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CHAPTER 1

INTRODUCTION

Multiple linear regression is one of the most widely used of all stat-
istical methods. Statisticians and non-statisticians alike have found it
to be a useful tool for modeling the response of a dependent variable as
it is influenced by independent variables.

When dealing with experimental data, one often encounters the prob-
lem of near multicollinearity of the data vectors. Usually, this is due
to high correlations between two or more of the explanatory variables.
When this occurs, thc least squares estimators often contain values which
are useless in the sense that they are extremely large or even of the
wrong sign. (Wrong in the semse that they deviate from the accepted
theory for the related field.) Hoerl and Kennard [6] refer to estimates
of that type as unstable estimates.

This report investigates techniques for estimating the parameters of
the linear model when near multicollinearity exists between the indepen-
dent variables. The linear model is:

Y=XR + ¢ (1.1)

where;(l) Y is an nxl vector of observations on the dependent
variable.

(2) X is an nxp matrix of observations on the independent
variables such that p(X)=p where p<n.

(3) £ is an nxl vector of unobservable random errors such that

(a) E(c)=0 and
(b) E[ec']= o1

Unless otherwise specified, X'X is assumed to be in the form of a pxp
correlation matrix. See Appendix I for details of transforming the matrix

to this form and obtsining the estimate of B.



The Ordinary Least Squares (OLS) estimator &, of B is;

2= ' Ixry.

That estimator is unbiased for g and, by the Gauss-Markc Theorem, has
minimum variance among the class of linear unbiased estimators of 8.
Computationally, the least squares procedure is good if X'X is well cond-
itioned, i.e., not s'ngular or near singular. If the matrix is ill-cond-
itioned, the analyst will be tempted to delete variables in an attempt to
remove the multicolinearities. This is hardly satisfactory when the
model is correct as specified. We therefore look for more useful estimators,
which are biased, but have smaller mean square error (MSE).

Before we discuss biased estimation techniques, we need to examine
the characteristics of OLS estimators when the X'X matrix is ill-condit-
ioned. The covariance matrix of the least squares estimator is

var(B) = o2(x'x)~1
Let the distance between the OLS estimator and the true but unknown

value of B be denoted by L1 =||8-8||. Then,

) 137 = @-8)" (B-8) 1.2)
@ E)

(3) E[A'8] = 8'8 + o2tr &X'D) "} C(L.4)
and if tmN(O,GZI), then
(4) Var(le) = ZU&tr(X'X)-Z

]

o2er(x'x)~L 1.3)

Denote the characteristic roots of X'X by;

T Ag2 ez lp " Muta ’ Qf

1 2.
. then (1.3) can be rewritten as
2, _ 2¢ .
E(L,7) = o° 2Q1/A) | i | (1:5)

and if the errors are normal,



Var(le) = gt (12’ | (1.6)

Hence, lower.bounds for E(le) and Var(le) are Ug/lmin and 204jlzmin
respectively.

When one or more of the Ai are small, this indicates a linear depend-
ence of the ith column vector on the other p - 1 vectors, and we say X'X
ig ill-conditioned. If this occurs, the distance from é to B is large, as
indicated by coefficients, éi’ large in absolute value or with reversed

signs, as alluded to earlier. By definition, the least squares estimate

is that value of B which minimizes
®B) = (Y - X8)'(Y - XB) | @.n

The Ai measure the sensitivity of the solution to (1.7) and thus should

be utilized to construct "better estimates'". The criterion for determining
which estimators are "better" differs with the biased tethnique. Most
authors strive to minimize the MSE.

The biased estimation techniques outlined in the remainder of the
report all utilize the small Xi‘s in one way or another to aid in the est-
imation of B. The ways in which these mear-singularities are utilized to
predictive advantage are the basic differences in the techniques. They
all achieve a reduction in the length of the vector of estimated coeffic-
ients (£'R) when compared with the length of the vector of OLS coefficients.

Another view of the problem that ill-conditioning creates in the OLS
estimates is given by Webster, Gunst and Mason [12]. They partition X as

*
X = [x%,:X ] where xj is the vector of observations for the jth independent
J.

3

*
variable, and Xj is the remaining p-1 observation vectors. If c¢,, is the
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jth diagonal element of (X'X)—l,

% ko-] * =1
c,. = [x."x, - x "X¥"(X.'X, X,
i3 [ i3 il ¢ 3 J) 25 J]
= [1 - R;.Z]_]' (1.8)
where Rj is the multiple correlation coefficient between the jth indepen-
dent variable and the other p~l1 independent variables. Thus,
~ 2 2 2
Var(B,}) =0 e¢.,. =0 /(1 - R
(J) 13 /( j)

Clearly, if a great amount of correlation exists between xj and some of the
columns of X;, R§ will be close to 1 (some of the characteristic roots
will be close to zero) and Var(éj) will be large., This again shows how an
ill-conditioned X'X matrix results in unstable coefficient estimates.

Four biased estimation techniques are explored in the succeeding four

chapters. For ease of reference, these will be designated by the following

REERES Chapter 2 Ridge Regression (RR)
Chapter 3 Generalized Inverses (g-inverse)
Chapter 4 Shrunken Estimators
Chapter 5 Latent Root Regression Analysis (LRRA)

Other techniques are documented in various journals, although most are
highly theoretical in nature and not extremely useful in a practical con-
text. Hence, the scope of this report will be limited to the above four
techniques.

Each chapter begins with a general but straightforward description
of the w.ethods involved in implementing the technique. Following the meth-
odology in each chapter is a section summarizing the theory backing the
method. The four techniques are compared and contrasted in Chapter 6.

In Chapter 7, a set of nonorthogonal data is analyzed by each method



in order to illustrfte the computations and analysis involved. It is also
the aim here to depict with real data what happens to the various parameter
estimates.

It is not the intent of this report to critique or formulate opinions
as to the "correctness" or usefulness of the techniques. The reader may
draw his own conclusions from the presentation and examples which follow,

in addition to an exz .ination of the resource materials.



CHAPTER 2

RIDGE REGRESSION

2,1 - Method

The form of the ridge estimator proposed by Hoerl and Kennard in

[6] is; -1
[X'X + kI] "X'Y 3k > 0 (2.1)

= WX'y

™
11

~%

For an estimate B the residual sums of squares is

~k " sk
(¥ ~Xg )'(Y - X8 )
ak ak ~
Y'Y - B 'X'Y - k(B )'(B) (2.2)

o” (k)

where @%(k) is the total sums of squares less the "regression" sums of
squares for §* with a2 modification depending upon the squared length of
é*. In practice, it is most useful to select values of k in the inter-
val [0,1], as the system usually stabilizes very quickly in this region.

The Ridge Trace is a useful tool in determining which value of k
ceems to cause the system to stabilize. This is nothing more than a two-
dimensional plot of the functions G?(k) and (é*), for values of k between
zero and +1. (See Figure IV.) This portrays graphically the effects of
the factor (independent variable)} correlations and makes possible assess-
ments that cannot be made even if all 2P regressions are computed. Inher-
ent in the analysis, therefore, is a method for selecting a "bést" subset
of predictor variables. Namely, those factors which contribute the most
toward explaining variability in Y without being highly correlated among
themselves. An illustration of the method, and the ridge trace appear
in Chapter 7.

Note that the methoed simply involves adding a small constant k to

the diagonal elements of the X'X matrix to correct for the near-singular-



ity of the matrix, thereby making it easier to invert. The magnitude of

e’
k required to stabilize B will depend on the degree of ill-conditioning

in X'

(1)

(ii)

(iii)

X.

The recommended procedure is as follows;
Calculate 11 -~ 20 regressions by substituting different values of
k into equation (2.1). It is most helpful to begin with k=0 (OLS
estimates), and use small increments (say .02) up to k=.1l. Then
use increments of Q.1 up to 1.0. The small increments up to k=0.1
enable one to see the rapid stabilization in the estimates which
generally takes place in the early stages of the analysis. This,

of course, depends on the actual problem and data at hand.

Plot the ridge trace by plotting the é: and ¢; obtained as a function
of k. Take special note of those E:'s which rapidly go to zero,

or even cross the zero line, taking on different signs. The analyst
should also pay close attention to the squared length of the coef-
ficient vector %*'ﬁ* at those points where the system seems to sta-
bilize and compare them to B'B. A significant reduction in the squared

length of the coefficient vector corresponding to a small increase

in residual sum of squares is the researcher's goal.

From the ridge trace, select a value of k for which the system seems
to stabilize. When selecting k, do not allow the residual sum of
squares to inflate unreasconably. Obatin the coefficients é;, é:,

. . ey é: for this value of k. Then view the system as one of p

controlled factors with these coefficients as the "best' estimates.



Factors with small effects have small coefficients. To "discard"
a factor, simply set its coefficient equal to zero. Factors to be
eliminated should be those whose coefficients are quickly driven
toward zero with the addition of k > 0, and hence cannot retain
their predicting power.

Do not delete factors and then reestimate coefficients for the
remaining factors, as it is likely that all the instabilities and
over-estimation will still be present, perhaps even amplified.
Hoerl and RKennard [7] give an example for which the length of the
coefficient vector incre:ses after deletion. If the discarded fac-
tors contribute the least, their estimation should not be affected

by their associations with other factors.

An iterative procedure to estimate ki is given in [5] and [6]. This

is presented in concise form in Appendix II.
%

3

so that thedove iteration is not necessary. The basic steps to this

Hemmerle [5] gives an explicit solution for the limiting §, values,

procedure are in Appendix III,



2.2 - Theory of Ridge Regression

The relationship of a ridge estimate to a least squares estimate is

given by;
8" = 1, + kx'x) " H7ts (2.3)
= 2% 'y (2.4)

Thus, the ridge estimator is a linear transformation of B. Clearly,

~%

B is biased,

Z(X'X)-IX'E(Y)
Z(X'X)'lx'xs

It

E(E*) = E[z(x'X)'lx'Y]

= ZB (2.5)

adk
The variance of B is given by;

;s (X'X)'lx'Var [Y]X(X'X)'lz'
o2z (x'x) Lz (2.6)

Var(é*)

Other important relationships given by Hoerl and Kennard [6] are;

€i(z) ='Ai/(Ai + k) (2.8)
where Ei(W) and Ei(z) are the ith characteristic roots of W and

Z, respectively, and the Ai are the characteristic roots of X'X.

~ % ' ~% P«'A
(ii) (B)(@®)<p'B (2.9)
aK ‘
ie. B is shorter than B for k # 0. This result is based on equa-
tion (2.5) and the fact that Z is symmetric positive definite.

(iii) Let B be any estimate of B. Then the residual sums of squarcs

becomes;
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¢= (Y -XB)'(Y - XB)
(Y - XR)(Y - XB) + (B -B)'X'X(B ~ B)
®(B) + ®(B) (2.10)

Clearly (2.10) is the residual sums of squares for E, when B = E.
But the expected value of the squared length of B is too long when X'X
is close to being singulér. The worse the conditioning of X'X, the farther
we can get from B without an appreciable increase in the residual sum of
squares. Therefore, by bounding the length of the estimate B (this works
well in practice since B'B never becomes infinite), the estimate of B that
minimizes the sums of squares is E*.

This is shown by minimizing B'B subject to (B - é)X'X(B - §) = ¢p
' (2.11)
~k
Solving this with LaGrange Multipliers yeilds the ridge estimator B

defined in (2.1).
The most important theoretical aspect of the ridge estimator as far
as its advantages over least squares is the Mean Square Error. Define the

MSE as;

E{Lf(k)] E[(“g* - 8@ -8 (2.12)
E[(B - B8)'Z'Z(B - B)] + (ZB - B)'(ZB - B)

=02trace(X'X)-lz'Z + B'(z - I)'(Z - I)8

]

2 - -
o [trace(X'X + kI) L. k trace(X'X + kI) 2]
+ k28" (X'X + KI) 28

) UZiEEJ‘i/-("i +0? + % 'z + k)72 (2.13)
= hin v 5 (2.14)

If this mean square error is to be better when k>0, it must be smaller than
(1.2). This is in fact possible, but first let us establish the proper-

ties and meanings of fl(k) and fz(k) individually.
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A. Properties of fl(k)

fl(k) is the sum «f the variances (total variance} of the parameter
estimates, whether biased or unbiased. Some of the attributes of this
function are (all theorems and corollaries in this chapter are taken
from [6]);
Theorem 2.1 The total variance f. (k) is a continuous, monotonically
decreasing function of k.

Corollary 2.1,1 The first derivative with respect to k of the total

variance, fi(k), approaches -« as k>0% and some Ai+0.

Note that as the X'X matrix becomes singular, at least one of the

A Ai+0. From equation (2.13), one can see this causes the total variance

to increase without bound. The theorem and corollary above say, however,
that fl(k) is a decreasing function of k. Moreover, values of k close to
zero make it a sharply-decreasing function. Hence, by adding a small pos-
itive constant to the diagonal of X'X, we will drastically reduce the

variance of the parameter estimates.

B. Properties of fz(k)

fz(k) = 0 when k=0 and is a positive quantity for values of k>0.
Thus, fz(k) is the square of the bias injected into the system by using
A* ~
B instead of B. The important properties of fz(k) are [6];

Theorem 2.2 The squared bias f,(k) is a continuous, monotonically
increasing function of L.

Corollary 2.2.1 The upper limit of fz(k) is g'8.
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Corollary 2.2.2 The slope of fz(k) approaches zero as k+d+.

Corollary 2.2.2 is very important since it says that the slope of
fz(k) in the neighborhood of the origin is essentially zero. Coupling
this with corollary 2.1.1, it becomes clear that by introducing a little
bias thus greatly decreasing the variance, we should be able to find, for
small values of k, corresponding values of the mean square error which

are less than for unbiased estimates.

C. Properties of MSE

The foregoing analysis in A. and B. is linked together in the fol-

lowing theorem.
Theorem 2.3 (Existence Theorem) There always exists a k™0 such that
EIL2(0)] $ E[LI(0)] = 0% 2Pq/A) (2.15)
Therefore, E[Li(k)] will indeed go through a minimum. It is possible to
find a value(s) for k that will yield a g closer to B than B.

Hoerl and Kennard [6] graph the functional form of fl(k), fz(k) and
E[Li(k)] Presented in Figure I. Notice how fl(k) and fz(k) decrease and
increase monotonically, respectively. The sum of fl(k) and fz(k) yields
the mean square error, which is less than that for the least squares est-
imate when 0 < k < 0.6. If the mean square error is to be the decision cri-
terion for choosing the best estimates of B, this rules out the least

squares estimates.
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Another theorem important to the theory of ridge estimators is [8];

Theorem 2.4 Let (X'X + kI)B =X'Y =¢g (2:16)
and y, be the angle between B and g (note that g is the

gradient vector of @(B)) Then;

1) yk-is a continuous monotone decreasing function of k, such
that as k-, TE+O. Since g is independent of k, it follows
that,
ke

(ii) B rotates toward g as k>,

A final property of the ridge estimator (useful primarily for compar-

ison with other estimators) is given in the following theorem [6];

Theorem 2.5 The ridge estimator is equivalent to a least squares est-
imator when the X matrix is augmented by , Where H
consists of an orthogonal set of fictitiocus data points.
The response Y is set to zero for each of these supple-
mentary data points.

Proof: Augment X with Hk’ the least squares normal equations are;

(x|: I) X 'é* = (xl:Hl) ¥
.H-k L O : k

H 0

k —
implies (X'X + H]":Hk)é* = X'Y (2.17)

Since Hk is orthogonal, Hiﬂk is a scalar multiple of Ip; for

any value k, the matrix can always be scaled such that

Hﬂgk = kIp. This implies that (2.17) is equivalent to (2.16),
and the proof is completed.

More will be said about this in Chapter 6.
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CHAPTER 3

GENERALIZED INVERSE

3.1 - Method

The form of the generalized inverse estimator proposed by Marquardt

[8] is;
B = Tix'y (3.1)
where; +_P ' 9
(‘i) T j={(1/"j)3353 (3.2)
(11) T = X'X (3.3)

(1ii) S'TS = D is an orthogonal transformation diagonalizing(;:4)

(iv) The matrix D has diagonal elements A 3_A2 e e >,
which are the characteristic roots o% Ta P

(v) Sj is the characteristic vector of T corresponding to A

3

(vi) r is the rank of T which we assume does not necessarily have
to be an integer.

Marquardt [8] groups the characteristic roots of X'X into three types:
(a) substantially greater than zero,
(b) slightly greater than zero, and

(¢) precisely zero (except for rounding error).
Computationally, it is often difficult to distinguish between the three
types. An entire range of values, from large to near-zero or zero, may
be observed.

With X'X near-singular, it is tempting to invert X'X by means of a
generalized inverse. Since analysis of the characteristic roots suggests
there is no one "rank" that can clearly be assigned to X'X, rather a range
of reasonable choices, the generalized inverse is computed for various
assigned ranks, r, in this range. It can be shown :hat T: is indeed a

generalized inv.rse of rank r if A is of rank r. The researcher attempts
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to find a value of r that is "optimum" by some criterion, such as small
mean square error. MSE is defined E[(B - B)'(B - B)], where B is any
estimator of the true parameter B. The actual value of B is unknown,
making the MSE a value which cannot be calculated.

Since MSE is not computable, some other criterion must be established
for actual data analysis., Most biased estimation procedures utilize small
coefficient vector length in conjunction with small residual sums of
squares for this criterion. Marquardt [8] uses the "Variance Inflation
Factors". These are given by the diagonal elements of (X'X)—l when X is
scaled such that X'X is in the form of a correlation matrix, as we assume.
Since these elements are proportional to the variances of the parameter
estimates (see (1.8)), they are the factors by which the variances of
the respective parameters are increased, due only to the correlation among
the independent variables. In problems where p>2, attention is focused
on the largest parameter variance inflation factor.

Hence the recommended procedure isj

(i) Find the characteristic root - Al* Az, i a .,_AP of X'X. From these,

determine feasible limits for the range of r, i.e., the rank of X'X.

(1i) Calculate the following values and tabulate for various incremented
values of r in the interval selected in (i) above (reasonable incre-
ments for r depend on the researcher's time and cost considerations.
Increments of the order of 0.1 - 0.5 are generally useful.);

a. B+, the vector of parameter estimates as given in (3.1) and (3.2).
To use (3.2),include all terms for which j is less than or equal

to the integer part of r, plus that fraction of the next term



(iii)
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by which r exceeds its integer part,
b. ||8¥||, the lemgth of §'.
= P - $ 2
c. o= B0y -9y (3.5)
the residual sums of squares for the generalized inverse estimate.
d. The largest variance inflation factor (the largest diagonal

element of T:).

Examine the behavior of ||§+||, ¢ and the variance inflation factor
for the different values of r. Selection of the "best" set of
estimates should involve the following considerations;

a. ]!§+|] should decrease significantly.

b. Small increases in ¢ will be tolerated, but in some cases a point
is reached where a decrease in r creates a much larger jump in &
than preceding increments of r. This is a good point +o consider

for the estimate.

¢. A rule of thumb [8] for choosing the amount of bias to allow
with ill-conditioned data, is that the largest variance inflation
factor usually should be larqer than 1.0 but certainly not as
iarge as 10. Maximum variance inflation factors less than 1.0
tend to indicate a bit too much suppression of the parameter

variance, and a somewhat larger value of r is desirable.
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3.2 - Theory of Generalized Inverses

As noted in Section 3.1, the formulation of the generalized inverse
estimator depends greatly on the assumption that a range of possible ranks
r for X'X exist; and that a different g-inverse of X'X can be computed
for each r,(T:), and hence a different estimate for each r. A sketch of
the background for these ideas is presented, followed by a look at the

properties of the g-inverse estimator.

A.Development
Since S'S = I, equation (3.4) can be rewritten

-1

71 - st

s' (3.6)
If rank(T) = r, and the last (p-r) ordered elements of D are zero (or close
to zero, when T is "near-singular"), S and D can be partitioned;

S = (S ) (3.7)

. r:Sp-r
where Sr is [pxr] and Sp-r is [px(p-1)]
Dr:_g
D = LN B L ] (3.8)

0: Dp-r

where Dr is [rxr] and Dp-r is[(p=-r)x(p~-r)].
1

We are supposing Dp—r is zero (or close to it), so that D;_r = 0 by
definition. Thus the inverse is

o -1,

Tr = SrDr Sr (3.9)

which can be rewritten in the form given in equation (3.2).
Marquardt [8] notes that the trace is preserved by the orthonormal

transformation (3.4), and that lj represents the sum of squares of
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projections of the points depicted by the rows of X onto the character-
istic vector associ;ted with the jth (ordered) characteristic root.
This leads to the suggestion of a criterion that the assigned rank r
include "substantially all" of the variation in the points of X. The
criterion is that one select the smallest r such that

|

i i w (3.10)
trace D

where w is selected in the interval 10-7 g_u:g_lo_l, usually 10_5. Note

the summation of the lj in reverse order, which minimizes rounding error.
The inverse given by (3.9) spans only the subspace spanned by Sr’

B. Properties of the g-inverse estimator

The estimate B+ is a linear transformation of E, depending only on

X and r.
3 = s o ls'x'y
rr r
= s p's! (x")8 (3.11)
= er

It follows that §+ is a biased estimator of B. The variance of §+ is

given by Var(E+)

2 -1' ' "'l|
g [err Sr](x X)[SrDr SI]

ozzr(x'X)'lz; (3.12)

o2s pt
rr

Sl
r
The theorems and discussion remaining in this section from [8] shed

more light on the properties of B+.

~+ . . , ;
Theorem 3.1 ||B ]|2 is a stepwise (or piecewise continuous) increasing
function of r.
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In other words, §+ is shorter than B”for values of r<p. This is best

seen from the following equality;
F12 Aot
HE™| ~F R
= I\~
uélxu [

P 2 (3.13)
I.(g.S,
41E1(8554,)]
The uth term in this sumr-ition is the increase in the squared length of
§+ due to inecluding the uth characteristic vector dimension. Since the
-Au is raised to a negative power, the length of §+ increases greatly
when dimensions are included for which lu is small.
Theorem 3.2 Let B+ be the egstimator arrived at by equatioms (3.1) and
(3.2). Then B minimizes the residual sum of squares

8(B) = (Y - XB)" (Y - XB) (3.14)

for all E within the r-dimensional subspace spanned by Sr'

Theorem 3.3 The mean square error of §+ is
@) = trlvar 8] + 8'(z_ - D'(2_ - D)8 (3.15)
The second term on the right side of (3.15)is the squared bias, It is
zero when r=p.

Corollary 3.3.1 The variance term in (3.15) is an increasing function
of r.

Corollary 3.3.2 The bias term in (3.15) is a monotonic decreasing
function of r.

In practice, we will decrease r according to the extent of ill-
conditioning in the X'X matrix. The above corollaries indicate that as
we decrease r, the variance of E+ will decrease, while the amount of bias
increases. We would like to be able to find a value for r such that the

mean square error E(Li) is less than the least squares mean square error.
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As 1in ridge regression, we will tolerate some bias in the estimator in
hopes of reducing the mean square error.
Theorem 3.4 A sufficient condition for the mean square error E(ii) to
be less than the OLS mean square error is

P 2 []
j=r§1 lllj > (1/07)(B'B) (3.16)

Hence it is possible to find an r that will yield a E+ closer to B
than ﬁ Note that B must be bounded, which we said present: no problem

in actual data analysis.

Theorem 3.5 %+ is equivalent to E if one of the following is true;
(1) Dp-r is a null matrix.

(ii) Dp—r is not precisely a null matrix.

In (ii), §+ is equal to f when the actual data are supplemented by
a fictitious set of data points taken according to an experiment Hr; with
the response Y equal to zero for each supplementary data point. The proof
of (ii) is showm by finding H® such that
-1 -1
L \i = T
X'x + HrHr) SrDr Sr (3.17)

The matrix H_ plays the role of prior information from the standpoint of

a2 Bayesian interpretation.
The following theorem aids in the geometric interpretation of the

g~inverse technique.

Theorem 3.6 Let s be the angle between §+ and g. 1f r is an integer

and lr and Ar-l satisfy;

(1) 0< A,
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(ii) Arllr- << 1

1
(11i) A__ /A
then Y >y

p2<<1

r-1"

o ~t
Since g is indpendent of B, it follows that 8 rotates toward g as r is

decreased.
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SHRUNKEN ESTIMATORS

4.1 - Method

Mayer and Willke [9] view the rid;e estimators as a subclass of the
class of linear transforms of the least squares estimator E. They pro-
pose the shrunken estimators as an alternative to either the least squares
or ridge estimators in the case of an ill-conditioned X'X matrix.

The general form of the estimator is given by

e =elEDN XY =af  ; a=[0,%) (4.1)
where o is called the shrinkage factor. If o is a fixed scalar, <, is
called a deterministically shrunken estimator. But if ¢ is a scalar func-
tion of E'é, (i.e. a = f(é'%)), then Sy is called a stochastically shrunken
estimator, |

Thus, the shrunken estimator simply involves multiplying the least
squares estimator by some shrinkage factor. The problem arises in choosing
the proper shrinkage factor. Three methods of selecting a factor are

presented below.

A. The Deterministically Shrunkcn Estimator <,

(i) Calculate the least squares estimator é.
(ii) Compute -3 from formula (4.1) using different values for o in the
interval [0,1], possibly in increments of 0.1.

(iii) Plotting each c,iasa function of o yields a straight line from

&

the origin te the least squares estimator, hence the plot does not

stabilize as in the ridge trace. Due to this lack of stabilization,
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Mayer and Willke [9] recommend one of the other two estimators

below if a shrunken estimator is to be used.

B. The Stochastically Shrunken Eistimator_g15
(1) Calculate é.
(ii) Evaluate d.= d%é'(l * Géé')-lé (4.2)
for values of § in the interval [0,1], selected at say, increments
of 0.1.
{iii) Plot the dﬁi as a function of § as in (ii) for ridge regression.

This plot will stabilize, and hence § can be chosen in the same

manner k is chosen for the ridge estimator.

C. The Stochastically Shrunken Estimator 5%
(i) Calculate E.
(11) Compute £, = (p - 2 (n - p + 2y~1 (4.3)
(iii) Evaluate ggo = [1 = sosz('é'é)'llé S (4.8
where 52 = Y'Y - R'X'XB
(iv) Each e is a constant value, so that a plot sheds no new light

201

on the situation.
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4.2 - Theory of Shrunken Estimators

The justification for considering : shrunken estimators as an alter-

native to either a least squares estimator or any of the preceeding tech-

niques is four-fold. All Definitions and Propositions in this chapter are

taken from [9].

{i) The shrunken estimators satisfy an existence condition of small mean

(11)

square error similar to that given in Theorem 2.3 to justify the
ridge estimator. Consider the following proposition

Proposition 1 For every B there exists a fixed « in [0,1] such

2 ~ 2. .
that E[Ll(su)] < fl(B), where E[Ll] is the mean square

error and fl is the total variance.

(i-e. £,(8) = tr[var(8)1)

Thus, it is possible to choose an & such that the mean square error
of the shrunken estimator is smaller than the total variance of the

least squares estimator,
Begin with two definitions;

Definition 1 Let C denote the class of linear transforms of é such

that if bEC then b = GE for some pxp matrix G.

Definition 2 Let C(t) denote the subclass of C such that b{G) € C(t)

1Ff B'(G - I)(X'X) (G - 1)B = T.

Proposition 2 gives the second justification for the use of shrunken

estimators.
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(iv)
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Proposition 2 The shrunken estimator has the shortest length of

all estimators in the equivalence class C{t), pro-
vided md(G) is the norm used to measure length, where
m,(6) = B'G' (X'X)GB (4.5)
Mayer and Willke refer to md(G) as the design-dependent noru, and
note that it imposes constraints on the bias of the estimator based
on the observed {ill-conditioned) data. Hence if the scientist
feels that md(G) is a poor norm to use, Proposition 2 is little

evidence for use of the shrunken estimator. This is dealt with

furthe: in Chapter 6.

Proposition 3 Let G, = 6%%'(1 + Géé')_l for some §, if b(Gl}E 4

1

£,(b(Gy)) = min £, (b(G))
1 N

So the shrunken estimators d6 are minimum total variance estimators

within the equivalence class C(t).

Definition 3 Let W(B) = E[(B - B)'(X'X)(B - B)] denote the

weighted total mean square error of estimator B.

Proposition 4 If p>3 and 0< £ < 2(p—2)(n—p+2)_l, then

We, ) < WR) and if £ = (p-2) (n-p2) ",

then W(Ego) = min W(gg).
€

Therefore the stochastically shrunken estimator calculated as

Zto

in (4.4) has smaller weighted mean square error than E.
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The moments for the deterministically shrunken estimator ¢, are given

[9] to be;
var(c ) = o2 x'x)"t (4.6)
£(e) = 2ot [(x'%) 71 4.7)
ElL2(e )] = (1 - 0)%8's (4.8)

Mayer and Willke have had little success in determining a general form of
the moments for the stochastically shrunken estimators gﬁ and Eg' It is
also not clear how to choose the particular a, §, or & which winimizes the

total mean square error of the estimator.
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LATENT ROOT REGRESSION ANALYSIS

5.1 - Method

This technique, as presented by Webster, Gunst and Mason [12], is a
modified least squares procedure utilizing the latent (characteristic)
roots and latent vectors of the correlation matrix including both the
dependent and independent wvariables. The reason the dependent variable is
included in the matrix is that a geometric interpretation of the first element
of each latent vector provides a measure of that latent vector's predictive
value. If a latent root and the magnitude of the first element of the cor-
responding latent vector are both small, the latent vector is said to reveal
a "non-predictive near singularity". This geometric interpretation will
be pursued in greater detail in the following section.

After the presence of ill-conditioning is ascertained, prediction equations
are obtained from linear combinations of the latent vectors. If non-pre-
dictive near-singularities are not present,a linear combination of all the
latent vectors can be used to obtain the OLS predictor. If non-predictive
near singularities are found, the latent vectors which reveal them are re-
moved from the estimation procedure and the linear combination of the re-
maining latent vectors which minimizes the residual sums of squares is used
as a predictor.

The form of the estimator is [12];

%-1

' -1 5P 1-1 0
i

R
T TNy 1

The terms in the above equation will be defined as we move through the
procedure Latent root regression analysis can be applied as follows;

% . * -
(i) Form the matrix A = [Y ! X] where Y = (Yi -Y) / n



(ii)

(iii)

(iv)
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and n2 = iéi (Yi - ?)2. Thus, A'A is the [(p+1)x(p+l)] "correlation
matrix" of dependent and independent variables.
Find the latent roots and latent vectors of A'A. Denote the jth

latent root by Aj and the jth latent vector by

0’ ' - [ ] -
Let y. = e 5 ¥as b Y« 5.
Y3 = Drggevy Ypj] 3

contain all the elements of xj except the first ome. Finally,

L 2
Ay = J\j/yoj (5.4)

Construct a table containing all the Aj and the fxgjl. Recall that
the criterion for identifying non—prediétive near singularities is
small values of both Aj and |Yoj!' Now we must decide what to call
small. Webster finds latent roots of size 0.05 or smaller to be
fairly reliable indicators of a near singularity. On the other hand,
latent roots as large as 0.10 or 0.20 apd larger are seldom reliable.

A cutoff value which works well for IYojI is IYojr < 0.10.

For purposes of notation, assume the Aj and ]yojf have been
arranged as follows;

A‘<A<n-- <}L
- - .

<A<..
o — —_—

1 = il t

ool = Irorl 27 7 " S lvgeal 2 gl 277 7 < gl
Where t-1 is the subscript of A and |y0| such that both have been
determined "small" according to some criterion similar to the above.
Upon deciding which 1htent vectors contain non-predictive near

singularities,eliminate these latent vectors and corresponding

%
latent roots from the analysis, and use (5.1) to find b .
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Note that using all latent roots and latent vectors gives

—_—

_ ‘n( zp Jt*—]_ -1 EP -1 o (5'5)

b ot ) B Y M Y

which is the LS estimator.

Webster, Gunst and Mason utilize this analysis to formulate two back-
ward elimination procedures. One such procedure is based on the idea that
by using only latent vectors not indicating non-predictive near singularities,
the true influences of the independent variable on the dependent var. ables
are more clearly represented. In many cases several independent variable:
may be eliminated at the first stage when the computations are easiest.
The details of these procedures are beyond the scope of this report, but

may be found in [12].
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5.2 - Theory of Latent Root Regression Analysis

- Part A, of this section traces the main steps in the development of
the latent root estimator [12]. Part B. deals with the geometrical inter-
pretation of the analysis. The ensuing analysis in greater detail is

in [12].

A. Development

An estimator of the form

Y=b1l+ZXb (5.6)
is desired, where b° and b estimate B and B respectively. As in all the

methods, we let bo = ¥, since the X - matrix contains standardized indep-
endent variables.

Begin with
¥+ Pk v |
lYoj r=1 errj

o P
izToj i r£1X2rYrj

A7, = : (5.7)

Yy .+ iPx
nYoj r21%nr’

Tj B

From (5.7), define p+l prediction equations

gj = Y1 —nT;;-Xl; $ 3= 0,1, « . ., P (5.8)

where all the Yoj # 0. This is clearly of the form (5.6) with

b= - -1lo
27 TMoydye
Usually none of the prediction equations alone yield a good predictor.

Hence, linear combinations of these predictors are used to obtain estimates
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of the parameters of the model. Webster intoduces an arbitrary linecar

combination of (5.8)

-~ p ~
Y = E Y 5.9
s Ty 1 (5.9)
ict ¢ =1,
with the restric ionjzo aj Toj 1. This implies
¥ = Y1 - nX( Jﬁ) (5.10)

which is also of the form (5.6) with
b =-n.zf a lj (5.11)

The residual sum of squares is

= (¥-Y)'(T-Y) =na'ha = “§§ a§ g (5.12)

where a' = (ao, Bys o . 0 ap) and A = diag.(lo,_ll,. . .,_Ap).
The problem is now one of minimizing the residual sum of squares

subject to the constraint = 1, and solving for a. This yields

P
550 257
the OLS predictor. Hence, we minimize

f(a) = n2 EP a§ A, = 2u (I P a; ¥,

’ olsle 25 Yoy = 1) (5.13)

where —2u0 is the LaGrangian multiplier. Solving for a in (5.12) yields

8y = 1oy 5 LesPa* 4Ll o 40, 1,. . ., p (5.14)

| oj i=0 i

&
where Ai is given in (5.4). Substituting this in (5.11) gives the OLS

coefficients
*~1.-1 _p -1 o
"(1—0 ) 20 Yoi M Y (5.15)

which is the same as (5.5) with residual sums of squares

[
8 o= gl 2 Iy=l (5.16)
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When the latent vectors g Agse v oor Yeg correspond to non-pred-
ictive near singularities, the latent root estimator is arrived at by
setting a = a1 =...=a 4= 0 and minimizing (5.13). The solution

AE _ -1, p  *1-1 L
aj - Yoj-lj ( iét Ai ) 3 J=t,t+l,. . ., P (5.17)

and the modified least squares coefficients are as given in (5.1), with

. .. -
residual sum of squares@ - nz{igz Ai 1) 1 (5.18)

Solutions to the normal equations can be obtained from this proce-
cure even if X'X is singular, This arises from the fact that a singular
X'X matrix implies some of the lj and corresponding Toj are zero, the

same as setting the appropriate a, = 0 in (5.13).

4|

B. Geometrical Interpretation
We are interested in determining whether the near-singularities in
A'A contain dinformation about the underlying model (1.1). Consider the
- * * L3 - a
n data points (Yi, xil’ Xiz" . ey Xip) i=1, 2,. . ., n as n points in
the p+l dimensional F clidean space defined by the mutually orthogonal

axes Y#, X, X5+ +» »5» X « Anewset of axes Z , Z.,. « +, Z are defined
P o 1 ) P

1 72
by Xgr Ayse ¢ oo Ip ; the latent vectors of A'A. The first eleme:t, Yoj’
in each of these latent vectors represents the cosine of the angle
between axes Y* and Zj. The other Yrj (G =1,2,...,p) in each latent
_vector represent the cosine of the angle between Xr and Zj' A zero Toj
means Y* and Zj are orthogonal. (cos 00 = 1 and cos 900 = 0)

Each A, represents the spread of the n data points in the direction

J

of Zj' ie. the latent rdot is the sum of squares of the projections of
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FIGURE II

A

cos6@
[

) ko is large

cosel -ll is small

the n data points on the Zj axis. Hence, a sm1ll Aj indicates the data
points are clustered tightly along the Zj axis, little spread in that
direction.

Therefore, if both A, and [yoj[ are small the latent vector Y reveals

h]
a non-predictive near-singularity - very little spread in a direction
orthogonal to the dependent variable, which explains little or none of
the variability in the dependent variable. On the other hand, a large Xj
and |Yoj' indicate much spread in a directicn almost parallel to Y, and
therefore a good vector for prediction.

Figure II illustrates the geometric ideas just given for the simple

linear model
Y = Bo + BX + ¢
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COMPARISON AND CONTRAST

The theory in Chapters 2 and 3 was pre:ented in such a manner that the
reader will note a close parallel in the characteristics and justification
for both ridge regression (RR) and generalized inverses (g-inverses).

For increasing values of k in RR and decreasing values of r in the case of
g-inverses;
(i) the length of the vector of coefficients decreases.
(ii) é* and §+ rotate toward g.
(iii) the total variance terms [fl(k)and fl(r)] decrease.
(iv) the bias terms [fz(k) and fz(r)] increase.
As shown in theorems 2.5 and 3.5, both techniques correspond to Allen's[1]
"Data Augmentation", a somewhat Bayesian approach to the problem of ill-
conditioning.
Although the RR and g-inverse estimators share many desirable properties,
the RR estimator is not a g-inverse estimator. For example the ridge inverse

[X'X + kI]_1 does not obey
TT T=T ' (6.1)

Marquardt views the ridge inverse as an approximate g-inverse.

RR, g-inverse and shrunken estimators all fall in a more general class
of linear transforms of the least squares estimatcrs. The arguments for all
three of these estimators are based on the following two main points;

(1) a reduction in the length of the vector of estimated coefficients
when compared with thé length of the vector of LS coefficients, and
(2) existence theorems (2.3) and (3.4) and proposition 1 revealing classes

of estimators with smaller total variance than the LS estimator.
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Both the ridge estimators and the shrunken estimators are minimum
length estimators with respect to the appropriate norms in the class C.
The norm for the shrunken estimators is md(G) given in (4.5) and the

norm for ridge estimators is

I

m(G) = E‘ ¢' G (6.2)

Mayer and Willke observe that the ridge estimator has minimum squared
length among all estimators with a given sum of squares loss, but that
the estimator gﬁ has minimum variance among those estimators with a
given sum of squares loss which are in class C. (Proposition 3). They
also contend that the estimator Egis superior to the ridge estimators
or deterministically shrunken estimators Eu since a value of £ can be
determined which will guarantee an estimator with smaller weighted mean
square error than E. (Proposition 4). Sclove [10] gives estimators
guaranteed to have total MSE smaller than the total variance of E, but
which are-rather complex.

The difference between the ridge estimator and shrunken estimator
can be seen by observing Figure ITI.[9] The shrunken estimator gu or g&
in a given equivalence class corresponds to the point on the elipse which
falls on the line from the origin to the OLS estimator é, The ridge
estimator,é:, in @ given equivalence class corresponds to the point on the
ellipse which is closest to the origin in the Euclidean sense. Note
that both of these estimators in a given equivalence class are shorter
than the OLS estimator. The importance of this is seen upon recalling

that the OLS estimator tends to exceed the actual parameter vector length

when dealing with ill-condintioned data.
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The estimators obtained from latent root regression analysis (LRRA)
do not fall in the class of linear transforms of the LS estimator. The
major difference between the OLS estimator and the LRRA estimator is the
term containing I? for j=0,1, . . ., t -1 (See equations (5.1) and
(3.5)). Gunst, Webster and Mason[3] compare the relative merits of OLS
and LRRA with respect to both estimation and variable selection with
multicollinear data. They conclude that unless the parameter vector is
parallel to the latent vector corresponding to the smallest latent root
of X'X, LRRA is preferable to OLS both for estimation of parameters and
variable selection. An argument for the usefulness of LRRA is that it

provides measures [A and|T oj|] for determining when a biased estimator

]

should be used.

FIGURE III

™ >

c B* == % = constant
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Hawkins [4] compares LRRA with RR. Recall the form of the LRRA

estimator

L P (s} Pp. 2
LI i Pk R oY) A0 / (& o3/ 1 (6.3)

Hawkins shows th-t the RR estimator can be written

~

¥ o b nP o P_ 2
B [ nyZ Yojlj/(lj +k)l/ [jét Yoj/(k

¢ + k)] (6.4)

3
Thus RR is a rescaling of the summation terms in (6.3) by a factor of
lj/(hj + k). (This is E(Z), where E* = Z é.) Recall that an il1-
conditioned X'X matrix is characterized by a few small Aj which dominate
the OLS estimator. These c.vectors are the ones which will most be affected
by the diagonal magnification, and whose contribution to the estimation will
fall away most rzpidly. This is analogous to the relationship between
RR and g-inverses.

The succeeding chapter provides further opportunities for comparisons
and contrasts, as one set of ill-conditioned data is analyzed by each

of the four biased techniques and by least squares.
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CHAPTER 7

A NUMERLICAL EXAMPLF

7.1 - Least Squares Solution

The data used for this illustration contains a great deal of multi-
colinearity among the independent variables. It does not pertain to any
particular scientific phenomena. There are 15 observations on 9 indep-
endent variables Xl, X2,. — Xg; and the dependent variable Y.

Table I gives the X'X matrix in its correlation form. The last row

contains the correlations with Y and the independent variables used for the

LRRA computations. Note the great amount of correlation among Xl, Xz,

X3 and X&'

The least squares solution is;

r "~
~3.3140 | with ®(B) = 20.5821 and |[B|]|? = 159.444

-0.1952
-0.1431
3.9319
0.0947
1.5639
11.4223
0.1272
:0.0040

™m?2
]

et

A step: ise deletion procedure, deleting the variable with the high-
est a-level greater than 0.05 leaves only variable 6 in the model with

¢ = 41.6684 and R2 = 0.65.



TABLE I
Correlation Matrix

X, 1

X, 091 1

X3 0.80 0.94 1

X4 0.98 0.94 0.88 1

X, 0.05 0.30 0.44 0.16 1

X, -0.44 -0.66 -0.77 -0.54 -0.68 1

X, 0.07 -0.01 -0.13 0.01 -0.17 0.43 1

Xg -0.47 -0.63 -0.74 -0.59 -0.69 0.76 -0.02 1

Xg <-0.43 -0.35 -0.25 -0.41 0.02 0.14 0.18 -0.11 1

Y -0.25 -0.44 =-0.56 -0.32 =-0.65 0.81 0.27 0.74 =-0.19 1
' X, X, X, X, Xg X, X, Xg Xy Y

7.2 - Ridge Repression Solution

The multicolinearity in the data is also revealed in the character-

istic roots of X'X (ordered);

Al = 5.038 16 = 0.131
12 = 1.732 17 = 0.074
13 = 1.236 18 = 0.031
14 = 0.607 Ag = 0.005
15 = 0.145

The sum of the reciprocals of the characteristic roots is E(llhi) =

265.451. Thus (1.5) shows that the expected squared distance of the

coefficient estimate, B, from B is 265.45102, which is more than 26 times

what it would be for a system with no near-singularities present.

Since the smallest characteristic root A_ is not zero, the factors

9
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define a 9-dimensional space. The first four characteristic roots total

8.614 so that most of the variation can probably be explained in four

dimensions.

Figure IV is the ridge trace for this problem. This trace was con-

structed by computing a total of 16 regressions using the APL program

in Appendix IV. The following observations can be made from the ridge

trace:

(i) The coefficients from OLS are undoubtedly overestimated. They are

(ii) X4 is the second largest positive factor and X

not stable as a group. Moving a short distance from the least

squares point k=0 shows a rapid decrease in absolute value in the coef-
Ak !
ficients of X, X,.and X . When k=0.04, ||8"||? is only 13.0% of its

original value.

1 is the largest neg-

ative factor. Both are quickly driven to zero with the addition

of k>0.

(1ii)The correlations with other factors causes X_ to be underestimated.

(iv)

(v)

5
At k=0, it is the smallest positive factor. The additien of k>D

drives the negative coefficients to zero and X_ becomes the most

5
important negative factor,

Factors Xl. Xz, X3, XA’ X& and Xg all appear to be overectimated
and are driven toward zero.

At a value of k in the interval (0.1,0.2) the system has strhilized
and coefficients for k=0.1l5 (say) will most likely be closer to °

g and more stable for prediction than the OLS estimates.
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The estimates at k=0.15 are;

—

[-0.1467 with ¢( 87) = 35.4907
-0.0479
-0.0005 and ]lé*llz = 28.165

0.1465
2%(0.15) = | -0.4680
1.6326
5.0233
0.0389

__0- 009‘&-‘

This represents a 72.4% increase in residual sum of squares over
the least squares estimate and an 82.337 decrease in the squared length
of the coefficient vector. The analyst would probably want to drop all
52 X5’ and X7

obtained from k=0.15 fer the the variables remaining in the model.

variables except X from the model, using the coefficients
The Explicit Solution (Hemmerle [5]) in Appendix III was also used

to calculate a Ridge Regression Solution. The results differ from the

previous ridge solution. This procedure begins by checking the converg-

ence/divergence criterion;

0.4325 Gac0y = 709:76

7.6527 q3(0) = 0,04087

35.3947 Gy oy = 0-67058

b= A"Ysx'y = | —4.9067 G50y = 0-09872
2.0918 q6(0) = 7.1592

3.0973 Qg oy = 2-9572

-1.8643 q9(o) = 1.95089

*
ql(o) and qS(o) are both < 1/4, so they were used to compute q; = .12333

*
and g = .124949.

43
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s —2.8918
Next, W =7 . 103337 = -2.57425
s  =h.9067
M5 =1 4 .124949 =~ "4-3617
Finally,
[ 0.0995 with o(8") = 44.8278
-0.0428 (a 117.8% increase over OLS)
-0.0710
0.0246 and ||8||? = 44.854
s'&* = E* =| ~-0.8850 (a 71.9% decrease from OLS)
0.8388 '
6.5840
0.0350
-0. 0049

This is & rather large increase in the residual sum of squares, which

can be improved by performing additional modifications given in [5].

7.3 - Generalized Inverse Solution

The results of the generalized inverse method, obtained using VGINV
in Appendix IV are presented in Table II. Twenty regressions were cal-
culated in all. Note the rapid decrease in magnitude of both ]]§+||2
and the variance inflation factor, with very little éorresponding increase
in the residual sum of squares. Using the rule of thumb (p. 17) for
deciding how much bias to allow narrows the range of selection for r to
the interval [4.0,7.4].

A good selection is r = 6.9 with a variance inflation factor of 6.17,

well within the interval [1,10]. Thus, just under seven dimensions are



TABLE II
Variance Inflation

r Mk o (8" Factor

9 159.444 20. 5821 125.67
8.5 47.449 23.6¢70 63.55

8 9.518 26.7689 21.28
7.5 9.557 26.7718 11.26
7.4 9.569 26.7724 9.51
7.3 9.582 26.7730 8.78
72 9.596 26.7736 8.05
7.1 9.612 26.7742 7.32

7 9.629 - 26.7747 6.59
6.9 9.489 27.2083 6.17
6.8 9.698 27.6418 5.84
6.75 9.934 27.8586 5.68
6.7 10.256 28.0753 5.52
6.6 11.163 28.5089 5.20
6.5 12.419 28.9424 4.87

6 23.930 31.1100 3.95
5.5 41.349 31.3974 3.26

5 64.436 31.6848 2.69
4.5 77.377 32.3810 1.68

4 91.806 33.0773 1.06

adequate to describe the model. For this effective rank,

-0.2801
-0.0221
0.1831
0.0561
= | -0.3411
2.8565
1.0471
0.0280
-0.0120

“_— R
This estimate achieves a 94.0% decrease in the squared length of the

coefficient vector relative to OLS with a 32.2% increase in 9 over OLS.
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7.4 = Shrunken Estimator Solutions

A. The program VSHRINK C in Appendix IV was used to obtain the results

in Table III.

TABLE TIT

2
o ®(c,) e, !
.80 40.3457 102.044
.81 39.2575 104.611
.82 38.3693 107.210
.83 37.3811 109.841
.84 36.3930 112.504
.85 35.4048 115.198
.86 34.4166 117.925
.87 33.4284 120.683
.88 32.4403 123.473
.89 31.4521 126.296
.90 30.4639 129.150

The proper value for o and hence for the coefficient vector <, is
chosen by selecting the value of @(gu) the analyst deems reasonable. A

possible selection here is « = ,85,

-2.8166—
-0.1659
-0.1216
3.3422
c = 0.0804
1.3293
9.7091
0.1081
-0.003€'

—y

This solution allows a 72.07 increase in the residual sum of squares
for a 27.7% decrease in the squared length of the coefficient vector

relative to OLS.



B. The program VSHRINK DELTA in Appendix IV yielded the results in

Table IV and Figures V and VI.

TABLE IV
s o(d,) [d ]
—§
. 001 62.4825 52.897
.002 47.1690 85.189
.003 40.0529 102.802
. 004 35.9418 113.730
. 0045 34.4751 117.763
. 005 33.2641 121.145
. 006 31.3814 126.499
. 007 29,9855 130.543
. 008 28.9091 : 133.705
.009 28.0538 136.244
.01 27.3579 138.328
.05 22.0159 154.851
.1 21.3041 157.121
.5 20.7272 158.977
i.0 20.6547 159.209

Clearly, most of the stabilization takes place in the interval

(0,.01). A possible selection for § is .0045.

-2.8481
-0.1678
-0.1230
3.3792
d, = 0.0813
1.3441
9.8165
0.1093

-0.0034
.

This solution yields a 67.5% increz : in ¢ and a 26.1% decrease in

IIQG] [2 relative to the OLS solution.
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. £ =7/8 = .875 s = 20.5821

B'8 = 159.444

Hence [1 - Eosz(é'ﬁ)“l] = .887049
This amounts to an "optimum" value for ¢ in [ the deterministically

shrunken estimator. The result is

~2.9397 (e ;) = 31.7437
-0.1732 °
-0.1269
3.4878
[1.- sosz(é'é)'ll =& 0.0839
o 1.3873
10.1322
0.1128

—00 0035
L -

(54.2% increase relative to OLS)

lle, 112 = 125.459
(o]

(21.3% decrease relative to OLS)

7.5 — Latent Root Solution

The A, and y_, for A'A are in Table V. The Yojxj'l, FhE: BOEEEIBlenEs

g x|
each latent vector 1; is multiplied by to obtain E are also shown. It
was determined to eliminate 1; and IZ from the linear combinations used

* . ‘
to calculate b ,i.e.,since 12 and 14 are<,.05; and both]yozl and|T°4| are
< .10. Observe how the extremely small magnitude of A4 causes 12 to be

grossly -.verw: ighted in the computation of é.

Elimimating 12 and 12 from the analysis;
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~0.1910 o(b") = 27.1880

—0. 0284 (32.17% increase over OLS)
0.2303

-0.1176 Ilb*llz - 9.444

-0.389%4
3.0071 (94.1% decrease relative to OLS)
0.3816
0.0214

-0.0127

TABLE V
A ¥ Y. . A -1

0.2355 0.7447 3.1020
5.4531 -0.2965 -0.0544
0.0310 -0.0074 -0.2403
0.0588 -0.2741 -4.6659
0.0038 -0.0737 -19.6013
2.0918 -0.4121 -0.1970
0.1241 -0.2333 ~1.8801
1.2384 ~0.0329 -0.0266
0.1379 -0.1428 -1.0360
0.6257 -0.1765 -0.2821

-J

Table VI presents all the estimates, their residual sum of squares,
and squared coefficient vector lengths together for ease of comparison.

The example dat appears in Table VII.
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TABLE VI
B E* egg §+ (54 516 e £ b*

-3.314 -0.147 0.100 |-0.280 | -2.817 | =-2.848 | -2.940 { -0.191
-0.195 -0.048 |-0.043 | -0.022 | -0.166 | -0.168 | -0.173 | -0.028
=-0.143 | -0.001 |-0.071 0.183 | -0.122 | -0.123 | -0.127 0.230
3.932 0.147 0.025 0.056 3.342 3.379 3.488 | -0.117
0.095 -0.468 |-0.885 | -0.341 0.080 0.081 0.084 | -0.389
1.564 1.633 0.839 2.857 1.329 1.344 1.387 3.007
11.422 5.023 6.584 1.047 9.709 9.817 | 10.132 0.382
0.127 6.039 0.035 0.028 0.108 0.109 0.113 0.021
-0.004 -0.009 |-0.005 |-0.012 -0.003 | -0.003 -0.004 | -0.013
N 20.582 35.491 |44.828 | 27.208 | 35.405 | 34.475 | 31.744 | 27.188
b159.444 28.165 |44.854 9.489 |115.198 [117.763 |125.459 9.444

a. ¢(B)

2
b. |[B[]°
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APPENDIX I

THE CORRELATION MATRIX

Represent the original model by

Y=g b2y 2, b .t wPZP + ¢ L
or
Y=2Zp+e  where ¢ 4 N(O, o°I) 2)

Express the dependent observations Y and the independent observations

Z, as deviations from the respective means;

i
1 _ _1 %
(In = Jn)Y = (In = Jn)z¢-+ £ (3)
S i
where € ~ N(O, 02(1n - Jn))
or
Y* = z*¢ + e* (4)

-1, % * -
Apply the transformation P 1(Z 'Z )P . where P2 is the matrix of diagonal

* % =,k k=T
elements of Z 'Z ., Then P (2 'Z )P ~ is in the form of a correlation

matrix;
i.e.
s -
1 rl2 r13 “ e s rlp

rlz 1 r23 i oo rZP

=1, %, * ~1 _

P (z '2)pP = r13 r23 1 i ¥ W r3p (5)
rlp IZp r3p i W o 1

Inserting PhlP = 1 in model (4),

Y = (z*P"l) (PY) + & - XB+ ¢ (6)

* -1 -1
where p=P¥ and X = Z P ~ which implies ¥ = P B )



The least squares solution for g is now

~ P * -] % % =], - -1 % %
B-—-(X'X)IX'Y = (P 1z 'zrl)lPlz 'y (8)

After the estimate B of B has been obtained by whatever method, the

estimates of the original parameters are;

g=21lp 9)

55
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APPENDIX II

ITERATIVE SOLUTION FOR RIDGE REGRESSION

Reduce X'X to a diagonal matrix by applying the orthogonal trans-

formation S.
S(X'X)S' = A (10)

where S is pxp such that 8'S = I and A is a diagonal matrix whose

iagonal elements Al, Az,. - lp are the characteristic roots of X'X.

We write &

X =X8' and u = SB. Then the model (1.1) may be writien

*
Y=Xu+c¢ (11}
' % *
where (X )'(X) = A (12)
Therefore p = [(X*)'(}{*)}-1 X?'Y = A_ISX'Y (13)

The iterative procedure is described by the formula

A2 sk 2
kigy =9 yy)

where the j subscript denotes the jth iterate and 32 is the residual

(n (14)
sum of squares for the model (1.1) divided by (n-p-1), the unbitaced
estimator for 02.

As initial values, use

O A
ui(o) = ui F) i - 1’ 2’- - .3 p (15)
where ﬁi is the OLS estimate of ui. The ki(j) values are used in equation

- ~ * 5
(2.1) to obtain the next ui(j+l) values for use in (14).

Although the authors ([5] and [6]) do not recommend a criterion
for terminating the iteration, it seems reasonable to terminate when

ki(j+l) = ki(j) < A where A is some predetermined small value.



Hence

To obtain the estimates of the original Bi's,

p = SBg implies that S'y = S'Sg = B

~R ~
s'u =8

(16)

(17)

57
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APPENDIX III

EXPLICIT SOLUTION FOR RIDGE REGRESSION

Begin by performing the orthogonal transformation on X'X described
in Appendix II. The explicit solution depends on certain convergence/
divergence conditions related to the iterative solution.

; ;2
(1) Compute 9, (0) =-;—';'§— s 1® 1, 2,0 » «5 P (18)
i"i
~2 - ; 2 ;
where ¢ and ui are the OLS estimates of ¢ and ui, repectively

and Ai is the ith characteristic root of X'X.

(ii) Hemmerle [5] shows that the iterative process defined by (14)
converges whenever 0 < q, < 1/4 and diverges for q, > 174

Thus, we let

ﬁ*
B = 0 for qi(o) > 1/4 (19)
ntk Wy
and yu, = 5~ for 0< % (o) < 1/4 (20)
1+ q,) .

(1 - Zqi(o)) = V(l = 4qi(0)) (21)

*
where qi =

2qi(o)
(iii) This procedure may produce an undesired large increase in the
residual sum of squares. One may desire to follow some additional
steps to prevent this. These may be found in [5]. Compute the

estimates of the original Bi as in equation (17).
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APPENDIX IV

APL ROUTINES

The following programs written in the APL programming language were
used for the computations of Chapter 7. XPX, XPY, I9, DI, LS and T are

user-supplied global variables.

I. VRIDGE K

[1] BH«(ENXPX + K x I9)) +.x XPY
[2] SSE<YPY - ((®BH) +.x XPY)
[3] "SSE= ';SSE

[4] BH<DI +.x BH

[5] 'BH= ";BH

[6] "LENGTH= ':(®BH) +.x BH

[71 v

K is the user-input value for k in equation (2.1). Output is BH, the

vector of estimates of the original parameter vector B; SSE, the residual

sum of squares; and the squared length of BH.

1I. VGINV
[1] BH<T +.x XPY
[2] SSE<YPY - ((®BH) +.x XPY)
[3] 'SSE= ';SSE
[4] BE«DI +.x BH
[5] 'BH= ';BH
[6] "LENGTH= '; (RBH) +.x BH
[7] "T= ';+/TxI9
[8] v

T is computed from (3.2) prior to program use. Ouput is the same as VRIDGE.
The diagonal elements of T are also output for selection of the maximum

variance inflation factor.



III.
[1]
[2]
[3]
[4]
[5]

- [6]
[7]

60

VSHRINK C
BH<C x LS
SSE<YPY - ((®BH) +.x XPY)
'SSE= ';SSE

BH«DI+.x BH

"BH= ';BH

'LENGTH= '; (RBH) +.x BH
v

Input is a value of C in the interval [0,1]. Output is the same as for

VRIDGE.

Iv.

[1]
[2]
[3]
[4]
[5]
[6]
(7]

VSHRINK DELTA

BH«DELTA x (I9 + (DELTA x (B(LS +.x(].S))))) +.x LS
SSE<YPY - ((&BH) +.x XPY)

'SSE= ';SSE

BH<DI +.x BH

"BH= ';BH

'"LENGTH= '; (®BH) +.x BH

v

Input is a value for DELTA in the interval [0,1]. Output is the same

as for YRIDGE.

V. Characteristic roots and characteristic vectors were computed using

EIGEN, which can be copied from Library 5.
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Multiple linear regression analysis involves the attempt to explain
the variability in a dependent variable by a linear combination of cer-
tain independent variables. The serious problems resulting from estimat-
ing the parameters of the model by least squares when a great deal of
multicollinearity exists among the independent variables are demonstrated.

Some alternative techniques for estimating the parameters under
these circumstances are then presented. The techniques discussed are
Ridge Regression, Generalized Inverses, Shrunken Estimators and Latent
Root Regression Analysis. All four techniques provide biased estimators
of the model parameters.

The methods for computing parameter estimates are given in step-
by-step fashion for each technique as well as a summary of the justifi-
cation and reasoning behind the technique. Basically, the theory
supporting any biased technique is to "break up" some of the interrelation-
ships among the independent variables in order to arrive at estimators
with smaller mean square error than the least squares estimator.

The four techniques are compared from a theoretical standpoint,
and it is seen that many similarities exist. A data set contining high
correlations among the explanatory variables is analyzed utilizing the

four techniques to illustrate the computations involved.



