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ABSTRACT 

The supply chains for agriculture and food (agri-food) related products face several 

challenges due to uncertainties and dynamic behaviors related to fluctuations in demand, 

uncontrollable environmental factors, sensitive quality concerns, and profitability within a  

low-margin industry. This research develops data-driven stochastic models and methods for 

solving important problems in agri-food supply chains.  

Agri-food supply chains are well known to be dynamic and stochastic, yet most current 

models use simplified deterministic models. Instead, this research develops stochastic models and 

optimization methods that integrate ideas and techniques from machine learning, Big Data mining, 

and deep reinforcement learning to improve the supply chain performance and reduce food loss 

amidst many sources of uncertainty. Due to advances in computational capability and the 

availability of data in recent decades, it is now possible to create models with more details to better 

reflect the true supply chain dynamics and complexity.  

This research first introduces a new generalized stochastic model for representing the 

dynamics of complex agri-food supply chains to optimize profitability by ensuring the quality of 

the end-product. A specific focus is placed on the tracking of the obtained quality level throughout 

the steps of the supply chain since this property highly predicts if the materials in the current steps 

are available for use in different potential final products or the final products’ acceptability by the 

consumer.  

It is recognized that these models must be able to be developed from existing data to capture 

the supply chain’s complexity and quantify uncertain outcomes. This research accomplishes this 

by integrating data mining techniques with these models to determine the supply chain dynamics. 

Since deriving these dynamic behaviors from historical data can become computationally 



 

 

challenging, a novel approach that leverages Big Data mining tools and techniques is introduced 

and utilized to speed up running times without compromising the complexity or requiring more 

assumptions for the models.  

Lastly, this research analyzes how traditional techniques perform versus approximation 

methods for agri-food supply chain models with rolling horizons and product degradation. This 

can be demonstrated through a mix and blend problem, a common operation in  

agri-food supply chains. A new neural network architecture called OR-Net is introduced as an 

efficient mechanism for modeling and solving sequential integer programs such as the mix and 

blend problem using deep reinforcement learning. OR-Net is designed specifically to focus on the 

orthogonal relationships that exist between an integer program’s coefficients. Using numerical 

experiments, analysis is performed to evaluate the performance of OR-Net against stage-wise 

optimization and other approximation methods. 
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CHAPTER 1.  INTRODUCTION 

Feeding 9-10 billion people by the year 2050 safely and sustainably is one of the largest 

challenges facing mankind. The production, processing, and distribution of food through 

agriculture is difficult due to products that are perishable and subject to strict quality demands, 

regulations, and fluctuating consumer preferences. Their production is influenced by 

uncontrollable environmental factors, and they often incur large loss and waste factors which are 

of a growing global concern. Also, no two products’ supply chains are the same and vary in their 

complexity (Georgiadis, Vlachos, & Iakovou, 2005). Addressing this challenge sufficiently 

requires several advancements in the areas of science, technology, and supply chain optimization. 

Access to food can be improved by increasing food production output or by reducing 

inefficiencies in the supply chain and implementing practices that maintain quality. These 

suboptimal results are significant as approximately 25% of all food produced for human 

consumption in the US is lost in the supply chain before reaching the customer (Dou, et al., 2016). 

Food loss is characterized as a decrease in edible food intended for human consumption caused by 

inefficiencies in the food supply chains. This includes losses in both mass and quality from 

production, processing, storage, and distribution prior to retail. Food waste is food for human 

consumption being discarded at the retail or consumer level due to spoilage, supply imbalance, or 

human choice.  

Agri-food supply chains also consume many precious resources including land, water, 

energy, and human capital, which means food loss and waste squander these resources at a time 

when they are also necessary for other societal needs such as health, sanitation, and transportation. 

If food wastage was a country, its carbon footprint would rank 3rd globally, putting it behind only 

the US and China (FAO, 2013). Its ground and surface water consumption would be 250 km3 or 
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almost half the annual discharge of the Mississippi River. It also occupies roughly 1.4 billion 

hectares of land, which is 8 times the arable land area in the US. Lastly, the estimated economic 

impact of food wastage is $1 trillion USD, which would rank it 19th in GDP among countries in 

2019.  

During the COVID-19 pandemic, consumers learned the harsh reality that agri-food supply 

chains are subject to disruptions the same as many other sectors of business, even though food and 

agricultural products are critical for daily life (Aday & Aday, 2020). Actions such as the 

restrictions placed on restaurants and food service workers, drastic and immediate changes in 

consumer behaviors, and occasional interruptions of food production and processing operations all 

had massive impacts to agri-food supply chains. Those impacts became abundantly clear when 

many grocery stores were found with empty shelves or began placing purchase limits on certain 

everyday necessities. Redirecting substantial food supplies from restaurants or schools to grocery 

for household consumption also led to increases in food wastes, especially for low shelf-life items 

like fresh produce and dairy.  

From a financial impact perspective, agri-food supply chains also account for a large 

component of the global economy. Agricultural products contribute a noticeable portion of the US 

export economy, totaling nearly $140 billion in 2018 (BIFAD, IFPRI, & APLU, 2019). Those 

exports generated an additional $260 billion in economic activity within the US, netting a total 

increase in economic output of $400 billion. The estimates for these exports have grown 

substantially even in the past 4 years to a value of over $196 billion in 2022 (Kenner, Jiang, & 

Russell, 2022). Granular products like soybeans, corn, wheat, feed, etc. accounted for over 195 

million metric tons in exports. Most of these exports must also travel long distances with 72%  

(in value) of these exports leaving the US going somewhere other than Canada or Mexico. These 
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figures prove that even small incremental improvements in these supply chains would have 

economic impacts on the order of hundreds of millions of dollars. In summary, pushing agri-food 

supply chains closer to their global optimal performance targets can have very large societal, 

environmental, and economic benefits.  

Much-needed improvements in agri-food supply chains might come in the form of 

increases in quality or production output, reductions in supply chain inefficiencies, or operations 

that avoid myopic decisions to remove unwanted food loss and waste. Developing a stronger 

understanding of the impact of decisions that affect the output quantity and quality requires both 

data and methods that make use of this data for the purpose of optimizing the supply chain. Data 

collection practices have greatly improved over the last decade, so effective techniques that take 

advantage of this data are a next major step. Most of the existing models for optimization within 

agri-food supply chains are overly simple and deterministic, lack the flexibility for many 

applications, or they are not computationally efficient for larger problems. This thesis aims to 

improve performance in agri-food supply chains through the development of stochastic 

optimization models and advanced data-driven methods to help address these issues as they relate 

to food and agriculture production, processing, and distribution problems. 

1.1. Research Motives and Objectives 

The objective of this research is to introduce a new stochastic model for representing the 

dynamics of complex agri-food supply chains to optimize profitability by ensuring the quality of 

the end-product. A specific focus is placed on the tracking of the obtained quality level throughout 

the steps of the supply chain since this property highly influences when the materials in the current 

steps are available for use in different potential final products and the final product’s acceptability 

by the consumer. These considerations make quality the ideal tracking mechanism for optimizing 
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the supply chains’ profit and marketability while reducing food loss (Nagurney, Besik, & Yu, 

2018). 

Agri-food supply chains are well known to be stochastic, yet most current models use 

simplified deterministic models. Instead of using deterministic techniques, this proposed research 

develops stochastic models and optimization methods that integrate machine learning, big data 

mining, and deep reinforcement learning to improve supply chain performance and reduce food 

loss. Due to advances in computational capability and the availability of data in recent decades, it 

is now possible to create models with more details to better reflect the true supply chain dynamics 

and complexity. The decision options considered in these supply chains could include the 

utilization of different raw materials, innovative technologies, processing equipment, 

transportation modes, and storage options available that are often unique to each specific step. For 

an example of the decisions that affect agri-food supply chains, see Figure 1.1. 

 

Figure 1.1 Example of steps and variety of decisions involved in agri-food supply chains 

The first goal of this research is to design a generalized dynamic agri-food supply chain 

model that considers uncertainty in production, storage, and demand processes and provides 

optimal set of sequential decisions to optimize the quality of the final end-product. Next, we 
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recognize that we desire for this model to be developed and informed from existing data to capture 

the supply chain’s complexity and uncertain outcomes. Integrating data mining techniques enable 

this model to be truly data-driven. Since this is computationally challenging, big data mining 

techniques will be utilized to speed up running times.  

Lastly, we consider a set of problems that many of the most common solution methods are 

unable to handle, such as those with continuous state spaces and unforeseeable or uncertain future 

outcomes over many periods. This final research task analyzes how traditional techniques found 

in discrete optimization problems perform versus approximation methods for a large-scale food 

supply chain model with rolling horizon. This can be demonstrated through a mix and blend 

problem, which is a very common operation in agri-food supply chains.  

The merit of this proposed research is to advance and develop data-driven stochastic 

models in agri-food supply chains with generalized models and novel techniques. The models 

when paired with these techniques can serve as a framework for many problems in agri-food 

supply chains without loss of the supply chain’s complexity or dynamics. These approaches can 

also be applied to other supply chains and sequential optimization problems that are present in 

many industries.  

1.1.1. Develop a generalized stochastic model for agri-food supply chains 

The first objective is to develop a general stochastic model for dynamic agri-food supply 

chains and identify challenges that industry practitioners would have when trying to solve this 

model. This model needs to have the flexibility for being applied to problems including multiple 

decision-making stages and consider rolling time horizons. The following tasks detail how this 

research objective can be met. 
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Dynamic agri-food supply chain processes are modeled as a series of sequential steps. 

Common steps for any problem could include producer, one or more processors, wholesaler, and 

retailer. Steps for an operational problem might describe the individual stages of development 

within the decision maker’s control. The decisions at each step include supplier selection and 

settings for their process parameters and they occur at the decision epochs which can be at specified 

time periods or supply chain steps. This series of sequential decisions can be formulated as a 

Markov decision process (MDP) where the resulting quality level of the product at every step is 

stochastic. Also, the decision maker must consider that this quality level at each supply chain step 

has a minimum accepted level and any product that does not meet the minimum accepted level is 

rejected.  

 

Figure 1.2 State space diagram of our supply chain. 
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The goal of this MDP model is to solve for an optimal policy, which is mapping of optimal 

actions to all possible future states. To ensure faster convergence to the optimal policy, this work 

should show monotonicity in the optimal value function by proving that it is non-decreasing for 

all states. This MDP model is then solved for the optimal policy using Policy Iteration. 

1.1.2. Integrate data mining methods for understanding supply chain dynamics 

It is recognized that a common weakness with using a MDP as a modeling framework is 

that most related problems in the literature assume a transition matrix is provided. In this research 

task, data mining methods are integrated into the MDP model to determine the supply chain 

dynamics and probabilistic outcomes that connect states and actions. The result is a data-driven 

model that can discover optimal decision policies purely from historical data. 

To determine the transition matrix from historical data, this task first investigates Bayesian 

networks. The goal of this Bayes net is to learn a classification function that is trained on data 

elements. By appropriately arranging the input and output data vectors that we train our Bayes net 

on, the outcome classification function the Bayes net learns is simply our transition probability 

distribution. One of the challenges with solving for exact inference with a Bayes net is the 

computation time (Roth, 1996). The next goal of this task is to develop a novel technique that 

leverages the power of Big Data mining techniques and parallel computation to improve the 

running time when solving for the transition matrix of the MDP.  

Association rule mining is a method in machine learning that aims to discover relationships 

between variables of interest. It does this by exploring data and uncovering strong rules between 

these variables based on the frequency of their common existence in a set of items, called a 

transaction. These strong rules, called association rules (AR), are directional and can be used to 

discover the likelihood that one item will exist in a random transaction given another item of 
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interest is in the transaction (Agrawal, Imielinski, & Swami, 1993). These rules are commonly 

extracted from point-of-sale systems, such as those in supermarkets and are also used for 

recommendation systems. The computing framework Spark is utilized for extracting these rules 

from data using procedure can be seen in Figure  1.3. The key step in this procedure is the 

transaction assignment, which is where data elements are preprocessed into transactions. The 

independent elements of these transactions are connected by association rules whose properties 

are equivalent to their unique probability distributions in the 𝑃-matrix (i.e., our MDP’s transition 

model).  

 

Figure 1.3 Integration of Big Data methods for determining the supply chain’s dynamics 

1.1.3. Investigate approximation methods like DRL for optimal control 

This objective of the last research task is to investigate the performance of approximation 

methods such as deep reinforcement learning for their application to problems in agri-food supply 

chains. These methods are not limited to discrete state spaces and do not require previous 

knowledge of the transition model or reward function. To demonstrate the potential for these 

approaches, they will be applied to a common problem of mixing and blending grain and will be 

compared using simulation studies. Although the general formulation of this binary integer 
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program is well known, the real-world problem is not so simple. The goal for this objective is to 

evaluate these methods as the mix and blend problem becomes stochastic and continues to operate 

over a rolling time horizon. Also, the state space for this problem is continuous, and tradition forms 

of optimal control such as Policy Iteration or Q-learning require the problem to be discretized. 

Instead, by leveraging a neural network to observe our state, we intend to evaluate these states 

directly from their current continuous form.  

This task requires the development of a few key pieces. The first is a simulation 

environment that considers a standard mix and blend problem and generates many instances of the 

problem. Extending the problem across a rolling time horizon also requires learning about the 

transitional behavior of product quality characteristics and consideration of future states that must 

also be optimized. The matrix of quality characteristics defines the product attributes contained 

within each bin, which are observable in the current state but not easily predicted for future states. 

Each attribute has limits or bounds for its acceptability in the final mixture. The final mixture 

contains exactly 𝛽 bins worth of material. Note, this is a specific version of the multidimensional 

0-1 knapsack problem (Freville, 2004). Based on the decision taken, some selection of 𝛽 bins’ 

materials are used, and all the rest are left for the next decision epoch. The materials used are 

consumed and removed from the system and replaced with new incoming materials. The ones that 

remain are left for fulfilling future orders, but they also can degrade over time and can become 

poor quality if left within the system for too long.  
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Figure 1.4 Process flow diagram of a standard mix and blend process in a single decision epoch 

Figure  1.4 shows a process flow diagram of a standard mix and blend process. Since the 

end goal for this research objective is to consider a more complex version of this problem, one that 

is stochastic and optimized across a rolling time horizon, it is anticipated that exact algorithms in 

stochastic optimization will become incapable of solving this problem by expanding the 

formulation to account for the nearly infinite number of possible future sequences. We explore 

how to generalize this approach for all sequential integer linear programs and propose a novel idea 

called OR-Net. This is a neural network that achieves computational efficiency versus a fully 

connected (FC) network by focusing on the orthogonal relationships that exist within the single-

stage integer linear program’s coefficients. This greatly reduces the quantity of weights in the 

neural network that must be converged on during training. Ideas on how to implement this concept 

in PyTorch are discussed and one will then be selected for testing. Performances of different 

solution methods including: the OR-Net, its FC-Net counterpart, an LP solver, and other heuristics 

will be tested and reviewed for their accumulated reward values and running times.  

Ultimately, the research in this thesis is strongly motivated by and focused on problems 

related to agri-food supply chains. However, we believe these approaches can be generalized to 

many other supply chain processes, and these techniques may be enhanced or applied to other 

sequential and stochastic optimization problems.  
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CHAPTER 2. LITERATURE REVIEW & BACKGROUND 

Chapter 2 reviews the relevant literature and contains background sections that cover the 

basics of important concepts that will be prevalent throughout the following chapters. The notation 

introduced in this chapter will be used continually throughout the rest of the remaining chapters.  

There are five sections in Chapter 2. Section 2.1 covers modeling approaches in agri-food 

supply chains. Section 2.2 covers data mining in agri-food supply chains including some 

background information on a few powerful Big Data techniques. Section 2.3 provides an in-depth 

review of Markov decision processes. Section 2.4 provides details of methods for solving dynamic 

programming problems such as MDPs, detailing the different classes of methods. Section 2.5 

concludes the literature review and background section by covering the ideas behind deep 

reinforcement learning and how they are actively being researched for their application to 

problems in optimization and optimal control today.  

2.1. Modeling of Agri-Food Supply Chains 

Agri-food supply chain problems can be grouped by many methods such as planning 

horizon, solution and modeling methods, and perishability of the products considered (Ahumada 

& Villalobos, 2009). The scope of planning horizons can vary from strategic, to tactical, to 

operational level decisions. Solution and modeling methods can be broken into two major 

categories, namely deterministic and stochastic. Each of these can include problems that are either 

dynamic or static. Some also make a distinction of the perishability of the products. In the 

following paragraphs, we briefly discuss some of these key studies and describe the direction of 

our research.  
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The need for holistic modeling frameworks in food supply chains has been recognized, and 

decisions such as technology investment and capacity planning  (Georgiadis, Vlachos, & Iakovou, 

2005) have been investigated at a strategic level. Other works have focused specifically on food 

distribution approaches (Akkerman, Farahani, & Grunow, 2010), but most of these tools however 

are limited in terms of their generality or scope. The desire to consider more than one stage of the 

supply chain has been well described. Some have captured the complexity required to consider 

both production and logistic planning decisions for whole families of products (Kopanos, 

Puigjaner, & Georgiadis, 2012). Similarly, tactical and operational planning tools have offered 

more generalization of common farm level decisions. Examples of these include decisions for 

production and distribution of fresh produce (Ahumada & Villalobos, 2011) and harvest and 

distribution of perishable agricultural products (Ahumada & Villalobos, 2011). These models, 

however, do not capture decisions in later possible processing stages of the supply chain.  

Gigler et al. (2002) developed a generalized dynamic programming model that considered 

optimization across all steps of the supply chain. Optimal routes were defined as minimizing total 

integral costs. This was implemented using a brute force search on an example considering willow 

biomass as fuel for an energy plant. However, each of these aforementioned studies took a common 

deterministic approach. Borodin et al. stated, “An agricultural production supply chain is moreover 

a process characterized by dynamic linkages and evolution often taking place in a stochastic 

operating environment.” (Borodin, Bourtembourg, Hnaien, & Labadie, 2016). Other works have 

taken a stochastic modeling approach but were limited in either planning horizon, scope (amount 

of the supply chain considered), or generality and flexibility to be applied to any food supply chain 

(fresh, perishable, multiple processing stages). For example, some investigated beef herd 

management decisions (Stygar, Kristensen, & Makulska, 2014). Others explored the wheat quality 
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control problem but focused on the harvest scheduling decisions (Borodin, Bourtembourg, Hnaien, 

& Labadie, 2015). Some considered the uncertainties introduced by weather and demand 

fluctuations and utilized two-stage stochastic programming (Ahumada, Villalobos, & Mason, 

2012), but these were restricted to fresh products. These studies did not consider randomness 

introduced by the reliability of internal processes, and they did not see further into the supply 

chain. Many longer-term planning tools have been developed but were only designed to address 

specific questions, such as considering the effect of uncertain precipitation on production models 

to evaluate the investment in irrigation systems (Heumesser, Fuss, Szolgayová, Strauss, & Schmid, 

2012), or developing water allocation and irrigation schedules (Sumanatra & Ramirez, 1997).  

Table 2.1 Summary of the most relevant agri-food supply chain modeling related literature 

reviewed, and the opportunity explored in this thesis. 

Supply Chain 
Steps Considered 

Decisions 
Considered 

Deterministic 
Optimization Stochastic Optimization 

Specific 

Specific Ahumada & Villalobos, 
2011 

Sumanatra & Ramirez, 1997 

Heumesser et al., 2012 

Flexible Kopanos et al., 2012 
Ahumada et al., 2012 

Borodin et al., 2015 

All or Flexible 
Specific Ahumada & Villalobos, 

2011 Georgiadis et al., 2005 

Flexible Gigler et al., 2002  

 

To the best of our knowledge, there are no existing optimization models that capture the 

desired generality and flexibility to be applied to most any food supply chain problem. This 

includes the planning horizon or scope along with the consideration of the wide variety of decisions 

and uncertainties present in food supply chains. See Table 2.1 for a summary of the agri-food 

supply chain modeling related literature that is most relevant to the opportunity that is covered in 
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this thesis. With the integration of data mining techniques, we can build and solve these more 

complex models that are driven by data.   

2.2. Data Mining in Agri-Food Supply Chains 

The desire for integration of modern data analytics into food supply chains did not go 

unnoticed especially in the areas of temperature sensitive food products (Olsson, 2004). Recent 

studies have even introduced technological concepts such as the Internet of Things for real-time 

tracking and tracing of prepackaged food (Li, Liu, Liu, Lai, & Xu, 2017) and improved multi-level 

supply chain coordination (Yan, Wu, & Zhang, 2017). Another team (Gaukler, Ketzenberg, & 

Salin, 2017) used radio-frequency identification and sensor technology to dynamically establish 

expiration dates. Others recognize that trustworthiness in agri-food supply chains will be a future 

concern and that Big Data architectures can help (Tao, et al., 2018). These ideas were simply not 

possible to implement a decade ago.  

In the following subsections, a few common Big Data techniques will be reviewed as they 

will be important in the chapters that follow.  

2.2.1. Association Rule Mining  

Association rule mining is a method in machine learning that aims to discover relationships 

between variables of interest. It does this by exploring data and uncovering strong rules between 

these variables based on the frequency of their common existence in a set of items, called a 

transaction. These strong rules, called association rules (AR), are directional and can be used to 

discover the likelihood that one item will exist in a random transaction given another item of 

interest is in the transaction (Agrawal, Imielinski, & Swami, 1993). These rules are commonly 

extracted from point-of-sale systems, such as those in grocery stores, supermarkets, and retail.  
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For example, the rule for a situation when a consumer who purchases item 𝑊 will also buy 

item 𝑈 is given by the rule (𝑊 ⇒ 𝑈). The strength of this rule would indicate the likelihood that 

if a customer buys 𝑊 they also buy 𝑈, and the insights gained from these rules could be used to 

help improve marketing campaigns or store layout decisions, such as the placement of a premium 

brand of salsa next to a popular bag of tortilla chips.  

In this example, 𝑊 and 𝑈 belong to the set of all items 𝐼 that are represented in the set of 

transactions 𝐽. We use support and confidence to test the performance of the association rules. It 

is also common to only consider rules that meet a certain threshold of significance or confidence.  

We define confidence in this rule using the following elements. 

Transactions: The dataset is defined as a set of transactions 𝐽 where a random transaction 

𝑗 ∈ 𝐽 is a set of items that were purchased together. 

Items: An item of interest 𝑊 belongs to the total set of items 𝐼 represented in all our data 

of transactions such that 𝑊 ∈ 𝐼 and 𝑗 ⊆ 𝐼.  

Rules: A given rule is defined as the directional relationship (implication) from item or 

itemset 𝑊 to the item 𝑈 as 𝑅𝑢𝑙𝑒 = (𝑊 ⇒ 𝑈). 

Support: The support of an item or itemset 𝑊 is defined as the expectation that a given 

transaction 𝑗 will include the item 𝑊 and is determined by its frequency of occurrence in the total 

set of transactions 𝐽 versus the number of transactions. The resulting value is the probability that 

item 𝑊 will be included in a randomly selected transaction 𝑗, see Equation (2.1).  

supp({𝑊}) =
|{𝑊} ∈ 𝑗 ∀𝑗 ∈ 𝐽|

|𝐽|
= Prob({𝑊} ∈ 𝑗) 

(2.1)

Confidence:  A rule’s confidence is defined as the expectation of whether a rule will be 

found to be true, given how often the rule was found to be true in the dataset. This is determined 
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in Equation (2.2) by comparing the support of the item set including items from both  

{𝑊} ∪ {𝑈} = {𝑊, 𝑈} versus the support of the item set only containing {𝑊}.  

conf(𝑅𝑢𝑙𝑒) =
supp({𝑊} ∪ {𝑈})

supp({𝑊})
=

supp({𝑊, 𝑈})

supp({𝑊})
 

(2.2)

Therefore, the likelihood that someone who buys item 𝑊 will also buy item 𝑈 can be 

described as the confidence of 𝑅𝑢𝑙𝑒 = (𝑊 ⇒ 𝑈), which is the ratio of the dataset’s support for 

both 𝑊 and 𝑈 versus its support for just 𝑊.  

Associate rules are used in many other applications today ranging from biology to 

understanding internet traffic between sites. Many tools have been created help mine these rules 

such as the arules package in R which includes implementations of the popular algorithms Apriori 

and Eclat (Hahsler, Grun, Hornik, & Buchta, 2005). PySpark is Big Data tool that offers parallel 

implementation of another algorithm that mines for these frequent patterns called FP-Growth.  

2.2.2. FP-Growth Algorithm  

The FP-Growth algorithm (Han, Pei, & Yin, 2000) computes a list of frequent items sorted 

by frequency and then compresses this data into a FP-tree. This tree is then mined recursively by 

the algorithm to identify items whose support passes a given threshold. Nodes on the FP-tree 

represent items and paths represent transactions or itemsets that share a common prefix.  

Subsequent patterns can be mined quickly after the tree has been formed, but the bottleneck of  

FP-Growth is that the potential combinatorial number of candidate patterns is not reduced despite 

the compact representation of these candidates in the FP-tree. Many efforts have been made to 

improve FP-Growth. Spark’s implementation uses a parallelized version of the FP-Growth 

algorithm (Anonymous, n.d.) called PFP (Li, Wang, Zhang, Zhang, & Chang, 2008). A short 

description of the steps in PFP are as follows.    
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Step 1. Sharding  

Divides data base into successive parts (shards) and stores on different computers.  

Step 2. Parallel Counting 

Counts the support of all items that appear in database using MapReduce on each 

shard and stores results in the F-list.  

Step 3. Grouping Items 

Divides the items on the F-list into groups with unique group-ids in the G-list. 

Step 4. Parallel FP-Growth 

Performs a MapReduce pass where the Mapper stage generates group-dependent 

transactions, and the Reducer stage runs the FP-Growth algorithm on  

group-dependent shards.  

Step 5. Aggregating 

Aggregates the results from step 4 into the final result.  

This concludes the background section and literature review covering data mining. 

2.3. Markov Decision Processes 

Agri-food supply chains can be descried by dynamic linkages of sequential decisions that 

are subject to multiple sources of uncertainty. These include temperature, humidity, technology, 

storage conditions, etc., that can affect the outcomes and therefore impact the optimal control 

decisions in these supply chains. Given the level of generality and flexibility desired, this suggests 

the use of a Markov decision process (MDP). MDPs are discrete stochastic process that provide a 

mathematical framework for modeling decision making in situations where outcomes are 

probabilistic (Puterman, 2005). They are comprised of the following elements.  

Decision Epochs: It is assumed that decisions occur at every change in the state. 
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State Space, 𝑆: Let 𝑠 ∈ 𝑆, be the state of the system that is defined as a vector comprising 

of the relevant information needed to make decisions and quantify outcomes. An individual state 

can be theoretically described as a location within our state-space 𝑆. This assumes that the process 

is not fully history dependent. 

Action Space, 𝑋: Let 𝐱௦ ∈ 𝑋, be the actions selected at state 𝑠. This can be represented as 

a vector of actions 𝐱௦ = [𝑥௦
ଵ, 𝑥௦

ଶ, … ]. These are selected from the set of available actions 𝑋. This 

known as the action space, which includes all the potential unique actions at any given state.  

Transition Model, 𝑃: 𝑝(𝑠ᇱ|𝑠, 𝐱௦) is defined as the transition probability distribution from 

the state 𝑠 given action 𝐱௦ to a new state 𝑠ᇱ. The transition probability matrix (or transition 

model) includes all the transition probabilities within the state space 𝑆. This is Markovian, meaning 

that only the most recent state 𝑠 and action 𝐱௦ are needed to know the distribution of 𝑠ᇱ. 

Rewards: A reward 𝑅(𝑠, 𝐱௦) is the expected net benefit received for being in state 𝑠 and 

taking action 𝐱௦. The total set of rewards can be defined using a function or a matrix.  

Policy: A policy 𝜋 is defined as a mapping of actions to take given the state. This is 

represented as 𝜋 = ൛𝐱(௦) for all 𝑠 ∈ 𝑆ൟ.  

Value Function: The value function for a policy 𝜋 is 𝑉గ, which can be described recursively 

as in Equation (2.3) using Bellman’s equations, where 𝜋(𝑠) is the action to take as determined by 

the policy 𝜋 and 𝛾 is the discount factor that prevents the value function from going to infinity. 

The optimal policy 𝜋∗ is defined as the decision policy which maximizes the value function, see 

Equation (2.4). 

𝑉గ(𝑠) = 𝑅൫𝑠, 𝜋(𝑠)൯ + 𝛾 ෍ 𝑝൫𝑠ᇱ|𝑠, 𝜋(𝑠)൯𝑉గ(𝑠ᇱ)

௦ᇲ∈ௌ

 (2.3)

𝜋∗ = arg max గᇲ(𝑉గᇲ) (2.4)
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2.4. Optimal Control Methods 

The goal of dynamic programming (including MDPs) is to find the optimal policy 𝜋∗ that 

maximizes this value function 𝑉గ(𝑠) at every state 𝑠 ∈ 𝑆. This section describes different 

approaches of finding optimal policies for MDPs: model-based methods and model-free methods 

which both have their own strengths and weaknesses.  

2.4.1. Model Based Methods 

Model based methods require knowledge or an assumption of the transition model which 

identifies the possible next states the model is likely to reach after taking the decision. Under this 

knowledge, exact methods exist that guarantee optimality of the proposed optimal policy. One of 

the most popular ways to solve for the optimal policy is by implementing the Policy Iteration 

algorithm (Bellman, 1955).  

Policy Iteration Algorithm: This algorithm works under a simple premise. Firstly, select 

an initial policy and then determine the value of each state under the current policy. Next, consider 

whether the value could be improved by selecting a different action. If it can, change the policy at 

that state to take this new action. This step-by-step process gradually improves the performance of 

the policy and when no improvements are possible, then the policy is guaranteed to be optimal.  

The general algorithm for Policy Iteration is:  

Step 1. Initialization 

 Set iteration counter to 𝑖 = 0, and select an initial policy 𝜋௜ = 𝜋଴. 

Step 2. Policy Evaluation 

Given a policy 𝜋௝, compute the value function 𝑉గ
௝ by solving the following set of linear 

equations (2.5).  
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𝑉గ
௜(𝑠) = 𝑅 ቀ𝑠, 𝜋௜(𝑠)ቁ + 𝛾 ෍ 𝑝 ቀ𝑠ᇱ|𝑠, 𝜋௜(𝑠)ቁ 𝑉గ

௜(𝑠ᇱ)

௦ᇲ∈ௌ

 (2.5)

Step 3. Policy Improvement 

 Use the computed value function 𝑉గ
௜ to find an improved policy 𝜋௜ାଵ. 

𝜋௜ାଵ(𝑠) = arg max
𝐱∈௑

൝𝑅(𝑠, 𝐱) + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝐱)𝑉గ
௜(𝑠ᇱ)

௦ᇲ∈ௌ

ൡ 
(2.6)

Step 4. Optimal Policy Check 

If 𝜋௜ାଵ = 𝜋௜, then 𝜋∗ = 𝜋௜ାଵ is the optimal policy. Otherwise, increase 𝑖 = 𝑖 + 1 

and repeat from Step 2.  

Policy iteration is popular for infinite horizon problems because of how easily the value of 

a policy can be determined. Another popular model-based solution method is accomplished by 

formulating the MDP problem as a Linear Program (Manne, 1960).  

MDP Linear Programming Formulation: This technique has become popular because of 

major improvements in the area of commercial LP solvers. See below for the formulation of an 

MDP problem as a LP. This requires knowledge (or an assumption) of the initial state or its 

probability distribution 𝜇଴ over 𝑆, with 𝜇଴ > 0 for all 𝑠 ∈ 𝑆. 

max  𝜇଴(𝑠)𝑉(𝑠) 

s. t.    𝑉(𝑠) ≥ 𝑅(𝑠, 𝐱) + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑉(𝑠ᇱ)

௦ᇲ∈ௌ

  ∀ 𝑠 ∈ 𝑆, 𝐱 ∈ 𝑋 

(2.7)

The best specialized MDP algorithms like modified policy iteration are typically faster 

than general LP algorithms. However, the LP formulation has been the foundation for work in 

approximate large-scale MDP solutions (Farias & Roy, 2003).  
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2.4.2. Model Free Methods - Reinforcement Learning  

There are several challenges with solving large-scale MDPs, especially in practice. The 

first of these is that the information desired to be captured by the states and actions will grow (often 

exponentially) based on the problem’s complexity. This is referred to as the “Curse of 

Dimensionality” and is why dynamic programming is sometimes avoided for large problems 

(Powell, 2011). The next major challenge is that the model may not be well understood. This can 

include knowledge about the transition model and the reward function, as knowledge of both are 

required to find an optimal policy using model-based methods.  

In this section, model-free methods will be discussed as these techniques try to address 

these concerns. These methods come from an area of research that has many names including 

Approximate Dynamic Programming (ADP) (Powell, 2011), Reinforcement Learning (RL) 

(Sutton & Barto, 2018), and Neuro-Dynamic Programming (Bertsekas & Tsitsiklis, 1996). These 

are all very similar fields and mostly differ in the specific applications they are interested in 

addressing. For example, RL is more common in the Artificial Intelligence community due to its 

applications in robotics, and ADP is becoming more popular in the Operations Research domain 

due to its focus on large state spaces that can sometimes be well captured with transition functions 

instead of matrices. The most common framework for model-free solutions is  using a learning 

agent that interacts with its environment through a feedback loop and updates its decision policies 

through experiences (i.e., data), see Figure 2.1. The most popular model-free technique in these 

fields was introduced by Watkins and it is called Q-learning (Watkins & Dayan, 1992).  
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Figure 2.1 Agent interacting with its environment through a feedback loop 

Q-learning: This well-known method is named after the values it aims to estimate.  

Q-values are estimates of the value of being in state 𝑠 and taking the action 𝐱, see Equation (2.8). 

This can be rewritten entirely in terms of the Q-value functions as shown in Equation (2.9).  

𝑄∗(𝑠, 𝐱) = 𝑅(𝑠, 𝐱) + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝐱)𝑉∗(𝑠)

௦ᇲ∈ௌ

 (2.8)

𝑄∗(𝑠, 𝐱) = 𝑅(𝑠, 𝐱) + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝐱) max
𝐱ᇲ

𝑄∗(𝑠ᇱ, 𝐱ᇱ)

௦ᇲ∈ௌ

 (2.9)

The properties of the MDP solution that are of interest can also be described by the  

Q-values. These include the optimal value function (2.10) and the optimal policy (2.11).  

𝑉∗(𝑠) = max
𝐱

𝑄∗(𝑠, 𝐱)         (2.10)

𝜋∗(𝑠) = arg 𝑚𝑎𝑥
𝐱

𝑄∗(𝑠, 𝐱) (2.11)

How this method becomes model free is when knowledge of the outcome state 𝑠ᇱ is also 

known. Then these values can be approximated using equation (2.12). Further, if the reward 

function 𝑅(𝑠, 𝐱) is not well known, this can also be approximated with enough data using equation 

(2.13) if the reward received 𝑟 after each experience is known. 

𝑄∗(𝑠, 𝐱) ≈ 𝑅(𝑠, 𝐱) + 𝛾 max
𝐱ᇲ

𝑄∗(𝑠ᇱ, 𝐱ᇱ) (2.12)

𝑄∗(𝑠, 𝐱) ≈ 𝑟 + 𝛾 max
𝐱ᇲ

𝑄∗(𝑠ᇱ, 𝐱)            (2.13)
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The procedure for implementing Q-learning is:  

Step 1. Initialization 

 Set iteration counter to 𝑖 = 0, and select initial Q-value estimates 𝑄෠௜ = 𝑄෠଴. 

Step 2. Action Selection 

 Given the input state 𝑠௜, select an action 𝐱௜.  

Step 3. Update Q-values 

Given a new data element (experience) 𝑑௜ = (𝑠௜ , 𝐱௜ , 𝑟௜ , 𝑠௜ାଵ) and existing  

Q-values 𝑄෠௜, update the Q-value estimate for 𝑠௜ and 𝐱௜ using Equation (2.14). The 

learning rate 𝜂 is a step-size in the direction of the newest available information, 

where 0 < 𝜂 ≤ 1.  

𝑄෠௜ାଵ(𝑠௜ , 𝐱௜) = (1 − 𝜂)𝑄෠௜(𝑠௜, 𝐱௜) + 𝜂 ቀ𝑟௜ + 𝛾 max
𝐱ᇲ

𝑄෠௜(𝑠௜ାଵ, 𝐱ᇱ)ቁ (2.14)

Step 4. Convergence Check 

If convergence criteria have be met, set 𝑄∗ = 𝑄෠௜ାଵ. Otherwise, increase counter  

𝑖 = 𝑖 + 1, go to Step 2 and repeat.  

The strengths of Q-learning lies with the ease of computation, and when given an infinite 

exploration of all state-action pairs (𝑠, 𝐱) ∈ (𝑆, 𝑋), due to Banach fixed-point theorem, this 

algorithm will converge on the true Q-values 𝑄∗ and find the optimal policy 𝜋∗ (de Farias & Van 

Roy, 2000). In the simulation space, the greatest challenge of model-free learning is the 

exploration vs exploitation problem, where the agent must decide if it is more important to choose 

a new action (possibly at random) or to use its knowledge and select optimally. Therefore, step 1 

is critical for the time to convergence in training steps and the stability of performance in 

applications of online learning with changing environments.  
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A major limitation of traditional tabular Q-learning is that both the state and action spaces 

are required to be discrete. Another limitation of Q-learning is that it cannot infer the Q-values of 

states or actions it has never visited from other experiences. Newer methods in the area of function 

approximation allow for these two assumptions to be dropped. One of the most profound and active 

areas of research in this domain is called Deep Reinforcement Learning (DRL).  

2.5. Deep Reinforcement Learning for Optimization Problems 

Combinatorial optimization problems (COPs) are mathematical optimization problems that 

involve finding the optimal object from a finite set of objects. Many consider both integer programs 

(IPs) and COPs to be branches from the field of discrete optimization, so they are very closely 

related in the research literature.  In general, for large instances of these problems exhaustive 

search is not a reasonable option, which is why this research field for finding efficient solutions to 

these problems is consider highly valuable. Much work has been done to improve the solution time 

within the IP framework for exact solution methods. This includes algorithms and methods such 

as: Branch & Bound (Land & Doig, 1960), Branch & Cut (Crowder, Johnson, & Padberg, 1983), 

and Chvátal-Gomory Cutting Planes (Gomory, 1658; Chvátal, 1973). These are important 

breakthroughs that when paired with heuristics, help drive modern day commercial solvers like 

CPLEX and Gurobi. However, the following discussion will focus on work in recent years that 

has come more specifically from the fields of DRL.  

DRL became instantly famous when DeepMind researchers successfully trained agents to 

play games in Atari at levels comparable to professional video games testers (Mnih, et al., 2015). 

DeepMind eventually developed AlphaGo to beat world champion Go player (Silver, et al., 2016). 

This knowledge was then generalized further for AlphaZero (Silver, et al., 2018), which mastered 
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the games of Go, chess, and Shogi starting from random play and given no domain knowledge 

except the game rules.  

The most popular method in DRL is called Deep Q-networks (DQN). The basic idea behind 

DQN is designing a neural network that performs function approximation to estimate the Q-values 

like Q-learning (Watkins & Dayan, 1992). The DQN is notated by 𝑄ఏ where 𝜃 describes the 

weights of the arcs in the network. Instead of updating Q-values, the weights 𝜃 of the network are 

updated. The input states and actions can be any combination of discrete or continuous as they are 

simply input features to the neural network. DQNs are relatively new in their development and 

commonly experience issues. Some of these issues are because they are no longer converging to 

the Q-values themselves (a fixed-point in standard Q-learning), but rather a projection of the Q-

values. This leads to problems with stability and convergence. Some of the modifications to DQN 

that have shown good results for dealing with this and other issues include experience replay, target 

networks, Double Deep Q-networks, and Dueling Q-networks. An experience replay buffer allows 

agents to remember and reuse experiences from their past (Lin, 1992), making more efficient use 

of the data and avoiding biases to recent data. Prioritized experience replay improved on this idea 

by identifying important transitions and replaying them more often, so the agent learns more 

efficiently (Schaul, Quan, Antonoglou, & Silver, 2016). To deal with the issue of what is called 

moving Q-targets, DeepMind researchers developed target networks (or fixed Q-targets) (Mnih, 

et al., 2015). The target network is a copy of the main DQN, but it updates less frequently to 

prevent the DQN from chasing a moving target (itself).  

Another issue that DQN researchers found was that the Q-values were commonly 

overestimated, which is called maximization bias. It was not well understood if this had much of 

an effect on the actual performance of the DQN until Double DQN reduced overestimations of the 
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Q-values (Hasselt, Guez, & Silver, 2016). This improved performance in games and 

simultaneously solved the moving Q-target issue by creating two independent DQN, one for 

selecting the next action and another to evaluate that action. The next improvement was found 

from Dueling Q-networks (Wang, et al., 2016) which decomposed the Q-value functions into two 

parts: state value functions 𝑉(𝑠) and advantage value functions 𝒜(𝑠, 𝐱). This idea was based on 

how deep neural networks work in their hidden layers. They identify features that contribute to 

understanding something more complex, such as the presence of vertical lines in object detection. 

The researchers for Dueling Q-networks believed that the features for identifying the value of 

states and for evaluating actions may not be the same, so they split the network for each separate 

function and then combined them at the end. Despite these issues, DQN have shown great promise 

and often exceed the performance of domain specific experts (both human and artificial). Some of 

the unique strengths of deep learning as a field include complex function approximation and 

transferable learning of features. These ideas are actively being researched for their applications 

in DRL and may lead to new advances in optimal stochastic control. 

Due to the significant successes that DRL has experienced in recent years, many have 

started to wonder if DRL could be used to solve other more impactful problems in society. Some 

have even started to apply these tools to attempt to solve COPs. In 2015, Vinyals et al. created 

pointer networks (Vinyals, Fortunato, & Jaitly, 2015), which are neural networks that learn 

conditional probabilities to connect sequences. They showed this could be used to help solve 

different COPs like convex hulls and traveling salesman problems (TSP). As COPs and IPs are 

often modeled as graphs which have common structures, others such as Dai et al. (Dai, Khalil, 

Zhang, Dilkina, & Song, 2018) levered reinforcement learning with graph embedding to try and 

learn the graph algorithms through exploiting these common structures. Their approach called 
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stucture2vec trained a graph neural network using deep Q-learning and demonstrated the 

scalability of these tools. Next, researchers began to apply transformer architectures like those that 

had been proven highly successful in problems with sequenced data like those in natural language 

processing. One example introduced graph attention networks (Veličković, et al., 2018) as NN 

architectures that leverage stacked attention layers to avoid costly matrix operations or requiring 

knowledge of the graph structure upfront. Another paper (Kool, Hoof, & Welling, 2019) 

specifically addressed routing problems like TSP and others by training an attention network 

model using REINFORCE (Williams, 1992) to deliver near optimal results. More recently, 

Manchanda et al. (Manchanda, et al., 2020) shifted their focus on scalable approaches to finding 

heuristics over large graphs via DRL. They train a graph convolutional network using their 

proposed framework GCOMB that tackled large COPs much more efficiently and with similar 

quality as other state-of-the-art methods. GCOMB showed the value in finding lightweight 

architectures to solve these graph problems that often suffer with their extremely complex nature 

and scale.  

This concludes the literature review and background sections contained in Chapter 2.  



28 

 

 

CHAPTER 3. STOCHASTIC MODEL OF AGRI-FOOD SUPPLY CHAINS 

Chapter 3 is based on two manuscripts. The first is “Optimal Control in Dynamic Food 

Supply Chain under Quality Constraints” published in the Proceedings of the 2019 IISE Annual 

Conference (Kappelman & Sinha, 2019). This chapter also includes the modeling related excerpts 

based on the manuscript “Optimal Control in Dynamic Food Supply Chains using Big Data” 

published in Computers & Operations Research (Kappelman & Sinha, 2021).  

3.1. Introduction 

Performance in supply chains can be difficult to predict and optimize. This is especially 

true in food supply chains because of some of their unique characteristics, which can lead to large 

inefficiencies and waste. Approximately 25% of produced food in the U.S. is lost or wasted in the 

supply chain before reaching the consumer (Dou, et al., 2016). Food products are time sensitive 

and perishable, and they are often sourced from remote or difficult to reach locations. Their 

production is affected by environmental factors and is subject to strict quality demands and 

regulations. Also, no two products’ or organizations’ supply chains are the same (Georgiadis, 

Vlachos, & Iakovou, 2005). The decisions that deal with these factors and influence product 

quality are vast. These include the selection of suppliers and the settings for their process 

parameters at every step of the supply chain. 

Many works argue the complexity of the model and then use approximate methods to 

analyze the performance of their systems. In contrast, the main contribution of this chapter is to 

model the food supply chain dynamically and enable data-driven decision making. The major 

advantage of data-driven decision models in supply chains is their ability to statistically predict 

outcome probabilities based on input decisions and information states, which helps to capture the 
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uncertainty introduced by different sources. It also enables the decision maker to understand how 

these outcomes can contribute to product quality across the entire supply chain. This is 

accomplished by integrating data mining techniques with an MDP model to determine the optimal 

suppliers and their process control parameters at each level of the supply chain. With the 

consideration of potentially perishable products, we maximize the quality of the final product. 

Further, numerically we explore the impact of costs and quality constraints on the optimal 

decisions.  

Chapter 3 is comprised of four sections. Section 3.2 describes the proposed food supply 

chain and mathematical model. Section 3.3 covers some experiment results. Section 3.4 concludes 

our work and highlights the contributions of this chapter.  

3.2. Generalized Stochastic MDP Model for Agri-Food Supply Chains 

3.2.1. Background and description of our model 

We consider a dynamic food supply chain and model it as a process consisting of a series 

of sequential steps. Common steps for any problem could include producer, one or more 

processors, wholesaler, and retailer. Steps for an operational problem might describe the individual 

stages of development within the decision maker’s control. From herein we shall follow more 

specifically the scope an entire supply chain and described above, but please note that this 

modeling approach is just as applicable to operational level problems. Each step could have 

multiple options for the supplier selected, who each implement the system parameters to produce 

the end-product (which could consist of fresh produce, livestock, grain, etc.). The resulting quality 

level at every step for this product is stochastic. We also consider that the quality level at each 

supply chain step has a minimum accepted level for the materials to be useful in the final products. 
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Material is rejected if its quality level does not meet the minimum accepted level. A variety of 

factors can be used to determine the quality level. These include cosmetic conditions, consumer 

preference, nutritional value, and factors related to the needs of the following process steps such 

as particle size or moisture content as they may relate to manufacturing and processing related 

concerns. Figure  3.1 shows some of the variety of decisions to be made that could affect the 

product quality and supply chain performance at each step. These decision options could include 

the utilization of different raw materials, innovative technologies, processing equipment, 

transportation modes, and storage options available that are often unique to each specific step. 

 

Figure 3.1 Example of steps and variety of decisions involved in agri-food supply chains. 

At the production step the decision maker could consider the use of different 

biotechnology, seeds, or chemical applications; and whether to use manual labor for harvest or 

specialized equipment. Also, the timing of the harvest could impact the choice to store the material 

for a time-period or ship immediately. At the processing step(s), different level of process controls 

and automation might be available such as online monitoring in place of traditional sampling 

techniques. The process might also operate in batch or continuous modes and key steps 

accomplished via either chemical or mechanical means. At the wholesaler operations, the storage 
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conditions might vary by supplier such as temperature and humidity control. There may also be 

different means of handling particularly sensitive items like fresh produce. Lastly, the retailer 

operations might also have an impact like delivery options, specific labeling, or storage and display 

options (e.g., refrigerated or room temp for products that can be subjected to both). Any one of 

these decisions can affect the supply chain’s profitably and the end-product’s perceived quality.  

In this supply chain, we track quality because this property highly influences when the 

materials in the current steps are available for use in different potential final products and the final 

product’s acceptability by the consumer. These considerations make quality the ideal tracking 

mechanism for optimizing the supply chains’ profit and marketability while reducing food loss 

(Nagurney, Besik, & Yu, 2018). 

3.2.2. Generalized MDP mathematical model 

In this section we develop a generalized Markov decision process (MDP) model to describe 

the step-by-step sequential decision-making processes within food supply chains. MDPs are 

discrete stochastic processes that provide a mathematical framework for modeling decision making 

problems in situations where outcomes are probabilistic. This means that a MDP is an ideal 

mechanism for capturing the uncertainties and vast array of complex situations and actions that 

decision makers in agri-food supply chains face.  

We consider a food supply chain with N steps. For each step 𝑘 ∈ 𝐾, 𝐾 = 1, … , 𝑁,  let  

𝑦௞ ∈ 𝑌 denote the quality and the generalized total set of all quality levels, 𝑌 = {1,2, … , 𝐿௞ , … , 𝐿} 

where 𝐿௞ represents the minimum quality level threshold that needs to be satisfied at the supply 

chain step 𝑘 for a product to be moved to step 𝑘 + 1. Note that the quality threshold, 𝐿௞, is 

dependent on the step because the quality requirements may be different depending on the 

product’s current step within the supply chain. Products with quality levels 𝑦௞ less than 𝐿௞ are 
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rejected. Note that in our model, the quality level of products at each level is stochastic with the 

aim to determine the optimal mix of suppliers and their parameters to achieve the final product at 

a highest quality level and minimize the costs. The MDP model that describes our supply chain 

contains the following elements (Puterman, 2005).  

Decision epoch: We assume that the decisions are taken in continuous time and occurs at 

every change in the state i.e., at each quality level and supply chain step 𝑘, 𝑘 ∈ 𝐾. 

State Space, 𝑆: Let 𝑠 = (𝑘, 𝑦௞), 𝑠 ∈ 𝑆, be the state of the system that is defined as the tuple 

comprising of the supply chain step and quality level. This assumes that the process is not fully 

history dependent. Figure  3.2 visualizes this two-dimensional state space.  

 

Figure 3.2 State space diagram of our supply chain. 
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Action Space, 𝑋: We represent actions selected in step 𝑘 as a vector of actions  

𝐱௞ = [𝑥௞
ଵ, 𝑥௞

ଶ, … , 𝑥௞
௡]. The first element 𝑥௞

ଵ is the supplier selected at step 𝑘. The remaining 

elements 𝑥௞
ଶ, … , 𝑥௞

௡ are the remaining process parameters that were selected. We will refer to all 

𝑥௞
௜  simply as process parameters (including the specific supplier selected). The vector length 𝑛 is 

the maximum number of parameters that need to be selected in any given step. These are selected 

from the set of available actions 𝑋௞ such that 𝐱௞ ∈ 𝑋௞ , 𝑋௞ = {1, … , ℎ} for all 𝑖 and 𝑘. From this 

information, we can determine that our action space, which includes all the potential unique actions 

at any given step is size ℎ௡. This means that our action space will grow exponentially as we try to 

consider more information and quantify the effect of each possible action.  

 

Figure 3.3 Action vector 𝐱 description example for supply chain step 𝑘 = 1. 

Note that these actions are problem, product, and step specific. Our model considers 

supplier selection as a primary decision because it is believed to be the most controllable by the 

decision maker. Many process parameters related decisions may be unique to both supplier and 

step. Lastly, we recognize that storage, transportation, and handling options are actions that need 

to be selected at potentially all steps.  
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Transition probabilities: 𝑝(𝑠ᇱ|𝑠, 𝐱௞) is defined as the transition probability distribution 

from the state 𝑠 = (𝑘, 𝑦௞) given action 𝐱௞ to state 𝑠ᇱ = (𝑘 + 1, 𝑦௞ାଵ). We notate our transition 

probability matrix as 𝑃, which includes all the transition probabilities within the state space 𝑆. 

Figure  3.4 presents the simplified transition diagram of our supply chain.  

 

Figure 3.4 Supply chain states 𝑠 = (𝑘, 𝑦) connected by transition probabilities 𝑝(𝑠ᇱ|𝑠, 𝐱). 

Since the model must meet specification at each step, product at any quality level worse 

than 𝐿௞ (where 𝑦௞ > 𝐿௞) would be rejected. We model thresholds on quality levels by using our 

worst quality state 𝐿 as an absorbing state for all rejected products. The transition probabilities for 

our model are derived from available data using a Big Data technique described in the next section. 

Reward function: A reward 𝑅(𝑠, 𝐱௞) is the expected net benefit received for being in state 

𝑠 = (𝑘, 𝑦௞) and choosing to take action 𝐱௞. We will define reward using a function in our 

examples. The general form of this function is 𝑅(𝑠, 𝐱௞) = 𝐵(𝑠) − 𝐶(𝐱௞), where 𝐵(𝑠) is the benefit 

achieved (a function of the state) and 𝐶(𝐱௞) is the cost to get there (a function of the action taken). 

These are both linear functions and their general forms can be seen in Equations (3.1) and (3.2).   
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𝐵(𝑠) = 𝐵(𝑘, 𝑦௞) = 𝑏଴ + 𝑏௞𝑦௞ (3.1)

𝐶(𝐱௞) = 𝑐଴ + 𝐜௞𝐱௞ = 𝑐଴ + ෍ 𝑐௞
௜ 𝑥௞

௜

௡

௜ୀଵ

 
(3.2)

A policy is defined as a set of actions to take given all possible states, represented as  

𝜋 = ൛𝐱(௦) for all 𝑠 ∈ 𝑆ൟ. Our value function for a policy 𝜋 is 𝑉గ, which can be described recursively 

as in Equation (3.3) using Bellman’s equations, where 𝜋(𝑠) is the action to take as determined by 

the policy 𝜋 and 𝛾 is the discount factor. The optimal policy is determined by implementing a 

simple Policy Iteration algorithm (Bellman, 1955) to select an optimal decision policy 𝜋∗ that 

maximizes our value function, see Equation (3.4). 

𝑉గ(𝑠) = 𝑅൫𝑠, 𝜋(𝑠)൯ + 𝛾 ෍ 𝑝൫𝑠ᇱ|𝑠, 𝜋(𝑠)൯𝑉గ(𝑠ᇱ)

௦ᇲ∈ௌ

 (3.3)

𝜋∗ = argmax గᇲ(𝑉గᇲ) (3.3)

3.2.3. Monotonicity in the Optimal Value Function 

In this section we show monotonicity in the optimal valuation function 𝑉గ
∗(𝑠) using 

Proposition 1. Proving monotonicity ensures faster convergence to the optimal policy 𝜋∗ 

(Puterman, 2005) when implementing the Policy Iteration algorithm.  

Proposition 1. The optimal value function 𝑉గ
∗(𝑠) in Equation (3) is non-decreasing in state 

𝑠, for all 𝑠 ∈ 𝑆.  To prove this proposition we must show the following conditions:  

1. 𝑅(𝑠, 𝐱௞) is non-decreasing in 𝑠 for all 𝐱 ∈ 𝑋 and 𝑘 ∈ 𝐾. 

2. 𝑞(𝑗|𝑠, 𝐱௞) = ∑ 𝑝(𝑠ᇱ = (𝑘 + 1, 𝑦′)|𝑠, 𝐱௞)
௝
௬ᇲୀଵ  is non-decreasing in 𝑠 for all 𝑗 ∈ 𝑆, 𝐱 ∈ 𝑋 and 

𝑘 ∈ 𝐾. 

3. 𝑅ே(𝑠) is non-decreasing in 𝑠. 
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Conditions 1 and 3 are met because of the linear nature of the reward function  

𝑟(𝑠, 𝐱௞) = 𝐵(𝑠) − 𝐶(𝐱௞) where 𝐵(𝑠) and 𝐶(𝐱௞) are described in Equations (3.1) and (3.2). Next, 

we show Condition 2. With the assumption of perishability with our supply chain, the quality 𝑦′ 

in step 𝑘ᇱ = 𝑘 + 1 will always have at least the same values as in step 𝑘. We state that all products 

(data points) are initialized at state 𝑠 = (𝑘, 𝑦௞) = (1,1). The supply chain step is then incremented 

such that 𝑘’ = 𝑘 + 1 and the quality level can only be maintained or depreciated such that  

𝑦ᇱ = 𝑦௞ାଵ ≥ 𝑦௞ (higher values represents bad quality). This depreciation is assumed random but 

is limited based on the quality of prior actions, which we describe as the total investment in actions 

at a particular step 𝐶(𝐱௞). We define a discrete probability function 𝑓, that describes the 

distribution of quality level outcomes at the next step 𝑦′ based on the current quality level  

𝑦ୠୣୱ୲
ᇱ = 𝑦௞ and the worst possible level 𝑦୵୭୰ୱ୲

ᇱ . This worst possible level is non-increasing based 

on the current quality level and investment in actions. Therefore, 𝑦′~𝑓(𝑦ୠୣୱ୲
ᇱ , 𝑦୵୭୰ୱ୲

ᇱ ) can be 

reduced to a non-increasing function based on the current quality level and investment in actions 

𝑦௞ାଵ~𝑓(𝑦௞ , 𝐱௞).  

Suppose two different actions 𝛿ଵ and 𝛿ଶ are taken such that 𝐶(𝛿ଵ) ≥ 𝐶(𝛿ଶ). The more 

expensive action 𝛿ଵ will provide a more favorable distribution than the cheaper action 𝛿ଶ given a 

current state 𝑠. It is known that the expectation of outcomes 𝔼[𝑓(𝑦, 𝛿ଵ)] ≤ 𝔼[𝑓(𝑦, 𝛿ଶ)], where 

𝔼[𝑓(𝑦, 𝛿ଵ)] is desirable to be close to 1. Therefore, the likelihood of achieving a certain desired 

threshold state 𝑠ᇱ = 𝑗 in the next step is at least as good for the higher costing action 𝛿ଵ than for 

𝛿ଶ such that 𝑞(𝑗|𝑠, 𝛿ଵ) ≥ 𝑞(𝑗|𝑠ଶ, 𝛿ଶ).  

Also, suppose two possible states 𝑠ଵ = (𝑘, 𝜇ଵ) and 𝑠ଶ = (𝑘, 𝜇ଶ) are taken at the same 

supply chain step 𝑘. We define 𝜇ଵ ≤ 𝜇ଶ to indicate that product at 𝑠ଵ has at least as good of a 

current quality level (closer to 𝑦௞ = 1) as product at 𝑠ଶ. Since better current quality levels provide 
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a more favorable distribution than worse quality levels for a given action on the output state, it  

can be seen that the expectation of outcomes 𝔼[𝑓(𝜇ଵ, 𝐱௞)] ≤ 𝔼[𝑓(𝜇ଶ, 𝐱௞)] and also that  

𝑞(𝑗|𝑠ଵ, 𝐱௞) ≥ 𝑞(𝑗|𝑠ଶ, 𝐱௞).  

Therefore, we conclude this proof by showing all three conditions, and the optimal value 

function 𝑉గ
∗(𝑠) is non-decreasing and monotone.  ∎ 

3.3. Experimental Results 

This section presents the characteristics of the optimal policy using different scenarios. We 

assume a case study with three supply chain steps (1 = producer, 2 = processor, 3 = wholesaler) 

and four quality levels (1 = great, 2 = good, 3 = fair, 4 = poor). We consider that at each step there 

are three parameters (including supplier), each with three possible settings resulting in an action 

space of 3ଷ = 27 possible actions. Note that the action space grows exponentially with system 

parameters, including the number of suppliers. 

3.3.1. Data generation 

To ensure each action has a high possibility of being explored, 2700 original data points 

were generated, which will be maintained for each step. Each data point begins with a great initial 

quality level at step 1 meaning state 𝑠 = (𝑘, 𝑦) = (1,1) for all original data points. Therefore, 

states 𝑠 = (1,2), (1,3), and (1,4) are not used.  

We simulated our data points at each stage using a uniform random number generator and 

then determined our values from these numbers, which can be a good depiction of reality. For 

example, to determine the quality level for a data point, the previous quality level score 𝑦௞ was 

compared to a new random number 𝑢 and the maximum (worse) was taken, 𝑦௞ାଵ = max{𝑢, 𝑦௞}.  

All unique data points were initialized at great quality (𝑦ଵ = 1).  
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3.3.2. Sensitivity analysis with respect to quality requirements 

For case study, two reward functions were tested, and eight trials run for each. The two 

reward functions are described specifically in the header of Table 1, but there is no reward 𝑅 = 0 

when the product was rejected (𝑦௞ > 𝐿௞). Note that 𝑘ᇱ = 𝑘 + 1 and 𝑦ᇱ = 𝑦௞ାଵ in the reward 

function definitions. A discount factor of 𝛾 = 0.75 was used for all runs. For each trial, a new data 

set was generated and then solved for the optimal policy using Policy Iteration at each potential 

𝐿௞ setting. Final policies were compared, and it was recorded how often the policy for a data set 

changed as the quality threshold went from fully unrestricted (𝐿௞ = 4) to more restrictive until 

only the best quality was accepted (𝐿௞ = 1). This was done by noting where a specific optimal 

policy element (action to take at a given state) was first suggested starting from the least restrictive 

trial run. These run results can be seen in Table 1. 

Table 3.1 Run results indicating the percent of policy origination coming from which trial run 

Reward function #1:     𝒓 = 𝟐𝟓 + 𝒌ᇱ − 𝟐𝒚ᇱ − 𝟎. 𝟏∑𝒙𝒌 #2:   𝒓 = 𝟐𝟓 + 𝒌ᇱ − 𝟐(𝒚ᇱ − 𝑳𝒌) − 𝟎. 𝟏∑𝒙𝒌 

𝑳𝒌 setting for trial run 4 3 2 1 4 3 2 1 

% from 𝑳𝒌 = 𝟒 policy 100% 67.5% 27.5% 10% 100% 77.5% 27.5% 5% 

% from 𝑳𝒌 = 𝟑 policy 32.5% 0% 5%  22.5% 10% 0% 

% from 𝑳𝒌 = 𝟐 policy  72.5% 10%   62.5% 12.5% 

% from 𝑳𝒌 = 𝟏 policy   35%    42.5% 

% N/A*   40%    40% 

 

Note that in cases where a state started in the rejection zone, this was recorded as N/A. 

Other observations included that the default action (the cheapest) was selected for all states where 
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the current quality was 𝑦௞ = 3. This suggests that when the current quality level was poor enough 

and adjacent to the rejection zone, the tradeoffs in the reward function worked out in a way where 

there was not a sufficiently good action to take for the product to have a high expectation on 

average for avoiding from being rejected anyways. We specifically say “poor enough” because 

this was not always the case for situations where the current quality level was adjacent to 𝐿௞, 

although it did happen more frequently the further away from 𝑦௞ = 1 the state being evaluated 

was. 

Outcomes in Table 3.1 showed that once the system adjusted to reject anything worse than 

good (𝐿௞ > 2) the decision rules shifted from heavily favoring the original rules to now having a 

favoritism to the most recent rules. The in-between zones’ rules became more and more scarce. 

Only the most dominant decision rules survived from the beginning, and their dominance was 

tested as the system become less and less flexible. This is an effect of the supply chain responding 

the quality constraints, which are causing it to now earn zero value from any previous middle 

ground earnings. We believe this is representative of a strategic shift from the flexible system’s 

best weighted average strategy to a restricted system’s more aspirational strategy that maximizes 

the chance for achieving only the top end results.  

3.4. Conclusions  

In this chapter, we expanded the generalized model for optimizing dynamic food supply 

chains to account for the stochastic behavior of the outcomes given decisions made and actions 

taken. This model considers the effect these individual decisions (including supplier selection) 

may have on the product’s final quality. We model a basic food supply chain dynamically with the 

decisions and actions at each step as a Markov decision process. Sensitivity analysis was then 

performed to study the impact of threshold values and reward function on the optimal policy 
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selection. This reveals a strategy shift for the optimal policy from selecting a best weighted average 

with lower restrictions towards becoming aspirational as the system became more restricted by the 

quality constraints.  

As noted previously, the action space grows exponentially. Therefore, our final solution 

technique may need to be modified as larger problems that are more complex may not be able to 

converge to a final solution in an efficient timeframe using Policy Iteration. We propose to use 

Reinforcement Learning to solve these more complex and general problems.  
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CHAPTER 4. DETERMINING SUPPLY CHAIN DYNAMICS FROM DATA 

In Chapter 3, we created a generalized stochastic model as an MDP for agri-food supply 

chains. Chapter 4 integrates data mining techniques to convert this MDP model into a data-driven 

model, and it is based on the data mining techniques introduced in two manuscripts. The first is 

“Optimal Control in Dynamic Food Supply Chain under Quality Constraints” published in the 

Proceedings of the 2019 IISE Annual Conference (Kappelman & Sinha, 2019) where Bayesian 

networks are integrated into our MDP model. Chapter 4 also includes a novel Big Data mining 

approach based on the manuscript “Optimal Control in Dynamic Food Supply Chains using Big 

Data” published in Computers & Operations Research (Kappelman & Sinha, 2021).  

4.1. Introduction 

Many approaches to modeling and solving problems in agri-food supply chains argue the 

complexity of the models and then use approximate methods to analyze the performance of their 

systems. In contrast, the main contribution of this chapter is to enhance the generalized model for 

food supply chain by enabling data-driven decision making. The major advantage of data-driven 

decision models in supply chains is their ability to statistically predict outcome probabilities based 

on input decisions and information states, which helps to capture the uncertainty introduced by 

different sources. It also enables the decision maker to understand how these outcomes can 

contribute to product quality across the entire supply chain. This is accomplished by integrating 

data mining techniques with the MDP model developed in Chapter 3 to determine the optimal 

suppliers and their process control parameters at each level of the supply chain. With the 

consideration of perishable products, we maximize the quality of the final product. Further, 

numerically the impact of costs and quality constraints on the optimal decisions is explored.  
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Chapter 4 is comprised of six sections. Section 4.2 integrates a Bayesian network to 

determine the transition probabilities for the MDP model and explains the limitations to this 

approach. Section 4.3 provides some detail behind the motivation for Big Data mining and details 

for a novel ideal on how to apply of these techniques to determine the transition model. Section 

4.4 describes our experimental results including some performance studies of the new technique 

and sensitivity analysis of the optimal policy vs. stricter quality requirements. Section 4.5 

concludes our work and highlights the contributions of this chapter.  

4.2. Integration with Bayesian network  

It is recognized that a common weakness with using MDP as a modeling framework is that 

most related problems in the literature assume a transition matrix is provided. To determine the 

transition matrix from historical data, this section integrates Bayesian networks to work with the 

MDP model established in Chapter 3.  

The transition probabilities for our MDP model are defined using a Bayesian network (or 

Bayes net), which is a graphical structure (often referred to as a belief network) that can be custom 

designed to represent set of probabilistic relationships between variables of interest (Neapolitan, 

2004). This allows us to easily design and select a network hierarchy that learns the transition 

probabilities appropriate for our MDP model from available data.  

The goal task of a Bayes net is to learn a classification function, which represents a 

mapping of our data inputs (supply chain step, quality level, supplier selection, and settings for 

their process parameters) to our data outputs (next supply chain step and new quality level). To 

describe how this is accomplished, we will begin by outlining the notation we used for our data.  

Let 𝑤௝ be the input parameter where 𝑗 ∈ {1,2, … , 𝑛 + 2}. Our input (feature) vector 𝐰 is 

the collection of all our input parameters, see Equation (4.1). This vector includes the input state 
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𝑠 and the action selected 𝐱. We are assuming that this problem is not history dependent, and 

therefore the actions taken in earlier steps are not a necessary input. The 𝑛 + 2 notation is because 

𝑛 is the length of our action vector 𝐱, and the state 𝑠 is two-dimensional containing both the current 

supply chain step 𝑘 and achievable quality level 𝑦௞.  

𝐰 = [𝑤ଵ, … , 𝑤, … , 𝑤௡ାଶ] = [𝑘, 𝑦௞ , 𝑥௞
ଵ, … , 𝑥௞

௡] = [𝑠, 𝐱௞] (4.1)

Data outputs are represented by our output (label) vector 𝐮, see Equation (4.2), which 

represents the resulting state 𝑠’.  

𝐮 = [𝑘ᇱ, 𝑦௞
ᇱ ] = [𝑘 + 1, 𝑦௞ାଵ] = [𝑠ᇱ] (4.2)

 

Figure 4.1 Bayes net which represents a mapping of our input state (including the supply chain 

step, quality level, and actions selected to our output quality level  

Let’s say, 𝐷 = (𝑊, 𝑈) = {(𝐰ଵ, 𝐮ଵ), … , (𝐰ௗ, 𝐮ௗ), … }, be the set of training data where 

𝐰ௗ ∈ 𝑊, 𝐮ௗ ∈ 𝑈 = 𝑆′.  The goal task is to learn a classification function: 𝑓: 𝑊 → 𝑈. This is a 

mapping from our input (feature) vector 𝐰ௗ to our output (label) vector 𝐮ௗ. The classification 

function our Bayes net learns is simply our transition probability distribution, see Equation (4.3). 

Figure 4.1 displays a simplified diagram of our Bayes net.  

𝑓 = 𝑝(𝐮|𝐰) = 𝑝(𝑠ᇱ|𝑠, 𝐱௞) = 𝑝(𝑘 + 1, 𝑦௞ାଵ|𝑘, 𝑦௞ , 𝐱௞) (4.3)
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We can estimate 𝑝(𝐮) using available data based on the frequency of occurrence for each 

𝐮 ∈ 𝑈. However, it is not likely to have many occurrences of the unique combination for any given 

𝐰 = [𝑤ଵ, 𝑤ଶ, … , 𝑤௡ାଶ] when the data is limited. One way to work around this is to take a naïve 

approach and assume that all the features (parameters) in 𝐰 are conditionally independent (referred 

to as a naïve Bayes classifier) (Bishop, 2006). For smaller problems this approach normally does 

not need to be taken. For larger problems, exact inference may be challenging to compute so either 

approximation methods (like naïve Bayes) or more efficient approaches should be considered.  

4.3. Big Data Mining  

4.3.1. Motivation for the use of Big Data mining 

One of the primary challenges with MDPs in practice is that the transition model may not 

be well understood, and for this reason, it is sometimes assumed to be already known in textbooks. 

However, in practice the 𝑃-matrix needs to be determined from prior knowledge or data. For the 

case where we desire to learn this from data, one method is to model and solve for your transitional 

𝑃-matrix using a Bayesian Network (as described in section 4.2). The challenge with this method 

is that computation of exact inference in a Bayes net is #𝑃-complete (Roth, 1996), which asks the 

question of how many. This is at least as hard as the 𝑁𝑃-hard equivalent question of are there any. 

Therefore, determining the 𝑃-matrix might restrict the complexity of the MDP problem capable of 

being solved in a reasonable amount of time. This is especially the case for large or complex MDP 

problems where the state space can grow substantially as more information is considered and the 

action space grows exponentially as the number of possible control parameters or their potential 

settings are increased.  
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Most techniques to improve the speed of this computation require making approximations. 

Such is the case when using a Naïve Bayes approach, which assumes conditional elements are 

independent. The Naïve Bayes approach is time efficient and as a technique it is considered very 

reliable for classification. However, it is not a good method for parameter learning or exact 

inference because of the underlying assumption of independence (Zhang H. , 2004). The remainder 

of Chapter 4 aims to perform this computation utilizing a Big Data framework to make this more 

efficient and potentially avoid having to utilize approaches that can only solve this approximately. 

It may also allow us to solve larger problems where the amount of the data is simply too large to 

handle without specialized tools or techniques.  

4.3.2. Solution method theory for determining the MDP transition probabilities  

In subsection 2.2.1 (associate rule mining) we showed how directional relationships 

between items could be determined by looking relative occurrence within transactions 𝑗 ∈ 𝐽. From 

these relationships rules can be formed. Two metrics were formed for these rules and their items 

called support and confidence. As seen in Equation (4.4), support is the probability that item 𝑊 

will be included in a randomly selected transaction 𝑗. We will write this out as 𝑝(𝑊) for shorthand.  

supp({𝑊}) = Prob({𝑊} ∈ 𝑗) = 𝑝(𝑊) (4.4)

Confidence was the directional relationship between the items 𝑊 and 𝑈 that was a measure 

of how often the rule (𝑊 ⇒ 𝑈) was found to be true. After some further refining of this expression, 

see Equation (4.5), the confidence of the rule is equivalent conditional probability that the new 

item 𝑈 will be in a random transaction 𝑗 given that 𝑊 is also in the transaction. This relationship 

can be expressed as 𝑝(𝑈|𝑊). 

conf(𝑅𝑢𝑙𝑒) =
supp({𝑊, 𝑈})

supp({𝑊})
=

Prob({𝑊, 𝑈} ∈ 𝑗)  

Prob({𝑊} ∈ 𝑗)
=

𝑝(𝑊 ∩ 𝑈)

𝑝(𝑊)
= 𝑝(𝑈|𝑊) 

(4.5)
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In the next section, we will expand this expression to show how we can use these 

relationships to determine our conditional transition probabilities 𝑝(𝑠ᇱ|𝑠, 𝐱) that comprise the 

transition model (𝑃-matrix) of our MDP problem.  

4.3.3. Application of AR mining to solve for P-matrix 

Given a data set 𝐷 with elements 𝑑 ∈ 𝐷 such that each data element contains the 

information 𝑑 = (𝑠, 𝐱, 𝑠ᇱ) where 𝑠 is the from state, 𝑠ᇱ is the to state, and 𝐱 was the action taken, 

determine the conditional transition probabilities 𝑝(𝑠ᇱ|𝑠, 𝐱) that describe the probability that taking 

action 𝐱 in state 𝑠 will lead to state 𝑠ᇱ. These elements make up the 𝑃-matrix which is our transition 

model for the MDP problem.  

 

Figure 4.2 Framework figure for data-driven MDP model for a supply chain with 𝑃-matrix 

determined using AR mining 

Our proposal is to implement the procedure as in the bottom of Figure  4.2 to determine 

the 𝑃-matrix. The framework figure at the top of Figure  4.2 shows how this technique works with 
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the MDP model for finding an optimal policy for the desired supply chain problem. Here is a 

detailed description of the procedure steps used to determine the 𝑃-matrix using the Big Data tool 

PySpark to implement AR mining: 

Step 1. Transaction Assignment 

Assign the data elements 𝑑 = (𝑠, 𝐱, 𝑠ᇱ) from our MDP problem into transactions  

𝑗 ← 𝑑 such that our transactions take the form 𝑗 = {(𝑠, 𝐱), 𝑠ᇱ}.  

Step 2. AR Mining 

Perform associate rule mining to evaluate the rules that connect potential items in 

these transactions. Note: the only rules that we are interested in take the form 

𝑅𝑢𝑙𝑒 = ൫(𝑠, 𝐱) ⇒ 𝑠ᇱ൯. These rules give us the expectation for outcome state 𝑠′ given 

input state-action pair (𝑠, 𝐱).  

Step 3. Rule Evaluation 

The confidence for these rules represents the relationship between all possible input 

state and action pairs, (𝑠, 𝐱), and all potential output states, 𝑠’. The conditional 

probabilities for our 𝑃-matrix are the confidence for the specific rules we are 

interested in per Equation (4.6). 

conf(𝑅𝑢𝑙𝑒) = conf൫(𝑠, 𝐱) ⇒ 𝑠ᇱ൯ =
supp({(𝑠, 𝐱), 𝑠ᇱ})

supp({𝑠ᇱ})
=

𝑝(𝑠, 𝐱, 𝑠ᇱ)

𝑝(𝑠, 𝐱)
 

                                            = 𝑝(𝑠ᇱ|𝑠, 𝑎) 

(4.6)

Step 4. Rule Elimination 

Eliminate any rules that do not take the form 𝑅𝑢𝑙𝑒 = ൫(𝑠, 𝐱) ⇒ 𝑠ᇱ൯. This removes 

any reverse rules that take the form ൫𝑠ᇱ ⇒ (𝑠, 𝐱)൯.  
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Step 5. 𝑃-matrix Determination 

 Using the remaining rules, assemble the 𝑃-matrix for our MDP.  

𝑃 = [𝑝(𝑠ᇱ|𝑠, 𝐱)] = ൣconf൫(𝑠, 𝐱) ⇒ 𝑠ᇱ൯൧ ∀ 𝐱 ∈ 𝑋 and 𝑠, 𝑠ᇱ ∈ 𝑆 (4.7)

This technique requires selecting appropriate minimum confidence values that do not omit 

valuable information but avoid creating relationships that have no meaning in the context of the 

MDP problem. This offers a potential solution to one of the shortcomings of traditional methods 

as they do not typically consider minimum frequency before establishing a rule. Because of this, 

we believe that the minimum support rules built inside these Big Data mining tools can help 

remove outliers that might otherwise strongly influence the optimal policy. Exact tuning for setting 

good threshold values for these would depend on the problem and a variety of other factors.  

Many tools have been created help mine these rules such as the arules package in R which 

includes implementations of the popular algorithms Apriori and Eclat (Hahsler, Grun, Hornik, & 

Buchta, 2005). We will utilize a Big Data tool that allows for parallel implementation of another 

algorithm that mines for frequent patterns called FP-Growth (Han, Pei, & Yin, 2000). Spark’s 

implementation uses a parallelized version of the FP-Growth algorithm (Anonymous, n.d.) called 

PFP (Li, Wang, Zhang, Zhang, & Chang, 2008). 

4.4. Numerical Experiments 

In this section, we will describe two numerical experiments that were performed. The first 

is a set of performance tests that were done to show how the Big Data technique compares in 

running time to a more standard technique. The second set of experiments provide an example for 

how this data-driven stochastic modeling technique can be implemented. We also show how the 
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optimal policy changes as we modify the minimum quality threshold for acceptance, 𝐿௞ to 

emphasize the influence quality standards can have on food loss and waste. 

4.4.1. Big Data technique performance tests 

The problem setup for our performance tests included first identifying a state space size 

|𝑆| and an action space size |𝑋|. Ten data points per state-action pair were generated such that 

|𝐷| = 10 × |𝑆| × |𝑋| was the total number of data points created. This data was generated 

randomly according to these parameters and stored in a CSV file. The two techniques were then 

compared for 3 runs each for multiple state and action space sizes. The state space size used were 

50, 100, 150, and 200. The action space sizes used were 5ଷ = 125, 5ସ = 625, 4ହ = 1024, and 

4଺ = 4096 where |𝑋| = ℎ௡ and 𝑛 = number of action parameters and ℎ = number of parameter 

settings. For the traditional technique to compare to our proposed Big Data technique we 

implemented a dictionary method to count the frequency of unique events for state 𝑠, action 𝑎, and 

resulting state 𝑠’. For all the experiments we used a Core i5 3.6GHz machine with 12 cores and 

32GB RAM. The full run results can be seen in Table 4.1. 

The traditional (dictionary) method proved highly efficient for smaller problems, which 

suggests that a Big Data technique is not warranted for these computations. However, as either the 

state space or the action space grew, the problems quickly became too much for the traditional 

technique to manage. Only for the smallest state space |𝑆| = 50 was this method faster for all 

action space sizes tested, but it does appear that eventually the two would likely cross, given lager 

experiments. The Big Data technique showed to be the more efficient method for any of the larger 

combinations. 
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Table 4.1 Average running time (s) to solve for 𝑃-matrix using Big Data and traditional methods 

State space size |𝑺| Action space size |𝑿| Big Data technique Traditional method 

50 

125 5.77 0.38 

625 9.11 2.23 

1024 11.51 3.61 

4096 22.06 16.87 

100 

125 6.60 1.45 

625 12.65 8.51 

1024 15.38 13.51 

4096 41.51 66.07 

150 

125 7.87 3.56 

625 16.05 19.34 

1024 20.72 34.14 

4096 65.96 188.21 

200 

125 9.16 5.71 

625 19.38 35.04 

1024 26.31 56.34 

4096 84.42 346.21 

 

For the most extreme case where |𝑆| = 200 and |𝑋| = 4096, the traditional method was 

unreliable and crashed on multiple occasions. Five runs were attempted in order to collect results 

for our desired three. The greatest time commitment for the Big Data technique for larger problems 

was the rule collection (steps 4 and 5 in the procedure). This is because these results were being 

collected from a single machine and not several independent machines. Also, the transaction 

assignment step was not optimized for parallel computation, and it grew linearly according to the 

amount of data |𝐷|. Figure  4.3 shows their relative performances by plotting the ratio of running 
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times for the traditional (dictionary) method vs the Big Data technique as the state and action 

spaces are increased.  

 

Figure 4.3 Ratio of running times (Dictionary vs Big Data) to determine 𝑃-matrix as state space 

size |𝑆| and action space size |𝑋| grow. 

These results show that the proposed Big Data technique is a reliable and time efficient 

technique to solve for the 𝑃-matrix as an MDP problem’s complexity requires further expansion 

of the state and/or action spaces. For smaller problems, the Big Data technique is sufficient but 

not necessary.  

4.4.2. Example Implementation and Sensitivity results for Optimal Policy 

The following experiment provides an example for how this data-driven stochastic 

modeling technique can be implemented. It includes multiple runs for sensitivity analysis to 

evaluate how the optimal policy changes as the minimum quality threshold for acceptance 𝐿௞ 

becomes more restrictive, as this can affect food loss and waste. These experiments are performed 

via simulation for two different distributions (uniform and normal) of outcomes for the quality 

level achieved in the subsequent step, given the actions selected. In an application study, the 

appropriate distributions would come from the data as this technique should work for all 
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distributions. However, if domain knowledge about these distributions has already been 

established for the specific application, then it is advised that a simulation study (similar to this) 

be conducted to create a theoretical benchmark to compare outcomes.  

The problem setup we consider includes a total of 5 decision epochs prior to the final stage 

where a benefit is finally realized, so 𝑘 ∈ {1, … ,6}. All products begin at an initial quality level of 

𝑦 = 1 = best and in later can potentially reach any of the possible levels 𝑦ᇱ ∈ {1, … ,10} where 

10 = worst. At each of these decision epochs, there are a total of 𝑛 = 5 parameters to be selected 

from ℎ = 3 possible settings each. This results in an action space of |𝐴| = 3ହ = 243 possible 

actions. To ensure each action has a high possibility of being explored, we generated a total of 

729,000 original data points, or 50 per possible state-action pair. These all start at 𝑠 = (𝑘, 𝑦௞) =

(1,1), but from there the step is incremented by 1 (𝑘’ = 𝑘 + 1) and the quality can only be 

maintained or depreciate (𝑦ᇱ = 𝑦௞ାଵ ≥ 𝑦௞). This depreciation is random but based on the 

investment (cost) in the prior actions 𝐶(𝐱௞). Note that quality depreciation is with respect to the 

end-product. For products that can experience valued added processes, any action and outcome 

that does not add the most value would be described as a decrease in the value of the end-product. 

Two distributions were investigated to describe the depreciation distribution, Normal (using  

𝜇 ± 2𝜎 for extreme cases) and Uniform. Both distributions were based on the current level  

𝑦ୠୣୱ୲
ᇱ = 𝑦 and the worst possible level 𝑦୵୭୰ୱ୲

ᇱ , which was a linear function based on the investment 

in actions. More expensive actions and better initial quality levels provided a more favorable 

distribution and the alternatives resulted in a less favorable distribution. This is shown in in Figure  

4.4. In a specific application study, the appropriate cost function should be used for the product 

and supply chain. This could include fixed costs and other factors resulting in a non-linear cost 
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function. However, for simplicity in this simulation study, a linear relationship between action 

investment and worst quality outcome was used.  

 

Figure 4.4 Graphics showing the relationships between action investment 𝐶(𝐱) and the 

distributions of possible outcomes for 𝑦’ that were tested.  

The benefits were zero in all steps except the last, 𝑘 = 6 where a linear relationship was 

scaled from 𝐵(6,1) = 100 as the highest final benefit and decreasing to 𝐵(6,10) = 60 was the 

lowest benefit, as shown in Equation (4.8). For cases where 𝑦଺ > 𝐿௞, this benefit was zero as the 

product was rejected. The cost equation utilized was a simple summation of the action values as 

can be seen in Equation (4.9). 

𝐵(𝑘 = 6, 𝑦௞) ∈ [100,60]   ↔   𝑦௞ ∈ [1,10] (4.8)

𝐶(𝐱௞) = ∑ 𝑥௜
௡
௜ୀଵ   where  𝑥௜ ∈ {1, … , 𝑚} (4.9)

Using this framework, we simulated the data for 10 experiments using each distribution at 

three different 𝐿௞ settings. These settings were 𝐿௞ = 10 = unrestricted, 8 = partially restricted, 

and 5 = highly restricted. The final results for the amount of investment in actions 𝐶(𝐱௞) as 
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suggested by the optimal policy versus the 𝐿௞ setting can be seen in Figures 4.5 and 4.6 for normal 

distribution and uniform distribution.  

 

Figure 4.5 Results for optimal policy investment 𝐶(𝐱) vs the current quality level 𝐿 when the 

outcome quality level 𝑦′ follows a normal distribution 

 

Figure 4.6 Results for optimal policy investment 𝐶(𝐱) vs the current quality level 𝐿 when the 

outcome quality level 𝑦′ follows a normal distribution 

These results show that the general trend is to invest more in high quality actions as the 

quality threshold becomes more restrictive. It is observed that at the initial stages high investments 

are not warranted, which is most likely based on the margins between different of outcomes for 
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this specific problem. If this supply chain had more steps with similar distributions of outcomes, 

those higher investments might creep backward to some of the earlier steps as well. 

The optimal policy investment when the quality levels are higher (upper right and lower 

left) were relatively stable, and the increase in investment triggered by quality restrictions is 

typically made at the interior states. For the upper right states, a high-quality outcome had already 

been secured with a small or marginal investment so further investments were not needed. At the 

lower left states, the lowest investment was always made because higher investments do not create 

enough change in the probability of outcomes to sacrifice the product. The decision maker should 

probably seek earlier salvage opportunities for those products in the lower left states that have a 

high enough probability of rejection in the later states. This information would be extremely useful 

for the decision maker so they could avoid unnecessary investments by making better decisions 

and improve their supply chain’s profitability.  

4.5. Conclusions 

This chapter addresses a few complexity issues with modeling dynamic food supply chains 

to account for uncertainties present and the vast array of potential decisions and possible quality 

states. We introduce a general mathematical model for a food supply chain as a Markov decision 

that considers the stochastic effect these decisions have on a product’s quality. Since the transition 

model is typically unknown in practice, we determine these probabilities from historical data. It is 

recognized that as a problem’s complexity increases, the states and potential actions that need to 

be considered grow exponentially so we take an integrated approach that involves Big Data mining 

techniques. We formalize a procedure to determine values for our transition matrix using this new 

method. Performance tests show how the running time improves when using this Big Data 
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technique versus standard methods for complex problems. Lastly, we conduct experiments 

showing how the optimal policy changes as the quality threshold for rejection becomes more 

restrictive which identifies when it is either valuable or unnecessary to invest in higher quality 

actions.  
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CHAPTER 5. DEEP RL FOR OPTIMAL CONTROL IN STOCHASTIC IPS 

In previous chapters we established modeling dynamic agri-food supply chains and how to 

make them data-driven. Chapter 5 explores the idea of leveraging deep reinforcement learning to 

solve for stochastic sequential integer linear programs such as the mix and blend problem, which 

is commonly found in agri-food supply chains. This chapter is based on the manuscript “OR-Net: 

An Efficient Neural Network for Optimal Control in Stochastic Integer Programs” which has been 

submitted for journal publication to International Journal of Modelling and Simulation.  

5.1. Introduction 

Grains, oilseeds, and other granular products make up a very large percentage of 

agricultural exports (Kenner, Jiang, & Russell, 2022). Their quality characteristics can be 

customized to meet specific orders and are often controlled through mixing and blending 

processes. These processes commonly are executed repetitively, forming a series of sequential 

decisions that each aim to meet quality constraints while minimizing costs. Within a single 

decision frame, the mix and blend problem is a specialized version of the knapsack problem, which 

is a binary integer program. Integer programming (IP) is an extremely important mathematical 

optimization problem that comes up in many industries. Problems related to scheduling, staffing, 

resource allocation, equipment/machine settings, healthcare and biology, advertising, portfolio 

selection, logistics and vehicle routing all depend on IP models to deliver optimal or near optimal 

results. IP is one of Karp’s original 21 NP-Complete problems (Karp, 1972). Because of its 

inherent difficulty, approximation methods are commonly explored, especially for larger problems 

and dynamic rolling time-horizon or stochastic variants of these problems.  
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The field of deep learning (DL) has made several advancements in recent years, solving 

problems with neural networks (NN) to performance levels beyond traditional machine learning 

(ML) that were previously believed to only be possible by humans. This is in part due to the strong 

capabilities NN have with complex function approximation. Efficient network architectures have 

also been introduced, such as convolutional neural networks for image tasks (Krizhevsky, 

Sutskever, & Hinton, 2017), that greatly improve the use of computational resources. Deep 

reinforcement learning (DRL) is a field that has shown tremendous performance in sequential 

decision-making problems, usually proven in controlled gaming environments. More recently 

DRL has also been able to perform optimization related tasks like inventory control 

(Oroojlooyjadid, Nazari, Snyder, & Takáč, 2017) even better than traditional techniques, 

especially when operating in a stochastic environment. It is important to note that ML or DL 

approaches to COPs are best applied to problems where either an exact solution cannot be found 

in reasonable amount of time or there are many sources of uncertainty surrounding the problem 

that make it difficult to contract into a simple formulation. 

This chapter is organized into seven sections. Section 5.2 outlines methods used to model 

sequential IPs using a MDP framework and solve using DRL. Section 5.3 introduces the OR-Net 

including the motivation, problem statement, and technical approach. Section 5.4 covers the 

experimental setup and preliminary results. Section 5.5 provides a conclusion to this chapter.  

5.2. Modeling Sequential ILPs as an MDP 

5.2.1. Integer Programming 

Integer programs (IP) are concerned with finding optimal solutions to problems where the 

objective function (goal) and constraints (requirements or restrictions) are mathematical equations, 
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and the decision variables are integer. The most popular of these are integer-linear programs (ILP), 

where the objective function and constraints are linear. The standard form for an ILP is in Equation 

(5.1), where 𝐱 is the vector of decision variables, 𝐀 is a matrix of attributes, 𝐛 is a vector of bounds, 

and 𝐜 is a vector of costs. 

max   𝑧 = 𝐜ୃ𝐱  
s. t.  𝐀𝐱 ≤ 𝐛 
         𝑥௝ ≥ 0 
         𝑥௝ ∈ ℤ௡ 

(5.1)

Decision variables, 𝐱: The decision variables, a vector of length 𝑛 such that  

𝐱 = [𝑥ଵ, … , 𝑥௡]ୃ, are the choices that the decision maker can control. Binary integer programs 

(BIP) are such that 𝑥௝ ∈ {0,1}.  

Objective function, 𝑧: The objective function, 𝑧 = 𝐜ୃ𝐱, is key metric that should be 

optimized. The goal of integer programming is to determine the decision variables that provide the 

optimal solution, 𝐱∗ = arg max
𝐱

 𝑧(𝐱) and 𝑧∗ = 𝑧(𝐱∗).  

The coefficients that help describe a standard ILP problem are attributes, bounds, and costs. 

Figure  5.1 shows how these are potentially related to each other as they influence the selection of 

the decision variables to make up the optimal solution.  

 

Figure 5.1 Coefficients in a standard ILP problem 
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Attributes, 𝐀: The attributes, a matrix of size 𝑚 × 𝑛, help to describe the relationship 

between the decision variables and the constraints. A single element 𝑎௜,௝ represents the attribute 

value of the decision 𝑥௝ as it relates to the constraint bounded by 𝑏௜.  

Bounds, 𝐛: The constraint bounds, a vector of length 𝑚 such that 𝐛 = [𝑏ଵ, … , 𝑏௠]ୃ, create 

limits that describe the constraints of the problem. 

Costs, 𝐜: The cost metrics, a vector of length 𝑛 such that 𝐜 = [𝑐ଵ, … , 𝑐௡]ୃ, describe the 

value obtained or expense incurred 𝑐௜ for each decision variable . 

One of the limits with modeling meaningful optimization problems with IP, is that they are 

deterministic, meaning they do not capture the uncertainty that is often encountered in real world 

problems. In the following section we will outline a method for modeling a rolling time horizon 

sequential ILP using a MDP framework.  

5.2.2. Markov Decision Processes Models for Integer Programs 

Markov decision processes (MDPs) are discrete stochastic processes that provide a 

mathematical framework for modeling decision making in situations where outcomes are 

probabilistic (Puterman, 2005). They are comprised of the following elements.  

Decision Epochs: Epochs 𝑡 = 1, … , 𝑇 are defined as the periods when decisions are made, 

rewards are collected, and state transformations are observed.  

State Space, 𝑆: Let 𝑠௧ ∈ 𝑆, be the state of the system that is defined as a vector comprising 

of the relevant information needed to make decisions and quantify outcomes at epoch 𝑡. The state 

for our ILP contains the ILP coefficients 𝐀, 𝐛, and 𝐜. These can be flattened into a vector  

𝑠௧ = [𝐀|𝐛|𝐜] with a length of 𝑛𝑚 + 𝑚 + 𝑛. Note that since our ILP coefficients are continuous, 

the corresponding state space of our MDP is infinite.  
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Action Space, 𝑋: Let 𝐱௧ ∈ 𝑋, be the actions selected at the decision epoch t. The actions in 

our MDP model are the same as decision variables in the ILP specific to the current epoch 𝑡.  

Rewards: A reward 𝑟௧~𝑅(𝑠௧, 𝐱௧) is the expected net benefit received for being in state 𝑠௧ 

and taking action 𝐱௧. The total set of rewards can normally be defined using a function or a matrix, 

but since the ILP has an infinite state space we will need to use a function. This function will be 

the unconstrained objective function, see equation (5.2). A penalty 𝜆 is applied for not complying 

with the constraints. Operating in an unconstrained environment allows our decision maker an 

environment to both maximize the objective function and comply with the constraints with a single 

function.  

𝑅(𝑠௧, 𝐱௧) = 𝐜ୃ𝐱 − 𝜆ୃ max(𝐀𝐱 − 𝐛, 0) (5.2)

Transition Model, 𝑃: A transition probability 𝑝(𝑠௧ାଵ|𝑠௧, 𝐱௧) is defined as the probability 

distribution from state 𝑠௧ given action 𝐱௧ to state 𝑠௧ାଵ. These probabilities are Markovian, meaning 

that only the most recent state 𝑠௧ and action 𝐱௧ are needed to know the distribution of next possible 

outcome states 𝑠௧ାଵ, not the entire history of states 𝑠଴ to 𝑠௧. The transition model includes all the 

transition probabilities within the state space 𝑆, which is infinite for our ILP so we will have to 

consider this when determining our solution approach.  

Policy: A policy 𝜋 is defined as a mapping of actions to take given the state. This is 

represented as 𝜋 = ൛𝐱(௦) for all 𝑠 ∈ 𝑆ൟ such that 𝐱 = 𝜋(𝑠) is the action suggested to be taken by 

policy 𝜋 when at state 𝑠. A stochastic policy 𝜋(𝐱|𝑠) is when the outcome mapping of the policy is 

the probability that the action 𝐱 will be selected given the state 𝑠. Note that the policy determination 

will face the same challenges due to having an infinite state space.  

Value Function: The value function for a policy 𝜋 is 𝑉గ, which can be described recursively 

as in Equation (5.3) using Bellman’s equations, where 𝜋(𝑠) is the action to take as determined by 
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the policy 𝜋 and 𝛾 is the discount factor that prevents the value function from going to infinity. 

The optimal policy 𝜋∗ is defined as the decision policy which maximizes the value function, see 

Equation (5.4). 

𝑉గ(𝑠) = 𝑅൫𝑠, 𝜋(𝑠)൯ + 𝛾 ෍ 𝑝൫𝑠ᇱ|𝑠, 𝜋(𝑠)൯𝑉గ(𝑠ᇱ)

௦ᇲ∈ௌ

 (5.3)

𝜋∗ = argmax
గᇲ

𝑉గᇲ (5.4)

The goal of dynamic programming is to find the optimal policy 𝜋∗ that maximizes this 

value function at every state 𝑠 ∈ 𝑆. There are different approaches of finding optimal policies for 

MDPs, but they can mostly be described as model-based methods and model-free methods. Model 

based methods require knowledge or an assumption of the transition model 𝑃. Under this 

knowledge, exact methods such as Policy Iteration algorithm (Bellman, 1955) can guarantee 

optimality of the proposed optimal policy. Unfortunately, since our ILP has an infinite state space 

this problem deals with what is referred to as the “Curse of Dimensionality” (Powell, 2011). The 

goal of this MDP model was to solve rolling time horizon sequential ILP problems that deal with 

sources of uncertainty, so model-free methods may need to be considered.  

5.2.3. Reinforcement Learning 

In this section, popular model-free methods will be discussed as these techniques try to 

address these concerns. These methods come from an area of research with many names including 

Approximate Dynamic Programming (ADP) (Powell, 2011), Reinforcement Learning (RL) 

(Sutton & Barto, 2018), and Neuro-Dynamic Programming (Bertsekas & Tsitsiklis, 1996). These 

are all very similar fields and mostly differ in the specific applications they are interested in 

addressing, but in this chapter, we use RL to refer to this field. The most common framework for 
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model-free solutions is by using a learning agent that interacts with its environment through a 

feedback loop and updates its decision policies through experiences, see Figure  5.2.  

 

Figure 5.2 RL agent interacting with its environment through a feedback loop 

The most popular model-free technique in these fields was introduced by Watkins and it is 

called 𝑄-learning (Watkins & Dayan, 1992). This well-known method is named after the values it 

aims to estimate. Q-values are estimates of the value of being in state 𝑠 and taking action 𝐱, see 

Equation (5.5). This method becomes model free is when knowledge of the outcome state 𝑠ᇱ and 

reward 𝑟௦ is available to approximate 𝑅(𝑠, 𝐱). 

𝑄∗(𝑠, 𝐱) = 𝑅(𝑠, 𝐱) + 𝛾 ෍ 𝑝(𝑠ᇱ|𝑠, 𝐱)𝑉∗(𝑠)

௦ᇲ∈ௌ

 

   ≈ 𝑟௦ + 𝛾 max
𝐱ᇲ

𝑄∗(𝑠ᇱ, 𝐱ᇱ) 

(5.5)

The strengths of Q-learning lie with its ease of computation and when given an infinite 

exploration of all state action pairs (𝑠, 𝐱) ∈ (𝑆, 𝑋), due to Banach fixed-point theorem, this 

algorithm will converge on the true Q-values 𝑄∗ and find the optimal policy 𝜋∗ (de Farias & Van 

Roy, 2000). However, a major limitation of traditional tabular Q-learning is that both the state and 

action spaces are required to be discrete, which they are not in our ILP problem. Another limitation 

of Q-learning is that it cannot infer the Q-values of states or actions it has never visited from other 

experiences. Newer methods in the area of function approximation allow for these two 
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assumptions to be dropped. One of the most profound and active areas of research in this domain 

is called Deep Reinforcement Learning (DRL). This field includes fresh concepts such as DQN 

and policy gradients.  

The central idea behind policy gradients was that most other DRL methods including DQN 

were trying to solve for the value of the state 𝑉(𝑠)  or the value of the state and action 𝑄(𝑠, 𝐱). 

However, if the end goal is to use these values to determine the optimal policy, then why not just 

solve directly for the policy?  

The policy gradient is defined in Equation (5.7) as the gradient that minimizes the loss 

function, Equation (5.6), of the log probability of the action taken based on the policy. The goal is 

to increase the probability of actions that deliver good rewards and minimize the probability of 

actions that deliver bad rewards. The policy gradient does this by defining the direction ∇𝐽 to 

change our policy network’s parameters 𝜃 such that it improves the policy to collect better rewards.  

ℒ = −𝑄ఏ(𝑠, 𝐱) log 𝜋(𝐱|𝑠) (5.6)

∇𝐽 ≈ 𝔼[𝑄ఏ(𝑠, 𝐱)∇ log 𝜋(𝐱|𝑠)] (5.7)

One of the most popular policy gradient methods is the REINFORCE algorithm (Williams, 

1992). Its steps are as follows:  

Step 1. Initialization 

 Initialize the network weights 𝜃 with random values. Start at episode 𝑗 = 1 and epoch  

𝑡 = 1 with a random starting state 𝑠௧ୀଵ
௝ୀଵ 

Step 2. Trajectory rollout 

Play 𝐽 full episodes consisting of 𝑇 epochs each, saving the data elements  

𝑑௧
௝

= (𝑠௧, 𝐱௧, 𝑟௧, 𝑠௧ାଵ)௝ for all 𝑡 = 1, … , 𝑇 and 𝑗 = 1, … , 𝐽.  
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Step 3. Calculate discounted total rewards 

For every epoch 𝑡 of every episode 𝑗, calculate the discounted total reward for 

subsequent steps: 

𝑄௧
௝

= ∑ 𝛾௜𝑟௜
௧
௜ୀ଴   

Step 4. Calculate the loss function for all transitions 

ℒ = ∑ 𝑄௧
௝

log 𝜋ఏ൫𝐱௧
௝
|𝑠௧

௝
൯௝,௧   

Step 5. Update weights using SGD 

Perform a stochastic gradient descent (SGD) update of weights 𝜃 to minimize the loss 

function ℒ.   

Step 6. Repeat until converged 

 If convergence criteria are met, set 𝜋∗ = 𝜋ఏ. Otherwise, go to step 2 and repeat, 

resetting at episode 𝑗 = 1 and epoch 𝑡 = 1 with a random starting state 𝑠௧ୀଵ
௝ୀଵ.  

A few of the benefits from the REINFORCE algorithm over Q-learning include that 

explicit exploration is not needed. Using a stochastic policy 𝜋ఏ(𝐱|𝑠) means that exploration 

happens automatically. By initializing the network with random weights 𝜃, our policy 𝜋ఏ(𝐱|𝑠) 

delivers a nearly uniform probability distribution which generates random agent behavior in the 

early stages of the algorithm. Also, this approach does not require the use of a replay buffer or a 

target network. This is because REINFORCE agents would be considered on-policy networks, 

meaning current policy interacts directly with the environment.  
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5.3. Orthogonal Relationship Networks 

5.3.1. Motivation for an OR-Net 

Revisiting Figure  5.1, it makes sense that relationships between the values 𝑐௜ and 𝑎௜,௝ 

would be of interest. Similarly, the relationships between 𝑐௜ and 𝑐௝ or 𝑏௜ and 𝑏௝ may also be of 

interest. However, there does not appear to be a reason to believe that the relationship between 𝑐௜ 

and 𝑎௝,௞ would be of interest. These relationships that are of interest are between coefficients that 

are orthogonal to each other.  

Table 5.1 Orthogonal Relationships Between ILP Coefficients 

Graphic of  Orthogonal 
Relationships 

Relationships  
of Interest 

Connections in  
OR-layer 

 

𝑎௜,௝ → ൦

𝑏௜

𝑐௝

𝑎௜,௞

𝑎௟,௝

൪ ∀𝑘, 𝑙 𝑛𝑚 ∙ ቎

1
1
𝑚

𝑛 − 1

቏ 

 

𝑏௜ → ൤
𝑏௝

𝑎௜,௞
൨ ∀𝑗, 𝑘 𝑚 ∙ ቂ

𝑚
𝑛

ቃ 

 

𝑐௜ → ቂ
𝑐௝

𝑎௞,௜
ቃ ∀𝑗, 𝑘 𝑛 ∙ ቂ

𝑛
𝑚

ቃ 
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Therefore, the idea behind an OR-Net is building a NN that includes an orthogonal 

relationships layer. This OR-layer reduces the overall connectivity of the network by focusing on 

the connections (the coefficient relationships) that are of interest, since they are the ones used to 

solve integer-linear programs in other solution methods. The details of these relationships are 

described and visualized in in Table 5.1.  

5.3.2. Technical Approach 

To solve an ILP problem using DRL, the ILP coefficients 𝐀, 𝐛, and 𝐜 are used as input 

features to a NN and can be done so by flattening them into a single vector, such as in  Figure  5.3.  

 

Figure 5.3 ILP coefficients are flattened to be used as the input features for a NN 

One approach might be to explore all the possible relationships between the ILP 

coefficients using a fully connected (FC) layer of equal size to create connections between each 

coefficient. This would result in a total of (𝑛𝑚 + 𝑚 + 𝑛)ଶ connections in this FC-layer. The total 

number of connections of interest in a comparative OR-layer is 𝑛𝑚ଶ + 𝑛ଶ𝑚 + 3𝑛𝑚 + 𝑛ଶ + 𝑚ଶ 

(see Table 5.1 for details). This is far fewer connections in comparison to a fully connected layer. 

Figure  5.4 displays an example network architecture for an OR-Net being applied to a very small 
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ILP problem. Figure  5.5 shows how quickly the number of connections in a FC-layer grows in 

comparison to the connections in an OR-layer.  

 

Figure 5.4 Example OR-Network architecture for a small ILP problem (only 2 decision variables 

and 1 constraint) featuring an OR-layer that only considers the ILP’s orthogonal relationships.  

 

 

Figure 5.5 Heat-map showing the ratio of the number of connections in a FC-layer vs an OR-layer 

based on the size of the ILP (number of constraints 𝑚 and variables 𝑛) 
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In our proposed NN design, the input layer is the scaled state 𝑠௧ = [𝐀′|𝐛ᇱ|𝐜′] which is a 

flattened vector containing all the scaled coefficients of the ILP problem (which are described in 

detail subsection 5.3.3). The output layer is the policy and is the size |𝑋| of the action space so the 

actions are mutually exclusive. As displayed in Figure  5.5, even for reasonably sized problems  

(𝑛 and 𝑚 are < 100) there is the large potential for a gain in efficiency since we would be training 

a smaller network (with fewer weights 𝜃 to learn) with the OR-Net. 

5.3.3. Coefficient Scaling 

To ensure some uniformity across different problems, it is suggested to first scale the 

problem’s coefficients between 0 and +1 or -1 and +1. This must be done in such a way that our 

problem maintains proportionality.  

For attributes and bounds this is easy to describe. Simply divide all attributes that relate to 

a specific bound by the value of the bound and do this to the bound as well, see Equations (5.8) 

and (5.9). This results in attributes that are percentages of contribution towards the bound. Note, 

you may end up with values for 𝑎௜,௝ that are not between 0 and 1, but that would be for specific 

problems containing offsetting attributes. If all attributes and bounds are positive, then they will 

be between 0 and 1 because any values larger than 1 can be omitted from the problem as they 

would violate the constraint set by that bound. The main point is that all attributes related to a 

specific bound remain proportional to each other and to the bound.  

𝑎௜,௝
ᇱ ←

𝑎௜,௝

𝑏௜
 ∀𝑖, 𝑗 (5.8)

𝑏௜
ᇱ ←

𝑏௜

𝑏௜
= 1 ∀𝑖 

(5.9)

Many feasible options exist to scale the cost coefficients, but our suggestion is to scale 

them to the cost element with the largest magnitude as in Equation (5.10). This keeps all costs 
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proportional to each other and scaled values between -1 and +1. If all cost coefficients are positive, 

the outcome scaled costs would be between 0 and +1. 

𝑐௝
ᇱ ←

𝑐௝

max
௞

 |𝑐௞|
  ∀𝑗 (5.10)

5.3.4. Problem Uniqueness  

Problem uniqueness might be confusing for a neural network to identify. For instance, let’s 

say rows 𝑖 and 𝑘 were swapped in the attribute matrix. This means their corresponding bounds 

would also have to be swapped. Similar operations could be done with columns in the attribute 

matrix and the corresponding costs. In either of these swapping scenarios, the resulting ILP is 

exactly the same problem and would have the same optimal solution. There exist 𝑛! total 

permutations for rows (number of constraints) and 𝑚! for columns (number of decision variables). 

This results in 𝑛! 𝑚! total equivalent representations of the same problem, even after scaling.  

This creates a powerful training opportunity, as different representations of the same 

problem (for labeled examples where we already know the optimal solution) can be used for 

additional data samples to train the network.  This is a nearly effortless method for implementing 

a high-quality form of data augmentation.  

The challenge here, is that the problem might look completely different to the neural 

network since the flattened vector [𝐀|𝐛|𝐜]ୃ, which represent the input features, might not look the 

same. We believe this may possibly result in the network forming unique weight structures in the 

OR-Layer that need to be common across certain relationships. The interesting part though, is that 

this should happen organically through training if the network is exposed to several different 

representations of the same problem.  
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5.3.5. Building the OR-layer in PyTorch 

Feasible and efficient implementation of an OR-layer is necessary for the OR-Net’s 

potential speed benefits to be realized. This comes with some challenges when working within the 

confines of an existing programming framework. The below paragraphs describe possible 

implementation concepts using PyTorch.  

Iterations: Build and update individual connections through iterations. This ensures only 

the connections that we care about are being made. Because of the inability to take advantage of 

vectorization, this is useful for small toy problems and likely not suitable for our interests. 

Masking Matrix: Create an equal sized 0-1 matrix to mask the matrix of a fully connected 

layer and convert it into an equivalent matrix of only the values we are interested in, where values 

we do not care about are all zeroed out (see Figure  5.6).  

 

Figure 5.6 Diagram describing how the application of a masking matrix effectively creates a 

limited connectivity network layer. 

With modern CPUs / GPUs, it’s easier to zero-out particular weights of a large linear layer 

and do dense matrix operations, than to do iterations by keeping a  linear list and performing those 

operations locally. One caveat is that masking requires element-wise multiplication of potentially 
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large matrices, but that is nowhere near the complexity of matrix multiplication. Some of this may 

be alleviated by using Sparse Tensor operations in PyTorch, but that was not explored. 

Selective Updating: Conceptually, if the masking matrix can be applied once upon 

initialization and can also be used to specify which values require gradients to be calculated, then 

the mask shouldn’t need to be regularly applied. This cuts out a potentially unnecessary and long 

operation that could ruin the potential benefits of the sparsely connected layer. Unfortunately, 

PyTorch does not have any current options for the updating to be applied to individual edges and 

not just the entire layer by variables.  

Selective Dilution: Dilution is another term for dropout but normally refers to reducing the 

number of connections by removing edges whereas dropout usually refers to removing nodes. This 

concept would be to see if a dropout/dilution method can be applied to the specific edges desired, 

rather than at random by some probability. Currently there are no known methods to accomplish 

this using PyTorch.  

Table 5.2 Comparison of OR-layer Implementation Techniques 

Technique Benefits Drawbacks 

Iterations Easiest to control and implement.  
Low memory requirements.  

Unlikely to perform well for large 
problems 

Masking 
Matrix 

Easy to control and implement.  
Much faster than iteration.  

Requires element-wise multiplication. 
Weights are zeroed out, but they still 
exist.  

Selective 
Updating 

Eliminates having to calculate 
gradients that would be zero anyways 
repetitively.  

Not an option in PyTorch.  

Selective 
Dilution 

Eliminates the unwanted edges 
entirely.  Not an option in PyTorch. 

 



73 

 

 

Table 5.2 outlines the major benefits and drawbacks for each of the proposed 

implementation techniques. After considering each of these methods, we believed the masking 

matrix was the most straightforward option that allowed for scaling. The operations should be 

much faster than iterations, even for a very sparse mask matrix. A custom OR-layer module was 

developed in PyTorch and tested using the masking matrix. After this implementation was 

validated and optimized, performance comparisons of an OR-layer versus a FC-layer needed to be 

executed for ILP problems.  

5.4. Experimental Results 

5.4.1. Experimental Problem Setup 

A custom OpenAI Gym (Brockman, et al., 2016) environment was created with the features 

listed in section 5.3 to explore the stochastic rolling time horizon variation of the mix and blend 

problem.  

Mix and Blend Problems: These problems are very common in the processing industries 

where input materials are mixed or blended to create new output products. The diet problem is 

another popular variation of a mix and blend problem that is also common in research or academic 

literature. We will consider the binary integer program version of this problem, which is 

specialized version of the multi-dimensional knapsack problem (Freville, 2004). 

 

Figure 5.7 Process flow diagram of a standard mix and blend process 
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For the following experiments, we will learn to solve a version of the mix and blend where 

there are 𝑛 total bins and we must select which bins to fully mix and blend together to make the 

output product. Our decision variables 𝑥௝ are 1 when bin 𝑖 is selected to be mixed and blended and 

0 when not selected. There is a total of  𝑛  decision variables (or actions) so the action space 𝑋 

grows very quickly. The resulting action space size is shown in Equation (5.11). 

|𝑋| = 2௡ (5.11)

In our problem definition, we are going to enforce that all orders are of a standard size and 

that exactly 𝛽 number of bins should be selected. The way we enforce this exactness constraint is 

shown in Equation (5.12).  

෍ 𝑥௜

௡

௜ୀ଴

= 𝛽 
(5.12)

Action Space Reduction: Due to the constraint in Equation (5.12), the action space can be 

reduced to omit any actions that would violate this constraint. The end effect is that the modified 

feasible action space size changes due to 𝛽. The problem can still become quite large, but it is 

reduced to only include 𝑛 choose 𝛽 possible actions, see Equation (5.13). This makes the problem 

a complexity of Θ(𝑛ఉ) which is polynomial on average. For instance, a problem with 𝑛 = 20 and 

𝑚 = 5 has ห𝑋ఉห = 15,504 unique actions in the reduced action space versus the full action space 

size of |𝑋| = 2ଶ଴ > 10଺.  

ห𝑋ఉห = ቀ
𝑛
𝛽ቁ =

𝑛!

𝛽! (𝑛 − 𝛽)!
 

(5.13)

This effect may be noticeable depending on the size of the problem. If we compare Figure  

5.6 (in section 5.3.2) to Figure  5.8 below (𝛽 = 1), even in this small example, that the reduction 
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in action space size from |𝑋| = 4 to ห𝑋ఉห = 2 also reduces the size of the output layer of the neural 

network which should improve training performance.  

 

Figure 5.8 Example OR-Network architecture for a small ILP problem with a reduced feasible 

action space and smaller output layer.  

Stochastic Rolling Time Horizon Problem: To make this problem a stochastic problem, we 

attempt to solve the mix and blend problem repeatedly across a rolling time horizon. There are 3 

major sources of uncertainty that are introduced.  

 

Figure 5.9 Flow of materials (black) and information (red) for a rolling time horizon problem 
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The first is that when a bin is selected, its contents are consumed in the current iteration to 

fulfill an order. This means that those contents must be replaced with new materials whose 

coefficients must be brought into the epoch’s problem. This means we must introduce new 

attributes 𝑎௜௝ and costs 𝑐௝ for the bins that were selected. These new coefficients are unknown but 

assumed to follow common distributions 𝜉 in the Gym environment.  

If 𝑥௝
௧ = 1 then for all 𝑖: 

𝑎௜,௝
௧ାଵ~𝜉௔,௜ (5.14)

𝑐௝
௧ାଵ~𝜉௖ (5.15)

The second source of uncertainty is the bounds. We assume that the other requirements of 

the problem may have changed based on new order specifications. 

𝑏௝
௧ାଵ~𝜉௕,௝ (5.16)

Lastly, we will consider degradation of products overtime that are not selected. This was 

applied using a degradation factor 𝛿, but capping the max attribute value 𝑎௜
୫ୟ୶ (which was set to 

1 for our scaled attributes).  

If 𝑥௝
௧ = 0 then for all 𝑖: 

𝑎௜,௝
௧ାଵ = min൛𝑎௜,௝

௧ (1 + 𝛿), 𝑎௜
୫ୟ୶ൟ (5.17)

The degradation feature makes this problem more challenging, even for traditional 

optimization methods such as stage-wise integer programming or heuristics as they will have 

difficulties quantifying the dynamic nature of the problem. Depending on the problem design, 

some methods may be myopic and fail to select locally sub-optimal solutions in the current state 

that will lead to better possible solutions in future states. 
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5.4.2. Results 

Initially we tried testing this out on larger problems but ran into memory issues due to the 

excessive action space. This issue will be discussed in more detail in future work (section 6.2.3) 

as we address the challenge of complex actions and explain the motivation for direct policies.  

Example Problem Details: The results in this section are based on an example mix and 

blend problem with 𝑛 = 10 total bins where the decision maker must select 𝛽 = 2 for each epoch 

𝑡. There are 𝑚 = 6 quality related constraints and a penalty of 𝜆 = 10 is applied for constraint 

violations. Attributes of bins’ contents were degraded at a rate of 𝛿 = 10% of their current values 

between each epoch if their bin was not selected. If their bin was selected, the product attributes 

and costs were replaced with new randomized product values. The bounds 𝐛௧ of the problem (the 

desired quality metrics of the order) change with each epoch 𝑡.  

Training: The FC-Net and OR-Net were trained with 180 batches (episodes) each and 128 

epochs in each batch. The following hyper-parameters were used for the REINFORCE algorithm. 

A discount factor of 𝛾 = 0.99 was used for calculating the discounted rewards. A learning rate of 

𝜂 = 0.01 was used for SGD during batch training.  This was repeated for 30 trials to generate the 

training curves seen in Figure 5.10. The top chart shows the mean reward earned at each batch and 

the bottom chart shows the standard deviation in the rewards earned at each batch. 
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Figure 5.10 Training curves for the FC-Net and OR-Net showing convergence in 180 batches 

The OR-Net performed very similarly to the fully connected network (FC-Net), slightly 

edging it out over the same training duration. The higher on average training performance we 

believe is due to better variance reduction. This may very likely be due to less noise being created 

from the OR-Net having fewer total weights to learn.  

Testing: We tested 5 agents: the LP solver, a random decision maker, a greedy algorithm, 

the fully connected network (FC-Net) and the OR-Net. These were tested on a problem of the exact 

same size running 30 independent trials with 250 sequential epochs each. The 95% confidence 
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intervals for the discounted total rewards 𝑄ଶହ଴ along with average solve time and gap between the 

LP Solver’s performance can be seen in Table III.  

𝑄ଶହ଴ = ෍ 𝛾௧𝑟௧

ଶହ଴

௧ୀଵ
 

(5.18)

Table 5.3 Testing results for all agents after 30 trials of 250 epochs 

Agent 
CI of Sum of Discounted 

Rewards  𝑸𝟐𝟓𝟎 
Avg Solve Time Avg Gap 

LP Solver (142.54, 135.77) 6.73 seconds - 

Random (127.98, 114.44) 0.17 seconds 17.94 

Greedy (137.34, 126.74) 0.20 seconds 7.11 

FC-Net (145.56, 123.73) 0.30 seconds 4.50 

OR-Net (141.41, 131.47) 0.29 seconds 2.71 

Although the DRL agents did not consistently receive rewards as high as the stage-wise LP 

solver, they did better on average than the greedy agent and the random decision maker. They also 

showed improvement through their training curves as seen in Figure  5.10 which indicates that 

with finer hyper-parameter tuning or more sophisticated algorithms these NN architectures could 

more closely approximate or maybe even exceed the linear programming solver’s performance 

depending on the stochastic problem’s design. For a problem of this size, the differences in the 

solve times were nonconsequential, but larger problems might see benefits using the neural 

network agents versus the LP solver. Based on their 95% confidence intervals for the discounted 

sum of rewards 𝑄ଶହ଴, the OR-Net and the LP solver were the only two agents that showed they 

performed statistically better than the random decision maker. 
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5.5. Conclusions 

This chapter’s primary achievements were to introduce, build, and test a new NN 

architecture called OR-Net. The distinguishing component of this new network is the OR-layer, 

which only builds connections based on the orthogonal relationships that exist between an ILP’s 

coefficients. Proper evaluation of this new architecture relies on building and maintaining the  

OR-layer, which was successfully implemented using a masking matrix in PyTorch. This chapter 

also outlined the groundwork for other important features such as coefficient scaling and problem 

uniqueness which enabled us to create a generalized framework for testing OR-Net and other DRL 

agents on ILP problem environments. 

We then built a custom OpenAI Gym environment for a stochastic rolling time horizon 

mix and blend problem with product quality degradation to test out the OR-Net vs other agents. 

We discovered that OR-Net and DRL show promise on these problems with reduced variance in 

its performance versus a fully connected network. It also noticeably outperformed greedy and 

randomized agents. By leveraging the strengths and flexibility of DRL for applications to 

stochastic problems where traditional methods in combinatorial optimization often underperform, 

OR-Net may offer benefits that would be highly valuable in many real-world applications. 
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CHAPTER 6.  CONCLUSIONS AND FUTURE WORK 

This dissertation provided a general framework for modeling dynamic problems dealing 

with uncertainty in agri-food supply chains. A general yet flexible model using  Markov decision 

processes was formulated to track the supply chain step and quality level of the products at each 

step. To leverage modern tools and data collection practices, this research also integrated data 

mining techniques to learn the supply chain dynamics from data to make these models data driven. 

Studies were also completed analyzing computation time challenges that arise in these integrated 

data mining and decision-making models. Novel techniques that leverage machine learning and 

Big Data mining were introduced. This research then acknowledged that many optimization 

problems in agri-food supply chains and other industries rely on solving sequential integer 

programs, but these models struggle with accounting for the underlying sources of uncertainty. A 

novel concept referred to as OR-Net was introduced to leverage the power and promise of deep 

reinforcement learning specifically for the stochastic variants of these problems. This idea was 

then tested on the mix and blend problem, which is commonly found in agri-food supply chains 

such as those in grain, oilseeds, and other granular agricultural products’ export processes.  

A summary of the main contributions of this research is provided below in section 6.1.   In 

section 6.2 we conclude this thesis with a discussion of ideas for future work including real-world 

applications of this research and its extensions.  

6.1. Conclusions 

In Chapter 3, the generalized model for optimizing dynamic food supply chains was 

extended to account for the stochastic behavior of the outcomes given decisions made and actions 

taken. This model considers the effect these individual decisions (including supplier selection) 
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may have on the product’s final quality. A basic food supply chain was modeled dynamically with 

the decisions and actions at each step as a Markov decision process. Sensitivity analysis was then 

performed to study the impact of threshold values and reward function on the optimal policy 

selection. This reveals a strategy shift for the optimal policy from selecting a best weighted average 

with lower restrictions towards becoming aspirational as the system became more restricted by the 

quality constraints.  

It was noted that the action space grows exponentially. Therefore, the final solution 

technique may need to be modified as larger problems that are more complex may not be able to 

converge to a final solution in an efficient timeframe using Policy Iteration. Reinforcement 

learning is proposed to solve these more complex and general problems.  

Chapter 4 covered the integration of data mining techniques to determine the transition 

probabilities for the generalized MDP model formulated in Chapter 3. This chapter also addresses 

a few complexity issues with modeling dynamic food supply chains to account for uncertainties 

present and the vast array of potential decisions and possible quality states. The general 

mathematical model we formulated for agri-food supply chains was a Markov decision that 

considers the stochastic effect these decisions have on a product’s quality. Since the transition 

model is typically unknown in practice, it is proposed to determine these probabilities from 

historical data. The concept of integrating a Bayes net is first introduced, and we believe this is 

sufficient for smaller problems. However, it is recognized that as a problem’s complexity 

increases, the states and potential actions that need to be considered grow exponentially. A novel 

approach that involves Big Data mining tools and techniques is then presented as a possible 

improvement. We formalize a procedure to determine values for our transition matrix using this 

new method. Performance tests show how the running times improve when using this Big Data 
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technique versus standard methods for complex problems. Lastly, we conduct experiments 

showing how the optimal policy changes as the quality threshold for rejection becomes more 

restrictive which identifies when it is either valuable or unnecessary to invest in higher quality 

actions.  

In chapter 5, the strengths of approximation techniques like deep reinforcement learning 

were investigated for their suitability for stochastic integer linear programs, such as the mix and 

blend problem commonly found in agri-food supply chains. This chapter’s primary achievements 

were to introduce, build, and test a new NN architecture called OR-Net. The distinguishing 

component of this new network is the OR-layer, which only builds connections based on the 

orthogonal relationships that exist between an ILP’s coefficients. Proper evaluation of this new 

architecture relies on building and maintaining the OR-layer, which was successfully implemented 

using a masking matrix in PyTorch. This chapter also outlined the groundwork for other important 

features such as coefficient scaling and problem uniqueness which enabled us to create a 

generalized framework for testing OR-Net and other DRL agents on ILP problem environments. 

To test this approach, we then built a custom OpenAI Gym simulation environment for a 

stochastic rolling time horizon mix and blend problem with product quality degradation to evaluate 

the performance of OR-Net vs other agents. We discovered that an OR-Net trained by DRL shows 

promise on these problems with reduced variance in its performance versus a fully connected 

network. OR-Net also noticeably outperformed greedy and randomized agents. By leveraging the 

strengths and flexibility of DRL for applications to stochastic problems where traditional methods 

in combinatorial optimization often underperform, OR-Net may offer benefits that would be highly 

valuable in many real-world applications. 
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In summary, this research provides scientists and practitioners new models and techniques 

that can be customized for problems in their own research or industries. These models are 

applicable to problems associated with improving or controlling quality for output products in  

agri-food production. This reduces the impact that inefficient supply chains have on precious 

resources such as land, water, energy, and human capital. Supply chain managers and policy 

makers will also benefit from knowledge of how these models can be fueled through the integration 

of scalable data mining techniques to take advantage of their historical and future process data. 

Lastly, tools such as OR-Net when paired with emerging technologies like deep reinforcement 

learning may eventually help global supply chains approach optimality and reduce their 

inadvertent contributions to food loss. This can improve food security and minimize the negative 

environmental and societal impacts of agri-food supply chains. 

6.2. Future Work 

In the following sections, future research opportunities will be discussed as they related to 

the problems explored in this thesis.  

6.2.1. Modeling Additional Sources of Uncertainty – Partial Observability  

Future opportunities that might exist within this body of work might include modeling 

market conditions, as the price of final products or inputs can easily change within the timeframe 

of a full supply chain production cycle. This could require converting this general MDP model to 

a Partially Observable Markov decision process (POMDP) because the factors that influence 

markets are not as easily recognizable.  

6.2.2. Validating Models with Real World Data – Swine Nutrition Optimization 
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The models introduced in Chapter 3 and data-driven techniques mentioned in Chapter 4 

were designed to be both extremely flexible and relevant to many problems in agri-food supply 

chain processes. To demonstrate these capabilities, we will discuss an example of how to apply 

this to a swine production and optimal nutrition problem.  

 The life cycle of a market pig is approximately 6 to 7 months long (National Pork Board, 

2021). They are fed and nurtured from 2-3 lbs. at birth to up to 280 lbs. when they go to market 

for slaughter. Pork is the most widely produced meat across the world. The US alone imported 

approximately 6.5 million metric tons of pork in 2021, even with significant local production 

capabilities (Kenner, Jiang, & Russell, 2022).  

Table 6.1 Production life cycle of swine 

Step 
Pregnancy 

to Birth 
Farrowing Nursery Growing and Finishing Market 

Duration 16 weeks 3 weeks 6-7 weeks 16-17 weeks  

Diet  Milk Corn or Soybean Meal  

Amount   1.4-4 lbs. 6-10 lbs.   
 

     

 
 
 

…  
Age  0 3 weeks 9-11 weeks … 25-28 weeks 

Weight   2-3 lbs. 12-15 lbs. 50-60 lbs. … 280 lbs. 

 

Table 6.1 shows that swine production has a set of identifiable and separable steps, each 

having different inputs and target outcomes. In this example, the life cycle of a market pig can be 

modeled as a set of sequential steps 𝑘 ∈ 𝐾. There are observable quality metrics 𝑦௞ at each step 

such as weight and general health. In each step 𝑘, actions 𝐱௞ ∈ 𝑋௞ could include the diet makeup 

and amount of feed, nutritional supplements such as vitamins and minerals, and the controllable 
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features of the environment (e.g., after weaning, piglets are moved to a nursery with specialized 

temperature controls and ventilation). In the initial steps, the first decision 𝐱ଵ might need to select 

which breed of pig to purchase and the supplier to get them from or whether to raise your own 

piglets from birth. These actions 𝐱௞ at every step 𝑘 would come at varying costs, some of which 

might depend on the unique operational setup or current market conditions. The decision maker 

must avoid making myopic decisions because the major contribution to the value function is the 

delayed rewards that depend on our final state (i.e., when the pig goes to market).  

This problem includes all the necessary pieces to be modeled and solved using the 

approaches outlined in Chapter 3. The transition model (which would describe the connections 

between growth and health related states between steps given certain actions were taken) can be 

determined using either of the approaches discussed in Chapter 4, with the recommended approach 

depending of course on the quantity and complexity of data available.  

6.2.3. Further Refining OR-Nets for Better Performance 

The body of research of trying to solve combinatorial optimization problems (COPs) 

including integer linear programs (ILPs) using reinforcement learning (RL) and Deep RL is just 

beginning. Ideas like OR-Nets often require slight refinements before their true potential is 

observed and they become major contributions in their field. In this section, we will discuss a few 

of the ideas that we believe could deliver even stronger results for OR-Nets.  

More advanced algorithms such as actor-critic methods including A2C (Sutton & Barto, 

2018) and A3C (Mnih, et al., 2016), proximal policy optimization (PPO) (Schulman, Wolski, 

Dhariwal, Radford, & Klimov, 2017), or advanced hyper-parameter tuning would likely help ideas 

like the OR-Net close the gap or potentially outperform traditional methods like stage-wise LP or 

meta-heuristics depending on the complexity and nature of the problem. Also, tools and technology 
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that allow parallelization and improved speedup of the training process may allow for different 

combinations of epochs and batches to be tested efficiently. Another common training process is 

to utilize a form of logic in the early stages of training, such as starting with a greedy decision 

maker for pre-training your network. This may help to expedite the training process, allowing for 

more time to explore alternative neural network architectures or algorithms.  

Perhaps the most unique and challenging aspect of trying to approach solving 

combinatorial optimization problems (COPs) using RL or DRL is dealing with complex actions 𝐱 

where 𝑛 elements (individual decision variables) are being determined simultaneously together 

instead iteratively or independently. To enable this, reinforcement learning methods such as  

Q-learning, DQN, and policy gradients depend on the full action space 𝑋 (or a subset of identified 

feasible actions) being searchable and contractable. COPs in general have action spaces that often 

grow far too large for this to be possible, so direct-action policies may be an alternative way 

forward. This is where the individual actions’ 𝑥௝ have policies 𝑝൫𝑥௝ = 1|𝑠௧൯ that are determined 

directly. This would allow larger problems to be explored without exceeding memory limitations 

due to the output layer not needing to be the same size as the action space |𝑋|, but can become the 

size of unique action elements 𝑛.  We did some preliminary testing with this, but we found it to be 

too unstable until more research is completed to understand if such an approach is feasible.  

An idea we haven’t explored yet would be to include a new layer in the neural network to 

be used for deciphering the final decisions into a synergistic policy, see Figure 6.1 where this is 

shown as a recurrent layer. Simple feed forward NNs may not offer the best solutions for such 

complex decisions, so testing with a recurrent neural network (RNN) like long short-term memory 

networks (Hochreiter & Schmidhuber, 1997) could be beneficial. Note that the output in Figure  

6.1 is a direct policy for each individual decision variable element. This would allow the NN output 
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layer to have only 𝑛 elements and does not require a full representation of all elements in the 

searchable action space |𝑋| which drastically reduces the size of the NN.  Ultimately, bridging the 

gap between unique action spaces and their individual elements could enable large complexity 

reductions and help move this area of research forward.  

 

Figure 6.1 Example OR-Net architecture for a small ILP problem with a recurrent layer.  

6.2.4. Expanding the Mix and Blend Problem to cover both space and time  

This idea considers a large grain exporting operation that consists of several sequential 

stages of blending and mixing processes being performed across a rolling time horizon. This results 

in a very complex problem to solve, but these multi-step operations usually do not have a single 

decision maker controlling every action. See Figure  6.2 for an example of this process, which 

consists of several sequential mix and blend steps. 

 

Figure 6.2 Example process flow diagram of an end-to-end grain exporting operation 
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In this problem, the previously developed stochastic modeling and optimization methods 

are applied to this impactful industry process. This model is built from principles detailed in earlier 

research tasks and expanded to consider both multiple-steps and a rolling time horizon. The 

sequential nature of this problem is both across process steps and time periods.  

One concept to accomplish this would be by defining process modules and chaining them 

together to build more complicated processes. The changes in states can be more easily captured 

and predicted without needing an impossibly large transition model. See figure 9 for diagrams of 

these ideas.  

 

Figure 6.3 Diagram of a process module, and a chain of process modules describing an operation  

The mix and blend problem we approached in Chapter 5 is expanded and tested over a 

series of subsequent process steps, where outputs of earlier steps become the inputs of later steps. 

Spoilage may also need to be considered further because quality degradation is a major issue in 

grain exporting operations that often goes unrecognized until later in the supply chain due to 

extended periods of storage, such as those experienced during transportation on river barges. 

The initial idea to test this out would be to first create individual neural networks to solve 

the problems at each stage locally. After these decentralized (step specific) agents have been 
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trained, their knowledge is then transferred to a centralized supply chain director agent. This would 

allow locally strong policies to be created at first. These policies would then be incrementally 

improved and integrated as their influence in the entire end-to-end supply chain is learned and 

understood by the higher-level agent. An alternative multi-agent approach would be for the 

centralized director to determine incentives for each agent at each step-time epoch.  

This concludes the discussion on future work extensions and completes this thesis.  
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