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Abstract 

A novel type of supramolecular aggregate, named “nanosponge” was synthesized through the 

interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-

(K/D)nDEVDGC)3-trimaleimide unit consists of a trigonal maleimide linker to which 

homopeptides (either K or D) of variable lengths (n = 5, 10, 15, 20) and a consensus sequence 

for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous 

buffer, cholesterol-(K)nDEVDGC)3-trimaleimides, as well as a 1:1 mixture of cholesterol-

(K/D)nDEVDGC)3-trimaleimides form stable nanosponges, whereas cholesterol-

(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates by itself. The 

structure of the novel nanosponges was revealed through explicit solvent and then coarse-grained 

molecular dynamics (MD) simulations. The nanosponges are between 80nm and several 

micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.  

Furthermore, the structure of novel binary nanosponges consisting of cholesterol-

(K/D)nDEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either 

lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high 

degree of agreement between these findings and structure predictions through explicit solvent 

and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the 

nanosponges’ structure and dynamics, caspase-6 mediated release of the model drug 5(6)-

carboxyfluorescein has been demonstrated. Moreover, the binary (DK20) nanosponges have 

been found virtually non-toxic in cultures of neural progenitor cells. Additionally, DK20 

nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3h of 

exposure. The percentage of live cells among the WBC was not significantly decreased by the 



  

DK20 nanosponges. Therefore, this novel material holds great promise for improved cell-

mediated therapy. 

Two different nanosponges loaded with the anticancer agent perillyl alcohol (POH) were 

developed to test the suitability of nanosponges for cell-based cancer therapy.  Drug-loaded 

nanoshuttles featuring trigonal supramolecular building blocks, type (D-POH)10K20 and (D-

POH)10R20 were synthesized, purified, and characterized by Dynamic Light Scattering (DLS) 

and Atomic Force Microscopy (AFM). They were then tested in cell cultures of murine glioma 

cells (GL26) and murine neural progenitor cells (NPC). The two nanosponges exhibited 

significantly different biophysical properties (size distribution and zeta potentials). 

Consequently, different efficacies in killing GL26 and NPC were observed in both, serum free 

and serum containing culture media. The results from these experiments confirmed that type (D-

POH)10K20 nanosponge is an excellent candidate for the cytotherapy of glioblastoma. 
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(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates by itself. The 

structure of the novel nanosponges was revealed through explicit solvent and then coarse-grained 

molecular dynamics (MD) simulations. The nanosponges are between 80nm and several 

micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.  

Furthermore, the structure of novel binary nanosponges consisting of cholesterol-

(K/D)nDEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either 

lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high 

degree of agreement between these findings and structure predictions through explicit solvent 

and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the 

nanosponges’ structure and dynamics, caspase-6 mediated release of the model drug 5(6)-

carboxyfluorescein has been demonstrated. Moreover, the binary (DK20) nanosponges have 

been found virtually non-toxic in cultures of neural progenitor cells. Additionally, DK20 

nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3h of 

exposure. The percentage of live cells among the WBC was not significantly decreased by the 



  

DK20 nanosponges. Therefore, this novel material holds great promise for improved cell-

mediated therapy. 

Two different nanosponges loaded with the anticancer agent perillyl alcohol (POH) were 

developed to test the suitability of nanosponges for cell-based cancer therapy.  Drug-loaded 

nanoshuttles featuring trigonal supramolecular building blocks, type (D-POH)10K20 and (D-

POH)10R20 were synthesized, purified, and characterized by Dynamic Light Scattering (DLS) 

and Atomic Force Microscopy (AFM). They were then tested in cell cultures of murine glioma 

cells (GL26) and murine neural progenitor cells (NPC). The two nanosponges exhibited 

significantly different biophysical properties (size distribution and zeta potentials). 

Consequently, different efficacies in killing GL26 and NPC were observed in both, serum free 

and serum containing culture media. The results from these experiments confirmed that type (D-

POH)10K20 nanosponge is an excellent candidate for the cytotherapy of glioblastoma. 
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Chapter 1 - Rationally Designed Peptide Nanosponges for Cell-

Based Cancer Therapy 

 

 1.1 Abstract 

A novel type of supramolecular aggregate, named a “nanosponge” was synthesized through 

the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-

(K/D)nDEVDGC)3-trimaleimide unit consists of a trigonal maleimide linker to which 

homopeptides (either K or D) of variable lengths (n = 5, 10, 15, 20) and a consensus sequence 

for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous 

buffer cholesterol-(K)nDEVDGC)3-trimaleimides and a 1:1 mixture of cholesterol-

(K/D)nDEVDGC)3-trimaleimides forms stable nanosponges, whereas cholesterol-

(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates with itself. The 

structure of the novel nanosponges was revealed through explicit solvent and then coarse-grained 

molecular dynamics (MD) simulations. The nanosponges are between 80nm and several 

micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.  
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 1.2 Background 

 

 1.2.1 Classic Liposomes and Peptide Vesicles 

Targeted delivery of therapeutics to the tumor site is of vital importance in cancer treatment. 

This approach is not only able to maximize the treatment efficacy of therapeutics at the cancer 

site(s), but also to minimize the side effects caused by the therapeutics in conventional cancer 

treatment.
1-2

  One method to achieve targeting delivery is to use a delivery modality designed to 

carry the therapeutics to the desired site, and then release them in the tumor.
3-6

 Liposomes are a 

well-recognized example of drug delivery devices. Composed of a simple lipid bilayer, 

liposomes are non-cytotoxic, biocompatible, biodegradable, and capable of integrating or 

encapsulating large payloads of both hydrophilic and hydrophobic drugs.
7
 Drugs incorporated 

into these nanocarriers can be accumulated in tumor tissue through enhanced permeability and 

retention (EPR) effect.
8-10

 Numerous liposome based drugs have been approved by the FDA, and 

many more are at different stages of clinical trials.
11

 Despite their successes, liposomes have 

limitations. It is noteworthy that the preparation of liposome based drug requires multistep 

procedures (i.e., hydration
12-13

, sonication
14-15

, extrusion
16-17

, using a size selective column
18

, 

etc.) in order to obtain narrow particle size distribution and separation from unloaded drugs. 

These tedious processes are associated with a high risk of damaging the entrapped drugs. 

Furthermore, the EPR effect is only slightly selective, thus achieving rarely more than 5 percent 

delivery of a nanotherapeutic drug to the tumor site(s).
8-10

  Finally, liposomes are prone to 

systemic leaking of drugs, especially at longer circulation times.
19

 

Self-assembling peptides are an attractive alternative to liposomes. For example, short 

amphiphilic sequences, acetyl-AAVVLLLW-(E)n=2/7-COOH, form nanosized vesicles 
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spontaneously in aqueous media at neutral pH. Hydrophilic molecules can be incorporated inside 

the vesicles.
20

 Longer block copolypeptides poly(L-lysine)-b-poly(L-leucine), KxLy (x = 20 to 

80, y = 10 to 30), form stable vesicles and micelles in aqueous solution with size ranging from 1 

to 10 µm in diameter. These assemblies showed high degrees of membrane fluidity; as a result, 

they can be resized with precise control from ten to hundreds nanometer in diameter using 

liposome-based extrusion techniques.
21

 The Tomich group reported two branched peptides with 

different lengths, mimicking diacyl glycerols, form water-filled vesicles which can entrap water 

soluble dyes.
22-25

 

 

 1.2.2 The EPR Effect Works Well in Mice, but Not in Humans 

During the last decade, it has become more and more evident that both, classic liposomes and 

peptide vesicles are facing the problem of ineffective drug delivery in humans. It is an emerging 

paradigm that the Enhanced Permeation and Retention Effect (EPR) works well in mouse models 

of cancer, but not in the clinic.
10, 26-27

 Drug transport as a payload of either stem cells
28

 or 

defensive cells
27

, which migrate to tumors following their cytokine/chemokine secretion, is a 

new concept that has been proven effective in animal models. Currently, clinical translation of 

cell-based treatment method for cancer and other diseases are rapidly progressing.
29

  Therefore, 

we have developed “peptide nanosponges” for efficient targeting of defensive cells in peripheral 

blood, as well as cultured stem cells.   
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 1.2.3 Peptide Nanosponges 

Peptide nanosponges that are reported here, are capable of effectively delivering their 

payload to defensive cells and stem cells. Especially autologous cells have the potential of truly 

personalized medicine when treating solid tumors and metastases.
30

  

Here, we report the synthesis of a series of (K)nDEVDGC, and (D)nDEVDGC peptide 

sequences, where n equals to 5, 10, 15, 20 respectively. We have capped the N-terminal of the 

peptides with cholesterol, and further linked the peptides to a trimaleimide scaffold via Michael-

addition.
31

 We have obtained one positively and one negatively charged adduct [(cholesterol-

(K)nDEVDGC)3-trimaleimide and (cholesterol(D)nDEVDGC)3-trimaleimide]. Upon mixing of 

the adduct pairs (n equals to 15 or 20) equimolarly under physiological conditions, nanosponges 

of very low polydispersity form instantaneously, which were characterized with dynamic light 

scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy 

(AFM).  

Our computer modelling has indicated that the structure of the nanosponges is indeed 

“sponge-like”: numerous hydrophilic and hydrophobic nanodomains exist in direct proximity. 

We attribute the novel (bio)physical properties of the nanosponges to their formerly unknown 

structure.  
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Figure 1.1 Tri-maleimide based peptide structures: components for the spontaneous 

formation of nanosponges. A: lysine-based materials, n = 5, 10, 15, 20; B: aspartic acid-

based materials, n = 5, 10, 15, 20 

 

Our studies demonstrated that hydrophobic molecules, for example the cyanine 3.0 dye 

PKH26, can be incorporated inside these nanosponges. In the presence of cancer related proteases 

(e.g. caspase-3, 6 or 7
32

), these nanovesicles can be – principally - digested, leading to the 

possibility of triggered release of the payload. We found that the nanosponges are essentially 

non-toxic, and that these cells internalize them with high efficiency.  

Based on these proof-of-concept experiments, our novel peptide-based nanosponges are very 

well suited for applications in specific drug delivery to solid tumors and metastases by means of 

cell-based therapy. 
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 1.3 Methods 

 

 1.3.1 Trimaleinimide Scaffold Synthesis 

A flexible trimaleinimide scaffold was synthesized by means of a two-step reaction. In the 

first step, reacting tris(2-aminoethyl)amine with 3 equivalents of maleic anhydride in acetic acid 

at room temperature produces the trimaleimic acid adduct.
33

 In the second step, the trimaleimic 

acid adduct and sodium acetate were heated in acetic anhydride for 30 min. at 100 
o
C to give the 

desired product.
34

 The crude product was recrystallized from saturated ethyl acetate, and fully 

characterized by 
1
H-, 

13
C- NMR, and single crystal x-ray analysis (see Appendix A.1-A.4). 

 

 1.3.2 Peptide Synthesis 

Oligopeptides were synthesized by means of solid phase peptide synthesis on 2-chlorotrityl 

resin.
35-36

 Three equivalents of Fmoc (N-(9-fluorenyl)methoxycarbonyl) protected amino acid and 

HBTU were dissolved in a DIEA/DMF solution, and added to the 2-chlorotrityl resin preloaded 

with 0.20 mmol of amino acid per g. The solution was drained from the resin after 30 minutes of 

reaction. This process was repeated one more time. Then, the Fmoc group of the newly introduced 

amino acid was removed by using 20% (v/v) piperidine in DMF. Following this procedure, 

stepwise addition of Fmoc-protected amino acids resulted in the desired peptides. The N-terminal 

of the peptides were capped with cholesterol while still being on the resin by reacting with CDI 

activated cholesterol in DMF solution.
35-36

 The final product was cleaved off the resin in 

TFA/water/TIPS (95:2.5:2.5, v/v/v) cocktail for 3 hours at room temperature.
36

 White solid 

product formed when adding the cocktail into cold anhydrous diethyl ether. The product was 

collected by centrifugation (3000 rpm, 10 min), washed with cold diethyl ether for three times, 
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and dissolved in water prior to lyophilization. The products were purified by using a GE peptide 

column (mobile phase: aqueous 0.05 M TEA/acetic acid buffer, pH = 7.0), and dried in high 

vacuum.  

  

 1.3.3 Cholesterol-Peptide-Trimaleimide Adduct Formation 

3.5 equivalents of cholesterol-peptide and 1 equivalent of trimaleimide were dissolved in 

deoxygenated PBS buffer (pH=7.4), and stirred under argon atmosphere for 24 hours.
37

 After 

removing the solvent by lyophilization, the crude product was purified by dialysis (molecular 

weight cutoff 3500) against distilled water. The final product inside the membrane bag was 

lyophilized and further dried under high vacuum. 

 

 1.3.4 Nanosponge Formation and DLS Characterization 

Separate solutions of (cholesterol-(K)nDEVDGC)3-trimaleimide and (cholesterol-

(D)nDEVDGC)3-trimaleimide in deoxygenated PBS buffer were prepared and filtered through 

200 µm filters. The prepared stock solutions were 0.050 mM and 0.50 mM. All other stock 

solutions were prepared by diluting the original solutions with deoxygenated PBS buffer. The 

two solutions were quickly mixed and vortexed for 30 s. The hydrodynamic diameters and 

polydispersity indexes (PDI) of the formed nanosponges were measured by dynamic light 

scattering (DLS, ZetaPALS, Brookhaven Instruments Corp., Holtsville, NY).
38

 All 

measurements were carried out at 25 
0
C, using 658 nm laser wavelength, and 90 degree detection 

angle. Data were collected from an average of three measurements over 60 seconds. DLS was 

also used to estimate the critical micellar concentration (cmc) of the nanosponges.  



8 

 1.3.5 AFM Characterization 

Samples for atomic force microscopy (AFM) were prepared by adding one drop of the 

nanosponge stock solution (0.050 M of each component in PBS) onto a freshly peeled MICA 

sheet, and followed by removing of the solvent by using a gentle nitrogen stream (2 min). AFM 

images were taken by the Bruker Innova AFM image system (Bruker, Camarillo, CA) utilizing 

TESPA-HAR probes in tapping mode. The spring constant of the tip was 50 N/m and the 

frequency was 350 kHz. The set point, P gain and I gain were set at 1.2, 0.6 and 0.5, 

respectively. The images were gathered with 256x256 pixel resolution at a scan rate of 1 Hz. The 

images were then analyzed by the Nanoscope software (Bruker). 

 

 1.3.6 TEM Characterization 

Samples for transmission electron microscopy (TEM) were prepared by dropping 10 µL of 

0.005% peptide solution in PBS directly on a glow discharged TEM grid. Uranyl acetate was 

used as a positive staining agent. In all cases electron microscopy was performed at an 

accelerating voltage of 200 kV. Nanosponge morphology on HOPG was examined by bright-

field and dark-field transmission electron microscopy (TEM) using a FEI Technai G2 

transmission electron microscope at an electron acceleration voltage of 200 kV. High resolution 

images were captured using a standardized, normative electron dose and a constant defocus value 

from the carbon-coated surfaces. All TEM measurements were performed at the Microscopy and 

Analytical Imaging Laboratory of the University of Kansas.
39
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 1.3.7 Force Field Calculations 

For the united atom simulations we have extended the Gromos 53a6 FF
40

 to include 

cholesterol, the maleimide ring attachment to Cys, and the nitrogen cap. The cholesterol 

parameters were obtained from the Automated Topology Builder (ATB) website.
41

 This was then 

modified to attach the cholesterol to the amino acid chain through an O.C=O.NH linkage 

involving the cholesterol O and the peptide N-terminal N. Standard atom types consistent with 

the Gromos FF were used. The charges on the carbonyl group were assigned to be the same as 

that in a peptide group (+/- 0.45), while estimated charges of +/- 0.20 were assigned to the 

cholesterol oxygen and the carbon to which it is attached. The maleimide ring was added to an 

existing Cys topology using standard atom types and C-S-C charges of 0.241/-0.482/0.241, as 

observed for the same connectivity in Met. Both ring carbonyl groups were assigned charges of 

+/- 0.45, while the N-C bond was assigned a dipole of +/-0.2. The protonated triethyl nitrogen 

group charges were approximated to be 0.2 on each H, N and carbon – close to the charges found 

in Lys. All bond lengths, bond angles, improper dihedrals, and torsions were assigned, based on 

atom type, using the usual the standard Gromos rules. 

The CG topology was based on the MARTINI protein FF.
42

 A cholesterol CG FF exists and 

this was used here.
43

 The maleimide ring was modelled using three beads – two polar and one 

nonpolar. The ring was attached to the side chain bead of Cys and to a bead representing the two 

ethyl carbons, with another single bead for the nitrogen cap. Coil secondary structure bead types 

were used for all beads. The MARTINI FF does not, in general, include chain flexibility for 

peptides.
42

 However, we considered this to be an important factor for the present systems. To 

ensure a reasonable description of the chain flexibility was obtained during the CG simulations 

we compared the angle and dihedral distributions obtained from the CG simulations with the 
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distributions from the Gromos united atom FF. In particular, we examined the connectivity 

between cholesterol and the peptide chain, the connection between Cys and the maleimide ring, 

and the ring-N-ring arrangement. Attention was also paid to the dihedral angle distribution for 

consecutive backbone beads for the poly-Lys and poly-Asp chains. The force constants and 

equilibrium parameters were then adjusted to best reproduce the distributions observed during 

the united atom simulations. A comparison of the united atom and CG distributions, as provided 

by the original MARTINI FF, for the peptide chain C
α
 pseudo dihedrals suggested that there 

were some differences between the FFs. However, additional testing indicated that this had little 

effect on the results presented here. 

 

 1.3.8 Entrapment of PKH26 within Peptide Nanosponges 

PKH26 solution was prepared by dissolving 10 µL of the PKH26 ethanolic dye solution 

(Sigma-Aldrich) to 1.0 mL of Diluent C in a polypropylene centrifuge tube, followed by addition 

of double-distilled water (pH = 6.90) to bring the total volume to 2.0 mL (final PKH26 

concentration 5.0×10
-6

 M). Equal molar amounts of cholesterol-(K)20DEVDGC)3-trimaleimide 

and cholesterol-(D)20DEVDGC)3-trimaleimide (1.0 mM of each component) were added to the 

above dye solution. After brief sonication, the homogeneous solution was incubated at 37 °C for 

6 hours without light exposure. The free dye was removed by passing the entire sample through a 

Sephadex G-50 gel filtration column using double-distilled water as eluent. The collected 

fractions containing the nanosponges were lyophilized to dryness, and re-hydrated with PBS 

buffer (pH=7.4). The DLS measurement showed that the hydrodynamic diameter of the 

nanovesicles were between 110 to 130 nm. 
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 1.3.9 Cell Experiments and MTT Assays 

The cytotoxicity of the PKH26 containing nanosponges was assessed by utilizing the MTT 

assay
44

 on RAW264.7 monocyte/macrophage-like cells
35

. Cell experiments were carried out in 

DMEM supplemented with 10% FBS (Sigma-Aldrich), 5% horse serum (Invitrogen), 1% 

glutamine (Invitrogen), and 1% penicillin- streptomycin (Invitrogen). The percentage of live 

cells was determined after 24 and 48 hours of incubation. Cells were seeded in T-25 flask with 

suitable medium (RAW264.7: RPMI medium). After 24 h of incubation at 37 °C, cells were re-

plated in a 96 well plate at 20000/cm
2
 density and further incubated for 24 h at 37

0
C to obtain 80 

% confluency.  

Concentration series of the nanosponge composed of (cholesterol-(K)20DEVDGC)3-

trimaleimide and (cholesterol-(D)20DEVDGC)3-trimaleimide (0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 

20, 40, 60, 80, 100 µmoles L
-1 

in total, molar ratio 1:1) was prepared by dissolving the 

nanosponge components in the same media that were used for culturing the cells. Cells were 

incubated for 24/48 h at 37 °C. Eight replicates were prepared for each concentration. A portion 

of 10 µL of MTT reagent (5 mg/ml in PBS) was added to each well, and the plates were 

incubated for another 4 h at 37 °C. Finally, 100 µL of the cell solvent solution was added into 

each well and incubated for 24 h at 37 °C.  Their absorbance was recorded by using a plate 

reader at 550nm and 690nm. PBS solution was used as control for all the experiments.  

RAW264.7 cells were imaged by using a Leica DMRD microscope with darkfield, 

brightfield, phase contrast and epifluorescence illumination, a camera system and an Optronics 

870 color CCD camera attached to a Bioquant True color image analysis system.   
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 1.4 Results 

 

 1.4.1 DLS Characterization of the Nanosponges 

      The effective diameters and the polydispersity index (PDI) values of the nanosponges 

obtained by dynamic light scattering measurements (DLS) are summarized in Table 1. These 

results indicate that nanosponge formation depends on the number of lysine/aspartic acid units. 

Larger aggregates with higher polydispersity are observed when n equals 5. A significant 

decrease in both size and PDI (polydispersity index) was observed when increasing n to 10 (439 

nm and 0.26).  A further increase of K and D to 15 and 20 led to virtually mono-dispersed 

nanosponges with effective diameters of approx. 200nm. It is noteworthy that the formation of 

these nanosponges is spontaneous upon mixing of the adduct solutions.  Continuous monitoring 

by DLS for 12 hours at 298 K revealed that the nanosponges are very stable in aqueous solution 

(PBS). For drug delivery purposes, we are particularly interested in nanosponges of 100 to 200 

nm in diameter. Further characterization was carried out for n = 15 and 20. The corresponding 

correlation curves and number-averaged size distributions are shown in the Appendix A (Figure 

A.19 and A.20). Hydrodynamic diameters remained virtually constant for 12h.  

 

n (D and K) = Effective diameter ± SD (nm)  PDI ± SD 

5 1,200 ± 240 0.642 ± 0.07 

10 440 ± 50 0.26 ± 0.04 

15 200 ± 5.0 0.077 ± 0.01 

20 180 ± 25 0.201 ± 0.03 

 

Table 1.1 Effective hydrodynamic diameters, polydispersity indexes (PDI), and standard 

deviations (SD) for (cholesterol-(K)nDEVDGC)3-trimaleimide + (cholesterol-

(D)nDEVDGC)3-trimaleimide nanosponges (0.050 mM of each component in PBS). 
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 1.4.2 CMC of the Nanosponges 

In analogy to the formation of micelles, a critical concentration at which spontaneous 

aggregation to nanosponges occurs, was determined. This molar concentration was named CMC 

in analogy to “critical micellar concentration”. In a monodisperse nanomaterial solution, the 

correlation curve (C(t)) of the measured data in a dynamic light scattering (DLS) experiment is a 

smooth, single exponential decay function. The diffusion coefficient (D) is proportional to the 

lifetime of the exponential decay and can be calculated by fitting the correlation curve to an 

exponential function. The hydrodynamic diameter of particles can be obtained by using a 

variation of the Stokes-Einstein equation with known D value.
45

 Based on basic DLS theory, we 

measured the critical concentrations for the nanosponge formation of (cholesterol-

(K)20DEVDGC)3-trimaleimide (K) and a 1:1 mixture of (cholesterol-(D)20DEVDGC)3-

trimaleimide (D) and (cholesterol-(K)20DEVDGC)3-trimaleimide (K). The concentrations of D, 

K, and DK were stepwise increased by adding microliter aliquots from stock solutions of 0.50 M 

each to 1.0 mL of PBS buffer in a cuvette. The endpoint indication of this titration curve is the 

appearance of a smooth, single exponential decay correlation curve. (Cholesterol-

(D)20DEVDGC)3-trimaleimide (D) did not show significant aggregation even after increasing its 

concentration to 0.30 mM. For (cholesterol-(K)20DEVDGC)3-trimaleimide a smooth, single 

exponential decay curve was observed when its concentration reached 0.080 mM. The equimolar 

mixture of (cholesterol)-(D)20DEVDGC)3-trimaleimide and (cholesterol-(K)20DEVDGC)3-

trimaleimide (DK) showed most facile nanosponge formation at a concentration as low as 0.0050 

mM (total concentration, 0.0025 mM (D) and 0.0025 mM (K)). In comparison, sodium dodecyl 

sulfate micelles possess a CMC of approx. 8 mM at 298K, which corresponds to 2.31 g L
-1

.  In 
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comparison, only about 0.055 g L
-1

 of type DK nanosponges and 0.90 g L
-1

 of type K 

nanosponges are required to achieve spontaneous aggregation.  

 

Figure 1.2 Correlation curves (C(t)) of dynamic light scattering measurements of 

cholesterol-(D)20DEVDGC)3-trimaleimide (D), cholesterol-(K)20DEVDGC)3-trimaleimide 

(K), and mixture (1/1 molar ratio) of both nanosponge components (DK) in 1× PBS buffer.  

In the left column, the concentrations of K, and DK are below the cmc (critical micellar 

concentration, here: concentration at which aggregation occurs). In the right column the 

concentrations are at their respective cmc (0.080 mM for type K and 0.0050 mM for type 

DK). No aggregation was observed for D in the concentration interval from 0.01 (left) to 

0.30 mM (right). 
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 1.4.3 AFM Characterization  

Figure 1.3 shows the AFM images of (cholesterol-(D)15DEVDGC)3-

trimaleimide/cholesterol-(K)15DEVDGC)3-trimaleimide and (cholesterol-(D)20DEVDGC)3-

trimaleimide/ (cholesterol-(K)20DEVDGC)3-trimaleimide nanosponges. Type DK15 

nanosponges formed 0.5-0.9 µm aggregated bundles. The height of the bundles is between 150 to 

250 nm. At higher magnification, it can be discerned that each bundle was formed by 3 to 5 

smaller subunits. The diameter of the subunits ranges from 150 nm to 200 nm. Type DK20 

nanosponges formed well defined individual nanosponges of 85 to 110 nm in size. Their height 

falls into the same range, indicating the formation of spherical nanosponges. 

 

Figure 1.3 AFM (amplitude, phase, and 3D) images of type DK15 and type DK20 

nanosponges. “15” and “20” refer to the number of D and K units in the oligopeptides that 

are attached to trimaleimide linkers. 



16 

 1.4.4 TEM Characterization 

TEM images for type DK20 nanosponges are shown in Figure 1.4. 2D-projections of 

spherical sponges with diameters between 85 to 100 nm are clearly discernible Figure 1.4A. 

Their size distribution is displayed Figure 1.4B. However, smaller structures that are 35 to 45 nm 

in size can also be found in the TEM images. It is noteworthy that the exterior of the 

nanosponges acquired strong uranyl stains. This is an indication that cholesterol-

(D)20DEVDGC)3-trimaleimide is enriched at the exterior of the nanostructures.  

 

Figure 1.4 A: TEM image of type DK20 nanosponges on graphite with uranyl acetate as 

positive staining. B: Histogram of the size distribution of the larger nanosponges, obtained 

by using Image J (n: number of nanosponges counted in each group).
46

 

 

 1.4.5 Force Field Calculations 

In an effort to elucidate the structure of the peptide aggregates we have performed all atom 

(AA) explicit solvent and coarse-grained (CG) molecular dynamics (MD) simulations. All of 

these calculations were performed by our collaborators Prof. Dr. Paul E. Smith and Nilusha 
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Kariyawasam in the Chemistry Department of Kansas State. The calculations are included here 

to permit a direct comparison of experimental results and theoretical predictions. 

A detailed description of the models used, together with technical aspects of the simulations, 

is provided in the Methods and in the Appendix A sections. However, before simulating the 

aggregation process itself it is important to check that the CG models are sufficiently accurate 

that reasonable results can be obtained. CG simulations are required as the systems under 

investigation involve large molecular aggregates. However, CG models generally provide rather 

crude representations of electrostatic interactions and conformational flexibility. As both these 

aspects are clearly present in the systems to be studied here, we have also investigated the ability 

of our CG models to mimic the more accurate AA explicit solvent analogues. 

 

 1.4.5.1 Force Fields 

The simulations described here involve molecules for which no force fields (FFs) are 

currently available. Here, we describe our approach to provide reasonable descriptions of these 

systems using united atom and coarse-grained (CG) approaches. Highly accurate FFs for these 

systems would require significant development and may also necessitate experimental data that 

is not available. Hence, we have taken a more approximate, but practical, approach. We feel this 

is appropriate as we are probing the overall behavior of the systems, and the requirement of CG 

models to study such large systems already introduces significant approximation. 

The results from 100 ns AA and 1 µs CG MD simulations of the ss-Lys and ss-Asp peptides 

have been compared. Electrostatic interactions followed the usual approach for the MARTINI 

models,
42

 while partial conformational flexibility was introduced as described in the Appendix 

A. The results are illustrated in Figure 1.5A. The most notable behavior of the two peptide 
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strands was the extended structures observed for cholesterol-(D)20DEVDGC, and the collapsed 

structures observed for cholesterol-(K)20DEVDGC strands, as indicated by the AA simulations. 

The collapse of the cholesterol-(K)20DEVDGC chain appears to require cholesterol as removal of 

this group eliminated any chain collapse (data not shown). This later observation is then in 

agreement with experimental data on poly-lys and poly-asp strands,
47-49

 where the chains adopt 

extended or random coil structures. Clearly, the presence of cholesterol modifies this behavior. 

However, the same is not true for cholesterol-(D)20DEVDGC, which remains extended even in 

the presence of the cholesterol linkage. Most importantly, this difference in behavior is well 

reproduced in the CG simulations which also give rise to an extended cholesterol-(D)20DEVDGC 

and collapsed cholesterol-(K)20DEVDGC structures. Further examination of the cholesterol-

(K)20DEVDGC simulation did not reveal any secondary structure formation upon collapse. 

Nevertheless, the identical behavior observed for the AA and CG models suggests that 

conformational flexibility and electrostatic interactions in these systems are sufficiently well 

represented that one can have confidence in the CG simulations. 

 

Figure 1.5 A: Final structures obtained from the AA (top) and CG (bottom) simulations of 

cholesterol-(D)20DEVDGC (left) and cholesterol-(K)20DEVDGC (right). B: Initial and final 

(4µs) structures obtained from the CG simulation of (cholesterol-(K)20DEVDGC)3-

trimaleimide and (cholesterol-(D)20DEVDGC)3-trimaleimide. 
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The aggregation of equimolar mixtures of (cholesterol-(K)20DEVDGC)3-trimaleimide and 

(cholesterol-(D)20DEVDGC)3-trimaleimide was performed in two steps using just CG MD 

simulations. In the first step, we randomly placed four (cholesterol-(K)20DEVDGC)3-

trimaleimides and four (cholesterol-(D)20DEVDGC)3-trimaleimides in a relatively small 

simulation box (15 nm in length), then transferred this peptide arrangement to a larger solvated 

box (40 nm in length) and simulated for 1 µs. This places the molecules in close proximity and 

they quickly formed a single relatively compact aggregate. In the second step the peptide 

aggregate was resolvated in a 15 nm length box, and then replicated in all three directions to 

form the final simulation box (45 nm in length) that was then simulated for 4 µs. During this 

period the smaller aggregates formed larger aggregates. This behavior is illustrated in Figure 1.6. 

Here, the smaller aggregates formed larger worm-like structures. Indeed, after 4 µs there were no 

isolated aggregates as all peptides chains contacted at least one other peptide chain. Clearly, the 

final structure obtained here does not represent that of a typical spherical vesicle, but more of a 

nanosponge. However, this is not too surprising as the peptides used here do not possess 

significant amphiphilic character compared to lipids, for example. Nevertheless, aggregation is 

observed in agreement with the experimental results described above, and other studies of poly-

lys and poly-asp mixtures.
50

 

 While appearing largely amorphous the final structure obtained in Figure 1.5B does 

display some interesting features. There was no strong evidence for secondary structure 

formation by either the tri-lys or tri-asp chains. While water did appear to be largely excluded 

from the chain contacts, there were visible cavities that appeared large enough to contain small 

molecules. An enlarged view of a section of the aggregate is display in Figure 1.6. Here one can 

see a preference of Asp side chains, over Lys side chains, for the surface. There was significant 



20 

aggregation of cholesterol molecules to form stacked structures. However, these do not appear to 

be large enough to hold the aggregate together. Rather, electrostatic interactions appeared to be 

the main stabilizing force. The Asp-Lys side chain coordination numbers were determined to be 

2.8 for the intermolecular contacts out to a distance of 0.7 nm. 

 

Figure 1.6 Expanded view of the final structure obtained from the CG MD simulations. 

The peptide backbone is displayed as green sticks, the Asp side chains are displayed as red 

balls, the Lys side chains are displayed as blue balls, while the cholesterol molecules are 

colored yellow. The structure resembles a “nanosponge” with hydrophobic and hydrophilic 

areas, as well as solvent-filled cavities. 

 

 1.4.6 Uptake of PKH26-containing Nanosponges by RAW264.7 Cells 

Cell loading of the PKH26 entrapped nanosponges was tested on RAW264.7 

monocyte/macrophage-like cells. This cell type was selected, because it can be used as carrier in 

cell-mediated cancer therapy.
51-53

 Results indicated that type DK20 nanosponges can be loaded 

into RAW264.7 within 2 hours. Under the fluorescence microscope, intensive red fluorescence 

spots can be discerned inside the cells, which is very different from labelling cells with free 

PKH26, which leads to uniform labeling (see Appendix A.21). This indicates that after being 

taken up by these cells, the PKH26 is still entrapped inside the nanosponges. The PKH26-
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containing type DK20 nanosponges in Raw264.7 cells were studied over 24 h, 48h, and 72 h. 

Virtually no leaching of the dye was observed by fluorescence microscopy within 72h. 

 

Figure 1.7 A: RAW264.7 cells (control); B: RAW264.7 cells after 2h of incubation with 50 

M of PKH26-containing type DK nanosponges; C: Fluorescence microscopy of RAW264.7 

cells featuring PKH26-containing nanosponges 72h after uptake (DAPI counterstain). 

 

 1.4.7.Cell Toxicity of the Peptide Nanosponges 

We have performed classic MTT cell proliferation assays
35, 51-53

 to measure the cell viability 

of RAW264.7 cells after incubation with PKH26-containing type DK20 nanosponges. As Figure 

1.8 indicates, the type DK20 nanosponges are essentially not toxic to monocyte/macrophage-like 

cells, even at 100 µM concentration. 
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Figure 1.8 Cell viability of RAW264.7 cells as a function of type DK20 nanosponge 

concentration and incubation time (24h and 48h), as measured by the MTT assay.
35, 51-53

  

Nanosponges were added to the cell culture medium in their respective concentrations (see 

methods section). 
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 1.5 Discussion 

      A good targeted drug delivery system should have the following characteristics: a) 

composed by biocompatible and biodegradable materials, b) fast assemble and cargo loading, c) 

minimal systemic leaking during delivery, d) fast release upon arrival at interested site.
54

 We 

have designed (cholesterol-(K)nDEVDGC)3-trimaleimide and (cholesterol-(D)nDEVDGC)3-

trimaleimide units that both feature a trigonal linker, a cleavable sequence designed for 

executioner caspases-3,6, and 7 (DEVDGC
32

) and either an oligo-lysine or oligo-aspartic acid 

sequence of variable length (n = 5, 10, 15, 20). Whereas the cysteine at the C-terminus of each 

oligopeptide is used to attach it to the trigonal linker via Michael addition to maleimide
31

, the N-

terminus is tethered to cholesterol, which has the function of a hydrophobic anchor. As Coarse-

Grained Molecular Dynamics simulations indicate, a sponge-like dynamic structure is 

spontaneously assembled, due to the formation of ion pairs, intense hydrogen bonding, and the 

occurrence of hydrophobic regions and water-filled nanocavities. For nanosponges from 

(cholesterol-(K)20DEVDGC)3-trimaleimide / (cholesterol-(D)20DEVDGC)3-trimaleimide units, 

AFM, TEM and DLS are in principal agreement about the diameter of the nanosponges. 

Furthermore, all three methods indicate the highly dynamic nature of the sponge-like aggregates, 

which is in very good agreement with the results obtained from Coarse-Grained Molecular 

Dynamics. The calculation discussed here predict the relative enrichment of aspartate units at the 

nanosponges’ surfaces. We can observe distinctly stronger staining at the exterior by uranyl 

acetate of the nanostructures observed in TEM. This is in perfect agreement with the predictions 

by modelling.  

The size of the nanosponges can be adjusted from several micrometers down to approx. 80 

nm in diameter, depending on the concentration and the chemical composition (especially chain-
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length of the monopeptides (D or K)) of the supramolecular building blocks. The resulting 

nanosponges can be generated by simply mixing their components in aqueous buffer. They are 

stable in size for up to 72h. Therefore, in distinct contrast to classic liposomes, numerous 

applications can be envisioned in which the nanosponge will be long-term stored in desiccated 

form and mixed with aqueous buffer immediately before clinical use.  

In recent years, cytotherapy has attracted massive attention as a targeting cancer therapy. 

Cytotherapy uses cancer targeting cells as delivery vehicles to carry therapeutics into the tumor 

site.
18, 30, 35, 51-53, 55-56

 Studies have shown that macrophages are capable of delivering therapeutics 

to tumors sites.
51-53

 We envision entrapping therapeutics into these nanovesicles, and then 

loading them into neutrophils to achieve targeting delivery. However, the nanosponges 

themselves have to be non-toxic to ensure high survival rates during transport. Therefore, it is 

encouraging that virtually no toxic effects have been found during our initial cell proliferation 

tests with monocyte-macrophage-like cells.  
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 1.6 Summary 

Nanosponges form spontaneously by mixing two trimeric peptide building blocks, 

(cholesterol-(K)nDEVDGC)3-trimaleimide and (cholesterol-(D)nDEVDGC)3-trimaleimide (n = 5, 

10, 15, 20) in aqueous buffers. The resulting sponge-like supramolecular aggregates are long-

term stable and do not significantly change their diameter within 72h. Their structure was 

elucidated with the help of Coarse-Grained Molecular Dynamics. Since the nanosponges were 

virtually non-toxic in cell experiments with monocyte/macrophage-like cells (RAW264.7 cells), 

they are promising candidates for drug-delivery to transporting cells in cytotherapy of solid 

tumors (leucocytes or stem cells). The fundamental features of this novel and structurally unique 

supramolecular system have been elucidated in this initial study. In further studies, we will 

investigate the suitability and adaptability of these systems for tailored applications in targeted 

cancer therapy.  
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Chapter 2 - Peptide Nanosponges Designed for Rapid Uptake by 

Stem Cells and Leukocytes 

 

 2.1 Abstract 

The structure of novel binary nanosponges consisting of cholesterol-(K/D)nDEVDGC)3-

trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic 

acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement 

between these findings and structure predictions through explicit solvent and then coarse-grained 

molecular dynamics (MD) simulations has been found. Based on the nanosponges’ structure and 

dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been 

demonstrated. Furthermore, the binary (DK20) nanosponges have been found virtually non-toxic 

in cultures of neural progenitor cells. Additionally, DK20 nanosponges were taken up efficiently 

by leucocytes (WBC) in peripheral blood within 3h of exposure. The percentage of live cells 

among the WBC was not significantly decreased by the DK20 nanosponges. Therefore, this 

novel material holds great promise for improved cell-mediated therapy. 
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 2.2 Background 

One of the grand challenges in nanomedicine is the effective targeting of tumors and 

metastases.
1
 For almost a generation, Enhanced Permeation and Retention (EPR)

2-3
, the passive 

diffusion of nanosize delivery vehicles (e.g. vesicles
4
, liposomes

5
, exosomes

6
, nanoparticles

7
, 

polymer-based nanostructures
8-10

) through gaps in the vasculature that have been built rapidly 

around tumor tissue, has been hailed as an important breakthrough in the fight against cancer. 

Unfortunately, emerging evidence clearly suggests that the EPR effect works well in rodent 

models (especially in nude mice), but not in humans, which feature a distinctly different 

vasculature and, compared to rodents, significantly slower tumor growth.
2-3, 11

 Therefore, 

alternative targeting approaches are urgently needed. Active targeting strategies use either 

antibodies
12-14

, antibody-fragments
15-17

, peptide sequences
15-16, 18

 or aptamers
15-16

, which are 

capable of targeting receptors that are overexpressed in solid tumors, as for instance members of 

the integrin family
19-20

. However, active targeting processes can be impaired by physiological 

barriers, such as high interstitial fluid pressures and the formidable physical barrier imposed by 

tumor stroma.
21

 Therefore, cell-mediated transport of anticancer drugs into the tumor tissue is, in 

the opinion of the authors, the most viable strategy to develop intelligent alternatives to 

chemotherapy.
10, 22-27

 Transport cells have the ability to migrate to tumors and metastases 

following cytokine/chemokine gradients.
28

 Among them are stem cells
29

, 

monocytes/macrophages
30-31

 and neutrophils.
32-33

 Neural stem cells, which can be, principally, 

cultured and matched to patient-types, have been successfully utilized for cell-mediated therapies 

in rodent models
22, 27, 34

, as well as neutrophils
35

 and monocytes
10, 23-24, 27

. The use of autologous 

cells has the potential of developing truly patient specific therapies, and also of significantly 

lowering the regulatory barriers for cell-based human cancer therapies. 
36

 Targeting neutrophils 
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and monocytes in peripheral blood will avoid the necessity for their time-consuming isolation 

and culturing, and further reduce the regulatory hurdles since cell isolation is not necessary. In 

Figure 2.1, the principles of cell based cancer therapy are shown. In step 1, the selected transport 

cell type is targeted. This step has to be efficient in order to maintain high cell viabilities. 

Furthermore, the vector that is used to facilitate uptake has to be virtually non-toxic. After the 

cells have been returned to the host, they actively migrate to tumors and metastases following 

cytokine/chemokine gradients. The last step consists in the triggered release of the payload and 

uptake of the latter by the tumor and stromal cells.
27

 

 

Figure 2.1 Principles of cell therapy utilizing nanosponges. Neutrophils in peripheral blood 

will be loaded by targeting them with peptide nanosponges. After the blood has been given 

back intravenously to the patient, the neutrophils will home to tumors within 6-12h. 

Alternatively, neural stem cells can be cultured, loaded with peptide nanosponges and 

injected intravenously into the patient. 

 

Chapter 1 describes the design, synthesis, and characterization of designer peptide-

nanosponges for efficient uptake by delivery cells in drug delivery.
37

 Their supramolecular 

building blocks consist of cholesterol-(K/D)nDEVDGC)3-trimaleimide units featuring a trigonal 

maleimide linker to which either lysine (K)20 or aspartic acid (D)20 are attached.  Furthermore, a 

consensus sequence for caspase-6 (DE-VDGC) is integrated into the structures.  Both, 

(cholesterol-(K)20DEVDGC)3-trimaleimide and mixtures of (cholesterol-(K)20DEVDGC)3-

trimaleimide and cholesterol-(-(D)20DEVDGC)3-trimaleimides form stable nanosponges (short 
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notation: DK20). The structure of the novel nanosponges was investigated through explicit 

solvent and then coarse-grained molecular dynamics (MD) simulations. As Figure 2.2 indicates, 

the nanosponge structure is featuring aspartate- and lysine-rich regions, together with cholesterol 

domains and (aqueous) solvent filled nanoholes. The resulting structure is fluctuating, depending 

on the temperature. Upon mixing with aqueous buffers, long-term stable (up to 72h have been 

experimentally determined) DK20 nanosponges are immediately formed, which possess very 

low polydispersities. They are capable of incorporating the hydrophobic cyanine 3.0-dye PKH26. 

 

Figure 2.2 Typical structure of a nanosponge according to molecular dynamics (MD) 

simulations.
37

 Red: aspartate groups, blue: lysine groups, cyan: cholesterol aggregates, 

green: peptide backbone. 

 

In order to function properly, the nanosponges have been taken up quickly by the transport 

cells, transported to the tumor sites, and then released. The latter will be achieved by means of 

programmed cell death (apoptosis), which will occur naturally in neutrophils 12 to 24h after 

reaching the tumor environment
38

, or by means of triggered apoptosis (macrophages and neural 

stem cells
27

). Caspase activation is the hallmark of apoptosis.
39

 We will utilize caspases, which 

are proteolytic enzymes, to activate the nanosponges for drug delivery purposes.  
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In this chapter, we will describe refined structural investigations by TEM, in-vitro release 

studies of the model drug carboxyfluorescein by caspase-6 activation, as well as cell targeting 

experiments of cultured neural stem cells and leucocytes in peripheral (pig) blood. The data 

obtained from these experiments will demonstrate the unique properties of type DK20 

nanosponges. 
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 2.3 Methods 

 

 2.3.1 Synthesis and Characterization of the Nanosponges 

The synthesis of all building blocks required for the assembly of DK20 and K20 

nanosponges, as well as their characterization by NMR and MALDI-TOF has been described in 

chapter 1.
37

 

 

 2.3.2 TEM Characterization  

Samples for transmission electron microscopy (TEM) were prepared by dropping 10 µL of 

0.050 mM type DK20 solution in PBS directly on a glow discharged TEM grid. Uranyl acetate 

was used as a positive staining agent in a part of the TEM experiments. In all cases electron 

microscopy was performed at an accelerating voltage of 200 kV. Nanosponge morphology on 

HOPG was examined by bright-field and dark-field transmission electron microscopy (TEM) 

using a FEI Technai G2 transmission electron microscope at an electron acceleration voltage of 

200 kV. Dark-field TEM did not reveal a characteristic diffraction pattern. High resolution 

images were captured using a standardized, normative electron dose and a constant defocus value 

from the carbon-coated surfaces. All TEM measurements were performed at the Microscopy and 

Analytical Imaging Laboratory of the University of Kansas.
40

  

 

 2.3.3 Nanosponge Formation and DLS Characterization  

The hydrodynamic diameter and polydispersity index (PDI) of the formed nanosponges were 

measured by dynamic light scattering (DLS, ZetaPALS, Brookhaven Instruments Corp., 

Holtsville, NY). All measurements were carried out at 25 
o
C, with 658 nm laser wavelength, and 
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90 degree detection angle. Data were collected from an average of three measurements over 60 

seconds. 

 

 2.3.4 Carboxyfluorescein Encapsulation  

Equal molar ratios of (cholesterol-(K)20DEVDGC)3-trimaleimide and (cholesterol-

(D)20DEVDGC)3-trimaleimide (5.0 x 10
-4

 M of each component) were dissolved in 10 µM 

carboxyfluorescein PBS (pH=7.4) solution. After incubating at room temperature for 2 hours, the 

solution was transferred to a 3,500 Da molecular weight cutoff dialysis bag. Free 

carboxyfluorescein was removed by means of continuous dialysis against 1× PBS buffer until 

virtually no fluorescence could be detected in the solution using a Fluoromax-2 spectrometer. 

Using a fluorescence calibration curve, it was estimated that the concentration of free 

carboxyfluorescein was < 1 nM.  At this point, a dark red color was still retained inside the 

dialysis bag. This finding provided a good indication that carboxyfluorescein had been trapped 

inside the peptide nanosponges. From the integrated UV/Vis-absorption of the dialysis solution 

we have estimated that 65 ± 4 mol % of carboxyfluorescein was encapsulated in the procedure. 

After lyophilizing to dryness, a yellow/brown powder was obtained, which could be easily re-

dispersed in PBS by vortexing for 5 min. In a subsequent dialysis experiment, it was found that 

virtually no carboxyfluorescein was leached after 24, 48, and 72h. The UV/Vis and fluorescence 

spectra of carboxyfluorescein, as well as the fluorescence calibration curve as a function of 

carboxyfluorescein concentration can be found in the Appendix B.2 and B.3. 
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 2.3.5 Caspase-6 Triggered Dye Release  

The dye release experiment was performed using a fluorescence plate reader (BioTek 

Synergy H1). 200 µL of carboxyfluorescein loaded nanosponges in PBS solution (0.20 mg/mL) 

were added to each well of a 96-well black clear-bottom plate. To each control well, 10 µL of 

PBS buffer was added, and to each experimental well, 10 µL of caspase-6 PBS solution (0.1 

µg/mL, 5.5 x 10
-9

 M, Enzo LifeSciences) was added. The plate was incubated at 37 °C, the 

fluorescence intensity at 520 nm was recorded every 5 min. The experiments were repeated 5 

times and p-values calculated, as described in the literature.
41

 

 

 2.3.6 Cell Experiments and MTT Assays   

The cytotoxicity of the PKH26 containing nanosponges was assessed by utilizing the MTT 

assay
42

 on C17.2 neural progenitor cells (NPCs)
34

, which were a gift from Dr. V. Ourednik (Iowa 

State University) to Dr. D. L. Troyer, DVM (Kansas State University, Anatomy & Physiology). 

NPCs were originally developed by Dr. Evan Snyder.
43

 These cells were maintained in DMEM 

supplemented with 10% FBS (Sigma-Aldrich), 5% horse serum (Invitrogen), 1% glutamine 

(Invitrogen), and 1% penicillin/streptomycin (Invitrogen). PKH26 is a hydrophobically modified 

cyanine 3.0 dye. The preparation of  PKH26-loaded type DK20 nanosponges was described 

earlier in chapter 1.
37

 Cell experiments were carried out in the culturing medium described 

above. The percentage of viable cells was determined after 24 and 48 hours of incubation. Cells 

were seeded in T-25 flask. After 24 h of incubation at 37 °C, cells were re-plated in a 96 well 

plate at 20000/cm
2
 density and further incubated for 24 h at 37

0
C to obtain 80 % confluency 

before the nanosponges were added.  
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Concentration series of type DK20 nanosponges (0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, 40, 

60, 80, 100 µmoles L
-1 

in total, molar ratio 1:1) were prepared by dissolving the nanosponge 

components in the same media that were used for culturing the cells. Cells were incubated for 

24/48 h at 37 °C. Eight replicates were prepared for each concentration. A portion of 10 µL of 

MTT reagent (5 mg/ml in PBS) was added to each well, and the plates were incubated for 

another 4 h at 37 °C. Finally, 100 µL of 10% sodium dodecyl sulfate in 0.010M HCl was added 

into each well and incubated for 24 h at 37 °C.  Their absorbance was recorded by using a plate 

reader at 550nm and 690nm. PBS solution was used as control for all the experiments. The 

solution with of µmole L
-1

 of nanosponge served as control.  

Murine stem cells were imaged by using a Zeiss, Axiovert 40 CFL microscope with 

darkfield, brightfield, phase contrast and epifluorescence illumination, a camera system and 

Jenoptik, ProgRes C3 Cool camera and a ProgRes Capture Pro 2.10.0.0 software.   

  

 2.3.7 Cell Uptake from Peripheral Blood  

Cattle blood was obtained at the Kansas State feed lot. Blood was collected in citrated 

(0.105M) 4.5ml tubes (BD Vacutainer, Franklin Lakes, NJ, USA). The collected blood was 

pooled and split into 3.0 ml samples. Samples were supplemented with 1.0 ml of serum 

containing RPMI medium to ensure supply of nutrients. The samples were incubated with 1.0 ml 

of 1.0 mg/ml type DK 20 nanosponges in PBS at 37°C.  Leukocytes (WBC) were extracted via 

removal of the buffy coat after centrifugation.
44-45

 Red Blood Cell Lysis Buffer (Sigma-Aldrich, 

St. Louis, MO, USA) was used to remove any remaining red blood cells and the samples were 

washed with PBS (10 min, 500g). Cells were counted via hemocytometer and diluted to achieve 

a concentration of 5 x10
5
 cells/ml, suitable for analysis by flow cytometry (Guava EasyCyte, 
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EMD Millipore). To evaluate the loading of type DK20 nanosponges over time, PKH26 

fluorescent dye modified nanosponges were used and red fluorescence intensity was detected. 

Thresholds were set using unmodified extracted WBC. The survival of WBC incubated type 

DK20 nanosponges was detected with a Annexin V / Propidium Iodine apoptosis kit (Novus 

Biologicals). The protocol provided with the kit was exactly followed.
46

 The procedure was 

carried out five times and p-values were calculated.
41
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 2.4 Results 

 

 2.4.1 TEM-Analysis of the Nanosponge Structure  

Bright field transmission electron microscopy was able to reveal structures that are formed 

after depositing the nanosponges directly onto HOPG grids and exposing them to the high 

vacuum inside the TEM. The flattened nanosponges contain dark spots, which are indicatives of 

water/buffer- filled pockets inside the structure. Furthermore, after applying a black/white 

correction filter function available in Adobe Photoshop, brighter than average spots can be 

discerned within the nanosponge structure, which are indicative of cholesterol-rich regions. The 

average grey within the structure shown on Figure 2.3B suggests the presence of both, lysine and 

aspartate-rich regions, which retain some of their water-content in high vacuum. These findings 

are in excellent agreement with the principal results of the molecular dynamics (MD) simulations 

of nanosponge structure.
37

 

 

 



42 

 

Figure 2.3 A: TEM image of type DK20 nanosponges on HOPG, as deposited from PBS 

solution. No staining agent was employed. A: Bright field transmission TEM (200 kV) of a 

type DK 20 nanosponge. Water-filled vesicles are discernible as dark spots within the 

bright nanosponge.     B: Same image as in 4A after black/white correction filter function in 

Photoshop. 

 

It is noteworthy that the nanosponges obtained under the experimental conditions described 

here appear to be larger (240 ± 30 nm in diameter), whereas their diameter reported earlier was 

90   15nm.
37

 However, an about five times lower type DK20 concentration and no uranyl 

staining was used for recording the TEM imaging shown in Figure 2.3. 

 

 2.4.2 Caspase-6 Triggered Carboxyfluorescein Release 

      Carboxyfluorescein is a fluorescent dye, which has been used for microscopy and cell-

tracking purposes. It is established that at increased concentrations, carboxyfluorescein 

undergoes intense self-quenching. A detailed investigation of the concentration-dependent 

quenching of carboxyfluorescein in liposomes revealed both, monomer-monomer and monomer-
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dimer energy transfer processes.
47

 Carboxyfluorescein dimers are non-fluorescent. Because 

carboxyfluorescein fluorescence can increase as function of decreasing dye concentration, it has 

become a popular probe detecting drug release from a delivery system.
9, 48-49

 After entrapping 

carboxyfluorescein into type DK20 peptide nanosponges and subsequent lyophilizing to dryness, 

the obtained solid was dissolved in 3.0 mL PBS buffer (pH=7.4). DLS measurements showed 

that the hydrodynamic diameter was 213   25 nm before adding caspase-6 (see Appendix B.4). 

The nanosponges remained stable during 24h. The dye release experiment showed 18±1 % of 

fluorescence increase in the caspase-6 group during the first hour. During the same time interval, 

only 1.6% fluorescence increase was observed in the control group, which was within the margin 

of error (±0.88 %). Longer incubation time did not lead to significant further fluorescence 

increase. The results of this experiment provided a strong indication that the encoded DE-VDGC 

peptide sequence in the nanosponge is cleaved by caspase-6.  This proteolytic process led to a 

disruption of the nanosponge and consequent release of the entrapped fluorescent dye. 

 

Figure 2.4 Caspase-6 triggered carboxyfluorescein (CF) release. Type DK20 nanosponges 

containing carboxyfluorescein were incubated with PBS (control) or 2.60 x 10
-10

 M caspase-

6 in PBS at 37 
o
C.  The observed fluorescence emission was recorded at 515 nm with a 5nm 

bandpass filter,  exc = 493 nm. 
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 2.4.3 TEM-Analysis of Caspase-6 Activation 

Bright field TEM was also successfully used to visualize the effect of caspase-6 activation of 

nanosponges. In Figure 2.5, a sequence of three TEM images is shown: A: 0.20 mg/mL of 

carboxyfluorescein-loaded DK20 nanosponges (CF-DK20), deposited from PBS dispersion onto 

HOPG.          B: 0.20 mg/mL of CF-DK20 nanosponges after 15 min of incubation at 37
o
C with 

commercially available caspase-6 (2.60 x 10
-10

 M), deposited from PBS dispersion onto HOPG.  

C: 0.20 mg/mL of CF-DK20 nanosponges after 60 min of incubation at 37
o
C with commercially 

available caspase-6 (2.60 x 10
-10

 M), deposited from PBS dispersion onto HOPG. TEM images 

were recorded immediately after the deposition of the (reactive) nanosponges on the carbon 

surfaces. Uranyl staining was added shortly before depositing the dispersions onto HOPG.  

 

Figure 2.5 Bright field TEM (200 kV) of 0.20 mg/mL of carboxyfluorescein-loaded DK20 

nanosponges: A: Nanosponges deposited from PBS before adding caspase-6. B: Reactive 

mixture deposited from PBS containing caspase-6 (2.60 x 10
-10

 M) after 15 min. of reaction 

at 37
o
C. C: Novel nanostructures, which were formed in the reaction, deposited from PBS 

containing caspase-6 (2.60 x 10
-10

 M) after 60 min. of reaction at 37
o
C. 

 

As it is shown in Figure 2.5, CF-DK20 nanosponges were digested by caspase-6, followed by 

the formation of a novel supramolecular structure by the products of this enzymatic reaction.  

The nanosponges shown in Figure 2.5A differ again in size from the structure shown in Figure 
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2.3 and DK20 nanosponges, which were previously discussed in chapter 1.
37

 The reasons for this 

observation are that the concentrations used in the TEM experiment very closely resemble the 

ones from the caspase-6-triggered carboxyfluorescein release, but are different from previous 

TEM experiments. Furthermore, we have observed that the presence of a charged molecule 

(here: 5(6)-carboxyfluorescein) within the DK20 framework will influence the size of the formed 

aggregates. Moreover, the spherical nanosponges are deposited onto a carbon surface for the 

purpose of TEM. This will flatten their structures to a 2D coating and, at least partially, lead to 

the orientation of the hydrophobic cholesterol labels towards the carbon surface. Therefore, in 

opposite to dynamic light scattering, the nanosponges’ structure will be somewhat distorted by 

the procedures necessary to record TEM.  

In Figure 2.5B the originally observed organic structures have completely vanished and a 

mesh of organic structures has formed. It is our interpretation of this observation that caspase-6 

was able to cleave at least a fraction of the DE-VDGC, thus disrupting the structure of the 

nanosponges. Enzymatic cleavage releases cholesterol-K20-DE and cholesterol-D20-DE units. 

According to the results shown in Figure 2.5C, these units (or at least cholesterol-K20-DE) are 

able to form novel supramolecular structures. The re-formation of well-ordered structures may 

be responsible for the observed release of “only” about 18% of carboxyfluorescein, which was 

observed by means of quantitative fluorescence recording. Interestingly, the supramolecular 

structures formed after 1h of “digestion” with caspase-6 (2.60 x 10
-10

 M) are larger than the 

original nanosponges.  
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Figure 2.6 Size distribution of carboxyfluorescein-loaded DK20 nanosponges before and 

after “digestion” with caspase-6 (see text, and Figures 2.4 and 2.5 for further explanation) 

 

 2.4.4 Cell Toxicity of the Peptide Nanosponges 

We have performed classic MTT cell proliferation assays
10, 23-24, 50

 to determine the cell 

viability of murine C17.2 neural progenitor cells (NPCs)
34

 after incubation with PKH26-

containing DK20 nanosponges. As Figure 2.7 demonstrates, the DK20 nanosponges are not toxic 

to NPCs, even at concentrations as large as 100 µM.  
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Figure 2.7 Cell viability of C17.2 neural progenitor cells (NPCs) as a function of DK20 

nanosponge concentration and incubation time (24h and 48h), as measured by the MTT 

assay.
10, 23-24, 50

  Nanosponges were added to the cell culture medium in their respective 

concentrations (see methods section). The cell viability after 24h in the absence of DK20 

nanosponge was used as reference to calculate all other viabilities. 

 

 2.4.5 Nanosponge-Uptake Kinetics by Leucocytes in Peripheral Blood 

Cell Uptake Kinetics were recorded to determine the uptake efficiencies of the peptide nano-

sponges by neutrophils and monocytes/macrophages in peripheral blood. The results are 

summarized in Table 2.1 and Figure 2.8. They indicate that the targeting of defensive cells 

within peripheral blood, followed by cell-based transport to the tumor site, is a feasible treatment 

strategy.  
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DK20 Nanosponges 

30 min 3 h 6 h 

Neutrophils 

loaded 

Monocytes/ 

Macrophages 

loaded 

Neutrophils 

loaded 

Monocytes/ 

Macrophages 

loaded 

Neutrophils 

loaded 

Monocytes/ 

Macrophages 

loaded 

Average 4.3% 22.6% 19.5% 49.4% 25.0% 54.0% 

StDev 2.4% 6.0% 5.4% 14.8% 17.3% 19.7% 

 

Table 2.1 Uptake of DK20 nanosponges by leukocytes in peripheral blood 

 

 

Figure 2.8 Uptake efficacy of type DK20 nanosponges by leukocytes (mainly neutrophils 

and monocytes/macrophages) and granulocytes in peripheral blood as function of 

incubation time. 

 

White blood cells from cattle blood show a time dependent uptake of DK20 nanosponges. 

The entire WBC (white blood cells) population was subclassified into granulocytes and 

monocytes & macrophages. Here, the monocyte and macrophage group loaded twice as fast 

(>50%) compared to the granulocyte group (~25%). The loading was observed over a timeframe 

of 6 hours with the maximum loading completed after 3 hours. 
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Survival of the WBC population was analyzed by detecting apoptotic cells with the Annexin 

V fluorescent marker and dead cells with propidium iodine. The relative survival was measured 

after 5.5 and 7 hours of incubation with DK20 nanosponges and compared to a control group. 

The live cell population remained between 78% and 89% relative to the total cell count and with 

no significant difference between the control and the DK20 group for the duration of the 

experiment. Apoptotic cells were at approximately 12% after 5.5 hours, again with no significant 

difference between the two groups. The apoptotic cell count in the DK20 nanosponge group 

drops to 2% after seven hours while the dead cell count is significantly increased and measured 

at 15%. Our hypotheis is that this is observed due to the stress excerted on the WBS from 

endocytosis and processing of the DK20 nanosponges.  

 

Figure 2.9 Survival of WBC when exposed to DK20 peptide nanosponges, compared to the 

survival of an unexposed WBC control group. No significant difference (p>0.05) between 

the treated and untreated live cell populations was detected after 5.5h. Due to the smaller 

experimental errors, there is a small, but significant difference in cell viabilities after 7h. 
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 2.5 Discussion 

Three main obstacles to efficient cell-mediated therapy of cancer and infectious diseases 

remain today: 1) Fast uptake of drug formulations by the transport cells. 2) Effective migration 

of the transport cells to their intended target. 3) Efficient drug release by the transport cells once 

the target is reached. The nanosponges that are discussed here will be able to efficiently target 

neural progenitor cells and leucocytes, either in cell cultures or, preferentially, in peripheral 

blood to utilize the advantages of autologous cells for patient-specific cell therapies. Because of 

their fast uptake kinetics and virtually non-existing toxicity, the nanosponges are well-suited for 

loading numerous drug formulations into various types of transport cells. Furthermore, because 

of their low toxicity to the transport cells, they make a very important contribution to facilitating 

effective cell migration to targets in-vivo, because the viability of the transport cells will remain 

high during the migration phase of several days. Finally, as we have demonstrated here by 

utilizing 5(6)-carboxyfluorescein as model drug, caspase-mediated drug release can be achieved. 

Although the observed release efficacy of carboxyfluorescein was only 18±1%, the “caspase 

storm” during apoptosis has the potential of further degrading the nanosponges and to create 

numerous apoptotic bodies, to which the nanosponge-derived components will be adsorbed. 

Therefore, we anticipate a distinctly higher degree of release in-vivo.  

We have utilized caspase-6 (MEROPS, ID:C14.005) in our studies, because it is one of the 

“effector caspases of apoptosis”.
51

 Caspases 3 and 6 are responsible for significant 

morphological changes in the nucleus at the onset of apoptosis. For that purpose, they are 

internalized by the cell at the beginning of the path towards apoptosis. Caspase-6 cleaves nuclear 

lamina and the protein NuMa of the nuclear mitotic apparatus. Because caspase-6 is internalized, 

it is a suitable protease to cleave the DE-VDGC motif of the nanosponges. According to this 
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mechanism, drug release from the nanosponges within the transport cells can be triggered, which 

– in turn – leads to apoptosis of the transport cell and subsequent drug release. 
52

 It is noteworthy 

that the consensus equence DEVGDC is also capable of reacting with caspases-2,3, and 7.  

Neutrophils make up approx. 60 percent of leucocytes.
53

 As already discussed, neutrophils 

undergo apoptosis within hours after reaching tumors and metastases.
53

 Neural progenitor cells 

constitute a second class of delivery cells, which can migrate to solid tumors and metastases in 

large numbers.
29, 34, 43

 However, the release of the payload has to be triggered by introducing 

apoptosis, as described above of by designing a TetOn gene regulation system, which silences a 

specific gene unless a tetracycline, such as doxycycline, is present.
10, 54
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 2.6 Summary 

The structure predictions for the supramolecular binary nanosponges (type DK20) through 

explicit solvent and then coarse-grained molecular dynamics (MD) simulations, have been 

confirmed by transmission electron microscopy and dynamic light scattering studies. The 

structural and dynamic understanding of the nanosponges has enabled several applications of 

these novel materials, which, principally, prove them as advanced biomaterials in cell-mediated 

drug transport to solid tumors/metastases and infectious diseases:  

Caspase-activated (model) drug release could be demonstrated with 5(6)-carboxyfluorescein-

loaded nanosponges).  

PKH26-loaded nanosponges were essentially non-toxic to cultured neural progenitor cells 

(NPC).  

Targeting of leucocytes (WBC) in peripheral blood was successful. After 3h of incubation, 

maximal uptake into leukocytes (mainly neutrophils and monocytes/macrophages) and 

granulocytes in peripheral blood was observed. No significant difference between the untreated 

and DK20-nanosponge-treated live cell populations was detected. This proves that direct 

targeting of leucocytes in peripheral blood, followed by re-injection of the treated blood is a 

promising path to effective cell-mediated therapy.  
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Chapter 3 - Peptide Nanosponges Designed for the Cytotherapy of 

Gliomas 

 

 3.1 Abstract 

Two different nanosponges featuring trigonal supramolecular building blocks, type (D-

POH)10K20 and (D-POH)10R20 were synthesized, purified, and characterized by Dynamic Light 

Scattering (DLS) and Atomic Force Microscopy (AFM). They were then tested in cell cultures of 

murine glioma cells (GL26) and murine neural progenitor cells (NPC). The two nanosponges 

exhibited significantly different biophysical properties (size distribution and zeta potentials). 

Consequently, different efficacies in killing GL26 and NPC were observed in both, serum free 

and serum containing culture media. The results from these experiments confirmed that type (D-

POH)10K20 nanosponge is an excellent candidate for the cytotherapy of gioblastoma. 
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 3.2 Background 

To date, more than 130 types of brain
1
 and central nervous system (CNS) tumors have been 

discovered. This study focus on one type of brain cancer; Glioblastoma multiforme (GBM or 

Glioblastoma).  This formidable disease arises from star-shaped cells called astrocytes, which 

constitute of the supportive tissue of the brain. Since these cells can reproduce rapidly and they 

have ample blood supply, glioblastomas are usually highly malignant. Other than histology, the 

2016 CNS WHO accounts molecular parameters for the central nervous  system (CNS) tumor 

classification.
2
 According to the latest WHO tumor classification, glioblastoma is a grade IV 

astrocytoma
2
 and it is the most common and most aggressive/fatal primary glioma found in 

humans.
3-5

 

In general, glioblastomas are found in both cerebral hemispheres of the brain, as well as the 

spinal cord. In contrast, the chances of diagnosing this tumor in other parts of the body are rare.
4
  

Glioblastomas are divided into two sub categories; primary (new or de novo) and secondary 

tumors.
4, 6

 De novo is the most common and aggressive form of GBM. It emerges quickly and 

tends to make its presence known abruptly. In contrast, secondary glioblastomas grow gradually, 

but still are very aggressive. They may start as low-grade or mid-grade tumors and eventually 

transform into higher grade tumors.
4
  

Glioblastomas can be difficult to treat because of their histopathologically heterogeneous 

nature
6
 and finger-like tentacles.

7
 Moreover, many chemotherapeutics are unable to cross the 

blood–brain barrier
8
, which is required to act on the tumor. This is why the treatment plans for 

glioblastoma often combine several approaches.
9
 When the tumor cannot be removed by surgery, 

radiation and chemotherapy are important to delay and control the growth of the tumor.
9
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However, all of these methods are not very successful. Consequently, the mortality of 

glioblastoma is very high. 

According to Fonseca et al., the molecular genetics of malignant gliomas provides new 

targets for antineoplastic agents. Altered activation of the Ras/MAPK and PI3K/Akt pathways in 

gliomas
10-11

 are promising therapy targets.
4, 12-13

 These signaling pathways play a critical role in 

regulating diverse cellular functions including cell survival, cell cycle progression and cellular 

growth
14

 in healthy cells, as well as in cancer cells. Overexpression of the oncogenes EGFR and 

PDGFR
3-5, 15

  and “mutations and deletions of tumor suppressor genes TP53 and PTEN”
4
 are the 

roots of those overactive signaling pathways.
4
  

A family of membrane-associated small GTPases, Ras proteins, plays a vital role in cellular 

signal transduction.
16

 They transduce extracellular signals provided by growth factors and 

cytokines. Elevated levels of Ras proteins are observed in glioblastoma patients. In order to 

become functionally active, Ras proteins must be attached to the inner cell membrane.
16

 This 

membrane anchoring is facilitated by a posttranslational modification on Ras proteins. A farnesyl 

group is covalently attached to the cysteine on C-terminal of the CAAX motif of Ras protein. 

This process is catalyzed by the enzyme farnesyl transferase. Since unfarnesylated Ras is 

incapable of anchoring to the cell membrane, it is not capable of cellular transformation. Hence, 

farnesyl transferase inhibitors can be considered as a new class of antineoplastic drugs, which act 

by altering cell signal transduction and thereby inhibiting proliferation and survival of malignant 

cells.
4
  

Recent studies have revealed that the naturally occurring monoterpene perillyl alcohol 

(IUPAC: [4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol) can be used as pharmacological 

inhibitor of the Ras-mediated signaling pathway.
4, 17-19

 By conducting phase I clinical trials, 
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Azzoli et al. showed that the maximum tolerance dose of perillyl alcohol (POH) is 8400 mg/m
2
 

per day when delivered orally.
20

 According to the phase I and phase II human clinical trial 

results, oral administration of POH does not exert hepatic, renal or neurobiological toxicity, but 

it does cause gastrointestinal track disturbances
21

, such as nausea, vomiting and diarrhea.
20, 22-23

 

It is necessary to find effective POH delivery strategies free of side effects. The novel Peptide-

Nanosponges
24-25

 that were developed earlier by us are ideal candidates for biomedical 

applications, because they are virtually non-toxic, highly biocompatible, and biodegradable.
26

 

They are safe packaging systems and capable of eliminating several problems that are persisting 

with lipid-based or viral delivery systems, such as antigenicity, and inflammatory effects, as well 

as insufficient stability and targeting specificity.
27
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Figure 3.1 Mevalonate/cholesterol pathway (Farnesyl diphosphate synthase (FPPS), 

Farnesyl transferase (FTase), Geranylgeranyl diphosphate synthase (GGPPS), 

Geranylgeranyl transferase (GGTase I)) 
17, 28-32
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The novel nanosponges were designed by utilizing the self-assembling properties of  

(cholesterol-(K)nDEVDGC)3-trimaleimide and (cholesterol-(D)nDEVDGC)3-trimaleimide units 

that both feature a trigonal linker, a cleavable sequence designed for caspases-3, 6, and 7 

(DEVDGC
33

) and either an oligo-lysine or oligo-aspartic acid sequence (n = 20). The C-terminus 

of each oligopeptide is attached to the trigonal linker via Michael addition to maleimide
34

, 

whereas the N-terminus is tethered to a hydrophobic cholesterol anchor. A sponge-like dynamic 

structure is spontaneously assembled, due to the formation of ion pairs, intense hydrogen 

bonding, and the occurrence of hydrophobic regions and water-filled nanocavities, as Coarse-

Grained Molecular Dynamics simulations suggest. Molecular self-assembly is a free energy 

driven, spontaneous process, which offers many advantages when synthesizing tunable nanoscale 

structures, including adjustable size, shape and surface chemistries.
26, 35-36

  In chapter 1, we 

studied the assembling properties of these adducts with same number of amino acids at 

physiological conditions. Upon mixing (cholesterol-(K)20DEVDGC)3-trimaleimide and 

(cholesterol-(D)20DEVDGC)3-trimaleimide units in aqueous media, nanosponges formed 

instantaneously.
24

 

We demonstrated with different characterization methods such as, dynamic light 

scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) 

that the obtained nanosponges are of low polydispersity and their sizes range from 100 to 150 nm 

in diameter. These nanosponges, which like regular sponges consist of neighboring regions of 

high lipophilicity and hydrophobicity, are essentially not toxic and are rapidly taken up by 

defensive cells in peripheral blood, such as neutrophils and monocytes.
25

 Therefore, these 

nanosponges are well-suited materials for defensive cell-based drug-delivery applications in 

cancer therapy and theranostic applications.  
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 3.2.1 Nanosponge-based Delivery Platforms for Perillyl Alcohol (POH) 

We have developed two nanosponges for POH delivery by designing peptide chains 

containing segments of D10K20, and D10R20, thus combining oligoaspartic acid units with 

oligolysine or oligoarginine units. These peptides were again coupled to trimaleimide via the 

facile maleimide-thiol coupling reaction.
34

 To the N-terminus of the peptides biotin was attached 

to enable targeted delivery by the nanosponge.
37

 Then POH was covalently bound to the peptide 

via the carboxyl groups of the aspartic acid side chain. This ester bond is strong enough to 

survive the transport to gliomas through the blood brain barrier in neural progenitor cells
38

, but is 

easily hydrolyzed in the presence of proteases when the tumor site is reached and the payload is 

released. The novel drug-loaded carriers are biotin-(D-perillyl alcohol)10K20DEVDGC)3-

trimaleimide (type (D-POH)10K20) and biotin-(D-perillyl alcohol)10R20DEVDGC)3-trimaleimide 

(type (D-POH)10R20). 
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Figure 3.2 Chemical structures of nanosponge types D(POH)10K20 and D(POH)10R20: C: 

cysteine, G: glycine, D: aspartic acid, V: valine, E: glutamic acid, K: lysine, R: arginine. 

The chemical composition of the peptide components has been verified by MALDI-TOF. 

The data are included in the Appendix C. 

 

In this chapter, the “critical micellar concentrations”
39

, e.g. the concentration at which 

nanosponge- formation spontaneously occurs, has been determined for the nanosponge types 

D(POH)10K20 and D(POH)10R20, as well as for their precursors featuring no attached perillyl 

alcohol units. The resulting structures have been investigated by Atomic Force Microscopy 

(tapping mode) as well. 
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Nanosponges for cytotherapy of gliomas using neural progenitor cells as drug carriers are 

only viable if it can be proven that a) the nanosponges are toxic to glioma cell cultures and b) 

that they are virtually not toxic to neural progenitor cells. Therefore, we have determined cell 

viabilities in serum-free and serum containing media. 
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 3.3 Methods 

 

 3.3.1 Materials 

Amino acids, Fmoc-Cys(Trt)-Rink Amide MBHA resin and N,N,N′,N′-Tetramethyl-O-(1H-

benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) were purchased from peptides 

international Inc, Louisville, KY, USA. N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDCxHCl) was procured from Oakwood Chemical, West Columbia SC, USA. 4-

Dimethylaminopyridine (DMAP) was purchased from ACROS Organics, New Jersey, USA. 

Perillyl alcohol, Piperidine and Triisopropylsilane (TIPS) were purchased from Sigma Aldrich. 

N,N-Diisopropylethylamine (DIPA), trifluoroacetic acid, ether, methylene chloride and 

dimethylformamide (DMF) were purchased from Fisher Scientific.  

 

 3.3.2 Peptide Synthesis and Biotin Coupling 

The D10K20DEVDGC and D10R20DEVDGC peptides were synthesized by iterative solid 

phase peptide synthesis according to standard Fmoc (N-(9-fluorenyl)methoxycarbonyl) 

protocol.
40

 Fmoc-Cys(Trt)-Rink Amide MBHA resin was used as solid support. Biotin was 

coupled to the N- terminal aspartic acid (D) applying peptide coupling conditions. The 

synthesized peptide was purified by dialysis (MWCO 3500) and then lyophilized. It was 

qualitatively analyzed by HPLC (Shimadzu NexeraSR) utilizing a reverse phase (C18) column 

and H2O / CH3CN + 1% CF3COOH as eluent. The organic phase was increased from 0.5% to 

40% within 30min. The corresponding HPLC chromatograms can be found in the Appendix C.  
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 3.3.3 Synthesis of Type D10K20 and D10R20 Nanosponges via Michael Addition of 

D10K20DEVDGC or D10R20DEVDGC to Trimaleimide 

The biotinylated peptide (D10K20DEVDGC or D10R20DEVDGC) was dissolved in degassed, 

1X PBS solution, pH 7.4. Trimaleimide
24

 in degassed DMF was added drop-wise to the peptide 

solution (peptide: trimaleimide molar ratio; 4:1) while stirring at RT under inert atmosphere. The 

reaction was carried out for 24 h followed by dialysis (MWCO 3500). Solutions were freeze-

dried. Yield: 85% of (Biotin-D10K20DEVDGC)3-trimaleimide and 87% of (Biotin-

D10R20DEVDGC)3-trimaleimide. Resultant nanosponges were analyzed using FTIR (see 

Appendix C.4, C.6). 

 

 3.3.4 Perillyl Alcohol Loading to (Biotin-D10K20DEVDGC)3 -trimaleimide 

(Biotin-D10K20DEVDGC)3-trimaleimide was dissolved in 1X PBS solution, pH 7.4. Perillyl 

alcohol in DMF was added drop-wise while stirring rapidly to obtain a uniform solution. Then a 

mixture of EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and DMAP (4-

Dimethylaminopyridine) in 1X PBS solution, pH 7.4, was added and stirred for 24 h (peptide: 

alcohol: EDC: DMAP molar ratios; 1:50:1.2:1). The product was purified by solvent extraction 

using dichloromethane. The aqueous phase was freeze dried to obtain final product. Yield: 55% 

of (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide. Drug loaded D10K20 nanosponge 

was analyzed using FTIR and HPLC (see Appendix C.5, C.8). 

 

 3.3.5 Perillyl Alcohol Loading to (Biotin-D10R20DEVDGC)3 -trimaleimide 

The synthetic procedure for (Biotin-D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide was 

identical than for (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide, with the exception 



69 

of using 1X PBS with an adjusted pH = 5.5 (instead of pH = 7.4) for EDC coupling. Yield: 48% 

of (Biotin-D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide. Perillyl alcohol loaded D10R20 

nanosponge was analyzed using FTIR (see Appendix C.7). 

 

 3.3.6 Nanosponge Formation and DLS Characterization 

Separate solutions of (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide and (Biotin-

D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide in deoxygenated PBS buffer were prepared 

and filtered through 200 µm filters. The prepared stock solutions were 0.55 mM and 2.00 mM 

respectively. All other stock solutions were prepared by diluting the original solutions with 

deoxygenated PBS buffer. The hydrodynamic diameters and polydispersity indexes (PDI) of the 

formed nanosponges were measured by dynamic light scattering (DLS, ZetaPALS, Brookhaven 

Instruments Corp., Holtsville, NY).
41

 All measurements were carried out at 298 K, using 658 nm 

laser wavelength, and 90 degree detection angle. Data were collected from an average of three 

measurements over 60 seconds. DLS was also used to estimate the critical micellar concentration 

(CMC)
39

 of the nanosponges (see Appendix C for procedure). 

  

 3.3.7 AFM Characterization 

Samples for atomic force microscopy (AFM) were prepared by adding one drop the 

nanosponge stock solution (0.050 M of each nanosponge in PBS) onto a freshly peeled MICA 

sheet, and followed by removing of the solvent by using a gentle nitrogen stream (2 min). AFM 

images were taken by a Nanoscope AFM image system (Digital Instruments) utilizing TESPA-

HAR probes in tapping mode. The spring constant of the tip was 50 N/m and the frequency was 

350 kHz. The set point, P gain and I gain were set at 1.2, 0.6 and 0.5, respectively. The images 
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were gathered with 256x256 pixel resolution at a scan rate of 1 Hz. The images were then 

analyzed by the Nanoscope software (Bruker) and by Adobe Photoshop (contour plots). 

 

 3.3.8 Cell Experiments and MTT Assays 

The cytotoxicity of (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide and (Biotin-

D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide nanosponges was assessed by utilizing the 

MTT assay
42

 on C17.2 neural progenitor cells (NPCs)
43

, which were a gift from Dr. V. Ourednik 

(Iowa State University) to Dr. D. L. Troyer, DVM (Kansas State University, Anatomy & 

Physiology). NPCs were originally developed by Dr. Evan Snyder.
44

 These cells were 

maintained in DMEM supplemented with 10% FBS (Sigma-Aldrich), 5% horse serum 

(Invitrogen), 1% glutamine (Invitrogen), and 1% penicillin/streptomycin (Invitrogen). GL26 

murine glioma cells
45

 were cultured in RPMI 1640 medium with 10% FBS, and 5% CO2. The 

percentage of viable cells was determined after 24 and 48 hours of incubation. Cells were seeded 

in T-25 flask. After 24 h of incubation at 37 °C and 5% CO2, cells were re-plated in a 96 well 

plate at 20000/cm
2
 density and further incubated for   24 h at 37

0
C, 5% CO2, to obtain 80 % 

confluency before the type (D-POH)10K20 or (D-POH)10R20 nanosponges were added.  

Concentration series of type (D-POH)10K20 or (D-POH)10R20 nanosponges (0.0, 0.1, 0.2, 0.5, 

1.0, 2.0, 5.0, 10, 20, 40, 60, 80, 100 µmoles L
-1

) were prepared by dissolving the nanosponge 

components in the same media that were used for culturing the cells. Cells were incubated for 

24/48 h at 37 °C. Eight replicates were prepared for each concentration. A portion of 10 µL of 

MTT reagent (5 mg/ml in PBS) was added to each of the 96 wells, and the plates were incubated 

for another 4 h at 37 °C. Finally, 100 µL of 10% sodium dodecyl sulfate in 0.010M HCl was 

added into each well and incubated for 24 h at 37 °C.  Their absorbance was recorded by using a 
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plate reader at 550nm and 690nm. PBS solution was used as control for all the experiments. P-

values were calculated according to the literature.
46
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 3.4 Results 

 

 3.4.1 DLS Characterization of the Nanosponges 

      The effective diameters and the polydispersity index (PDI) values of the nanosponges 

obtained by dynamic light scattering measurements (DLS) are summarized in Table 3.1. DLS 

measurements were performed in the following manner: stock solutions of each of the two 

nanosponges were prepared at 0.55 mM (D-POH)10K20) and 2.00 mM (D-POH)10R20). 1.0  L 

aliquots of the stock solution of (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide were 

given stepwise to 1.0 mL of PBS. DLS was measured after 10 min at incubation of 37 
o
C after 

addition of each 1.0  L aliquot. For (Biotin-D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide, 

aliquots of 5.0  L were added. DLS was measured after 10 min at incubation of 37 
o
C after 

addition of each 5.0  L aliquot. Continuous monitoring by DLS for 12 hours at 298 K revealed 

that type (D-POH)10K20 and (D-POH)10R20 nanosponges are very stable in aqueous solution 

(PBS). The corresponding correlation curves and number-averaged size distributions are shown 

in Figure 3.3. Additional data are provided in the Appendix C.  

As summarized in Table 3.1, the CMC of the (Biotin-D10(Perillyl alcohol10)K20DEVDGC)3-

trimaleimide is about 0.0011 mM. At that concentration, nanosponges of the order of 2 

micrometers in diameters are formed with relatively low polydispersity. In distinct contrast, 

supramolecular aggregation of (Biotin-D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide occurs 

not until the concentration of the supramolecular building blocks about 45 times greater.  

Interestingly, the resulting type (D-POH)10R20 nanosponges are smaller in diameter (approx. 360 

nm) at the CMC, but their polydispersity is significantly larger. 
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Nanosponge 

Type 

Diameter 

/ nm 

Concentration 

/ mM 

CMC 

/ mM 

Polydispersity 

Zeta-Potential 

/ mV 

(D-POH)10K20 1955 ± 258 0.0011 0.0011 0.134  

(D-POH)10K20 1880 ± 205 0.00165  0.282 20 ± 1 

(D-POH)10R20 360 ± 52 0.0488 0.0488 0.307  

(D-POH)10R20 421± 32 0.0676  0.113 - 2 ± 3 

 

Table 3.1 Diameter and CMC of type (D-POH)10K20 and (D-POH)10R20 nanosponges 

 

It is of mechanistic interest that the CMC of type (D-POH)10K20 is approx. 5 times lower than 

the CMC of the binary nanosponge (cholesterol-(D)20DEVDGC)3-trimaleimide and (cholesterol-

(K)20DEVDGC)3-trimaleimide, (type DK20)) of 0.0050 mM (total concentration, 0.0025 mM 

(D) and 0.0025 mM (K)). In type DK20 each peptide sequence is attached to a terminal 

hydrophobic cholesterol unit (log P 
47

 = 7.39) and charge-attraction, as well as hydrogen-bonding 

can occur in aqueous buffers.
48

  In contrast, perillyl alcohol has a log P = 1.95, which is not 

hydrophobic. The differences between type (D-POH)10K20 and type K20 are even more 

pronounced. For (cholesterol-(K)20DEVDGC)3-trimaleimide a CMC of 0.080 mM was 

determined by means of DLS, which is 70 times larger than the CMC of (Biotin-D10(Perillyl 

alcohol10)R20DEVDGC)3-trimaleimide. The zeta potentials of type (D-POH)10K20 nanosponges 

in PBS were positive, as this was expected considering that they contain either K20 segments. In 

sharp contrast, the nanosponges featuring R20 segments possess zeta potentials that are very close 

to 0 mV. This was quite surprising and a clear indication that the structures of type (D-

POH)10K20 and (D-POH)10R20 nanosponges are very different! Whereas in (D-POH)10K20 we 

observe oligo-lysine chains at the surface, in (D-POH)10R20 the surface is characterized by either 
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the presence of aspartate-perillyl units, and/or the nanosponge is efficiently attracting chloride 

and/or ((di)hydrogen)phosphate anions from PBS. 

 

Figure 3.3 Correlation curves (C()) of dynamic light scattering measurements of (Biotin-

D10(Perillyl alcohol10)K20DEVDGC)3-trimaleimide nanosponges (type (D-POH)10K20) and 

(Biotin-D10(Perillyl alcohol10)R20DEVDGC)3-trimaleimide nanosponges (type (D-

POH)10R20) in deoxygenated PBS buffer below and above their CMC (“critical micellar 

concentration”
39

). 
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In Figure 3.4, the concentration dependence of type (D-POH)10K20 and (D-POH)10R20 

nanosponges is shown. Both curves begin at their respective (estimated) cmc’s. Apparently, the 

sizes of both types of nanosponges can be adjusted by selecting the correct concentration. Rapid 

changes of the observed nanosponge diameters have been measured during the first 10 min. 

After that time, the observed diameters did not change within the experimental errors for 24h.  

 

Figure 3.4 Average hydrodynamic diameters, as measured by DLS, as a function of type 

(D-POH)10K20 and type (D-POH)10R20 nanosponge concentrations. In each curve, the typical 

experimental error is indicated. 

 

 3.4.2 Atomic Force Microscopy of Type (D-POH)10K20 and type (D-POH)10R20 

Nanosponges 

Figures 3.5 shows the AFM images type (D-POH)10K20 and (D-POH)10R20 nanosponges. 

Both types form irregular aggregates on MICA surfaces (sheet silica mineral). The resulting 

structures are approx. 110- 130 nm in height for both types. The heights of the bundles are 

between 150 to 250 nm. The widths for both types range from 220 to 420 nm. However, as the 

contour plots indicate, numerous smaller aggregates are present as well.  
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Figure 3.5 AFM images (tapping mode) of (D-POH)10K20 and (D-POH)10R20 nanosponges 

(0.050 M of each nanosponge in PBS mM) on MICA. 

 

 3.4.3 Cell Experiments and MTT Assays 

The first set of cell experiments was carried out in serum free media. Cell viability was 

measured by using the MTT assay, which is sensitive to cell proliferation.
42

 Before performing 

cell toxicity experiments with nanosponges containing perillyl alcohol, the toxicity of perillyl 

alcohol itself was tested. The results, which prove that perillyl alcohol is virtually not toxic to 

neural progenitor cells (NPC) and glioma cells (GL26), are shown in the Appendix C. The same 

concentrations of perillyl alcohol were used, either as free perillyl alcohol in the control 

experiments, or chemically bound to both nanosponges. Furthermore, we have tested the toxicity 
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of the nanosponges without attached perillyl alcohol. Both, type D10K20 and type D10R20 

nanosponges were essentially not toxic to both, GL26 and NPC cells (Appendix C.13). After 

establishing this, we proceeded to testing nanosponges with chemically attached perillyl units.  

 The experiments reported here comprise measuring the cell viabilities of neural progenitor 

cells and murine glioma cells after adding type (D-POH)10K20 and (D-POH)10R20 nanosponges 

for 24h and 48h. The concentrations of both nanosponges that were added to the cell cultures 

ranged from 0 to 0.16  g/mL.  

Both perillyl alcohol-containing nanosponges caused only very little toxicity when incubated 

with neural progenitor cells after 24h 
43

, however, after 48h cell toxicity was significant. Both 

nanosponges were equally effective against murine glioma cells
45

 after 24h and 48h of 

incubation (Figures 3.6 and 3.7). LC50 values for all experiments performed were calculated 

using the Graphpad Prism software
49

 and are summarized in Table 3.2. 

The experiments conducted in the presence of 10% FBS exhibited promising results for type 

(D-POH)10K20  nanosponges. They remained to be very effective against GL26 cells after both, 

24 and 48 hours of incubation (Figures 3.8 and 3.9). It is noteworthy that  type (D-POH)10K20 

nanosponges show also a modest activity against neural progenitor cells, albeit only at the 

highest tested concentration. Fortunately, this finding does not rule NPCs out as transport cells 

for (D-POH)10K20 in future animal models testing cell-mediated glioma therapy. Type (D-

POH)10R20 did not exhibit any activity, neither against GL26, nor against NPC cells in serum-

containing medium. Potential reasons for the observed differences in the activities of (D-

POH)10K20 and (D-POH)10R20 nanosponges will be considered in the Discussion section.  
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Figure 3.6 Cell viabilities of neural progenitor cells (NPC) and murine glioma cells (GL26) 

as a function of the concentration of type (D-POH)10K20 (green) and (D-POH)10R20 (blue) 

nanosponge in serum free medium after 24h of exposure. The red line is showing the results 

of the control experiment (only PBS was added). 
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Figure 3.7 Cell viabilities of neural progenitor cells (NPC) and murine glioma cells (GL26) 

as a function of the concentration of type (D-POH)10K20 (green) and (D-POH)10R20 (blue) 

nanosponge in serum free medium after 48h of exposure. The red line is showing the results 

of the control experiment (only PBS was added). 

 

One further control experiment has been added to the MTT experiments shown in Figure 3.8:  

2  l of 5 x 10
-9

 moles L
-1

 of active recombinant caspase-6 (purchased from Enzo Lifesciences) 

was added to each well before the cells were incubated for 24h in the presence of (D-POH)10R20. 

Caspase-6 will cleave the consensus sequence DEVDGC, which leads to a partial release of the 

payload, as previously demonstrated.
25

 However, this measure was unable to enhance the cell 

toxicity of (D-POH)10R20.  
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Figure 3.8 Cell viabilities of neural progenitor cells (NPC) and murine glioma cells (GL26) 

as a function of the concentration of type (D-POH)10K20 (green) and (D-POH)10R20 (blue) 

nanosponge in serum-containing medium (10% FBS, 5% horse serum) after 24h of 

exposure. The red line is showing the results of the control experiment (only PBS was 

added). The black line is a second control that was introduced by adding 5 x 10
-9

 M of 

active recombinant caspase-6 (Enzo Lifesciences) to (D-POH)10R20.  
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Figure 3.9 Cell viabilities of neural progenitor cells (NPC) and murine glioma cells (GL26) 

as a function of the concentration of type (D-POH)10K20 (green) and (D-POH)10R20 (blue) 

nanosponge in serum-containing medium (10% FBS, 5% horse serum) after 48h of 

exposure. The red line is showing the results of the control experiment (only PBS was 

added).  
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 (D-POH)10K20 (D-POH)10R20 

 LC50 

 g/ml 

LC50 

nmol/L 

95% confidence 

interval   g/ml 

LC50 

 g/ml 

LC50 

nmol/L 

95% confidence 

interval   g/ml 

 24h, serum free medium 

GL26 0.0233 1.29 0.01456 to 0.05832 1.40 0.0276 0.01674 to 0.07868 

NPC --- ---  --- ---  

 48h, serum free medium 

GL26 0.0303 1.68 0.01684 to 0.1559 1.53 0.0301 0.01918 to 0.07123 

NPC 0.0478 2.65 0.02598 to 0.3156 --- ---  

 24h, serum containing medium 

GL26 0.0801 4.44 0.02831 to 0.09468 --- ---  

NPC --- ---  --- ---  

 48h, serum containing medium 

GL26 0.0747 4.14 0.056632 to 0.05126 --- ---  

NPC 0.152 32.10 0.12632 to 0.98804 --- ---  

 

Table 3.2 LC50 values of type (D-POH)10K20 and (D-POH)10R20 nanosponges (in  g/ml and 

nmol/l) for GL26 and NPC cell lines. Experiments were conducted in serum free and serum 

containing media. 
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 3.5 Discussion 

 

Two types of nanosponges, (D-POH)10K20 and (D-POH)10R20 were developed as 

nanoshuttles to transport the anticancer agent, perillyl alcohol into glioma tumor cells, and for 

rapid uptake by neural progenitor cells, which can potentially serve as transport cells in future 

cytotherapies of glioblastoma. The peptide nanosponges contain a trigonal maleimide linker and 

three branches. Their major difference is the presence of either a K20 or a R20 block in (D-

POH)10K20 and (D-POH)10R20. Both contain the DEVDGC consensus sequence for caspase 

cleavage and a terminal D10 unit to which 10 perillyl alcohol molecules are bound via ester 

functions. The latter can be easily hydrolyzed by numerous proteases and esterases, which are 

overexpressed in gliomas. Figure 3.10 shows the different regions of each branch in the trigonal 

building blocks for the nanosponges. Whereas D10 is responsible for the reversible binding of 

perillyl alcohol, K20 and R20 are designed to enhance cellular uptake, either by endocytosis or 

transport through the membrane. The consensus sequence can be cleaved by all effector caspases 

(e.g. caspase -2, -3, -6, -7), which are overexpressed in virtually all solid tumors. Caspases -3 and 

-6 are taken up by cells and are, therefore, suitable to cleave the consensus sequences of 

nanosponges that have been taken up by transport cells, thus triggering their release by means of 

apoptotic processes, which enhance the porosity of the transport cells and then dissect them into 

apoptotic bodies.    
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Figure 3.10 Functions of the different regions of each peptide branch in (D-POH)10K20 and 

(D-POH)10R20. Biotin is added to enhanced water-solubility and to facilitate enhanced 

uptake. 

 

From the control experiment shown in Figure 3.8 and summarized in Table 3.2, it is apparent 

that the presence of caspase-6 does not enable efficient cell killing by (D-POH)10R20, whereas 

(D-POH)10K20 is able to kill GL26 glioma cells in low nanomolecular concentrations, even in the 

presence of serum. Since it is known that caspase-6 can be taken up by cells, it is our conclusion 

that the uptake, not the enzymatic activation of the perillyl-containing nanosponge is the critical 

step in killing the cells. This is in agreement with the control experiment (see Appendix C.13), in 

which perillyl alcohol in the absence of nanosponges, but in the same concentration than bound 

to the nanosponges, was added to both, GL26 and NPC cell cultures. In both cases, perillyl 

alcohol was virtually not toxic to the cells, because it is not taken up efficiently at that low 

concentrations. Since the overall metabolism of GL26 cells is higher than of NPC cells, the 

killing efficacy of D-POH)10K20 nanosponges is higher in the cancer cells at both, 24h and 48h.  

It is our conclusion that K20 is far more efficient than R20 in facilitating cellular uptake of the 

nanosponges. Furthermore, the presence of biotin at the N-terminal end of the peptide branches 

does not enable fast receptor-mediated uptake of the nanosponges, at least not in the presence of 

serum when biotin is not a limiting nutrient.  The LC50 for (D-POH)10K20 nanosponges in the 
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presence of serum for GL26 increased by 320% (24h) and 265% (48h), but remained in the 

nano-molar region. 
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 3.6 Summary 

 

Based on the experiments discussed here, one of the two trigonal nanosponges, type (D-

POH)10K20 is a promising candidate for delivering perillyl alcohol to glioblastomas. The second 

candidate, type (D-POH)10R20, fails to kill murine glioma cells (GL26) in the presence of serum. 

Both, type (D-POH)10K20 and (D-POH)10R20 are taken up by neuronal progenitor cells and show 

either no or low toxicity, as determined in cell viability experiments. We attribute the different 

biological effects that are caused by the two types of nanosponges to their different structures, 

which are indicated by significant differences in nanosponge sizes (according to DLS and, to a 

lesser degree, also AFM) and zeta potentials.  
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Figure A.1 Synthesis of a tri-maleimide scaffold with trigonal symmetry 

 

Tris(2-aminoethyl)amine (1.46 g, 10 mmol) and maleic anhydride (3.23 g, 33 mmol) were 

suspended in 30 mL of acetic acid and allowed to react for 3 h at RT. The resulting white 

precipitate was collected by filtration, washed with cold water and dried. 4.10 g trimaleimic acid 

adduct was obtained. (93% yield). 

Ring closure was achieved by the following procedure. Trimaleimic acid adduct (220 mg, 0.5 

mmol) and sodium acetate (410 mg, 5 mmol) were suspended in 10 mL acetic anhydride, and 

allowed to react at 100 
o
C for 3 h. After cooling to RT, 5 mL of water was added, and the 

mixture were stirred at RT for 10 min. Solvents were removed by rotavap, and the solid residue 

was dissolved in 15 mL ethyl acetate, washed with water (5mL, 2 times), saturated NaHCO3 

(5mL 2 times), and brine (5mL 1 time). The organic phase was further dried with anhydrous 

MgSO4, and concentrated to dryness. 186 mg pure product was obtained. (96% yield) 
1
H NMR 

(CDCl3) δ:  2.67 (t, 6H); 3.52 (t, 6H); 6.65 (s, 6H). 
13

C NMR (CDCl3) δ: 36.2, 52.0, 135.0, 171.5.  
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Figure A.2 
1
H-NMR spectrum of the maleimide scaffold (Varian, 400 MHz). 
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Figure A.3 
13

C-NMR spectrum of the maleimide scaffold (Varian, 400 MHz). 

 

      Single crystals of the maleimide scaffold were obtained in saturated ethyl acetate 

solution. Because of the two methylene bridges between the center nitrogen atom and the 

maleimide moieties, the structure is flexible.  
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Figure A.4 Crystal structure of tri-maleimide 

 

Peptide Synthesis and Cholesterol-(K)nDEVDC, Cholesterol-(D)nDEVDC Synthesis 

      Different lengths of poly K and D (n=5. 10, 15, 20, 25) peptides were synthesized by 

standard solid phase peptide synthesis method. Cholesterol was introduced to the peptide by CDI 

(carbonyl-bis-minidazol) activation of the OH of cholesterol first, and then further reacting with 

the NH2 group of the terminal amino acid. After cleavage from the solid phase, product obtained 

were further purified by conducting reversed-phase HPLC, using a preparative C18 column, 

eluting with a linear gradient of 0.05% formic acid in CH3CN and 0.1% formic acid in water 

(5/95 to 95/5 over 60 min.) 
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Figure A.5 Main steps of solid phase peptide synthesis
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Figure A.6 CDI activated cholesterol coupling to peptide chains 

 

Structures of Resin and Amino Acids Used for Nanosponge Synthesis 
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Figure A.7 H-Cys(Trt)-2-ClTrt resin 
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Figure A.8 Fmoc-Lys(Boc)-OH (K) 
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Figure A.9 Fmoc-Asp(OtBu)-OH (D) 
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Figure A.10 Fmoc-Gly-OH (G) 
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Figure A.11 Fmoc-L-valine (V) 
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Figure A.12 Fmoc-Glu(OBzl)-OH (E) 
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Figure A.13 CDI: 1,1′-Carbonyldiimidazole 
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Figure A.14 Cholesterol 

 

 

Figure A.15 Cholesterol-Peptide-Trimaleimide Adduct Formation 
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Figure A.16 MALDI-TOF ((Voyager DE STRT) of A: Cholesterol-(D)5DEVDC, the isotope 

distribution is consistent with the chemical formula C71H105N11O30S; B: Cholesterol-

(K)5DEVDC, the isotope distribution is consistent with the chemical formula 

C81H140N16O20S. 
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Figure A.17 MALDI-TOF ((Voyager DE STRT) of A: Cholesterol-(D)10DEVDC, the 

isotope distribution is consistent with the chemical formula C91H130N16O45S; B: Cholesterol-

(K)10DEVDC, the isotope distribution is consistent with the chemical formula 

C111H200N26O25S. 
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Figure A.18 MALDI-TOF ((Voyager DE STRT) of A: Cholesterol-(D)15DEVDC, the 

isotope distribution is consistent with the chemical formula C111H155N21O60S; B: 

Cholesterol-(K)15DEVDC, the isotope distribution is consistent with the chemical formula 

C141H260N36O30S. 
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Figure A.19 MALDI-TOF ((Voyager DE STRT) of A: Cholesterol-(D)20DEVDC, the 

isotope distribution is consistent with the chemical formula C131H180N26O75S; B: 

Cholesterol-(K)20DEVDC, the isotope distribution is consistent with the chemical formula 

C171H320N46O35S. 

 

Dynamic Light Scattering (DLS) 

Correlation curves and number-averaged size distributions for (cholesterol-(K)nDEVDGC)3-

trimaleimide + (cholesterol-(D)nDEVDGC)3-trimaleimide nanosponges (0.050 mM of each 

component in PBS) are shown in Figures A.19 (n=15) and A.20 (n=20).  
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Figure A.20 Number-averaged size distributions and correlation curve for n=15. 

 

 

Figure A.21 Number-averaged size distributions and correlation curve for n=20. 
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Simulation Details 

 Classical molecular dynamics were performed using the gromacs software.
2
 Simulations 

using the united atom Gromos FF were performed in the NpT ensemble at 300 K and 1 bar using 

the v-rescale and Berendsen temperature and pressure algorithms,
3-4

 respectively. Electrostatic 

interactions were evaluated using the particle mesh Ewald approach,
5
 while van der Waals 

interactions were truncated at 1.5 nm. The timestep was 2 fs and all solute bonds were 

constrained using Lincs,
6
 while all solvent bonds (and angles) were constrained using Settle.

7
 

The CG simulations were also performed in the NpT ensemble at 310 K and 1 bar using the v-

rescale and Parrinello-Rahman temperature and pressure algorithms,
3, 8

 respectively, as 

suggested by the MARTINI FF developers (http://www.cgmartini.nl/). Electrostatic and van der 

Waals interactions were evaluated using shifted potentials with a relative permittivity of 15.
9
 The 

timestep was 25 fs and all solute bonds were constrained using Lincs. The CG simulations were 

checked to ensure there was no freezing of water beads by calculating the diffusion constants of 

water periodically during the simulations. A variety of system sizes were simulated with the 

largest involving 108 tri-Lys and 108 tri-Asp molecules, 2376 sodium ions, and 776763 water 

beads in a 45nm cube box for 4 μs. 
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Cell Experiments 

 

Figure A.22 RAW264.7 cells after 2h of incubation with PKH26 (1 x 10
-5

M), as described in 

the Experimental Section. Homogeneous staining is clearly observed, in contrast to staining 

via nanosponge uptake (see Figure 1.7). 

 

 

 

Figure A.23 Chemical structure of PKH26, which is – technically – a Cyanine 3.0 dye. 

 

 

 

 

  



107 

Appendix B - For Chapter 2 

OH
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OHOH  

Figure B.1 5(6)-Carboxyfluorescein 

 

 

Figure B.2 Excitation and emission spectrum of 5(6)-carboxyfluorescein in PBS (pH = 7.4).  
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Figure B.3 Concentration dependence of the emission of 5(6)-carboxyfluorescein 

fluorescence in PBS, BioTek Synergy H1,  EX = 482,  EM = 525 nm. 

 

 

Figure B.4 DLS of 5(6)-Carboxyfluorescein-loaded type DK 20 nanosponges. The average 

diameter of the peptide nanovesicles formed is 213  25 nm. The nanovesicles remained 

stable during 24h. 
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Appendix C - For Chapter 3  
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Figure C.1 Fmoc-Cys(Trt)-Rink Amide MBHA resin 
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Figure C.2 EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 
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Figure C.3 DMAP: 4-Dimethylaminopyridine 

 

 

Figure C.4 FTIR of type D10K20 nanosponge before POH loading 
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Figure C.5 FTIR of type D10K20 nanosponge after POH loading.  
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Figure C.6 FTIR of type D10R20 nanosponge before POH loading. 
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Figure C.7 FTIR of type D10R20 nanosponge after POH loading. 

 

 

 

Figure C.8 HPLC of type D10K20 nanosponge 
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Figure C.9 MALDI-TOF ((Voyager DE STRT) of A: D10K20DEVDGC, the isotope 

distribution is consistent with the chemical formula C183H326N56O63S; B: D10R20DEVDGC 

the isotope distribution is consistent with the chemical formula C183H326N96O63S. 
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Figure C.10 MALDI-TOF ((Voyager DE STRT) of A: (D-perillyl alcohol)10K20DEVDGC, 

the isotope distribution is consistent with the chemical formula C283H466N56O63S; B: (D-

perillyl alcohol)10R20DEVDGC the isotope distribution is consistent with the chemical 

formula C183H466N96O63S. Note that MALDI-TOF does not indicate, to which of the 12 

aspartic acid units the 10 perillyl alcohols are bound. 
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Figure C.11 Zeta potential of type (D-POH)10K20 nanosponges in PBS 

 

 

Figure C.12 Zeta potentials of type (D-POH)10R20 nanosponges in PBS 
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Procedure for Critical Micellar Concentration (CMC) Detection of (D-POH)10K20  

Stock solution of 0.55 mM solution was prepared and 1.0 µl from that solution was added 

into 1 ml of 1X PBS solution in a glass cuvette. Solution was incubated for 10 min at 37 
0
C and 

DLS was measured. Similarly 1µl aliquots of stock solution were added stepwise and DLS were 

recorded after 10 min incubation at 37 
0
C. 

(D-POH)10K20 

volume added  

(0.55 mM,µl) 

Final volume (ml) 

Final 

[(D-POH)10K20] 

mM 

1 1.001 0.000549451 

2 1.002 0.001097804 

3 1.003 0.001645065 

4 1.004 0.002191235 

5 1.005 0.002736318 

6 1.006 0.003280318 

7 1.007 0.003823237 

 

Table C.1 Volumes and concentrations of (D-POH)10K20 nanosponge used for CMC 

detection 

 

Procedure for Critical Micellar Concentration (CMC) Detection of (D-POH)10R20 

Stock solution of 0.55 mM solution was prepared and 1.0 µl from that solution was added 

into 1 ml of 1X PBS solution in a glass cuvette. Solution was incubated for 10 min at 37 
0
C and 

DLS was measured. Similarly 1µl aliquots of stock solution were added stepwise and DLS were 

recorded after 10 min incubation at 37 
0
C. 
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(D-POH)10R20 

volume added  

(2 mM,µl) 

Final volume (ml) 

Final  

[(D-POH)10R20] 

mM 

5 1.005 0.00995 

10 1.01 0.019802 

15 1.015 0.029557 

20 1.02 0.039216 

25 1.025 0.04878 

30 1.03 0.058252 

35 1.035 0.067633 

40 1.04 0.076923 

50 1.05 0.095238 

 

Table C.2 Volumes and concentrations of (D-POH)10R20 nanosponge used for CMC 

detection 

 

Control Experiment: Toxicity of Perillyl Alcohol, Type D10K20 Nanosponges, and Type 

D10R20 Nanosponges 

Result (as shown in Figure C.13): There is virtually no cytotoxicity of perillyl alcohol or 

nanosponges in the observed concentration range on GL26 cells. We have tested the highest 

concentrations of perillyl alcohol and nanosponges on NPCs as well. Again, there was virtually 

no effect (data not shown). Cell viability was measured by using the MTT assay, which is 

sensitive to cell proliferation.
10
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Figure C.13 Control experiments: Cell viability of GL26 cells (cultured without serum) as a 

function of added perillyl alcohol (concentrations: a), type D10K20 nanosponge 

(concentrations: b), type D10R20 nanosponge (concentrations: b), and PBS control 

(concentrations: b)). 
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Figure C.14 COSY (1H-1H correlated spectroscopy)  of type (D-POH)10K20 nanosponge 

(0.10 mml in D2O) 
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Figure C.15 TOCSY (total correlated spectroscopy) of type (D-POH)10K20 nanosponge 

(0.10 mml in D2O) 
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Figure C.16 NOESY (2D Nuclear Overhauser spectroscopy) of type (D-POH)10K20 

nanosponge (0.10 mml in D2O) 
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