  estimates  (A) and uncertainties  (B) of main  descriptors  of the maize
nitrogen responsiveness process: i) intercept (B0), ii) yield at the economic optimum N rate -
EONR- (YEONR), iii) EONR, and iv) nitrogen fertilizer efficiency (NFE = (YEONR – B0) /
EONR).
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Chapter 4: Do water and nitrogen management practices impact

grain quality in maize?

*Published in Agronomy – MDPI, Special Issue “Effect of Biotic and Abiotic Factors on Plant
Growth and Nutritional Value of Field and Vegetable Crops”. 
Correndo, A.A., Fernandez, J.A., Vara Prasad, P.V., Ciampitti, I.A., 2021. Do Water and Nitrogen
Management  Practices  Impact  Grain  Quality  in  Maize?  Agronomy 11,  1851.
https://doi.org/10.3390/agronomy11091851

Abstract

Concomitantly pursuing superior maize (Zea mays L.) productivity with grain quality is 

essential for food security. Therefore, this study provides a meta-analysis of 21 studies 

assembled from the scientific literature to tackle the effect of the two most limiting factors for 

maize production, water and nitrogen (N), and their impacts on grain quality composition, herein

focused on protein, oil, and starch concentrations. Water stress levels resulted in erratic 

responses both in direction and magnitude on all grain quality components, plausibly linked to 

different duration, timing, and intensity of water stress treatments. Nitrogen fertilization more 

consistently affected grain protein concentration, with a larger effect size for protein as fertilizer 

N levels increased (protein change of +14% for low, ≤ 70 kg N ha-1; +21% for medium, >70-150 

kg N ha-1; and +24% for high, >150 kg N ha-1). Both starch and oil grain concentrations 

presented less variation to fertilizer N levels. The positive protein-oil correlation (r = 0.49) 

permitted to infer that although oil concentration may reach a plateau (8%), further increases in 

protein are still possible. Augmented research on grain quality is warranted to sustain food 

production but with both high nutritional and energetic value for the global demand.
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4.1. Introduction

The overgrowing demand for improved quality of agricultural products has stressed the

already need for food, feed, fuel, and fibers. In recent years, there have been greater emphasis on 

quality of cereal grain in addition to yield. For this study, we use the term ‘grain quality’ to 

explore impacts on protein, oil, and starch compounds of cereal grains. From the perspective of 

crop improvement, plant breeders are dauting task to create more nutritious crops 

(‘biofortification’) without compromising further yield gains (Vyn and Tollenaar, 1998; Morris 

and Sands, 2006). However, development of nutritious crops requires a joint effort of multiple 

disciplines, from agronomy to food scientists (Diepenbrock and Gore, 2015).

Cereals contribute to roughly 60% of the total world food demand (Darra et al., 2019). 

Within the cereals, maize (Zea mays L.) plays a significant role in animal feed and human 

nutrition, as the main source of both energy and protein for tropical and sub-tropical regions 

(Motukuri, 2020). It is also one of the most important staple food crops for humans and key for 

global food nutritional security in both developed and developing countries. During the last 

decades, it has also gained significance as a source of vegetable oil (Ali et al., 2010). In 2019, 

global maize harvested area was roughly of 197 million ha, with a total production of 1148 

million tons and average yield of 5.8 Mg ha-1 (FAO, 2021). From a grain composition, mature 

grain of dent maize presents 60% to 72% starch, 8 to 11% protein, and 4 to 6% oil (Jahangirlou 

et al., 2021). Starch and protein are mainly stored in the endosperm (ca. 90% of the grain 

weight), while the oil is mainly in the embryo (ca. 10% of the grain weight) (Flint-Garcia et al., 

2009). For this study, grain quality is investigated as the changes in grain protein, oil, and starch 

concentrations.
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Maize grain yield and quality attributes are interrelated and are highly influenced by 

environmental conditions (Butts-Wilmsmeyer et al., 2019). One of the major abiotic stresses 

related to climate change is water stress (drought), adversely impacting yield and quality of 

many field crops (Alqudah et al., 2010). It has been demonstrated that drought could decrease the

starch concentration and increase the protein concentration in grains of many crops (Lu et al., 

2014). Non-limiting water availability during flowering and grain filling periods increased grain 

yield and protein concentration in maize (Butts-Wilmsmeyer et al., 2019). Severe water stress 

decreased grain yield and starch but increased protein concentration in maize relative to no stress

conditions (Ge et al., 2010). Water stress during grain filling stages decreased grain yield but 

may present no major changes in protein and oil concentration (Barutçular et al., 2016). Drought 

stress after pollination significantly decreased grain yield, increased grain protein concentration 

but not starch (Lu et al., 2014). While water stress during late vegetative stages stress increased 

seed oil concentration in maize (Ali et al., 2010).

Management practices modifying the availability of resources, especially during 

critical periods, are also likely to alter the grain components (Martinez et al., 2017) mainly 

through changes in the source/sink ratios (Borras et al., 2002). Among other key practices such 

as sowing date (Abdala et al., 2018), nitrogen (N) management is indisputably one of the most 

limiting factors not only for grain productivity but also for the grain quality attributes (Miao et 

al., 2006; Cirilo et al., 2011). Besides the well documented effects of N deficiencies in biomass 

and grain production, they are also likely to impact the grain quality composition. For instance,  

Jahangirlou et al., (2021) reported that high N applications (184 kg N ha-1) not only increased 

yield but also grain quality mainly due to increments in the concentration of non-essential amino 

acids. The same authors also observed that more frequent irrigation events (6 day intervals) and a
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high fertilizer N rate increased oil and starch concentrations. This emphasizes the existence of 

interactions of water x N management and co-limitations (Sadras, 2005) on grain yield and 

quality traits, with impacts dependent upon timing, duration, and intensity of stress. Although 

few studies have quantified the impacts water stress and nitrogen fertilization levels on grain 

quality trains (protein, starch, and oil concentrations) under field and controlled environmental 

conditions, those investigations were all conducted under different genotype, environment, and 

management (GxExM) scenarios. These published data have not been synthesized to better 

understand generalized effects across all studies. For this purpose, meta-analysis is a method that

can help with integrating knowledge and results from diverse studies and evaluate the impact of 

treatment on sets of target variables and provides a quantitative estimates of effect sizes 

(Tremblay et al., 2012; Laurent et al., 2020; Fernandez et al., 2020).

The overall objective of this study was to execute a meta-analysis to evaluate the 

effects of water and nitrogen levels on the three main components of maize grains: protein, 

starch and oil concentrations. The specific goals of this study were to employ a meta-analytic 

model to: i) study the effect of water stress levels on grain protein, oil, and starch concentrations,

ii) investigate the effect of N fertilization and quantify the impact of N (sub-level of N level) 

added (low, <70 kg N ha-1, medium, >70-150 kg N ha-1, and high, >150 kg N ha-1) on grain 

protein, oil, and starch concentrations for maize crop.

4.2. Materials and Methods

The source of data were only published manuscripts under the peer-review process. 

Using the Web of Science®, CAB-Abstracts®, and Scopus® search-engines, the following 

keywords were applied as a filter: corn or maize, and grain quality or grain composition, and 

nitrogen fertilization or water stress or drought stress. The search was also constrained to journal 
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articles, and to the agricultural and biological sciences areas. Therefore, we also applied the 

following keywords in the search equation: not fodder, not animal, not soil. After the initial 

results, a screening of titles was applied in order to reduce the number of candidate studies. A 

total of 91 manuscripts were downloaded and revised, with only 21 retained based on the 

following criteria: i) replicated experiments, ii) treatments of interest included either N 

fertilization (control vs. fertilized) or water management treatment (irrigated as control and water

stressed as the treated plot), iii) variables of interest reported at the treatment level including 

grain yield, and/or nitrogen (N) concentration, and/or protein, and/or starch, and/or oil 

concentrations. In addition to the engine search, a set of experiments belonging to a 

comprehensive database on +30 N trials in maize (Wortmann et al., 2011) was included. 

Although these trials were not particularly designed to evaluate maize grain quality, the database 

met the criteria. When protein data were not reported, protein was calculated as the grain N 

concentration multiplied by a factor of 5.6x following Mariotti et al. (2008), Sosulski and 

Imafidon (Mariotti et al., 2008; Sosulski and Imafidon, 1990).

The final database consisted of 21 data sources (92 site-years) comprising experiments 

published between 1972 and 2019, and distributed across 11 countries (Argentina, Brazil, 

Canada, China, India, Iran, Pakistan, Serbia, Turkey, United States, and Venezuela) (Table 4.1). 

In terms of the factors of interest, a total of 12 studies (75 trials) only evaluated the effect of N 

on grain quality, 7 studies (15 trials) only evaluated the effect of water stress on grain quality, 

and 1 study (2 trials) evaluated their interaction. Most of the experiments were performed under 

field conditions, and one study was carried out under controlled environmental conditions (Lu et 

al., 2014). This controlled study was included as it satisfied our search criteria and to expand the 
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database. In terms of variables of interest, a total of 20 studies accounted for protein 

concentration, 14 studies evaluated starch concentration, and 14 reported oil concentration. 

Grain yields were adjusted to dry basis (0 g moisture kg-1), and protein, starch, and oil 

were standardized to percentage (%) units. The final database consisted in 510, 570, 279, and 

265 data points for grain yield, protein, starch, and oil concentration, respectively.

4.2.1. Statistical analysis

Descriptive statistics provide a summary of variables of interest in the compiled database 

(Table 4.2). Simple correlation (Figure 4.1) and regression analyses were performed in order to 

study the relationships among the grain quality components (Figure 4.1) and the components and

yield (Figure 4.2).

4.2.1.1. Meta-analysis

Meta-analysis models are particularly useful identifying patterns when data from multiple

sources are combined and analyzed (Fernandez et al., 2020; Philibert et al., 2012). Thus, for the 

comparison of water stress and N fertilization effects on grain quality components, random 

effects meta-analysis models were fit following the log response ratio (lnRR) approach (Hedges 

et al., 1999). This type of meta-analysis allows to acknowledge that the effect of a single study 

come from a distribution of effects rather than cdautingonsidered as fixed. The meta-analyses 

were performed with the metafor package (Viechtbauer, 2010) in R software (R Core Team, 

2021). Each model consisted into the evaluation of specific effect sizes of the treatments of 

interest. The three models to analyze the water stress effect were split into: i) protein 
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concentration, ii) starch concentration, and iii) oil concentration. The effect sizes of water stress 

on these quantities were estimated following Eq. (4.1) and Eq. (4.2):

y i ( j )=ln (
z stress

zcontrol
)  (4.1)

vi ( j )
=

1
wi ( j )

=
nstress+ncontrol

nstress∗ncontrol
(4.2)

where yi(j) is the water stress effect size for the ith observation nested within the jth study, and zi(j) 

is the concentration of protein, starch, or oil in the water stressed (zstress) or the in the water-

controlled (zcontrol) treatments. Each yi were subsequently weighted using the inverse sample 

variance of each case (vi(j)), using the corresponding sample sizes (n) to estimate the weights 

(wi(j)).

Similarly, for the N models, the effect sizes of N fertilization on the grain quality 

components were estimated following Eq. (4.3) and Eq. (4.4):

xi ( j )
= ln (

zN f

zN 0
) (4.3)

vi ( j )=
1

wi ( j )

=
nN f

+nN 0

nN f
∗nN 0

(4.4)

where xi(j) is the N fertilization effect size for the ith observation nested within the jth study, and 

zi(j) is the concentration of protein, starch, or oil in the N-fertilized (zNf) or the in the control (zN0) 

treatments. Each xi(j) were subsequently weighted using Eq. (4.4).

Since the studies presented a wide range of N fertilization rates (30 to 280 kg N ha-1, 

Table 1), a second meta-analysis was fit for the N models in order to assess the effect of the N 

level as follows: i) low N (< 70 kg N ha-1) ii) medium N (>70-150 kg N ha-1), and high >150 kg 
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N ha-1). Thus, the effect size of N fertilization (xi) was also assessed at the sub-level of N level 

within each study.

In order to estimate the confidence intervals (CI, 95%) of the mean effect sizes at the study and 

overall levels, we used non-parametric bootstrapping stratified by study in order to conserve the 

original data structure. Thus, at the study level (j), the available observations (i) were resampled 

with replacement (n=5000) (Adams et al., 1997; Van Den Noorgate et al., 2005) using the boot 

package (Canty et al., 2021) in R-software. The heterogeneity between studies was calculated 

using the I2 statistic to detect whether all of them are assessing the same effect (Borenstein et al.,

2009). 

Forest plots were used to summarize the effects of water and N fertilizer, re-expressing the yj, xj 

(ln ratios), and their respective confidence intervals (95% CI) to percentage units (%) using Eq. 

(4.5) and Eq. (4.6).

Water Stress Effect (% )=(exp y j−1 )∗100 (4.5)

N fertilizer Effect (% )=(expx j −1)∗100 (4.6)

4.3. Results

The descriptive analysis of the database indicates that maize grain yield showed a wide 

range of values, with an average of 8.7 Mg ha-1, ranging from 1.8 to 18 Mg ha-1, and with a 

standard deviation of 2.8 Mg ha-1 (Table 4.2). Although only 3 studies reported yield data on 

water stress, limiting the comparison, water limited treatments resulted in average yields of 8.4 

Mg ha-1 relative to full irrigation with yields of 11.6 Mg ha-1. Similarly, in average, N-limited 

yields were of 6.4 Mg ha-1, while  N fertilized were of 9.2 Mg ha-1.
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Protein concentration varied between 2.8 to 18%, with a mean of 8.0% and a standard 

deviation of 2.0%. While water stress appears not to exert an effect on maize grain protein, the 

N-limited scenario resulted in a mean of 7.0% while the N-fertilized averaged a protein of 8.2%. 

Starch concentration ranged from 44% to 80%, with a mean of 70% and a standard deviation of 

5.4%, but with starch neither affected by water stress nor by N fertilizer. Finally, oil 

concentration ranged from 0.6 % to 7.9%, with a mean of 4.4% and a standard deviation of 

1.3%, but also with trivial effect of both evaluated factors (Table 4.2).

In terms of trade-offs between grain quality components (Figure 4.1), protein and oil 

concentrations displayed an overall moderate positive correlation (r = 0.49), followed by a low 

but negative correlation between protein and starch (r = -0.25), and low but positive correlation 

between oil and starch (r = 0.17). A particular remark to the protein-oil relationship (Figure 4.1) 

is that oil concentration seems to reach a plateau about 8%, while it is still possible to achieve 

further increases in protein levels. Nonetheless, specific trade-offs were observed at each 

particular study (Supplementary Figure 4.1).

Even though significant relationships were observed between the quality components 

and grain yield (Figure 4.2), the strength of associations were characterized by their weakness 

(R2 < 0.1). Besides the weak relationships, it is noteworthy to highlight that all three components 

presented large variability when yields were below ca. 10 Mg ha-1. For instance, at a yield level 

of ca. 4 Mg ha-1, protein ranged between < 4% to ca. 12%. In contrast, the range of protein, 

starch, and oil concentrations is considerably narrower with yield levels above ca. 10 Mg ha-1 

(Figure 4.2).
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4.3.2. Meta-analysis results

4.3.2.1. Water stress

The impact of water stress was contrasting across components and with high 

heterogeneity among studies (Figure 4.3). Although an overall null effect is expected, the effect 

was variable depending on the study and reflected by I2 values of 96, 99 and 93%, for protein, 

starch, and oil, respectively. Only two out of eight studies observed a significant reduction in 

protein (ca. 17%), one showed a small but yet significant reduction (ca. 4%), two showed a non-

significant effect, and two studies presented a significant increase (7-10%) (Figure 4.3A). Three 

out of eight studies evaluating starch showed a significant increase under water stress (4.7% to 

9.2%), four studies showed no effect, while two presented significant reductions of 7.0% and 

18% (Figure 4.3B). Finally, three out of six studies evaluating oil showed a significant decrease 

in oil concentration (12% to 30%), three studies resulted in minor water stress effect, while one 

study observed a significant increase of ca. 45% (Figure 4.3C).

4.3.2.2. Nitrogen fertilizer

Regarding the N fertilizer effect, its impact on each grain quality component was 

relatively more consistent as compared to the water stress effect (Figure 4.4). Still the effect size 

was highly heterogeneous across studies, with I2 values of 90, 91 and 98%, for protein, starch, 

and oil, respectively. Although an overall positive effect of ca. 21% in protein is expected as a 

result of N fertilization (Figure 4.4A), across studies, the mean effect size varied from ca. +8% to

+37%, being significant in the majority of the cases (12 out of 13). An overall small but yet 

negative N fertilizer effect (-1.5%) is expected in starch concentration (Figure 4.4B), while an 

overall null effect on the oil fraction (Figure 4.4C). Nonetheless, the effect on the two latter 

components differed across studies. Only three out of six studies observed a small (ca. -1.7 to -
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2.7%) but yet significant reduction in starch (Figure 4.4B), while the remaining expressed a null 

effect. Out of the seven studies evaluating oil, two showed a decrease of oil (ca. -3.7 to -5.9%), 

one showed a small positive effect (+2.0%) while no significant effect on the remaining (Figure 

4C). 

Considering N fertilizer levels (Figure 5),  low N rates (≤ 70 kg ha-1) showed a 

significant mean effect on protein of +13.8%, while medium (>70-150 kg N ha-1) and high rates 

(>150 kg N ha-1) showed a similar but significantly greater effects than low N rates, with +21% 

and +24%, respectively. In terms of starch, all N fertilizer levels produced a low but yet 

significant starch reduction, with an overall effect of -1.7%. Finally, none of the N levels 

produced a significant impact of the oil concentration. Nonetheless, it is important to highlight 

the effect on the quality components differed across studies (Supplementary Figure 4.2).

4.4. Discussion

This meta-analysis offers a novel summary with focus on the effect of the two most 

limiting factors for maize production, water and N, on grain quality (protein, oil, and starch 

concentrations). Historically, water and N management studies have mainly focused on yield as 

the response variable, with less attention paid to the grain quality components [18]. In this 

regard, combining and weighing the results from multiple studies, our analysis represents a 

valuable contribution to the literature. This meta-analysis synthesized two-fold more data for 

protein relative to both starch and oil, highlighting the lack of research studies focused on 

quality, mainly in non-protein factors. 

One of the first lessons is that a not clear trade-off was apparent between yield levels 

and the most expensive components in energetic terms (oil > protein > starch). Unexpectedly, we

were neither able to confirm a negative association between the most (oil) and the less (starch) 
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expensive components, nor between protein and starch concentrations (Borrás et al., 2002). 

Moreover, the positive association observed between protein and oil was somewhat surprising, 

although oil concentration remained relative constant at  ca. %8 while protein levels could still 

be increased. This scenario remarks the stability of the oil fraction, which is mostly located in the

embryo (Flint-Garcia et al., 2009), and the possibility of concomitantly high protein levels. 

Likewise, (Zhang et al., 1993) reported stable oil concentrations across N fertilization levels, also

suggesting that an increase in protein could not necessarily imply a decrease in energy 

concentration. 

The water stress effect on maize grain quality was mainly characterized by its 

inconsistency. Most likely, we could not distinguish noise from signal as the database 

encompasses stress treatments applied at different timing during season (e.g. entire season, 

around flowering, during grain filling), with different intensity and duration, as well as different 

environments (soil and weather conditions), genetic materials (e.g. dent, semident, flint, wax), 

and management practices (planting dates, tillage systems, etc.). For example, the severity of 

drought impact on crops production generally depends on the soil moisture status and nutrients 

availability (Gandah et al., 2003). As these unaccounted factors were basically pooled in the 

meta-analysis, there is a risk of obscuring the actual impact of drought stress on the quality 

components. As water stress remains an undesirable scenario, when irrigation is not possible, the

risk of water shortage should be managed with other crop practices such as sowing dates, hybrid 

selection, among others. We should also consider that the genetics, environment, and 

management (GxExM) factors may interact with the response to either water stress or N fertilizer

levels (Tsai et al., 1992). It is also worth to remark that only one study evaluated combinations of
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water stress and N fertilizer, factors that are largely known for interacting and exert co-

limitations (Sadras, 2005; Tremblay et al., 2012; Lemaire et al., 2020). 

The effect of N fertilizer on grain quality showed, in contrast, a more consistent trend 

across studies, particularly for protein, as this fraction is generally expected to show increments 

with increasing resources, particularly N availability (Miao et al., 2006). Nonetheless, further 

research is needed regarding the effect not only in the protein concentration but also in its amino 

acids quality (Zhang et al., 2017). For example, diets with essential amino acids as the only N 

source are used less efficiently than diets with better ratio of essential to nonessential amino 

acids (Allen and Baker, 1974), which may ultimately modify the fate of N in the animal 

production (Lenis et al., 1999). Synergistic applications of N and S cannot only increase protein 

concentration but increase protein quality via increments in the concentration of essential amino 

acids, such as methionine, tryptophan, and lysine (Liu et al., 2020).

Our results suggest that N fertilizer rates within a medium-range (>70-150 kg N ha-1) 

may be sufficient to saturate the response on protein (+21% with respect to a control), which will

also cover a wide range of economic optimum N recommendations (Morris et al., 2018). 

However, more accurate interpretations on the effect of N on grain quality present the same 

challenge than research on grain yield (Morris et al., 2018): more accurate estimations of the soil 

N supply (Rain et al., 2019; Correndo et al., 2021a). Improved estimations of quantity (and 

timing) of soil N supply will help producers reducing the risk of losing efficiency with either a N

deficiency or a N surplus. Other N sources such as mineralization and carryover from the 

previous year (Dhakal., 2019) may exert a significant influence on both grain yield and quality.  

In that regard, research on splitting the N fertilizer should expand the current focus on yield and 
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efficiency improvements (Fernandez et al., 2020) to explore the role of late N applications on 

improving grain quality components as well. 

Increases in protein may be concomitant with decreases in starch and/or in oil (Miao et 

al., 2006; Tamagno et al., 2016; Singh et al., 2002). However, we found an overall small 

reduction in starch due to N fertilizer, and oil resulted a stable fraction against changes in either 

water or N availability. In the scientific literature, a negative trade-off between protein and starch

is generally reported for specific conditions [Butts-Wilmsmeyer et a., 2019; Borrás et al., 2002; 

Singh et al., 2002; Seebauer et al., 2010), while maize oil concentration is normally found as the 

most stable grain compound under varying environmental conditions (Borrás et al., 2002; Zhang 

et al., 1993; Singh et al., 2002; Genter et al., 1956).

Future research steps should seek to overcome certain limitations encountered in our 

work. A first shortcoming was related to very limited number of cases (11) reporting all three 

grain quality components and grain yield, constraining the evaluation and inference about 

potential trade-offs. A second deficiency was linked to the lack of studies reporting more 

detailed grain quality compounds such as amino- and fatty-acids, in order to expand our database

and synthesis analysis. Prospective research should also explore the effect of heat stress on grain 

quality [10], either isolated or in combination with water and N management. Similarly, effect of

other nutrients besides N and their interactions (co-limitations) is a relevant topic that warrants 

further investigation. Moreover, the explored literature presents a lack of standard practices 

reporting the laboratory protocols used to determine protein, starch, and oil concentrations (e.g., 

chemical extraction procedures, near infrared). Finally, from a methodological standpoint, the 

lack of presentation of measures of variation at the treatment level in the studies gathered by this 
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meta-analysis restricted the possibilities regarding weighing procedures of the effect sizes (Weir 

et al., 2018).

4.5. Conclusions

Accompanying maize grain productivity increases with a high nutritional quality is 

essential towards the main goal of global food security. This meta-analysis reported that i) water 

stress resulted in erratic direction of the grain quality response, plausible to changes in timing, 

intensity, and duration of the stress; and ii) N fertilization not only increases yields but also grain

protein concentration, while both starch and oil remained relatively stable under contrasting N 

levels. In the current context of an emerging food crisis, this study documented a remarkably 

important scenario for maintaining oil concentration while increasing the protein fraction. Under 

an adequate management of N fertilizer, this represents a unique opportunity of producing maize 

crops with both higher quality and energetic value.
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Table 4.1. Data sources, measured grain quality variables, country, number of site-years per 
study (SY), water or nitrogen treatments, and other factors evaluated. PRO = protein, STA = 
starch, OIL = oil, FC = field capacity, RSMC = relative soil moisture content. *Performed under 
controlled conditions.

No. Authors Variables Country Years SY(#) Treatments +Factors

Water

1 Ali et al., 2010 PRO, STA,
OIL

Turkey 2007 1 Irrigated (15d intervals), 
Water stress (21d

intervals)

Hybrid

2 Ali et al., 2011 PRO, STA,
OIL

Turkey - 1 Irrigated (15d intervals), 
Water stress (21d

intervals)

Hybrid, 
Hormones

3 Barutcular et al., 2016 PRO, STA,
OIL

Turkey 2014-2015 2 Irrigated (full), 
Water stress

(reproductive)

Hybrid

4 Ge et al., 2020 PRO, STA,
OIL

China 2002-2003 2 Irrigated (full), 
Water stress (mild-severe,

3rd leaf to maturity-)

-

5 Hussain et al., 2020 PRO, STA,
OIL

Pakistan 2013-2014 2 Irrigated (full), 
Water stress (mild-severe)

-

6 Kresovic et al., 2007 PRO, STA,
OIL

Serbia 2012-2014 3 Irrigated (full), Water
stress (75% FC - 50% FC

- rainfed)

-

7 *Lu et al., 2014 PRO, STA China 2011-2012 2 Irrigated (75% RSMC), 
Water stress (60% RSMC,

flowering to harvest)

Hybrid (wax)

8 Mason and Mason, 2002 STA United States 1991-1994 4 Irrigated, rainfed Hybrid, Plant
density

9 Jahangirlou et al., 2021 STA, OIL Iran 2018-2019 2 Irrigated (6d intervals),
Water stress (12d

intervals)

N

Nitrogen

9 Jahangirlou et al., 2021 
PRO, STA,

OIL
Iran 2018-2019 2  0, 184 Water Stress

10 Barrios and Basso, 2018 PRO, STA Venezuela 2013 1 0, 100, 150, 200 Hybrid

11 Duarte et al., 2005 PRO, OIL Brazil 2000-2001 3 0, 60, 120, 240 -

12 Ma and Biswas, 2016 PRO Canada 2006-2010 5 0, 30,60,90,120,150,180 -

13 Miao et al .,  2006
PRO, STA,

OIL
United States 2001-2003 6 0, 112, 168, 224, 336 Hybrid

14 O’Leary and Rehm, 1990 PRO United States 1984-1986 8 0, 75, 150, 225 -

15 Perry and Olson, 1975 PRO United States 1972-1973 2 0, 90, 180, 270 -

16 Simić et al., 2020
PRO, STA,

OIL
Serbia 2016-2018 3 0, 180, 240 Tillage

17 Tamagno et al., 2016
PRO, STA,

OIL
Argentina 2012-2013 2 0, 70, 165 Hybrid

18 Tsai et al., 1992 PRO United States 1984-1986 3 0, 67, 134, 201, 268 Hybrid

19 Uribelarrea et al., 2004
PRO, STA,

OIL
United States 2001-2002 2

0, 30, 60, 90, 120, 160,
200, 240

Hybrid

20 Wortmann et al., 2011 PRO United States 2002-2004 32 0, 84, 140, 196, 280 -

21 Zhang et al., 1993 PRO, OIL Canada 1989-1991 6 0, 90, 180 N timing
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Table 4.2. Descriptive statistics of the reported data on maize grain yield (dry basis), protein, 
starch, and oil concentration split by the treatments of interest (water and nitrogen fertilizer). 
Main statistics are: sample size (n), mean, median, minimum (min), maximum (max), standard 
deviation (sd), and coefficient of variation (%).

Variable n mean median min max sd cv(%)
Grain yield, Mg ha-1 510 8.7 8.4 1.3 18.1 2.8 32

Water, Control 7 11.6 12 3.9 18.1 5.3 46
Water, Stress 9 8.4 7.9 1.3 15.7 4.8 58

N, Control 103 6.4 5.7 2.4 13.1 2.3 36
N, Fertilized 391 9.2 8.9 1.8 14.4 2.5 27

Protein, % 562 8.990 7.79 2.8 18.4 2.0 24.5
Water, Control 29 8.1 7.80 5.75 12.4 1.2 14.9

Water, Stress 31 8.1 8.17 6.24 12.0 1.1 14.3
N, Control 107 7.0 6.8 2.8 11.3 1.7 24.7

N, Fertilized 395 8.2 8.05 3.2 18.4 2.0 24.6

Starch, % 279 70.2 72.2 43.8 80.2 5.3 7.6
Water, Control 37 64.7 64.1 56.7 71.4 3.9 6.1

Water, Stress 39 63.9 64.1 43.8 75.5 6.1 9.5
N, Control 43 72.7 73.6 65.2 78.6 3.2 4.4

N, Fertilized 160 72.3 72.9 63.0 80.2 3.5 4.8

Oil, % 265 4.4 4.1 0.6 7.9 1.3 30.0
Water, Control 29 3.5 3.1 2.5 6.4 1.1 31.5

Water, Stress 31 3.5 3.0 0.6 6.1 1.2 34.9
N, Control 45 4.4 4.1 3.2 7.2 1.0 23.2

N, Fertilized 160 4.8 4.7 2.9 7.9 1.3 26.9
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Figure  4.1. Correlation matrix between protein (%), starch (%), and oil (%), all expressed in
concentration (%), considering a subset of studies (11) where the three variables were quantified
(n = 239) (Table 4.1).
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Figure 4.2. Simple relationships between grain yield (Mg ha-1, expressed in dry basis) and grain
concentration (%) of protein, starch, and oil (all adjusted to dry basis). For each component, data
points belong to multiple studies where both grain yield and the component of interest  were
quantified.
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Figure 4.3. Summary of water stress effect (%) on maize grain quality components (A – Protein,
B – Starch, and C – Oil, all expressed in concentrations, %). Effect sizes and 95% confidence
intervals  (CI)  were  transformed  from  lnRR  into  percentage  (exp(lnRR)-1*100),  as  the
concentration  variation  in  water-stressed  with  respect  to  well-watered  control.  Within  each
variable,  orange  square  symbols  represent  the  mean  effect  per  study,  while  shape  size  and
whiskers  their  respective  weights,  and  uncertainties,  respectively.  Blue  circles  represent  the
overall random effects model with their respective uncertainties.
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Figure 4.4. Summary of N fertilizer effect (%) on maize grain quality components (A – Protein,
B – Starch, and C - Oil). Effect sizes and 95% confidence intervals (CI) were transformed from
lnRR into percentage (exp(lnRR)-1*100), as the concentration variation in water-stressed with
respect to well-watered control. Within each variable, green square symbols represent the mean
effect  per  study,  while  shape  size  and  whiskers  their  respective  weights  and  uncertainties,
respectively.  Blue  circles  represent  the  overall  random  effects  model  with  their  respective
uncertainties.
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Figure 4.5. Summary of N fertilizer effect (%) on maize grain quality components (A – Protein,
B – Starch, and C – Oil) pooled by the N fertilizer rate level (low -<=70 kg N ha -1-, medium -
>70-150 kg N ha-1-, and high ->150 kg N ha-1-) vs. their respective control Within each variable,
green  square  symbols  represent  the  mean  effect  per  study,  while  size  and  whiskers  their
respective  weights  and uncertainties,  respectively.  Blue  circles  represent  the  overall  random
effects model with their respective uncertainties.
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Chapter 5: Footprints of maize nitrogen management on the

following soybean crop

*Under review in Agronomy Journal.
Correndo, A.A., Adee, E., Moro Rosso, L.H., Tremblay, N., Vara Prasad, P.V., Du, J., Ciampitti,
I.A., 2021. Footprints of corn nitrogen management on the following soybean. 

Abstract

Maize  (Zea  mays  L.)-soybean  [Glycine  max  (L.) Merr.]  is  among  the  most  typical  crop

rotations in the US Corn Belt, and nitrogen (N) is the most limiting nutrient for both crops. This

study aims to assess the effects  of N management for maize on the following soybean crop.

Maize-soybean rotation studies, both a long-term (1983-2020, case study I) and a two-seasons

(2019-2020, case study II) N fertilizer rate trials were conducted in Kansas (US). The case study

I was focused on soybean seed yield as the response variable, while the case study II included a

detailed seasonal characterization of soil N, symbiotic N fixation (SNF), and plant N uptake for

soybean considering different N fertilizer rates on the previous maize crop. Apparent N budgets

from maize (N fertilizer – grain N removal) ranged from ca. -100  to ca. +50 kg N ha -1, and

soybean yields  were slightly or not  affected by maize N management.  Overall,  long-term N

budgets in maize crops did not impact soybean yields. Soil residual N during the soybean season

was not affected by previous maize N management. Small maize N surplus did not or had slight

influence on  the  SNF,  without  compromising  soybean  N  uptake  or  seed  productivity.

Forthcoming research should further address how long-term and large soil N mining or surplus in

maize may enhance or inhibit N fixation for the next soybean crop.
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5.1. Introduction

Alternating soybean [Glycine Max (L.) Merr.] with maize (Zea mays L.) have been

demonstrated to promote higher yields than monocrop scenarios (Crookston  and Kurle, 1989;

Copeland and Crookston, 1992; Howard et al., 1998; Sindelar et al., 2016). Thus, maize-soybean

rotation  is  among the  most  common cropping  sequence  throughout  the  US Midwest  region

(Gaudin et  al.,  2015; Vanhie et  al.,  2015). For both crops, nitrogen (N) is the most limiting

nutrient (Morris et al., 2018; Ciampitti and Salvagiotti, 2018), and the most complex nutrient to

be investigated due to the intricate set of spatio-temporal interactions governing its dynamics on

the plant-soil  system (Mesbah et  al.,  2017; Lemaire  and Ciampitti,  2020; Briat  et al.,  2020).

Historically, literature have concentrated most of the attention to the concept of N credits from

the  preceding  soybean to maize  crops  (Bundy,  2008;  Morris  et  al.,  2018).   In  contrast,  the

potential impacts of N management in the previous maize on the following soybean into the crop

rotation have received much less attention in literature.

Nitrogen management in the previous maize crop could affect multiple process directly

or indirectly impacting soybean N nutrition, and eventually seed yield. Besides the contribution

to plant N demand from soil N supply, soybean establishes a symbiosis with  Bradyrhizobium

spp. that contributes, on average, with 50-60% of N requirements (Salvagiotti et al., 2008; Di

Ciocco et al.,  2011), via the symbiotic N fixation (SNF) process. Nonetheless, there is well-

documented antagonism between the soil N supply and N derived from SNF process (Allos and

Bartholomew, 1955; Sinclair and De Wit, 1975). Thus, soil N changes induced by different N

management  in  the  preceding  maize  may  affect  how  the  soybean  crop  satisfies  its  N

requirements.  For example,  a limited soil  N availability early in the season could negatively

impact  the  crop  establishment  and  generate  considerable  yield  losses  for  the  soybean  crop
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(Osborne and Riedell, 2006). On the other hand, an increase in soil N supply produced by a large

surplus in N management on previous maize crop may decrease potential yield responsiveness of

soybean to N fertilizer (Stone, 1985). 

Among other variables, greater amounts of maize residue could negatively affect no-till

soybean systems by impacting soil N and soybean nodulation (Vanhie et al., 2015). Soil NO3
--N

content could be affected by residue quantity and quality from the previous crop. Higher residual

soil N levels at maize harvest with increasing N rates have been reported in a maize-soybean

rotation (Zhu and Fox, 2003). In an crop rotation experiment in Ontario (Canada), between 9.7–

13.5% of maize residue-N was recovered by the following soybean crop, with below-ground

residue-N supply up to  18 times more N than above-ground residues  (Taveira  et  al.,  2020).

Although soil N is essential for the establishment of a vigorous seedling during early growth

stages  prior  to  the  initiation  of  the  N  fixation  activity,  excessive  soil  N  supply  may  be

detrimental to yields if the SNF is inhibited (Sinclair  and De Wit, 1975; Stone, 1985). To the

extent of our knowledge, the residual effects of N fertilization in previous crops such as maize,

on soybean SNF and yields have not been addressed yet on the current scientific literature. 

The concept of apparent nutrient budget, estimated as difference between the amount

of nutrient applied  and the nutrient removed by grain harvest, could be used to evaluate  the

residual effect of N management into a rotation sequence. Besides representing an environmental

risk (Sela et al.,  2018), a surplus of N fertilizer on the maize crop may cause an increase in

residual soil N for the next soybean crop (Welch et al., 1973; Stone, 1985). For example, years

with low attainable maize yields (due to other stress factors limiting productivity) are likely to

generate a carryover of soil N to the next crop under strong cold winter conditions (Bundy and

Malone,  1988).  Therefore,  the apparent  N budget  on the preceding crop could be used as a
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response variable to explain the yield variability on the following crop in the rotation scheme, in

this case with focus on soybean crop.

The objectives of this research were to evaluate, under maize-soybean rotations, the

residual effects of N fertilization management on: i) seed yields of the following soybean crop

for a  long-term case study, ii)  yield,  seasonal N supply and SNF for a  case study with one

sequence,  and iii)  apparent  N budget,  calculated  as  fertilizer  N added minus harvested-N  in

maize, and its relationship with the following soybean yields, in both studies.

5.2. Materials and Methods

Two case studies with similar experimental designs but different duration (long-term

vs.  1-sequence  of maize-soybean rotation)  were considered  for  this  research.  The long-term

experiment established since 1983, herein termed as case study I, served as a reference to test the

residual effects of N management in the previous maize on the following soybean yields. On the

other hand, the single sequence of maize-soybean rotation, herein termed as case study II, under

both  dryland  and  irrigated  conditions,  was  designed  to  analyze  the  impact  of  maize  N

management on the seasonal dynamics of SNF and soil N uptake of the following soybean crop.

5.2.1. Case Study I, Topeka.

5.2.1.1. General description

Since  1983,  a  long-term fertilizer  application  experiment  has  been conducted  on a

Eudora silt loam soil (Soil Survey Staff, 1999) at the Kansas River Valley Experiment Field,

near Topeka, KS, USA  (39°09'30.28"N, 95°46'14.60"W) as an annual maize-soybean rotation.

The plots under study presented relatively low levels of soil organic matter at the topsoil (0-15

cm)  over  time,  with  an  average  SOM  level  of  1.2%  in  1990  and  1.5%  in  2018,  without

differences across treatments. Soil pH maintained at levels close to neutrality (7.2 in 1990, and
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7.3 in 2018), soil test K at levels above critical levels reported in literature (320 mg kg -1 in 1983,

and 242 mg kg-1 in 2018), while soil test P decreased overtime (44 mg kg-1 in 1983, and 16 mg

kg-1 in 2018).

Seasonal  weather  data  were  gathered  from the  Kansas  Mesonet  (https://mesonet.k-

state.edu/)  (Figure  5.1B,  5.1C) from the  Silver Lake weather station (Topeka, KS). Cropping

seasons when soybean took place were characterized for presenting precipitation levels below

the historical (1983-2020) average (568 mm),  although the crops always received irrigation to

avoid  water  stress,  with an even distribution of seasonal  mean temperatures  both above and

below historical average (21.1 oC). In contrast, maize seasons presented a more even proportion

of years above and below both average precipitation and temperature (Supplementary Figure

5.1). 

The  experimental  arrangement  was  a  randomized  complete  block design  with  four

replications in plots 4.5 m width by 9.14 m length. Soybean sowing dates varied between May 8th

and May 27th (Table  5.1) using a row spacing of 0.76 m. Maize sowing dates varied between

April  6th and  May  6th ,  also  using  0.76  m as  row spacing  (Supplementary  Table  5.1).  The

experiment was conducted under conventional tillage (early spring) and irrigation. Plots were

sprinkler irrigated with a linear move irrigation system, with an average amount of 201 mm per

season (Table 5.1; Supplementary Table 5.1). The N treatments were applied during even years

on the maize crops and consisted of a total  of five N rates (Table  5.2). Although this study

presents a factorial design including phosphorus (P) and potassium (K), for the present study, all

N plots always included constant P and K fertilizer applications to reduce the risk of interactions

with nutrients deficiencies (Table 5.2). All fertilizer treatments were applied at pre-sowing time

before maize and incorporated with the tillage operations. After 1994, the set of fertilizer rates
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was modified (Table 5.2). Finally, the N rates on the previous maize crops were also used as a

residual treatment for the soybean crops during the odd years. 

Each  year,  at  harvest  time  [between  September  and  early  October  (Table  5.1;

Supplementary Table 5.1)] a plot combine was used for harvesting maize grain and soybean seed

from the middle two rows, then scaled to yield per hectare (Mg ha-1). Maize grain samples were

collected in 1991 and 1997 seasons, which were analyzed for N concentration and allowed to

estimate  grain  N removal  and  apparent  N budgets  at  the plot  level  (N rate  minus grain  N

removal).

5.2.2. Case Study II, Scandia.

A long-term study under a maize-soybean rotation was initiated in the 2019 cropping

season  at  the  North  Central  Kansas  Research  Station  (Scandia,  KS;  39°49'41.60"N,

97°50'22.07"W) in a Crete silt loam soil (fine, montmorillonitic, mesic Typic Argiduolls/Pachic

Argiustoll).   Soybean served as the previous crop for maize plots in 2019. The study area is

conducted under no-till management since 2015. The experiment was installed at two areas, one

under  dryland  and  the  other  area  received  irrigation  with  a  linear  move  sprinkler  irrigation

system.  In  2019,  maize  crop received  95 mm,  while  in  2020 soybean received  149 mm of

irrigation. 

At both maize and soybean sowing time, six cores per soil sample were collected per

plot at the topsoil (0–15 cm), and three cores per sample at 0-60 cm soil depth at both dryland

and irrigated areas. General soil  fertility was evaluated at topsoil  by testing pH, soil  organic

matter (SOM, %), soil texture (%), soil test phosphorus as extractable (Mehlich-3, mg kg-1), soil

test  potassium (Mehlich-3,  mg kg-1),  and N as nitrate  (NO3
--N) and as ammonium (NH4

+-N)
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(Table 5.3). The topsoil fertility showed similar levels between dryland and irrigated areas, with

slightly acidic soil pH, adequate SOM level (ca. 3%), medium soil P, and high K. The 0-60 cm

samples  were used to  describe  both  NO3
--N and NH4

+-N availability  (kg N ha-1)  during  the

cropping  season.  Thus,  both  NO3
--N  and  NH4

+-N  concentrations  (mg  N  kg  soil-1)  where

transformed to kg ha-1 by multiplying for the corresponding bulk density, which averaged 1.32

and 1.30 g m-3 for dryland and irrigated areas, respectively.

Seasonal weather data were gathered from the Kansas Mesonet (Figure 5.2) from the

North Central Kansas Research Station (Scandia, KS). In 2019, the total precipitation during the

planting-maturity  period (May-Sep) was 533 mm. In 2020, the total  precipitation during the

sowing-maturity  period (May-September)  was about  406 mm (Figure  5.2).  The precipitation

distribution  pattern  denoted  a  dry  period  at  the  beginning  of  the  season.  More  regular  and

abundant precipitation events were registered during June-July, ending with a dry August but

with very good radiation levels during the post-flowering period.

The  experimental  arrangement  was  a  randomized  complete  block  design  with  five

replications in plots 6 m width by 15 m length. Maize crop was planted on May 3, 2019, and

soybeans on May 15, 2020, both at row spacing of 0.76 m,  with a slightly higher seeding rate

under irrigation due to higher expected yields. The N treatments were applied on the maize crop

and consisted of a total of five N rates (Table 5.3) using urea-ammonium-nitrate (28-0-0) as the

fertilizer source, V5 as the application timing, and applied on surface bands. Under the same

design,  the  N  rate  management  on  the  previous  maize  crop  (2019)  was  used  as  a  residual

treatment for the 2020 soybean crops at both dryland and irrigated areas. In 2019, maize plots

were manually harvested on September 30th from the two central rows by taking four subsamples

of  1m2 then scaled  to  the  hectare.  Maize  grain  yields  were adjusted  to  155 g kg-1 moisture
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content. Maize grain samples were collected and analyzed for N concentration to estimate grain

N removal  and apparent  N budget.  In  2020,  soybean plots  were  mechanically  harvested  on

October  13th using a  combine by collecting the two central  rows then scaled to  the hectare.

Soybean seed yields were corrected to 140 g kg-1 moisture content.

5.2.2.1. Plant and soil sampling

During the 2020, the sampling schedule included a  total  of seven times during the

soybean season, 0, 45, 59, 80, 90, 101, and 115 days after sowing (DAS), which corresponded to

sowing, late vegetative (ninth leaf), full flowering (R2), pod setting (R4), beginning seed (R5),

beginning of full seed (R6); and right before beginning maturity (R7; Fehr and Caviness, 1977).

Only three blocks  and the two most  contrasting N rates applied in  the previous maize  were

considered in 2020 for sampling during the soybean cropping season: 0  kg N ha-1 and 240 kg N

ha-1 herein  N0,  and N240,  respectively.  Compound soil  samples  (three  cores  per  plot)  were

collected at 0-60 cm depth, including a sampling time at previous maize maturity and at soybean

sowing date (DAS = 0). The NO3
--N and NH4

+-N were extracted from 2 g of dry grounded soil (2

mm sieve)  with a  potassium chloride solution  (KCl,  1  mol  L-1)  and quantified  (mg kg-3)  by

colorimetric procedures in a flow analyzer (Brown, 1998). On the other hand, plant samples were

collected six times during the season from 45 to 115 DAS. Shoot samples were collected cutting

plants at the ground level from two adjacent rows (1 m2 area), and a subsample of ten (45-59

DAS) or five plants (80-115 DAS) was dried in an air-forced oven (65 °C) until constant weight

for estimating above-ground dry matter  (Mg ha-1).  Dried plants were ground in a micro-mill

(0.125 mm particle size) and subjected to the chemical analyses of interest. 
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The  Ndfa  (%),  a  time-integrated  measurement  of  the  proportion  of  atmospheric  N

within the plant tissue, was estimated using the natural abundance method according to Eq. (5.1)

Unkovich et al. (2008):

Ndfa (% )=
δ15 Nofreferenceplant − δ15 Nofsoybeans

δ15 Nofreferenceplant − Bvalue
×100                                                        (5.1)

in which δ15N is the natural excess of the 15N isotope in the plant tissue. Reference plants were

unfertilized corn plants from plots adjacent to the soybean plots. The B-value of -2.54, which

was reported as the median of previous literature (Balboa and Ciampitti, 2020). Along with δ15N,

tissue N concentration was estimated  using an isotope ratio  mass spectrometer,  allowing the

calculation of above-ground N uptake (kg ha-1), fixed N [(N uptake * Ndfa) / 100, kg N ha-1], and

N uptake from the soil (as N uptake – fixed N). At maturity (R8), two central rows, covering ca.

23 m2, were mechanically harvested from each plot, adjusted to 140 g kg-1 moisture basis and

then scaled to seed yield per hectare (Mg ha-1).

5.2.3. Apparent N budget

At the plot level, the apparent N budget for the following soybean was estimated as the

difference between the N fertilizer rate applied and grain N removal for maize crop. In the case

study I, grain N concentration was measured in the 1991 and 1997 cropping seasons. Taking this

data  into account,  a global  regression model  was fit  to estimate unobserved data of grain N

concentration as a function of N fertilizer rate (Supplementary Figure 5.2A). For the case study

II, maize grain N concentration was measured at all plots in 2019 (Supplementary Figure 5.2B).

Similarly  to  case  study  I,  a  positive  relationship  between  maize  grain  N  concentration  and

fertilizer N rate was observed in Scandia.
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5.2.4. Data analysis

5.2.4.1. Soybean seed yield

For  case  study  I,  soybean  seed  yields  across  treatments  were  analyzed  using  a

hierarchical  Bayesian  approach  (Wikle  et  al.,  2019),  where  at  the  top  level,  yield  data

observations (yi) were assumed to follow a normal distribution [ y∼N (z ,σ 2)] and generated from

an underlying process (z), while at a secondary level, the parameters describing the process z at

the groups-level of interest (N treatments) were also assumed to be random (i.e., belonging to

distributions). For the case study I, the process was defined as a linear mixed effects model with

year, treatment (N rate in previous maize), and their interaction as the group-level effects (i.e.,

analogous of frequentist fixed factors), and block as random. Since N treatments were repeated

overtime on the same plots (repeated measurements), an auto-regressive of order 1 (AR1) error-

correlation structure was also incorporated into the model. Since the set of N treatments was

modified after the 1994 season, this first analysis was fit split by period: i) 1984-1994, and ii)

1997-2020. Similarly, a second model considering the cumulative yield as a response variable

was also studied under a hierarchical Bayesian framework, with N treatment considered as the

group-level effect (fixed) and block as random. 

For the case study II, similarly, a linear mixed effects model was used to fit the data

with treatment (N rate in previous maize) as a fixed factor (group-level), and block as random.

Since  irrigation  phases  were  not  part  of  the  treatments  design  but  a  condition  assigned  to

different sections of the experimental field at Scandia, the analysis was split by i) dryland, and ii)

irrigated scenarios. 

Uninformative prior distributions (for treatment means) were applied using truncated Gaussian

density functions by defining a mean 4 Mg ha-1 with and standard deviation of 4 Mg ha-1, with a
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lower boundary equal to zero. In all cases, pairwise means comparisons were performed using

their corresponding 95%-credible intervals (2.5% to 97.5% percentiles) from the posterior high-

density distributions. All models were fit using R software (R Core Team, 2021). The posterior

draws  using  Markov  chain  Monte  Carlo  (MCMC)  were  performed  with  the  brms package

(Bürkner, 2018). In all cases, five thousand posterior samples were generated as warm-up, with

fifteen thousand iterations after warm-up, and a thinning rate equal to ten in order to reduce

correlation of consecutive posterior samples and improve the chains (four) mixing (Hooten and

Hefley, 2019).

5.2.4.2. Seasonal soil N and symbiotic N fixation

For the case II, to study the seasonal dynamics of soil and plant N components in the

Scandia experiment, process models were non-linear equations. The response variables were: i)

soil NO3—N test, ii) soil test NH4
+

-N test, iii) fixed N (N uptake derived from SNF), and iv) N

uptake derived from soil, equal to the difference between the above-ground N uptake and the

fixed N. To estimate fixed N, the above-ground N uptake dry matter was multiplied by their

corresponding N concentration. In all cases, the time as DAS was chosen as the independent

variable because it presents a simple interpretation for non-linear model parameters, particularly

for soil processes, and because samples were taken the same year, with shared sowing date, and

phenology across irrigation phases and treatments. The parameters of the model were compared

using the posterior distributions in similar  fashion as for the linear mixed models defined in

Section 5.2.4.1. 

For soil  N variables,  generalized additive models (GAM) were used as the process

models. Compared to traditional alternatives (e.g., multiple regression), GAMs allow applying

smoothing  functions  (e.g.,  multiple  polynomials,  splines)  to  the  factors  of  interest  but  still
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expressing the model as a sum of effects (Wood et al., 2017). This characteristic enables the

possibility  of  exploring  non-linear  trends  in  the  data  with  still  a  reasonable  level  of

interpretability. For each irrigation phase, the GAM models were defined as Eq. (5.2):

z=β0+β1+ f ( DAS ) (5.2)

where z is the predicted value of soil NO3
--N or NH4

+-N (mg kg-1),  β 0 is the intercept as the

overall mean, β1 is the effect of treatment (two levels: N0, N240), while the generic expression

f ( DAS ) represents the smoothing function that transforms the effect of the regressor variable

time (as days after sowing) into an additive component to the model. The models were fit using

the  brms package  in  R-software.  The  willingness  of  the  smoothing  functions  [f(DAS)]  was

defined using thin-plate smooths (bs=“tp”) with the number of knots (k) equal to 6. The blocks

were introduced as a random effect  with a smooth term with the basis  function specified as

random (bs=“re”).

For dry matter, Ndfa, N uptake, fixed N, and soil-derived N were assumed to follow a

non-linear mixed effects model described by a logistic equation as Eq. (5.3):

z=
m

1+e−k ( x −g )  ,                  (5.3)

in which z is the predicted value, x is the regressor variable (time as days after sowing date), m is

the asymptote or maximum predicted value; k controls the growth rate; and g refers to the timing

of  maximum growth rate.  Using the  first  derivative  of  the  logistic  functions,  the  maximum
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growth rate (r) was calculated for each variable. Uninformative truncated normal distributions

were set as priors to all primary parameters, restricting the posterior samples to positive values.

5.2.4.3. Soybean seed yield vs. apparent N budget

For both case studies, a linear regression model was fit to investigate the relationship

between the soybean seed yields and the apparent N budget left by the preceding maize crop. A

hierarchical Bayesian framework was also applied using uninformative priors for both intercept

and slope. The intercept prior was centered at 4 Mg ha-1 with a standard deviation equal to 4 Mg

ha-1, and the slope prior centered on zero with a standard deviation of 1 Mg ha-1 kg N-1. The

existence  of  the  relationship  between  soybean  yield  and the  apparent  budget  was  tested  by

comparing the 95% credible intervals of the slope against the value of zero.

5.3. Results

5.3.1. Soybean seed yield

5.3.1.1. Case study I: Topeka, KS.

Average soybean yields varied between 4.2 and 5.4 Mg ha-1  for the first (1984-1994)

and from 2.8 to 4.8 Mg ha-1 for the second period (1998-2020, Figure  5.3). Thus, most of the

yield variability corresponded to the year factor, although yield differences among fertilizer N

treatments  were  observed  on  specific  years  (mainly  in  1992  and  2020).  In  1992,  soybeans

fertilized with 179 kg N ha-1 on the preceding maize showed significantly greater yields (5.4 Mg

ha-1)  relative  to  the  plots  where  the  previous  maize  received  no  N fertilizer  (4.7  Mg ha-1).

Nonetheless, the rest of the treatments showed no differences with respect to either N0 or N179.

In 2020, plots with 179 kg N ha-1 on the preceding maize showed significantly lower seed yield

(4.1 Mg ha-1) than plots where the previous maize received 135 kg N ha-1 (5.1 Mg ha-1). However,
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none of the latter differed from any of the other N treatments. It results important to mention that

general yields during the 2014 and 2018 seasons were negatively impacted by  Sudden Death

Syndrome  (Fusarium  virguliforme)  (Adee  et  al.,  2016),  although  the  differences  between

treatments remained the same. In terms of accumulated soybean , no significant differences were

observed among the evaluated N treatments for any of the periods of the study (Supplementary

Figure 5.3).

5.3.1.2. Case study II: Scandia, KS.

In 2020, soybean seed yields varied between 4.0 to 5.4 Mg ha-1 under dryland and from

4.5 to 5.9 Mg ha-1 under irrigated conditions. With no residual effect of N rates on the previous

maize (Figure 5.4A), average seed yields resulted in 4.6 Mg ha-1 for dryland and 5.1 Mg ha-1 for

irrigated scenarios. 

Residual  soil  N  (0-60  cm)  at  maturity  of  the  previous  maize  (September  2019)

averaged 50 kg NO3
--N ha-1 and 38 kg NH4

+-N ha-1 for N0 plots (total of 88 kg N ha-1), and 71 kg

NO3
--N ha-1  and  40 kg NH4

+-N ha-1 for  N240 plots  (total  of  111 kg N ha-1)  under  dryland

conditions. On the other hand, under irrigation, residual N values averaged 78 kg NO3
--N ha-1

and 40 kg NH4
+-N ha-1 for N0 plots (total of  118 kg N ha-1), and 59 kg NO3

--N ha-1  and 31 kg

NH4
+-N ha-1 for N240 plots (total of 90 kg N ha-1). These residual  soil N levels remained similar

until the initial soil sampling in soybean (April 2020), with ca. 76 kg NO3
--N ha-1 and 42 kg

NH4
+-N ha-1 (total of 118 kg N ha-1) for both N0 and N240 plots under dryland; while under

irrigation values were 65 kg NO3
--N ha-1 and 46 kg NH4

+-N ha-1 (total of 111 kg N ha-1) for N0

plots, and 74 kg NO3
--N ha-1 and 51 kg NH4

+-N ha-1 for N240 plots (total of 125 kg N ha-1).  The

GAM models were able to explain the seasonal variation of soil residual N presented with an

acceptable performance for both NO3
--N (R2

dryland = 0.67; R2
irrigated = 0.51) and NH4

+-N (R2
dryland =
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0.52; R2
irrigated = 0.43). Estimated values during the season varied between ca. 20 to 100 kg NO3

--

N ha-1 and between ca. 35 to 90 kg NH4
+-N (Figure 5.4B). The fitted models indicated no major

differences in soil N supply related to N management on the preceding maize. Similarly, both

irrigation  phases  showed  similar  patterns  of  residual  soil  N.  While  soil  NH4
+-N  showed  a

relatively stable availability until 80 DAS and a peak towards the end of the season (ca. 80 kg N

ha-1), soil NO3
--N availability showed two peaks, a greater at the beginning (ca. 100 kg N ha-1)

and then a peak (ca. 60 kg N ha-1) by end of the season. 

The  logistic models were able to explain the dry matter accumulation with an  R2 of

0.96 for dryland, and and R2 0.97 for irrigated conditions. Final (115 DAS, ca. R7) above-ground

dry matter values were 12.0 Mg ha-1 (N0) and 11.4 Mg ha-1 (N240) under dryland, and 12.5 Mg

ha-1 (N0) and 12.2 Mg ha-1 (N240) for irrigated. Estimated Ndfa levels at R7 were 70% (N0) and

65% (N240) for dryland, and 65% (N0) and 59% (N240) under irrigation.  Despite the slight

differences,  neither  dry  matter  accumulation  nor  Ndfa  values  differed  significantly  among

treatments for either irrigated or dryland conditions (Supplementary Figure 5.4). With R2 values

of  0.92  and  0.90 for  irrigated and  dryland,  respectively,  no  differences  in  N  uptake  were

observed under irrigation (427 kg N ha-1 -N0- and 424 kg N ha-1 -N240-) (Figure 5.4C), however,

the estimated N uptake at maturity was significantly greater in N0 plots (450 kg N ha -1) relative

to N240 plots (382 kg N ha-1) under dryland conditions. Similarly, under irrigation (R2 = 0.91),

fixed N resulted  in  244 and 237 kg fixed N ha-1 for  both N0 and N240 plots,  respectively.

However, under dryland (R2 = 0.94), a significantly greater amount of fixed N was observed

(Figure  5.4C) with 295 kg fixed N ha-1 for N0 plots, and 226 kg fixed N ha-1  for N240 plots.

Lastly, the N uptake derived from soil resulted the same for both N treatments under dryland (R2

= 0.72, 131 kg N ha-1 -N0- and 130 kg N ha-1 -N240-). Despite a small difference of N uptake
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from soil between treatments (152 kg N ha-1 -N0- and 172 kg N ha-1 -N240-) under irrigation (R2

= 0.91), those differences resulted to be not significant. Relative to dryland, under irrigation the

fitted models predicted a higher N contribution from soil, which seems to occur mainly at early

stages of the crop. 

5.3.3. Apparent N budget

Estimated apparent N budgets resulting from previous maize crops varied between -

131 to +70 kg N ha-1 for the case study I and from -108 to +83 kg N ha-1in the case study II.

Overall, it is clear that variations in apparent N budget in maize crop did not significantly impact

soybean  yield  as  a  following  crop  in  the  rotation.  Similar  to  yields,  the  variability  on  the

relationships seems highly related to year-specific conditions. Across all site-years (19), only one

observed  a  positive  relationship  between  soybean  yield  and  apparent  N  budget  from  the

preceding maize, with a slope of +7.7 kg yield kg N-1 (2018 year).

5.4. Discussion

This  study highlights  the  lack  of  effect  of  maize  N management  on  the  following

soybean crop. Most of the variation on soybean yields was mainly linked to year (weather) as the

main factor.  Overall,  by using two datasets  (a long-term maize-soybean rotation and a more

detailed  study)  we provide  insights  on  the  minor  and erratic  responses  of  soybean yield  to

residual N fertilization in the previous maize, as reported in the scientific literature (Welch et al.,

1973; Mallarino  and Pecinovski, 2007). The soybean response to N is very inconsistent even

when high N fertilization rates are directly applied to the soybean crop (Halvorson and Reule,

2006; Ortez et al., 2018; Mourtzinis et al., 2018; Tamagno et al., 2018). 
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The residual soil N during the following soybean season, either as NO3
--N or NH4

+-N,

was not  affected  by the previous maize  N management.  However,  significant  amounts  of N

released in synchrony with crop uptake could be undetected by soil sampling, either due to a lack

of sensitivity of regular soil N tests to small differences in N (Mueller et al., 2018), to other soil

organic sources (McDaniel et al., 2020), or due to the length of intervals between sampling dates.

Thus, N released from above- as well as from below-ground crop residues (Taveira et al., 2020;

Pinto et al., 2021) could have differed between treatments. This might partially explain the larger

contribution of SNF to N uptake on N0 plots (relative to the N240) observed under dryland

conditions. Although this extra N uptake from SNF did not increased yields, this additional N

supply could eventually provide a boost to raise seed protein levels since it mainly occurs during

reproductive stages (Ortez et al., 2018). 

Surprisingly, under irrigation, we observed a different response pattern of N uptake and

SNF to previous N management  compared to the results  under  rainfed conditions.  Although

similar N uptake levels, we observed a trend of slightly lower Ndfa levels during the season (and

final  fixed  N contribution)  compared  to  dryland  conditions.  Unfortunately,  the  experimental

design of the case study II does not include irrigation as a treatment  in order to statistically

compared water management.  Including irrigation as a treatment in future research steps, we

might be able to test some hypothesis arising from our results such as: (i) a facilitated soil N

uptake via mass flow (McMurtrie and Näshlom, 2018) under irrigation as compared to dryland

conditions, and (ii) short-term oxygen stress events due to soil saturation when irrigating could

constrain  the  N fixation  process  by  down-regulating  nitrogenase  activity  (Hunt  et  al.,  1989;

Schwember et al., 2019). 
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More  extreme  N  budgets  (mainly  large  N  surplus)  in  the  previous  crop  may  be

necessary to compromise SNF at a level that soil supply could not compensate in meeting crop N

demand,  and  ultimately,  with  N  limiting  soybean  yields.  At  both  case  studies,  apparent  N

budgets from previous maize crops were mostly below zero or slightly positive (< 50 kg N ha-1)

at the highest fertilizer N rates (> 200 kg N ha-1). Therefore, although N fertilizer needs may

widely vary over the field and years (Bundy and Andraski, 1995; Scharf et al., 2005), it is very

likely that farmers applying close to economic optimum fertilizer N rates (normally < 200 kg N

ha-1)  for  maize  crop  will  not  generate  scenarios  compromising  the  SNF levels  on  the  next

soybean crop. 

Interestingly, long-term (1983-2020) N budgets, from soil N mining to N surplus, did

not seem to impact soybean yields. This fact opens up the following questions: (i) Could the

long-term soil N mining have reduced the environmental capacity to supply N?, (ii) Should the

SNF present a larger contribution to maintain yields in plots with a long-term negative budget -

soil N mining- ?, and (iii) Is the soil N supply contributing more to soybean N demand in plots

with  a  historically  positive  N surplus?  A priori,  our  results  in  case study II  do not  suggest

significant short-term changes in soil inorganic N due to contrasting apparent N budgets (N0 vs

N240) from the previous maize crop, resulting in similar soil N contributions to the next soybean

N demand. However, the latter does not exclude long-term impacts on soil organic matter pools

and N mineralization levels (Poffenbarger et al., 2017; Mahal et al., 2019). On the other, the

overall  SNF capacity  could  present  a  marked dependency on the  seasonal  pattern  of  soil  N

supply (timing and size of mineralization pulses during the season) (Moro Rosso, 2021). Clearly,

many  more  unanswered  questions  are  still  relevant  and should  be  further  explored  in  more

detailed next studies.
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Future  research  should  cover  the  current  data  limitation  on plant-soil  N dynamics,

including  soil  residual  N  profile,  plant  N  uptake,  and  SNF  components  in  the  long-term

experiment (case study I). Similarly, although considering dryland and irrigated conditions, the

irrigation  factor  should  be  ideally  part  of  the  experimental  design  to  perform  statistical

comparisons,  and more  cropping seasons would  be necessary to  provide a  more  compelling

interpretation of results in case study II. Multiple locations are also desirable, as the SNF process

presents a strong dependency on environmental factors (Borja Reis et al., 2021), as well as soil N

dynamics could highly be dependent on soil and weather conditions such as the occurrence of

extreme  precipitation  events  favoring  N leaching  beyond  the  root  zone  (Iqbal  et  al.,  2018),

among others.  Lastly,  including the  evaluation  of  below-ground biomass  and N components

(Pinto et al., 2021) could provide key information towards a more comprehensive picture about

N dynamics within a maize-soybean crop rotation.

5.5. Conclusions

Soybean  yields  were  not  affected  by  the  previous  N  management  in  maize.  The

apparent  N budget  for  maize  crop was  mostly  negative  or  slightly  positive,  without  clearly

impacting the main N sources for soybean crop and thus final yields. Most likely, commercial N

rates in corn following the economically optimum rate criteria will not produce a substantial N

surplus to impact the next soybean performance. However, we should not discard that an extreme

N surplus may generate a severe inhibition to SNF to the extent of compromising the overall

plant N supply and then total N uptake and yield. Prospective research should still address how

long-term and large soil N mining or N surplus in maize may be to enhance or inhibit N fixation

for the next soybean crop.
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Table 5.1. General soil and crop management practices at the long-term maize-soybean rotation 
nutrition trial. Kansas River Valley Experiment Field, Topeka, KS.

Year
Soybean 

Variety

Seeding

rate

(seeds m-2)

Sowing

Date

(Month-Year)

Harvest

Date

(Month-Year)

Irrigation

(mm)

1984 Douglas 43.2 05-17 10-18 471

1986 Sherman 43.2 05-27 10-19 136

1988 Spencer 35.6 05-09 10-03 615

1990 Sherman 35.6 05-08 09-27 316

1992 Sherman 35.6 05-18 09-30 268

1994 Edison 35.6 05-10 09-30 0

1996 Sherman 35.6 05-20 n/a 252

1998 Sherman 35.6 05-19 10-12 148

2000 IA 3010 35.6 05-03 10-13 297

2002 Garst 399RR 35.6 05-16 n/a 227

2004 Stine 3982-4 34.3 05-24 09-17 0

2006 Stine 4302-4 34.3 05-24 10-12 133

2008 Midland 9A385 34.3 n/a n/a 118

2010 Asgrow 4005 34.3 05-27 10-07 176

2012 Asgrow 3832 38.3 05-14 10-04 284

2014 Asgrow 3833 34.6 05-21 10-09 169

2016 Asgrow 3731 34.6 05-10 09-30 21

2018 Asgrow 38x6 34.6 05-07 10-02 145

2020 Pioneer 37A27 + ILeVO 34.6 05-19 10-07 46

n/a = not available
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Table 5.2. Fertilizer  treatments at the long-term (1983-2020 period) maize-soybean rotation trial

at Kansas River Valley Experiment Field, Topeka, KS (US).

Nutrient

fertilization

Period

1983-1994 1997-2020

N fertilization 0, 45, 90, 179, 269 kg N ha-1 0, 90, 135, 179, 224 kg N ha-1

P fertilization 15 kg P ha-1 15 kg P ha-1

K fertilization 56 kg P ha-1 139 kg P ha-1
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Table 5.3. General topsoil fertility (0–15 cm) at sowing time of the preceding maize (2019) and 
soybean (2020) crops at irrigated and dryland areas in Scandia, KS.

Crop
0–6 in.

depth

pH SOM Clay Silt Sand STP STK N-NO3 N-NH4

- % ppm

Maize, 

2019

Dryland 6.0 3.0 17 59 24 12 531 16 3.6

Irrigated 6.3 2.8 21 57 22 10 490 15 3.6

Soybean, 

2020

Dryland 5.8 3.0 23 59 18 11 511 17 8.5

Irrigated 6.1 2.8 22 59 19 17 488 21 5.6

SOM  =  soil  organic  matter  (LOI);  STP:  soil  test  phosphorus  (Mehlich-3);  STK:  soil  test

potassium (Mehlich-3).
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Table 5.4. Crop management practices for the preceding maize (2019) and soybean (2020) crops
under dryland and irrigated conditions. Case study II. Scandia, KS, USA.

Practices Maize Soybean

Irrigation Dryland Irrigated Dryland Irrigated

Tillage No-till

Planting date 05/03/2019 05/15/2020

Genotype P1197AM P39A58X (RR2-Xtend)

Seeding rate 7.0 seeds m-2 8.5 seeds m-2 26.2 seeds m-2 33.3 seeds m-2

Row spacing 0.78 m

P fertilization 22 kg P ha-1

N fertilization 0, 60, 120, 180, 240 kg N ha-1 No N added
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Figure 5.1. Variation of precipitation (mm) and mean air temperature (Celsius) spanning from 

April-to-September, reflecting the soybean cropping seasons, from Kansas River Valley 

Experiment Field, Topeka, KS (US). Vertical and horizontal dashed lines represent the historical

mean of precipitation (568 mm) and air temperature (21.1 oC).
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Figure 5.2. A: Daily and cumulative precipitation (PP) and reference evapotranspiration (ETo);

B: daily minimum and maximum air temperature for the 2020 cropping season at case study II,

Scandia, KS.
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Figure 5.3. Soybean seed yield depending on different N rates on the previous maize crops over

the years for the two periods under study (A: 1983-1994, and B: 1997-2020) in the case study I,

Kansas River Valley Experiment Field, Topeka, Kansas. Whiskers represent the 95%-credible

intervals (from Bayesian posterior distributions). For A and B, within each year, same letters

indicate no significant differences between treatments. 
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Figure 5.4. (A) Soybean seed yields for the five N rates on the previous maize crop at the case

study II (North Central Kansas Experimental Research Station, Scandia, Kansas), 2020 cropping

season. (B) Seasonal dynamics of soil N availability as NO3
--N and NH4

+-N, and (C) total N

uptake and its fixed-N and soil-N uptake components for N0 and N240 in the previous maize. In

A,  whiskers  represent  the  95%-credible  intervals  (from Bayesian  posterior  distributions),  for

which  same  letters  indicate  no  significant  differences  between  treatments  within  the  same

irrigation phase. In B and C, ribbons around the curves indicate the 95%-credible intervals for

the process models. 
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Figure 5.5. A, Soybean seed yield as a function of apparent N budget in previous maize crops

for the case study I (Kansas River Valley Experiment Field, Topeka, Kansas), and case study II

(North  Central  Kansas  Experimental  Research  Station,  Scandia,  Kansas).  In  B,  whiskers

represent the 95%-credible intervals (from Bayesian posterior distributions) for the slopes (not

significant when including zero).
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Chapter 6: Revisiting linear regression to test agreement in

continuous predicted-observed datasets

*Published in Agric. Syst.

Correndo, A.A., Hefley, T.J., Holzworth, D.P., Ciampitti, I.A., 2021. Revisiting linear regression

to  test  agreement  in  continuous  predicted-observed  datasets.  Agric.  Syst. 192,  103194.

https://doi.org/10.1016/j.agsy.2021.103194

Abstract

In agricultural research and related disciplines, using a scatter plot and a regression line 

to visually and quantitatively assess agreement between model predictions and observed values 

is an extensively adopted approach, even more within the simulation modeling community. 

However, linear model fit, use, and interpretation are still controversial in the literature. The 

overall goal of this research is to evaluate the usefulness of a symmetric regression line to test 

agreement on predicted-observed datasets. The specific aims of this study are to: i) discuss the 

selection of a regression model to fit a line to the predicted-observed scatter, and ii) provide a 

geometric interpretation of the regression line, decomposing the prediction error into lack of 

accuracy and lack of precision components, via utilization of illustrative field crop datasets. This 

study tested and contrasted three alternative linear regression models (Ordinary Least Squares -

OLS-, Major Axis -MA-, and Standardized Major Axis -SMA-) in terms of assumptions, loss 

functions, parameters estimates, and model interpretation for the predicted-observed case. When 

the uncertainty of predictions and observations are unknown, the SMA represents the most 

appropriate approach to fit a symmetric-line describing the bivariate predicted-observed scatter. 

The SMA-line serves as a reference to estimate a weighed difference between predictions and 
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observations. Moreover, this symmetric regression can assist in the decomposition of the square 

error into additive components related to both lack of accuracy and precision. In summary, the 

SMA regression tackles the axis orientation problem of the traditional OLS (y vs. x or x or y) 

and allows to identify error sources that are meaningful to the user. This work offers a novel and 

simple perspective about the use of linear regression to assess simulation models performance. In

order to assist potential users, we also provide a tutorial to compute the proposed assessment of 

agreement using R-software.

6.1. Introduction

Accurate and precise predictions are the ideal outcome of any simulation model. 

Accuracy refers to the closeness between predicted (P) and observed (O), linked to systematic 

error or bias. Precision relates to dispersion, or proximity between data points, connected to 

random variability. Simulations could be both accurate and precise, accurate but imprecise, 

precise but inaccurate, or inaccurate and imprecise (Figure 6.1). The level of agreement is 

conditional to these two concepts, essential for assessing models' performance (Gauch et al., 

2003; Tedeschi, 2006).

A broad set of scoring rules were designed to capture different aspects of agreement 

(Duveiller et al., 2016; Tedeschi, 2006). Perhaps, the mean square error (MSE) and its square 

root (RMSE) are the most popular in academia (Gneiting, 2011). The coefficients of correlation 

(r) and determination (R2) are also widely used for model evaluation, but provide limited 

information about agreement (Yang et al., 2014). Alternatively, the concordance correlation 

coefficient (CCC) (Lin, 1989) is another popular normalized metric to evaluate both accuracy 

and precision at the same time. Although a myriad of additional agreement indices have been 
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developed (Gupta et al., 2009; Moriasi et al., 2007; Willmott et al., 2012, among others), the 

visual assessment with a scatter plot and a regression line is still widely used in agricultural and 

related research areas (Piñeiro et al., 2008). A scatter plot presents the advantage of showing data

distribution and dispersion patterns (Loague and Green, 1991; Willmott, 1981). Similarly, 

although there are objections to use linear regression (Harrison, 1990; Kobayashi and Salam, 

2000), it is still commonly used to test a null hypothesis of agreement, with the H0: intercept = 0 

and slope = 1 (Analla, 1998; Smith and Rose, 1995; Yang et al., 2014).

The ordinary least squares (OLS) is perhaps the most widely adopted model for linear 

regression. However, for the P-O case, a lack of accord persists related to the scatter's orientation

(Piñeiro et al., 2008), dependent and independent variables (Analla, 1998). To the present, there 

are three prominent positions in the literature. The first supports the PO orientation by 

considering O as reference (error-free), so using O as the regressor variable and P as the 

dependent (y) (Willmott, 1981; Yang et al., 2014). A second approach supports the OP 

orientation, arguing that only O contains natural variability whereas P comes mostly from 

deterministic models (Mayer and Butler, 1993; Tedeschi, 2006) and considering that PO 

orientation distorts the interpretation of the relationship (Piñeiro et al., 2008). The third position 

supports that the orientation does not matter (Mitchell, 1997) since both P and O contain random 

error, arguing that not acknowledging the uncertainty on predictions (i.e., deterministic) does not

imply a null uncertainty (St-Pierre, 2016).

Alternatively, bivariate regression models are characterized by their symmetry, that is, 

invariant to the axis orientation (Draper and Smith, 1998; Smith, 2009). Representing this group, 

the major axis (MA) and standardized MA (SMA) regressions are dimension-reduction 

techniques producing one-dimensional summaries of the scatter (Jolliffe, 2002; Warton and 
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Weber, 2002), broadly used in biology for testing proportionality (isometry vs. allometry) 

between random variables (Warton et al., 2006). Therefore, a symmetric regression model may 

represent a suitable alternative for the P-O case.

Disaggregating the prediction error is also a major concern for model evaluation that 

deserves attention (Gauch et al., 2003; Kobayashi and Salam, 2000; Wallach and Thorburn, 

2017). Revisiting the concept of symmetry and the decomposition of the error using bivariate 

regression models, new methods have been developed to compare satellite images that could be 

applied for the P-O case (Ji and Gallo, 2006; Duveiller et al., 2016).

The main objective of this study is to discuss the usefulness of a symmetric regression 

line to test agreement on continuous P-O datasets. Our specific goals are to: i) discuss the 

selection of the regression model, and ii) propose a geometric interpretation of the square error 

producing both lack of accuracy and precision. Lastly, we offer a tutorial in R Software (R Core 

Team, 2021) for this analysis publicly available at: https://doi.org/10.7910/DVN/EJS4M0

(Correndo et al., 2021c).

6.2. Theoretical framework

6.2.1. The general error-in-variables model.

Either  to  predict  or  to  observe  a  quantity  (e.g.  crop  yield)  are  both  techniques

producing values  with uncertainty,  whether   it  is  acknowledged or not (St-Pierre,  2016).  To

compare  how equivalent  two  techniques  are  we  could  define  a  general  model  (Francq  and

Govaerts, 2014), which is referred in the literature as “error-in-variables” model (Moran, 1971),

measurement  error  models  (Fuller,  1987),  or  Model-II  regression  (Legendre  and  Legendre,

1998). For illustrative purposes, we first use the conventional axis-denomination: x as horizontal,
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and y as vertical. We also assume no correct orientation since either P or O can be used either as

x or y.

Given the  ith subject  from a  sample  of  size  n (i  = 1,  …,  n),  we may assume that

measurable data (yi and  xi) represent unobservable, “true or latent”, data (Yi and  Xi) plus their

corresponding errors (Eq.  6.1). The error terms  ε i and  μi are assumed to be independent and

normally distributed (Gaussian), with variances σ ε
2 and σ μ

2. Finally, we may also assume the true

variables are connected by a linear relationship, where α  (intercept) and β (slope) represent the

parameters of the linear model. 

y i=Y i+εi ,
xi=X i+μi ,

Y i=α+β Xi .
  (6.1)

Assuming normal and independent residuals (Warton et al., 2006), we can obtain maximum-

likelihood estimators β̂ and α̂ , approximating the underlying model (Eq. (6.1)) with Eq. (6.2). 

ŷ i=α̂+ β̂ xi. (6.2)

6.2.2. The specific regression models

6.2.2.1. Residuals and loss functions

The well-known OLS regression is often referred to as Model-I regression (Legendre

and Legendre, 1998). Model-I is an special case of the general model, assuming null error for

one of the variables (ε i or μi equal to zero) (McArdle, 2003; Sokal and Rohlf, 1995; Warton et

al.,  2006).  Thus, OLS regression has two non-reciprocal solutions. The first is the traditional
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OLS regression, OLSv (y vs. x), assuming normality of “vertical” residuals (ε i∼N (0 ,σ ε
2)) with

lack of error in xi (xi=X i, σ μ
2
=0). The second, OLSh (x vs. y), also known as inverse regression

(Tan and Iglewicz, 1999), assuming normality of “horizontal” residuals (μi∼N (0 , σ μ
2)) with lack

of error in yi (y i=Y i, σ ε
2
=0). 

In contrast, symmetric regressions such as MA and SMA assume there is error in both

x  and y (Warton  et  al.,  2006),  with  a  bivariate-normal  distribution  and  independent  errors

(
εi

μi
)∼N ((0

0), (σ ε
2

0

0
σ μ

2 )).

Each model applies a different definition of “line-of-best-fit” based on the residuals.

This  definition  is  known as  the  “loss-function”,  a  mathematical  expression  that  we seek  to

minimize when estimating the regression parameters (Table  6.1). For example, minimizing the

square vertical (ε̂ i; Eq. (6.3)) (Figure 6.2A) or horizontal residuals (μ̂i, Eq. (6.4)) (Figure 6.2B),

OLSv and OLSh provide the lines-of-best-fit for the “prediction” of the dependent variable as the

minimize the error about it (Legendre and Legendre, 1998).

Alternatively,  both  MA  and  SMA  provide  a  single  line (symmetric)  defining  the

relationship regardless of which variable is x or y. The MA regression minimizes d̂ i  (Eq. (6.5)),

as the sum square of the Euclidean distances (hi) (Figure  6.2C). For this reason, MA is also

known as orthogonal  regression (Carroll  and Ruppert,  1996; Fuller,  1987).  The SMA model

considers instead the cross-product of differences ( ẑi) in terms of both x and y, Eq. (6.6) (Figure

6.2D).  Due  to  its  residuals-geometry,  SMA  is  also  known  as  the  least-triangles  regression

(Teissier, 1948; Barker et al. 1988), among other names (Warton et al., 2006).
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6.2.2.2. Estimating the regression slope

For the general model Eq. (6.1), the maximum-likelihood slope-estimator (β̂) is always

Eq. (7) regardless of the specific model (McArdle, 1988; Smith, 2009; Tan and Iglewicz, 1999). 

 

 β̂=
sy

2 − λ sx
2
+√(s y

2 − λ sx
2 )

2
+4 λ sxy

2

2 sxy

. (6.7)

where sx
2 and s y

2 are the sample variances,  sxy
2  the sample covariance between x and y, and sxy is

the sum of the product of the difference between x and its mean and y and its mean. For any

regression  model,  sx
2,  s y

2,  sxy,  and  sxy
2  do  not  change,  since  they  are  properties  of  the  data.

However, Eq. (7) implies that specific models present different slope-formulas (Table 6.2), and

an intercept-estimators (α̂ ) conditional to the previous estimation of β̂ (Supplementary material:

Chapter 6). The single distinction among the models is λ Eq. (6.8), the quotient of uncertainties

between variables,  also known as the variance or precision ratio (Carroll and Ruppert,  1996;

Smith, 2009).

λ=
σ ε

2

σ μ
2 . (6.8) 

For the P-O case, the uncertainty in  Oi can be obtained from replications, while the

uncertainty in Pi is rarely acknowledged by simulation models, however, eventually obtainable

via  resampling  methods  (e.g.,  Monte-Carlo  simulations)  (St-Pierre,  2016)  or  multi-model

ensembles  (Makowski,  2017). Nonetheless,  the most likely scenario if  facing  unmeasured or
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non-measurable variances to estimate λ, for which the strategy is assuming λ equal to a specific

value (McArdle, 1988). This is the main distinction among the candidate models (Table  6.2).

Still, the question is, to what degree are these models robust to wrong values of the precision

ratio λ? (McArdle, 2003).

The two asymmetric OLS-models represent the extreme cases where either yi or xi are

assumed exact (error-free). With OLSv we assume that variance σ μ
2
=0, so λ →∞ and the β̂OLSv

estimator is Eq. (6.9). With OLSh we assume that σ ε
2
=0, so λ →0  and the β̂OLSh estimator is Eq.

(6.10). All other solutions lie in between, included MA and SMA (Francq and Govaerts, 2014;

McArdle, 2003; Smith, 2009).

With the MA regression we assume that both variables have been obtained with the

same uncertainty, so  σ ε
2
=σ μ

2 and  λ=1 (McArdle, 1988). Thus, the  β̂MA estimator is Eq. (6.11).

Lastly, with SMA regression we assume that variances σ ε
2 and σ μ

2 are proportional to the sample

variances  sx
2 and  s y

2, respectively, so  λ=s y
2
/sx

2. Thus, the  β̂SMA estimator is Eq. (6.12), which is

simply  the  ratio  between the  standard deviations.  Since  β̂ SMA represents  the  geometric  mean

between the two extreme OLS solutions (OLSv and OLSh), SMA is also known as the geometric

mean regression and considered a fair compromise  solution (Sprent and Dolby, 1980; Barker et

al., 1988; McArdle, 1988; Francq and Govaerts, 2014).

6.2.3. Selection of the regression model

If the scientific question involves a prediction line, still the error should be partitioned

asymmetrically about the response variable (Smith, 2009; Warton et al., 2006). However, the

question for the P-O case involves a descriptive line instead of a prediction line. In that respect,
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other methods can be considered as better “summary lines” as compared to OLS, which does not

satisfy symmetry (Isobe et al., 1990).

By minimizing the error in both directions (Figure 6.2C, 6.2D), both MA and SMA are

more suitable  models than OLS to obtain a summary line. The best option is the more robust

model to wrong values of λ (McArdle, 2003). In this sense, the SMA assumes a value of λ based

on the available data (λ=s y
2
/s x

2), while MA simply assumes equal Pi and Oi uncertainties. In fact,

the use of MA has been proven as substantially riskier (greater bias and variance on estimations)

as  compared  to  SMA  (McArdle,  1988;  Francq  and  Govaerts,  2014).  Therefore,  when  λ is

unknown, the SMA regression should be preferred to other alternatives (Francq and Govaerts,

2014; McArdle, 1988). 

6.2.4. Testing regression parameters?

The  classical  use  of a  regression  line  to  test  P-O  agreement  has  its  basis  on the

interpretation of β̂, to test proportional or multiplicative bias (H0: β̂=1; H1:β̂ ≠1), and α̂  to detect

a systematic additive bias (H0: α̂=0; H1:α̂ ≠ 0). However, a major drawback has been outlined for

the  t-test for  β̂ against  a specific  value (e.g.,  1):  it  is  ambiguous.  In  other  words,  the more

dispersion in the cloud of points (less precise), the greater its error and the harder to reject the

null hypotheses (Harrison, 1990; Lin, 1989; Mitchell, 1997; Reckhow et al., 1990). Similarly, the

smaller the error, the more chances of rejection even with a regression-line similar to the 1:1-line

(Lin, 1989). 

6.2.5. Error decomposition using linear regression

Evaluating the performance of a regression line forced to  β̂ = 1 and  α̂  = 0 has been

suggested as a straightforward alternative to test agreement (Analla, 1998), which is equivalent

to estimate the  MSE (or  RMSE) symmetrically accounting for the error with respect to the 1:1
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line. In the same line, we argue that instead of pursuing a comparison of regression parameters

that suffers from ambiguity, we could use the SMA line-of-best-fit for a geometrical comparison

against the 1:1 line. This approach uses the SMA line to: i) decomposing the square error into

unsystematic (lack of precision) and systematic (lack of accuracy) components, and ii) producing

related precision and accuracy metrics.

6.2.5.1. Error decomposition with SMA-line

It has been suggested to use SMA regression for decomposing the total sum of squares

(TSS) (Table 6.3; Figure 6.3A) into two additive components (Ji and Gallo, 2006): i) the sum of

unsystematic differences (SUDSMA), and ii) the sum of systematic differences (SSDSMA).

The first term, SUDSMA, is equivalent to the error about the SMA-line. For the P-O case, it is

the sum of product of differences between the SMA-line and both  Pi and  Oi simultaneously

(Table  6.3).  Geometrically,  the  SUDSMA represents  the  sum  of  “triangle-rectangles”  formed

between the data points  and the SMA-line (Figure  6.3B). The second term,  SSDSMA,  can be

expressed as the sum of square differences between the SMA-line and the 1:1-line (Table 6.3).

Geometrically, the SSDSMA represents the sum of the area of squares formed between the SMA-

line and the 1:1 line (Figure 6.3C). Finally, the TSS = SUDSMA + SSDSMA. Intuitively, as the SMA-

line approaches the 1:1 line, the lack of accuracy will approach zero (SSDSMA →0), and most of

the error will be on the unsystematic (lack of precision) component ( SUDSMA →TSS).

To express the decomposition in terms of the  MSE (Table  6.3)  we can simply divide

the SUDSMA and SSDSMA by the sample size (n), which results in two measures that we can define

as the Mean Lack of Precision (MLP), and the Mean Lack of Accuracy (MLA), respectively.

Moreover, MLP and MLA can be transformed to original units as their square roots (RMLP and
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RMLA). Finally, considering their relative contribution to the MSE, we can also express them as

the Percentage Lack of Precision (PLP) and the Percentage Lack of Accuracy (PLA) (Table 6.3).

6.2.5.2. Error decomposition with OLS- and MA-line

To the extent of our knowledge, Willmott (1981) was the first proposing a direct error

decomposition using a regression line. Using the OLS regression of P vs. O, he suggested the

utilization of two error indices as additive components of the MSE:  i) the unsystematic mean

square error (MSEU), related to  imprecision, and ii) the systematic mean square error (MSES),

related  to  inaccuracy.  Thus,  MSEU and  MSES are  the  analogous  of  our  MLP  and  MLA,

respectively.  Similarly,  in terms of the TSS, if multiplied by the sample size (n), MSEU and

MSES are equivalent to the sum of unsystematic (SUDOLS) and systematic differences (SSDOLS),

respectively.

Geometrically, SUDOLS represents the sum of the areas of n squares obtained from the

difference between the actual Pi and the value given by the OLS-line (P̂i) (Supplementary Table

6.1; Supplementary Figure  6.1A); while  SSDOLS represents the sum of the areas of  n squares

obtained from the difference between the OLS-line and the 1:1 line (where  Pi =  Oi) .  Thus,

unsystematic and systematic proportions of  the error can be simply  estimated as ratios of the

components to the TSS [or to the MSE, as expressed by Willmott et al. (1981)].

Although Willmott’s decomposition is a straightforward strategy often used for model

evaluation (Wallach et al., 2019), its major flaw is  related to the use of OLS regression as the

core model. Hence, it transfers the asymmetry issue (Figure 6.2) to the decomposition, as results

are not irrespective to the axis orientation. Specifically, Willmott (1981) supports the use of the

PO orientation.  As thoroughly  explained in  Sections  2.1,  2.2,  and 2.3,  this  decision  implies

neglecting the error in the O axis, which ultimately modifies the error decomposition into the
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systematic and unsystematic components.  Therefore, unless the user is completely confident in

the  uncertainty  of  O values  being  insignificant,  we are  skeptical  about  the  reliability  of  the

Willmott’s MSEU and MSES components. Instead, as the SMA model is likely to provide a more

reliable  summary  regression  line (Section  2.3),  it  is  also  presumptive to  produce  a  more

trustworthy error decomposition (Supplementary Table 6.1).

For example, the illustrative dataset displayed on Figure 6.2 has a TSS equal to 38.25

(MSE = 3.825). Following Willmott’s decomposition, the unsystematic error  would be SUDOLS

equal to 21.53 (MSEU = 2.153, MSEU% =  56%), while the systematic error SSDOLS equal to 16.72

(MSES = 1.672,  MSES%= 44%). However, applying the SMA decomposition, the unsystematic

error is SUDSMA equal to 30.87 (MLP = 3.087, PLP = 81%), while the systematic error is SSDSMA

equal to  7.38 (MLA = 0.738,  PLA = 19%). Thus, although both approaches produce  precision

(MSEU, MLP) and accuracy (MSES, MLA) components additive to the  MSE, omitting (OLS) or

not (SMA) of the uncertainty in O values generates a different partitioning of the error. In such

case,  we  prefer  to  proceed  with  the  model  that  implements  a  safeguard  by  considering

uncertainty in both axis when defining the line-of-best-fit (SMA).

Similarly,  an  error  decomposition  using  the  MA regression  has  been  proposed  by

Duveiller et al. (2016), who tested agreement between satellite images. However, we recommend

users to be cautious  with its  implementation as the strategy presents  some major  drawbacks

(Supplementary  Table  6.1;  Supplementary  Figure  6.1B).  Related  calculations  are  publicly

available at  https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EJS4M0

(Correndo et al., 2021c).

6.2.5.3. Equivalence with other error decompositions
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A similar  error decomposition was proposed by Kobayashi and Salam (2000), who

decomposed the  MSE into:  i)  the square bias,  as  (Ō − P̄ )
2,  ii)   the square difference between

standard deviations, as (sO− sP)
2
 and iii) the lack of correlation weighted by standard deviations,

2 sO sP (1−r ). Our inaccuracy term (MLA) is equivalent to the sum of the square bias (additive

bias) and the square difference between the standard deviations (proportional bias) (Table 6.3).

Sharing the same interpretation (random error), our lack of precision term (MLP) is equivalent to

the Kobayashi’s lack of correlation (Table  6.3). While Kobayashi and Salam (2000) assumes

(sO− sP)
2
 as  part  of  the  random variability,  we  consider  it  as  part  of  the  lack  of  accuracy

component. Note that the classical mean bias error (MBE, Table 6.5) is equivalent to the square

bias component expressed in the original units of the variable of interest. However, MBE it is

only related to additive bias, missing the proportional bias component.

Regarding the relative contribution of the error components, our decomposition also

matches  with  the  Theil’s  partial  inequality  components  (Smith  and  Rose,  1995).  Theil’s

decomposition segregates the TSS into three terms: i) a proportion associated with the square bias

(additive),  ii)  a  proportion  associated  with  inconsistency  (proportional  bias),  and  iii)  the

unexplained variance. The proportion that MLA explains from MSE (PLA) is equal to the sum of

the first two Theil’s components (square bias and inconsistency), while the proportion that the

MLP explains from MSE (PLP) is equal to the Theil’s unexplained variance term. While Smith

and  Rose  (1995)  relate  the  inconsistency  term  to  the  slope  of  OLS  regression  using  OP

orientation, we instead relate it to the SMA regression line. 

Although these decompositions  produce the same results as ours, we offer alternative

interpretations.  A demonstration  of  the  equivalence  between  the  decomposition  strategies  is

provided at Correndo et al. (2021c) .
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6.3. Applied examples

6.3.1. Illustrative dataset

The hypothetical dataset used to illustrate Figures 6.2 and 6.3 has been intentionally set to n =

10;  x = 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0; and y = 4.0, 5.5, 2.5, 4.5, 8.0, 5.0, 6.0,

10.0, 7.5, 8.5. At Figure 6.2, variables are in-purpose named as x and y, so either of them could

correspond to P or O. The OLSv approach (Figure 6.2A) results in a regression line  ŷOLSv = 2.47

+ 0.57x; while using OLSh (Figure 6.2B), the regression line is ŷOLSh = -0.52 + 1.02x. Moreover,

while the OLSv slope is significantly different from 1 ( β̂OLSv-CI95% = 0.40 – 0.73), the OLSh is

not (β̂OLSh-CI95% = 0.79 – 1.46), exposing the OLS asymmetry not only for the slope estimations

but also for their confidence intervals.  This emphasizes OLS could result in a different degree of

ambiguity for testing the slope depending on the scatter orientation, as OLSv and OLSh may

produce opposite results when testing isometry (H0: β̂  = 1).    

In contrast, the use of MA or SMA results in symmetric (algebraically invertible) lines. Thus,

when switching axes, y vs. x and x vs. y produce identical lines (Figure 6.2C, 6.2D). Thus,  ŷMA =

1.62 + 0.70x and ŷSMA = 1.19 + 0.76x, both slopes significantly different from 1 ( β̂MA-CI95% =

0.50 – 0.93; β̂SMA-CI95% = 0.61 – 0.95). The error decomposition of the same dataset showed in

Figure  6.3 indicates  that  from the  MSE (3.82), the unsystematic  component,  the  MLP (3.24)

represents 84.68%, while the systematic component, the MLA (0.58) represents 15.32% of total

error. Expressed in original units, RMLP = 1.80 and RMLA = 0.76. 
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6.3.2. APSIM datasets

Four datasets as collections of point forecasts from multiple locations belonging to 

simulation modules at different stages of their calibration process of APSIM model (Holzworth 

et al., 2018) were selected to represent contrasting scenarios of agreement between P and O 

(Table 6.4). The first example is a set of simulations of wheat grain N (g m−2) with both high 

accuracy and high precision (Figure 6.4A). The second example corresponds to simulations of 

barley grain number (thousand of counts m−2) with high accuracy but medium to low precision 

(Figure 6.4B). The third and the fourth datasets were intentionally selected from models still 

under development and thus, their level agreement is distant from ideal. However, these 

examples serve to purpose of illustrating different sources of prediction error. The third dataset is

a collection of sorghum grain number (thousand of counts m−2) simulations with low accuracy 

and medium precision (Figure 6.4C). Lastly, the fourth example is a set of simulations of above-

ground dry-matter on chickpea (kg ha−1) with low accuracy and medium precision (Figure 6.4D).

The assessment of agreement was carried out via the SMA regression and complemented 

with selected metrics of agreement (Table 6.5). The selected metrics were intended to measure 

precision (r, R2, MLP, RMLP, and PLP), accuracy (MBE, MLA, PLA), or both (MSE, RMSE, 

CCC). The concordance correlation coefficient (CCC) (Lin, 1989) is a normalized metric that 

summarizes in a single score the precision (r) weighed by an accuracy coefficient (Xa) (Table 

6.5). It evaluates the degree to which data pairs fall on the 1:1 line, and it is broadly used to 

assess agreement (Carrasco et al., 2013). A CCC = 1 denotes a perfect agreement, CCC = 0 

means no agreement, and CCC = −1 corresponds to a perfect disagreement (P = − O).

For the first example (Figure 6.4A; Table 6.6A), results show a SMA line very close to 

the 1:1 line, with both intercept and slope non-significantly different the former from zero and 
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the latter from 1. Regarding the error metrics, the correlation reflects the high precision (r = 

0.92), while concordance (CCC = 0.91) reveals a low penalization due to lack of accuracy. The 

relative contribution to MSE (2.78) shows that most of the error is due to lack of precision (PLP 

= 94.8%) and 5% is due to lack of accuracy (PLA).

Similarly, the second example (Figure 6.4B; Table 6.6B) shows a SMA line very close to 

the 1:1 line, with an intercept non-significantly different from zero, and a slope non-significantly 

different from 1. However, the error metrics show a comparatively lower precision (r = 0.67). 

Since the sample is also very accurate (SMA line not different from 1:1), a CCC = 0.67 reflects 

the almost null penalization of r due to lack of accuracy. Thus, the relative contribution to the 

MSE (=15.89) shows that most of the error is due to lack of precision (PLP = 98.9%) and just 

about 1% is due to lack of accuracy (PLA).

The third example (Figure 6.4C; Table 6.6C) shows a SMA line different from the 1:1 

line, with an intercept greater than zero and a slope lower than 1 (evidence of proportional bias). 

In this case, the precision is slightly greater (r = 0.74) than for the second example, but the lack 

of accuracy results in a penalization of the concordance (CCC = 0.62). The contribution to the 

MSE (37.99), shows that the lack of agreement is due to both lack of precision (PLP = 55.5%) 

and accuracy (PLA = 44.5%) in similar levels.

Lastly, the example of simulated of dry-matter on chickpea, with low accuracy and 

medium precision (Figure 4D; Table 6D), shows a SMA line also different from the 1:1 line with

an intercept significantly lower than zero and a slope significantly higher than 1. In this case, the 

level of precision results similar (r = 0.67) to the second example; however, the CCC (=0.28) 

shows a significant penalization due to the lack of accuracy. Indeed, the relative contributions to 
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the MSE (=1.83 × 105) exhibits that most of the error obeys to a lack of accuracy (PLA = 81.3%)

rather than a lack of precision (PLP = 18.7%).

6.4. Discussion

This article provides a novel perspective on using linear regression to test agreement 

between P and O values. Previous research in ecology has primarily discussed the axis-

orientation, however, constrained to the OLS regression (Piñeiro et al., 2008). In this study, we 

have integrated concepts from methodological research developed at other disciplines including 

but not limited to: biometry (Jolicoeur, 1990; Warton et al., 2006), astronomy (Isobe et al., 

1990), chemistry (Francq and Govaerts, 2014), anthropology (Smith, 2009), remote sensing 

(Duveiller et al., 2016; Ji and Gallo, 2006) and statistics (Carroll and Ruppert, 1996; Draper and 

Smith, 1998; Jolliffe, 2002; Tan and Iglewicz, 1999).

Supported on theory and examples, we have illustrated the adequacy of SMA regression 

as a simple linear model to test predictive ability. Whereas the traditional OLS is the most 

appropriate model to answer a prediction question (Legendre and Legendre, 1998; Smith, 2009), 

for the P-O case, we instead seek a descriptive-line of the scatter. As long as P and O variances 

are available, more sophisticated solutions like defining equivalence intervals are worth to be 

explored (St-Pierre, 2016; Tan and Iglewicz, 1999). The SMA resulted in the less biased 

descriptive line-of-best-fit, but in spite of advantages some caution should be considered such as 

with small sample sizes (n < 20), and presence of outliers (Miller Jr., 1986) or moderate to low 

correlations (r < 0.60) that could distort parameter estimates (Jolicoeur, 1990). Lastly, with 

issues of obtaining a reliable estimate for β̂SMA, it has been proposed that SMA should be 

calculated conditional to a significant correlation (Ricker, 1984), testing the assumption of a 
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linear relationship between the variables (McArdle, 1988).The second major novelty relates to 

the recommendation of how to use the regression line. Beyond the traditional slope and intercept 

tests, we suggest to use the regression to decompose the square error producing two meaningful 

metrics: lack of precision and lack of accuracy. This offers the advantage of a lack of accuracy 

component defined not only as a difference in terms of the means (classical definition of bias, 

James et al. (2013)) but also as a deficiency of the model on reproducing the distribution pattern 

of O values (Kobayashi and Salam, 2000; Smith and Rose, 1995), which relates to proportional 

bias (i.e., slopes ≠ 1). We have illustrated this with the sorghum dataset (Figure 6.4C, Table 

6.6C), a case with very similar Pi and Oi means (MBE = 0.72; square bias = 0.52); however, still

with an evident proportional bias (with over- and under-estimations). In this case, the proposed 

lack of accuracy (MLA, PLA) components identified this inconsistency whereas the traditional 

definition of bias (MBE) could not.

If users and modelers are interested in using normalized error metrics to complement the 

evaluation, we also recommend to use indices or coefficients that cover both accuracy and 

precision. The single use of r and R2 does not provide a complete assessment of the agreement 

(Lin et al., 2002; Yang et al., 2014) since a very inaccurate model (data points far from the 1:1 

line) could still result in high r and R2 values (Krause et al., 2005). We have illustrated this with 

the barley (Figure 6.4B; Table 6.6B) and chickpea datasets (Figure 6.4D; Table 6.6D). Although 

sharing similar r and R2, the agreement is clearly lower for the chickpea case because it presents 

lack of accuracy. Therefore, other normalized metrics that also provide a notion of accuracy 

(bias) ought to be considered. Lin's CCC could be an appropriate complement, as it can be 

decomposed into a precision (r) and accuracy (χa) (Table 5) and its scoring rule is easy to 

interpret. When no additive and/or proportional bias is present, Xa= 0, and CCC will take the 
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value of r. Additionally, CCC offers the possibility of statistical inference if we assume that CCC

is a sample estimator of a population parameter (ρCCC) (Lin et al., 2002). In this sense, the CCC 

and its components could be considered as a normalized metric that provide similar information 

to the use of MSE and its accuracy and precision components.

Here we encourage the use of a symmetric regression line (SMA) that is geometrically 

linked to the most widely used prediction error metric in academia, the MSE (Gneiting, 2011). 

Although previous research presented equivalent MSE decompositions using pure formulae 

(Smith and Rose, 1995; Kobayashi and Salam, 2000), the use of the SMA-line adds a geometric 

and visually appealing interpretation of the lack of accuracy and precision components of the 

MSE. A normalized and complementary metric for the evaluation of agreement could be the 

CCC, as it also considers both accuracy and precision components. Nonetheless, a myriad of 

additional scoring rules not considered in this work have been developed for model evaluation, 

crucial for model improvement (Wallach et al., 2019). Before this overwhelming world of model

evaluation criteria, modelers and users might feel submerged under “The Paradox of Choice” 

(Schwartz, 2004) and then simply choose the most popular metric (e.g. R2, RMSE). Therefore, 

we consider that further research on comparing the behavior of scoring rules, evaluating pros and

cons, should be pursued to offer users accessible guidelines (narrow down the number of 

choices) on the best indicators (which could vary on a case-by-case basis) to assess the 

performance of prediction models.

6.5. Conclusions

This manuscript explains the underlying theory, formulae, and illustrative examples to 

guide the selection of a linear regression model for testing agreement in continuous P-O datasets.
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We argue the need for a symmetric regression with an interpretation invariant to the axis 

orientation highlighting the adequacy of the SMA model over other alternatives. Beyond the 

classical hypothesis testing of the regression-line, our SMA-based approach offers a simple error 

decomposition producing metrics related to lack of accuracy and precision.
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Table 6.1. Loss functions of alternative regression models. OLSv: vertical ordinary least squares,
OLSh: horizontal ordinary least squares, MA: Major Axis; SMA: Standardized Major Axis.

Regression model Loss function

OLSv
∑

1

n

ε̂ i=∑
1

n

( y i− ŷi )
2.

(6.3)

OLSh
∑

1

n

μ̂i=∑
1

n

( xi − x̂i )
2.

(6.4)

MA
∑
i=1

n

d̂i=∑
i=1

n

hi
2
=∑

i=1

n

(x i− x̂0 i )
2
+( y i− ŷ0i )

2.
(6.5)

SMA
∑
i=1

n

ẑi=∑
i=1

n

(|xi − x̂i|) (|y i − ŷi|).
(6.6)
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Table 6.2. Maximum likelihood estimators for alternative regression lines. OLSv: vertical 
ordinary least squares, OLSh: horizontal ordinary least squares, MA: Major Axis; SMA: 
Standardized Major Axis. 

Regression

model

Assumed 

precision ratio (λ)

Slope formula

OLSv λ →∞
β̂OLSv=

sxy

sx
2 .

(6.9)

OLSh λ →0
β̂OLSh=

s y
2

s xy

.
(6.10)

MA λ=1
β̂MA=

s y
2 − sx

2
+√(s y

2 − sx
2 )

2
+4 s xy

2

2 sxy

.
(6.11)

SMA λ=s y
2
/sx

2

β̂ SMA=
s y

s x

.
(6.12)
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Table 6.3. Decomposition of the square error into: i) sum of unsystematic differences 
(SUDSMA) and sum of systematic differences (SSDSMA) expressed as the sum of squares; ii) 
mean lack of precision (MLP) and mean lack of accuracy (MLA) expressed as square difference 
[equivalent to square bias -SB- and square difference between standard deviations -SDSD- 
(Kobayashi and Salam, 2000)]; iii) root transformed to original units (lack of precision –RMLP-, 
lack of accuracy –RMLA-); or iv) percentage lack of precision (PLP) and percentage lack of 
accuracy (PLA), which can eventually be further decomposed into percentage additive bias 
(PAB) and percentage proportional bias (PPB).

Expre-

ssions
Total Lack of Precision Lack of Accuracy

Sum TSS=∑
i=1

n

(Oi − Pi )
2 SUDSMA=∑

i=1

n

(|Pi – P̂i|)(|Oi – Ôi|)

SSDSMA=∑
i=1

n

(Oi − P̂i )
2

≡

∑
i=1

n

( Pi−Ôi )
2

Mean MSE=
TSS

n

MLP=
SUDSMA

n
≡

2sO sP (1− r )

MLA=
SSDSMA

n
≡

SB+SDSD=(Ō− P̄ )
2
+ (sO− sP)

2

Root

Mean
RMSE=√MSE RMLP=√MLP RMLA=√MLA

% - PLP ( % )=100
MLP
MSE

PLA (% )=100
MLA
MSE

PAB ( % )=100
(Ō− P̄ )

2

MSE

PPB ( % )=100
(sO− sP )

2

MSE
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Figure 6.1. Hypothetical combinations of accuracy and precision. Adapted from Tedeschi 

(2006).

Figure  6.2.  Illustration  of  error  partitioning  by  asymmetric  (A,  B)  and  symmetric  (C,  D)
regression models for the same dataset (x = 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0; y =
4.0, 5.5, 2.5, 4.5, 8.0, 5.0, 6.0, 10.0, 7.5, 8.5). A: Ordinary Least Squares vertical (OLSv, y vs. x,
ŷ i=2.47+0.57 xi ); B: Ordinary Least Squares vertical (OLSh,  x vs.  y,  ŷ i=−0.53+1.03 x i); C:
Major Axis regression (MA,  ŷ i=1.62+0.70 xi); D: Standardized Major Axis regression (SMA,
ŷ i=1.19+0.76 x i).  In  C,  the  red  dot  over  the  MA-line  represents  the  coordinates  ( x̂0 i; ŷ0 i)
described  in  Eq.  (5)  (Table  1).  Ellipses  represent  the  95% confidence  ellipses  to  the  joint
bivariate normal distributions fitted on the data.
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Figure 6.3. Decomposition of the total sum of square differences (A) into the unsystematic (B, 
lack of precision) and the systematic differences (C, lack of accuracy) using standardized major 
axis regression (SMA). For this example, TSS = 38.25 (MSE = 3.82), SUDSMA = 32.39 (MLP = 
3.24, PLP = 84.68%), SSDSMA = 5.86 (MLA = 0.59, PLA = 15.32%).
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Figure 6.4. Real datasets from APSIM crop simulation model (Holzworth et al., 2018) showing 
contrasting scenarios of predicted-observed agreement. A: high accuracy and precision. B: high 
accuracy and low precision. C: medium accuracy and medium precision. D: low accuracy and 
medium precision. Ellipses represent the 95% confidence ellipses to the joint bivariate normal 
distributions fitted on the data.
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Chapter 7: Conclusions

The first objective of this dissertation was to  assess the contribution of soil, weather,

and  crop  management  factors  on  the  prediction  of  maize  productivity  without  external  N

application. In Chapter 2, we documented that crop management factors such as previous crop

and  irrigation  in  combination  with  soil  organic  matter  contributed  to  explain  half  of  the

variability  of  maize  yield  without  N fertilization,  while  the  inclusion  of  variables  linked  to

weather  improved  the  prediction  performance.  From  a  practical  standpoint,  a  prediction

framework  including  only  spring  weather  variables  (March-May)  resulted  in  a  similar

performance than a framework including weather during the entire season. Refined prediction

frameworks for Y0 could provide new insights on N responsiveness and result in a step-forward

towards more collaborative and regional-scale N recommendation guidelines.

The second objective  of  this  dissertation  was  to  identify the  main  drivers of  both,

expected values and uncertainties, of key components describing the  process models for maize

yield response to N fertilization. In that regards, one of the main conclusions of Chapter 3 is that

the expected values of N response components and, although more challenging,  their  related

uncertainties are both susceptible to be modeled. Crop management factors largely affected the

prediction  of  the  expected  yield  without  N  fertilizer,  but  just  slightly  impacted  (<5%)  the

uncertainty of the response (and their components) of yield to N fertilizer. Weather variables

were, undoubtedly, the most relevant factors and roughly contributing to 80% of the explained

variance to predict the uncertainties on the yield to N response process (and their components).

Soil factors showed a limited but consistent contribution to explain both N response as well as

their uncertainties. 
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The third objective of this dissertation was  to  summarize the impact of water and N

management  practices  in  maize  grain  quality.  The  meta-analysis  conducted  in  Chapter  4

revealed that N fertilization not only increases yields but also has a positive impact on the grain

protein  concentration,  however,  both  starch  and  oil  remained  relatively  constant  under

contrasting N fertilization levels. Conversely, water stress resulted in an inconsistent effect on all

the evaluated grain quality components, possibly due to changes in the moment, severity, and

extent  of  the  stress.  A  last  major  takeaway  of  this  chapter  is  related  to  the  possibility  for

maintaining or increasing oil concentration while improving protein, representing an exceptional

opportunity for producing high quality and energy maize grain crops.

The  fourth  objective  of  this  dissertation  was  to  study  the  residual  effects  of  N

management  in  maize  on  the  following  soybean  crop.  For  this  purpose, in  Chapter  5,  we

evaluated data from two case studies: (i) I, long-term (1983-2020), and (ii) II, detailed soil-plant

characterization (2019-2020). Overall,  soybean yields were marginally  or not affected by the

previous  crop, maize N management.  The estimated apparent  N budgets  from the preceding

maize crop ranged from ca. -100 to +50 kg N ha-1, soil residual N contents during the following

soybean season were not affected by maize N management. Similarly, the N fixation was not or

slightly impacted, with no compromise to soybean N uptake or seed productivity. Still, the long-

term impact  of soil  N mining or soil  N surplus on the contribution of N fixation to crop N

demand remains on the spotlight for future research steps.

The fifth objective of this  dissertation was  to evaluate statistical  techniques for the

assessment of agreement between predictions and observations. Thus, in Chapter 6, we offered a

novel and simple perspective about the use of linear regression to evaluate the performance of

modeled (predicted) versus observed (measured) plant traits. Three alternative linear regression
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models (Ordinary Least Squares -OLS-, Major Axis -MA-, and Standardized Major Axis -SMA-)

were compared in terms of their assumptions, loss functions, parameters’ estimates, and on the

interpretation  for  the  predicted-observed  case.  When  the  uncertainty  of  predictions  and

observations are unknown, the SMA is the most adequate approach to fit a symmetric-regression

line describing the scatter,  which produces a reference line to estimate a weighed difference

between predictions  and observations.  Furthermore,  modelers  can use this  symmetric  line to

decompose the mean square error into additive components associated with the lack of both

accuracy and precision of the model outcomes, allowing to identify error components. 

This  dissertation  highlights  the  advantages  of  deploying  cutting  edge data  analysis

techniques for addressing research gaps on the N economy in maize-soybean farming systems.

Machine  learning,  meta-analysis,  and  Bayesian  statistics  bring  new  horizons  for  improving

forecast models as well as their interpretability. Machine learning methods bring the possibility

of handling massive amounts of data while identifying complex association patterns to produce

accurate forecasts; meta-analysis techniques offer a great opportunity to summarize results from

multiple studies considering their degree of error; and Bayesian frameworks integrate existing

knowledge with data to produce inference where the uncertainties and probabilities are on the

spotlight.

The main limitations  faced in our projects  were related  to (i)  the lack of available

metadata  to  explore  more  specific  questions  and,  (ii)  the  limited  interpretability  of  machine

learning models. For instance, in Chapters 2 and 3, the lack of soil N supply indicators clearly

constrained the assessment of soil features and their importance for the predicted frameworks.

Similarly, in Chapter 4, the lack of studies evaluating the interaction between N and water stress

(even  more  critically  in  combination)  have  limited  the  inference  on  potential  co-limitations
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impacting maize grain quality components. Unfortunately, achieving unbalanced meta-databases

is  usual  when performing literature  reviews.  As for  the  interpretability  issue,  the  increasing

computational  power  and  development  of  new  algorithms  are  essential  to  overcome  this

limitation. In this regards, cross-scales- and meta-learning models coupled with plant-soil system

simulations represent a new era in agricultural science.

Forthcoming projects on N economy in maize and soybean farming systems should

address  the  following  challenges:  (i)  expand,  provide  incentives,  and  discuss  standards  in

collaborative research in order to achieve more balanced  multidimensional databases, (ii) further

deploy machine learning tools such as the multi-ensembles models in order to improve predictive

performance,  (iii)  invest on the development of cross-borders N guidelines based on process

rather than on political borders,  (iv) further  assess  the role of  N management  strategies on the

nutritional value of maize grains and soybean seeds,  (v) design, conduct, and analyze surveys to

visualize stakeholders’ perspectives regarding both the current as well as the under-development

N decision-support tools, and (vi) invest more resources to maximize extension effectiveness,

redesigning the outreach approaches when necessary.

The  future  generation  of  predictive  models  in  agriculture  must  be  able  to  capture

complex GxExM interactions as well as to emulate how farmers deal with uncertainties in the

real  world.  Therefore,  forthcoming  improvements  on  the  decision  support  tools  for  N

management  into  maize-soybean  rotations  should  be  ideally  conceived  under  probabilistic

frameworks, with risk management at the center of attention. Most of current models omit the

evaluation of climatic and economic risks that the producers face in a regular basis. In contrast,

farmers are basically obliged to manage their land adapting decisions to fit the spatio-temporal

variation in their fields. Under this context, the awareness about uncertainties (and their drivers)
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should become one of the pillars of the dynamic N recommendations, which is crucial to convey

wise information to stakeholders. Undoubtedly, we must move from static to dynamic, from ex-

post to ex-ante, crop models in order to design optimized GxM adaptation strategies under future

climates.

143



References 

Abdala, L.J., Gambin, B.L., Borrás, L., 2018. Sowing date and maize grain quality for dry 
milling. Eur. J. Agron. 92, 1–8. https://doi.org/10.1016/j.eja.2017.09.013

Adams, D.C., Gurevitch, J., Rosenberg, M.S., 1997. Resampling tests for meta-analysis of 
ecological data. Ecology 78, 1277–1283.

Adee, R., Ruiz Diaz, D., Little, C.R., 2016. Effect of Soil-Test Phosphorus and Phosphorus 
Fertilization on the Severity of Soybean Sudden Death Syndrome. Crop Forage Turfgrass
Manage, 2: 1-4. https://doi.org/10.2134/cftm2015.0193

Al-Kaisi, M.M., Yin, X., Licht, M.A., 2005. Soil carbon and nitrogen changes as influenced by 
tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105, 635–647. 
https://doi.org/10.1016/j.agee.2004.08.002

Ali, Q., Ashraf, M., 2011. Exogenously applied glycinebetaine enhances seed and seed oil 
quality of maize (Zea mays L.) under water deficit conditions. Environ. Exp. Bot. 71, 
249-259. https://doi.org/10.1016/j.envexpbot.2010.12.009

Ali, Q., Ashraf, M., Anwar, F., 2010. Seed composition and seed oil antioxidant activity of 
maize under water stress. J. Am. Oil Chem. Soc. 87, 1179–1187. 
https://doi.org/10.1007/s11746-010-1599-5

Allen, N.K., Baker, D.H., 1974. Quantitative Evaluation of Nonspecific Nitrogen Sources for the
Growing Chick. Poult. Sci., 53, 258–264.

Allos, H.F., Bartholomew, W.V., 1955. Effect of available nitrogen symbiotic fixation. Soil Sci. 
Soc. Am. J., 19: 182-184. https://doi.org/10.2136/sssaj1955.03615995001900020018x

Alotaibi, K.D., Cambouris, A.N., St. Luce, M., Ziadi, N., Tremblay, N. 2018. Economic 
Optimum Nitrogen Fertilizer Rate and Residual Soil Nitrate as Influenced by Soil 
Texture in Corn Production. Agron. J. 110: 2233-2242. 
https://doi.org/10.2134/agronj2017.10.0583

Alqudah, A. M., Samarah, N. H., Mullen, R. E., 2010. Drought stress effect on crop pollination, 
seed set, yield and quality. – In: Lichtfouse, E. (ed.) Alternative Farming Systems, 
Biotechnology, Drought Stress and Ecological Fertilization. Berlin: Springer, 193-213.

Analla, M., 1998. Model validation through the linear regression fit to actual versus predicted 
values. Agric. Syst. 57, 115–119. https://doi.org/10.1016/S0308-521X(97)00073-5

Andrade, F.H., Otegui, M.E., Vega, C., 2000. Intercepted radiation at flowering and kernel 
number in maize. Agron. J. 92, 92–97. https://doi.org/10.2134/agronj2000.92192x

Andrade, F.H., Uhart, S.A., Cirilo, A., 1993. Temperature affects radiation use efficiency in 
maize. Field Crops Res. 32, 17–25. https://doi.org/10.1016/0378-4290(93)90018-I

144

https://doi.org/10.1016/0378-4290(93)90018-I
https://doi.org/10.2134/agronj2000.92192x
https://doi.org/10.1016/S0308-521X(97)00073-5
https://doi.org/10.2134/agronj2017.10.0583
https://doi.org/10.2136/sssaj1955.03615995001900020018x
https://doi.org/10.1007/s11746-010-1599-5
https://doi.org/10.1016/j.envexpbot.2010.12.009
https://doi.org/10.1016/j.agee.2004.08.002
https://doi.org/10.2134/cftm2015.0193
https://doi.org/10.1016/j.eja.2017.09.013


Andraski, T.W., Bundy, L.G., 2008. Corn residue and nitrogen source effects on nitrogen 
availability in no-till corn. Agron. J. 100, 1274–1279. 
https://doi.org/10.2134/agronj2008.0039

Archontoulis, S.V., Castellano, M.J., Licht, M.A., et al., 2020. Predicting crop yields and soil-
plant nitrogen dynamics in the US Corn Belt. Crop Sci. 60, 721–738. 
https://doi.org/10.1002/csc2.20039

Babcock, B., 1992. The Effects of Uncertainty on Optimal Nitrogen Applications. Review of 
Agricultural Economics, 14(2), 271-280. https://doi.org/10.2307/1349506

Baker, J.L., Johnson, H.P., 1981. Nitrate-nitrogen in tile drainage as affected by fertilization. J. 
Environ. Qual. 10, 519–522. https://doi.org/10.2134/jeq1981.00472425001000040020x

Balboa, G.R., Ciampitti, I.A., 2020. Estimating biological nitrogen fixation in field-grown 
soybeans: impact of B value. Plant Soil, 446: 195–210. https://doi.org/10.1007/s11104-
019-04317-1

Balkcom, K.S., Blackmer, A., Hansen, D., Morris, T., Mallarino, A., 2003. Testing soils and 
cornstalks to evaluate nitrogen management on the watershed scale. J. Environ. Qual. 32, 
1015–1024. https://doi.org/10.2134/jeq2003.1015 

Bannayan, M., Hoogenboom, G., Crout, N.M.J., 2018. Photothermal impact on maize 
performance: a simulation approach. Ecol. Modell. 180 (2–3), 277–290. 
https://doi.org/10.1016/j.ecolmodel.2004.04.022

Barker, F., Soh, Y.C., Evans, R.J., 1988. Properties of the Geometric Mean Functional 
Relationship. Biometrics 44(1), 279-281. https://doi.org/doi:10.2307/2531917

Barrios, M., Basso, C., 2018. Efecto de la fertilizacion nitrogenada sobre componentes del 
rendimiento y calidad nutricional del grano de seis hibridos de maiz. Bioagro 30(1), 39-
48.

Barutçular, C., Dizlek, H., EL-Sabagh, A., Sahin, T., Elsabagh, M., Islam, M.S., 2016. 
Nutritional quality of maize in response to drought stress during grain-filling stages in 
mediterranean climate condition. J. Exp. Biol. Agric. Sci. 4-6, 644-652.  
http://dx.doi.org/10.18006/2016.4(Issue6).644.652

Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: a review of applications and 
future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 
https://doi.org/10.1016/j.isprsjprs.2016.01.011

Blackmer, T.M., Kyveryga, P., 2012. Digital imagery guides statewide nutrient management 
survey. International Society of Precision Agriculture. In: Khosla, R. (ed.) Proc. 11th Int. 
Conf. on Precision Agriculture, Indianapolis, IN. 15–18 July.

145

https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/doi:10.2307/2531917
https://doi.org/10.1016/j.ecolmodel.2004.04.022
https://doi.org/10.2134/jeq2003.1015
https://doi.org/10.1007/s11104-019-04317-1
https://doi.org/10.1007/s11104-019-04317-1
https://doi.org/10.2134/jeq1981.00472425001000040020x
https://doi.org/10.2307/1349506
https://doi.org/10.1002/csc2.20039
https://doi.org/10.2134/agronj2008.0039


Bootsma, A., Gameda, S., McKenney, D.W., 2005. Potential impacts of climate change on corn, 
soybeans and barley yields in Atlantic Canada. Can. J. Soil Sci. 85:345–357. 
https://doi.org/10.4141/S04-025

Borenstein, C., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R., 2009. Chapter 12: Random-
effects model. In: Introduction to meta-analysis. John Wiley & Sons, Ltd, 69-75. 
https://doi.org/10.1002/978470743386

Borja Reis, A.F., Moro Rosso, L., Purcell, L.C., Naeve, S., Casteel, S.N., Kovacs, P., 
Archontoulis, S., Davidson, D., Ciampitti, I.A., 2021. Environmental factors associated 
with nitrogen fixation prediction in soybean. Frontiers Plant Sci., 15: . 
https://doi.org/10.3389/fpls.2021.675410

Borrás, L., Curá, J. A., Otegui, M.E. 2002. Maize Kernel Composition and Post-Flowering 
Source-Sink Ratio. Crop Sci. 42(3), 781. https://doi.org/10.2135/cropsci2002.7810

Boulesteix, A.-L., Janitza, S., Kruppa, J., Konig, I.R., 2012. Overview of Random Forest 
Methodology and Practical Guidance With Emphasis on Computational Biology and 
Bioinformatics. WIREs Data Mining Knowl Discov, 2N, pp. 493–507. 
https://doi.org/10.1002/widm.1072

Bowles, T.M., Atallah, S.S., Campbell, E.E., Gaudin, A.C.M., Wiederm, W.R., 2018. 
Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 1, 399–408. 
https://doi.org/10.1038/s41893-018-0106-0

Boyer, C.N., Larson, J.A., Roberts, R.K., McClure, A., Tyler, D.D., Zhou, V., 2013. Stochastic 
corn yield response functions to nitrogen for corn after corn, corn after cotton, and corn 
after soybeans. J. Agric. Applied Econ.  45(4), 1-12.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 
https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf

Breiman, L., 2001. Random Forests. Machine Learning, 45, 5-32, 
https://doi.org/10.1023/A:1010933404324

Briat, J.-F., Gojon, A., Plassard, C., Rouached, H., Lemaire, G., 2020. Reappraisal of the central 
role of soil nutrient availability in nutrient management in light of recent advances in 
plant nutrition at crop and molecular levels. Eur. J. Agron. 116, 126069. 
https://doi.org/10.1016/j.eja.2020.126069

Brown, J.R., 1998. Recommended chemical soil test procedures for the North Central Region, 
221st ed. Missouri Agricultural Experiment Station, University of Missouri--Columbia.

Bruce, R.R., Langdale, G.W., Dillard, A.L., 1990. Tillage and crop rotation effect on 
characteristics of a sandy surface soil. Soil Sci. Soc. Am. J. 54, 1744–1747. 
https://doi.org/10.2136/sssaj1990.03615995005400060039x

146

https://doi.org/10.2136/sssaj1990.03615995005400060039x
https://doi.org/10.1016/j.eja.2020.126069
https://doi.org/10.1023/A:1010933404324
https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf
https://doi.org/10.1038/s41893-018-0106-0
https://doi.org/10.1002/widm.1072
https://doi.org/10.2135/cropsci2002.7810
https://doi.org/10.3389/fpls.2021.675410
https://doi.org/10.1002/978470743386
https://doi.org/10.4141/S04-025


Bundy, L.G., 2008. Making sense of nitrogen credits for corn. Certified Crop Adv. Proc. Purdue 
Univ. Ext. https://www.agry.purdue.edu/CCA/2008/Proceedings/Bundy.pdf (accessed 01 
Oct. 2021).

Bundy, L.G., Andraski, T.W., 1995. Soil yield potential effects on performance of soil nitrate 
tests. J. Prod. Agric. 8:561–568. https://doi.org/10.2134/jpa1995.0561

Bundy, L.G., Malone, E.S., 1988. Effect of residual profile nitrate on corn response to applied 
nitrogen. Soil Sci. Soc. Am. J. 52: 1377–1383. 
https://doi.org/10.2136/sssaj1988.03615995005200050032x

Bürkner, P.C., 2018. Advanced Bayesian Multilevel Modeling with the R Package brms. R J., 
10: 395. https://doi.org/10.32614/RJ-2018-017

Butler, E.E., Huybers, P., 2013. Adaptation of US maize to temperature variations. Nat. Clim. 
Chang. 3N, 68–72. https://doi.org/10.1038/nclimate1585

Butts-Wilmsmeyer, C.J., Seebauer, J.R., Singleton, L., Below, F.E., 2019. Weather During Key 
Growth Stages Explains Grain Quality and Yield of Maize. Agronomy 9, 16. 
https://doi.org/10.3390/agronomy9010016

Cai, A., Xu, H., Shao, X., Zhu, P., Zhang, W., Xu, M., Murphy, D.V., 2016. Carbon and nitrogen
mineralization in relation to soil particle-size fractions after 32 years of chemical and 
manure application in a continuous maize cropping system. PLoS One 11 (3), e0152521. 
https://doi.org/10.1371/journal.pone.0152521

Cameron, K.C., Di, H.J., Moir, J.L., 2013. Nitrogen losses from the soil/plant system: a review. 
Ann. Appl. Biol. https://doi.org/10.1111/aab.12014,162N145173

Canty A, Ripley B. boot: Bootstrap R (S-Plus) functions. 2021, R package version 1.3-27. 
https://cran.r-project.org/web/packages/boot/boot.pdf

Carrasco, J.L., Phillips, B.R., Puig-Martinez, J., King, T.S., Chinchilli, V.M., 2013. Estimation 
of the concordance correlation coefficient for repeated measures using SAS and R. 
Comput. Methods Programs Biomed. 109, 293–304. 
https://doi.org/10.1016/j.cmpb.2012.09.002

Carroll, R.J., Ruppert, D., 1996. The Use and Misuse of Orthogonal Regression in Linear Errors-
in-Variables Models. Am. Stat. 50, 1–6. 
https://doi.org/10.1080/00031305.1996.10473533

Carter, E., Melkonian, J., Steinschneider, S., Riha, S., 2018. Rainfed maize yield response to 
management and climate covariability at large spatial scales. Agric. Forest Meteorol. 256,
242–252. https://doi.org/10.1016/j.agrformet.2018.02.029

Cassman, K.G., Dobermann, A., Walters, D.T., 2002. Agroecosystems, nitrogen-use efficiency, 
and nitrogen management. AMBIO A J. Hum. Environ. 31 (2), 132–140. 
https://doi.org/10.1579/0044-7447-31.2.132. 

147

https://doi.org/10.1579/0044-7447-31.2.132
https://doi.org/10.1016/j.agrformet.2018.02.029
https://doi.org/10.1080/00031305.1996.10473533
https://doi.org/10.1016/j.cmpb.2012.09.002
https://cran.r-project.org/web/packages/boot/boot.pdf
https://doi.org/10.1111/aab.12014,162N145173
https://doi.org/10.1371/journal.pone.0152521
https://doi.org/10.3390/agronomy9010016
https://doi.org/10.1038/nclimate1585
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.2136/sssaj1988.03615995005200050032x
https://doi.org/10.2134/jpa1995.0561
https://www.agry.purdue.edu/CCA/2008/Proceedings/Bundy.pdf


Cassman, K.G., Gines, G.C., Dizon, M.A., Samson, M.I., Alcantara, J.M., 1996. Nitrogen use 
efficiency in tropical lowland rice systems: contribution from indigenous and applied 
nitrogen. Field Crops Res. 47 (1), 1–12. https://doi.org/10.1016/0378-4290(95)00101-8

Cawley, G.C., Talbot, N.L.C., 2010. On overfitting in model selection and subsequent selection 
bias in performance evaluation. J. Mach. Learn. Res. 11 (2079–2107), 2010. 
http://jmlr.org/papers/v11/cawley10a

Cerrato, M.E., Blackmer, A.M., 1990. Comparison of models for describing corn yield response 
to fertilizer nitrogen. Agron. J. 82:138-143. 
https://doi.org/10.2134/agronj1990.00021962008200010030x

Chaney, N., Minasny, B., Herman, J., Nauman, T., Brungard, C., Morgan, C., Mcbratney, A., 
Wood, E., Yimam, Y., 2016. POLARIS soil properties: 30‐meter probabilistic maps of 
soil properties over the contiguous United States. Water Resources Research. 
https://doi.org/10.1029/2018WR022797

Chen, T., Guestrin, C., 2016. XGBoost:  A scalable tree boosting system.  In Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, San Francisco, CA, USA, 13–17 August 2016, ACM: New York, NY, USA, 
2016, 785–794.

Ciampitti, I.A., Fernandez, J., Tamagno, S., Zhao, B., Lemaire, G., Makowski, D., 2021. Does 
critical N dilution curves for maize crop vary across genotype x environment x 
management scenarios? - A Bayesian analysis. Eur. J. Agron. 123, 126202. 
https://doi.org/10.1016/j.eja.2020.126202

Ciampitti, I.A., Salvagiotti, F., 2018. New Insights into Soybean Biological Nitrogen Fixation. 
Agron. J., 110: 1185-1196. https://doi.org/10.2134/agronj2017.06.0348

Cirilo, A. G., Actis, M., Andrade, F.H., Valentinuz, O.R. Crop management affects dry-milling 
quality of  flint maize kernels. Field Crops Res. 2011, 122, 140-150. 
https://doi.org/10.1016/j.fcr.2011.03.007

Copeland, P.J., Crookston, R.K., 1992. Crop Sequence Affects Nutrient Composition of Corn 
and Soybean Grown under High Fertility. Agron. J. 84: 503-509. 
https://doi.org/10.2134/agronj1992.00021962008400030028x

Correndo, A.A., Rotundo, J.L., Tremblay, N., Archontoulis, S., Coulter, J.A., Ruiz-Diaz, D., 
Franzen, D., Franzluebbers, A.J., Nafziger, E., Schwalbert, R., Steinke, K., Williams, J., 
Messina, C.D., Ciampitti, I.A., 2021a. Assessing the uncertainty of maize yield without 
nitrogen fertilization. Field Crops Res. 260. https://doi.org/10.1016/j.fcr.2020.107985

Correndo, A. A., Gutiérrez-Boem, F. H., García, F. O., Alvarez, C., Álvarez, C., Angeli, A., 
Barbieri, P., Barraco, M., Berardo, A., Boxler, M., Calviño, P., Capurro, J. E., Carta, 
H.,Caviglia, O., Ciampitti, I. A., Díaz-Zorita, M., Díaz-Valdéz, S., Echeverría, H. E., 
Espósito, G., Ferrari, M., Ferraris, G.N., Gambaudo, S., Gudelj, V., Ioele, J.P., Melchiori,
R.J.M., Molino, J., Orcellet, J.M., Pagani, A., Pautasso, J. M., Reussi Calvo, N.I., Redel, 

148

https://doi.org/10.1016/j.fcr.2020.107985
https://doi.org/10.2134/agronj1992.00021962008400030028x
https://doi.org/10.1016/j.fcr.2011.03.007
https://doi.org/10.2134/agronj2017.06.0348
https://doi.org/10.1016/j.eja.2020.126202
https://doi.org/10.1029/2018WR022797
https://doi.org/10.2134/agronj1990.00021962008200010030x
http://jmlr.org/papers/v11/cawley10a
https://doi.org/10.1016/0378-4290(95)00101-8


M., Rillo, S., Rimski-Korsakov, H., Sainz-Rozas, H.R., Saks, M., Tellería, M.G., 
Ventimiglia, L., Zorzín, J.L., Zubillaga, M.M., Salvagiotti, F. 2021b. Attainable yield and
soil texture as drivers of maize response to nitrogen: A synthesis analysis for Argentina. 
Field Crops Res. 273, 108299. https://doi.org/10.1016/J.FCR.2021.108299

Correndo, A.A., Hefley, T., Holzworth, D., Ciampitti, I.A., 2021c. R-Code Tutorial: Revisiting 
linear regression to test agreement in continuous predicted-observed datasets. Harvard 
Dataverse, V3. https://doi.org/10.7910/DVN/EJS4M0

Coulter, J.A., Nafziger, E.D., 2008. Continuous corn response to residue management and 
nitrogen fertilization. Agron. J. 100, 1774–1780. https://doi.org/10.2134/agronj2008.0170

Crookston, R.K., Kurle, J.E., 1989. Corn Residue Effect on the Yield of Corn and Soybean 
Grown in Rotation. Agron. J., 81: 229-232. 
https://doi.org/10.2134/agronj1989.00021962008100020018x

Dalias, P., Anderson, J.M., Bottner, P., Coûteux, M.M., 2002. Temperature responses on net 
nitrogen mineralization and nitrification in conifer forest soils incubated under standard 
laboratory conditions. Soil Biol. Biochem. 34, 691–701. https://doi.org/10.1016/S0038-
0717(01)00234-6

Daly, C., Smith, J.I., Olson, K.V., 2015. Mapping atmospheric moisture climatologies across the 
conterminous United States. PLoS One 10 (10), e0141140. 
https://doi.org/10.1371/journal.pone.0141140

Darrah, L.L., McMullen, M., Zuber, M., 2019. Breeding, Genetics and Seed Corn Production. In 
Corn, Serna-Saldivar, S., Ed., Elsevier: Amsterdam, The Netherlands, 2019, pp. 19–41

Debruin, J., Messina, C.D., Munaro, E., Thompson, K., Conlon-Beckner, C., Fallis, L., Sevenich,
D.M., Gupta, R., Dhugga, K.S., 2013. N distribution in maize plant as a marker for grain 
yield and limits on its remobilization after flowering. Plant Breed. 132, 500–505. 
https://doi.org/10.1111/pbr.12051

Dessureault-Rompre, J., Burton, D.L., Sharifi, M., Cooper, J., Grant, C.A., Drury, C.F., 2010. 
Relationships among mineralizable soil nitrogen, soil properties, and climatic indices. 
Soil Sci. Soc. Am. J. 74, 1218–1227. https://doi.org/10.2136/sssaj2009.0213

Devienne-Baret, F., Justes, E., Machet, J.M., Mary, B., 2000. Integrated control of nitrate uptake 
by crop growth rate and soil nitrate availability under field conditions. Ann. Bot. 86, 995–
1005. https://doi.org/10.1006/anbo.2000.1264

Dhakal, C., Lange, K., Parajulee, M. N., Segarra, E., 2019. Dynamic optimization of nitrogen in 
plateau cotton yield functions with nitrogen carryover considerations. Journal of 
Agricultural and Applied Economics 51(3), 385-401. https://doi.org/10.1017/aae.2019.6

Di Ciocco, C., Penon, E., Coviella, C. Lopez, Diaz-Zorita, M., Momo, F., Alvarez, R., 2011. 
Nitrogen fixation by soybean in the Pampas: relationship between yield and soil nitrogen 
balance. Agrochimica, 55: 305-313. 

149

https://doi.org/10.1017/aae.2019.6
https://doi.org/10.1006/anbo.2000.1264
https://doi.org/10.2136/sssaj2009.0213
https://doi.org/10.1111/pbr.12051
https://doi.org/10.1371/journal.pone.0141140
https://doi.org/10.1016/S0038-0717(01)00234-6
https://doi.org/10.1016/S0038-0717(01)00234-6
https://doi.org/10.2134/agronj1989.00021962008100020018x
https://doi.org/10.2134/agronj2008.0170
https://doi.org/10.7910/DVN/EJS4M0
https://doi.org/10.1016/J.FCR.2021.108299


Dickersin, K., Min, Y., 1993. Publication bias: the problem that won’t go away. Ann. N. Y. 
Acad. Sci. 1993 (December 703), 135–146. https://doi.org/10.1111/j.1749-
6632.1993.tb26343.x 

Diepenbrock, C.H., Gore, M.A., 2015. Closing the Divide between Human Nutrition and Plant 
Breeding. Crop Sci. 55, 1437-1448. https://doi.org/10.2135/cropsci2014.08.0555

Draper, N.R., Smith, H., 1998. Applied Regression Analysis. 3rd ed. Wiley Series in Probability 
and Statistics. Wiley. https://doi.org/10.1002/9781118625590

Drinkwater, L.E., Snapp, S.S., 2007. Nutrients in agroecosystems: rethinking the management 
paradigm. Adv. Agron. 92, 163–186. https://doi.org/10.1016/S0065-2113(04)92003-2

Duarte, A.P., Mason, S.C., Jackson, D.S., Kiehl, J.D.C., 2005. Grain Quality of Brazilian Maize 
Genotypes as Influenced by Nitrogen Level. Crop Sci. 45, 1958-1964. 
https://doi.org/10.2135/cropsci2004.0587

Duveiller, G., Fasbender, D., Meroni, M., 2016. Revisiting the concept of a symmetric index of 
agreement for continuous datasets. Sci. Rep. 6, 1–14. https://doi.org/10.1038/srep19401

Elliott, J., Deryng, D., Muller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Florke, 
M., Wada, Y., Best, N., Eisner, S., Fekete, B.M., Folberth, C., Foster, I., Gosling, S.N., 
Haddeland, I., Khabarov, N.,  Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, 
A.C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., Wisser, D., 2013. Constraints and 
potentials of future irrigation water availability on agricultural production under climate 
change. Proc. Natl. Acad. Sci. U.S.A. 111, 3239–3244. 
https://doi.org/10.1073/pnas.1222474110

FAO. FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations.
[Rome]: FAO, 2021. Last access [08-16-2021]: http://www.fao.org/faostat/

Fehr, W.R., Caviness, C.E., 1977. Stages of Soybean Development. Spec. Rep., 87. 
https://lib.dr.iastate.edu/specialreports/87

Fernandez,  J.A., DeBruin,  J., Messina, C.D., Ciampitti, I.A., 2020. Late-season nitrogen 
fertilization on maize yield: a meta-analysis. Field Crops Res. 247(15), 107586. 
https://doi.org/10.1016/j.fcr.2019.107586

Fernandez, F., Fabrizzi, K., Naeve, S., 2017. Corn and soybean’s season-long in-situ nitrogen 
mineralization in drained and undrained soils. Nutr. Cycl. Agroecosyst. 107, 33–47. 
https://doi.org/10.1007/s10705-016-9810-1

Flint-Garcia, S.A., Bodnar, A.L., Scott, M.P., 2009. Wide variability in kernel composition, seed 
characteristics, and zein profiles among diverse maize inbreds, landraces, and teozinte. 
Theor. Appl. Genet. 119, 1129-1142.

150

https://doi.org/10.1007/s10705-016-9810-1
https://doi.org/10.1016/j.fcr.2019.107586
https://lib.dr.iastate.edu/specialreports/87
http://www.fao.org/faostat/
https://doi.org/10.1073/pnas.1222474110
https://doi.org/10.1038/srep19401
https://doi.org/10.2135/cropsci2004.0587
https://doi.org/10.1016/S0065-2113(04)92003-2
https://doi.org/10.1002/9781118625590
https://doi.org/10.2135/cropsci2014.08.0555
https://doi.org/10.1111/j.1749-6632.1993.tb26343.x
https://doi.org/10.1111/j.1749-6632.1993.tb26343.x


Fox, R.H., Piekielek, W.P., 1984. Relationships among anaerobically mineralized nitrogen, 
chemical indexes, and nitrogen availability to corn. Soil Sci. Soc. Am. J. 48, 1087–1090. 
https://doi.org/10.2136/sssaj1984.03615995004800050027x

Fox, R.H., Piekielek, W.P., 1995. The relationship between corn grain yield goals and economic 
optimum nitrogen fertilizer rates. Agron. Ser. 136. Pennsylvania State Univ., University 
Park. 

Francis, D.D., Schepers, J.S., Vigil, M.F., 1993. Post-anthesis nitrogen loss from corn. Agron. J. 
85, 659–663. https://doi.org/10.2134/agronj1993.00021962008500030026x

Francq, B.G., Govaerts, B.B., 2014. Measurement methods comparison with errors-in-variables 
regressions. From horizontal to vertical OLS regression, review and new perspectives. 
Chemom. Intell. Lab. Syst. 134, 123–139. https://doi.org/10.1016/j.chemolab.2014.03.006

Franzluebbers, A., 2010. Depth distribution of soil organic carbon as a signature of soil quality. 
19th World Congress of Soil Science, Soil Solutions for a Changing World, 1 – 6 August 
2010, Brisbane, Australia. 
https://www.iuss.org/19th%20WCSS/Symposium/pdf/2164.pdf

Franzluebbers, A.J., 2018. Soil-test biological activity with the flush of CO2: III. Corn yield 
responses to applied nitrogen. Soil Sci. Soc. Am. J. 82, 708–721. 
https://doi.org/10.2136/sssaj2018.01.0029

Franzluebbers, A.J., Haney, R.L., Hons, F.M., Zuberer, D.A., 1996. Active fractions of organic 
matter in soils with different texture. Soil Biol. Biochem. 28, 1367–1372. 
https://doi.org/10.1016/S0038-0717(96)00143-5

Friedman, J., 2001. Greedy function approximation:  a gradient boosting machine. Annals of 
Statistics, 29(5), 1189–1232. https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

Fuller, W.A., 1987. Measurement Error Models, 1st ed. John Wiley & Sons, Inc. 
ISBN:9780471861874 .  https://doi.org/10.1002/9780470316665

Gandah, M., Bouma, J., Brouwer, J., Hiernaux, P., Van Duivenbooden, N. 2003. Strategies to 
optimize allocation of limited nutrients to sandy soils of the Sahel: a case study from 
Niger, West Africa.  Agric. Ecosyst. Environ. 94(3), 311-319. 
https://doi.org/10.1016/S0167-8809(02)00035-X

Gauch, H.G., Hwang, J.T.G., Fick, G.W., 2003. Model evaluation by comparison of model-based
predictions and measured values. Agron. J. 95, 1442–1446. 
https://doi.org/10.2134/agronj2003.1442

Gaudin, A.C.M., Tolhurst, T.N., Ker, A.P., Janovicek, K., Tortora, C., et al., 2015. Increasing 
Crop Diversity Mitigates Weather Variations and Improves Yield Stability. PLoS ONE 
10(2), e0113261. https://doi.org/10.1371/journal.pone.0113261

151

https://doi.org/10.1371/journal.pone.0113261
https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.1016/S0167-8809(02)00035-X
https://doi.org/10.1002/9780470316665
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://doi.org/10.1016/S0038-0717(96)00143-5
https://doi.org/10.2136/sssaj2018.01.0029
https://www.iuss.org/19th%20WCSS/Symposium/pdf/2164.pdf
https://doi.org/10.1016/j.chemolab.2014.03.006
https://doi.org/10.2134/agronj1993.00021962008500030026x
https://doi.org/10.2136/sssaj1984.03615995004800050027x


Ge, T.D., Sui, F.G., Nie, S., Sun, N.B., Xiao, H., Cheng, L.T.. Differential responses of yield and
selected nutritional compositions to drought stress in summer maize grains. J. Plant Nutr. 
2010, 33(12), 1811-1818. https://doi.org/10.1080/01904167.2010.503829

Gelman, A., 2006. Prior distributions for variance parameters in hierarchical models. Bayesian 
Anal. 1 (3), 515-534. https://doi.org/10.1214/06-BA117A

Geman, S., Geman, D., 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian 
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 
6 (6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596

Genter, C.F., Eheart, J.F., Linkous, W.N., 1956. Effect of location, hybrid, fertilizer, and rate of 
planting on the oil and protein content of corn grain. Agron. J. 48, 63–67.

Gneiting, T., 2011. Making and evaluating point forecasts. J. Am. Stat. Assoc. 106, 746–762. 
https://doi.org/10.1198/jasa.2011.r10138

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google 
earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 
https://doi.org/10.1016/j.rse.2017.06.031

Gupta, H. V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean 
squared error and NSE performance criteria: Implications for improving hydrological 
modelling. J. Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

Halvorson, A.D., Reule, C.A., 2006. Irrigated Corn and Soybean Response to Nitrogen under 
No-Till in Northern Colorado. Agron. J., 98: 1367-1374. 
https://doi.org/10.2134/agronj2006.0065

Harrison, S.R., 1990. Regression of a model on real-system output: An invalid test of model 
validity. Agric. Syst. 34, 183–190. https://doi.org/10.1016/0308-521X(90)90083-3

Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association with 
clay and silt particles. Plant Soil 191, 77–87. https://doi.org/10.1023/A:1004213929699

Heady, E.O., Pesek, J., 1954. A fertilizer production function surface with specification of 
economic optima for corn grown on calcareous Ida silt loam. J. Farm Econ. 36 (3), 466–
482. https://doi.org/10.2307/1233014

Hedges, L.V., Gurevitch, J., Curtis, P.S. The Meta-Analysis of Response Ratios in Ecology. 
Ecology 1999, 80, 1150–1156.

Hernandez, J.A., Mulla, D.J., 2008. Estimating uncertainty of economically optimum fertilizer 
rates. Agron. J. 100, 1221–1229. https://doi.org/10.2134/agronj2007.0273

Holzworth, D., Huth, N.I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., Verrall, S., 
Herrmann, N.I., Zheng, B., Snow, V., 2018. APSIM Next Generation: Overcoming 

152

https://doi.org/10.2134/agronj2007.0273
https://doi.org/10.2307/1233014
https://doi.org/10.1023/A:1004213929699
https://doi.org/10.1016/0308-521X(90)90083-3
https://doi.org/10.2134/agronj2006.0065
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1214/06-BA117A


challenges in modernising a farming systems model. Environ. Model. Softw. 103, 43–51. 
https://doi.org/10.1016/j.envsoft.2018.02.002

Hooten, M.B., Hefley, T.J., 2019. Bringing Bayesian Models to Life. CRC Press, Boca Raton, 
FL : CRC Press, Taylor & Francis Group, 2019. https://doi.org/10.1201/9780429243653

Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: a conditional 
inference framework. J. Comput. Graph. Stat. 15 (3), 651–674. 
https://doi.org/10.1198/106186006X133933

Howard, D.D., Chambers, A.Y., Lessman, G.M., 1998. Rotation and fertilization effects on corn 
and soybean cyst nematode populations in a no-tillage system. Agron. J. 90: 518-522. 
https://doi.org/10.2134/agronj1998.00021962009000040013x

Hunt, S., King, B.J., Layzell, D.B., 1989. Effects of gradual increases in O2 concentration on 
nodule activity in soybean. Plant Physiol. 91: 315–321. 
https://doi.org/10.1104/pp.91.1.315

Hussain, S., Maqsood, M. Ijaz, M., Ul-Allah, S., Sattar, A., Sher, A., Nawaz, A., 2020. 
Combined application of potassium and zinc improves water relations, stay green, 
irrigation water use efficiency, and grain quality of maize under drought stress. J. Plant 
Nutr. 43(14), 2214-2225. https://doi.org/10.1080/01904167.2020.1765181

Iizumi, T., Yokozawa, M., Nishimori, M., 2009. Parameter estimation and uncertainty analysis 
of a large-scale crop model for paddy rice: application of a Bayesian approach. Agric. 
For. Meteorol. 149 (2), 333–348. https://doi.org/10.1016/j.agrformet.2008.08.015

Iqbal, J., Necpalova, M., Archontoulis, S.V., Anex, R., Bourguignon, M., Herzmann, D., 
Mitchell, D.C., Sawyer, J.E., Zhu, Q., Castellano, M.J., 2018. Extreme weather-year 
sequences have nonadditive effects on environmental nitrogen losses. Glob Change Biol. 
24, 303–317. https://doi.org/10.1111/gcb.13866

Isobe, T., Feigelson, E.D., Akritas, M.G., Babu, G.J., 1990. Linear regression in astronomy. 
Astrophys. J. 364, 104-113. https://doi.org/10.1086/169390

Jahangirlou, M.R., Akbari, G.A., Alahdadi, I., Soufizadeh, S., Parsons, D., 2021. Grain Quality 
of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A 
Case Study from Semiarid Conditions of Iran. Agriculture 11, 11. 
https://doi.org/10.3390/agriculture11010011

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning 
with Applications in R, 1st ed. Springer, New York. https://doi.org/10.1007/978-1-4614-
7138-7

Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-oriented models. Ecol. Modell.
83, 55–66. https://doi.org/10.1016/0304-3800(95)00084-9

153

https://doi.org/10.1016/0304-3800(95)00084-9
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.3390/agriculture11010011
https://doi.org/10.1086/169390
https://doi.org/10.1111/gcb.13866
https://doi.org/10.1016/j.agrformet.2008.08.015
https://doi.org/10.1080/01904167.2020.1765181
https://doi.org/10.1104/pp.91.1.315
https://doi.org/10.2134/agronj1998.00021962009000040013x
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1201/9780429243653
https://doi.org/10.1016/j.envsoft.2018.02.002


Jaynes, D.B., 2011. Confidence bands for measured economically optimal nitrogen rates. Precis. 
Agric. 12 (2), 196–213. https://doi.org/10.1007/s11119-010-9168-3

Ji, L., Gallo, K., 2006. An agreement coefficient for image comparison. Photogramm. Eng. 
Remote Sensing. 7, July 2006, 823-833. https://doi.org/10.14358/PERS.72.7.823

Jolicoeur, P., 1990. Bivariate allometry: Interval estimation of the slopes of the ordinary and 
standardized normal major axes and structural relationship. J. Theor. Biol. 144(2), 275-
285. https://doi.org/10.1016/S0022-5193(05)80326-1

Jolliffe, I.T., 2002. Principal Component Analysis, Second Edition. 487 pp. Springer. ISBN:0-
387-95442-2

Jones, J.W, Hoogenboom, G., Porter, C., Boote, K.J., Batchelor, W.D., Hunt, L.A., 2003. 
DSSAT cropping system model. Eur. J. Agron. 18, 235-265. 
https://doi.org/10.1016/S1161-0301(02)00107-7

Jones, J.W., Hansen, J.W., Royce, F.S., Messina, C.D., 2000. Potential benefits of climate 
forecasting to agriculture. Agric. Ecosyst. Environ. 82(1-3), 169-184. 
https://doi.org/10.1016/S0167-8809(00)00225-5

Jordan, M.I., Mitchell, T.M., 2015. Machine learning: trends, perspectives, and prospects.  
Science 349, 255–260. https://doi.org/10.1126/science.aaa8415

Khaki, S., Wang, L., 2019. Crop yield prediction using deep neural networks. Front. Plant Sci. 
10, 621. https://doi.org/10.3389/fpls.2019.00621

Kim, K.I., Clay, D., Clay, S., Carlson, G., Trooien, T., 2013. Testing corn (Zea mays L.) 
preseason regional nitrogen recommendation models in South Dakota. Agron. J. 105, 
1619–1625. https://doi.org/10.2134/agronj2013.0166

Kitchen, N.R., Sudduth, K.A., Drummond, S.T., Scharf, P.C., Palm, H.L., Roberts, D.F., Vories, 
E.D., 2010. Ground-based canopy reflectance sensing for variable-rate nitrogen corn 
fertilization. Agron. J. 102, 71–84. https://doi.org/10.2134/agronj2009.0114

Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an 
ensemble of climate change scenarios. J. Hydrol. 424-425, 264-277. 
https://doi.org/10.1016/j.jhydrol.2012.01.011

Kobayashi, K., Salam, M.U., 2000. Comparing simulated and measured values using mean 
squared deviation and its components. Agron. J. 92, 345–352. 
https://doi.org/10.2134/agronj2000.922345x

Komarek, A.M., De Pinto, A., Smith, V.H., 2020. A review of types of risks in agriculture: what 
we know and what we need to know. Agric. Syst. 178, 102738. 
https://doi.org/10.1016/j.agsy.2019.102738

154

https://doi.org/10.1016/j.agsy.2019.102738
https://doi.org/10.2134/agronj2000.922345x
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.2134/agronj2009.0114
https://doi.org/10.2134/agronj2013.0166
https://doi.org/10.3389/fpls.2019.00621
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/S0167-8809(00)00225-5
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S0022-5193(05)80326-1
https://doi.org/10.14358/PERS.72.7.823
https://doi.org/10.1007/s11119-010-9168-3


Krause, P., Boyle, D.P., Base, F., 2005. Comparison of different efficiency criteria for 
hydrological model assessment. Adv. Geosci. 5, 89–97. https://doi.org/10.5194/adgeo-5-
89-2005

Kresović, B., Gajić, B., Tapanarova, A., Dugalić, G. How irrigation eater affects the yield and 
nutritional quality of maize (Zea mays L.) in a temperate climate. Polish J. Environ. 
Studies 2018, 27(3), 1123-1131. https://doi.org/10.15244/pjoes/76674

Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S., 2014. Cross-validation pitfalls when  
selecting and assessing regression and classification models. J. Cheminform. 2014 (6), 
10. http://www.jcheminf.com/content/6/1/10

Kucharik, C.J., 2008. Contribution of planting date trends to increased maize yields in the central
United States. Agron. J. 100, 328–336. https://doi.org/10.2134/agrojnl2007.0145

Kyveryga, P., Blackmer, A.M., Morris, T.F., 2007. Disaggregating model bias and variability 
when calculating economic optimum rates of nitrogen fertilization for corn. Agron. J., 99,
1048–1056. https://doi.org/10.2134/agronj2006.0339

Kyveryga, P.M., Blackmer, A.M., Zhang, J., 2009. Characterizing and classifying variability in 
corn yield response to nitrogen fertilization on subfield and field scales. Agron. J. 101, 
269–277. https://doi.org/10.2134/agronj2008.0168

Lacasa, J., Gaspar, A., Hinds, M., Don, S.J., Berning, D., Ciampitti, I.A., 2020. Bayesian 
approach for maize yield response to plant density from both agronomic and economic 
viewpoints in North America. Sci. Rep. 10, 15948. https://doi.org/10.1038/s41598-020-
72693-1

Lal, R., 2004. Soil carbon sequestration impacts on climate change and food security. Science 
304, 1623–1627. https://doi.org/10.1126/science.1097396

Laurent, A., Miguez, F., Kyveryga, P., Makowski, D. 2020. Going beyond mean effect size: 
Presenting prediction intervals for on-farm network trial analyses. Eur. J. Agron. 120, 
126127. https://doi.org/10.1016/j.eja.2020.126127

Legendre, P., Legendre, L., 1998. Numerical Ecology, 2nd edition. 852 pp. Elsevier Science. 
ISBN:9780080523170. 
https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-89249-2

Lemaire, G., Ciampitti, I.A., 2020. Crop mass and N status as prerequisite covariables for 
unraveling nitrogen use efficiency across genotype-by-environment-by-management 
scenarios: A review. Plants, 9(10): 1309. https://doi.org/10.3390/plants9101309

Lenis, N.P., Van Diepen, H.T.M., Bikker, P., Jongbloed, A.W., Van Der Meulen, J. Effect of the 
ratio between essential and nonessential amino acids in the diet on utilization of nitrogen 
and amino acids by growing pigs. J. Anim. Sci. 1999, 77, 1777–1787.

155

https://doi.org/10.3390/plants9101309
https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-89249-2
https://doi.org/10.1016/j.eja.2020.126127
https://doi.org/10.1126/science.1097396
https://doi.org/10.1038/s41598-020-72693-1
https://doi.org/10.1038/s41598-020-72693-1
https://doi.org/10.2134/agronj2008.0168
https://doi.org/10.2134/agronj2006.0339
https://doi.org/10.2134/agrojnl2007.0145
http://www.jcheminf.com/content/6/1/10
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.5194/adgeo-5-89-2005


Lin, L., Hedayat, A.S., Sinha, B., Yang, M., 2002. Statistical methods in assessing agreement: 
Models, issues, and tools. J. Am. Stat. Assoc. 97, 257–270. 
https://doi.org/10.1198/016214502753479392

Lin, L.I.-K., 1989. A Concordance Correlation Coefficient to Evaluate Reproducibility. 
Biometrics 45(1), 255-268. https://doi.org/10.2307/2532051

Liu, S., Yang Zhang, J.Y., Drury, X.Y., Reynolds, C.F., Hoogenboom, G., 2013. Modelling crop 
yield, soil water content and soil temperature for a soybean–maize rotation under 
conventional and conservation tillage systems in Northeast China. Agric. Water Manage. 
123, 32–44. https://doi.org/10.1016/j.agwat.2013.03.001

Liu, S., Cui, S., Zhang, X.,Wang, Y., Mi, G., Gao, Q., 2020. Synergistic regulation of nitrogen 
and sulfur on redox balance of maize leaves and amino acids balance of grains. Front. 
Plant Sci., 11, 576718. https://doi.org/10.3389/fpls.2020.576718

Loague, K., Green, R.E., 1991. Statistical and graphical methods for evaluating solute transport 
models: Overview and application. J. Contam. Hydrol. 7, 51–73. 
https://doi.org/10.1016/0169-7722(91)90038-3

Lory, J.A., Scharf, P.C., 2003. Yield goal versus delta yield for predicting fertilizer nitrogen need
in corn. Agron. J. 95, 994–999. https://doi.org/10.2134/agronj2003.0994

Lu, D., Cai, X., Zhao, J., Shen, X., Lu, W. Effects of drought after pollination on grain yield and 
quality of fresh waxy maize. J. Sci. Food Agric. 2014, 95: 210-215. 
https://doi.org/10.1002/jsfa.6709

Ma, B.L., Biswas, D.K., 2016. Field-level comparison of nitrogen rates and application methods 
on maize yield, grain quality and nitrogen use efficiency in a humid environment. J. Plant
Nutr. 39(5), 727-741. https://doi.org/10.1080/01904167.2015.1106556

Mahal, N.K., Osterholz, W.R., Miguez, F.E., Poffenbarger, H.J., Sawyer, J.E., Olk, D.C., 
Archontoulis, S.V., Castellano, M.J., 2019. Nitrogen fertilizer suppresses mineralization 
of soil organic matter in maize agroecosystems. Frontiers in Ecology and Evolution, 
7(MAR). https://doi.org/10.3389/fevo.2019.00059

Makowski, D., 2017. A simple bayesian method for adjusting ensemble of crop model outputs to
yield observations. Eur. J. Agron. 88, 76-83. https://doi.org/10.1016/j.eja.2015.12.012

Makowski, D., et al., 2015. A statistical analysis of ensembles of crop model responses to 
climate change factors. Agric. For. Meteorol. 214–215, 483–493. 
https://doi.org/10.1016/j.agrformet.2015.09.013

Makowski, D., Jeuffroy, M. Guérif, M., 2004. Bayesian methods for updating crop-model 
predictions, applications for predicting biomass and grain protein content. Frontis, 57-68. 
https://library.wur.nl/ojs/index.php/frontis/article/view/858

156

https://library.wur.nl/ojs/index.php/frontis/article/view/858
https://doi.org/10.1016/j.agrformet.2015.09.013
https://doi.org/10.1016/j.eja.2015.12.012
https://doi.org/10.3389/fevo.2019.00059
https://doi.org/10.1080/01904167.2015.1106556
https://doi.org/10.1002/jsfa.6709
https://doi.org/10.2134/agronj2003.0994
https://doi.org/10.1016/0169-7722(91)90038-3
https://doi.org/10.3389/fpls.2020.576718
https://doi.org/10.1016/j.agwat.2013.03.001
https://doi.org/10.2307/2532051
https://doi.org/10.1198/016214502753479392


Mallarino, A.P., Pecinovsky, K.T. 2007. Effects of Crop Rotation and Nitrogen Fertilization of 
Corn on Yields of Corn, Soybean, and Oats. Iowa State Research Farm Progress Reports 
914. http://lib.dr.iastate.edu/farms_reports/914

Mariotti, F., Tomé, D., Patureau Mirand, P., 2008. Converting nitrogen into protein-beyond 6.25 
and Jones' factors. Critical Reviews in Food Science and Nutrition 48(2), 177-184, 
https://doi.org/10.1080/10408390701279749

Martinez-Feria, R.A, Castellano, M.J., Dietzel, R.N., Helmers, M.J., Liebman, M., Huber, I., 
Archontoulis, S.V., 2018. Linking crop- and soil-based approaches to evaluate system 
nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131-143. 
https://doi.org/10.1016/j.agee.2018.01.002

Martínez, R.D., Cirilo, A.G., Cerrudo, A.A., Andrade, F.H., Izquierdo, N.G., 2017. 
Discriminating post-silking environmental effects on starch composition in maize 
kernels. J. Cereal Sci. 87, 150-156, https://doi.org/10.1016/j.jcs.2019.03.011

Mase, A.S., Grami, B.M., Prokopy, L.S., 2017. Climate change beliefs, risk perceptions, and 
adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Manag. 15, 8-
17. https://doi.org/10.1016/j.crm.2016.11.004

Mason, S.C., D’Croz-Mason, N.E., 2002. Agronomic practices influence maize grain quality. J. 
Crop Prod., 5:75–91.

Mayer, D.G., Butler, D.G., 1993. Statistical validation. Ecol. Modell. 68, 21–32. 
https://doi.org/10.1016/0304-3800(93)90105-2

Mayer, D.G., Stuart, M.A., Swain, A.J., 1994. Regression of real-world data on model output: 
An appropriate overall test of validity. Agric. Syst. 45, 93–104. 
https://doi.org/10.1016/S0308-521X(94)90282-8

McArdle, B.H., 1988. The structural relationship: regression in biology. Can. J. Zool. 66, 2329–
2339. https://doi.org/10.1139/z88-348

McArdle, B.H., 2003. Lines, models, and errors: Regression in the field. Limnol. Oceanogr. 48, 
1363–1366. https://doi.org/10.4319/lo.2003.48.3.1363

McDaniel, M., Walters, D,, Bundy, L., Li, X., Drijber, R.A., Sawyer, J.E., Castellano, M.J., 
Laboski, C.A.M., Scharf, P.C., Horwath, W.R., 2020. Combination of biological and 
chemical soil tests best predict maize nitrogen response. Agron. J. 112, 1263– 1278. 
https://doi.org/10.1002/agj2.20129

McMurtrie, R. E., Näsholm, T., 2018. Quantifying the contribution of mass flow to nitrogen 
acquisition by an individual plant root. New Phytologist, 218: 119-130. 
https://doi.org/10.1111/nph.14927

Meisinger, J.J., Schepers, J.S., Raun, W.R., 2008. Crop nitrogen requirement and fertilization. In:
Schepers, J.S., Raun, W.R. (Eds.), Nitrogen in Agricultural Systems. Agron. Monogr. 49.

157

https://doi.org/10.1111/nph.14927
https://doi.org/10.1002/agj2.20129
https://doi.org/10.4319/lo.2003.48.3.1363
https://doi.org/10.1139/z88-348
https://doi.org/10.1016/S0308-521X(94)90282-8
https://doi.org/10.1016/0304-3800(93)90105-2
https://doi.org/10.1016/j.crm.2016.11.004
https://doi.org/10.1016/j.jcs.2019.03.011
https://doi.org/10.1016/j.agee.2018.01.002
https://doi.org/10.1080/10408390701279749
http://lib.dr.iastate.edu/farms_reports/914


ASA, CSSA, and SSSA, Madison, WI, pp. 563–612. 
http://www.chesapeake.org/stac/presentations/63_Meisinger%20J%20et
%20al_2008b_Crop%20nitrogen%20requirement%20and%20fiertilization.pdf

Melkonian, J.J., van Es, H.M., Joseph, L., 2008. Adapt-N: Adaptive nitrogen management for 
maize using high-resolution climate data and model simulations. In: R. Koshla, Ed., 
Proceedings of the 9th International Conference on Precision Agriculture. Denver, CO. 
International Society f Precision Agriculture, Monticello, IL, USA.

Meng, Q., Chen, X., Lobell, D., Cui, Z., Zhang, Y., Yang, H., Zhang, F., 2016. Growing 
sensitivity of maize to water scarcity under climate change. Sci Rep 6, 19605, 
https://doi.org/10.1038/srep19605

Mesbah, M., Pattey, E., Jego, G., 2017. A model-based methodology to derive optimum nitrogen
rates for rainfed crops a case study for corn using STICS in Canada. Comput. Electron. 
Agric., 142: 572–584. https://doi.org/10.1016/j.compag.2017.11.011

Messina, C.D., Cooper, M., Reynolds, M., Hammer, G., 2020. Crop science: a foundation for 
advancing predictive agriculture. Crop Sci. 60, 544–546. 
https://doi.org/10.1002/csc2.20116

Messina, C.D., Hammer, G.L., Dong, Z., Podlich, D., Cooper, M., 2009. Modelling crop 
improvement in a G*E*M framework via gene-trait-phenotype relationships. In: Sadras, 
V., Calderini, D. (Eds.), Crop Physiology: Interfacing With Genetic Improvement and 
Agronomy. Elsevier, p. 2009. https://doi.org/10.1016/B978-0-12-374431-9.00010-4

Miao, Y., Mulla, D.J., Robert, P.C., Hernandez, J.A., 2006. Within‐Field Variation in Corn Yield
and Grain Quality Responses to Nitrogen Fertilization and Hybrid Selection. Agron. J. 
98, 129-140. https://doi.org/10.2134/agronj2005.0120

Miller, R.G. Jr., 1986. Chapter 5: Regression. In: Beyond ANOVA, Basics of applied statistics. 
John Wiley & Sons, Inc. New York. 317pp. ISBN: 0-471-81922-0

Mitchell, P.L., 1997. Misuse of regression for empirical validation of models. Agric. Syst. 54, 
313–326. https://doi.org/10.1016/S0308-521X(96)00077-7

Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9 (3),
747–766. https://doi.org/10.2307/2401901

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. 
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed 
Simulations. Trans. ASABE 50, 885–900. https://doi.org/10.13031/2013.23153

Moro Rosso, L.H., 2021. Study of plant and soil factors affecting seasonal nitrogen fixation, 
yield formation and seed composition in soybeans. [Master thesis, Kansas State 
University]. In-press.

158

https://doi.org/10.13031/2013.23153
https://doi.org/10.2307/2401901
https://doi.org/10.1016/S0308-521X(96)00077-7
https://doi.org/10.1016/B978-0-12-374431-9.00010-4
https://doi.org/10.1002/csc2.20116
https://doi.org/10.1016/j.compag.2017.11.011
https://doi.org/10.1038/srep19605
http://www.chesapeake.org/stac/presentations/63_Meisinger%20J%20et%20al_2008b_Crop%20nitrogen%20requirement%20and%20fiertilization.pdf
http://www.chesapeake.org/stac/presentations/63_Meisinger%20J%20et%20al_2008b_Crop%20nitrogen%20requirement%20and%20fiertilization.pdf


Morris, C., Sands, D., 2006. The breeder's dilemma—yield or nutrition?. Nat Biotechnol. 24, 
1078–1080. https://doi.org/10.1038/nbt0906-1078

Morris, T.F., Murrell, T.S., Beegle, D.B., Camberato, J.J., Ferguson, R.B., Grove, J., Ketterings, 
Q., Kyveryga, P.M., Laboski, C.A., McGrath, J.M., Meisinger, J.J., Melkonian, J., 
Moebius-Clune, B.N., Nafziger, E.D., Osmond, D., Sawyer, J.E., Scharf, P.C., Smith, W.,
Spargo, J.T., van Es, H.M., Yang, H., 2018. Strengths and limitations of nitrogen rate 
recommendations for corn and opportunities for improvement. Agron. J. 110,  1-37. 
https://doi.org/10.2134/agronj2017.02.0112

Motukuri, S.R. Quality Protein Maize: An Alternative Food to Mitigate Protein Deficiency in 
Developing Countries. 2020. https://doi.org/10.5772/intechopen.89038

Mourtzinis, S., Kaur, G., Orlowski, J. M., Shapiro, C. A., Lee, C. D., Wortmann, C., Holshouser,
D., Nafziger, E. D., Kandel, H., Niekamp, J., Ross, W. J., Lofton, J., Vonk, J., 
Roozeboom, K. L., Thelen, K. D., Lindsey, L. E., Staton, M., Naeve, S. L., Casteel, S. N.,
Conley, S. P., 2018. Soybean response to nitrogen application across the United States: A
synthesis-analysis. Field Crops Res., 215: 4-82. https://doi.org/10.1016/j.fcr.2017.09.035

Mourtzinis, S., Rattalino-Edreira, J.I., Conley, S.P., Grassini, P., 2017. From grid to field: 
assessing the quality of gridded weather data for agricultural applications. Eur. J. Agron. 
82(A), 163-172. https://doi.org/10.1016/j.eja.2016.10.013

Muchow, R.C., Sinclair, T.R., Bennett, J.M., 1990. Temperature and solar radiation effects on 
potential maize yield across locations. Agron. J. 82, 338–343. 
https://doi.org/10.2134/agronj1990.00021962008200020033x

Mueller, N., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. Closing 
yield gaps through nutrient and water management. Nature 490, 254–257. 
https://doi.org/10.1038/nature11420

Mueller, S.M., Pasley, H.R., Olmedo Pico, L., Armstrong, S.D., Sripada, R.P., Vyn, T.J., 2018. 
Re-Evaluation of Soil Nitrogen Sampling Strategy Effects on Statistical Power. Comm. 
Soil Sci. Plant Anal., 49(16): 2053-2063. 
https://doi.org/10.1080/00103624.2018.1495728

Mueller, S.M., Messina, C.D., Vyn, T.J., 2019. Simultaneous gains in grain yield and nitrogen 
efficiency over 70 years of maize genetic improvement. Sci. Rep. 9, 9095. 
https://doi.org/10.1038/s41598-019-45485-5

Narteh, L.T., Sahrawat, K.L., 1997. Potentially mineralizable nitrogen in West African lowland 
rice soils. Geoderma 76 (1–2), 145–154. https://doi.org/10.1016/S0016-7061(96)00097-3

Nash, J.E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models. Part I - A 
discussion of principles. J. Hydrol. 10(3), 282-290. https://doi.org/10.1016/0022-
1694(70)90255-6

159

https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/S0016-7061(96)00097-3
https://doi.org/10.1038/s41598-019-45485-5
https://doi.org/10.1080/00103624.2018.1495728
https://doi.org/10.1038/nature11420
https://doi.org/10.2134/agronj1990.00021962008200020033x
https://doi.org/10.1016/j.eja.2016.10.013
https://doi.org/10.1016/j.fcr.2017.09.035
https://doi.org/10.2134/agronj2017.02.0112
https://doi.org/10.1038/nbt0906-1078


Nigon, T.J., Yang, C., Mulla, D.J, Kaiser, D.E., 2019. Computing uncertainty in the optimum 
nitrogen rate using a generalized cost function. Comp. Electr. Agric. 167, 105030.  
https://doi.org/10.1016/j.compag.2019.105030

Nolan, E., Santos, P., 2019. Genetic modification and yield risk: a stochastic dominance analysis 
of corn in the USA. PLOS ONE 14(10), e0222156. 
https://doi.org/10.137/journal.pone.0222156

O'Leary, M.J., Rehm, G.W., 1990. Nitrogen and sulfur effects on the yield and quality of corn 
grown for grain and silage. J. Prod. Agric. 3, 135-140. 
https://doi.org/10.2134/jpa1990.0135

Oldfield, E.E., Bradford, M.A., Wood, S.A., 2019. Global meta-analysis of the relationship 
between soil organic matter and crop yields. Soil 5, 15–32. https://doi.org/10.5194/soil-5-
15-2019

Ortez, O.A., Salvagiotti, F., Enrico, J.M., Prasad, P.V.V., Armstrong, P., Ciampitti, I.A., 2018. 
Exploring Nitrogen Limitation for Historical and Modern Soybean Genotypes. Agron. J. 
110: 2080-2090. https://doi.org/10.2134/agronj2018.04.0271

Osborne, S.L., Riedell, W.E., 2006. Starter Nitrogen Fertilizer Impact on Soybean Yield and 
Quality in the Northern Great Plains. Agron. J., 98: 1569-1574. 
https://doi.org/10.2134/agronj2006.0089

Osman, A.I.A., Ahmed, A.N., Chow, M.F., Huang, Y.F., El-Shafie, A., 2021. Extreme gradient 
boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain. 
Shams. Eng. J. 2021, https://doi.org/10.1016/j.asej.2020.11.011

Overpeck, J.T., Meehl, G.A., Bony, S., Easterling, D.R., 2011. Climate data challenges in the 
21st century. Science 331(618), 700-702, https://doi.org/10.1126/science.1197869

Pannel, D.J., 1997. Sensitivity analysis of normative economic models: theoretical framework 
and practical strategies. Agric. Econ. 16(2), 139-152. https://doi.org/10.1016/S0169-
5150(96)01217-0

Park, S., Kim, J., 2021. The Predictive Capability of a Novel Ensemble Tree-Based Algorithm 
for Assessing Groundwater Potential. Sustainability 13(5), 2459. 
https://doi.org/10.3390/su13052459

Perry, L.J., Jr., Olson, R.A., 1975. Yield and quality of corn and grain sorghum grain and 
residues as influenced by N fertilization. Agron. J. 67, 816-818. 
https://doi.org/10.2134/agronj1975.00021962006700060023x

Philibert, A., Loyce, C., Makowski, D., 2012. Assessment of the quality of meta-analysis in 
agronomy. Agric. Ecosyst. Environ. 148, 72–82. 
https://doi.org/10.1016/j.agee2011.12.003

160

https://doi.org/10.1016/j.agee2011.12.003
https://doi.org/10.2134/agronj1975.00021962006700060023x
https://doi.org/10.3390/su13052459
https://doi.org/10.1016/S0169-5150(96)01217-0
https://doi.org/10.1016/S0169-5150(96)01217-0
https://doi.org/10.1126/science.1197869
https://doi.org/10.1016/j.asej.2020.11.011
https://doi.org/10.2134/agronj2006.0089
https://doi.org/10.2134/agronj2018.04.0271
https://doi.org/10.5194/soil-5-15-2019
https://doi.org/10.5194/soil-5-15-2019
https://doi.org/10.2134/jpa1990.0135
https://doi.org/10.137/journal.pone.0222156
https://doi.org/10.1016/j.compag.2019.105030


Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate models: 
Observed vs. predicted or predicted vs. observed? Ecol. Modell. 216, 316–322. 
https://doi.org/10.1016/j.ecolmodel.2008.05.006

Pinto, P., Rubio, G., Gutierrez, F., Sawchik, J., Arana, S., Piñeiro, G., 2021. Variable root:shoot 
ratios and plant nitrogen concentrations discourage using just aboveground biomass to 
select legume service crops. Plant Soil 463: 34-358. https://doi.org/10.1007/s11104-021-
04916-x

Plenet, D., Lemaire, G., 2000. Relationships between dynamics of nitrogen uptake and dry 
matter accumulation in maize crops. Plant Soil 216, 65–82. 
https://doi.org/10.1023/A:1004783431055

Plummer, M., Stukalov, A., Denwood, M., 2019. Package ‘rjags’. CRAN Repository. 19pp. 
ftp://journal.r-project.org/pub/R/web/packages/rjags/rjags.pdf

Poffenbarger, H.J., Barker, D.W., Helmers, M.J., Miguez, F.E., Olk, D.C., et al., 2017. 
Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are 
optimally nitrogen-fertilized. PLOS ONE 12(3): e0172293. 
https://doi.org/10.1371/journal.pone.0172293

Probst, P., Wright, M.N., Boulesteix, A.L., 2019. Hyperparameters and tuning strategies for 
random forest. WIREs Data Mining Knowl. Discov. 2019 (9), e1301. 
https://doi.org/10.1002/widm.1301

Puntel, L.A., A. Pagani, Archontoulis, S.V., 2019. Development of a nitrogen recommendation 
tool for corn considering static and dynamic variables. Eur. J. Agron. 105, 189-199. 
https://doi.org/10.1016/j.eja.2019.01.003

Puntel, L.A., Sawyer, J.E., Barker, D.W., Dietzel, R., Poffenbarger, H., Castellano, M.J., 2016. 
Modeling long-term corn yield response to nitrogen rate and crop rotation. Front. Plant 
Sci. 7, 630. https://doi.org/10.3389/fpls.2016.01630

Puntel, L.A., Sawyer, J.E., Barker, D.W., Thorburn, P.J., Castellano, M.J., Moore, K.J., 
VanLoocke, A., Heaton, E.A., Archontoulis, S.V., 2018. A systems modeling approach to
forecast corn economic optimum nitrogen rate. Front. Plant Sci. 9, 436. 
https://doi.org/10.3389/fpls.2018.00436

Qin, Z., Myers, D.B., Ransom, C.J., Kitchen, N.R., Liang, S.-Z., Camberato, J.J., Carter, P. R., 
Ferguson, R.B., Fernandez, F.G., Franzen, D.W., Laboski, C.A., Malone, B.D., Nafziger, 
E.D., Sawyer, J.E., Shanahan, J.F., 2018. Application of machine learning methodologies
for predicting corn economic optimal nitrogen rate. Agron. J. 110, 2596–2607. 
https://doi.org/10.2134/agronj2018.03.0222

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. http://R-project.org

161

http://R-project.org/
https://doi.org/10.2134/agronj2018.03.0222
https://doi.org/10.3389/fpls.2018.00436
https://doi.org/10.3389/fpls.2016.01630
https://doi.org/10.1016/j.eja.2019.01.003
https://doi.org/10.1002/widm.1301
https://doi.org/10.1371/journal.pone.0172293
ftp://journal.r-project.org/pub/R/web/packages/rjags/rjags.pdf
https://doi.org/10.1023/A:1004783431055
https://doi.org/10.1007/s11104-021-04916-x
https://doi.org/10.1007/s11104-021-04916-x
https://doi.org/10.1016/j.ecolmodel.2008.05.006


Ramanantenasoa, M.M.J., G´enermont, S., Gilliot, J.M., Bedos, D., Makowski, D., 2019. Meta-
modeling methods for estimating ammonia volatilization from nitrogen fertilizer and 
manure applications. J. Environ. Manage. 236, 195–205. 
https://doi.org/10.1016/j.jenvman.2019.01.066

Ransom, C.J., Kitchen, N.R., Camberato, J.J., Carter, P.R., Ferguson, R.B., Fernandez, F.G., 
Franzen, D.W., Laboski, C.A.M., Myers, D.B., Nafziger, E.D., Sawyer, J.E., Shanahan, 
J.F., 2019. Statistical and machine learning methods evaluated for incorporating soil and 
weather into corn nitrogen recommendations. Comput. Electron. Agric. 164 (2019), 
104872. https://doi.org/10.1016/j.compag.2019.104872

Raun, W.R., Dhillon, J., Aula, L., Eickhoff, E., Weymeyer, G., Figueirdeo, B., Lynch, T., 
Omara, P., Nambi, E., Oyebiyi, F., Fornah, A., 2019. Unpredictable Nature of 
Environment on Nitrogen Supply and Demand. Agron. J. 111, 2786-2791. 
https://doi.org/10.2134/agronj2019.04.0291

Raun, W.R., Dhillon, J., Aula, L., Eickhoff, E., Weymeyer, G., Figueirdeo, B., Lynch, T., 
Omara, P., Nambi, E., Oyebiyi, F., Fornah, A. Unpredictable Nature of Environment on 
Nitrogen Supply and Demand. Agron. J. 111, 2786-2791. 
https://doi.org/10.2134/agronj2019.04.0291

Reckhow, K.H., Clements, J.T., Dodd, R.C., 1990. Statistical evaluation of mechanistic water-
quality models. J. Environ. Eng. 116, 250-268. https://doi.org/10.1061/(ASCE)0733-
9372(1990)116:2(250)

Ricker, W.E., 1984. Computation and uses of central trend lines. Can. J. Zool. 62(10): 1897-
1905.  https://doi.org/10.1139/z84-279

Riedell, W.E., 2014. Nitrogen fertilizer applications to maize after alfalfa: grain yield, kernel 
composition, and plant mineral nutrients. J. Plant Nutr. 37 (12), 2026–2035. 
https://doi.org/10.1080/01904167.2014.911892

Ros, G.H., Hanegraaf, M.C., Hoffland, E., van Riemsdijk, W.H., 2011. Predicting soil N 
mineralization: relevance of organic matter fractions and soil properties. Soil Biol. 
Biochem. 43 (8), 1714–1722. https://doi.org/10.1016/j.soilbio.2011.04.017

Sadras, V.O., 2005. A quantitative top-down view of interactions between stresses: theory and 
analysis of nitrogen–water co-limitation in Mediterranean agro-ecosystems. Austr. J. 
Agric. Res. 56, 1151-1157. https://doi.org/10.1071/AR05073

Sainz Rozas, H., Calvino, P.A., Echeverría, H.E., Barbieri, P.A., Redolatti, M., 2008. 
Contribution of anaerobically mineralized nitrogen to the reliability of planting or 
presidedress soil nitrogen test in maize. Agron. J. 100, 1020–1025. 
https://doi.org/10.2134/agronj2007.0077

Salvagiotti, F., Cassman, K.G., SpecthJ.E., Walter, D.T., Weiss, A., Dobermann, A., 2008. 
Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops 
Res., 108: 1-13. https://doi.org/10.1016/j.fcr.2008.03.001

162

https://doi.org/10.1016/j.fcr.2008.03.001
https://doi.org/10.2134/agronj2007.0077
https://doi.org/10.1071/AR05073
https://doi.org/10.1016/j.soilbio.2011.04.017
https://doi.org/10.1080/01904167.2014.911892
https://doi.org/10.1139/z84-279
https://doi.org/10.1061/(ASCE)0733-9372(1990)116:2(250
https://doi.org/10.1061/(ASCE)0733-9372(1990)116:2(250
https://doi.org/10.2134/agronj2019.04.0291
https://doi.org/10.2134/agronj2019.04.0291
https://doi.org/10.1016/j.compag.2019.104872
https://doi.org/10.1016/j.jenvman.2019.01.066


Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., Joern, B., 2006. Concepts and 
rationale for regional nitrogen rate guidelines for corn. PM 2015. Iowa State Univ. Ext., 
Ames, IA. https://store.extension.iastate.edu/product/Concepts-and-Rationale-for-
Regional-Nitrogen-Rate-Guidelines-for-Corn

Sawyer, J.E., Nafziger, E.D., 2005. Regional approach to making nitrogen fertilizer rate  
decisions for corn. In: Proceedings North Central Extension-Ind. Soil Fertility 
ConFerence, Des Moines, IA. 16–17 Nov. Potash and Phosphate Inst., Brookings, SD. 
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1039&context=agron_conf

Scharf, P.C., Shannon, D.K., Palm, H.L., Sudduth, K.A., Drummond, S.T., Kitchen, N.R., 
Mueller, L.J., Hubbard, V.C., Oliveira, L.F., 2011. Sensor-based nitrogen applications 
out-performed producer-chosen rates for corn in on-farm demonstrations. Agron. J. 103, 
1683-1691. https://doi.org/10.2134/agronj2011.0164

Scharf, P.C., Kitchen, N.R., Sudduth, K.A., Davis, J.G., Hubbard, V.C., Lory, J.A., 2005. Field-
scale variability in optimal nitrogen fertilizer rate for corn. Agron. J. 97, 452–461. 
https://doi.org/10.2134/agronj2005.0452

Schmidt, J.P., Sripada, R.P., Beegle, D.B., Rotz, C.A., Hong, N., 2011. Within-field variability 
in potimum nitrogen rate for corn linked to soil moisture availability. Soil Sci. Soc. Am. J.
75, 306–316. https://doi.org/10.2136/sssaj2010.0184

Schomberg, H.H., Wietholter, S., Griffin, T.S., Reeves, D.W., Cabrera, M.L., Fisher, D.S., 
Endale, D.M., Novak, J.M., Balkcom, K.S., Raper, R.L., Kitchen, N.R., Locke, M.A., 
Potter, K.N., Schwartz, R.C., Truman, C.C. Tyler, D.D., 2009. Assessing indices for 
predicting potential nitrogen mineralization in soils under different management systems.
Soil Sci. Soc. Am. J., 73,  1575-1586. https://doi.org/10.2136/sssaj2008.0303

Schwalbert, R., Amado, T., Nieto, L., Corassa, G., Rice, C., Peralta, N.,  Schauberger, B., 
Gornott, C., Ciampitti, I.A., 2020. Mid‐season county‐level corn yield forecast for US 
Corn Belt integrating satellite imagery and weather variables. Crop Sci. 60: 739– 750. 
https://doi.org/10.1002/csc2.20053

Schwalbert, R., Amado, T., Nieto, L., Varela, S., Corassa, G., Horbe, T., Rice, C., Peralta, N., 
Ciampitti, I.A., 2018. Forecasting maize yield at field scale based on high-resolution 
satellite imagery. Biosyst. Eng. 171, 179–192. 
https://doi.org/10.1016/j.biosystemseng.2018.04.020

Schwartz, Barry. 2004. The paradox of choice: why more is less. New York: Ecco.

Schwember, A.R., Schulze, J., Del Pozo, A., Cabeza, R.A., 2019. Regulation of Symbiotic 
Nitrogen Fixation in Legume Root Nodules. Plants (Basel, Switzerland), 8(9), 333. 
https://doi.org/10.3390/plants8090333

Seebauer, J.R., Singletary, G.W., Krumpelman, P.M., Ruffo, M.L., Below, F.E.. Relationship of 
source and sink in determining kernel composition of maize. J. Exp. Biol. 2010, 61 (2), 
511–519. https://doi.org/10.1093/jxb/erp324

163

https://doi.org/10.1093/jxb/erp324
https://doi.org/10.3390/plants8090333
https://doi.org/10.1016/j.biosystemseng.2018.04.020
https://doi.org/10.1002/csc2.20053
https://doi.org/10.2136/sssaj2008.0303
https://doi.org/10.2136/sssaj2010.0184
https://doi.org/10.2134/agronj2005.0452
https://doi.org/10.2134/agronj2011.0164
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1039&context=agron_conf
https://store.extension.iastate.edu/product/Concepts-and-Rationale-for-Regional-Nitrogen-Rate-Guidelines-for-Corn
https://store.extension.iastate.edu/product/Concepts-and-Rationale-for-Regional-Nitrogen-Rate-Guidelines-for-Corn


Sela, S., van Es, H.M., Moebius-Clune, B.N., Marjerison, R., Kneubuhler, G., 2018a. Dynamic 
model-based recommendations increase the precision and sustainability of N fertilization 
in midwestern US maize production. Comput. Electron. Agric. 153, 256–265. 
https://doi.org/10.1016/j.compag.2018.08.010

Sela, S., van Es, H.M., Moebius-Clune, B.N., Marjerison, R., Melkonian, J., Moebius-Clune, D., 
Schindelbeck, R., Gomes, S., 2016. Adapt-N outperforms grower-selected nitrogen rates 
in Northeast and Midwestern United States strip trials. Agron. J. 108, 1726-1734. 
https://doi.org/10.2134/agronj2015.0606

Sela, S., Woodbury, P.B, van Es, H.M., 2018b. Dynamic model-based N management reduces 
surplus nitrogen and improves the environmental performance of corn production. 
Environ. Res. Lett. 13, 054010. https://doi.org/10.1088/1748-9326/aab908

Setiyono, T.D., Yang, H., Walters, D., Dobermann, A., Ferguson, D., Roberts, L., 2011. Maize-
N: a decision tool for nitrogen management in maize. Agron. J. 103, 1276–1283. 
https://doi.org/10.2134/agronj2011.0053

Shahhosseini, M., Martinez-Feria, R.A., Hu, G., Archontoulis, S.V., 2019. Maize yield and 
nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14 (2019), 
124026. https://doi.org/10.1088/1748-9326/ab5268

Simić, M., Dragičević, V., Mladenović Drinić, S., Vukadinović, J., Kresović, B., Tabaković, M., 
Brankov, M., 2020. The contribution of soil tillage and nitrogen rate to the quality of 
maize grain. Agronomy 10, 976. https://doi.org/10.3390/agronomy10070976

Sinclair, T.R., De Wit, C.T., 1975. Photosynthate and nitrogen requirements for seed production 
by various crops. Science 189(402): 565-567. 
https://doi.org/10.1126/science.189.4202.565

Sindelair, A.J., Coulter, J.A., Lamb, J.A., Vetsch, J.A., 2015. Nitrogen, stover, and tillage 
management affect nitrogen use efficiency in continuous corn. Agron. J. 107 (843–850), 
2015. https://doi.org/10.2134/agronj14.0535

Sindelar, A.J., Schmer, M.R., Jin, V.L., Wienhold, B.J., Varvel, G.E., 2015. Long-Term Corn 
and Soybean Response to Crop Rotation and Tillage. Agron. J. 107, 2241-2252. 
https://doi.org/10.2134/agronj15.0085

Singh, M., Paulsen, M.R., Tian, L., Yao, H., 2002. Site-specific study of corn protein, oil, and 
extractable starch variability using NIT spectroscopy. ASAE Meeting Pap. 02-1111. 
ASAE, St. Joseph, MI.

Smith, E.P., Rose, K.A., 1995. Model goodness-of-fit analysis using regression and related 
techniques. Ecol. Modell. 77, 49–64. https://doi.org/10.1016/0304-3800(93)E0074-D

Smith, R.J., 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. 
Anthropol. 140, 476–486. https://doi.org/10.1002/ajpa.21090

164

https://doi.org/10.1002/ajpa.21090
https://doi.org/10.1016/0304-3800(93)E0074-D
https://doi.org/10.2134/agronj15.0085
https://doi.org/10.2134/agronj14.0535
https://doi.org/10.1126/science.189.4202.565
https://doi.org/10.1088/1748-9326/ab5268
https://doi.org/10.2134/agronj2011.0053
https://doi.org/10.1088/1748-9326/aab908
https://doi.org/10.2134/agronj2015.0606
https://doi.org/10.1016/j.compag.2018.08.010


Soil Survey Staff, 1999. Soil taxonomy: A basic system of soil classification for making and 
interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. 
Department of Agriculture Handbook 436.

Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th Edition. USDA-Natural Resources 
Conservation Service, Washington DC, p. 360p. 
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?
cid=nrcs142p2_053580

Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in Biological 
Research. 3rd Edition, W.H. Freeman and Co., New York. US.

Soon, Y.K., Haq, A., Arshad, M.A., 2007. Sensitivity of nitrogen mineralization indicators to 
crop and soil management. Commun. Soil Sci. Plant Anal. 38, 2029–2043. 
https://doi.org/10.1080/00103620701548688

Sosulski, F.W., Imafidon, G.I., 1990. Amino acid composition and nitrogen-to-protein 
conversion factors for animal and plant foods. J. Agric. Food Chem. 1990, 38:1351–
1356.

Soufizadeh, S., Munaro, E. ,McLean, G. Massignam, A., van Oosterom, E.J., Chapman, S.C., 
Messina, C., Cooper, M., Hammer, G., 2018. Modelling the nitrogen dynamics of maize 
crops – Enhancing the APSIM maize model. Eur. J. Agron. 100, 118-131. 
https://doi.org/10.1016/j.eja.2017.12.007

Sprent, P., Dolby, G.R., 1980. The geometric mean functional relationship. Biometrics 36, 547–
550. https://doi.org/10.2307/2530224

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A., 2015. Striving for Simplicity: 
The All Convolutional Net. CoRR. https://arxiv.org/abs/1412.6806. Stanford, G., 1973. 
Rationale for optimum nitrogen fertilization in corn production. J. Environ. Qual. 2, 159–
166. https://doi.org/10.2134/jeq1973.00472425000200020001x

St-Pierre, N.R., 2016. Comparison of model predictions with measurements: A novel model-
assessment method. J. Dairy Sci. 99, 4907–4927. https://doi.org/10.3168/jds.2015-10032

Stanford, G., et al., 1966. Nitrogen requirements of crops for maximum yield. In: McVickar, 
M.H. (Ed.), Agricultural Anhydrous Ammonia Technology and Use. SSSA, Madison, 
WI, pp. 237–257. https://doi.org/10.2134/1966.nh3agricultural.c14

Stern, H., Davidson, N.E., 2015. Trends in the skill of weather prediction at lead times of 1–14 
days. Q.J.R. Meteorol. Soc. 141, 2726–2736. https://doi.org/10.1002/qj.2559

Stone, L.R., Whitney, D.A., Anderson, C.K., 1985. Soybean yield response to residual NO3-N 
and applied N. Plant Soil, 84: 259-265. https://doi.org/10.1007/BF02143188

165

https://doi.org/10.1007/BF02143188
https://doi.org/10.1002/qj.2559
https://doi.org/10.2134/1966.nh3agricultural.c14
https://doi.org/10.3168/jds.2015-10032
https://doi.org/10.2134/jeq1973.00472425000200020001x
https://doi.org/10.2307/2530224
https://doi.org/10.1016/j.eja.2017.12.007
https://doi.org/10.1080/00103620701548688
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580


Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T., 2007. Bias in random forest variable 
importance measures: illustrations, sources and a solution. BMC Bioinformatics 8, 25. 
https://doi.org/10.1186/1471-2105-8-25

Strobl, C.A., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A., 2008. Conditional variable 
importance for random forests. BMC Bioinformatics 9, 307. https://doi.org/10.1186/1471-
2105-9-307

Strobl, C.A., Hothron, T., Zeileis, A., 2009. Party on! A new, conditional variable importance 
measure for random forests available in the party package. R J. 1/2 (14–17). December 
2009. https://www.bibsonomy.org/bibtex/2f1f8129a72657282688b058cf7f67099/pillo

Tamagno, S., Sadras, V. O., Haegele, J. W., Armstrong, P. R., Ciampitti, I. A., 2018. Interplay 
between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on 
seed yield and biomass allocation. Sci. Rep., 8: 17502. https://doi.org/10.1038/s41598-
018-35672-1

Tamagno, S., Greco, I.A., Almeida, H., Di Paola, J.C., Ribes, F.M., Borrás, L., 2016. Crop 
Management Options for Maximizing Maize Kernel Hardness. Agron. J. 108, 1561-1570.
https://doi.org/10.2134/agronj2015.0590

Tan, C.Y., Iglewicz, B., 1999. Measurement-methods comparisons and linear statistical 
relationship. Technometrics 41, 192–201. 
https://doi.org/10.1080/00401706.1999.10485668

Tao, H., Morris, T.F., Kyveryga, P., McGuire, J., 2018. Factors affecting nitrogen availability 
and variability in Cornfields. Agron. J. 110, 1974–1986. 
https://doi.org/10.2134/agronj2017.11.0631

Taveira, C.J., Farrell, R.E., Wagner-Riddle, C., Machado, P.V.F., Deen, B., Congreves, K.A., 
2020. Tracing crop residue N into subsequent crops: Insight from long-term crop 
rotations that vary in diversity. Field Crops Res., 255: 107904. 
https://doi.org/10.1016/j.fcr.2020.107904

Tedeschi, L.O., 2006. Assessment of the adequacy of mathematical models. Agric. Syst. 89, 225–
247. https://doi.org/10.1016/j.agsy.2005.11.004

Teissier, G. 1948. La relation d'allometrie: sa signification statistique et biologique. Biometrica 
4, 14-53.  https://doi.org/10.2307/3001695

Tembo, G., Brorsen, B., Epplin, F., Tostão, E. 2008. Crop Input Response Functions with 
Stochastic Plateaus. American Journal of Agricultural Economics 90(2), 424-434. 
http://www.jstor.org/stable/30139594

Thornton, P.E., Thornton, M., Mayer, B., Wei, Y., Devarakonda, R, Vose, R. Cook, R.B., 2019. 
Daymet: daily surface weather data on a 1-km Grid for North America, Version3. ORNL 
DAAC, Oak Ridge, Tennessee, USA. https://daymet.ornl.gov/

166

https://daymet.ornl.gov/
http://www.jstor.org/stable/30139594
https://doi.org/10.2307/3001695
https://doi.org/10.1016/j.agsy.2005.11.004
https://doi.org/10.1016/j.fcr.2020.107904
https://doi.org/10.2134/agronj2017.11.0631
https://doi.org/10.1080/00401706.1999.10485668
https://doi.org/10.2134/agronj2015.0590
https://doi.org/10.1038/s41598-018-35672-1
https://doi.org/10.1038/s41598-018-35672-1
https://www.bibsonomy.org/bibtex/2f1f8129a72657282688b058cf7f67099/pillo
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-8-25


Thornton, P.E., Thornton, M.M., Mayer, B.W., Wei, Y., Devarakonda, R., Vose, R.S., Cook, 
R.B., 2018. Daymet: Daily Surface Weather Data on a 1-km Grid for North America. 
ORNL-DAAC, Oak Ridge, Tennessee, USA. 

Tolle, K.M., Tansley, S., Hey, T., 2011. The fourth paradigm: data-intensive scientific discovery.
Proc. IEEE 99, 1334–1337. https://doi.org/10.1109/JPROC.2011.2155130

Tremblay, N., Bélec, C., 2006. Adapting nitrogen fertilization to unpredictable seasonal 
conditions with the least impact on the environment. Hort. Technology 16, 408–412. 
https://doi.org/10.21273/HORTTECH.16.3.0408

Tremblay, N., Bouroubi, Y.M., Bélec, C., Mullen, R.W., Kitchen, N.R., Thomason, W.E., 
Ebelhar, S., Mengel, D.B., Raun, W.R., Francis, D.D., Vories, E.D., Ortiz-Monasterio, I., 
2012. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 104, 
1658–1671. https://doi.org/10.2134/agronj2012.0184

Tsai, C.Y., I. Dweikat, Huber, D.M., Warren, H.L., 1992. Inter-relationship of nitrogen nutrition 
with maize (Zea mays) grain yield, nitrogen use efficiency and grain quality. J. Sci. Food 
Agric. 58, 1–8. https://doi.org/10.1002/jsfa.2740580102

Tumusiime, E., Brorsen, B.W., Mosali, J., Johnson, J., Locke, J., Biermacher, J.T., 2011. 
Determining optimal levels of nitrogen fertilizer using random parameter models. J. 
Agric. Appl. Econ. 43(4), 541–552.  https://doi.org/10.1017/S1074070800000067

Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B., Chalk, 
P., 2008. Measuring plant-associated nitrogen fixation in agricultural systems, 
Monograph. ed. Australian Centre for International Agricultural Research (ACIAR), 
Canberra, Australia.

Uribelarrea, M., Below, F.E., Moose, S.P.. Grain composition and productivity of maize hybrids 
derived from the Illinos protein strains in response to variable nitrogen supply. Crop Sci. 
2004, 44, 1593-1600. https://doi.org/10.2135/cropsci2004.1593

USDA-ERS. 2021a. Season-average price forecasts. USDA-Economic Research Service, 
Washington, DC.  https://www.ers.usda.gov/data-products/season-average-price-forecasts
(last accessed on 30 April 2021)

USDA-ERS. 2021b. Fertilizer use and price statistics. USDA-Economic Research Service, 
Washington, DC. 
https://www.ers.usda.gov/data-products/fertilizer-use-and-price/documentation-and-data-
sources (last accessed on 30 April 2021)

van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J.B., Neyer, F.J., van Aken, M.A., 2014. 
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. 
Child Dev. 85, 842-860. https://doi.org/10.1111/cdev.12169

Van Den Noortgate, W., Onghena, P., 2005. Parametric and nonparametric bootstrap methods 
for meta-analysis. Behav. Res. Methods 37, 11–22. 

167

https://doi.org/10.1111/cdev.12169
https://www.ers.usda.gov/data-products/fertilizer-use-and-price/documentation-and-data-sources
https://www.ers.usda.gov/data-products/fertilizer-use-and-price/documentation-and-data-sources
https://www.ers.usda.gov/data-products/season-average-price-forecasts
https://doi.org/10.2135/cropsci2004.1593
https://doi.org/10.1017/S1074070800000067
https://doi.org/10.1002/jsfa.2740580102
https://doi.org/10.2134/agronj2012.0184
https://doi.org/10.21273/HORTTECH.16.3.0408
https://doi.org/10.1109/JPROC.2011.2155130


van Es, H.M., Yang, C.L., Geohring, L.D., 2005. Maize nitrogen response as affected by soil 
type and drainage variability. Precis. Agric. 6, 281–295. https://doi.org/10.1007/s11119-
005-1387-7

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013. 
Yield gap analysis with local global relevance - a review. Field Crops Res. 143, 4–17. 
https://doi.org/10.1016/j.fcr.2012.09.009

Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A., Cassman, K., 2015. Creating long-
term weather data from thin air for crop simulation modeling. Agric. Forest. Meteor. 209-
210, 49-58. https://doi.org/10.1016/j.agrformet.2015.02.020

Vanhie, M., Deen, W., Lauzon, J.D., Hooker, D.C., 2015. Effect of increasing levels of maize 
(Zea mays L.) residue on no-till soybean (Glycine max Merr.) in Northern production 
regions: A review. Soil Tillage Res. 150, 201-210. 
http://dx.doi.org/10.1016/j.still.2015.01.011

Vanotti, M.B., Bundy, L.G., 1994. An alternative rationale for corn nitrogen-fertilizer 
recommendations. J. Prod. Agric. 7, 243–249. https://doi.org/10.2134/jpa1994.0243

Varvel, G.E., Wilhelm, W.W., 2011. Soil carbon levels in irrigated Western Corn Beltrotations. 
Agron. J. 100 (4), 1180–1184. https://doi.org/10.2134/agronj2007.0383

Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 
36(3), 1-48. https://doi.org/10.18637/jss.v036.i03

Villamil, M.B., Little, J., Nafziger, E.D., 2015. Corn residue, tillage, and nitrogen rate effects on 
soil properties. Soil Tillage Res. 151, 61–66. https://doi.org/10.1016/jstill.2015.03.005

Vyn, T.J., Tollenaar, M., 1998. Changes in chemical and physical quality parameters of maize 
grain during three decades of yield improvement. Field Crops Res., 59, 135–140.

Wakefield, J., 2013. Bayesian and Frequentist Regression Methods. Springer Series in Statistics. 
Springer, New York, New York, NY. https://doi.org/10.1007/978-1-4419-0925-1

Wallach, D., , Thorburn., 2017. Estimating uncertainty in crop models: current situation and 
future prospects. Eur. J. Agron. 88, A1-A7. https://doi.org/10.1016/j.eja.2017.06.001

Wallach, D., Makowski, D., Jones, J.W., Brun, F., 2019. Chapter 9: Model evaluation. In: D. 
Wallach, D. Makowski, J.W. Jones, F. Brun, eds. Working with dynamic crop models, 
3rd edn. San Diego, CA, USA: Academic Press, 311- 373.

Wang, G., Wu, B., Zhang, L., Jiang, H., Xu, Z., 2014. Role of soil erodibility in affecting 
available nitrogen and phosphorus losses under simulated rainfall. J. Hydrol. 514, 180–
191. https://doi.org/10.1016/j.jhydrol.2014.04.028

168

https://doi.org/10.1016/j.jhydrol.2014.04.028
https://doi.org/10.1016/j.eja.2017.06.001
https://doi.org/10.1007/978-1-4419-0925-1
https://doi.org/10.1016/jstill.2015.03.005
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.2134/agronj2007.0383
https://doi.org/10.2134/jpa1994.0243
http://dx.doi.org/10.1016/j.still.2015.01.011
https://doi.org/10.1016/j.agrformet.2015.02.020
https://doi.org/10.1016/j.fcr.2012.09.009
https://doi.org/10.1007/s11119-005-1387-7
https://doi.org/10.1007/s11119-005-1387-7


Wang, X., Miao, Y., Dong, R., Zha, H., Xia, T., Chen, Z., Kusnierek, K., Mi, G., Sun, H., Li, M. 
2021a. Machine learning-based in-season nitrogen status diagnosis and side-dress 
nitrogen recommendation for corn. Eur. J. Agron. 123, 126193. 
https://doi.org/10.1016/j.eja.2020.126193

Wang, X., Miao, Y., Batchelor, W.D., Dong, R., Kusnierek, K., 2021b. Evaluating model-based 
strategies for in-season nitrogen management of maize using weather data fusion. Agric. 
For. Meteorol. 308-309, 108564. https://doi.org/10.1016/j.agrformet.2021.108564

Warton, D.I., Weber, N.C., 2002. Common slope tests for bivariate errors-in-variables models. 
Biometrical J. 44, 161-174. https://doi.org/10.1002/1521-4036(200203)44:2

Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., 2006. Bivariate line-fitting methods for 
allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291. 
https://doi.org/10.1017/S1464793106007007

Weir, C.J., Butcher, I., Assi, V., Lewis, S.C., Murray, G.D., Langhorne, P., Brady, M.C. Dealing 
with missing standard deviation and mean values in meta-analysis of continuous 
outcomes: a systematic review. BMC Med. Res. Methodol. 2018, 18, 25. 
https://doi.org/10.1186/s12874-018-0483-0

Welch, L.F., Boone, L.V., Chambliss, C.G., Christiansen, A.T., Mulvaney, D.L., Oldham, M.G., 
Pendleton, J.W., 1973. Soybean Yields with Direct and Residual Nitrogen Fertilization1. 
Agron. J., 65: 547-550. https://doi.org/10.2134/agronj1973.00021962006500040007x

Wikle, C.K., Zammit-Mangion, A., Cressie, N., 2019. Spatio-Temporal Statistics with R. 
Chapman and Hall/CRC, Boca Raton, Florida : CRC Press, [2019]. 
https://doi.org/10.1201/9781351769723

Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2, 184–194. 
https://doi.org/10.1080/02723646.1981.10642213

Willmott, C.J., Robeson, S.M., Matsuura, K., 2012. A refined index of model performance. Int. 
J. Climatol. 32, 2088–2094. https://doi.org/10.1002/joc.2419

Wilson, D.R., Muchow, R.C., Murgatroyd, C.J., 1995. Model analysis of temperature and solar 
radiation limitations to maize potential productivity in a cool climate. Field Crops Res. 
43, 1–18. https://doi.org/10.1016/0378-4290(95)00037-Q

Woli, K. P., Boyer, M. J., Elmore, R. W., Sawyer, J. E., Abendroth, L. J., and Barker, D. W., 
2016. Corn era hybrid response to nitrogen fertilization. Agron. J. 108, 473-486. 
https://doi.org/10.2134/agronj2015.0314

Wood, S.N., 2017. Generalized Additive Models: an introduction with R. 2nd Ed. CRC, Taylor 
and Francis Group. Boca Raton,FL, USA.

169

https://doi.org/10.2134/agronj2015.0314
https://doi.org/10.1016/0378-4290(95)00037-Q
https://doi.org/10.1002/joc.2419
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1201/9781351769723
https://doi.org/10.2134/agronj1973.00021962006500040007x
https://doi.org/10.1186/s12874-018-0483-0
https://doi.org/10.1017/S1464793106007007
https://doi.org/10.1002/1521-4036(200203)44:2
https://doi.org/10.1016/j.agrformet.2021.108564
https://doi.org/10.1016/j.eja.2020.126193


Wortmann, C.S., Tarkalson, D., Shapiro, C. Dobermann, A., Ferguson, R., Hergert, G., Walters, 
D., 2011. Nitrogen use efficiency of irrigated corn for three cropping systems in 
Nebraska. Agron. J. 103, 76–84. https://doi.org/10.2134/agronj2010.0189

Wu, A., Hammer, G., Doherty, A.I., Caemmerer, S., Farquhar, G., 2019. Quantifying impacts of 
enhancing photosynthesis on crop yield. Nat. Plants 5. https://doi.org/10.1038/s41477-
019-0398-8

Wu, T.Y., Ma, B.L., Liang, B.C., 2008. Quantification of seasonal soil nitrogen mineralization 
for corn production in eastern Canada. Nutr. Cycl. Agroecosyst. 81, 279–290. 
https://doi.org/10.1007/s10705-007-9163-x

Yang, J.M., Yang, J.Y., Liu, S., Hoogenboom, G., 2014. An evaluation of the statistical methods 
for testing the performance of crop models with observed data. Agric. Syst. 127 (May 81-
89), 2014. https://doi.org/10.1016/j.agsy.2014.01.008

Ye, Q., Lin, X., Adee, E., Min, D., Assefa Mulisa, Y., O'Brien, D., Ciampitti, I.A., 2017. 
Evaluation of climatic variables as yield‐limiting factors for maize in Kansas. Int. J. 
Climatol. 37.S1,  464-75. https://doi.org/10.1002/joc.5015

Yoo, G., Wander, M.M., 2006. Influence of tillage practices on soil structural controls over 
carbon mineralization. Soil Sci. Soc. Am. J. 70, 651–659. 
https://doi.org/10.2136/sssaj2005.0036

Yost, M.A., Coulter, J.A., Russelle, M.P., 2013. First-year corn after alfalfa showed no response 
to fertilizer nitrogen under no-tillage. Agron. J. 105, 208–214. 
https://doi.org/10.2134/agronj2012.0334

Yost, M.A., Coulter, J.A., Russelle, M.P., Sheaffer, C.C., Kaiser, D.E., 2012. Alfalfa nitrogen 
credit to first-year corn: potassium, regrowth, and tillage timing effects. Agron. J. 104, 
953–962. https://doi.org/10.2134/agronj2011.0384

Yost, M.A., Morris, T.F., Russelle, M.P., Coulter, J.A., 2014. Second-year corn after alfalfa 
often requires No fertilizer nitrogen. Agron. J. 106, 659–669. 
https://doi.org/10.2134/agronj2013.0362

Zhang, B., Niu, X., Ata-UI-Karim, S.T., Wang, L., Duan, A., Liu, Z., Lemaire, G., 2020. 
Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution 
curve and its implications for nitrogen management in maize and wheat. Eur. J. Agron. 
113, 125967. https://doi.org/10.1016/j.eja.2019.125967

Zhang, F., Sun, Q., Lin, S.J., Chen, J.H., Emanuel, K., 2019. What is the predictability limit of 
mid-latitute weather? J. Atmos. Sci. 76, 1077–1091. https://doi.org/10.1175/JAS-D-18-
0269.1

Zhang, F., Mackenzie, A.F., Smith, D.L., 1993. Corn yield and shifts among corn quality 
constituents following application of different nitrogen fertilizer sources at several times 

170

https://doi.org/10.1175/JAS-D-18-0269.1
https://doi.org/10.1175/JAS-D-18-0269.1
https://doi.org/10.1016/j.eja.2019.125967
https://doi.org/10.2134/agronj2013.0362
https://doi.org/10.2134/agronj2011.0384
https://doi.org/10.2134/agronj2012.0334
https://doi.org/10.2136/sssaj2005.0036
https://doi.org/10.1002/joc.5015
https://doi.org/10.1016/j.agsy.2014.01.008
https://doi.org/10.1007/s10705-007-9163-x
https://doi.org/10.1038/s41477-019-0398-8
https://doi.org/10.1038/s41477-019-0398-8
https://doi.org/10.2134/agronj2010.0189


during corn development. J. Plant Nutr. 16(7), 1317-1337, 
http://dx.doi.org/10.1080/01904169309364615

Zhang, P., Ma, G., Wang, C., Lu, H., Li, S., Xie, Y., Ma, D., Zhu, Y., Guo, T, 2017. Effect of 
irrigation and nitrogen application on grain amino acid composition and protein quality in
winter wheat. PLoS ONE 12, e0178494. https://doi.org/10.1371/journal.pone.0178494

Zhang, Y., Ling, C.A., 2018. Strategy to apply machine learning to small datasets in materials 
science. NPJ Comput. Mater 4, 25. https://doi.org/10.1038/s41524-018-0081-z

Zhang, Y., Yang, Y., 2015. Cross-validation for selecting a model selection procedure. J. 
Econom. 187 https://doi.org/10.1016/j.jeconom.2015.02.006

Zhu, Q., Schmidt, J.P., Lin, H.S., Sripada, R.P., 2009. Hydropedological processes and their 
implications for nitrogen availability to corn. Geoderma 154, 111–122. 
https://doi.org/10.1016/j.geoderma.2009.10.004

Zhu, Y., Fox, R.H., 2003. Corn–Soybean Rotation Effects on Nitrate Leaching. Agron. J., 95: 
1028-1033. https://doi.org/10.2134/agronj2003.1028

171

https://doi.org/10.2134/agronj2003.1028
https://doi.org/10.1016/j.geoderma.2009.10.004
https://doi.org/10.1016/j.jeconom.2015.02.006
https://doi.org/10.1038/s41524-018-0081-z
https://doi.org/10.1371/journal.pone.0178494
http://dx.doi.org/10.1080/01904169309364615

	Chapter 1: General Introduction
	Chapter 2: Assessing the uncertainty of maize yield without nitrogen fertilization
	Abstract
	2.1. Introduction
	2.2. Material and methods
	2.2.1. Data collection
	2.2.2. Data analysis

	2.3. Results
	2.3.1. Database description
	2.3.2. Prediction performance

	2.4. Discussion
	2.5. Conclusions

	Chapter 3: Unraveling uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning approach
	Abstract
	3.1. Introduction
	3.2. Materials and methods
	3.2.1. Review
	3.2.2. Metadata
	3.2.3. Data analysis

	3.3. Results
	3.3.1. Database description
	3.3.2. Bayesian analysis of N response descriptors
	3.3.3. Prediction performance

	3.4. Discussion
	3.5. Conclusions

	Chapter 4: Do water and nitrogen management practices impact grain quality in maize?
	Abstract
	4.1. Introduction
	4.2. Materials and Methods
	4.2.1. Statistical analysis

	4.3. Results
	4.3.2. Meta-analysis results

	4.4. Discussion
	4.5. Conclusions

	Chapter 5: Footprints of maize nitrogen management on the following soybean crop
	Abstract
	5.1. Introduction
	5.2. Materials and Methods
	5.2.1. Case Study I, Topeka.
	5.2.2. Case Study II, Scandia.
	5.2.3. Apparent N budget
	5.2.4. Data analysis

	5.3. Results
	5.3.1. Soybean seed yield
	5.3.3. Apparent N budget

	5.4. Discussion
	5.5. Conclusions

	Chapter 6: Revisiting linear regression to test agreement in continuous predicted-observed datasets
	Abstract
	6.1. Introduction
	6.2. Theoretical framework
	6.2.1. The general error-in-variables model.
	6.2.2. The specific regression models
	6.2.3. Selection of the regression model
	6.2.4. Testing regression parameters?
	6.2.5. Error decomposition using linear regression

	6.3. Applied examples
	6.3.1. Illustrative dataset
	6.3.2. APSIM datasets

	6.4. Discussion
	6.5. Conclusions

	Chapter 7: Conclusions

