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Abstract 

Stenotrophomonas maltophilia is an opportunistic bacterial pathogen found ubiquitously 

in the environment. Although S. maltophilia is an emerging pathogen associated with hospital-

acquired infections in patients with respiratory diseases, particularly cystic fibrosis, very little is 

known about its mechanism of pathogenesis in any system. In addition, S. maltophilia isolates 

vary in pathogenicity to several hosts and are genetically diverse, including variation in virulence 

factors. In this thesis, I address the genetic basis of S. maltophilia pathogenesis from both host 

and bacterial perspectives. Our lab has previously developed Caenorhabditis elegans as a model 

for S. maltophilia infection. Stenotrophomonas is found in relatively high abundance in the 

microbiome of C. elegans, making it a suitable platform for studying S. maltophilia-host 

interactions. I performed a transcriptomic analysis to determine C. elegans responses to several 

S. maltophilia strains of varying pathogenicity. Treatments included K279a, an avirulent clinical 

isolate, JCMS, a virulent environmental strain isolated in association with nematodes near 

Manhattan, KS, and JV3, an even more virulent environmental isolate. Overall, I found that most 

genes (89%) that are differentially expressed in response to pathogenic S. maltophilia strains are 

upregulated, with many even further upregulated in response to the more virulent strain, JV3. 

Using information from a variety of transcriptomic datasets, I found that most of these genes are 

also commonly differentially expressed in C. elegans in response to other pathogens. Many more 

genes were differentially expressed specifically in response to JV3 when compared to all other 

strains (221 genes) than JCMS as compared to all other strains (14 genes), suggesting JV3 has 

unique virulence mechanisms that could explain its observed increased virulence. Candidate 

genes were chosen from the above differentially expressed gene sets (differentially expressed in 

response to both pathogenic S. maltophilia strains or in a strain-specific manner) for functional 



  

analysis. Mutational analysis of these candidate genes revealed that several mutants caused 

increased susceptibility of C. elegans to pathogenic S. maltophilia, regardless of the strain(s) that 

caused differential expression of that gene. Furthermore, many of these mutants also caused 

increased susceptibility to K279a, suggesting that K279a may also employ virulence mechanisms 

that wild-type C. elegans are able to defend against. To address the pathogen side of the 

interaction, we analyzed draft assemblies of the S. maltophilia strains, with the addition of 

another slightly pathogenic environmental strain, R551-3.  We hypothesized that differences in 

observed pathogenicity and host responses to strains of S. maltophilia could be explained by 

differences in their genomes. When comparing draft assemblies to their respective reference 

genomes, few differences were observed. However, several genomic features were present in 

some strains and absent in others, including components of the CmeABC efflux pump and the 

Type IV secretion system, that might play a role in different virulence mechanisms. Genome-

wide comparison of shared and unique genetic features across many S. maltophilia strains 

revealed that most S. maltophilia genes are strain-specific, suggesting that many potential 

virulence factors are unique and have yet to be functionally analyzed. Overall, variation in 

observed pathogenicity, differences in host transcriptional responses, and comparative genomics 

of S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. 

maltophilia pathogenesis.  
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Chapter 1 - Literature Review 

Nematodes are the most abundant multicellular organism on Earth and consist of over 

25,000 species, both free-living and parasitic (Zhang, 2013). Caenorhabditis elegans are free-

living nematodes that can be found in the natural environment world-wide (Barriere & Felix, 

2007; Barrière & Félix, 2005; Dirksen et al., 2016; Félix & Duveau, 2012; Haber et al., 2018). 

They feed on a variety of bacteria found in rotting organic matter and are most commonly 

isolated from rotting fruits, flowers, and stems (reviewed in Schulenburg & Félix, 2017). 

Therefore, in the natural environment, C. elegans are in constant contact with many organisms, 

including other small invertebrates, bacteria, and fungi. C. elegans travel between locations via 

vectors, such as isopods and snails (Barrière & Félix, 2005; Félix & Duveau, 2012). Nematodes 

are also prey to a variety of insects and fungi, in addition to playing host to a number of 

pathogenic and symbiotic bacteria (Dirksen et al., 2016; reviewed in Schulenburg & Félix, 2017) 

(Figure 1.1).  

C. elegans is an excellent genetic model organism for studying many fields of biology, 

including development, cell biology, innate immunity, and neurobiology. In the laboratory, C. 

elegans are grown on plates seeded with Escherichia coli OP50. This artificial lab setting differs 

significantly from the natural environment and lacks ecologically important biotic components. 

In addition, many recent studies have determined that bacteria, both in the surrounding 

environment and the microbiome of many organisms, influence behavior, aging, and overall 

health (reviewed in Chilton et al., 2015; Dirksen et al., 2016; Ikeda et al., 2007; Rae et al., 2008; 

Samuel, et al., 2016). These observations led to studies investigating the effects of diverse 

microorganisms, including bacteria, fungi, and viruses, on C. elegans.  
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C. elegans are advantageous for use in studying animal-microbe interactions because they 

have many progeny (up to 300), a short generation time (3.5 days), and small size (1 mm). They 

are also transparent, which allows for easy visualization of organism development, bacterial 

colonization in the pharynx and intestine, and intracellular properties such as protein localization 

and expression. In addition, there are a variety of tools for determining the health of C. elegans, 

including fecundity, lifespan, and stress response assays. C. elegans are also amenable to genetic 

manipulation, allowing for an in depth understanding of the genetics underlying host-microbe 

interactions. 

 

 

 

Figure 1.1 Overview of native microorganism interactions with C. elegans  

Adapted from Schulenburg & Felix, 2017. Highlights interactions such as bacterial food 

(Acetobacter, Gluconobacter, and Enterobacter), pathogens/parasites (Orsay virus, 

microsporidia, the fungus D. coniospora, and bacteria Pseudomonas, B. thuringiensis, and 

Leucobacter), and commensals/mutualists (the bacterial genera Ochrobactrum, Spingomonas, 

and Enterobacter). 
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 C. elegans-bacterial interactions 

Bacteria that interact with C. elegans can be classified as prey, being consumed by C. 

elegans, mutualists, providing nutrients through metabolism, or pathogens. These interactions are 

dynamic, and a single species can fit into more than one category. This compound relationship 

causes varying responses to bacteria that lead to appropriate actions, including a neuronal 

response, a nutrition response, and a pathogen response (Kim, 2013) (Figure 1.2). The neuronal 

response is the detection of bacteria as either food or pathogen and leads to further neuronal and 

endocrine signaling that can affect behavior and longevity (Kim, 2013). For example, C. elegans 

preferentially chose food that promotes growth, and this behavior is dependent on the amphid 

AIY neurons (Shtonda & Avery, 2006). There is also evidence that neuroendocrine signaling is 

involved in recognition of pathogens. For example, C. elegans can learn to avoid pathogenic 

bacteria such as Pseudomonas aeruginosa and Serratia marcescens through a serotonin signaling 

pathway (Zhang, 2008). Furthermore, signaling between neurons and the intestine plays a role in 

the immune response to some pathogenic bacteria (Kawli & Tan, 2008; Styer et al., 2008). 

The nutrition response is based on the nutritional value of bacteria based on metabolites 

that the bacteria produces. For example, exposure of C. elegans to E. coli mutants that produce 

less folate caused decreased lifespan (Virk et al., 2012). Although the nutrition response is 

independent of induction of stress or defense responses caused by exposure to bacteria, 

unravelling the nutritional value of a particular bacterium from its pathogenic potential has 

proven to be difficult (Kim, 2013). For example, further characterization of the E. coli folate 

synthesis mutants determined that mutations in these genes also decreased the virulence of 

pathogenic bacteria (Virk et al., 2016). It was also discovered that E. coli OP50 is mildly 

pathogenic, as killing the bacterial cells with UV or kanamycin inhibits bacterial accumulation in 
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the intestine and increases longevity (Garigan et al., 2002). Therefore, folate abundance 

produced by bacteria may play a role in pathogen response in C. elegans rather than simply 

changing the nutritional value of the bacteria (Virk et al., 2016). 

The pathogen response depends on the activation of several innate immune, defense, and 

stress pathways that are discussed in detail in the next section. A shift from predator-prey to 

pathogen-host often occurs as C. elegans age and correlates with accumulation of bacteria within 

the intestine (Garigan et al., 2002). This shift involves three stages: 1) predation, which involves 

mastication, or break down, of bacteria in the pharyngeal grinder followed by uptake of nutrients 

from bacterial cell material in the intestine, 2) symbiosis, in which live bacteria that are able to 

survive pharyngeal grinding inhabit the intestine and provide nutrients to the nematode through 

metabolism, and 3) dysbiosis, where bacteria accumulate in the intestine and cause damage to 

tissues (Cabreiro & Gems, 2013) (Figure 1.2). This change is dependent on several factors, 

including efficiency of the pharynx, the ability of bacteria to proliferate in the intestine, and the 

capability of the host to reduce bacterial accumulation through defense responses.  

The interplay of these responses leads to a multi-faceted relationship between C. elegans 

and bacteria. In the natural environment, for instance, these responses occur simultaneously with 

a multitude of bacteria. Unraveling these responses involves simplifying interactions 

encountered in the natural environment. The most common approach is to study the response of 

C. elegans to individual bacterial species. In particular, identifying bacteria that are detrimental 

to C. elegans and determining how C. elegans attempts to counteract this damage will provide 

insight into the underlying mechanisms of the pathogen response. 
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Figure 1.2 The dynamic interactions between C. elegans and bacteria 

This figure depicts the response types and interactions of responses by C. elegans as they 

encounter bacteria, including the neuronal response, nutrition response, and pathogen response. 

It also illustrates the shift from predator-prey to pathogen-host as C. elegans age.   
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 C. elegans as an innate immunity model  

The study of C. elegans genes and pathways involved in pathogen response is medically 

relevant, as many of these genes and pathways are conserved. Since approximately 40% of genes 

found in C. elegans have orthologs in humans, many processes in C. elegans are conserved in 

mammals (Shaye & Greenwald, 2011). In fact, conservation of innate immune genes between 

nematodes, insects, and mammals has revealed important immune factors in C. elegans, 

indicating similarities between innate immunity in C. elegans and other metazoa (reviewed in 

Dierking, Yang, & Schulenburg, 2016; Garsin et al., 2003; Mallo et al., 2002; Shivers et al., 

2010). However, C. elegans do not have dedicated innate immune cells as found in vertebrates. 

Therefore, their immune responses usually occur at physical barriers where pathogenesis begins, 

such as the cuticle and intestine (Kim & Ewbank, 2015).  

More recently, innate immune responses in C. elegans have been studied in ecologically-

relevant contexts  (e.g. Boehnisch et al., 2011; O’Rourke et al., 2006; White et al., 2016). 

Studying interactions with species encountered in the natural environment of C. elegans ensures 

realistic responses and provides insight into the complex microbiome of C. elegans. Some 

pathogenic species that have been studied because of their ecological importance include 

Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and Bacillus thuringiensis (White et 

al., 2016; Kirienko et al., 2014; Tan, Mahajan-Miklos, & Ausubel, 1999; Boehnisch et al., 2011; 

Feinbaum et al., 2012; Huffman et al., 2004). The identification of natural bacteria of the 

microbiome of C. elegans and their virulence is reviewed in more detail in the next section. 

Genes and pathways involved in these defense responses to pathogens are discovered by forward 

genetic screens, analysis of differentially expressed genes after pathogen exposure, and 

identification of orthologs between organisms (e.g. Kim et al., 2002; Shivers et al., 2010; 
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(Shivers et al., 2010) Troemel et al 2006; Murphy et al., 2003; Mallo et al., 2002). These 

techniques have led to the identification of many conserved and novel mechanisms employed by 

C. elegans to defend against pathogens.  

In general, the innate immune response involves three steps, each of which is carried out 

by different classes of proteins (Kim & Ewbank, 2015). The first step is the recognition of the 

pathogen. This step can be species specific, by proteins that recognize particular toxins or 

bacterial proteins, or more general, responding to pathogen-induced damage. The second step 

involves signaling pathways which activate downstream proteins and eventually transcription 

factors (Figure 1.3). The final step involves the genes that are regulated downstream of signaling 

pathways that serve as effector molecules, including anti-microbial peptides (AMPs) (reviewed 

in Kim & Ewbank, 2015). These steps are detailed below, with an emphasis on responses to 

bacterial pathogenesis in the intestine.  

 

Figure 1.3 Overview of innate immune and defense pathways 

Includes TGFβ pathway, DAF-2/16 insulin-like pathway, p38 MAPK pathway, and unfolded 

protein response (UPR) pathway. Purple indicates ligands, blue indicates receptors, and gray 

indicates downstream signaling components, and gold indicates transcription factors. DAG= 

diacylglycerol, TF= transcription factor. 
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 Pathogen recognition proteins 

Pathogen recognition can result from direct recognition of structural components or 

secreted proteins of the pathogen, termed microbe-associated molecular patterns (MAMPs), or 

indirectly via perturbations induced by infection, termed damage-associated molecular patterns 

(DAMPs). Interestingly, many conserved receptors involved in MAMP recognition, including 

peptidoglycan recognition proteins, Gram-negative binding proteins, or nucleotide-binding 

oligomerization domain (NOD)-like receptors, are not found in C. elegans (Kim & Ewbank, 

2015). Toll-like pathway receptors play a role in immunity in insects and higher-order metazoa 

(Lindsay & Wasserman, 2014; Liu & Zhao, 2007). The sole Toll-like receptor (TLR) in C. 

elegans, TOL-1, is vital for proper development and function of sensory neurons (Brandt & 

Ringstad, 2015). Although the p38 mitogen activated protein kinase (MAPK) pathway 

downstream of the TLR is important for response to many pathogens in C. elegans, TOL-1 does 

not appear to play a role in recognition of or response to Staphylococcus aureus or Pseudomonas 

aeruginosa (Kim et al., 2002; Irazoqui et al., 2010; Pujol et al., 2001). The lack of traditional 

MAMP recognition mechanisms suggests that pathways involved in innate immunity in C. 

elegans may not be responding directly to the pathogen, but instead to cell damage or other 

stressors that are a consequence of infection.  

In other animals, C-type lectin domain (CTLD) containing proteins recognize and bind 

bacterial cell walls via pathogen recognition receptors (reviewed in van den Berg, Gringhuis, & 

Geijtenbeek, 2012). In C. elegans, two C-type lectin domain proteins, CLEC-39 and CLEC-49, 

can directly bind S. marcescens, and mutations that inactivate these genes cause increased 

susceptibility to S. marcescens infection (Miltsch, Seeberger, & Lepenies, 2014). However, 

whether CTLD containing proteins function in pathogen recognition and activation of innate 
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immune pathways is unknown. These genes are also differentially expressed in response to 

several pathogens (Irazoqui et al., 2010a; Yang et al., 2015) and are regulated by innate immune 

pathways (Alper et al., 2007; Troemel et al., 2006). Therefore, it is unclear if these proteins play 

a role in recognizing pathogens or function as downstream antimicrobial peptides.  

The lack of conserved receptors suggests that there may be non-canonical mechanisms 

involved in pathogen recognition. Recent evidence has shown that the nervous system may be 

involved in upstream signaling that leads to pathogen responses in the intestine.  INS-7, an 

insulin-like ligand that binds to and activates the insulin-like receptor DAF-2 (discussed below), 

is expressed mainly in neuronal cells and at low levels in the intestine (Murphy, Lee, & Kenyon, 

2007). ins-7 expression is increased upon exposure to P. aeruginosa via excretion from dense 

core vesicles, leading to activation of the DAF-2 pathway and suppression of the DAF-16 

transcription factor (Evans, Kawli, & Tan, 2008; Kawli & Tan, 2008). Mutations in ins-7 cause 

resistance to P. aeruginosa, and transgenic expression of INS-7 in neuronal cells alone is able to 

suppress ins-7 mutant resistance (Evans, Kawli, & Tan, 2008; Kawli & Tan, 2008). This 

suggests that not only do neuronal cells play a role in innate immunity, but INS-7 alone is able to 

activate the DAF-2 pathway and decrease resistance to pathogens. The mechanism of how INS-7 

activates DAF-2 remains unclear, but it may be that INS-7 is able to recognize pathogens or 

pathogen-induced damage.  

 Pathogen and defense response signaling pathways 

 p38 MAPK pathway 

Mitogen-activated protein kinase (MAPK) pathways play significant roles in a variety of 

cellular responses such as development, differentiation, stress, and apoptosis (Cargnello & Roux, 

2011). The p38 MAPK pathway in mammals is activated by cytokines and other stressors in 
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immune cells (Johnson & Lapadat, 2002). Analysis of C. elegans mutants that enhanced 

susceptibility to P. aeruginosa PA14 led to the identification of conserved components of the 

p38 MAPK signaling pathway including SEK-1, NSY-1, and PMK-1 (Kim et al., 2002). NSY-1, 

a MAPK kinase kinase (MAPKKK), phosphorylates and activates SEK-1, a MAPKK, which 

signals via the MAPK PMK-1 (Kim et al., 2002) (Figure 1.3). This pathway acts cell 

autonomously in the intestine in response to bacterial pathogens, and in the epidermis in 

response to fungal pathogens and wounding (Pujol et al., 2008; Shivers et al., 2009). In 

mammalian studies, a variety of transcription factors were identified as direct targets of PMK-1, 

many of which are conserved in C. elegans (Akira, Uematsu, & Takeuchi, 2006; Karin, 1995). A 

forward genetic screen identified AFT-7, ortholog of human AFT2, as being an important p38 

MAPK transcription factor regulating transcription of innate immune genes (Shivers et al., 

2010). AFT-7 functions as a transcriptional repressor until it is phosphorylated by PMK-1, then 

becoming a transcriptional activator of innate immune genes (Shivers et al., 2010) (Figure 1.3).  

In Drosophila, Toll-like receptors and Toll-Interluekin-1 Receptor (TIR) domain adaptor 

proteins function upstream of p38 MAPK cascades (Lindsay & Wasserman, 2014). TIR domain 

adapter proteins specifically bridge the gap between TLR and MAPK signaling, initiating p38 

MAPK pathways. In C. elegans, mutations in components of the TLR pathway, including tol-1, 

trf-1, and ikb-1, cause increased accumulation of Salmonella enterica in the pharynx and 

increased susceptibility to S. enterica (Tenor et al., 2008). However, the TLR pathway does not 

appear to play a role in intestinal pathogenesis (Irazoqui et al., 2010; Pujol et al., 2001). The sole 

TIR domain protein in C. elegans, TIR-1, activates MAPK signaling upstream of PMK-1 

(Liberati et al., 2004). The mechanism of TIR-1 activation remains unclear but may be related to 

diacylglycerol (DAG). DAG generation is catalyzed by phospholipase C and causes activation of 
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protein kinase C (PKC) (Ren et al., 2009). TPA-1, a PKC in C. elegans, is directly 

phosphorylated by DAG and activates DKF-2, a protein kinase D (Irazoqui et al., 2010b; Ren et 

al., 2009) (Figure 1.3). Mutations in dkf-2 result in increased susceptibility to P. aeruginosa and 

Enterococcus faecalis (Ren et al., 2009). DKF-2 is required for immune response via p38 MAPK 

signaling, as overexpression of DKF-2 causes increase in phosphorylated PMK-1 (Ren et al., 

2009). The mechanism of activation between DKF-2 and MAPK signaling remains unknown, 

but DKF-2 may directly phosphorylate TIR-1 (Irazoqui et al., 2010b; Kim & Ewbank, 2015).   

Pore-forming toxins (PFTs), produced by many human bacterial pathogens, have also 

been shown to activate p38 MAPK signaling in several organisms, including C. elegans, insects, 

and mammalian cells (reviewed in Porta et al., 2011). In C. elegans, mutations in pmk-1 and sek-

1 caused increased susceptibility to PFTs produced by B. thuringiensis (Huffman et al., 2004).  

 DAF-2/16 insulin-like pathway 

The insulin-like signaling pathway was originally identified in C. elegans for its role in 

lifespan, reproduction, and regulating dauer entry, an alternative life stage that occurs under 

strenuous environmental conditions (Kenyon et al., 1993; Kimura et al., 1997). Mutations in the 

sole insulin/IGF-1-like receptor daf-2 in C. elegans leads to an almost doubling of lifespan when 

exposed to many bacteria, including pathogens such as P. aeruginosa, E. faecalis, 

Staphylococcus aureus (Garsin et al., 2003). This effect is dependent on the Forkhead 

transcription factor DAF-16 (Garsin et al., 2003). Other components of this pathway include the 

phospho-inositide 3-kinase, AGE-1, which is phosphorylated by DAF-2 resulting in conversion 

of phosphatidylinositol (4,5)-trisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3), which then recruits kinases PDK-1, AKT-1, AKT-2, and SGK-1. PDK-1 phosphorylates 

AKT-1, AKT-2, and SGK-1, which then form a complex that phosphorylates DAF-16 (Ewbank, 
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2006). Phosphorylation of DAF-16 results in its localization to the cytoplasm, which prevents it 

from entering the nucleus and regulating gene expression (reviewed in Landis & Murphy, 2010) 

(Figure 1.3). When the pathway is inactivated (e.g. in daf-2 mutants), DAF-16 localizes to the 

nucleus which results in upregulation of genes involved in longevity and stress resistance. 

Because the DAF-2/16 pathway is involved in both longevity and defense responses, this 

couples the pathway with a likely role in innate immunity. In fact, many of the genes targeted by 

DAF-16 have antimicrobial activities, such as lysozymes and detoxification enzymes (McElwee, 

Bubb, & Thomas, 2003; Murphy et al., 2003). In addition, daf-2 mutant worms display a 

decrease in bacterial packing, suggesting that regulation of genes by DAF-16 defends against 

accumulation of bacteria in the intestine (Murphy et al., 2003). Studies examining the effect of 

pathogen exposure have intriguingly found that P. aeruginosa infection suppresses the activity 

DAF-16, rather than inducing these defense responses (Evans, Kawli, & Tan, 2008). This 

suggests that although constitutive expression of this pathway results in increased longevity, it 

may not play a direct role in pathogen response. In fact, it may even be targeted by pathogens as 

a virulence mechanism.  However, this phenomenon may be pathogen specific, as exposure to S. 

marcescens induces expression of several DAF-16 targets that have putative antimicrobial 

activity (Mallo et al., 2002).  

This pathway is complex in nature with a variety of coregulators and cross-talk between 

other pathways. For example, the increase in lifespan of daf-2 mutants is dependent on the p38 

MAPK pathway, suggesting it acts in parallel or downstream of DAF-2/16 (Troemel et al., 

2006). In addition, many DAF-16 targets contain a GATA motif, termed the DAF-16 associated 

element (DAE) (Murphy et al., 2003). Two GATA transcription factors, ELT-3, specific to the 

epidermis, and ELT-2, specific to the intestine, both regulate expression of DAF-16 targets in a 
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tissue specific manner (Zhang et al., 2013). Mutations in elt-2 cause increased mortality to P. 

aeruginosa, S. enterica, and E. faecalis and bacterial distention in the intestine (Kerry, TeKippe, 

Gaddis, & Aballay, 2006; Shapira et al., 2006). ELT-2 regulates expression of many genes 

involved in innate immunity and defense response (Block et al., 2015), and seems to be specific 

to pathogen response, as elt-2 mutants are not susceptible to oxidative stress, heat stress, or 

cadmium exposure (Shapira et al., 2006). Conflicting results on whether these ELT-2 or ELT-3 

can suppress the longevity of daf-2 mutants suggests that the interplay of these pathways is 

complex and condition-specific (Budovskaya et al., 2008; Kerry et al., 2006; Zhang et al., 2013). 

Lastly, SKN-1, a putative transcription factor involved in stress responses in the intestine, can be 

phosphorylated by AKT-1, resulting in repression of SKN-1 target gene expression (Tullet et al., 

2008) (Figure 1.3). Mutations in skn-1 in a daf-2 background suppress the longevity phenotype 

of daf-2 mutants, suggesting that SKN-1 contributes to increased lifespan and stress responses 

(Tullet et al., 2008). To further complicate this response, Block and colleagues suggest a 

complex interplay between ELT-2, SKN-1, and ATF-7, where a combination of factors is 

required for expression of particular immune genes (Block et al., 2015) (Figure 1.3). Further 

analysis of double and triple mutants in response to different pathogens is required to further 

understand the interaction of these pathways. 

 Unfolded protein response pathway 

The IRE-1-XBP-1 branch of the unfolded protein response (UPR) regulates expression of 

genes involved in ER homeostasis, leading to defense responses and increased longevity (Zhang 

& Kaufman, 2004). The UPRER is conserved in animals as well as some fungi. This pathway 

involves activation of IRE-1, which leads to the alternative splicing and activation of xbp-1 

mRNA in response to accumulation of unfolded proteins in the endoplasmic reticulum (ER) 
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(Figure 1.3). In addition to unfolded proteins, activation of IRE-1-XBP-1 occurs in response to 

pore forming toxins (PFT). Mutants of IRE-1 and XBP-1 lead to hypersensitivity to PFT Cry5 

(Bischof et al., 2008). Activation of this pathway in response to PFTs, but not unfolded proteins, 

is dependent on the p38 MAPK pathway (Bischof et al., 2008). However, the IRE-1-XBP-1 

branch of the UPR is also involved in response to bacterial pathogens that do not form PFTs. 

Intestinal infection of C. elegans with P. aeruginosa induces expression of the heat shock protein 

HSP-4, a downstream effector of the IRE-1-XBP-1 pathway (Richardson, Kooistra, & Kim, 

2010). Again, this activation is dependent on the p38 MAPK signaling pathway. To understand 

whether the UPR is involved in counteracting the innate immune response, pmk-1; xbp-1 double 

mutants were examined. Whereas xbp-1 single mutants show marked decrease in survival, the 

double mutant is less detrimental and comparable to the single pmk-1 mutant (Richardson, 

Kooistra, & Kim, 2010). This suggests the UPR mitigates cell damage induced by the innate 

immune response.  

In addition to UPR in the ER being involved in innate immunity, another study identified 

an overlap of upregulated genes in response to mitochondrial stress and infection to P. 

aeruginosa (Pellegrino et al., 2014).  The activation of several of these genes was dependent on 

the mitochondrial UPR transcription factor ATFS-1 (Pellegrino et al., 2014). Unlike the UPRER, 

regulation of this pathway is independent of the MAPK pathway (Pellegrino et al., 2014). 

Therefore, the mitochondrial UPR is also able to protect against pathogens that induce 

mitochondrial stress by coupling antimicrobial and mitochondria homeostasis gene expression.  

 TGFβ pathway 

The transforming growth factor β (TGFβ) pathway is involved in development and 

embryogenesis (Roberts et al., 2010; Savage-Dunn, 2005). In mammals, the TGFβ pathway is 
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required for T cell development and differentiation (reviewed in Letterio, 2005). In C. elegans, 

mutants of dbl-1, a TGFB ligand, are prone to infection and are more susceptible to S. 

marcescens (Mallo et al., 2002). In addition, several antimicrobial peptides, including CLEC-85 

and LYS-8, are regulated by this pathway (Alper et al., 2007; Roberts et al., 2010). The 

canonical DBL-1/TGFβ pathway components include SMA-6 and DAF-4, type I and II 

receptors, respectively, and SMA-2, SMA-3, and SMA-4, Smad signal transducers (Savage-

Dunn, 2005) (Figure 1.3). Expression of several AMPs is dependent on SMA-2 (Mochii et al., 

1999). Further details on the involvement of other downstream components is largely unknown; 

however, mutations in dbl-1, sma-6, sma-2, sma-3, and sma-4 in C. elegans cause increase 

susceptibility to S. maltophilia (White et al., 2016). 

 Anti-microbial peptides 

Traditionally, anti-microbial peptides have been identified by homology to other AMPs 

and by expression profiling. Genes that are commonly identified as being differentially 

expressed in response to bacterial pathogens include caenopores, lysozymes, defensin-like 

AMPs, and C-type lectin domain proteins (reviewed in Dierking, Yang, & Schulenburg, 2016). 

The characterization of these proteins is largely based on sequence structure, and further 

functional characterization of these AMPs is not well studied.   

Caenopores, or saposin-like proteins in C. elegans share structural similarity with 

saposin-like proteins (SAPLIPS) in protozoa and mammals (Roeder et al., 2010). Although there 

are 28 saposin-like protein family (SPP) proteins identified in C. elegans, only a few have been 

identified as immune effectors. spp-9 and spp-18 are regulated by DKF-2 and are upregulated by 

P. aeruginosa exposure (Ren et al., 2009).  spp-1 and spp-12 are regulated by DAF-16, and 

knockdown of these genes results in decreased lifespan on E. coli (Alegado & Tan, 2008). 
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Further, knockdown of spp-1 and spp-5 results in accumulation of bacteria in the intestine 

(Alegado & Tan, 2008; Roeder et al., 2010). Functional analysis of SPP-5 revealed its ability to 

form pores in and damage bacterial cell walls (Roeder et al., 2010).  

Lysozymes are involved in the hydrolysis of peptidoglycan, a major component of 

bacterial cell walls. Not surprisingly, lysozymes also play a role in digestion (reviewed in 

Dierking, Yang, & Schulenburg, 2016). C. elegans lysozyme genes are classified into ten protist-

type (lys-1 to lys-10), and five invertebrate-type (ilys-1 to ilys-5). This is the largest class of 

genetically diverse lysozymes found in any organism to date (Schulenburg & Boehnisch, 2008). 

All lysozymes studied to date are expressed mainly in the intestine (reviewed in Schulenburg & 

Boehnisch, 2008). Similar to caenopores, many lysozymes are regulated by defense pathways 

such as TGFβ (lys-1 and lys-8), DAF-2/16 (lys-7 and lys-8), and p38 MAPK (lys-2) (Alper et al., 

2007; Murphy, McCarroll, et al., 2003; Troemel et al., 2006). Many lysozyme proteins are 

differentially expressed in response to pathogens (Boehnisch et al., 2011; Dierking, Yang, & 

Schulenburg 2016; Yang et al., 2015) (Figure 1.4). In fact, ilys-1 and lys-9 are the only 

lysozymes that are not differentially expressed upon bacterial pathogen exposure (Dierking, 

Yang, & Schulenburg 2016) (Figure 1.4). However, to our knowledge, functional 

characterization of lysozymes to determine their antimicrobial activities has not been performed.  

Defensin-like peptides, termed antibacterial factors ABF-1 to ABF-6 in C. elegans, were 

identified based on sequence homology to proteins of Ascaris suum, an intestinal parasitic 

nematode (Kato et al., 2002). ABF-2 displays in vitro antimicrobial activity and knockdown 

increases pathogen accumulation (Alegado & Tan, 2008; Kato et al., 2002).  Regulation of these 

genes is not well understood, but the M-box motif-class transcription factor HLH-30 appears to 

be required for abf-2 expression in response to S. aureus (Visvikis et al., 2014).   
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C-type lectin domain (CTLD) proteins were originally characterized for their Ca+-

dependent carbohydrate binding ability (reviewed in Zelensky & Gready, 2005). However, this 

superfamily has now grown to include proteins with structural similarity that do not display these 

functional characteristics. In C. elegans, CTLD proteins are the most diverse group of effector 

molecules, containing 283 members (Pees et al., 2016). Although CLEC-39 and CLEC-49 have 

been shown to directly bind to S. marcescens (Miltsch et al., 2014), CTLD proteins have not 

been shown to have antimicrobial activities. Evidence of interaction between several CTLD 

proteins and LYS-7 could suggest downstream signaling or co-regulation of immune partners 

(Kesika & Balamurugan, 2012). In addition, CTLD proteins exhibit differential expression in 

response to a variety of pathogens (Alper et al., 2007; Dierking, Yang, & Schulenburg, 2016; 

Irazoqui et al., 2010a; Troemel et al., 2006; Yang et al., 2015) (Figure 1.4). Mutation or 

knockdown of several CTLD genes, including clec-17, clec-39, clec-49, clec-70, and clec-86, 

results in increased susceptibility to pathogens (Irazoqui et al., 2010a; Miltsch et al., 2014; 

O’Rourke et al., 2006). Although there is a clear role for CTLD proteins in innate immune 

response, their functional roles in C. elegans are not well known (Pees et al., 2016).  

WormExp, a database that contains “-omics” data from many experiments under a variety 

of conditions, was developed to analyze transcriptional and translational responses across 

experiments. This database was recently used to compare common effectors in response to a 

variety of pathogens (Dierking, Yang, & Schulenburg, 2016) (Figure 1.4). Dierking and 

colleagues found that expression of effectors is taxon-specific, but some members of common 

classes of AMPs, specifically caenopores and lysozymes, are differentially expressed in response 

to almost all pathogens. Defensin-like peptides, on the other hand, play a less prominent and 
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more species-specific role in response to bacterial pathogens (Dierking, Yang, & Schulenburg, 

2016). 

Therefore, although many common innate immune pathways and effectors have been 

identified, there are differences in responses to different bacteria and even strains of bacteria. For 

example, one study comparing responses to the intestinal pathogens S. marcescens, E. faecalis, 

and Photorhabdus luminescens, found only 11% overlap in differentially expressed genes by 

RNA sequencing (Engelmann et al., 2011). This phenomenon could be due to species specific 

responses to different pathogens, or the ability of bacteria to manipulate different host responses. 

Therefore, it is essential to study a variety of pathogens, their virulence factors, and responses to 

these pathogens in order to fully understand the complexity of genetic mechanisms underlying 

pathogen defense.  
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Figure 1.4 Gene expression patterns of caenopores, lysozymes, and defensin-like AMP 

genes in C. elegans upon exposure to bacteria 

Red boxes indicate up-regulation and blue boxes represent down-regulation, based on the most 

responsive gene sets in the WormExp database. YP= Yersinia pestis; XN= Xenorhabdus 

nematophila; YPS= Yersinia pseudotuberculosis; SE= Salmonella enterica; PA= Pseudomonas 

aeruginosa; MA= Microcystis aeruginosa; EC= Erwinia carotovora; PL= Photorhabdus 

luminescens; SM= Serratia marcescens; VC= Vibrio cholerae; BT= Bacillus thuringiensis; SA= 

Staphylococcus aureus; EF= Enterococcus faecalis; MN= Microbacterium nematophilum; LR= 

Lactobacillus rhamnosus; ML= Micrococcus luteus; BM= Bacillus megaterium; PS= 

Pseudomonas sp.; EC= Escherichia coli. 
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 Bacteria found in the natural environment of C. elegans 

Many studies have focused on the interactions between C. elegans and bacteria in the 

context of nutritional value, pathogenesis, and neuronal response (reviewed in Kim, 2013; 

reviewed in Kim & Ewbank, 2015). However, many of these bacteria, including S. enterica, P. 

aeruginosa, S. aureus, and E. faecalis, were chosen because of their convenience in the lab 

setting or their implication in human health rather than their native interactions with C. elegans 

in the environment. In order to understand pathogen response and other interactions to individual 

species, it is necessary to focus efforts on species that realistically interact with C. elegans. 

Previous studies have determined that the microbiome plays a role in lifespan, aging, and 

disease. In humans, gut microbiome dysbiosis is linked to several diseases, including colorectal 

cancer, diarrheal diseases, liver diseases, and diabetes (reviewed in Wang et al., 2017). In 

addition, microbiota of elderly people correlated with health markers such as frailty and 

nutritional status (Claesson et al., 2012). Some identified commensal species can protect the 

intestine from pathogenic species by preventing their colonization and reducing inflammatory 

responses (reviewed in Buffie & Pamer, 2013). In C. elegans, worms exposed to lactic acid 

bacteria, including several species of lactobacilli and bifidobacteria, display increased resistance 

to Salmonella enterica, suggesting a probiotic function of some bacterial species on immunity 

(Ikeda et al., 2007).  

This symbiosis between microbes and animals has led to the hologenome theory, 

suggesting that microbes and their host act as one unit of selection in evolution (Zilber-

Rosenberg & Rosenberg, 2008). This suggests that the microbiome is heritable from generation 

to generation, but also has the ability to evolve with environmental shifts (Zilber-Rosenberg & 

Rosenberg, 2008). For example, one study determined that after coevolution of C. elegans with a 
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natural pathogen, B. thuringiensis, C. elegans became more resistant to killing by B. 

thuringiensis (Schulte et al., 2010). This not only emphasizes the importance of the microbiome, 

but suggests it is intimately coupled with and causes genetic changes within the host and vice 

versa. 

The emerging evidence of the importance of the microbiome has led to systematic 

characterization of microbiomes of many organisms (e.g. Cheng et al., 2013; Yun et al, 2014; Ni 

et al., 2013; Shin et al., 2016). For example, several groups recently determined the microbial 

repertoire associated with C. elegans (Berg et al., 2016; Dirksen et al., 2016; Samuel et al., 

2016). All three studies characterized the microbial communities found in substrates, such as 

rotting plant matter, whereas two of the three studies (Dirksen et al., 2016; Berg et al., 2016) also 

characterized the internal microbiome of C. elegans. In all studies, microbial isolates were 

obtained from substrates or worms, and the 16S rRNA gene was amplified and sequenced to 

identify bacterial composition using operational taxonomic units (OTUs). When assessing 

microbiome communities, worms were washed several times before DNA was isolated to avoid 

contamination of sequences from substrates or the nematode cuticle. Overall, thousands of OTUs 

were identified in all substrates and worms, indicating an extremely diverse environment and 

microbiome.  

 Microcosm experiment to simulate diverse soil environments 

Berg and colleagues created artificial microcosms to simulate natural environments using 

soil supplemented with various produce, including plants and fruit (Berg et al., 2016). Wild-type 

worms were subjected to one of three different soil types for three days before sequencing, and 

DNA was isolated from both worms and soils. Bacterial composition was compared between 

worms and soils, with all worm-associated bacterial communities, regardless of substrate, more 
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similar to each other than to their respective substrate (Figure 1.5A). Overall, 4,445 OTUs were 

identified in the soils, with only 60% (2,656 OTUs) also being represented in the worms. This 

trend is suggestive of selective pressure, either by competition of bacteria within the intestine or 

selection of bacteria by the worm. In addition, a core microbiome was identified that contained 

taxa that were shared among all worm samples. This shared microbiome included the families 

Burkholderiaceae, Bacillacea, Enterobacteriaceae, Aeromanadaceae, Alcaligeaceae, 

Pseudomonadaceae, Phizobiaceae, Sphingobacteriaceae, and Xanthomonadaceae. Interestingly, 

all members of the core microbiome were found in higher relative abundance in the microbiome 

than within the soils, suggesting preferential inclusion of specific genera within the microbiome 

(Berg et al., 2016). To further support this, Checkerboard scores, or C-scores, were used to 

determine whether the assembly of the microbiome was random. C-scores are calculated using 

an incident matrix based on instances of mutual exclusion of bacterial species. This analysis 

resulted in a non-normal pattern, indicating that there is some driving force for microbiome 

assembly in C. elegans. Interaction networks between bacterial families revealed a large number 

of negative interactions between bacteria, indicating that competition may be one such 

mechanism for microbiome assembly (Berg et al., 2016).  

 Characterization of bacteria found in the natural habitat of C. elegans 

Samuel and colleagues identified the bacterial community associated with substrates 

where C. elegans were collected (Samuel et al., 2016). Substrates, including rotting fruit and 

stems, and snails, a common vector for C. elegans dispersal, were sampled in several locations in 

France and Spain. In addition to the isolation of bacterial DNA from substrates, nematodes and 

bacteria were also isolated and characterized from each substrate. In total, ~2,400 OTUs were 

identified from the substrates. Interestingly, this number is lower than total soil diversity and 
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more similar to specialized niches such as rhizospheres (Lundberg et al., 2012). Relative 

abundance of genera between substrate types were also generally comparable. Common phyla 

within substrates include Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. 

Individual bacterial species were isolated and further characterized for their effect on the 

overall health of C. elegans. To determine whether individual species are detrimental or 

beneficial to C. elegans, worms were grown on each of 565 bacterial species, and stress and 

immunity reporters were used to look for induction of pathogen responses. Using these data, 

each isolate was characterized as either beneficial, intermediate, or detrimental. Of all 565 

isolates, approximately 40% were beneficial, 40% were intermediate, and 20% were detrimental. 

In general, many Proteobacteria, as well as species within the genera Lactococcus were 

beneficial, whereas Bacteriodetes and Gammaproteobacteria tended to be more detrimental. 

Beneficial and detrimental bacteria were then mixed to determine whether the detrimental 

isolates inhibit growth and induce stress responses because of lack of nutritional value or because 

of their antagonistic effect on C. elegans. In several cases tested, the addition of E. coli OP50 to 

the detrimental isolate did not neutralize the effect of the detrimental strain, indicating that these 

strains have pathogenic effects on C. elegans rather than being poor nutrition sources. This 

phenomenon can also be seen in nature, whereby proliferating C. elegans are found more 

commonly on substrates that are enriched in more beneficial Alphaproteobacteria, but lack more 

detrimental Gammaproteobacteria, suggesting that the inclusion of beneficial bacteria does not 

outweigh the effects of the more detrimental species (Samuel et al., 2016).  

 Identification of the native microbiome of C. elegans 

Dirksen and colleagues combined the approaches of the previous studies by analyzing the 

microbial communities in the native habitats of Caenorhabditis species as well as the 
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microbiome of sampled nematodes from those habitats (Dirksen et al., 2016). Nematodes were 

sampled from locations in France and Portugal, and nematodes and respective substrates were 

collected from several locations in Germany. Nematode species collected include C. elegans, 

Caenorhabditis remanei, and Caenorhabditis briggsae. Microbial communities were sequenced 

from all substrates and worms either directly after sampling, or after growing on E. coli OP50 for 

several weeks (“lab enriched” worms). The lab-enriched worm microbiome was utilized to 

provide insight into bacterial species that persist in the worm and do not simply pass through the 

intestine. In addition, individual bacteria species were isolated from substrates for further 

analysis and development of an experimental microbiome. Similar to the microcosm 

experiments, microbial communities associated with nematodes, regardless of species, were 

more similar to each other than to microbial communities of substrates (Figure 1.5A). In 

addition, multivariate analyses resulted in clustering of sample types (“lab enriched” worms vs. 

natural worms vs. substrates) and nematode species (with C. elegans and C. briggsae differing 

from C. remanei), suggesting a nematode-specific microbiome as well as a species-specific 

microbiome. The most abundant OTUs in C. elegans microbiome included members of the 

genera Pseudomonas, Stenotrophomonas, Ochrobactrum, and Sphingomonas, as well as 

unclassified Enterobacteriaceae (Dirksen et al., 2016).  

An experimental microbiome consisting of 14 isolates was developed using the 

commonly identified taxa of the microbiome and isolated bacteria from the substrates (Dirksen et 

al., 2016). It was determined that the abundance of several of these bacterial species increases 

within the microbiome as compared to the bacterial lawn, suggesting preference for particular 

species. In addition, when C. elegans were raised on plates of single bacterial isolates and then 

transferred to plates without bacteria, several species were still detected in the intestine after 24 
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hours. This finding, along with the identification of a bacterial community in the “lab enriched” 

worms, suggests that some species are able to persist in, and colonize, the intestine. The 

experimental microbiome as well as individual isolates were then tested for their effect on 

population size, a measure of overall health of C. elegans. Whereas approximately 70% of 

individual isolates tested increased population growth, approximately 30% decreased population 

growth. The species that negatively affected population size belong to Gammaproteobacteria, 

Actinobacteridae, Bacilli, Flavobacteria, and Sphingobacteria, consistent with the detrimental 

species identified by Samuel and colleagues (Samuel et al., 2016). The experimental microbiome 

increased population growth when compared to E. coli OP50 under almost all conditions, 

including changes in plate salt concentration and temperature. This result conflicts with 

observations from Samuel et al., where many beneficial species were not able to rescue the 

effects of the detrimental species (Samuel et al., 2016). However, a study that grew C. elegans 

on subsets of natural isolates found that the intrinsic growth rate of C. elegans grown on a 

mixture of species was most similar to the intrinsic growth rate of the most beneficial species 

when grown on each individually (Darby & Herman, 2014). These conflicting results suggest 

that this phenomenon is dependent on the species utilized and possibly the method of 

determining health. Therefore, sometimes beneficial species are able to outweigh the effects of 

detrimental species and sometimes they are not. 

 Determination of a common microbiome 

A meta-analysis of these studies identified overall patterns when combining data from all 

experiments (Zhang et al., 2017). This analysis showed again that worm microbiomes, regardless 

of location or substrate, are different from, and less diverse than, that of the microbial repertoire 

associated with the substrates (Figure 1.5A). There are several possible explanations for this 
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phenomenon: some bacterial species are able to pass through the pharynx live and accumulate 

within the intestine of the worm, resulting in higher abundance, there is competition between 

species within the intestine, resulting in some species increasing in abundance and some 

decreasing in abundance, or C. elegans are able to recognize and preferentially choose bacteria to 

consume and avoid, resulting in the ability of only some species to enter the intestine. Likely it is 

a combination of the above factors, as there is previous evidence for both competition (Berg et 

al., 2016) and preference for some bacterial species over others (Abada et al., 2009; Zhang, 

2008). Further studies, including characterization of the microbiome over time, are needed to 

completely understand these dynamics. 

The robust signature of the microbiomes of C. elegans allowed for the identification of 

common microbes across studies, termed the core microbiome (Figure 1.5B, C). Overall, 260 

OTUs were identified in all C. elegans’ microbiomes, with the most abundant taxa including 

Enterobacteriaceae, Pseudomonadaceae, and Xanthomonadaceae (Zhang et al., 2017). Other 

taxa, such as Acetobacteriaceae, Actinobacteria, Moraxellaceae, and Comamonadaceae were 

found in lower abundance but still common between experiments, suggesting a key role for these 

species as well. In total, fourteen bacterial families are found in all natural worm microbiotas, 

with a majority of these, although not all, also being found in microbiomes of the lab enriched 

and microcosm C. elegans (Zhang et al., 2017) (Figure 1.5C). The identification of a common, 

reproducible microbiome allows for use of this core microbiome for future studies. In addition, 

focusing efforts on interactions of C. elegans with individual species that are encountered in their 

natural environment ensures that responses to these bacteria are realistic.  
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Figure 1.5 Characterizing the core microbiome of C. elegans 

Adapted from Zhang et al, 2017. A Principle coordinate analysis distinguishes bacterial 

communities found in C. elegans (filled) from those found in substrates (open) regardless of 

study. B Scatterplot of OUT-level abundance and commonality across all C. elegans 

microbiomes. Venn diagram compares OTUs from each type of microbiome. C Heatmap 

showing abundance of 14 bacterial families found in all natural worm microbiomes across 

sample. Red font indicates families that are also present in lab-enriched and microcosm 

microbiomes. Colored dots B and colors to the left of the heatmap C represent different bacterial 

phyla. 
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 Natural C. elegans pathogens  

In the past, many bacterial pathogens used to study innate immunity in C. elegans were 

chosen because of their medical relevance. However, with the systematic identification of natural 

pathogens associated with C. elegans, we are now able to focus efforts on bacterial pathogens 

that have medical implications but are also realistic pathogens to C. elegans. Many species 

identified as part of the worms’ microbiome have previously been studied in C. elegans and do 

in fact have implications on human health, including species of Pseudomonas and 

Stenotrophomonas (Berg et al., 2016; Brooke, 2012; Dirksen et al., 2016; Streit et al., 2004). In 

addition, some common detrimental taxa found in the core microbiome of C. elegans may be of 

ecological importance because of their increase in abundance in the microbiome as compared to 

substrates, such as Ochrobactrum and Chryseobacterium (Dirksen et al., 2016).  

Within Ochrobactrum, Ochrobactrum anthropi is the most widely studied for its 

occurrence as a human pathogen (reviewed in Ozdemir, Soypacacı, Sahin, Bicik, & Sencan, 

2006). Although Ochrobactrum infection in humans is rare, this bacterium is multi-drug resistant 

and able to cause infection in patients via medical devices, suggesting a potential to become an 

emerging opportunistic pathogen (Ozdemir et al., 2006). Isolation of O. anthropi from a patient 

with Crohn’s disease and short-bowel syndrome suggests that this species may be a part of our 

normal intestinal flora (Alnor et al., 1994). In addition to isolation of Ochrobactrum from human 

patients, it has also been isolated in soils and associated with wheat roots (Lebuhn et al., 2000).  

Chryseobacterium indologenes causes rare infections in humans, including bacteremia, 

wound sepsis, cellulitis, biliary tract infection, and pneumonia (reviewed in Lin et al., 2010). 

Chryseobacterium species can be found in water, soil, and plants (Chaudhari et al., 2009; Gudeta 

et al., 2016; Nishioka et al., 2016). Chryseobacterium is commonly isolated from marine animals 
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such as trout, shrimp, and seals, posing a threat to consumers of these animals (Maravic et al., 

2013).  

Interestingly, most species of Pseudomonas isolated in association with C. elegans were 

not detrimental to their health (Dirksen et al., 2016; Samuel et al., 2016). However, they are 

discussed as a pathogen within this section because of the plethora of research using C. elegans 

and P. aeruginosa to understand pathogen-host interactions. Two mechanisms of pathogenesis 

by P. aeruginosa PA14 have been identified in C. elegans. The first, termed “slow killing,” 

requires live bacterial cells and accumulation of cells in the intestine followed by infection-like 

symptoms such as distended intestine and reduced mortality (Kirienko et al., 2014; Tan et al., 

1999). “Fast killing,” on the other hand, occurs on high osmolarity media and does not rely on 

live bacterial cells but instead on secreted toxins (Kirienko et al., 2014; Tan, Mahajan-Miklos, & 

Ausubel, 1999). In addition to the detrimental effects of P. aeruginosa PA14 exposure to C. 

elegans, this species is also a common cause of nosocomial infections. In fact, P. aeruginosa is 

the most common Gram-negative species to cause nosocomial pneumonias and constituted 12% 

of all isolates obtained from ICU patients with infection in 2001, ranking second in total 

abundance after S. aureus (Hidron et al., 2008; Streit et al., 2004). 

Although not highly virulent, S. maltophilia is capable of causing infection in 

immunocompromised patients, most commonly identified in patients with cystic fibrosis and 

lung cancer (Brooke, 2012). Stenotrophomonas species isolated in association with C. elegans 

show varying pathogenicity to C. elegans (Dirksen et al., 2016; Samuel et al., 2016). This is also 

true of other environmental and clinical isolates of S. maltophilia, with only some strains being 

pathogenic (Pompilio et al., 2011; White et al., 2016; Adamek et al, 2011). In C. elegans, 

bacterial load of virulent strains of S. maltophilia is greater than that of E. coli OP50, and it 
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appears that live bacteria are required for virulence, suggesting that toxins are not an employed 

virulence mechanism (White et al., 2016).  

Common characteristics of Pseudomonas, Stenotrophomonas, Ochrobactrum, and 

Chryseobacterium include being Gram-negative, multi-drug resistant (MDR) bacteria that cause 

infection within tissues of humans. Because of their identification within the microbiome, their 

mode of pathogenesis occurs mainly within the intestine of C. elegans. In general, aging in C. 

elegans correlates with an increase of accumulation of bacteria in the intestine and decrease in 

tissue integrity (Garigan et al., 2002). As C. elegans age, their defense responses, particularly 

p38 MAPK signaling, decrease, which causes accumulation of live bacteria, resulting in intestine 

epithelial damage and eventual deterioration (Kim, 2013) (Figure 1.2). Therefore, pathogenic 

bacteria must be able to avoid pharyngeal grinding and proliferate in the intestine. However, 

accumulation of E. coli alone in the intestine does not shorten lifespan (Virk et al., 2016), so 

other virulence mechanisms must also be involved in the detrimental nature of intestinal 

pathogenesis.   

 Common virulence mechanisms 

Horizontal gene transfer and the short generation time of bacteria enable rapid evolution 

of virulence mechanisms that allow for adaptation to evolving host responses and hosts 

themselves (Juhas et al., 2009; Smith, 2001). Regions known as genomic islands contain gene-

rich regions that are usually attributed with past or present mobility, representing regions of 

variability between closely related organisms (Juhas et al., 2009). In S. maltophilia and P. 

aeruginosa, it appears that most vital virulence factors are contained within the core genome, and 

non-essential virulence factors are found within strain-specific, mobile elements such as genomic 

islands and plasmids (Lira, Berg, & Martínez, 2017; Mathee et al., 2008; Adamek et al., 2014). 



31 

Identification of virulence mechanisms within many isolates of bacteria will provide insight into 

both strain specific and common virulence mechanisms, and with the convenience of sequencing 

technologies, the abundance of bacterial genomic data has begun to provide this information.  

Gram-negative bacteria share many common virulence factors, including secreted 

enzymes, adhesion structures, secretion systems, antibiotic resistance genes, and quorum sensing 

mechanisms. Table 1.1 summarizes known virulence factors found in each genus introduced 

above. Structures involved in adhesion include fimbriae, pili, flagella, and capsules. Pili are 

structures that are used for genetic transfer, and pili, fimbriae, and flagella allow for movement 

of bacterial cells. All of these structures also aid in biofilm formation, which allows bacteria to 

build up on medical devices and avoid phagocytosis. Although not typical of this genus, two 

species of Chryseobacterium, C. bovis and C. oranimense, are capsule-forming and/or contain 

capsule biosynthesis gene clusters (Laviad-Shitrit et al., 2017; Sharma et al., 2015).  

Secretion systems are needed for release of enzymes involved in virulence. Secretion 

systems in Gram-negative bacteria are classified as Type I secretion systems (T1SS) to Type VI 

secretion systems (T6SS). Classification is based on proteins that are capable of being 

transported and how many membranes the system traverses, with some systems being able to 

transport proteins directly into the host cell (Green & Mecsas, 2016). P. aeruginosa contains 

genes for Type I, II, III, and V, and VI secretion systems (Balasubramanian et al., 2013). 

However, mutations in genes involved in secretion systems or their effectors in P. aeruginosa 

PA14 did not have a strong phenotypic effect on C. elegans, suggesting redundancy between 

secretion systems and effectors (Feinbaum et al., 2012). In S. maltophilia, type I, II, and V 

secretion systems are common in many strains, whereas type IV, V, and VI secretion systems are 

strain-specific (Adamek, Linke, & Schwartz, 2014).  
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Antibiotic resistance genes (ARGs) include efflux pumps and antibiotic-modification 

enzymes. Efflux pumps enable release of compounds from inside bacterial cells, and several 

groups of efflux pumps are able to transport antibiotics. These multi-drug resistant (MDR) efflux 

pumps are classified based on the number of components that the pump has, the energy source 

needed to activate the pump, and the substrates the pump transports (Piddock, 2006). Common 

MDR efflux pumps include the ATP-binding cassette (ABC) superfamily, the major facilitator 

superfamily (MFS), the multidrug and toxic-compound extrusion (MATE) family, and the 

resistant nodulation division (RND) family (Piddock, 2006). S. maltophilia K279a contains nine 

RND-type efflux pump genes, six of which have been functionally characterized (Crossman et 

al., 2008; Chang et al., 2015). Specifically, efflux pump SmeDEF is involved in resistance to 

trimethoprim and sulfamethoxazole (Sánchez & Martínez, 2015). Although resistant to multiple 

antibiotics, the only reported efflux pump in Ochrobactrum species is an arsenic efflux pump in 

the genome of O. tritici (Sousa et al., 2015). β-lactamase is an enzyme that cleaves the β-lactam 

ring of antibiotics in the penicillin family. Comparison of ARGs in two Ochrobactrum strains 

revealed a role for a β-lactamase gene as well as a florfenicol resistance gene (FloR) in antibiotic 

resistance (Johnning et al., 2013). Lastly, reduced expressed of the outer membrane porin OprD 

in P. aeruginosa confers resistance to carbapenems due to decreased ability of these antibiotics 

to enter bacterial cells (Farra et al., 2008; Pai et al., 2001). 

Quorum-sensing allows for signaling between bacterial cells and synchronization of 

behavior and gene expression (reviewed in Stevens, Schuster, & Rumbaugh, 2012). This leads to 

effective pathogenesis due to increased expression of secreted proteins and formation of 

biofilms. Quorum signaling is dependent on the production of autoinducers, which are secreted 

from cells and then diffuse into neighboring cells to coordinate responses (reviewed in Stevens et 
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al., 2012).  In S. maltophilia the autoinducer is Diffusible Signal Factor QS. The synthesis of QS 

is dependent on the rpfF gene, which can be found in two variants in S. maltophilia strains 

(Fouhy et al., 2007; Huedo et al., 2014). P. aeruginosa has a quorum-sensing mechanism 

containing three systems, the LasR/I and RhlR/I systems, which are mediated by N-acyl-

homoserine lactones (AHLs), and the PQS system, mediated by 2-alkyl-4 quinolones (AQs) 

(reviewed in Balasubramanian et al., 2013).  These systems function in a hierarchical manner, 

where the LasR/I system positively regulates the RhlR/I system, and PQS is the downstream 

signaling mechanism (Dietrich et al., 2006). There is no evidence of quorum sensing signaling in 

Ochrobactrum and Chryseobacterium, but strains within these genera have been shown to 

produce proteins that inactivate AHLs and interfere with quorum sensing of other 

microorganisms (Mei et al., 2010; Rashid et al., 2011).  

Secreted enzymes and secondary metabolites, such as toxins, proteases, DNases, and 

lipases, function by being released into the extracellular space of the host and damaging 

functional or structural components of the host. This is a very diverse class of proteins, and every 

bacterial species contains many secreted proteins. However, whether these proteins play a role in 

pathogenicity is strain- and condition-specific (Feinbaum et al., 2012; Huang, Lempicki, & 

Sherman, 2009). In S. maltophilia, proteases from two strains harbored nematocidal activity 

(Huang, Lempicki, et al., 2009; Jankiewicz, Larkowska, & Brzezinska, 2016). Toxins do not 

seem to play a significant role in S. maltophilia pathogenicity, as they are found in a strain-

specific manner, and heat-killed S. maltophilia are not pathogenic (Adamek et al., 2014; White, 

2016). However, most secreted proteins in P. aeruginosa that aid in virulence are toxins, such as 

LasA, LasB, PrpL, ToxA (reviewed in Balasubramanian et al., 2013). Systematic and functional 

analysis of secreted proteins in Ochrobactrum and Chryseobacterium is much less studied, but 
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evidence for 451 potentially secreted proteins, including a Clp protease, were identified in one O. 

anthropi strain (Wang et al., 2016; Wang et al., 2015).  

In sum, the variety of virulence mechanisms, the rapid evolution of bacteria, and the 

specificity of virulence factors between strains complicates the ability to combat bacterial 

infections. However, gaining insight into genetic and functional mechanisms of virulence factors 

as well as identifying novel virulence factors provides the possibility of targeting specific 

bacterial pathogens.  
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Table 1.1 Overview of virulence factors present in S. maltophilia, P. aeruginosa, Ochrobactrum, and Chryseobacterium based 

on functional analyses and sequencing. 

Virulence factor S. maltophilia P. aeruginosa Ochrobactrum Chryseobacterium References 

Secretion systems 
Type I, II, V- common 
Type IV, V, VI-strain 

specific 
Type I, II, III V, VI Type I and IV  

Adamek et al., 2014 
Balasubramanian et al., 2013 
Barquero-Calvo et al., 2009 
Chain et al., 2011 
Chudasama & Thaker, 2017 

Adhesion proteins 
Pili 

Fimbriae 
Flagella  

Capsule 
Type IV pilus 

Flagella 
 Capsule 

Adamek et al., 2014 
Feinbaum et al. 2012 
Sharma et al., 2015 
Laviad-Shitrit et al., 2017 

Antibiotic Resistant 
Genes 

ABC-type efflux pumps 
MFS-type efflux pumps 
RND-type efflux pumps 

β-lactamase 

MFS-type efflux pumps 
SMR-type efflux pumps 

MATE-type efflux pumps 
RND-type efflux pumps 
ABC-type efflux pumps 

β-lactamase 
OprD 

β-lactamase 
FloR 

MFS efflux pump  
RND-type efflux pump 

β-lactamase 

Crossman, 2008 
Gould et al., 2006 
Farra et al., 2008 
Pai et al, 2001 
Wang et al., 2013 
He et al., 2004 
Johnning et al., 2013 
Higgins et al., 2001 
Sharma et al., 2015 

Quorum-sensing rpf/DSF system LasR/I, RhlR/I, PQS 
systems 

  Lira et al., 2017 
Balasubramanian et al., 2013 
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Conclusions 

Using conservation of genes and proteins between organisms, we are able to hypothesize 

protein function. RNA sequencing is another systematic approach that enables prediction of gene 

function based on differential expression under specific conditions. Functional validation, a more 

time- and resource-consuming technique, has confirmed some of these protein functions in both 

C. elegans and bacteria. However, in C. elegans, 40% of gene functions are still unknown 

(Petersen, Dirksen, & Schulenburg, 2015). One reason for this is that the use of artificial lab 

settings to study C. elegans limits responses to environmental stimuli. C. elegans and bacteria 

engage in intimate relationships in their natural environment, so utilizing these interactions to 

understand gene function in C. elegans has already elucidated novel genetic mechanisms 

(reviewed in Petersen, Dirksen, & Schulenburg, 2015). Because studies of C. elegans ecological 

interactions are only relatively recent, there is still much more to be uncovered.  

Identification of organisms in the natural habitat of C. elegans through simple isolation 

has encouraged use of these species in further studies (White et al., 2016; Schulte et al., 2010). 

Recent high-throughput identification of the microbial communities within C. elegans as well as 

in the surrounding environment has expanded our understanding of natural C. elegans-bacterial 

interactions (Dirksen et al., 2016; Berg et al., 2016; Samuel et al., 2016). Of particular interest 

are bacterial species that are detrimental to the health of C. elegans, not only for their ecological 

impact, but also because of their medical relevance. Many genera found in the microbiome of C. 

elegans are also human pathogens. The conservation of innate immune and defense pathways 

and effectors enables hypothesis to be made about how these pathogens cause infection and how 

these infections are combatted. Studying these interactions with naturally encountered pathogens 



37 

will provide insight into not only how C. elegans respond to pathogen infection, but also how 

these bacteria are able to induce infection.   
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Chapter 2 - Identification and characterization of differentially 

expressed genes in Caenorhabditis elegans in response to pathogenic 

and nonpathogenic Stenotrophomonas maltophilia 

 Introduction 

Stenotrophomonas maltophilia is a Gram-negative, nosocomial pathogen that can cause 

infection in immunocompromised patients. S. maltophilia is often found in patients with cystic 

fibrosis and lung cancer, and is associated with infections such as pneumonia, endocarditis, 

bacteremia, and meningitis (reviewed in Brooke, 2012). Although not highly virulent, S. 

maltophilia is multi-drug resistant and capable of forming biofilms (Elting & Bodey, 1990; 

Jägevall, Rabe, & Pedersen, 2011), thus developing treatment methods for this pathogen is 

becoming an increasing concern. S. maltophilia is ubiquitous within the environment, commonly 

found in aqueous sources, soils, and associated with plant roots, and can also be isolated in 

hospitals from water sources and medical devices (reviewed in Brooke, 2012; Chang et al., 

2015).  

 Sequencing and functional validation have identified virulence factors such as antibiotic 

resistant and quorum sensing mechanisms in both clinical and environmental isolates of S. 

maltophilia (Adamek et al., 2011; Berg, Roskot, & Smalla, 1999; Lira, Berg, & Martínez, 2017). 

In addition, phylogenetic and antibiotic profile analyses of environmental and clinical isolates 

revealed heterogeneity between strain origins (Berg, Roskot, & Smalla, 1999; Lira, Berg, & 

Martínez, 2017). This is important because it suggests that environmental S. maltophilia isolates 

have the potential to become infectious to humans without acquiring new virulence factors. 

However, strains isolated from clinical settings have higher mutation rates than environmental 
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isolates, suggesting clinical isolates may be better able to adapt to stressors such as the immune 

response and antibiotics (Turrientes et al., 2010). Sequencing and proteomic analysis have also 

identified differences in genomic features between strains of S. maltophilia, including virulence 

factors (Adamek, Linke, & Schwartz, 2014; Ferrer-Navarro et al., 2013; Lira, Berg, & Martínez, 

2017; Rocco et al., 2009). Therefore, diversity exists between strains that results in different 

virulence mechanisms (Adamek et al., 2014; Kaiser, Biehler, & Jonas, 2009). Although studies 

have identified virulence factors within S. maltophilia genomes, their functions have rarely been 

analyzed and mechanisms of host responses are poorly understood. Therefore, we recently 

established Caenorhabditis elegans as a model to study host responses to S. maltophilia infection 

(White et al., 2016). 

C. elegans are bacterivores found in decaying fruits and stems where they are in constant 

contact with many bacterial species. These interactions come in many forms, including 

symbiotic, predator-prey, and pathogen-host. Recent studies have found that Stenotrophomonas 

is one of the most abundant genera of bacteria found in the native microbiome of C. elegans (M. 

Berg et al., 2016; Dirksen et al., 2016; Zhang et al., 2017). Furthermore, Stenotrophomonas is 

found in higher abundance within the microbiome than in the rotting substrate (Dirksen et al., 

2016; Zhang et al., 2017), suggesting that it accumulates within the intestine, a common 

signature of pathogenesis in C. elegans (Garigan et al., 2002; McGhee et al., 2007). In fact, many 

of these isolates of Stenotrophomonas were found to be detrimental to the health of C. elegans, 

while few were found to be beneficial (Dirksen et al., 2016; Samuel et al., 2016). This is 

consistent with previous observations that strains of S. maltophilia show varying pathogenicity to 

C. elegans, amoeba (Dictyostelium discoideum and Acanthamoeba castellanii), and zebrafish 

(Adamek et al., 2011; Ferrer-Navarro et al., 2013; White et al., 2016). This suggests that 
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different S. maltophilia strains utilize different virulence mechanisms that result in different host 

responses.  

Many innate immune pathways in C. elegans are conserved from invertebrates to 

mammals, making it a model organism for studying pathogen-host interactions and innate 

immunity. Details of important immune and defense pathways in C. elegans are reviewed in 

Chapter 1, but briefly, the p38 mitogen-activated protein kinase (MAPK) pathway plays a role in 

defense against several pathogens, including S. maltophilia, Pseudomonas aeruginosa, 

Staphylococcus aureus, and Salmonella enterica (Aballay et al., 2003; Kim et al., 2002; Sifri et 

al., 2003; White et al., 2016). In addition, activation of the insulin-like signaling pathway 

receptor DAF-16 decreases bacterial packing, suggesting that regulation of genes by DAF-16 

defends against accumulation of bacteria in the intestine (Murphy, Mccarroll, et al., 2003). 

Analyses of mutations affecting genes in these pathways have identified downstream proteins 

involved in pathogen defense, such as lysozymes, C-lectins, and CUB-domain containing 

proteins (Alper et al., 2007; Troemel et al., 2006).  

Although many important innate immune pathways and effectors have been identified, 

there are differences in responses to different bacterial pathogens. For example, one study 

comparing responses to intestinal pathogens Serratia marcescens, Enterococcus faecalis, and 

Photorhabdus luminescens found that only 11% of genes in C. elegans where commonly 

differentially expressed in response to all three species (Engelmann et al., 2011). This 

phenomenon could be due to species-specific responses to different pathogens, or the ability of 

bacteria to manipulate different host responses. Therefore, it is essential to study a variety of 

pathogens in order to fully understand the complexity of genetic mechanisms underlying 

pathogen defense. 



55 

Here, we used a transcriptomic approach to identify and characterize the genetic 

responses of C. elegans to several different S. maltophilia strains. Specifically, we performed 

RNA sequencing on C. elegans following exposure to either E. coli OP50 or one of three S. 

maltophilia strains: two pathogenic environmental isolates, JCMS and JV3, and one 

nonpathogenic clinical isolate, K279a. Using this experimental set-up, we identified and 

characterized responses that are common to both pathogenic S. maltophilia strains and responses 

that are strain-specific. In addition, we determined that responses to S. maltophilia were overall 

similar to responses to other pathogens. Finally, we chose candidate genes that represent 

common, S. maltophilia-specific, and strain-specific responses and determined that several 

candidate genes were important for survival of C. elegans upon exposure to S. maltophilia as 

well as other common C. elegans pathogens.  

 Materials and Methods 

 Nematode and bacteria strains and growth  

The following C. elegans strains were obtained from the Caenorhabditis Genetics Center 

(CGC): RB1573 dod-22(ok1918), VC1749 F55G11.8(gk3130) ZK185.2(gk828), VC3059 

ZK6.11(ok3738), VC2477 T24B8.5(ok3236), RB1893 lys-1(ok2445), VC2249 dod-19(ok2679), 

RB2095 clec-67(ok2770), VC2176 nhr-110 (gk987), RB2114 sodh-1 (ok2799), VC1011 acdh-

1(ok1489), RB2473 cpr-4(ok3413),  LIU1 [dhs-3p::dhs-3::GFP + unc-76(+)], AU78 

[T24B8.5p::GFP::unc-54-3' UTR + ttx-3p::GFP::unc-54-3' UTR], CF2124 [sodh-

1p::RFP(NLS) + rol-6(su1006)], VL717 [acdh-1p::GFP]. C. elegans strains containing the 

following alleles were obtained from the National BioResource Project (NBRP): lys-2(tm2398), 

scl-2(tm2428), dhs-3(tm6151), F13D12.6(tm7051), pho-1(tm5302), C55A6.7(tm6807), dhs-

2(tm7516), acox-1.4(tm6415). All alleles were outcrossed 4 times, with worms screened via PCR 
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after each outcross to obtain homozygous mutants. Forward and reverse primers used to test for 

each desired allele can be found on Wormbase (wormbase.org). 

C. elegans strains containing the following expression constructs and alleles were 

generated as described below: mhEx284[F19B2.5p::F19B2.5::wrmScarlet::unc-54-3’ UTR] and 

mhEx282[K08D8.4p::K08D8.4::wrmScarlet::unc-54-3’ UTR], F08G2.5(mh86), 

K08D8.4(mh76), B0024.4(mh82),W02A2.8(mh87), K08D8.12(mh101), fbxa-77(mh94), 

Y82E9BR.5(mh93), C25F9.11(mh97).   

Bristol N2 strain was obtained from the CGC and used as wild-type. All strains were 

maintained on nematode growth media (NGM) plates seeded with E. coli OP50 at 20° C. 

Bacterial strains include E. coli OP50 from the CGC, Stenotrophomonas maltophilia 

JCMS isolated by our lab in association with nematodes from Konza Prairie near Manhattan, KS 

(White et al., 2016), Stenotrophomonas maltophilia K279a from R. Ryan (University College Cork), 

Stenotrophomonas maltophilia JV3 from J. Tiedje (Michigan State University), Serratia marcescens 

DB10 from CGC, Staphylococcus aureus NCTC8325 from J. Irazoqui (UMass Medical Center), 

Xenorhabdus nematophila 1462 from P. Stock (University of Arizona), and Pseudomonas 

aeruginosa PA14 from F. M. Ausubel (Harvard Medical School). 

All bacteria strains were frozen at -80° C upon arrival to the lab and thawed frequently 

for experimentation. The S. maltophilia strains and also PA14 and DB10 are naturally Ampicillin 

resistant, thus were grown on Luria Broth (LB) agar containing 100 µg/mL Ampicillin to 

selectively isolate and maintain each strain while avoiding contamination. Other bacterial strains 

were grown on regular LB agar. Plates were incubated at 37° C overnight and kept at 4° C 

thereafter. S. maltophilia strains, PA14, and DB10 were grown in liquid LB containing 100 

µg/mL Ampicillin, and other strains were grown in liquid LB and shaken overnight at 37° C 
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overnight. Liquid cultures were then seeded onto NGM and grown at room temperature 

overnight before being used for experimentation. 

 RNA isolation 

Wild-type nematodes were synchronized by bleaching, plated on E. coli OP50, and 

maintained at 20° C. Synchronized larval stage 4 (L4) worms were washed several times in M9 

buffer and transferred to treatment bacteria or E. coli OP50. Treatments included S. maltophilia 

strains K279a, JCMS, and JV3. After 12 hours of exposure to treatment bacteria at 25° C, worms 

were collected in M9 buffer and lysed in TRIzol® (Life Technologies). 12 hours of exposure to 

treatments was chosen because at this point bacterial accumulation in the intestine has begun 

(White et al., 2016), but almost all worms in each treatment were still alive. Only non-

contaminated, un-starved populations were used for RNA extraction, and three biological 

replicates were collected for each treatment. Bulk RNA was extracted from these populations 

using PureLink RNA Mini Kit (Invitrogen), and DNase treated using On-Column PureLink® 

DNase Treatment (Invitrogen) following the manufacturer’s protocol. RNA quality was checked 

by determining 260/280 and 260/230 absorbance ratios using a NanoDropTM 8000 

Spectrophotometer and observation of 18S and 28S rRNA bands using gel electrophoresis.  

 RNA sequencing and analysis 

Extracted RNA was sent to the University of Kansas Center for Molecular Analysis of 

Disease Pathways Genome Sequencing core facility for library preparation and sequencing. 

Three biological replicates, consisting of pooled bulk nematode RNA, and two technical 

replicates of each biological replicate were sequenced for each treatment. Libraries were 

sequenced on Illumina HiSeq 2500 platform resulting in 100 base pair single-end reads. 

Sequence quality was assessed using FastQC.  
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Tophat 2, which uses the short-read mapping program Bowtie (Kim et al., 2013), was 

used to map reads to the C. elegans genome. Technical replicates were combined at this step. 

Transcriptome and genome versions WS235 were used as the reference (wormbase.org). 

Minimum intron length was set to 15 base pairs (-i 15) and the parameter for -no-novel-juncs was 

used. The remainder of settings were set to default. Cuffdiff, a program within Cufflinks, is used 

to compare expression of transcripts at the isoform-level between treatments, accounting for 

variability within biological replicates (Trapnell et al., 2013). The parameter -multi-read-correct 

was used to account for reads mapping to multiple locations, with the remainder of settings set to 

default. Transcripts were considered significantly differentially expressed between treatments if 

the fold change >2 and the false discovery rate (FDR) <0.05. Heatmap analysis and comparison 

of differentially expressed genes between different conditions were performed in R (Vienna, 

Austria: R Foundation for Statistical Computing) using the package gplots.  

 Gene ontology enrichment analysis 

Differentially expressed genes of interest were queried for gene ontology (GO) term 

enrichment using DAVID Bioinformatics Resources 6.8 (Huang, Lempicki, & Sherman, 2009a; 

Huang, Lempicki, & Sherman, 2009b) with the background set to the entire C. elegans gene list. 

Each gene is assigned one or more GO terms and categorized into Biological Process, Molecular 

Function, and Cellular Component. Significant enrichment of GO terms was determined using a 

Fisher’s exact test (as described in Huang, Sherman, & Lempicki, 2009a); this test associates a p-

value, or EASE score, to each GO term based on the number of genes associated with that term 

as compared to background (Huang et al., 2009b). GO terms were considered to be significantly 

enriched if FDR <0.05.  
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 Mutant generation using CRISPR/Cas9 

CRISPR/Cas9 was used to generate mutations, usually deletions, in selected genes. Guide 

RNA (gRNA) sequences were chosen within the coding sequence of the gene of interest (GOI) 

using the CRISPRseek package in R to select guides with high efficacy, and CRISPR design 

(crispr.mit.edu) to identify possible off-target effects. Two to four gRNAs were identified and 

constructed for each GOI (Table 2.1). Double-stranded gRNA sequences consisted of 20 base 

pairs prior to the PAM site (NGG) plus overhanging base pairs on each end that overlapped with 

BsaI-cut pRB1017 plasmid. This overlap allowed for proper ligation of the gRNA sequence into 

BsaI-cut pRB1017 (Arribere et al., 2014).  

A co-CRISPR method, described in Arribere et al., was used to facilitate detection of 

gene-editing events (Arribere et al., 2014). Briefly, an injection mix of 50 ng/µl Peft:Cas9 vector 

(Friedland et al., 2013), 20-25 ng/µl of dpy-10 gRNA (Arribere et al., 2014), and 20-25 ng/µl of 

each target gRNA-carrying plasmid were injected into young adult worm gonads (as described in 

Evans, 2006). F1 Dpy worms were then moved to new plates and allowed to lay eggs. DNA was 

then isolated from F1 Dpy worms and amplified with primers targeting genomic sites flanking the 

gRNAs of the GOI (Table 2.1). Gene-editing events were identified by differences in amplicon 

size as compared to wild-type, indicating an insertion or deletion in the gene. Worms containing 

mutant alleles were then sequenced to determine the mutant lesion and outcrossed twice to wild-

type males eliminate possible off-target mutations. A summary of CRISPR/Cas9 generated 

alleles is shown in Figure 2.1. 

 Generation of expression construct strains 

NEBuilder HiFi DNA Assembly (New England BioLabs) was used to assemble the 

vector backbone (pPD95.75), promoter and gene of interest (GOI), and fluorescent tag 
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(wrmScarlet). This kit assembles DNA vectors by ligating fragments with overlapping sequence 

using an endonuclease to create single-stranded overhangs within the overlap sequences and 

ligase to ligate the fragments together. In this case, the three fragments were generated via PCR 

using high fidelity Phusion DNA Polymerase (Thermo Fisher Scientific). Fragment 1, encoding 

the fluorescent protein wrmScarlet, was amplified from pSEM89_egl-23::SL2::wrmScarlet 

(Mouridi et al., 2017) using forward primer 5’- ATGGTCAGCAAGGGAGAGGCAG -3’ and 

reverse primer 5’- TTACTTGTAGAGCTCGTCCATTCCTCC -3’. Fragment 2, the plasmid 

pPD95.75, which contains GFP followed by the unc-54 3’UTR, was amplified using forward 

primer 5’- GACGAGCTCTACAAGTAACATTCGTAGAATTCCAACTGAGCG -3’ and 

reverse primer 5’- TTTTTCTACCGGTACCCTCCAAGGG -3’. This generated a linearized 

vector backbone that included a majority of the plasmid, excluding the GFP coding sequence. 

Fragment 3, which contains the GOI driven by its endogenous promoter (either 2 kb upstream of 

the gene or to the nearest upstream gene) and differed for each gene, was amplified with the 

following primers: F19B2.5 driven by the F19B2.5 promoter (pF19B2.5::F19B2.5) forward 

primer 5’- GGAGGGTACCGGTAGAAAAATGATTATTTCCGGCTCGGG - 3’ and reverse 

primer 5’- CTCCCTTGCTGACCATCTGGCTGTCGTCGGCTC - 3’, and K08D8.4 driven by 

the K08D8.4 promoter (pK08D8.4::K08D8.4) forward primer 5’- 

GAGGGTACCGGTAGAAAAACACCCAAGGATTTGAAG -3’ and reverse primer 5’- 

CTCTCCCTTGCTGACCATGACCAGCATAACAAAACC -3’. The primers used to amplify 

the vector backbone and the promoter/GOI fragment contain appropriate overlap sequence, 

resulting in circular assembly of the promoter and GOI fragment ligated to the wrmScarlet 

fragment ligated to the vector backbone. Fragments were then gel purified using PureLinkTM 
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Quick Gel Extraction Kit (Invitrogen), followed by assembly and cloning using NEBuilder HiFi 

Assembly Master Mix and Cloning Kit following manufacturer’s protocol. 

Colonies containing possible positive constructs after cloning were tested using PCR to 

ensure the fragments were assembled correctly. DNA was extracted from confirmed correct 

colonies. Finally, 20-50 ng/ul of each construct along with 20 ng/ul dpy-10(+) plasmid were 

injected into Dpy worms. F2 wild-type worms were then screened for wrmScarlet expression, and 

3 independent transgene-containing lines were obtained for each GOI, with one representative 

line chosen for further analysis.  

 Gene expression analysis 

Nematodes containing extrachromosomal or integrated alleles for transcriptional or 

translational fluorescent protein fusions were anesthetized (10mM sodium azide) for observation 

at 100x and 400x magnification using a Zeiss Axio Imager.ZI microscope equipped with 

epifluorescence and differential interference contrast (DIC) optics. 

 C. elegans survival assays 

Treatment or control E. coli OP50 bacteria were cultured in liquid LB (with Ampicillin 

for S. maltophilia strains, PA14, and DB10) overnight and 100 µl of bacteria were plated onto 

NGM agar plates the day prior to use. Worms were bleached to synchronize and reared at 20° C 

on lawns of E. coli OP50. For survival assays, 10-12 L4 worms were transferred to each 

treatment plate, with three replicates of each treatment, and maintained at 25° C. Worms were 

transferred to new plates every day until they stopped laying eggs to separate them from their 

progeny. Surviving worms were recorded each day and dead worms were removed from plates, 

as determined by movement following prodding with a platinum wire pick. Plates that became 

contaminated or worms that crawled off the agar and died were removed from data analysis. 
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Statistical analyses were performed in R to determine differences between independent 

variables, including bacterial treatments and nematode genotype, with the dependent variable 

being the probability of nematode death on a given day. Survival probability estimates over time 

were determined using the Kaplan-Meier formula and used to produce survival curve graphs 

using Microsoft Excel. The Cox proportional hazards model was then used to compare the 

effects of independent variables using hazard ratios. Treatment nematode strains and bacteria 

were compared to wild-type within the same round. If contamination occurred on plates of wild-

type nematodes, treatments were compared to all rounds of wild-type nematodes. If multiple 

rounds were performed using the same treatments, the model was modified to account for 

differences between rounds of experimentation. 

 Results 

Strains of S. maltophilia used in this study, including K279a, JCMS, and JV3, display 

differing levels of pathogenicity to C. elegans as determined by the Cox proportional hazards 

test. This test utilizes the survival of C. elegans over time to determine the probability of a 

nematode dying at a given time, referred to as the hazard. Hazards of different conditions can be 

compared, resulting in hazard ratios. Hazard ratios greater than one indicate treatments that are 

more detrimental, or hazardous, to the health of C. elegans; whereas hazard ratios less than one 

indicate more beneficial conditions. S. maltophilia K279a, a clinical isolate of S. maltophilia, has 

previously been shown to be pathogenic to C. elegans (Fouhy et al., 2007); however, K279a does 

not appear to be pathogenic in our hands, as worms fed K279a have similar bacterial load and 

hazard values to worms fed the standard lab food E. coli OP50 (White et al., 2016) (Figure 2.2). 

However, C. elegans exposed to JCMS, a strain isolated in association with nematodes from a 

prairie in Kansas, are approximately five times more likely to die than C. elegans exposed to 
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OP50 (Figure 2.2). C. elegans exposed to JV3, another environmental isolate, are approximately 

65 times more likely to die than C. elegans fed OP50 (Figure 2.2). We utilized these strains of S. 

maltophilia of varying pathogenicity to C. elegans in a transcriptomic analysis to provide a more 

comprehensive understanding of C. elegans-pathogen interactions.  

To investigate transcriptomic responses to S. maltophilia, RNA-sequencing was 

performed after 12 hours of exposure to pathogenic S. maltophilia JCMS or JV3, or 

nonpathogenic S. maltophilia K279a or E. coli OP50. The 12-hour time point was chosen based 

on previous observations that accumulation of bacteria occurs by this time (White et al., 2016) 

but S. maltophilia-induced mortality has not yet begun (Figure 2.2). In addition, other groups 

have identified transcriptional changes at 4-8 hours of exposure to pathogens, including S. 

aureus, B. thuringiensis, and P. aeruginosa (Irazoqui, Troemel, et al., 2010; Troemel et al., 2006; 

Yang et al., 2015). Therefore, at 12 hours, pathogen recognition has begun, but transcriptional 

changes associated with aging and mortality, which correlate with a decreased immune response 

(Cabreiro & Gems, 2013), should not complicate interpretation of data. 

Comparison of differentially expressed genes in C. elegans in response to different S. 

maltophilia strains and between pathogenic and nonpathogenic strains allowed us to address two 

overarching questions: 1) Are there common and strain specific responses to pathogenic S. 

maltophilia bacteria? and 2) Is the response to pathogenic S. maltophilia strains common to other 

pathogenic bacteria? 

 C. elegans exhibit common and strain-specific responses to S. maltophilia 

Overall gene expression patterns were analyzed using a heatmap of genes that were 

significantly differentially expressed between any two treatments (Figure 2.3). Transcripts were 

considered differentially expressed if they had a false discovery rate (FDR)-adjusted p-value of 



64 

less than 0.05 and an absolute fold change greater than two. Gene expression profiles showed 

clustering of nonpathogenic (K279a and E. coli OP50) and pathogenic (JCMS and JV3) 

treatments (Figure 2.3). In fact, the expression profiles of the nonpathogenic treatments were 

more similar than that of the pathogenic treatments (Figure 2.3). Therefore, to identify the 

common response to pathogenic S. maltophilia, we compared differentially expressed genes in 

C. elegans between pathogenic and nonpathogenic treatments (Figure 2.4). In total, 1,296 genes 

were significantly differentially expressed when comparing worms fed any pathogenic (JV3 and 

JCMS) to any nonpathogenic (K279a and E. coli OP50) strain, with 11% (145) commonly 

differentially expressed between all pathogenic and nonpathogenic comparisons (Figure 2.4, 

Table 2.2). These most likely represent a core set of genes that are regulated upon exposure to 

pathogenic S. maltophilia and are therefore referred to as the “common pathogenic S. maltophilia 

response” (CPSR). Because these genes are differentially expressed in response to pathogenic vs 

nonpathogenic strains of the same species, this should remove general responses to S. 

maltophilia and represent genes specifically involved in pathogen response to S. maltophilia. Of 

the 145 CPSR genes, 89% (129) were upregulated in response to the pathogenic strains as 

compared to the nonpathogenic strains, whereas 10% (15) were downregulated (Table 2.2). One 

gene, lys-10, is upregulated in response to the pathogenic strains compared to OP50 but 

downregulated in response to pathogenic strains compared to K279a. Interestingly, most 

upregulated genes, 90 of 129, were even further upregulated in response to JV3 as compared to 

JCMS. Because JV3 is more virulent than JCMS, this suggests that the level of virulence 

influences the expression of S. maltophilia-induced genes (Table 2.2).  

A gene ontology (GO) enrichment analysis was performed on all CPSR genes using 

DAVID to identify common structural components, biological processes, and molecular 
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functions of these genes (Table 2.3). This analysis compares GO terms associated with genes 

within a specified list to the entire gene list of C. elegans and utilizes a Fischer exact test to 

determine whether each GO term is enriched. From this analysis, the “biological process of 

innate immune response” (FDR= 4.14E-53), “biological process of defense to Gram-negative 

bacterium” (FDR= 2.72E-11), “molecular function of carbohydrate binding” (FDR= 1.28E-4), 

and “cellular component of membrane raft” (FDR= 3.8E-20), were all significantly enriched in 

the CPSR genes (Table 2.3).  

To identify strain-specific responses, particularly JV3- and JCMS-specific responses, we 

identified genes that were differentially expressed in response to JV3 and JCMS as compared to 

all other strains. We found 31 genes differentially expressed in response to JCMS vs the 

nonpathogenic strains and 327 genes differentially expressed in response to JV3 vs the 

nonpathogenic strains (Figure 2.4). We found that 14 of the 31 JCMS vs nonpathogenic strains 

genes were also differentially expressed between JV3 and JCMS. These genes are specifically 

regulated upon exposure to S. maltophilia JCMS and are therefore referred to as the “JCMS-

specific response” (JSR) (Table 2.2). Of the 14 JSR genes, 12 are upregulated in response to 

JCMS as compared to all other strains, whereas two are downregulated (Table 2.2).  

We found that 221 of the 327 JV3 vs nonpathogenic strain genes were also differentially 

expressed between JV3 and JCMS. These genes are specifically regulated upon exposure to S. 

maltophilia JV3 and are referred to as the “JV3-specific response” (VSR) (Table 2.2). Although 

most CPSR genes are upregulated in response to JV3, a majority (88%) of the VSR genes are 

downregulated in response to JV3 as compared to the other strains (Table 2.2; Figure 2.3). This 

suggests that one virulence mechanism employed by JV3 may be to reduce expression of a 

variety of genes.  GO enrichment analyses of these genes reveals enrichment of several 
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metabolic processes and enzymes, including “biological process of flavonoid glucuronidation” 

(FDR = 4.01E-8), “biological process of oxidation-reduction process” (FDR = 5.27E-5), and 

“molecular function of glucuronosyltransferase activity” (FDR = 0.009) (Table 2.4). 

 Gene networks were used to prioritize genes based on gene and protein interactions 

We next wanted to determine whether the CPSR, JSR, and VSR genes are important for 

the response to both pathogenic S. maltophilia strains (CPSR genes) or to specific strains of S. 

maltophilia (JSR and VSR genes). To do this, we utilized WormNet, a probabilistic gene 

network model, to prioritize genes for functional analysis (Lee et al., 2010). WormNet uses both 

direct physical and/or genetic interactions as well as inferred interactions to create a gene 

network that comprises 75.4% (15,139 genes) of the C. elegans genome, resulting in 999,367 

functional linkages (Lee et al., 2010). Previously, gene networks have been used to identify 

genes essential for C. elegans development and survival under standard conditions, as well as 

identification of genes associated with particular diseases (Lee et al., 2008; Özgür et al., 2008). 

Therefore, we hypothesize that the most connected genes within the gene network play a 

significant role in S. maltophilia response and are therefore better candidates for functional 

analyses.  

In addition to gene network connectivity, we used two additional criteria to choose genes 

for functional analysis, with the goal of testing at least five genes from each category: 1) 

connected genes within the gene network with previously available alleles or alleles previously 

generated in our lab were preferentially chosen for functional analysis, 2) expression levels were 

used to choose additional alleles for mutant generation using CRISPR/Cas9, with higher overall 

expression preferred.  
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Of the 145 CPSR genes, 73 were connected within the gene network with an AUC of 

0.6972 (p=1.8137e-16) (Figure 2.5; Table 2.5). The AUC is the area under the receiver operating 

characteristic (ROC) curve and provides a measure for the recovery of true-positive genes as 

compared to false-positive genes (Lee et al., 2010). A random network would have an AUC of 

0.5, whereas a network representing perfect prediction of all connections would have an AUC of 

one; therefore, an AUC of 0.6972 (p=1.8137e-16) suggests relatively high predictive power of 

gene connections. Each connected gene is ranked based on the number of connections as well as 

the strength of the evidence for those connections (Lee et al., 2008), with some of the highest-

ranking CPSR genes including lys-1, lys-2, dod-22, dod-19, and clec-67 (Table 2.5). Previous 

studies have identified these genes as downstream effectors of defense pathways or directly 

involved in response to bacterial pathogen challenge (Alper et al., 2007; reviewed in Dierking, 

Yang, & Schulenburg, 2016; Mallo et al., 2002; White et al., 2016). These genes, along with 

alleles of several other genes highly connected within the network, including F55G11.8, ZK6.11, 

T24B8.5, and scl-2, had available mutant alleles. In addition, we had previously generated 

mutant alleles for K08D8.4, B0024.4, and F08G2.5 using CRISPR/Cas9 (Figure 2.1). Of the 221 

VSR genes, 103 are connected within the network (AUC=0.6698, p=5.8695e-20) (Figure 2.6; 

Table 2.6). Available alleles of several of the highest-ranking genes in this network, including 

sodh-1, dhs-3, F13D12.6, pho-1, acdh-1, C55A6.7, dhs-2, and F08A8.4 were used for functional 

analysis.  

Because of the small number of JSR genes, WormNet was not used to prioritize these 

genes for functional analysis. Many of these genes had very low overall expression. Therefore, 

genes were chosen for functional analysis if the total fragments per kilobase per million mapped 

reads (FPKM) for all four treatments was greater than 30.  We used an available nhr-110 allele 
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for functional analysis, and although we attempted to generate mutations in several other JSR 

genes using CRISPR/Cas9, we were successful for only one gene, W02A2.8 (Figure 2.1). 

 Functional analysis of common S. maltophilia and strain-specific genes  

Survivorship, quantified by Cox proportional hazards test, was used for functional 

analysis to determine whether candidate genes were important for response to control and 

treatment bacteria. We hypothesized that CPSR genes are important for response to both JCMS 

and JV3, JSR genes are important for response to JCMS, and VSR genes are important for 

response to JV3; therefore, mutants of these genes will result in increased or decreased 

susceptibility to JCMS and JV3, just JCMS, or just JV3, respectively, as compared to wild-type.   

Mutations in four of the 12 CPSR candidate genes (T24B8.5, dod-19, K08D8.4, and lys-

1) caused increased susceptibility to JCMS and mutations in three caused significant differences 

in survival of C. elegans fed JV3, with scl-2 mutants less susceptible and clec-67 and T24B8.5 

mutants more susceptible (Figure 2.7; Table 2.7). All of these genes, apart from scl-2, were 

previously reported to play a role in innate immune response based on GO terms. Interestingly, 

five of the six mutations that caused significant differences in survival upon exposure to JCMS 

or JV3 also showed significant differences in survival upon exposure to K279a, while one 

mutant scl-2 mutants resulted in significant survival differences upon exposure to OP50 (Figure 

2.7; Table 2.7). However, because worms with mutations in scl-2 were less susceptible to both 

OP50 and K279a and more susceptible to JV3, these differences may be due to different 

responses on each bacterial treatment. One explanation for the correlation between mutants that 

result in susceptibility to pathogenic strains and K279a is that K279a may employ virulence 

mechanisms against which C. elegans can defend; therefore, mutations in innate immune genes 

cause increased susceptibility to K279a as well as pathogenic strains.   
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Mutations in three of the eight VSR candidate genes (acox-1.4, dhs-3, dhs-2) caused 

significant susceptibility to JV3 (Figure 2.8; Table 2.7). However, worms with mutations in all 

three of these alleles are also more susceptible to at least one other bacterial strain tested, 

suggesting that although these genes are specifically differentially expressed in response to JV3, 

they are also important for survival under other conditions. Although none of these genes have 

been reported to play a role in defense or immune response, dhs-3 and acox-1.4 are localized to 

the intestine (Nykamp, Lee, & Kimble, 2008; Steinbaugh et al., 2015) (Figure 2.10), the site of S. 

maltophilia accumulation and proposed pathogenesis (White et al., 2016). In addition, mutations 

in six of the eight VSR genes tested displayed differences in survival on at least one S. 

maltophilia strain. Therefore, although these genes do not seem to be important for strain-

specific survival, they do seem to be important for response to S. maltophilia overall.  

Only two JSR genes were functionally analyzed, nhr-110 and W02A2.8. While nhr-110 

mutants did not display differences in survival to any S. maltophilia strains, mutations in 

W02A2.8 resulted in worms that were more susceptible to both JCMS and JV3 (Figure 2.9; Table 

2.7). However, W02A2.8 mutants were 4.8 more times likely to die when fed JCMS and only 1.9 

times more likely to die when fed JV3 as compared to wild-type worms, suggesting a more 

significant role for this gene upon JCMS infection (Table 2.7).  

In addition to survival analyses, we were able to determine the expression patterns for 

several CPSR and VSR genes. Several transgenic strains were available from stock centers, 

including transcriptional reporters for T24B8.5, acdh-1, sodh-1, and a translational reporter for 

dhs-3. In addition, we generated translational reporters for K08D8.4 and F19B2.5. All of these 

genes were expressed in the intestine upon exposure to E. coli OP50 (Figure 2.10). Localization 

of expression was also seen in the hypodermis (sodh-1 and acdh-1), muscle (sodh-1), nervous 
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system (sodh-1), and head (F19B2.5, sodh-1, and acdh-1) (Figure 2.10). The intestine and 

hypodermis are common sites of pathogen infection, whereas the nervous system has also been 

shown to play a role in pathogen recognition and immune response in C. elegans (Kawli & Tan, 

2008; Shtonda & Avery, 2006; Styer et al., 2008; Y. Zhang, 2008). Therefore, expression of 

differentially expressed genes in response to S. maltophilia correlates with common tissues 

involved in innate immune response.  

 Many genes differentially expressed in response to S. maltophilia are common to 

other pathogens 

To determine whether the CPSR is common to other pathogen responses in C. elegans or 

whether these genes are unique to pathogenic S. maltophilia, we utilized WormExp (Yang, 

Dierking, Schulenburg, 2015). This database contains a variety of C. elegans’ transcriptomic and 

proteomic datasets that can be queried with a list of genes to identify overlap with other datasets. 

WormExp uses the adjusted Fisher exact test from the program EASE to determine whether gene 

sets contain significant overlap (Yang, Dierking, Schulenburg, 2015). This database was used to 

query the CPSR genes for overlap with other microbe exposure experiments, many of which are 

pathogens. The CPSR genes significantly (FDR<0.05) overlapped with 105 of 212 microbe 

exposure experiments (Table 2.8), suggesting that these genes in general do correlate with genes 

regulated by other pathogens. However, to determine which individual CPSR genes in C. elegans 

are commonly regulated by pathogens and which genes are more uniquely differentially 

expressed in response to S. maltophilia, we used the WormExp database to manually determine 

how many pathogens regulate each individual CPSR gene, resulting in genes regulated by 

anywhere from 1 to 16 other pathogens (Figure 2.11; Table 2.9). Not surprisingly, many of the 
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CPSR genes regulated by many pathogens are also higher ranked within the CPSR gene network, 

validating the use of gene networks to prioritize gene importance.  

 Functional analysis of common pathogen genes and S. maltophilia specific genes 

To identify genes for functional analysis, CPSR genes were ranked based on how many 

pathogens result in differential expression of that gene (Figure 2.11; Table 2.9). Several of the 

highest-ranking CPSR genes (differentially expressed in response to more than 11 other 

pathogens) and lowest-ranking CPSR genes (differentially expressed in response to less than 6 

other pathogens) were then chosen for functional analysis (Figure 2.11; Table 2.9). High-ranking 

genes represent genes commonly differentially expressed in response to pathogens, and low-

ranking genes represent genes more uniquely differentially expressed in response to pathogenic 

S. maltophilia. From the highest-ranked genes, mutant alleles were available for dod-22, 

T24B8.5, scl-2, clec-67, lys-1, ZK6.11, and cpr-4. From the lowest-ranking genes, alleles were 

generated using CRISPR/Cas9 based on expression levels, with a chosen cutoff of total FPKM 

greater than 30 across all four treatments. This criterion was used because genes with very low 

overall expression may not have as much biological significance. Successful mutant alleles were 

generated for K08D8.12, Y82E9BR.5, fbxa-77, F08G2.5, and C25F9.11 (Figure 2.1). 

We again used Cox proportional hazards tests of survivorship to compare strains 

containing mutant alleles of each candidate gene to wild-type worms for functional analysis. 

However, in addition to determining differences in survival upon exposure to S. maltophilia 

strains, we also tested several other common bacterial pathogens: P. aeruginosa PA14, S. 

marcescens DB10, S. aureus NCTC8325, and X. nematophila X-1462. These pathogens were 

chosen because they represent strains that result in differential expression of the low-ranking 

candidate genes (Table 2.9). We hypothesize that mutations in genes commonly differentially 
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expressed in response to pathogens, or the higher-ranked genes, will be important for survival 

upon exposure to all pathogens, whereas mutations in genes more uniquely regulated by S. 

maltophilia, or the lower-ranked genes, will only result in differences in survival when exposed 

to pathogenic S. maltophilia JCMS and JV3.  

Of the common pathogen genes, mutations in clec-67, dod-22, and T24B8.5 were 

significantly less susceptible to all non-S. maltophilia pathogens as compared to wild-type 

(Figure 2.12; Table 2.10). Interestingly, T24B8.5 mutants were significantly more susceptible to 

all S. maltophilia strains (Figure 2.7; Table 2.7). In addition, scl-2, ZK6.11, and cpr-4 mutants 

were significantly less susceptible to S. aureus NCTC8325 and ZK6.11 was more susceptible to 

P. aeruginosa PA14 and X. nematophila X-1462 (Figure 2.12; Table 2.10). Overall, four of the 

six mutants resulted in differences in survival in response to at least two non-S. maltophilia 

pathogens.  

Of the lower-ranking, or more S. maltophilia-specific genes, only two of the five mutants 

caused significant differences on S. maltophilia strains, with fbxa-77 and Y82E9BR.5 mutants 

being more susceptible to JCMS (Figure 2.13; Table 2.10). However, as expected, fewer strains 

showed differences on other pathogens, with fbxa-77 and K08D8.12 mutants causing decreased 

susceptibility to S. aureus NCTC8325 and F08G2.5 mutants causing increased susceptibility to 

P. aeruginosa PA14 and X. nematophila X-1462 (Figure 2.13; Table 2.10). Therefore, although 

these genes result in differential expression in response to pathogenic S. maltophilia, mutations 

in only a few of these genes affect survival in response to S. maltophilia or other pathogens.  
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 Discussion 

 Common and strain-specific genetic changes could provide insight into host 

responses and virulence mechanisms 

This study utilized a transcriptomic approach to identify genetic responses to S. 

maltophilia strains of differing pathogenicity. We found 145 genes that were differentially 

expressed between all pathogenic and non-pathogenic comparisons (Figure 2.4) and represent a 

common response to pathogenic S. maltophilia. GO enrichment analysis identified processes 

involved in defense response, particularly response to Gram-negative bacteria, as well as a 

molecular function in carbohydrate binding and the cellular component of membrane raft (Table 

2.3). Genes with the GO term “molecular function of carbohydrate binding” all belong to clec or 

lec family, which are named for their structural similarity to carbohydrate binding proteins. 

Although not all nematode clec and lec genes encode molecules that bind carbohydrates, many 

are predicted to be secreted proteins that may act as immune effectors (Dierking, Yang, & 

Schulenburg, 2016; Pees et al., 2016). In addition, many clec genes are expressed in the C. 

elegans intestine and are differentially expressed in response to pathogens; a recent review 

determined that 237 of 283 clec genes are differentially expressed during pathogen infection 

(Pees et al., 2016). Membrane rafts, or lipid rafts, are membrane domains that contain high 

concentrations of cholesterol and glycosphingolipids (Pike, 2003). Membrane rafts also serve as 

sites of colocalization between membrane proteins and signaling pathway components, such as 

components of MAPK and insulin-like signaling pathways, both of which are known to play 

roles in innate immunity and defense in C. elegans (Aballay et al., 2003; Kim et al., 2002; 

Murphy, Lee, & Kenyon, 2007; Pike, 2003; Sifri et al., 2003). To further support this, many of 

the CPSR membrane raft genes correlate with genes with biological processes in innate immune 
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response. Overall, this supports our hypothesis that the CPSR genes are involved in pathogen 

recognition and response.   

A majority of the CPSR genes (89%) were up-regulated in response to JCMS and JV3. 

This is consistent with previous transcriptomic patterns of genes differentially expressed in C. 

elegans upon pathogen exposure (Boehnisch et al., 2011; Engelmann et al., 2011; Troemel et al., 

2006). However, one study that compared transcriptomic responses to a variety of bacterial 

pathogens found that a majority of genes were down-regulated in response to Gram-negative 

bacteria and up-regulated in response to Gram-positive bacteria (Sinha et al., 2012). Therefore, 

this could be time- or strain-specific. In fact, when looking at genes specifically differentially 

expressed in response to JV3 (VSR), many genes are downregulated (88%) (Table 2.2). This 

supports the idea that directionality of gene expression in C. elegans may be strain specific, and 

different virulence mechanisms or host responses may play a role in these patterns. For example, 

GO enrichment analysis of VSR genes identified many processes and functions involved in 

metabolism (Table 2.4). Genes with GO terms “flavonoid glucuronidation, “flavonoid metabolic 

process”, and “UPD-glycosyltransferase” consist almost entirely of glycosyltransferase family 

proteins. This is a large family of proteins in C. elegans, comprising 265 genes (Yonekura-

Sakakibara & Hanada, 2011). However, a direct linkage between glycosyltransferases and innate 

immunity has not yet been observed. Genes with GO terms “oxidation-reduction process” and 

“oxidoreductase activity” encoded many dehydrogenase and oxidase enzymes. Interestingly, 

mitochondria, the location of many dehydrogenases, has been shown to be involved in pathogen 

recognition (reviewed in Sancho, Enamorado, & Garaude, 2017). Specifically, FADH2-

dependent dehydrogenase activity in mice macrophages increases upon exposure to E. coli 

(Garaude et al., 2016). Mutations in all three JV3-specific genes that caused significant 
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susceptibility to JV3 (dhs-2, dhs-3, and acox-1.4) were enzymes involved in oxidoreductase 

activity (Figure 2.8; Table 2.5). Furthermore, many genes involved in oxidoreductase activity 

and flavanoid metabolic processes are also differentially expressed upon exposure to other 

pathogens, such as B. thuringiensis, S marcescens, and X. nematophila (Engelmann et al., 2011; 

Sinha et al., 2012; Zhang et al., 2015). As many of these enzymes are involved in general 

metabolic processes, one explanation might be that JV3 utilizes a mechanism to decrease overall 

metabolism in C. elegans, resulting in its own increased virulence. On the other hand, this 

downregulation may be a defense mechanism used by C. elegans to decrease metabolites needed 

for JV3 survival or pathogenesis. Therefore, further analyses of these genes in C. elegans are 

needed to fully understand their role in response to S. maltophilia JV3 and other pathogens. 

These analyses, along with JV3 genome sequence analysis, could provide insight into unique 

virulence mechanisms employed by JV3. 

In comparison to VSR genes (221), there are very few genes (14) specifically 

differentially expressed in response to JCMS (JSR) (Table 2.2). In addition, most of these genes 

have very low overall expression. Overall, this suggests that JCMS does not have unique 

virulence mechanisms as compared to JV3 and therefore does not lead to unique host responses. 

In order to further understand virulence mechanisms of different strains of S. maltophilia, 

comparative analysis of genomes is necessary. However, it is clear that there are strain-specific 

differences in S. maltophilia that drive differences in both phenotypic and genotypic responses in 

C. elegans.  

Overall, data from the survival analyses do not support our hypothesis that CPSR genes 

are necessary for survival on JCMS and JV3, while JSR and VSR genes are necessary for 

survival on only JCMS or JV3, respectively, as mutations in a majority of genes did not affect 
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survival of C. elegans in a strain-specific manner (Table 2.7). However, it appears that overall, 

these genes do play a role in response to S. maltophilia, as 13 of 22 candidate CPSR, JSR, and 

VSR gene mutants display significant differences in survival upon exposure to at least one S. 

maltophilia strain. One explanation for lack of observed survival differences among the 

mutations in these genes as compared to wild-type is functional redundancy among families of 

similar proteins. In fact, many of these genes, including C-type lectins and lysozymes, all belong 

to large gene families with structural similarity (Pees et al., 2016; Schulenburg & Boehnisch, 

2008). Therefore, even though these genes may play a role in innate immune response, mutations 

in one of these genes alone may not result in an effect on survival upon pathogen-challenge.  

Mutations in many CPSR genes that result in significant susceptibility to JCMS and JV3 

also show significant differences in survival upon exposure to K279a (Table 2.7). As K279a has 

previously been shown to be virulent to C. elegans (Fouhy et al., 2007) and genome sequencing 

has identified a variety of virulence factors in S. maltophilia K279a (Crossman et al., 2008), it 

may in fact be utilizing virulence mechanisms. Whereas wild-type C. elegans may be able to 

defend against K279a infection, mutations in innate immune and defense genes may cause C. 

elegans to become more susceptible to K279a.  

 Many genes involved in response to S. maltophilia are common responses to other 

pathogens 

In addition to identifying strain specific responses, we were able to identify genes that 

were commonly differentially expressed in response to other pathogens as well as genes uniquely 

differentially expressed upon S. maltophilia infection. WormExp, a recently developed database, 

provides a resource for querying and comparing a variety of transcriptomic datasets. This 

database allowed us to identify S. maltophilia-regulated genes that were also regulated by a 



77 

variety of other pathogens, as well as responses that were specific to pathogenic S. maltophilia 

strains. WormExp contains data for transcriptomic responses of C. elegans to 28 bacterial strains, 

of which our CPSR genes were regulated by a maximum of 16 other pathogens (Figure 2.11; 

Table 2.9). 89% of the 145 CPSR genes are differentially expressed in response to at least 5 

other pathogens, suggesting that a majority of these genes are commonly regulated by other 

pathogens in C. elegans (Figure 2.11; Table 2.9). In addition, many genes that are commonly 

regulated by other pathogens are highly connected in the gene network of CPSR genes and are 

associated with GO terms involved in defense response, including dod-22, clec-67, cpr-3, 

ZK6.11, and lys-1. Therefore, this study further validates the use of gene networks for 

identification of important genes, in this case genes involved in response to pathogen infection.  

Functional analysis of genes differentially expressed by many pathogens revealed that a 

majority of these genes are involved in response to both pathogenic S. maltophilia and other 

pathogens (Figure 2.7; Figure 2.12; Table 2.7; Table 2.10). However, genes that are more 

uniquely differentially expressed in response to S. maltophilia do not seem important for survival 

on pathogenic S. maltophilia or other pathogens (Figure 2.13; Table 2.10). Interestingly, we 

observed the most differences in survival in response to S. aureus. In addition, several genes that 

seem to be important for survival on S. aureus are up-regulated in response to S. maltophilia, but 

down-regulated in response to S. aureus. S. aureus is the only Gram-positive bacteria used in this 

experiment, suggesting differences in the responses to Gram-positive and Gram-negative 

bacteria.  

Using transcriptomic data to understand and analyze responses to pathogens can provide 

insight into overall response patterns and pathogen virulence mechanisms. This study illustrates 

the previously supported idea that there are common signatures of pathogen infection in C. 
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elegans, but also unique species and even strain specific responses. Therefore, to fully 

understand virulence of bacteria and pathogenesis in C. elegans and begin to expand these 

finding to other animals, a variety of bacterial species and strains need to be investigated.  
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 Figures 

 

Figure 2.1 CRISPR/Cas9 generated alleles 

Genes with generated CRISPR/Cas9 mutation alleles are shown above. Exons are indicated by 

green boxes and introns are indicated by black lines. Gene sizes are not to scale, but exon/intron 

size within genes is to scale. Relative location of gRNAs is indicated by circles above the gene, 

and location of mutation is indicated in red (lines for deletions, triangles for insertions). All 

isoforms of W02A2.8, K08D8.4, and K08D8.12 are shown. K08D8.4 and K08D8.12 mutations 

are predicted to result in loss of function of all isoforms; W02A2.8c may be expressed but is not 

differentially expressed between treatments. Mutation sequence and flanking sequence is shown 

on the right, with mutation sequence shown in red font (number in parentheses represents size of 

deletion). 
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Figure 2.2 S. maltophilia strains show varying pathogenicity to C. elegans 

Survivorship of wild-type nematodes on S. maltophilia JCMS, K279a, JV3, and E. coli OP50. 

Survival estimates were determined using Kaplan-Meier estimates generated in R. This data 

contains all wild-type data collected from experiments in this study, representing 21 individual 

experiments and n= 428-546 for each bacterial treatment. Sample sizes, hazard ratios and p-

values generated form Cox proportional hazards tests are shown in Table 2.5.  
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Figure 2.3 Heatmap of C. elegans differentially expressed genes in response to S. 

maltophilia 

Differentially expressed genes from RNA-sequencing include genes with fold-change >2 and 

FDR-adjusted p-value <0.05 between any treatment comparisons. Fragments per kilobase per 

million (FPKM) values for each gene and treatment were log transformed. Vertical distances on 

dendrogram represent degree of similarity of gene expression profiles between treatments. Gene 

expression is color coded, with red indicating lower expression and yellow indicating higher 

expression. Heatmap was generated and visualized using the gplots package in R.   
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Figure 2.4 C. elegans expresses a common set of 145 genes in response to pathogenic S. 

maltophila strains 

Differential expression was determined between each pathogenic and nonpathogenic 

comparison, with the number of significantly differentially expressed genes indicated between 

each set of comparisons. Genes included are differentially expressed between the specified 

treatments with fold-change >2 and FDR-adjusted p-value <0.05. 145 genes were commonly 

differentially expressed between all pathogenic (JCMS and JV3) and nonpathogenic (K279a and 

OP50) treatments, or the common pathogenic S. maltophilia response (CPSR), indicated by the 

asterisk. 
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Figure 2.5 Gene network analysis was used to prioritize CPSR genes 

WormNet v2, a probabilistic functional gene network model, was queried with the 145 genes that 

were differentially expressed in response to non-pathogenic vs. pathogenic strains. 73 of the 145 

genes are connected to one another (AUC=0.6942, p=1.8137e-16), with the 5 highest-ranking 

genes circled in the inset. Network was visualized using Cytoscape 3.5.1. Green boxes represent 

individual genes and grey lines represent functional connections between genes. 
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Figure 2.6 Gene network analysis was used to prioritize VSR genes 

WormNet v2, a probabilistic functional gene network model was queried with the 221 JV3-

specific response (VSR) genes. 103 of the 221 genes are connected to one another 

(AUC=0.6687, p=5.8695e-20), with the 5 highest-ranking genes circled. Network was viewed 

using Cytoscape 3.5.1. Blue boxes represent individual genes and grey lines represent functional 

connections between genes.   
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Figure 2.7 Mutations in CPSR genes result in a variety of survival patterns upon S. 

maltophilia exposure 

Survivorship of wild-type nematodes and CPSR mutants on S. maltophilia JCMS, K279a, JV3, 

and E. coli OP50. Survival estimates were determined using Kaplan-Meier estimates generated 

in R. For these experiments, 10 - 12 worms were synchronized, picked onto each treatment 

bacterial lawn and the number of living worms was recorded daily. 1 - 3 replicates were 

completed for all bacterial and C. elegans strain combinations. Sample sizes, hazard ratios and p-

values generated form Cox proportional hazards tests are shown in Table 2.7. 
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Figure 2.8 Mutations in VSR genes result in a variety of survival patterns upon S. 

maltophilia exposure 

Survivorship of wild-type nematodes and VSR mutants on S. maltophilia JCMS, K279a, JV3, 

and E. coli OP50. Survival estimates were determined using Kaplan-Meier estimates generated 

in R. For these experiments, 10 - 12 worms were synchronized, picked onto each treatment 

bacterial lawn and the number of living worms was recorded daily. 1 - 3 replicates were 

completed for all bacterial and C. elegans strain combinations. Sample sizes, hazard ratios and p-

values generated form Cox proportional hazards tests are shown in Table 2.7.  
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Figure 2.9 Mutations in JSR genes result in a variety of survival patterns upon S. 

maltophilia exposure 

Survivorship of wild-type nematodes and JSR mutants on S. maltophilia JCMS, K279a, JV3, and 

E. coli OP50. Survival estimates were determined using Kaplan-Meier estimates generated in R. 

For these experiments, 10 - 12 worms were synchronized, picked onto each treatment bacterial 

lawn and the number of living worms was recorded daily. 1 - 3 replicates were completed for all 

bacterial and C. elegans strain combinations. Sample sizes, hazard ratios and p-values generated 

form Cox proportional hazards tests are shown in Table 2.7.  
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Figure 2.10 A majority of tested CPSR and VSR genes are expressed in innate immune 

response tissues  

Expression of several CPSR (T24B8.5, F19B2.5, K08D8.4) and VSR (sodh-1, acdh-1, dhs-3) 

genes using transcriptional or translational fluorescent protein fusions upon exposure to E. coli 

OP50. 100x magnification is shown on the left, 400x magnification is shown on the right. Scale 

bar indicates 100 μm for 100x pictures and 20 μm for 40x pictures. Expression for K08D8.4 was 

too dim to be observed at 100x. Note that expression in the AIY interneuron in the T24B8.5 

transgenic strain is due to a ttx-3:GFP marker and not T24B8.5 expression. 
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Figure 2.11 Many CPSR genes are commonly differentially expressed in response to other 

pathogens 

The WormExp microbe exposure dataset was used to determine how many pathogens each 

CPSR gene is differentially expressed in response to, with the number of pathogens ranging from 

1-16 pathogens, excluding S. maltophilia. This bar graph depicts how many CPSR genes are 

regulated by each number of pathogens. Note that the pathogens represented by each x-value are 

not the same for each gene.  Genes represented by the yellow bars represent low-ranking, or S. 

maltophilia-specific genes, and genes represented in red bars indicate high-ranking, or common 

pathogen genes. Candidate genes were chosen from the yellow and red bars for functional 

analysis. 
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Figure 2.12 Survival analyses of mutations in common pathogen response genes 

Survivorship of wild-type nematodes and mutants on S. maltophilia JCMS, S. maltophilia K279a, 

S. maltophilia JV3, S. aureus NCTC8325, S. marcescens DB10, P. aeruginosa PA14, and X. 

nematophila X1462. S. maltophilia data not shown can be found in Figure 2.7. Survival 

estimates were determined using Kaplan-Meier estimates generated in R. For these experiments, 

10 - 12 worms were synchronized, picked onto each treatment bacterial lawn and the number of 

living worms was recorded daily. Sample sizes, hazard ratios and p-values generated form Cox 

proportional hazards tests are shown in Table 2.10.  
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Figure 2.13 Survival analyses of mutations in S. maltophilia-specific genes 

Survivorship of wild-type nematodes and mutants on S. maltophilia JCMS, S. maltophilia K279a, 

S. maltophilia JV3, S. aureus NCTC8325, S. marcescens DB10, P. aeruginosa PA14, and X. 

nematophila X1462. S. maltophilia data not shown can be found in Figure 2.7. Survival 

estimates were determined using Kaplan-Meier estimates generated in R. For these experiments, 

10 - 12 worms were synchronized, picked onto each treatment bacterial lawn and the number of 

living worms was recorded daily. Sample sizes, hazard ratios and p-values generated form Cox 

proportional hazards tests are shown in Table 2.10.  
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 Tables 

Table 2.1 CRISPR/Cas9 target gene primers 

Forward and reverse primers for each gRNA were annealed and ligated into pRB1017. gRNA 

sequence (20 bp prior to the PAM site) are underlined for each primer, non-underlined bases are 

included in the primer sequence for proper ligation into BsaI cut pRB1017. Primers flanking 

gRNA target loci were used to amplify DNA from possible mutant worms to detect insertions or 

deletions based on amplicon size. If an odd number of flanking primers are listed they were 

tested in combination (forward primer was tested with each reverse primers). All primers are 

listed 5' to 3’. 

 

Gene gRNA Primers Flanking Primers 
B0024.4 1 F:  TCTTGCTAGAAATAGAAAGTTCGTT 

1 R: AAACAACGAACTTTCTATTTCTAGC 
2 F: TCTTGTCCTTCATACAACTTTACAG 
2 R: AAACCTGTAAAGTTGTATGAAGGAC 
3 F: TCTTGGGACGTCAAACTACATCACG 
3 R: AAACCGTGATGTAGTTTGACGTCCC 

F: CCATTTACACTCCTCCTC 
R: TTTACATCAAAATCTTTCAAGTTGAG 
R: AATTGTAATGATAAATGACGTGAATAG 

F08G2.5 1 F:  TCTTGTCGAAGAATCCGTCTCCAAG 
1 R: AAACCTTGGAGACGGATTCTTCGAC 
2 F: TCTTGAAGATCGTAGAGACACCCAA 
2 R: AAACTTGGGTGTCTCTACGATCTTC 
3 F: TCTTGACAGAGATCGAAGAGAAAGT 
3 R: AAACACTTTCTCTTCGATCTCTGTC 

F: TAAAACCAGCACCTCTCACC 
R: ATCATCAGAGTCATCAGAAGAG 

K08D8.4 1 F: TCTTGATTAAGTGTACCTACCCGAA 
1 R: AAACTTCGGGTAGGTACACTTAATC 
2 F: TCTTGATATACATCGACCTTCCGT 
2 R: AAACGACGGAAGGTCGATGTATATC 
3 F: TCTTGGATTACTTGACTCTTCCGAA 
3 R: AAACTTCGGAAGAGTCAAGTAATCC 
4 F: TCTTGTTAAAAATAGAACAATACTT 
4 R: AAACAAGTATTGTTCTATTTTTAAC 

F: CAGATAAATGTTCCTGAAGGC 
R: GCATCACTTGATTCACAGC 
R: CAGTGTTGGGAATGTTGTTG 

W02A2.8 1 F: TCTTGAGCGGATTCCCGATTCACGA 
1 R: AAACTCGTGAATCGGGAATCCGCTC 
2 F: TCTTGGGAAGCGTCCTCATTCAACG 
2 R: AAACCGTTGAATGAGGACGCTTCCC 
3 F: TCTTGATTTTGACCCCCCATGACGG 
3 R: AAACCCGTCATGGGGGGTCAAAATC 

F: GTATTTCTTGTGATTCTAGAGTCACC 
R: GGAAGAAAATAGCGGAATAGGTTAC 
R: AACAACCAAAGACGAACCTC 

fbxa-77 1 F: TCTTGGTTTCTAGACACATCCCGCA 
1 R: AAACTGCGGGATGTGTCTAGAAACC 
2 F: TCTTGGAGCAGCTGTCGATAACGTG 
2 R: AAACCACGTTATCGACAGCTGCTCC 

F: GGAGTGGAGCTACTGGAAAAC 
R: ATGGGCTAATCGAGCCTTC 

K08D8.12 1 F: TCTTGGTTGAATCAGAATAAGCGGG 
1 R: AAACCCCGCTTATTCTGATTCAACC 
2 F: TCTTGGGTACAACTACAATAACGGC 
2 R: AAACGCCGTTATTGTAGTTGTACCC 

F: TGCTTTTTCGTTAGTCTCTACTTCG 
R: AAGATAGGATGGTGCGCGAG 



99 

C25F9.11 1 F: TCTTGTTTACGTTGAAGAGTCGCAA 
1 R: AAACTTGCGACTCTTCAACGTAAAC 
2 F: TCTTGCGTTCTTTCTGGGTAAGGGT 
2 R: AAACACCCTTACCCAGAAAGAACGC 

F: ACCTTTATTAGTTTCCCGATGGC 
R: CGACGGCAGATTGTTCATGG 

Y82E9BR.5 1 F: TCTTGACAGTGTTGCTCGTTTTACG 
1 R: AAACCGTAAAACGAGCAACACTGTC 
2 F: TCTTGAGCTCCCCAACTGCAACACG 
2 R: AAACCGTGTTGCAGTTGGGGAGCTC 

F: GCATTCTACAATGTCTTTTTGTTCCC 
R: ATCAGAGCCGACGAGGATG 
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Table 2.2 All differentially expressed genes between treatment comparisons 

*TO VIEW TABLE DOWNLOAD SUPPLEMENTAL FILE “LeahRadeke2018-Table2.2-

differentially expressed genes” 

 

List of all differentially expressed genes between all pathogenic and nonpathogenic comparisons 

(represented in Figure 2.4 C. elegans expresses a common set of 145 genes in response to 

pathogenic S. maltophila strains. Fragments per kilobase per million (FPKM) values are shown 

for each treatment. Additional sheets contain CPSR, VSR, and JSR genes with FPKM values and 

up/down-regulation in reference to the pathogenic strains (up/down-regulated in response to JV3 

and/or JCMS). Asterisk indicates different direction of regulation depending on the comparison 

considered.  
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Table 2.3 Innate immune response GO terms are significantly enriched in common 

pathogenic S. maltophilia response (CPSR) genes 

Gene ontology (GO) enrichment analysis was performed on the 145 CPSR genes using DAVID 

Bioinformatics Resources 6.8. GO analysis identifies terms relating to the biological process, 

molecular function, or cellular component that are significantly enriched among a list of genes. 

Indented terms indicate child terms, or subcategories, of the term listed above, with the parent 

term left-aligned. Note that the degree of indention of each term does not reflect absolute GO 

term level within each category. Only terms with FDR <.05 and the most descriptive term for 

each unique gene list are shown.  
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Table 2.4 Metabolism and enzyme GO terms are significantly enriched in S. maltophilia 

JV3-specific response (VSR) genes 

Gene ontology (GO) enrichment analysis was performed on the 221 VSR genes using DAVID 

Bioinformatics Resources 6.8. GO analysis identifies terms relating to the biological process, 

molecular function, or cellular component that are significantly enriched among a list of genes. 

Indented terms indicate child terms, or subcategories, of the term listed above, with the parent 

term left-aligned. Note that the degree of indention of each term does not reflect absolute GO 

term level within each category. Only terms with FDR <.05 and the most descriptive term for 

each unique gene list are shown.   
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Table 2.5 CPSR genes ordered based on gene network rank 

WormNet v2 was queried with the 145 genes that were significantly differentially expressed in 

response to nonpathogenic vs pathogenic strains. 73 of the 145 genes were connected within the 

network and are ordered based on WormNet score, which is based on the number of connections 

that gene has and the strength of the evidence for those connections (Score). C= number of 

connected CPSR genes to the listed gene. Up/down-regulated= direction of differential 

expression in response to pathogenic compared to nonpathogenic strains. Asterisk indicates 

different direction of regulation depending on the comparison considered.  

 

Gene name Score C Connected genes 
Up/Down-
regulated 

lys-2 3.67 26  B0024.4 clec-41 C08E8.4 C17H12.6 
C17H12.8 C34H4.2 C49C3.9 C49G7.10 
F08G2.5 F08G5.6 F19B2.5 F35E12.7 dod-23 
hsp-17 dod-22 F55G11.8 clec-67 K08D8.4 
K08D8.5 K09D9.1 cpr-3 fbxa-60 T24B8.5 
T24C4.4 dod-19 ZK6.11 

Up 

C49G7.10 3.65 23  B0024.4 tsp-1 C06B3.7 C08E8.4 C10C5.2 
C17H12.6 F08G2.5 F08G5.6 F19B2.5 F53A9.1 
F53A9.6 K08D8.4 K09D9.1 mtl-1 R10D12.9 
cpr-3 fbxa-60 fbxa-55 T24B8.5 T24C4.4 lys-1 
lys-2 lys-3 

Up 

F19B2.5 3.52 20  B0024.4 B0496.7 nuc-1 C17H12.6 C49G7.10 
F08G2.5 F08G5.6 dod-22 F55G11.8 clec-67 
K08D8.4 K08D8.5 K09D9.1 spp-1 cpr-3 
T24C4.4 lys-1 lys-2 dod-19 ZK6.11 

Up 

T24C4.4 3.36 17  B0024.4 clec-41 C08E8.4 C17H12.6 
C49G7.10 F08G2.5 F08G5.6 F19B2.5 F53A9.1 
dod-22 F55G11.8 K08D8.4 K09D9.1 cpr-3 
T24B8.5 lys-1 lys-2 

Up 

F08G2.5 3.26 17  B0024.4 tsp-1 C08E8.4 C49G7.10 F08F8.5 
F19B2.5 lec-11 F53A9.1 F53A9.2 K08D8.4 
K09D9.1 mtl-1 cpr-3 T24B8.5 T24C4.4 lys-2 
lys-3 

Up 

K09D9.1 3.19 11  clec-41 tsp-1 C08E8.4 C49G7.10 F08G2.5 
F19B2.5 K08D8.4 cpr-3 T24C4.4 lys-2 lys-3 

Up 

C17H12.6 3.1 16  B0024.4 clec-41 C49G7.10 F19B2.5 dod-22 
F55G11.8 clec-67 K08D8.4 K08D8.5 cpr-3 
T24B8.5 T24C4.4 lys-1 lys-2 dod-19 ZK6.11 

Up 

dod-22 3.09 15  B0024.4 C17H12.6 C17H12.8 F08G5.6 
F19B2.5 F35E12.7 F55G11.8 clec-67 K08D8.4 
K08D8.5 T24C4.4 cpr-5 lys-2 dod-19 ZK6.11 

Up 

F55G11.8 3.08 14  B0024.4 C17H12.6 C17H12.8 F08G5.6 
F19B2.5 dod-22 clec-67 K08D8.4 K08D8.5 
T24C4.4 lys-1 lys-2 dod-19 ZK6.11 

Up 
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ZK6.11 3.06 15  B0024.4 C17H12.6 C34H4.2 C49C3.9 
F08G5.6 F19B2.5 F35E12.7 dod-22 F55G11.8 
clec-67 K08D8.4 K08D8.5 cpr-3 lys-1 lys-2 

Up 

C08E8.4 3.03 18  B0024.4 tsp-1 C49G7.10 F08G2.5 F49E11.10 
dod-23 F53A9.1 F53A9.6 F53A9.8 K09D9.1 
mtl-1 cpr-3 fbxa-60 T24B8.5 T24C4.4 lys-2 
lys-3 fbxa-30 

Up 

T24B8.5 2.96 9  clec-41 C08E8.4 C17H12.6 C49G7.10 
F08G2.5 dod-23 T24C4.4 lys-1 lys-2 

Up 

K08D8.4 2.92 15  B0024.4 C17H12.6 C49G7.10 F08G2.5 
F08G5.6 F19B2.5 dod-22 F55G11.8 clec-67 
K09D9.1 cpr-3 T24C4.4 lys-2 dod-19 ZK6.11 

Up 

F08G5.6 2.89 19  B0024.4 cyp-35A2 C49C3.9 C49G7.10 
F19B2.5 F35E12.7 F53A9.6 dod-22 F55G11.8 
clec-67 cyp-35A5 K08D8.4 K08D8.5 cpr-3 
T24C4.4 cpr-5 lys-2 dod-19 ZK6.11 

Up 

B0024.4 2.85 16  C08E8.4 C17H12.6 C49G7.10 F08G2.5 
F08G5.6 F19B2.5 dod-22 F55G11.8 clec-67 
K08D8.4 cpr-3 T24C4.4 lys-1 lys-2 dod-19 
ZK6.11 

Up 

cpr-3 2.82 21  B0024.4 tsp-1 C08E8.4 C17H12.6 C49C3.9 
C49G7.10 F08G2.5 F08G5.6 F19B2.5 
F49E11.10 F53A9.6 F53A9.8 clec-67 K08D8.4 
K09D9.1 fbxa-60 T24C4.4 lys-2 lys-3 dod-19 
ZK6.11 

Up 

lys-1 2.81 15  B0024.4 clec-41 C17H12.6 C17H12.8 
C49G7.10 F19B2.5 cpr-4 hsp-17 F55G11.8 
K08D8.5 T24B8.5 T24C4.4 cpr-5 dod-19 
ZK6.11 

Up 

dod-19 2.75 16  B0024.4 clec-41 C17H12.6 C34H4.2 C49C3.9 
F08G5.6 F19B2.5 F35E12.7 dod-22 F55G11.8 
clec-67 K08D8.4 K08D8.5 cpr-3 lys-1 lys-2 

Up 

clec-67 2.73 16  B0024.4 nuc-1 C17H12.6 F08G5.6 F19B2.5 
F49E11.10 dod-22 F55G11.8 K08D8.4 
K08D8.5 spp-1 cpr-3 cpr-5 lys-2 dod-19 
ZK6.11 

Up 

scl-2 2.55 17  tsp-1 nuc-1 C08E8.4 C56A3.2 cpr-4 dod-23 
F53A9.1 F53A9.6 F53A9.8 clec-67 vit-1 odc-1 
mtl-1 spp-1 cpr-3 fbxa-60 lys-3 

Down 

F53A9.8 2.51 17  tsp-1 nuc-1 C08E8.4 C08F11.13 lys-10 cpr-4 
F49E11.10 dod-23 F53A9.1 F53A9.6 vit-1 
mtl-1 spp-1 cpr-3 fbxa-60 fbxa-55 lys-3 

Up 

lys-3 2.42 18  B0496.7 tsp-1 C08E8.4 C08F11.13 C49G7.10 
F08G2.5 F09B9.1 F49E11.10 F53A9.1 
F53A9.2 F53A9.6 F53A9.8 K09D9.1 mtl-1 
R07C12.1 ugt-53 cpr-3 fbxa-55 

Up 

clec-41 2.37 8  C17H12.6 C49C3.9 K09D9.1 T24B8.5 
T24C4.4 lys-1 lys-2 dod-19 

Up 
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K08D8.5 2.25 11  C17H12.6 C17H12.8 F08G5.6 F19B2.5 dod-
22 F55G11.8 clec-67 lys-1 lys-2 dod-19 
ZK6.11 

Up 

T01D3.6 2.19 5  nuc-1 lys-10 clec-66 spp-1 bath-47 Up 

mtl-1 2.08 10  tsp-1 C08E8.4 C49G7.10 F08G2.5 F49E11.10 
dod-23 F53A9.1 F53A9.8 fbxa-59 lys-3 

Down 

tsp-1 2.03 15  B0496.7 C08E8.4 C49G7.10 F08G2.5 
F49E11.10 F53A9.1 F53A9.2 F53A9.6 
F53A9.8 K09D9.1 mtl-1 R10D12.9 cpr-3 lys-3 
fbxa-30 

Up 

clec-66 2.03 4  nuc-1 lys-10 T01D3.6 bath-47 Up 

dod-23 2.02 10  C08E8.4 lys-10 cpr-4 F49E11.10 F53A9.8 vit-
1 mtl-1 fbxa-60 T24B8.5 lys-2 

Up 

nuc-1 1.97 9  lys-10 F19B2.5 clec-66 F49E11.10 F53A9.8 
clec-67 T01D3.6 spp-1 cpr-5 

Down 

spp-1 1.97 9  nuc-1 lys-10 F19B2.5 F49E11.10 F53A9.8 
clec-67 vit-1 odc-1 T01D3.6 

Down 

C17H12.8 1.93 6  hsp-17 dod-22 F55G11.8 K08D8.5 lys-1 lys-2 Up 

F53A9.6 1.89 13  tsp-1 C08E8.4 C49G7.10 F08G5.6 cpr-4 
F49E11.10 F53A9.8 T04F8.7 cpr-3 fbxa-60 
fbxa-55 lec-10 lys-3 

Up 

F35E12.7 1.88 5  F08G5.6 dod-22 lys-2 dod-19 ZK6.11 Up 

B0496.7 1.88 5  tsp-1 F19B2.5 F53A9.1 R07C12.1 lys-3 Up 

F53A9.1 1.81 10  B0496.7 tsp-1 C08E8.4 C49G7.10 F08G2.5 
F49E11.10 F53A9.8 mtl-1 T24C4.4 lys-3 

Up 

fbxa-55 1.73 6  C49G7.10 cpr-4 F53A9.6 F53A9.8 W05H9.3 
lys-3 

Up 

C08F11.13 1.62 4  F09B9.1 F53A9.8 fbxa-59 lys-3 Up 

fbxa-60 1.6 14  C08E8.4 C10C5.2 C49C3.9 C49G7.10 
E02C12.8 cpr-4 F49E11.10 dod-23 hsp-17 
F53A9.6 F53A9.8 R10D12.9 cpr-3 lys-2 

Up 

cpr-4 1.57 10  lys-10 F49E11.10 dod-23 F53A9.6 F53A9.8 
fbxa-60 fbxa-55 fbxa-59 W02D7.2 lys-1 

Down 

vit-1 1.54 4  F49E11.10 dod-23 F53A9.8 spp-1 Down 

C49C3.9 1.49 10  clec-41 F08G5.6 F53C11.1 cpr-3 fbxa-60 
fbxa-59 W02D7.2 lys-2 dod-19 ZK6.11 

Up 

lys-10 1.47 7  nuc-1 clec-66 cpr-4 dod-23 F53A9.8 T01D3.6 
spp-1 

* 

C34H4.2 1.46 5  hsp-17 lys-2 ZK1055.7 dod-19 ZK6.11 Up 

cpr-5 1.43 6  nuc-1 F08G5.6 dod-22 clec-67 W02D7.2 lys-
1 

Down 

C10C5.2 1.39 4  C06B3.7 C49G7.10 R10D12.9 fbxa-60 Up 

hsp-17 1.34 6  C17H12.8 C34H4.2 R10D12.9 fbxa-60 lys-1 
lys-2 

Up 

fbxa-59 1.31 4  C08F11.13 C49C3.9 cpr-4 mtl-1 Up 

bath-47 1.31 3  F14F9.4 clec-66 T01D3.6 Up 
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clec-218 1.3 4  C49C3.9 cpr-4 K11H12.4 cpr-5 Down 

R10D12.9 1.3 5  tsp-1 C10C5.2 C49G7.10 hsp-17 fbxa-60 Up 

odc-1 1.27 2  F49E11.10 spp-1 Up 

F53A9.2 1.25 3  tsp-1 F08G2.5 lys-3 Up 

F14F9.4 1.18 2  ugt-53 bath-47 Up 

C06B3.7 1.12 2  C10C5.2 C49G7.10 Up 

cyp-35A5 1.11 2  C45B11.2 F08G5.6 Down 

ugt-53 1.09 2  F14F9.4 lys-3 Down 

R07C12.1 1.08 2  B0496.7 lys-3 Up 

F09B9.1 1.03 2  C08F11.13 lys-3 Up 

fbxa-30 1.01 2  tsp-1 C08E8.4 Up 

C45B11.2 0.99 3  cyp-35A2 cyp-35A5 cyp-14A2 Up 

cyp-35A2 0.97 2  C45B11.2 F08G5.6 Down 

F53C11.1 0.9 1  C49C3.9 Up 

lec-11 0.87 1  F08G2.5 Up 

E02C12.8 0.85 1  fbxa-60 Up 

F08F8.5 0.82 1  F08G2.5 Up 

ttr-44 0.79 1  F49E11.10 Down 

ZK1055.7 0.79 1  C34H4.2 Up 

K11H12.4 0.78 1  W02D7.2 Up 

lec-10 0.78 1  F53A9.6 Up 

T04F8.7 0.78 1  F53A9.6 Up 

W05H9.3 0.78 1  fbxa-55 Up 

cyp-14A2 0.72 1  C45B11.2 Down 



107 

Table 2.6 VSR genes ordered based on gene network rank 

WormNet v2 was queried with the 221 genes that were specifically differentially expressed in 

response to JV3 vs. all other strains. 103 of the 221 genes were connected within the network 

and are ordered based on WormNet score, which is based on the number of connections that 

gene has and the strength of the evidence for those connections (Score). C= number of connected 

CPSR genes to the listed gene. Up/down-regulated= direction of differential expression in 

response to pathogenic compared to nonpathogenic strains. 

 

Gene name Score C Connected genes 

Up/Down- 
regulated 

F10F2.2 3.9 5  tag-10 F38B6.4 sodh-1 T21C9.6 his-25 Down 

sodh-1 3.85 16  C14C6.2 C23G10.11 dod-3 C50F7.5 ftn-1 
C55A6.7 D1054.8 clec-54 F10F2.2 clec-7 
F13D12.6 F46C5.1 nhr-193 dhs-14 Y38F1A.6 
Y6G8.2 

Up 

dhs-3 3.67 4  C55A6.7 D1054.8 dhs-7 dhs-14 Down 

F38B6.4 3.62 2  pgp-2 F10F2.2 Down 

Y38F1A.6 3.53 13  acdh-1 D1054.8 F08A8.4 F09B12.3 dhs-25 
F13D12.6 F18E2.1 glf-1 sodh-1 ugt-47 dhs-
14 T03G6.1 pmp-5 

Down 

clec-57 3.35 19  ugt-17 C14C6.2 tag-10 C45B2.2 pho-1 
F08A8.4 clec-54 F09B12.3 F13D12.6 
F14D7.6 F18E2.1 F55B11.1 F58B4.5 F58G6.3 
ugt-62 T16G12.1 clec-26 W07B8.1 ZC416.6 

Down 

glf-1 3.35 4  ugt-47 T03G6.1 T26C5.2 Y38F1A.6 Up 

F13D12.6 3.34 15  ugt-63 tag-10 C50F7.5 pho-1 F08A8.4 clec-
57 clec-54 F09B12.3 F55B11.1 sodh-1 
T16G12.1 clec-26 W07B8.1 Y38F1A.6 
ZC416.6 

Down 

dhs-7 3.28 8  C01B10.10 C23H4.3 C55A6.7 dhs-25 dhs-2 
ugt-47 dhs-3 Y40H7A.10 

Down 

F09B12.3 3.27 15  C14C6.2 tag-10 D1054.8 pho-1 clec-57 clec-
54 F13D12.6 F55B11.1 F58G6.3 R08E5.3 
T16G12.1 clec-26 W07B8.1 Y38F1A.6 
ZC416.6 

Down 

ZC416.6 3.24 13  ugt-63 ncx-7 tag-10 pho-1 clec-57 clec-54 
F09B12.3 F13D12.6 F14D7.6 F55B11.1 
T16G12.1 clec-26 W07B8.1 

Down 

T03G6.1 3.21 3  glf-1 ugt-47 Y38F1A.6 Up 

pho-1 3.18 14  ugt-63 ncx-7 tag-10 C45B2.2 clec-57 clec-54 
F09B12.3 F13D12.6 F14D7.6 F55B11.1 
T16G12.1 clec-26 W07B8.1 ZC416.6 

Down 

acdh-1 3.11 7  ugt-63 C14C6.2 F08A8.2 F08A8.4 F15E6.4 
pmp-5 Y38F1A.6 

Down 
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C55A6.7 3.09 4  C01B10.10 dhs-7 sodh-1 dhs-3 Down 

D1054.8 3 7  odd-1 ugt-63 F09B12.3 F58B4.5 sodh-1 dhs-
3 Y38F1A.6 

Down 

F46C5.1 2.83 4  C23G10.11 F14D7.6 nhr-193 sodh-1 Up 

dhs-2 2.82 6  ugt-51 dod-3 C29F7.1 C29F7.2 dhs-7 ugt-5 Down 

F08A8.4 2.82 10  acdh-1 clec-57 F13D12.6 F18E2.1 F58B4.5 
ugt-47 T05E7.1 pmp-5 Y38F1A.6 ZC376.2 

Down 

clec-26 2.81 11  ugt-63 ncx-7 C45B2.2 pho-1 clec-57 clec-54 
F09B12.3 F13D12.6 F14D7.6 W07B8.1 
ZC416.6 

Down 

dhs-14 2.8 4  odd-1 sodh-1 dhs-3 Y38F1A.6 Down 

C23G10.11 2.6 3  F46C5.1 sodh-1 Y40H7A.10 Up 

tag-10 2.58 10  ftn-1 pho-1 clec-57 F09B12.3 F10F2.2 
F13D12.6 F55B11.1 W07B8.1 ndx-8 ZC416.6 

Down 

clec-54 2.54 20  C14C6.2 dod-3 C45B2.2 pho-1 clec-57 
F09B12.3 clec-7 F13D12.6 F18E2.1 F35E12.6 
nhr-193 H22K11.2 sodh-1 ugt-47 T05E7.1 
T16G1.4 clec-26 T24C2.5 Y40H7A.10 
ZC416.6 

Down 

F08A8.2 2.5 3  acdh-1 T05E7.1 ndx-8 Down 

dhs-25 2.41 2  dhs-7 Y38F1A.6 Down 

W07B8.1 2.39 7  tag-10 pho-1 clec-57 F09B12.3 F13D12.6 
clec-26 ZC416.6 

Down 

T16G12.1 2.26 11  ugt-63 ncx-7 pho-1 clec-57 F09B12.3 
F13D12.6 F14D7.6 F55B11.1 T25G12.6 ndx-8 
ZC416.6 

Down 

F55B11.1 2.24 10  ncx-7 tag-10 pho-1 clec-57 F09B12.3 
F13D12.6 F14D7.6 T16G12.1 ndx-8 ZC416.6 

Down 

C29F7.2 2.1 6  ugt-51 C10C5.4 math-26 dhs-2 ugt-9 ugt-5 Down 

ugt-5 2.09 5  ugt-51 C29F7.1 C29F7.2 ugt-21 dhs-2 Down 

ndx-8 2.09 9  C01B10.4 C23H4.7 tag-10 C35A5.3 F08A8.2 
F55B11.1 T16G12.1 T21C9.6 sulp-7 

Down 

C35A5.3 2.07 7  F18E2.1 F35E12.6 F58B4.5 ugt-47 pmp-5 
ndx-8 ZK228.4 

Down 

F35E12.6 1.97 9  C25F9.4 C35A5.3 clec-54 F18E2.1 F58B4.5 
H06H21.8 H22K11.2 ugt-47 ZC376.2 

Up 

ugt-47 1.92 18  C01B10.10 C23H4.3 C35A5.3 dhs-7 F08A8.4 
clec-54 F18E2.1 F35E12.6 F58B4.5 glf-1 
H06H21.8 ugt-62 T03G6.1 T05E7.1 pmp-5 
Y38F1A.6 Y40H7A.10 ZC376.2 

Down 

ugt-21 1.91 3  ugt-62 ugt-9 ugt-5 Down 

ugt-63 1.88 11  ncx-7 acdh-1 D1054.8 pho-1 F13D12.6 
F14D7.6 F58G6.3 grd-14 T16G12.1 clec-26 
ZC416.6 

Down 

ugt-9 1.83 2  C29F7.2 ugt-21 Down 
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F14D7.6 1.81 10  ugt-63 ncx-7 C45B2.2 pho-1 clec-57 F46C5.1 
F55B11.1 T16G12.1 clec-26 ZC416.6 

Down 

C14C6.2 1.79 7  acdh-1 clec-57 clec-54 F09B12.3 clec-7 
H22K11.2 sodh-1 

Down 

F58G6.3 1.78 6  ugt-63 clec-57 F09B12.3 F58B4.5 ugt-62 
grd-14 

Down 

ugt-62 1.77 9  C10C5.4 ugt-21 clec-57 F58B4.5 F58G6.3 
ugt-19 ugt-47 ugt-30 ugt-6 

Down 

F58B4.5 1.68 13  C25F9.4 C35A5.3 C49A9.4 D1054.8 F08A8.4 
clec-57 F18E2.1 F35E12.6 F58G6.3 ugt-62 
ugt-47 ZC376.2 ZK228.4 

Down 

ncx-7 1.66 7  ugt-63 pho-1 F14D7.6 F55B11.1 T16G12.1 
clec-26 ZC416.6 

Down 

F18E2.1 1.61 12  C35A5.3 F08A8.4 clec-57 clec-54 F35E12.6 
F58B4.5 H06H21.8 ugt-47 T05E7.1 pmp-5 
Y38F1A.6 ZC376.2 

Down 

C25F9.4 1.57 2  F35E12.6 F58B4.5 Down 

Y40H7A.10 1.55 7  C23G10.11 dhs-7 clec-54 H22K11.2 ugt-47 
W02D7.4 ins-7 

Down 

C29F7.1 1.54 2  dhs-2 ugt-5 Down 

ugt-51 1.52 5  C29F7.2 ftn-1 dhs-2 Y6G8.2 ugt-5 Down 

dod-3 1.51 5  hil-7 ftn-1 clec-54 dhs-2 sodh-1 Down 

Y6G8.2 1.5 7  ugt-51 ftn-1 nhr-193 H22K11.2 sodh-1 
T03E6.8 ZC196.2 

Down 

T05E7.1 1.47 7  F08A8.2 F08A8.4 clec-54 clec-7 F18E2.1 
K09C4.1 ugt-47 

Down 

pmp-5 1.47 6  C35A5.3 acdh-1 F08A8.4 F18E2.1 ugt-47 
Y38F1A.6 

Down 

ZC376.2 1.46 6  C23H4.3 F08A8.4 F18E2.1 F35E12.6 
F58B4.5 ugt-47 

Down 

C10C5.4 1.45 3  C29F7.2 ugt-62 cah-5 Down 

ftn-1 1.44 5  ugt-51 dod-3 tag-10 sodh-1 Y6G8.2 Down 

grd-14 1.44 2  ugt-63 F58G6.3 Down 

C45B2.2 1.43 5  pho-1 clec-57 clec-54 F14D7.6 clec-26 Down 

C01B10.10 1.43 3  C55A6.7 dhs-7 ugt-47 Down 

clec-7 1.37 5  C14C6.2 clec-54 sodh-1 T05E7.1 T16G1.4 Down 

ugt-17 1.33 2  math-3 clec-57 Down 

nhr-193 1.28 5  clec-54 F46C5.1 H22K11.2 sodh-1 Y6G8.2 Down 

C50F7.5 1.26 2  F13D12.6 sodh-1 Up 

H22K11.2 1.25 6  C14C6.2 clec-54 F35E12.6 nhr-193 
Y40H7A.10 Y6G8.2 

Down 

R08E5.3 1.22 1  F09B12.3 Down 

C23H4.3 1.2 3  dhs-7 ugt-47 ZC376.2 Down 

math-3 1.2 2  ugt-17 math-40 Down 

T16G1.4 1.16 3  clec-54 clec-7 cat-4 Down 
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T03E6.8 1.16 3  Y20C6A.1 Y6G8.2 ZC196.2 Down 

T06D8.3 1.16 2  pqn-13 pqn-73 Up 

H06H21.8 1.16 3  F18E2.1 F35E12.6 ugt-47 Down 

pqn-13 1.15 2  T06D8.3 pqn-73 Up 

pqn-73 1.15 3  pqn-13 C24H12.11 T06D8.3 Up 

ZK228.4 1.13 2  C35A5.3 F58B4.5 Down 

cat-4 1.08 2  cah-5 T16G1.4 Down 

math-26 1.06 2  C29F7.2 math-40 Down 

Y20C6A.1 1.03 2  K11G9.2 T03E6.8 Down 

T21C9.6 1.01 2  F10F2.2 ndx-8 Down 

W02D7.4 1.01 1  Y40H7A.10 Down 

math-40 1.01 2  math-3 math-26 Down 

ZC196.2 0.99 2  T03E6.8 Y6G8.2 Down 

cah-5 0.97 2  C10C5.4 cat-4 Down 

ugt-19 0.88 1  ugt-62 Down 

odd-1 0.85 2  D1054.8 dhs-14 Down 

T24C2.5 0.82 1  clec-54 Down 

K09C4.1 0.82 1  T05E7.1 Down 

T25G12.6 0.81 1  T16G12.1 Down 

hil-7 0.81 1  dod-3 Up 

ins-7 0.8 1  Y40H7A.10 Up 

C49A9.4 0.8 1  F58B4.5 Down 

T26C5.2 0.79 1  glf-1 Up 

F15E6.4 0.78 1  acdh-1 Down 

C24H12.11 0.78 1  pqn-73 Down 

K11G9.2 0.77 1  Y20C6A.1 Down 

pgp-2 0.69 1  F38B6.4 Down 

ugt-6 0.68 1  ugt-62 Down 

C23H4.7 0.68 1  ndx-8 Down 

sulp-7 0.65 1  ndx-8 Down 

C01B10.4 0.63 1  ndx-8 Down 

W05E10.1 0.63 1  T05C3.6 Down 

T05C3.6 0.63 1  W05E10.1 Down 

ugt-30 0.63 1  ugt-62 Down 

his-25 0.58 1  F10F2.2 Up 
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Table 2.7 Cox proportional hazard ratios for common S. maltophilia and strain-specific genes 

Mean survival (M), standard error of the mean (SE), and sample size (N), are given for each allele and bacterial treatment 

combination. Wild-type statistics were determined from combining all wild-type data from all experiments. Hazard ratios indicate the 

treatment hazard divided by the hazard of wild-type (first column) or the hazard of that allele on OP50 (last column) within that 

experiment. The hazard is defined as the probability of a nematode dying at a given time. Hazard ratios and associated p values for 

each comparison were determined using Cox proportional hazards tests in R. Asterisk and yellow shading indicate significant p-values 

(p<0.05). 

 

  
          

Relative to  
wild-type 

Relative to 
OP50 

  
Nematode Bacteria N M SE 

Hazard 
Ratio 

p value 
Hazard 
Ratio 

p value 

 wild-type OP50 428 10.62 0.22 NA   NA   

    K279a 545 11.38 0.08 NA   0.878 0.09 

    JCMS 546 5.53 0.03 NA   5.81 <2E-16* 

    JV3 524 2.43 0.20 NA   63.45 <2E-16* 

                    

CPSR genes B0024.4 OP50 26 8.08 0.24 1.05 0.868 NA   

  (mh82) K279a 58 7.09 0.24 2.32 7.60E-02 1.37 6.15E-6* 

    JCMS 90 4.74 0.16 1.03 0.858 7.02 1.59E-7* 

    JV3 58 2.06 0.07 0.95 0.78 128.40 <2E-16* 

  F08G2.5 OP50 29 10.52 0.54 0.73 0.25 NA   

  (mh86) K279a 30 10.30 0.75 1.10 0.72 1.51 0.135 

    JCMS 31 6.06 0.24 1.08 0.76 9.77 4.04E-11* 

    JV3 30 2.99 0.14 0.73 0.25 181.93 <2E-16* 

  ZK6.11 OP50 17 11.47 0.55 0.80 0.54 NA   

  (ok3738) K279a 27 8.48 0.63 1.00 0.97 1.69 0.1 

    JCMS 29 4.79 0.18 1.38 0.23 15.22 1.32E-10* 

    JV3 29 2.31 0.14 1.41 0.20 893.41 1.55E-15* 
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  T24B8.5 OP50 58 9.90 0.47 0.91 0.431 NA   

  (ok3236) K279a 61 9.36 0.42 1.21 3.48E-13* 1.04 0.89 

    JCMS 60 4.88 0.16 1.73 <2E-16* 8.46 <2E-16* 

    JV3 57 1.94 0.07 2.27 <2E-16* 252.53 <2E-16* 

  dod-19 OP50 28 10.54 0.44 0.64 0.109 NA   

  (ok2679) K279a 30 8.93 0.58 1.72 0.0415* 3.08 .000234* 

    JCMS 30 3.63 0.18 5.89 4.53E-9* 78.55 3.34E-14* 

    JV3 29 1.97 0.09 1.31 0.3197 754.76 <2E-16* 

  dod-22 OP50 101 10.50 0.38 1.10 0.486 NA   

  (ok1918) K279a 113 12.47 0.35 1.03 0.7 0.77 0.0967 

    JCMS 116 5.71 0.16 1.25 0.32 8.10 <2E-16* 

    JV3 121 2.76 0.06 0.91 0.292 124.80 <2E-16* 

  K08D8.4 OP50 79 9.86 0.46 0.86 0.65 NA   

  (mh101) K279a 90 7.46 0.47 2.38 6.22E-9* 1.88 0.0316 

    JCMS 87 4.82 0.17 1.76 <2E-16* 6.81 <2E-16* 

    JV3 85 2.36 0.08 1.46 0.1342 45.13 <2E-16* 

  lys-1 OP50 82 9.84 0.37 1.20 0.514 NA   

  (ok2445) K279a 92 8.93 0.40 1.97 2.46E-8* 1.16 0.343 

    JCMS 88 4.76 0.14 2.07 6.65E-7* 8.68 6.83E-12* 

    JV3 86 2.77 0.08 0.85 0.6677 82.02 <2E-16* 

  clec-67 OP50 79 11.15 0.47 0.90 0.184 NA   

  (ok2770) K279a 55 12.38 0.54 0.72 0.063 0.72 .0235* 

    JCMS 57 5.46 0.24 1.24 0.112 7.75 <2E-16* 

    JV3 53 2.67 0.10 0.96 .000419* 89.57 <2E-16* 

  lys-2 OP50 55 8.68 0.35 1.11 0.683 NA   

  (tm2398) K279a 29 9.24 0.54 1.35 0.2836 0.98 0.883 

    JCMS 28 4.96 0.26 0.99 0.962 6.71 <2E-16* 

    JV3 27 2.40 0.09 1.20 0.503 508.63 <2E-16* 

  F55G11.8 OP50 28 8.71 0.60 1.44 0.23 NA   

  (gk3130) K279a 28 11.29 0.46 0.66 0.132 0.55 .0335* 

    JCMS 30 5.37 0.27 0.83 0.471 9.07 1.65E-8* 

    JV3 29 2.04 0.08 0.89 0.662 148.11 <2E-16* 
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  scl-2 OP50 24 10.48 0.45 0.28 6.89E-5* NA   

  (tm2428) K279a 27 9.48 0.63 0.56 .035* 1.52 0.152 

    JCMS 28 5.39 0.24 0.86 0.58 17.55 2.95E-11* 

   JV3 29 1.76 0.07 2.24 .0036* 359.85 <2E-16* 

                   

VSR genes acdh-1 OP50 58 6.55 0.34 2.2985 <2E-16* NA   

 (ok1489) K279a 39 8.22 0.59 1.3757 0.2077 0.55 0.0276 

   JCMS 29 5.48 0.2 0.7439 0.258 1.73 1.67E-15* 

   JV3 28 2.46 0.1 1.06 0.799 58.33 <2E-16* 

 sodh-1 OP50 23 11.26 0.52 0.78 0.48 NA   

 (ok2799) K279a 26 9.62 0.59 0.87 0.61 1.61 0.108 

   JCMS 28 4.57 0.26 1.36 0.25 16.86 2.9E-12* 

   JV3 26 2.62 0.15 1.02 0.93 163.65 <2E-16* 

 pho-1 OP50 25 12.52 0.63 1.37 0.269 NA   

 (tm5302) K279a 25 12.3 0.79 0.87 0.615 0.57 0.0697 

   JCMS 28 5.36 0.23 2.94 5.95E-4* 16.90 2.48E-10* 

   JV3 32 2.55 0.17 1.17 0.554 234.60 <2E-16* 

 C55A6.7 OP50 28 9.14 0.5 0.82 0.46 NA   

 (tm6807) K279a 29 10.5 0.35 0.31 6.93E-5* 0.30 9.2E-5* 

   JCMS 29 5.24 0.21 1.00 0.98 10.93 2.69E-9* 

   JV3 29 1.99 0.07 1.34 0.28 360.03 <2E-16* 

 acox-1.4 OP50 30 8.63 0.34 1.19 0.507 NA   

 (tm6415) K279a 30 5.95 0.49 2.78 .00029* 2.83 .00011* 

   JCMS 29 4.14 0.24 2.10 .0085* 15.57 5.22E-14* 

   JV3 29 1.75 0.05 2.67 .00065* 205.48 <2E-16* 

 dhs-3 OP50 27 11.09 0.73 1.42 0.198 NA   

 (tm6151) K279a 30 10.47 0.87 1.33 0.286 0.95 0.86 

   JCMS 26 4.77 0.23 4.30 8.7E-6* 8.00 1.37E-8* 

 

  

JV3 27 1.67 0.09 4.65 4.7E-7* 399.60 <2E-16* 
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 F13D12.6 OP50 26 11.08 0.51 0.68 0.17 NA   

 (tm7051) K279a 29 9.76 0.53 1.25 0.00154*     

   JCMS 27 5.41 0.15 0.93 0.863     

   JV3 28 2.05 0.14 1.00 0.972     

 dhs-2 OP50 27 8.7 0.61 1.18 1.26E-05* NA   

 (tm7516) K279a 53 7.62 0.40 2.11 <2E-16* 1.62 <2E-16* 

   JCMS 53 4.91 0.20 1.15 0.625 5.80 <2E-16* 

   JV3 53 1.64 0.09 1.93 .0115* 139.04 <2E-16* 

                   

JSR genes nhr-110 OP50 30 11.77 0.39 0.46 <2E-16* NA   

 (gk987) K279a 58 8.97 0.40 1.11 0.566 2.14 <2E-16* 

   JCMS 58 5.16 0.13 1.07 0.858 24.60 <2E-16* 

   JV3 57 2.29 0.07 0.88 0.73 1006.00 <2E-16* 

 W02A2.8 OP50 29 10.86 0.57 0.66 0.125 NA   

 (mh87) K279a 29 9.83 0.65 0.81 0.434 0.99 0.971 

   JCMS 30 4.77 0.23 2.13 .00985* 15.84 2.98E-13* 

   JV3 28 1.93 0.09 1.91 .0205* 464.06 <2E-16* 
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Table 2.8 CPSR genes overlap with other C. elegans transcriptome datasets upon microbe 

exposure 

WormExp was used to determine significant overlap of the 145 CPSR genes with differentially 

expressed genes upon exposure to other microbes. Exp. count indicates the number of 

differentially expressed genes in each experiment, and Input count indicates the number of CPSR 

genes that overlap with the Exp. Count genes. Experiments that resulted in enrichment of gene 

lists with FDR <0.05 are shown. 

 

Experiment 
Exp. 

Count 
Input 
Count 

FDR 

UP by PA14, 24h 534 107 9.46E-152 

UP by B. thuringiensis at 6h (BT247, 1:2) (Yang) 644 91 5.67E-110 

UP by PA14, 12h 285 75 1.97E-109 

UP by B. thuringiensis (BT247), 24h 1288 106 1.55E-107 

UP by B. thuringiensis (BT247), 12h 1240 104 8.06E-106 

UP by B. thuringiensis at 12h (BT247, 1:2) (Yang) 1058 98 2.52E-102 

UP by PA14 (Miller) 236 65 7.00E-95 

UP by B. thuringiensis at 6h (BT247, 1:10) (Yang) 751 85 2.25E-93 

UP on S. marcescens 1238 95 1.08E-90 

UP exposed to Vibrio cholerae with intact hemolysin A gene 267 56 2.96E-73 

UP exposed to Vibrio cholerae E7946 276 56 2.01E-72 

UP by B. thuringiensis at 12h (BT247, 1:10) (Yang) 1415 86 1.50E-71 

UP exposed to gacA Mutant vs. Wild-Type P. aeruginosa Strain PA14 196 51 2.19E-71 

UP on X. nematophila 745 62 1.58E-56 

UP by P. aeruginosa PA14 (Head) 123 38 4.68E-55 

PA14 Infection induced 195 42 3.99E-54 

UP to PA14 258 45 5.34E-54 

UP in Slow Killing, P. aeruginosa PA14 157 39 1.40E-52 

UP by Bt toxin,Cry5B 369 45 6.98E-47 

UP S. marcescens 24h, RNASeq 2263 77 3.27E-44 

UP P.luminescens 24h, RNASeq 3017 85 8.56E-44 

UP S. marcescens 24h, TillingArray 2649 73 2.57E-35 

UP P.luminescens 24h, TillingArray 3782 84 2.57E-35 

UP Harposporium 24h, RNASeq 2062 66 5.62E-35 

UP by B. licheniformis 141 1484 55 2.80E-31 

UP infected by PA14 octr-1 mutant vs. N2 1028 48 4.08E-31 

UP by hemolysin mutant of Vibrio cholerae E7496 128 25 5.89E-30 

Responding to P. aeruginosa 354 33 9.19E-30 

UP by B. thuringiensis (BT247), C. elegans strain MY15 232 28 5.84E-28 

UP treated by RPW-24 267 29 9.29E-28 

UP exposed to Vibrio cholerae without hemolysin A gene 114 23 9.29E-28 

UP by P. aeruginosa (Bond) 258 28 9.91E-27 
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UP by B. thuringiensis (BT247), C. elegans strain MY18 155 23 1.12E-24 

UP Y. pestis vs. E. coli 98 19 2.71E-22 

UP by B. thuringiensis (BT247), proteomics 171 21 1.00E-20 

UP by P. aeruginosa PA14 at 12h 104 18 3.50E-20 

UP by P. aeruginosa PA14 (McEwan) 66 16 3.99E-20 

Changed Y. pestis vs. E. coli 255 21 2.40E-17 

down by N. parisii at 40h 185 19 2.79E-17 

down by N. parisii at 64h 348 23 4.21E-17 

UP by B. thuringiensis (BT247), C. elegans strain N2 160 18 5.55E-17 

UP PMK-1 and confirmed for resistance to PA14 38 12 3.75E-16 

Changed infected by Microbacterium nematophilum 100 15 9.62E-16 

UP by P. luminescens (Wong) 640 27 1.33E-15 

UP by N. parisii at 64h 79 13 5.33E-14 

down by C. albicans (Pukkila-Worley) 179 16 1.59E-13 

UP by heat-killed C. albicans (Pukkila-Worley) 121 14 3.73E-13 

UP in Liquid Killing, P. aeruginosa PA14 167 15 1.19E-12 

UP by S. aureus (Visvikis) 821 26 3.02E-12 

UP by N. parisii at 40h 64 11 6.90E-12 

UP by S. aureus, dependent on hlh-30 (Visvikis) 633 22 5.17E-11 

UP by N. parisii, array 80 11 6.43E-11 

UP infected by S. aureus 8H 187 14 8.48E-11 

UP infected by Microbacterium nematophilum 88 11 1.67E-10 

Confirmed infected by PA14 in wildtype 26 8 3.02E-10 

Responding to M. nematophilum AND P. aeruginosa NOT S. Aureus 14 7 3.04E-10 

UP by N. parisii at 30h 103 11 7.68E-10 

Changed infected to S. aureus and exposure to B. thuringiensis PFT 19 7 2.51E-09 

Down D. coniospora 12h, RNASeq 2280 36 7.44E-09 

UP by biofilms of Y. pseudotuberculosis at 1h 187 12 1.67E-08 

down by MC-BA (M. aeruginosa) 1328 26 5.00E-08 

Down infected by X. Nematophila 620 18 7.83E-08 

UP Bacillus strain 67 412 15 1.15E-07 

UP by C. albicans (Pukkila-Worley) 119 9 8.65E-07 

Responding to S. aureus AND P. aeruginosa NOT M. Nematophilum 34 6 3.91E-06 

down by PA14, 12h 109 8 6.77E-06 

down by S. aureus (Bond) 291 11 1.07E-05 

response to PA14 20 5 1.40E-05 

UP D. coniospora 12h, RNASeq 1516 23 2.75E-05 

UP by virus Orsay 53 6 3.37E-05 

Down infected by S. Aureus 8H 198 9 3.43E-05 

UP on S. aureus 266 10 3.76E-05 

down by P. aeruginosa (Bond) 206 9 4.50E-05 

down by heat-killed C. albicans (Pukkila-Worley) 149 8 4.85E-05 

down by virus Orsay 61 6 6.48E-05 
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UP fed by E. Coli HT115 vs. OP50 31 5 7.93E-05 

Down fed with L. rhamnosus CNCM I-3690 vs. OP50,3 days 756 15 1.13E-04 

down by C. albicans vs. heat-killed C. albicans (Pukkila-Worley) 36 5 1.40E-04 

UP on B. thuringiensis DB27 268 9 2.65E-04 

down by B. thuringiensis (BT247), 24h 524 12 2.76E-04 

UP by E. faecalis (Wong) 625 13 2.96E-04 

down by N. parisii at 30h 25 4 1.10E-03 

Confirmed infected by PA14 in spe-26 mutant 26 4 1.23E-03 

UP fed with L. rhamnosus CNCM I-4137 vs. OP50,10 days 118 6 1.32E-03 

UP by N. parisii at 8h 123 6 1.57E-03 

Down infected by S. Aureus 192 7 1.66E-03 

Responding to S. aureus AND P. aeruginosa AND M. Nematophilum 10 3 4.20E-03 

down by P. aeruginosa PA14 at 12h 42 4 4.60E-03 

UP by E. coli strain LF82 at 72h, proteomics 94 5 4.80E-03 

Down infected by S. Marcescens 165 6 5.36E-03 

UP after 8h infection with S. aureus 46 4 5.89E-03 

UP E. faecalis 24h, TillingArray 4051 34 8.22E-03 

UP infected with hly(+) V. cholerae strains 54 4 9.09E-03 

down by B. thuringiensis at 12h (BT247, 1:10) (Yang) 1208 15 9.81E-03 

Down PA14 vs. OP50 121 5 1.14E-02 

down by PA14, 24h 608 10 1.21E-02 

down D. coniospora 12 h (cDNA) 209 6 1.40E-02 

Down D. coniospora 12h, cDNAArray 209 6 1.40E-02 

UP by N. parisii at 16h 68 4 1.67E-02 

down by B. thuringiensis at 6h (BT247, 1:10) (Yang) 890 12 1.67E-02 

down by B. thuringiensis at 12h (BT247, 1:2) (Yang) 1044 13 1.97E-02 

UP Micrococcus luteus vs. OP50 26 3 2.53E-02 

UP to soil bacteria vs OP50 27 3 2.70E-02 

down by B. thuringiensis at 6h (BT247, 1:2) (Yang) 841 11 3.04E-02 

Down S. marcescens 24h, cDNAArray 167 5 3.21E-02 
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Table 2.9 CPSR genes ranked based on how many pathogens result in differential 

expression 

Genes are listed in order based on the number of pathogens that result in differential expression 

of that gene, from lowest-ranking to highest-ranking. N= number of pathogens, and pathogens 

that result in differential expression of that gene are listed. 

 

Gene # of pathogens Pathogens 
K08D8.12 1 B. thuringiensis 

nhr-220 1 Harposporium 

F27E5.9 2 B. thuringiensis, P. aeruginosa 

bath-47 2 B. licheniformis, B. thuringiensis 

linc-40 2 B. thuringiensis, P. aeruginosa 

Y37H2B.1 2 E. faecalis, S. marcescens 

Y54G2A.28 2 B. thuringiensis, M. aeruginosa 

C45B11.2 3 B. thuringiensis, P. aeruginosa, X. nematophila 

arl-7 3 B. thuringiensis, P. aeruginosa, X. nematophila 

W05H9.3 3 B. licheniformis, S. aureus, S. marcescens  

Y37F4.8 3 B. thuringiensis, D. coniospora, E. faecalis 

Y82E9BL.18 3 B. thuringiensis, D. coniospora, P. aeruginosa 

Y82E9BR.5 3 B. thuringiensis, P. aeruginosa, S. marcescens  

fbxa-77 3 B. licheniformis, M. aeruginosa, S. marcescens 

ZK1055.7 4 B. thuringiensis, P. aeruginosa, P. luminescens, S. marcescens  

fbxa-80 4 B. thuringiensis, Harposporium, P. aeruginosa, S. marcescens 

nhr-112 5 B. thuringiensis, P. aeruginosa, P. luminescens, S. marcescens, X. 
nematophila 

dod-23 5 B. thuringiensis, E. faecalis, L. rhamnosus, N. parisii, S. marcescens 

nhr-63 5 B. thuringiensis, P. aeruginosa, P. luminescens, S. marcescens, X. 
nematophila  

F08G2.5 5 B. thuringiensis, D. coniospora, N. parisii, P. aeruginosa, P. luminescens 

Y69A2AR.25 5 B. thuringiensis, L. rhamnosus, N. parisii, S. marcescens, V. cholerae 

Y39A3A.4 5 B. thuringiensis, D. coniospora, P. aeruginosa, P. luminescens, X. 
nematophila 

F43C1.7 5 B. thuringiensis, P. aeruginosa, P. luminescens, S. marcescens, X. 
nematophila 

Y113G7B.14 5 B. thuringiensis, C. albicans, P. aeruginosa, S. marcescens, X. nematophila  

twk-28 5 B. thuringiensis, Harposporium, P. aeruginosa, P. luminescens, S. 
marcescens 

C25F9.11 5 B. licheniformis, B. thuringiensis, S. aureus, S. marcescens, X. nematophila  

srd-64 5 B. thuringiensis, D. coniospora, P. aeruginosa, P. luminescens, S. 
marcescens 

fbxa-55 5 E. carotovora, Harposporium, S. aureus, S. marcescens, X. nematophila  

fbxa-74 6 B. thuringiensis, Harposporium, P. aeruginosa, P. luminescens, S. 
marcescens, X. nematophila 

oac-20 6 B. licheniformis, B. thuringiensis, Bacillus 67, Harposporium, P. aeruginosa, 
S. marcescens 
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F33H12.7 6 B. licheniformis, B. thuringiensis, N. parisii, P. aeruginosa, S. marcescens, X. 
nematophila  

C49G7.7 6 B. thuringiensis, D. coniospora, E. faecalis, P. aeruginosa, S. marcescens, X. 
nematophila  

Y94H6A.10 6 B. thuringiensis, D. coniospora, Harposporium, P. aeruginosa, P. 
luminescens, S. marcescens 

clec-232 6 B. licheniformis, B. thuringiensis, Bacillus 67, D. coniospora, S. aureus, S. 
marcescens 

T23F11.6 6 B. licheniformis, B. thuringiensis, E. faecalis, P. aeruginosa, S. marcescens, 
X. nematophila 

odc-1 6 B. licheniformis, B. thuringiensis, D. coniospora, P. aeruginosa, S. aureus, X. 
nematophila 

cyp-14A2 6 B. licheniformis, B. thuringiensis, E. faecalis, N. parisii, P. aeruginosa, S. 
marcescens  

fbxa-30 6 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, P. aeruginosa, P. 
luminescens 

numr-1 6 B. licheniformis, N. parisii, P. aeruginosa, P. luminescens, S. marcescens, X. 
nematophila 

C49C3.9 7 B. thuringiensis, Harposporium, L. rhamnosus, P. aeruginosa, P. 
luminescens, S. marcescens, V. cholerae  

clec-41 7 B. licheniformis, B. thuringiensis, N. parisii, P. aeruginosa, P. luminescens, 
S. marcescens, V. cholerae 

C49G7.10 7 B. thuringiensis, Harposporium, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, X. nematophila 

Y22D7AL.15 7 B. licheniformis, B. thuringiensis, P. aeruginosa, S. aureus, S. marcescens, Y. 
pestis, Y. pseudotuberculosis 

Y58A7A.3 7 B. thuringiensis, P. aeruginosa, P. luminescens, S. aureus, S. marcescens, V. 
cholerae, X. nematophila 

C49G7.12 7 B. thuringiensis, E. faecalis, Harposporium, P. aeruginosa, P. luminescens, 
S. marcescens, V. cholerae 

ugt-31 7 B. thuringiensis, Harposporium, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, X. nematophila 

M01G12.9 7 B. thuringiensis, D. coniospora, E. faecalis, N. parisii, P. aeruginosa, P. 
luminescens, X. nematophila 

T05F1.9 7 B. licheniformis, B. thuringiensis, E. faecalis, Harposporium, P. aeruginosa, 
P. luminescens, S. marcescens  

nhr-50 7 B. thuringiensis, D. coniospora, M. aeruginosa, P. aeruginosa, P. 
luminescens, S. marcescens, X. nematophila  

C18H7.11 7 B. thuringiensis, E. faecalis, Harposporium, P. aeruginosa, P. luminescens, 
S. marcescens, X. nematophila 

K11G9.3 7 B. thuringiensis, D. coniospora, E. faecalis, P. aeruginosa, P. luminescens, S. 
aureus, S. marcescens 

Y9C9A.8 7 B. thuringiensis, D. coniospora, Harposporium, P. aeruginosa, P. 
luminescens, S. marcescens, V. cholerae 

clec-66 8 B. licheniformis, B. thuringiensis, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, X. nematophila, Y. pestis 
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C06B3.7 8 B. thuringiensis, D. coniospora, Harposporium, P. aeruginosa, P. 
luminescens, S. marcescens, V. cholerae, X. nematophila 

dct-17 8 B. licheniformis, B. thuringiensis, D. coniospora, Harposporium, M. 
nematophilum, P. aeruginosa, P. luminescens, S. marcescens 

Y46D2A.2 8 B. thuringiensis, C. albicans, D. coniospora, P. aeruginosa, P. luminescens, 
S. marcescens, V. cholerae, Y. pestis 

F19B2.5 8 B. thuringiensis, D. coniospora, E. faecalis, P. aeruginosa, P. luminescens, S. 
aureus, S. marcescens, X. nematophila 

Y47H10A.5 8 B. thuringiensis, N. parisii, Orsay virus, P. aeruginosa, P. luminescens, S. 
aureus, S. marcescens, X. nematophila  

F14F9.4 8 B. thuringiensis, E. faecalis, Harposporium, P. aeruginosa, P. luminescens, 
S. marcescens, V. cholerae, X. nematophila 

F25A2.1 8 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, P. aeruginosa, P. 
luminescens, S. marcescens, V. cholerae 

K09D9.1 8 B. thuringiensis, E. faecalis, Harposporium, P. aeruginosa, P. luminescens, 
S. marcescens, V. cholerae, X. nematophila 

cpr-5 8 B. licheniformis, B. thuringiensis, E. faecalis, L. rhamnosus, P. aeruginosa, 
P. luminescens, S. aureus, X. nematophila 

Y58A7A.4 8 B. thuringiensis, Harposporium, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens, V. cholerae, X. nematophila 

F55G11.8 8 B. licheniformis, B. thuringiensis, L. rhamnosus, P. aeruginosa, P. 
luminescens, S. marcescens, V. cholerae, Y. pestis 

Y75B8A.28 8 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens 

C08E8.4 8 B. licheniformis, B. thuringiensis, Harposporium, L. rhamnosus, M. 
aeruginosa, P. aeruginosa, P. luminescens, V. cholerae 

clec-83 8 B. thuringiensis, L. rhamnosus, M. nematophilum, N. parisii, P. aeruginosa, 
S. aureus, S. marcescens, Y. pestis 

C34H4.2 8 B. thuringiensis, Harposporium, L. rhamnosus, M. aeruginosa, P. 
aeruginosa, P. luminescens, S. marcescens, V. cholerae 

cutl-18 8 B. thuringiensis, D. coniospora, Harposporium, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens, X. nematophila 

fbxa-163 8 D. coniospora, Harposporium, L. rhamnosus, N. parisii, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens 

hsp-17 8 B. licheniformis, B. thuringiensis, Harposporium, N. parisii, P. aeruginosa, 
P. luminescens, S. marcescens, X. nematophila 

fbxa-37 8 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, P. aeruginosa, P. 
luminescens, S. marcescens, X. nematophila  

B0024.4 9 B. thuringiensis, M. aeruginosa, M. nematophilum, N. parisii, Orsay virus, 
P. aeruginosa, P. luminescens, S. marcescens, V. cholerae 

clec-265 9 B. thuringiensis, C. albicans, D. coniospora, N. parisii, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens, V. cholerae 

ttr-44 9 B. thuringiensis, E. faecalis, N. parisii, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, X. nematophila, Y. pseudotuberculosis  

dod-19 9 B. thuringiensis, D. coniospora, E. coli LF82, Harposporium, L. rhamnosus, 
M. aeruginosa, P. aeruginosa, P. luminescens, S. marcescens 
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F20G2.5 9 B. licheniformis, B. thuringiensis, D. coniospora, Harposporium, M. 
aeruginosa, P. aeruginosa, P. luminescens, S. marcescens, V. cholerae 

clec-4 9 B. thuringiensis, E. faecalis, Harposporium, M. aeruginosa, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, V. cholerae 

cyp-35A2 9 B. licheniformis, B. thuringiensis, C. albicans, E. faecalis, N. parisii, P. 
aeruginosa, S. aureus, S. marcescens, X. nematophila 

C10C5.2 9 B. thuringiensis, E. faecalis, Harposporium, M. aeruginosa, P. aeruginosa, 
P. luminescens, S. marcescens, V. cholerae, X. nematophila 

clec-85 9 B. thuringiensis, D. coniospora, E. coli LF82, L. rhamnosus, N. parisii, P. 
aeruginosa, Pseudomonas, S. marcescens, V. cholerae 

T04F8.7 9 B. licheniformis, B. thuringiensis, Bacillus 67, D. coniospora, P. aeruginosa, 
S. aureus, S. marcescens, X. nematophila, Y. pseudotuberculosis 

swt-6 9 B. thuringiensis, E. carotovora, E. faecalis, N. parisii, P. aeruginosa, S. 
aureus, S. marcescens, V. cholerae, X. nematophila  

R07C12.1 9 B. thuringiensis, L. rhamnosus, M. nematophilum, N. parisii, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, Y. pseudotuberculosis 

nuc-1 9 B. licheniformis, B. thuringiensis, D. coniospora, N. parisii, P. luminescens, 
S. aureus, S. marcescens, X. nematophila, Y. pestis 

Y51H4A.25 9 B. thuringiensis, Bacillus 67, D. coniospora, E. faecalis, Harposporium, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens 

lys-10 9 B. licheniformis, B. thuringiensis, Bacillus 67, D. coniospora, E. faecalis, M. 
luteus, P. luminescens, Pseudomonas, S. aureus 

tba-7 9 B. licheniformis, B. thuringiensis, E. faecalis, Harposporium, M. aeruginosa, 
P. aeruginosa, P. luminescens, S. marcescens, X. nematophila 

W02A2.9 9 B. thuringiensis, C. albicans, D. coniospora, E. faecalis, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens, X. nematophila 

fbxa-60 9 B. licheniformis, B. thuringiensis, Harposporium, N. parisii, P. aeruginosa, S. 
aureus, S. marcescens, V. cholerae, X. nematophila 

F15B9.6 9 B. licheniformis, B. thuringiensis, D. coniospora, E. faecalis, L. rhamnosus, 
N. parisii, P. aeruginosa, P. luminescens, S. marcescens 

Y94H6A.2 9 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, N. parisii, Orsay 
virus, P. aeruginosa, P. luminescens, S. marcescens 

C08F11.13 9 B. licheniformis, B. thuringiensis, E. faecalis, N. parisii, P. aeruginosa, S. 
marcescens, V. cholerae, X. nematophila, Y. pseudotuberculosis 

T24C4.4 10 B. thuringiensis, D. coniospora, E. carotovora, E. faecalis, Harposporium, P. 
aeruginosa, P. luminescens, S. marcescens, V. cholerae, X. nematophila 

oac-31 10 B. thuringiensis, C. albicans, E. faecalis, Harposporium, M. nematophilum, 
P. aeruginosa, P. luminescens, S. aureus, S. marcescens, X. nematophila 

K11H12.4 10 B. licheniformis, B. thuringiensis, D. coniospora, Harposporium, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens, V. cholerae, X. 
nematophila 

lec-11 10 B. licheniformis, B. thuringiensis, E. faecalis, Harposporium, L. rhamnosus, 
P. aeruginosa, P. luminescens, S. marcescens, V. cholerae, Y. pestis 

tsp-1 10 B. licheniformis, B. thuringiensis, D. coniospora, Harposporium, N. parisii, 
P. aeruginosa, P. luminescens, S. marcescens, V. cholerae, X. nematophila 
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spp-1 10 B. licheniformis, B. thuringiensis, M. aeruginosa, N. parisii, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, V. cholerae, X. nematophila 

F35E12.9 10 B. licheniformis, B. thuringiensis, D. coniospora, Harposporium, Orsay 
virus, P. aeruginosa, P. luminescens, S. marcescens, V. cholerae, X. 
nematophila 

lys-3 10 B. thuringiensis, D. coniospora, E. carotovora, E. faecalis, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens, V. cholerae, X. nematophila 

valv-1 10 B. licheniformis, B. thuringiensis, C. albicans, E. faecalis, Harposporium, N. 
parisii, P. aeruginosa, P. luminescens, S. aureus, S. marcescens 

Y58A7A.5 10 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, N. parisii, Orsay 
virus, P. aeruginosa, P. luminescens, S. marcescens, X. nematophila 

cyp-35A5 10 B. thuringiensis, Bacillus 67, C. albicans, E. faecalis, N. parisii, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens, X. nematophila 

clec-218 10 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, N. parisii, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens, X. nematophila 

E02C12.8 10 B. thuringiensis, E. faecalis, Harposporium, M. aeruginosa, N. parisii, P. 
aeruginosa, P. luminescens, S. marcescens, V. cholerae, X. nematophila 

fbxa-59 10 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, E. faecalis, 
Harposporium, P. aeruginosa, S. aureus, S. marcescens, X. nematophila 

K11H12.3 10 B. thuringiensis, D. coniospora, E. carotovora, E. faecalis, Harposporium, 
M. aeruginosa, P. aeruginosa, P. luminescens, S. marcescens, X. 
nematophila 

T01D3.6 11 B. licheniformis, B. thuringiensis, C. albicans, N. parisii, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens, V. cholerae, X. nematophila, Y. 
pestis 

lys-2 11 B. thuringiensis, Bacillus 67, C. albicans, E. faecalis, Harposporium, M. 
aeruginosa, N. parisii, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens 

oac-6 11 B. licheniformis, B. thuringiensis, Bacillus 67, Harposporium, M. 
nematophilum, N. parisii, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae, X. nematophila 

K08D8.5 11 B. thuringiensis, C. albicans, E. coli HT115, Harposporium, L. rhamnosus, N. 
parisii, P. aeruginosa, P. luminescens, S. marcescens, V. cholerae, Y. pestis 

oac-14 11 B. thuringiensis, C. albicans, D. coniospora, M. aeruginosa, M. 
nematophilum, N. parisii, P. aeruginosa, S. aureus, S. marcescens, V. 
cholerae, X. nematophila 

tsp-2 11 B. licheniformis, B. thuringiensis, D. coniospora, E. faecalis, Harposporium, 
N. parisii, Orsay virus, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae 

F53B2.8 11 B. licheniformis, B. thuringiensis, Harposporium, M. aeruginosa, N. parisii, 
P. aeruginosa, P. luminescens, S. aureus, S. marcescens, V. cholerae, X. 
nematophila 

K08D8.4 11 B. thuringiensis, D. coniospora, E. faecalis, Harposporium, Orsay virus, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens, V. cholerae, X. 
nematophila 

F53C11.1 11 B. thuringiensis, C. albicans, D. coniospora, E. coli LF82, Harposporium, L. 
rhamnosus, M. aeruginosa, P. aeruginosa, P. luminescens, S. marcescens, 
V. cholerae 
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C17H12.6 11 B. thuringiensis, D. coniospora, E. coli HT115, E. faecalis, Harposporium, L. 
rhamnosus, P. aeruginosa, P. luminescens, S. aureus, S. marcescens, V. 
cholerae 

lec-10 11 B. thuringiensis, C. albicans, D. coniospora, E. faecalis, Harposporium, L. 
rhamnosus, P. aeruginosa, P. luminescens, S. aureus, S. marcescens, X. 
nematophila 

F35E12.4 11 B. licheniformis, B. thuringiensis, D. coniospora, E. faecalis, Harposporium, 
M. nematophilum, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae, X. nematophila  

ugt-53 11 B. licheniformis, B. thuringiensis, C. albicans, D. coniospora, E. faecalis, 
Harposporium, N. parisii, P. aeruginosa, S. aureus, S. marcescens, X. 
nematophila 

clec-70 11 B. licheniformis, B. thuringiensis, C. albicans, E. faecalis, Harposporium, M. 
nematophilum, P. aeruginosa, S. aureus, S. marcescens, V. cholerae, X. 
nematophila 

T19D12.4 12 B. thuringiensis, C. albicans, D. coniospora, Harposporium, L. rhamnosus, 
M. aeruginosa, N. parisii, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae, X. nematophila 

T24E12.5 12 B. thuringiensis, Bacillus 67, E. faecalis, M. aeruginosa, M. nematophilum, 
N. parisii, Orsay virus, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae, X. nematophila 

lys-1 12 B. thuringiensis, Bacillus 67, D. coniospora, E. carotovora, E. faecalis, L. 
rhamnosus, M. luteus, N. parisii, P. aeruginosa, P. luminescens, S. 
marcescens, X. nematophila 

ZK6.11 12 B. licheniformis, B. thuringiensis, Bacillus 67, D. coniospora, E. coli LF82, 
Harposporium, L. rhamnosus, M. aeruginosa, P. aeruginosa, P. 
luminescens, S. aureus, S. marcescens 

cpr-4 12 B. animalis, B. thuringiensis, D. coniospora, E. faecalis, M. aeruginosa, P. 
aeruginosa, P. luminescens, S. aureus, S. marcescens, X. nematophila, Y. 
pestis, Y. pseudotuberculosis 

cpr-3 13 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, L. 
rhamnosus, M. aeruginosa, Orsay virus, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, Y. pestis  

clec-67 13 B. licheniformis, B. thuringiensis, C. albicans, E. coli HT115, E. faecalis, M. 
nematophilum, P. aeruginosa, P. luminescens, S. aureus, S. marcescens, V. 
cholerae, X. nematophila, Y. pestis 

mtl-1 13 B. licheniformis, B. megaterium, B. thuringiensis, C. albicans, D. 
coniospora, E. faecalis, N. parisii, P. aeruginosa, P. luminescens, S. aureus, 
S. marcescens, V. cholerae, X. nematophila 

hpo-6 13 B. thuringiensis, C. albicans, D. coniospora, E. coli LF82, Harposporium, M. 
nematophilum, N. parisii, P. aeruginosa, P. luminescens, S. marcescens, V. 
cholerae, X. nematophila, Y. pestis 

ugt-18 13 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, 
Harposporium, M. nematophilum, P. aeruginosa, P. luminescens, S. aureus, 
S. marcescens, V. cholerae, X. nematophila 
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irg-4 13 B. animalis, B. licheniformis, B. thuringiensis, L. rhamnosus, M. aeruginosa, 
N. parisii, Orsay virus, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens, V. cholerae, Y. pestis 

F53A9.8 14 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, E. 
faecalis, M. nematophilum, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens, X. nematophila, Y. pestis, Y. pseudotuberculosis 

kreg-1 14 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, E. 
faecalis, Harposporium, M. aeruginosa, P. aeruginosa, P. luminescens, S. 
aureus, S. marcescens, V. cholerae, X. nematophila 

T24B8.5 14 B. licheniformis, B. megaterium, B. thuringiensis, E. carotovora, E. coli 
HT115, E. faecalis, Harposporium, M. aeruginosa, N. parisii, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, V. cholerae 

ech-9 14 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, 
Harposporium, M. aeruginosa, M. nematophilum, N. parisii, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, V. cholerae 

vit-1 14 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, E. 
faecalis, M. luteus, N. parisii, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens, V. cholerae, X. nematophila 

scl-2 14 B. licheniformis, B. thuringiensis, C. albicans, D. coniospora, Harposporium, 
L. rhamnosus, M. nematophilum, N. parisii, P. aeruginosa, P. luminescens, 
S. aureus, S. marcescens, X. nematophila, Y. pseudotuberculosis 

M02H5.8 14 B. licheniformis, B. thuringiensis, Bacillus 67, C. albicans, D. coniospora, E. 
faecalis, Harposporium, M. aeruginosa, P. aeruginosa, P. luminescens, S. 
marcescens, V. cholerae, Y. pestis, Y. pseudotuberculosis 

dod-22 15 B. licheniformis, B. thuringiensis, C. albicans, D. coniospora, E. carotovora, 
E. coli HT115, Orsay virus, P. aeruginosa, P. luminescens, S. aureus, S. 
marcescens, V. cholerae, X. nematophila, Y. pestis, Y. pseudotuberculosis 

C17H12.8 15 B. animalis, B. thuringiensis, C. albicans, E. carotovora, Harposporium, L. 
rhamnosus, M. aeruginosa, M. nematophilum, Orsay virus, P. aeruginosa, 
P. luminescens, S. marcescens, V. cholerae, X. nematophila, Y. pestis 

mul-1 15 B. licheniformis, B. thuringiensis, C. albicans, D. coniospora, E. faecalis, L. 
rhamnosus, M. nematophilum, N. parisii, P. aeruginosa, P. luminescens, S. 
aureus, S. marcescens, V. cholerae, X. nematophila, Y. pestis  

F53A9.1 16 B. licheniformis, B. thuringiensis, Bacillus 67, D. coniospora, E. faecalis, 
Harposporium, M. nematophilum, N. parisii, P. aeruginosa, P. luminescens, 
S. aureus, S. marcescens, V. cholerae, X. nematophila, Y. pestis, Y. 
pseudotuberculosis 

F53A9.6 16 B. licheniformis, B. thuringiensis, C. albicans, D. coniospora, E. faecalis, 
Harposporium, M. aeruginosa, M. nematophilum, N. parisii, P. aeruginosa, 
P. luminescens, S. aureus, S. marcescens, V. cholerae, Y. pestis, Y. 
pseudotuberculosis 
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Table 2.10 Cox proportional hazard ratios for common pathogen and S. maltophilia-

specific genes 

Mean survival (M), standard error of the mean (SE), and sample size (N), are given for each 

allele and bacterial treatment combination. Bacterial treatments include S. maltophilia JCMS, S. 

maltophilia K279a, S. maltophilia JV3, S. aureus NCTC8325, S. marcescens DB10, P. 

aeruginosa PA14, and X. nematophila X1462. Wild-type statistics were determined by 

combining all wild-type data from all experiments. Hazard ratios indicate the treatment hazard 

divided by the hazard of wild-type. The hazard is defined as the probability of a nematode dying 

at a given time. Hazard ratios and associated p-values for each comparison were determined 

using Cox proportional hazards tests in R. Asterisk indicates significant p-values (p<0.05). S. 

maltophilia data not shown can be found in Table 2.7.  

 

 

          
Relative to 
wild-type 

 
Nematode Bacteria N M SE 

Hazard 
Ratio 

p value 

 wild-type K279a 60 7.43 0.33 NA   

   JCMS 61 5.89 0.30 NA   

   JV3 59 2.45 0.10 NA   

   NCTC8325 113 2.68 0.13 NA   

   PA14 114 3.10 0.13 NA   

   DB10 112 3.24 0.15 NA   

   X-1462 127 1.86 0.07 NA   

               

Common 
pathogen 

genes 

dod-22 NCTC8325 27 5.70 0.44 0.27 .00045* 

(ok2679) PA14 31 4.55 0.17 0.46 .024* 

  DB10 21 5.10 0.48 0.37 .00179* 

  X-1462 30 2.80 0.17 0.41 .0056* 

T24B8.5 PA14 30 4.57 0.22 0.42 .0135* 

 (ok3236) X-1462 31 2.90 0.16 0.37 .002* 

 scl-2 NCTC8325 29 3.69 0.44 0.44 .00757* 

 (tm2428) PA14 32 2.97 0.26 1.31 0.392 

   DB10 33 4.09 0.11 0.69 0.326 

   X-1462 34 2.21 0.15 0.88 0.615 

 clec-67 NCTC8325 28 5.29 0.38 0.32 .0005* 

 (ok2770) PA14 31 4.52 0.21 0.44 .017* 

   DB10 24 6.08 0.39 0.28 5.24E-5* 

   X-1462 31 3.10 0.18 0.29 .00011* 

 ZK6.11 NCTC8325 30 4.27 0.32 0.35 .00052* 

 (ok3738) PA14 30 1.90 0.18 2.81 .00602* 

   DB10 30 3.37 0.22 1.00 9.87E-01 

   
X-1462 30 1.60 0.09 1.56 0.1998 

 



126 

 cpr-4 K279a 36 5.56 0.31 1.46 0.0815 

 (ok3413) JCMS 34 5.00 0.14 2.36 .026* 

   JV3 35 1.89 0.05 3.10 .0293* 

   NCTC8325 31 5.35 0.35 0.32 .00011* 

   PA14 35 4.26 0.17 0.67 0.114 

   DB10 30 3.37 0.17 1.12 0.77 

   X-1462 35 1.74 0.08 1.59 0.15 

               

S. maltophilia 
specific genes 

fbxa-77 K279a 29 9.48 0.74 1.08 0.768 

(mh94) JCMS 30 4.47 0.26 2.59 .00072* 

  JV3 30 2.00 0.07 1.56 0.1 

   NCTC8325 3 4.05 0.18 0.43 .00371* 

   PA14 32 2.97 0.16 1.33 0.4563 

   DB10 36 3.53 0.18 0.95 0.883 

   X-1462 34 1.83 0.09 1.09 0.79 

 K08D8.12 K279a 28 9.21 0.80 0.72 0.225 

 (mh101) JCMS 29 5.34 0.37 1.30 0.328 

   JV3 28 2.00 0.08 1.54 0.116 

   NCTC8325 35 3.68 0.20 0.49 .01706* 

   PA14 35 3.56 0.22 0.74 0.3271 

   DB10 32 3.32 0.16 1.11 0.772 

   X-1462 35 1.87 0.15 1.10 0.78 

 C25F9.11 K279a 29 10.40 0.81 0.85 0.541 

 (mh97) JCMS 29 5.45 0.27 1.44 0.1798 

   JV3 30 1.90 0.08 1.75 0.0381 

   NCTC8325 28 2.57 0.18 1.26 0.44 

   PA14 34 2.66 0.12 1.94 0.1184 

   DB10 23 3.39 0.22 1.08 0.83 

   X-1462 34 1.83 0.09 1.18 0.628 

 Y82E9BR.5 K279a 29 8.48 0.73 1.27 0.357 

 (mh93) JCMS 29 4.76 0.14 2.57 .00195* 

   JV3 30 2.18 0.10 1.19 0.5 

   NCTC8325 35 3.51 0.17 0.59 0.0647 

   PA14 34 4.00 0.21 0.56 1.18 

   DB10 34 3.14 0.16 1.36 0.425 

   X-1462 34 1.96 0.11 0.99 0.965 

 F08G2.5 K279a 30 10.30 0.75 1.10 0.72 

 (mh86) JCMS 31 6.06 0.24 1.08 0.76 

   JV3 30 2.99 0.14 0.73 0.25 

   NCTC8325 30 2.57 0.15 1.18 0.51 

   PA14 30 1.67 0.10 4.96 .00038* 

   DB10 30 2.93 0.24 1.27 0.489 

   X-1462 31 1.42 0.09 2.00 .0488* 
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Chapter 3 - Comparative genomics of pathogenic and 

nonpathogenic S. maltophilia strains, including a novel 

environmental isolate S. maltophilia JCMS 

 Introduction 

Stenotrophomonas maltophilia is a Gram-negative bacterium that is ubiquitous in the 

environment, most commonly found in aqueous sources and associated with plant roots (De Boer 

et al., 2001; Denton & Kerr, 1998; Jägevall, Rabe, & Pedersen, 2011). More recently, it has been 

isolated from water sources and medical devices within hospitals (Brooke, 2012). Although not 

highly virulent, it is capable of causing infection in immunocompromised patients, and is 

commonly associated with respiratory diseases such as cystic fibrosis and lung cancer (Bittar et 

al., 2008; Brooke, 2012; Chang, 2015). S. maltophilia is multi-drug resistant and capable of 

forming biofilms (Chang et al., 2015; Elting & Bodey, 1990; Jägevall et al., 2011), thus 

developing treatment methods for this pathogen has become of increasing concern. Although S. 

maltophilia can be detrimental to humans, it has beneficial implications in ecology and 

biotechnology. For example, S. maltophilia plays an important role in the rhizosphere where it 

enhances plant growth by fixing nitrogen (Park et al., 2005). In addition, its anti-microbial and 

metal resistance properties are promising for phytoremediation and other biotechnology 

applications (Berg & Martinez, 2015). 

Phylogenetic and antibiotic profile analyses of environmental and clinical isolates 

revealed heterogeneity between strain origin (Berg, Roskot, & Smalla, 1999; Lira, Berg, & 

Martínez, 2017), suggesting that environmental isolates of S. maltophilia strains have pathogenic 

potential without acquiring new virulence mechanisms. Furthermore, plant-associated strains and 
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clinical strains often share similar genetic features, such as adhesion proteins, efflux pumps, and 

secreted enzymes (Adamek et al., 2011; Alavi et al., 2014; Berg & Martinez, 2015; Berg et al., 

1999; Lira, Berg, & Martínez, 2017; Ryan et al., 2009). However, clinical isolates have higher 

mutation rates than environmental isolates, suggesting clinical isolates might be better able to 

adapt to stressors such as the immune response and antibiotics (Turrientes et al., 2010). 

Although clinical and environmental isolates of S. maltophilia share common features, 

several lines of evidence suggest there are differences between strains. In fact, S. maltophilia 

strains are extremely genetically diverse, and it has even been proposed that S. maltophilia be 

divided into multiple species (Kaiser et al., 2009; Nicoletti et al., 2011; Valdezate et al., 2004). 

Genome sequence and proteomic analyses of multiple strains of S. maltophilia have also 

identified differences in virulence factors between strains, many contained on potentially mobile 

genomic islands (Adamek, Linke, & Schwartz, 2014; Ferrer-Navarro et al., 2013; Lira, Berg, & 

Martínez, 2017; Rocco et al., 2009). Because of these differences, it is not surprising that strains 

of S. maltophilia show varying pathogenicity to Caenorhabditis elegans, amoeba (Dictyostelium 

discoideum and Acanthamoeba castellanii), zebrafish (Danio rerio), and wax moths (Galleria 

mellonella) (Adamek et al., 2011; Ferrer-Navarro et al., 2013; Wh(Pompilio et al., 2016)ite et al., 

2016).  

While many studies have predicted the pathogenic potential of S. maltophilia strains 

based on genomic virulence factors, to date, no studies have correlated phenotypic pathogenicity 

to differences in virulence factors. To address this gap, we have previously developed 

Caenorhabditis elegans as a model for studying S. maltophilia-host interactions (White et al., 

2016). C. elegans are bacterivores that are found in rotting organic matter and are constantly in 

contact with a variety of microorganisms, including bacteria. In fact, recent studies have found 
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that Stenotrophomonas is one of the most abundant genera of bacteria found in the native 

microbiome of C. elegans (Berg et al., 2016; Dirksen et al., 2016; Zhang et al., 2017). Thus 

using C. elegans as a model provides a realistic platform for understanding S. maltophilia 

pathogenesis. We have previously identified transcriptomic responses in C. elegans upon 

exposure to S. maltophilia strains with varying pathogenicity (Chapter 2 - ; White and Herman, 

unpublished). Overall, differences in pathogenicity caused differences in host responses, and 

increased virulence positively correlated with the expression of defense response genes (Chapter 

2 - ). However, to better understand the genetic basis of differences in virulence in S. maltophilia 

that lead to distinct host gene expression, we compared draft genome sequences of several S. 

maltophilia strains that vary in pathogenicity to C. elegans. One strain of particular interest in 

this study, S. maltophilia JCMS, was locally isolated in association with soil nematodes and is 

detrimental to the health of C. elegans. Therefore, one goal of this study was assembly of the 

JCMS genome to determine the genetic basis of JCMS pathogenesis. In addition, we sought to 

compare the draft genomes of several of these strains to their respective reference genome 

sequences to determine possible differences between the strains we sequenced and the strains 

used for the reference sequencing.  

 Methods 

 Nematode and Bacteria Strains 

The C. elegans N2 strain was obtained from the Caenorhabditis Genetics Center (CGC) 

and used as wild-type. Strains were maintained on nematode growth media (NGM) plates seeded 

with E. coli OP50. Bacteria strains include E. coli OP50 from the CGC, S. maltophilia K279a 

from R. Ryan (University College Cork), S. maltophilia R551-3 from D. van der Lelie 

(Brookhaven National Laboratory), S. maltophilia JV3 from J. Tiedje (Michigan State 
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University), and S. maltophilia JCMS isolated in association with nematodes from Konza Prairie 

near Manhattan, KS (White et al., 2016).    

All bacteria strains were frozen at -80° C upon arrival to the lab and thawed frequently 

for experimentation. S. maltophilia is naturally Ampicillin resistant and was grown on Luria 

Broth (LB) agar containing 100 µg/mL Ampicillin to selectively isolate and maintain S. 

maltophilia strains and avoid contamination. E. coli OP50 was grown on normal LB agar. All 

plates were incubated at 37° C overnight. S. maltophilia strains were grown in liquid LB 

containing 100 µg/mL Ampicillin, and other strains were grown in liquid LB and shaken 

overnight at 37° C overnight. For C. elegans survival assays, liquid cultures were then seeded 

onto NGM plates and grown at room temperature overnight. 

 Bacterial DNA extraction and sequencing 

Genomic DNA was isolated from S. maltophilia JCMS, JV3, K279a and R551-3 using 

phenol-chloroform extraction and RNA with digested with RNase A. Illumina sequencing 

libraries were prepared by the Kansas State University Integrated Genomics Facility (KSU IGF). 

Sequencing was performed using the Illumina MiSeq Benchtop Sequencer in the KSU IGF to 

obtain 250 bp paired-end sequences. This resulted in an average of 1.45 million sequences per 

strain totaling 3,174 Mb.  Additional 100 single end sequences were obtained from the Illumina 

HiSeq 2500 Sequencer at the Genetic Sequencing Facility in the NIH COBRE Center for 

Molecular Analysis of Disease Pathways (CMADP) at KU. This resulted in an average of 4.49 

million sequences per strain totaling 5,080 Mb.  

 Bacterial genome assembly  

Adaptors were trimmed from sequences using bbduk from the BBMAP v37.75 package. 

Assembly of MiSeq and HiSeq sequences was then performed with SPAdes (version 3.8.1) with 
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the following parameters: -k 21,33,55,77,99,127 --cov-cutoff auto --careful. This resulted in 57 

contigs for JV3, 75 contigs for R551-3, 56 contigs for K279a, and 61 contigs for JCMS. Contigs 

were then analyzed using VecScreen in NCBI to identify vector contamination 

(www.ncbi.nlm.nih.gov/tools/vecscreen). Contigs with >20% overall coverage aligning to 

vectors were removed. In addition, BLASTn was used with default parameters to align each 

contig to other similar sequences. Contigs with no significant sequence similarity were removed 

along with remaining contigs less than 500 bp.  

 Genome annotation and comparison 

Rapid Annotation Subsystem Technology (RAST) was used to annotate draft assemblies 

of each strain (www.rast.nmpdr.org) (Aziz et al., 2008). This database uses FIGfam protein 

families based on known functional roles and similarities between proteins in closely related 

species to assign protein-coding genes to functional groups (Aziz et al., 2008). Subsystems 

consist of groups of functional roles that make up biological processes, complexes, and protein 

families, and can be grouped into broader “Categories” and “Subcategories” (Aziz et al., 2008). 

FASTA files of the reference genomes were also submitted by us for RAST annotation instead of 

using available annotations in order to maintain consistency, as the RAST database updates its 

annotations frequently. Lists of subsystem features identified for each strain were then compared 

using a presence/absence matrix to determine strain-specific functions. BLASTp was also used 

to determine presence/absence of proteins in the draft genomes based on significant alignment of 

the CDS of the draft genome to the protein sequence of interest 

(www.blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins).  

Draft and reference sequences were aligned in Mauve using default parameters to look 

for synteny between sequences (Darling et al., 2004). In addition, progressiveMauve alignment 
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was used to align all draft and reference genomes, using the complete K279a genome as a 

reference. Mauve uses local colinear blocks (LCB), or small, highly similar regions between 

sequences, as anchors to perform alignments of long sequences. Alignments between the LCBs 

is performed using CLUSTAL W. Mauve is advantageous for genome alignments that may 

contain a variety of rearrangements, as it allows for sequence fragments to be moved within the 

alignment. The output tree file from Mauve, based on the Neighbor Joining method, was input in 

FigTree v1.4.3 for visualization. BRIG, which utilizes BLAST+ alignments to visualize whole 

genome similarity, was used to align and compare all draft and reference genomes (Alikhan et 

al., 2011).  

For alignment of the quorum sensing protein, RfpF, sequences, protein sequences were 

found for each draft genome within genbank files obtained from RAST annotations. These 

protein sequences were aligned using Clustal Omega to the 106 N-terminal residues of each 

RfpF residue: RfpF-1 (GenBank: KJ149475) and RfpF-2 (GenBank: KJ149552) (Sievers et al, 

2011). This region is known to contain variability used for isoform assignment.  

 Determining the pangenome 

The core genome contains genes present in all genomes, the shell genome represents 

moderately conserved, often dispensable genes, and the cloud genome contains strain specific 

genes, specific to 1-2 strains (Contreras-Moreira & Vinuesa, 2013). The pangenome consists of 

the sum of the core, shell, and cloud genomes.  

To determine the pangenome of the S. maltophilia strains in our laboratory, K279a, 

R551-3, JV3 and JCMS draft genome sequences were combined with the CSM2 genome 

sequence (NZ_CP025298) and genome sequences of 24 additional strains previously used for 

pangenome analysis (Lira, Berg, & Martínez, 2016). These strains include: clinical strains K279a 
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(NC_010943.1), D457 (NC_017671.1 ), E729 (NERH00000000), E759 (NERG00000000), 

E999(NERF00000000), G51 (NERE00000000), E301 (NERD00000000), D388 

(NERC00000000), E861 (NERB00000000), C357 (NERA00000000), E539 (NEQZ00000000), 

E824 (NEQY00000000); and environmental strains: R551-3 (NC_011071.1), JV3 

(NC_015947.1), NS26 (NEQO00000000), EP13 (NEQX00000000), EA22 (NEQW00000000), 

EA1 (NEQV00000000), PS5 (NEQU00000000), EA23 (NEQT00000000), EP20 

(NEQS00000000), EP5 (NEQR00000000), EA21 (NEQQ00000000), EA63 (NEQP00000000) 

(Alonso & Martínez, 1997; De Boer et al., 2001; Lira et al., 2012; Minkwitz & Berg, 2001; 

Ribbeck-Busch et al., 2005; Suckstorff & Berg, 2003). Pan- and core- genomes were determined 

by first identifying clusters of homologous genes using the GET_HOMOLOGUES package. 

These clusters were identified using two popular clustering methods: COGS and OMCL 

(Kristensen et al., 2010; Li, Stoeckert, & Roos, 2003), with clusters only used for further analysis 

if they were identified with both algorithms (the intersection). The parse_pangenome_matrix.pl 

script within GET_HOMOLOGUES was used with the -x option to use the intersection of the 

two above algorithms to create the pangenome matrix. The pangenome matrix includes the 

presence/absence of each gene cluster within each strain (Contreras-Moreira & Vinuesa, 2013), 

and is used to identify the core, shell, and cloud genomes.  

 C. elegans survival assays 

Treatment or control, E. coli OP50, bacteria was cultured in liquid LB (with Ampicillin 

for S. maltophilia strains) overnight and 100 µl of bacteria was plated onto NGM agar plates the 

day prior to use. Worms were bleached to synchronize and reared at 20° C on lawns of E. coli 

OP50. For survival assays, ten fourth larval stage (L4) worms were transferred to each treatment 

plate, with three replicates of each treatment, and maintained at 25° C. Worms were transferred 
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to new plates every day until they stopped laying eggs to separate them from their progeny. 

Surviving worms were recorded each day and dead worms were removed from plates, with live 

worms determined by lack of movement following prodding their heads and tails with a platinum 

wire pick. Plates that became contaminated or worms that crawled off the agar and died were 

removed from data analysis. 

Survival probability estimates over time were determined using the Kaplan-meier 

formula and used to produce survival curves. The Cox-proportional hazards model was then used 

to compare the effects of independent variables using hazard ratios. Independent variables 

included bacterial treatments, with the dependent variable being the probability of nematode 

death on a given day. Differences between times of experimentation were accounted for in the 

model. These analyses were performed in R (Vienne, Austria: R Foundation for Statistical 

Computing). 

 Results and Discussion 

 S. maltophilia strains display varying pathogenicity 

We have previously developed Caenorhabditis elegans as a model organism for studying 

S. maltophilia pathogenesis. Because C. elegans are bacterivores that encounter S. maltophilia in 

their natural environment (Dirksen et al., 2016; Samuel et al., 2016), this is a suitable platform 

for studying host-bacterial interactions. The JCMS strain was isolated in association with 

nematodes at Konza Prairie near Manhattan, KS, USA (White et al., 2016). Other S. maltophilia 

strains utilized in this study include environmental isolates R551-3 and JV3, and clinical isolate 

K279a. The degree of pathogenicity to C. elegans is determined using Cox proportional hazards 

based on survival over time. Hazards can be defined as the probability of death at a given time 

and can be compared between conditions across the entire lifespan, resulting in hazard ratios. 
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Hazard ratios greater than one indicate detrimental, or hazardous, conditions, whereas hazard 

ratios less than one indicate beneficial conditions. Hazard ratios were determined for each of the 

above treatment S. maltophilia strains by comparing hazards of nematodes exposed to S. 

maltophilia to those of nematodes exposed to standard lab food E. coli OP50. This resulted in a 

hazard ratio of 0.86 for K279a, and hazard ratios of 1.7, 5.7, and 59.3 for R551-3, JV3, and 

JCMS, respectively. Thus, K279a appears to be nonpathogenic, perhaps even slightly beneficial, 

whereas R551-3, JCMS, and JV3 display varying degrees of pathogenicity in C. elegans (Figure 

3.1). The virulence observed in these environmental strains supports previous studies that have 

identified virulence factors within both clinical and environmental isolates (Adamek et al., 2011; 

Alavi et al., 2014; Berg & Martinez, 2015; Berg et al., 1999; Lira, Berg, & Martínez, 2017; Ryan 

et al., 2009), and further suggests that not only are virulence mechanisms present in 

environmental strains, they actually lead to pathogenicity within the host. In addition, because of 

the variation in virulence of S. maltophilia strains, we were interested in elucidating genomic 

features within these strains that might be the source of these differences. 

 Reference and draft genome sequences are highly similar 

Genomic DNA from S. maltophilia K279a, R551-3, JCMS, and JV3 was sequenced using 

both MiSeq and HiSeq platforms and assembled used SPAdes, resulting in an average of 62 

contigs per strain. Contigs were then filtered using VecScreen and BLASTn (NCBI) to remove 

contamination, resulting in an average of 46 contigs per strain (Table 3.1). 

In addition to the assembled drafts we generated, completely assembled reference 

sequences are available for K279a (Crossman et al., 2008), R551-3 (Lucas et al., 2008), and JV3 

(Lucas et al., 2011). Due to contradicting information between observed virulence of these 

strains in our hands and previous data from the same strains, we wanted to compare genome 
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sequences of our lab strains to those of the published reference strains. Specifically, a previous 

study found that neither K279a or R551-3 were pathogenic to the amoeba Dictyostelium 

discoideum or Acanthamoeba castellanii (Adamek et al., 2011), another study revealed that 

K279a killed C. elegans within 24 hours (Fouhy et al., 2007), and our observations reveal that 

K279a was not pathogenic and R551-3 was mildly pathogenic to C. elegans (Figure 3.1). 

In order to differentiate the reference genome sequences from our draft assemblies, the 

strains used to generate our draft assemblies will subsequently be referred to as K279a-KS, 

R551-3-KS, and JV3-KS. Overall, the -KS assemblies were similar to the reference genome 

sequences. K279a, the largest reference genome, is 4,851,126 bp with 4,386 predicted protein-

coding sequences, whereas K279a-KS resulted in a predicted genome size of 4,803,885 bp and 

4,392 protein-coding sequences. R551-3-KS, which resulted in a predicted genome size of 

4,547,979 (4,109 protein-coding genes), and JV3-KS, which resulted in a predicted genome size 

of 4,526,743 (4,126 protein-coding genes), were also similar to their respective references (Table 

3.1). GC content of all reference and drafts were also very similar at approximately 66.5% (Table 

3.1). 

Genome sequences of -KS strains were aligned to their respective references to determine 

the degree of synteny, resulting in ordered contigs (Figure 3.2). Overall, reference and draft 

genomes display a high degree of synteny, indicating no large rearrangements have occurred 

(Figure 3.2). Overall, this degree of similarity suggests published data about these reference 

genomes should also be relevant to the -KS strains. Genomes were annotated using Rapid 

Annotation Subsystem Technology (RAST), which classifies protein coding sequences based on 

subsystems (Aziz et al., 2008). Subsystems are groups of proteins based on their known 

functional roles. Protein-coding sequences that were classified into subsystems based on 
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functional roles were compared between reference and -KS genome sequences. Surprisingly, 

very few functional roles differed between reference and -KS genome sequences, again 

suggesting similarity between reference and -KS strains. In fact, there were not any differences 

between the R551-3 reference and R551-3-KS, and only one, a short ribosomal protein, present 

in the JV3-KS sequence but absent in the reference.  

Two functional roles differed between the K279a reference and K279a-KS sequences. 

Interestingly, one of these differences, present in K279a-KS but absent in the reference, encodes 

the flagellar hook-associated protein 3, FlgL. Previous research revealed that flagella play a role 

in biofilm formation in S. maltophilia, as mutations in a flagella-specific ATPase, FliI, reduce 

biofilm formation efficiency and abolish motility (Pompilio et al., 2010). However, because 

mobility and biofilm formation have been observed in K279a (Fouhy et al., 2007; García, 

Alcaraz, Franco, & De Rossi, 2015), this likely does not explain phenotypic virulence 

differences between K279a-KS and K279a used by Fouhy and colleagues (Fouhy et al., 2007).  

The other difference, a gene found in K279a reference but not K279a-KS, encodes HipA, 

a toxin that is part of a Type II toxin-antitoxin (TA) system, in which HipB is the antitoxin. HipA 

is also found in R551-3, but HipB is not found in any of the reference or -KS genome sequences. 

Expression of the HipA toxin at appropriate levels leads to an increase in ‘persister’ cells that are 

tolerant to antibiotics and other stressors (Lewis, 2007; Rotem et al., 2010). Interestingly, 

persister cells have been hypothesized to play a role in antibiotic resistance and biofilm 

formation in S. maltophilia (Abda et al., 2015; Di Bonaventura et al., 2010), but functional 

analysis of this system in S. maltophilia has not yet been performed. In addition, toxins do not 

seem to play a major role in S. maltophilia pathogenesis (White et al., 2016), though it is 
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possible that this toxin indirectly impacts virulence through antibiotic resistance or biofilm 

formation.  

One explanation for differences in observed virulence between K279a and K279a-KS 

that is not dependent on genomic features could be linked to environmental controls on gene 

regulation. In fact, one study looked at gene expression of an S. maltophilia strain grown at 

different temperatures and found differential expression of genes involved in stress responses 

and motility (Alavi et al., 2014). However, a different study determining pathogenic potential of 

S. maltophilia strains based on genomic features found that temperature did not account for 

changes in virulence in several strains (Adamek et al., 2011). Thus, functional analyses of 

genetic differences as well as transcriptomic approaches could be utilized to unravel mechanisms 

behind these phenotypic differences.  

 S. maltophilia JCMS is closely related to JV3 

Assembly of JCMS, a novel, pathogenic, environmental isolate, resulted in a total 

predicted genome size of 4,919,076 with 4,371 predicted protein-coding sequences and a GC 

content of 66.4% (Table 3.1). RAST was used to annotate the resulting incomplete assembly. 

Figure 3.3 summarizes subsystem annotations by more broadly grouping subsystems into 

categories. Interestingly, JCMS contains more genes classified in the “Virulence, Disease, and 

Defense” category than the other strains analyzed, with 194 genes as compared to 149, 125, and 

131 genes in K279a-KS, R551-3-KS, and JV3-KS, respectively (Figure 3.3). This could indicate 

novel virulence mechanisms in JCMS, or a combination of virulence mechanisms found in other 

strains.  

From 16S rRNA gene sequencing, we determined that S. maltophilia JCMS was most 

similar to S. maltophilia JV3 (White et al., 2016). Therefore, we aligned the JCMS contigs using 
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JV3 as a reference in Mauve, resulting in a high degree of synteny between JCMS and JV3 

(Figure 3.4). Interestingly, when contigs were filtered using BLASTn, we found that JCMS has 

more contigs that align to a different completely sequenced strain of S. maltophilia, CSM2, than 

to any other S. maltophilia strain. CSM2 (NZ_CP025298.1) is an environmental isolate that was 

found in Morelos, Cuernavaca, Mexico (Castro-Jaimes et al., 2017), but further information on 

this strain has yet to be reported. To further explore the similarity between these two strains, 

CSM2 was included in subsequent analyses. 

BLAST+ was used to align all sequences to the K279a reference, as it is the largest 

reference genome. This resulted in an overall alignment between all reference and draft 

assemblies that shows similarity between strains, with the highest degree of similarity between 

reference and draft sequences of the same strain (Figure 3.5). This is further supported by a 

multiple sequence alignment of all references and ordered contigs from Figure 3.2 and Figure 3.4 

(Figure 3.6A). Phylogenetic analysis using the Neighbor Joining distance matrix from these 

whole-genome Mauve alignments revealed that CSM2, JCMS, and JV3 are closely related, while 

R551-3 is more closely related to K279a than the other pathogenic strains (Figure 3.6B). This 

supports previous findings that clinical and environmental isolates are heterogenic in 

evolutionary origin, as clinical and environmental isolates cluster together (Berg et al., 1999; 

Lira, Berg, & Martínez, 2017).  

 Many virulence factors are common between strains 

We again utilized RAST subsystem annotations to determine whether genomic features 

differ between strains. Protein-coding sequences for each genome that were classified into 

functional roles were organized into a presence/absence matrix. Only 11% (179) of the 1,577 

functional roles differed between at least two draft genomes (Table 3.2). Of the 179 differences 
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in functional roles between strains, 65 were different when K279a and R551-3 were compared to 

JV3 and JCMS (Table 3.2). This is in support of whole genome-sequence phylogenetic data 

suggesting highest similarity between JV3 and JCMS (Figure 3.6B). Genes assigned to 

subsystems are more broadly grouped into categories, one of which is “Virulence, Disease, and 

Defense” (Table 3.2). Interestingly, very few functional roles assigned to the “Virulence, 

Disease, and Defense” category differed between genomes. Specifically, of 179 functional roles 

that differed in at least one genome, only 12 were assigned to the category “Virulence, Disease, 

and Defense” (Table 3.2). Interestingly, 11 of these were involved in metal resistance or 

homeostasis, with seven present in K279a and JCMS and absent in R551-3 and JV3 (Table 3.2). 

These genes could be beneficial for environmental strains as heavy metal pollutants are found in 

many environments common to S. maltophilia, such as soils and rhizospheres. These genes also 

have the potential to play a role in host pathogenesis as metal ions are important for host immune 

response and metal ion concentration changes in host tissue upon infection with S. maltophilia 

(Pompilio et al., 2014). Therefore, ability to transport metal ions may be a mechanism for 

increasing virulence as well as increasing the ability to compete for these elements. However, 

whether these genes affect virulence remains unclear, and their presence in one clinical isolate 

(K279a) and one environmental isolate (JCMS) but absence in others requires further analysis. 

The other “Virulence, Disease, and Defense” categorized gene that differed between 

genomes was the resistant nodulation division (RND) efflux system membrane-fusion protein 

(MFP) CmeA, which was absent in K279a but present in R551-3, JV3, and JCMS. This gene, 

which is homologous to AcrA in E. coli, encodes one of three proteins that forms an RND efflux 

pump. Interestingly, all strains contain genes that encode CmeB and CmeC, which together make 

the tripartite efflux pump CmeABC. Whereas the outer membrane protein (CmeC) of a tripartite 
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efflux pump is more indiscriminate in its interactions, the MFP (CmeA) is specific to each RND 

efflux protein (Crossman et al., 2008). Therefore, without CmeA, it is likely that this efflux 

pump is inactive in K279a. The CmeABC efflux pump is known to be involved in antibiotic 

resistance in Campylobacter species (Vieira et al., 2017; Yao et al., 2016), suggesting it could 

also play a role in pathogenesis in S. maltophilia. 

Another striking difference found between strains was the presence of 11 functional roles 

involved in the Type IV secretion system in the genome sequences of K279a and R551-3 that 

were absent in JCMS and JV3. Secretion systems are common virulence mechanisms that 

transport enzymes and other proteins into their surrounding environment. The functional roles 

absent in JCMS and JV3, including VirB11, VirB4, VirB8, and VirB10, consist of major 

components and enzymes required for Type IV secretion system function (Fronzes, Christie, & 

Waksmas, 2009). Therefore, it is unlikely that this system is functional in JCMS and JV3. 

Interestingly, these genes were included in the “Membrane Transport” category and thus may not 

be involved in virulence. Type IV secretion systems are known for transporting a variety of 

substances (Fronzes, Christie, & Waksmas, 2009), and the roles of many of the Type IV 

secretion system genes found in K279a and R551-3 are involved in transfer DNA (T-DNA) 

secretion. However, these systems are also known for transferring toxins (Fronzes, Christie, & 

Waksmas, 2009). In fact, effectors of the Type IV secretion system in a close relative of S. 

maltophilia, Xanthomonas citri, are capable of killing other bacterial cells (Souza et al., 2015). 

Therefore, it is possible that this secretion system plays a role in transport of virulence factors, 

but functional analysis of these genes is necessary to understand their possible role in virulence 

and to provide an explanation for their presence in the less virulent strains, K279a and R551-3. 
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Although few differences exist between strains that could explain differences in 

virulence, a variety of important virulence mechanisms are conserved between all strains. In the 

initial assembly of K279a, nine RND-efflux pumps of the drug-resistance type were identified 

(Crossman et al., 2008), all of which are also present in all strains. In addition, a quorum sensing 

system has been identified in S. maltophilia that likely facilitates cell-to-cell communication and 

synchronization of cell behaviors. Quorum-sensing systems are dependent on diffusible signaling 

factors (DSF), which in S. maltophilia is the fatty acid cis-11-methyl-2-dodecenoic acid (Fouhy 

et al., 2007). RfpF, a protein encoded by the regulation of pathogenicity factors (rpf) cluster, is 

necessary for synthesis of the DSF in S. maltophilia, which increases motility and virulence 

(Fouhy et al., 2007; Huedo et al., 2014). While rfpF is common in S. maltophilia genomes, two 

isoforms of the rfpF gene exist, and only strains encoding RfpF-1 produce DSF under standard 

conditions (Huedo et al., 2014). Multiple sequence alignment of the RfpF sequences of these 

strains revealed that K279a-KS and R551-3-KS contain the RfpF-1 variant, while JCMS, JV3-

KS, and CSM2-KS contain identical RfpF-2 variants (Figure 3.7). This suggests that the more 

virulent strains, JCMS and JV3, lack functional quorum-sensing systems.  

One limitation of the RAST annotation database is that many protein-coding genes lack 

functional annotation. For example, of the S. maltophilia strains annotated, approximately 54% 

of genes are not categorized into subsystems. This could provide an explanation for the lack of 

differences identified using the subsystem approach, as genes without subsystem annotation may 

play an important role in virulence. 

 Core and cloud genome analysis reveals strain specificity 

For a genome-wide analysis of unique and shared genes within each genome, we utilized 

the GET_HOMOLOGUS software to identify the core, shell, and cloud genomes of each S. 
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maltophilia strain (Contreras-Moreira & Vinuesa, 2013). Briefly, the core genome is shared 

between all strains, the cloud genome is unique to each strain, and the shell is moderately 

conserved and contains dispensable genes. Because a majority of genomes used for this analysis 

were not completely sequenced and could contain genetic features that fall between contigs, we 

also characterized the soft core genome, which is shared between almost all (95%) of the 

genomes. The pangenome contains all genes that make up the core, soft core, cloud, and shell 

genome. To obtain a more accurate representation of the core genome, we also utilized S. 

maltophilia strains from a previous study (Lira, Berg, & Martínez, 2017) that analyzed the 

pangenome of 24 environmental and clinical strains. We used these 24 genome sequences as 

well as those of our -KS strains and CSM2 for this analysis. These sequences were aligned in 

Mauve to determine relatedness of strains and the resulting phylogenetic tree recapitulates 

phylogenetic clustering determined by MLST and whole CDS alignment performed by Lira and 

colleagues (Lira, Berg, & Martínez, 2017) (Figure 3.8). JV3, JCMS, and CSM2 again form a 

closely related cluster, while K279a and R551-3 fall into different clusters with the addition of 

these strains (Figure 3.8). 

Pangenome analysis resulted in 9,161 total gene clusters determined by homology of 

CDSs. The core genome contains 2,803 orthologous clusters that are shared between all species 

(3,108 with the addition of the soft-core gene clusters), and 3,756 genes comprising the cloud 

genome, or genes specific to one to two strains (Figure 3.9A). The addition of the four -KS 

genomes and CSM2 resulted in approximately 2,000 genes added to the pangenome identified by 

Lira and colleagues (Lira, Berg, & Martínez, 2017). A majority of these genes were added to the 

shell and cloud genomes, with the core genome remaining similar in size. Since the addition of 

these five genomes did not increase the size of the core genome, it appears that nearly all the 
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core genes in S. maltophilia have been identified and the core genome should contain all genes 

essential for S. maltophilia growth and survival. However, the substantial increase in shell and 

cloud genomes emphasizes the diversity of the S. maltophilia genome, as many genes are not 

conserved across strains.  

Core, shell, and cloud genomes were further analyzed in the -KS strains and CSM2 

(Figure 3.9B). Interestingly, JCMS and K279a have larger cloud genomes than other strains, 

suggesting they have more strain-specific functions (Figure 3.9B). However, over 75% of all 

proteins found in the cloud genome encode hypothetical proteins, suggesting that many of these 

important strain-specific functions have yet to be determined.  

 Conclusions 

This study analyzed genomic content of S. maltophilia strains of varying pathogenicity to 

elucidate virulence mechanisms that could account for these phenotypic differences. Although 

genomic differences between strains do not clearly explain differences in observed virulence, 

analysis of the pangenome revealed that a majority of the genome is not shared between strains. 

In fact, 41% of the pangenome is characterized as cloud genome, being specific to 1-2 strains 

(Figure 3.9A). This suggests that many non-essential genes, including those involved in 

virulence, are found in the cloud and shell genomes. In fact, previous analysis has identified a 

variety of virulence factors on genomic islands, which contain genomic regions of past or present 

mobility (Adamek et al., 2014; Juhas et al., 2008). In addition, we determined that many of these 

strain-specific genes have yet to be functionally characterized, emphasizing how much there is to 

learn about S. maltophilia. By determining phenotypic virulence of the additional strains used for 

the pangenome analysis, a more comprehensive analysis could help explain the relationship 

between genomic variability and observed virulence. In doing so, these studies could provide 
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more concrete conclusions about whether virulence factor differences are phenotypically 

important. 

In conclusion, many virulence mechanisms identified in genome sequences were 

common to all S. maltophilia strains, regardless of phenotypic behavior. Because evolutionary 

origin and sampling origin are poor predictors of phenotypic pathogenicity (Adamek et al., 2011; 

Pompilio et al., 2011), understanding key virulence mechanisms in S. maltophilia is important 

for determining pathogenic potential. However, the large number of strain specific genes makes 

identification of virulence mechanisms across S. maltophilia strains difficult. Therefore, although 

sequencing of more strains will provide information on important genetic features, these features 

need to be identified within each S. maltophilia strain independently. In addition, future research 

should focus efforts on uncharacterized genes, as they potentially encode important virulence 

determinants.   
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 Figures 

 

Figure 3.1 S. maltophilia strains display varying pathogenicity to C. elegans 

Survivorship of wild-type nematodes on S. maltophilia K279a, R551-3, JCMS, JV3, and E. coli 

OP50. Survival estimates were determined using Kaplan-Meier estimates generated in R. This 

data represents 22 individual experiments, with n= 456-575 for each bacterial treatment (n=30 

for R551-3). Restricted mean survival values (and standard error) generated by Kaplan-Meier 

estimates for each treatment are: OP50= 10.28 (0.20), K279a= 11.18 (0.18), R551-3= 8.53 

(0.87), JCMS= 5.48 (0.08), and JV3= 2.41 (0.03). All hazard ratios were significant (p<0.05) 

when compared to E. coli OP50. 
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Figure 3.2 S. maltophilia reference and draft genomes display a high degree of synteny 

References are shown on top with respective draft assemblies below, resulting in ordered 

contigs. Plots represent percent similarity between sequences, and similar colors between 

reference and draft represent regions of synteny. Contig boundaries are displayed as red lines. A 

K279a draft aligned to K279a reference. B R551-3 draft aligned to R551-3 reference. C JV3 

draft aligned to JV3 reference.  
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Figure 3.3 S. maltophilia JCMS RAST subsystem features 

Summary of RAST subsystem features in the JCMS genome. Subsystem coverage indicates the percent of protein-coding sequences 

that can be classified into subsystem categories. Subsystem feature counts indicate the number of protein-coding genes that can be 

classified into each category, with distribution of each category represented in the pie-chart. 
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Figure 3.4 S. maltophilia JCMS is similar to S. maltophilia JV3 

JCMS draft (bottom) aligned to JV3 reference (top), resulting in ordered contigs. Plots represent percent similarity between sequences, 

and different colors represent regions of synteny. Contig boundaries are displayed as red lines.  
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Figure 3.5 Genomic similarity between S. maltophilia strains 

BLAST was used to align coding sequences, with K279a as a reference. Legend indicates 

features from inside to outside. Brightness of color for each strain represents similarity to 

reference sequence, with brighter shades representing higher similarity.  
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Figure 3.6 Synteny between S. maltophilia strains 

A Mauve alignment of genome sequences using K279a as a reference. Plots represent percent 

similarity between sequences, and different colors represent regions of synteny. Contig 

boundaries are displayed as red lines. B Phylogenetic tree representing relationship between S. 

maltophilia strains. Evolutionary distances calculated from Mauve multiple sequence alignments 

of whole-genome sequences using Neighbor joining method. Distance of the x axis represents 

amount of genetic change based on number of substitutions between strains. Tree was visualized 

using FigTree v1.4.3. 
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Figure 3.7 RfpF alignment shows segregation of strains based on RfpF variant 

RfpF protein sequences of –KS strains were aligned to protein sequences of RfpF-1 (GenBank: 

KJ149475) and RfpF-2 (GenBank: KJ149552) variants. Clustal Omega v 1.2.4 was used for 

multiple sequence alignment. Blue outline indicates variant 1 and green outline indicates variant 

2. 
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Figure 3.8 Whole genome alignment of strains used for pangenome analysis 

Phylogenetic tree representing relationship between 29 S. maltophilia strains. Evolutionary 

distances calculated from Mauve multiple sequence alignments of whole-genome sequences 

using Neighbor joining method. Distance of the x axis represents amount of genetic change 

based on number of substitutions between strains. Tree was visualized using FigTree v1.4.3. 
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Figure 3.9 Core, soft core, shell, and cloud genomes of 29 S. maltophilia strains 

A Representation of genes in the core, soft core, shell, and cloud genomes of all 29 strains in the 

pangenome analysis B Distribution of core, soft core, shell, and cloud genes within –KS strains 

and CSM2.  



161 

 Tables 

Table 3.1 S. maltophilia reference and draft genome characteristics.  

Draft assembly information (-KS strains and JCMS) is from RAST annotation database. Reference, complete assembly data (indicated 

by asterisks) is from NCBI genbank information. 

 

Strain Number of 
contigs 

N50 Size (bp) GC content 
(%) 

Number of 
CDS 

K279a-KS 48 218290 4,803,885 66.4 4,392 

K279a* 
  

4,851,126 66.3 4,386 

R551-3-KS 58 172947 4,547,979 66.4 4,109 

R551-3* 
  

4,573,969 66.3 4,039 

JV3-KS 35 244505 4,526,743 66.9 4,126 

JV3* 
  

4,544,477 66.9 4,056 

JCMS 42 274796 4,919,076 66.4 4,371 
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Table 3.2 Subsystem annotation differences between strains 

All RAST subsystem annotations that differ between at least one comparison. Category and subsystem are shown for each functional 

role assigned to protein-coding sequences. Presence/absence matrix is also shown for each strain (K=K279a, R=R551-3, V=JV3, 

J=JCMS), with comparison category shown on the far left. 

 

 
  Category Subsystem Role K R V J 

K279a vs 
all 

Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Folate biosynthesis cluster transmembrane protein, distant homology with ydbS + - - - 

  Miscellaneous Phosphoglycerate mutase protein family Phosphoglycerate mutase family + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail completion protein + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage packaging machinery Phage terminase small subunit + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage packaging machinery Phage terminase, ATPase subunit + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage packaging machinery Phage terminase, endonuclease subunit + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage capsid proteins Phage head completion-stabilization protein + - - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage capsid proteins Phage capsid scaffolding protein + - - - 

  Membrane Transport Choline Transport Sodium-Choline Symporter + - - - 

  Membrane Transport pVir Plasmid of Campylobacter Type IV secretion system protein VirD4 + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbG + - - - 

  Membrane Transport Conjugative transfer IncF plasmid conjugative transfer protein TraD + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbD + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbL + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbF + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbC + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbI + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbE + - - - 

  Membrane Transport Conjugative transfer Conjugative transfer protein TrbJ + - - - 
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  Membrane Transport Conjugative transfer Conjugative transfer protein TrbB + - - - 

  Iron acquisition and 
metabolism 

Encapsulating protein for DyP-type 
peroxidase and ferritin-like protein 
oligomers 

Predicted dye-decolorizing peroxidase (DyP), encapsulated 
subgroup 

+ - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Filamentous haemagglutinin family outer membrane protein 
associated with VreARI signalling system 

+ - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Sigma factor regulator VreR (cytoplasmic membrane-localized) 
of trans-envelope signaling system 

+ - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Putative outer membrane TonB-dependent receptor 
associated with haemagglutinin family outer membrane 
protein 

+ - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Extracytoplasmic function (ECF) sigma factor VreI + - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Outer membrane TonB-dependent transducer VreA of trans-
envelope signaling system 

+ - - - 

  Regulation and Cell 
signaling 

Trans-envelope signaling system VreARI in 
Pseudomonas 

Hemolysin activation/secretion protein associated with VreARI 
signalling system 

+ - - - 

  DNA Metabolism DNA repair, bacterial Methyl-directed repair DNA adenine methylase (EC 2.1.1.72) + - - - 

  Fatty Acids, Lipids, and 
Isoprenoids 

Glycerolipid and Glycerophospholipid 
Metabolism in Bacteria 

Glycerate kinase (EC 2.7.1.31) + - - - 

  Stress Response Oxidative stress Alkyl hydroperoxide reductase subunit C-like protein + - - - 

  Stress Response Cold shock, CspA family of proteins Cold shock protein CspC + - - - 

  Amino Acids and 
Derivatives 

Threonine degradation Threonine dehydrogenase and related Zn-dependent 
dehydrogenases 

+ - - - 

  Phosphorus Metabolism Phosphate-binding DING proteins RecA/RadA recombinase + - - - 

  Phosphorus Metabolism Phosphate-binding DING proteins Phosphate-binding DING protein (related to PstS) + - - - 

  Carbohydrates Pyruvate Alanine Serine Interconversions Omega-amino acid--pyruvate aminotransferase (EC 2.6.1.18) + - - - 

  Carbohydrates Trehalose Biosynthesis Malto-oligosyltrehalose synthase (EC 5.4.99.15) + - - - 

  Carbohydrates Trehalose Biosynthesis 1,4-alpha-glucan (glycogen) branching enzyme, GH-13-type (EC 
2.4.1.18) 

+ - - - 

  Carbohydrates Trehalose Biosynthesis Trehalose synthase (EC 5.4.99.16) + - - - 

  Carbohydrates Trehalose Biosynthesis Malto-oligosyltrehalose trehalohydrolase (EC 3.2.1.141) + - - - 

  Carbohydrates Trehalose Biosynthesis Glycogen debranching enzyme (EC 3.2.1.-) + - - - 

  Carbohydrates Maltose and Maltodextrin Utilization Transcriptional regulator of maltose utilization, LacI family + - - - 
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  Carbohydrates Maltose and Maltodextrin Utilization Predicted maltose transporter MalT + - - - 

  Carbohydrates Maltose and Maltodextrin Utilization 4-alpha-glucanotransferase (amylomaltase) (EC 2.4.1.25) + - - - 

  Carbohydrates Maltose and Maltodextrin Utilization Maltodextrin glucosidase (EC 3.2.1.20) + - - - 

  Carbohydrates Maltose and Maltodextrin Utilization Predicted maltose-specific TonB-dependent receptor + - - - 

  Carbohydrates Maltose and Maltodextrin Utilization Multiple sugar ABC transporter, ATP-binding protein + - - - 

  Carbohydrates Glycogen metabolism Glycogen synthase, ADP-glucose transglucosylase (EC 2.4.1.21) + - - - 

  Cell Wall and Capsule Rhamnose containing glycans Teichoic acid export ATP-binding protein TagH (EC 3.6.3.40) - + + + 

  Virulence, Disease and 
Defense 

Multidrug Resistance Efflux Pumps RND efflux system, membrane fusion protein CmeA - + + + 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail fiber proteins Phage tail fiber protein - + + + 

  Membrane Transport Ton and Tol transport systems Outer membrane receptor for ferric coprogen and ferric-
rhodotorulic acid 

- + + + 

  Membrane Transport Ton and Tol transport systems Colicin I receptor precursor - + + + 

  Fatty Acids, Lipids, and 
Isoprenoids 

Acyl-CoA thioesterase II TesB-like acyl-CoA thioesterase 5 - + + + 

  Nitrogen Metabolism Nitrate and nitrite ammonification Nitrate/nitrite transporter - + + + 

  Stress Response Oxidative stress Superoxide dismutase [Cu-Zn] precursor (EC 1.15.1.1) - + + + 

  Metabolism of Aromatic 
Compounds 

Salicylate ester degradation Salicylate hydroxylase (EC 1.14.13.1) - + + + 

  Nitrogen Metabolism Nitrosative stress NnrS protein involved in response to NO - + - - 

  Dormancy and 
Sporulation 

Persister Cells HipA protein - + - - 

  Amino Acids and 
Derivatives 

Lysine degradation Lysine/cadaverine antiporter membrane protein CadB - + - - 

  Carbohydrates Glycerol and Glycerol-3-phosphate Uptake 
and Utilization 

Glycerol-3-phosphate ABC transporter, ATP-binding protein 
UgpC (TC 3.A.1.1.3) 

- + - - 

R551 vs 
all 

Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Thiamin biosynthesis Hydroxymethylpyrimidine ABC transporter, substrate-binding 
component 

+ - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Thiamin biosynthesis Hydroxymethylpyrimidine ABC transporter, transmembrane 
component 

+ - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

NAD and NADP cofactor biosynthesis global Ribosylnicotinamide kinase (EC 2.7.1.22) + - + + 
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  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

NAD and NADP cofactor biosynthesis global Nicotinamide phosphoribosyltransferase (EC 2.4.2.12) + - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

NAD and NADP cofactor biosynthesis global Nicotinamide-nucleotide adenylyltransferase, NadM family (EC 
2.7.7.1) 

+ - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

NAD and NADP cofactor biosynthesis global Nicotinamide-nucleotide adenylyltransferase, NadR family (EC 
2.7.7.1) 

+ - + + 

  Virulence, Disease and 
Defense 

Cobalt-zinc-cadmium resistance DNA-binding heavy metal response regulator + - + + 

  Regulation and Cell 
signaling 

LysR-family proteins in Escherichia coli LysR family transcriptional regulator YbhD + - + + 

  DNA Metabolism Uracil-DNA glycosylase Uracil-DNA glycosylase, putative family 6 + - + + 

  DNA Metabolism Uracil-DNA glycosylase Domain often clustered or fused with uracil-DNA glycosylase + - + + 

  DNA Metabolism DNA Repair Base Excision DNA-3-methyladenine glycosylase II (EC 3.2.2.21) + - + + 

  Fatty Acids, Lipids, and 
Isoprenoids 

Glycerolipid and Glycerophospholipid 
Metabolism in Bacteria 

Phosphatidylglycerophosphatase B (EC 3.1.3.27) + - + + 

  Stress Response Osmotic stress cluster Heat shock (predicted periplasmic) protein YciM, precursor + - + + 

  Amino Acids and 
Derivatives 

Polyamine Metabolism Arginine/agmatine antiporter + - + + 

  Amino Acids and 
Derivatives 

Isoleucine degradation Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2) + - + + 

  Phosphorus Metabolism Phosphate metabolism Phosphate-specific outer membrane porin OprP + - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Molybdenum cofactor biosynthesis Xanthine and CO dehydrogenases maturation factor, 
XdhC/CoxF family 

+ + + - 

  Phages, Prophages, TEs, 
Plasmids 

Phage packaging machinery Phage terminase, large subunit + + + - 

  Nucleosides and 
Nucleotides 

Purine Utilization Periplasmic aromatic aldehyde oxidoreductase, FAD binding 
subunit YagS 

+ + + - 

JCMS vs 
all 

Cell Wall and Capsule dTDP-rhamnose synthesis dTDP-rhamnosyl transferase RfbF (EC 2.-.-.-) - - - + 
RNA Metabolism Ribonucleases in Bacillus Metallo-beta-lactamase family protein, RNA-specific - - - + 

  Regulation and Cell 
signaling 

cAMP signaling in bacteria cyclolysin secretion ATP-binding protein - - - + 

  Regulation and Cell 
signaling 

Orphan regulatory proteins Glycine cleavage system transcriptional activator GcvA - - - + 
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  DNA Metabolism DNA topoisomerases, Type I, ATP-
independent 

DNA topoisomerase III (EC 5.99.1.2) in PFGI-1-like cluster - - - + 

  Stress Response Glutathione-dependent pathway of 
formaldehyde detoxification 

Glutathione-dependent formaldehyde-activating enzyme (EC 
4.4.1.22) 

- - - + 

  Stress Response Universal stress protein family Universal stress protein family 4 - - - + 

JV3 vs all Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Riboflavin, FMN and FAD metabolism in 
plants 

3,4-dihydroxy-2-butanone 4-phosphate synthase (EC 4.1.99.12) + + - + 

  Cell Wall and Capsule Rhamnose containing glycans Alpha-L-Rha alpha-1,3-L-rhamnosyltransferase (EC 2.4.1.-) + + - + 

  Membrane Transport Two partner secretion pathway (TPS) Fimbrial adhesin + + - + 

  Membrane Transport Two partner secretion pathway (TPS) Channel-forming transporter/cytolysins activator of TpsB 
family 

+ + - + 

  Membrane Transport Two partner secretion pathway (TPS) Putative large exoprotein involved in heme utilization or 
adhesion of ShlA/HecA/FhaA family 

+ + - + 

  Nucleosides and 
Nucleotides 

GMP synthase GMP synthase [glutamine-hydrolyzing], ATP pyrophosphatase 
subunit (EC 6.3.5.2) 

+ + - + 

  Nucleosides and 
Nucleotides 

GMP synthase GMP synthase [glutamine-hydrolyzing], amidotransferase 
subunit (EC 6.3.5.2) 

+ + - + 

  Nucleosides and 
Nucleotides 

GMP synthase GMP synthase (EC 6.3.5.2) + + - + 

  DNA Metabolism DNA topoisomerases, Type I, ATP-
independent 

Hypothetical protein PA2244 (similar to DNA topoisomerase IB, 
but possibly involved in glycosyl-transfer) 

+ + - + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Molybdenum cofactor biosynthesis DNA-binding domain of ModE - - + - 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Molybdenum cofactor biosynthesis Molybdate-binding domain of ModE - - + - 

  Nucleosides and 
Nucleotides 

Purine conversions GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) - - + - 

  Secondary Metabolism Lanthionine Synthetases Lanthionine biosynthesis protein LanL - - + - 

  DNA Metabolism DNA topoisomerases, Type I, ATP-
independent 

DNA topoisomerase IB (poxvirus type) (EC 5.99.1.2) - - + - 

  Carbohydrates Chitin and N-acetylglucosamine utilization N-Acetyl-D-glucosamine ABC transport system, permease 
protein 2 
 
 

- - + - 
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K279a/ 
R551-3 vs 

JCMS/ 
JV3 

Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Molybdenum cofactor biosynthesis Protein co-occuring with molybdenum cofactor biosynthesis 
protein B 

- - + + 

Virulence, Disease and 
Defense 

Copper homeostasis Cu(I)-responsive transcriptional regulator - - + + 

Virulence, Disease and 
Defense 

Cobalt-zinc-cadmium resistance Heavy metal sensor histidine kinase - - + + 

Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail assembly protein I - - + + 

  
  
  
  
  
  
  
  
  
  
  

Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail length tape-measure protein 1 - - + + 

Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage minor tail protein - - + + 

Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail assembly protein - - + + 

Phages, Prophages, TEs, 
Plasmids 

Phage lysis modules Phage lysin, 1,4-beta-N-acetylmuramidase (EC 3.2.1.17) or 
lysozyme 

- - + + 

Membrane Transport Widespread colonization island Type II/IV secretion system protein TadC, associated with Flp 
pilus assembly 

- - + + 

Motility and Chemotaxis Bacterial Chemotaxis Maltose/maltodextrin ABC transporter, substrate binding 
periplasmic protein MalE 

- - + + 

Regulation and Cell 
signaling 

LysR-family proteins in Salmonella enterica 
Typhimurium 

LysR family transcriptional regulator STM2281 - - + + 

Regulation and Cell 
signaling 

DNA-binding regulatory proteins, strays Aromatic hydrocarbon utilization transcriptional regulator CatR 
(LysR family) 

- - + + 

Regulation and Cell 
signaling 

Toxin-antitoxin replicon stabilization 
systems 

HigB toxin protein - - + + 

Metabolism of Aromatic 
Compounds 

Biphenyl Degradation biphenyl-2,3-diol 1,2-dioxygenase III-related protein - - + + 

Carbohydrates Alpha-Amylase locus in Streptocococcus putative esterase - - + + 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Thiamin biosynthesis Phosphomethylpyrimidine kinase (EC 2.7.4.7) + + - - 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Thiamin biosynthesis Thiamin biosynthesis protein ThiC + + - - 

  Cofactors, Vitamins, 
Prosthetic Groups, 
Pigments 

Ubiquinone Biosynthesis - gjo Uncharacterized hydroxylase PA0655 + + - - 
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  Cell Wall and Capsule Alginate metabolism Alginate lyase precursor (EC 4.2.2.3) + + - - 

  Cell Wall and Capsule Alginate metabolism Mannose-6-phosphate isomerase (EC 5.3.1.8) + + - - 

  Cell Wall and Capsule Alginate metabolism Poly (beta-D-mannuronate) lyase (EC 4.2.2.3) + + - - 

  Cell Wall and Capsule Lipopolysaccharide assembly Outer membrane lipoprotein LolB + + - - 

  Cell Wall and Capsule Lipid A-Ara4N pathway ( Polymyxin 
resistance ) 

Polymyxin resistance protein PmrL, sucrose-6 phosphate 
hydrolase 

+ + - - 

  Cell Wall and Capsule Lipid A-Ara4N pathway ( Polymyxin 
resistance ) 

Polymyxin resistance protein ArnT, undecaprenyl phosphate-
alpha-L-Ara4N transferase 

+ + - - 

  Cell Wall and Capsule Lipid A-Ara4N pathway ( Polymyxin 
resistance ) 

UDP-glucose 6-dehydrogenase (EC 1.1.1.22) + + - - 

  Cell Wall and Capsule Peptidoglycan Biosynthesis D-alanine--D-alanine ligase A (EC 6.3.2.4) + + - - 

  Cell Wall and Capsule YjeE Phosphotransferase involved in threonylcarbamoyladenosine 
t(6)A37 formation in tRNA 

+ + - - 

  Virulence, Disease and 
Defense 

Copper homeostasis: copper tolerance Cytoplasmic copper homeostasis protein CutC + + - - 

  Potassium metabolism Potassium homeostasis Glutathione-regulated potassium-efflux system protein KefC + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage major tail tube protein + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail sheath monomer + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail protein + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage packaging machinery Phage portal protein + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage tail fiber proteins Phage tail fibers + + - - 

  Phages, Prophages, TEs, 
Plasmids 

Phage capsid proteins Phage major capsid protein + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap amyloid fiber secretin + + - - 

  Membrane Transport Fap amyloid fiber secretion system Sigma-54 dependent transcriptional regulator + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap amyloid fibril major component + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap unknown function protein-Stenotrophomonas type + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap protein with C39 domain + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap system putative outer membrane protein + + - - 

  Membrane Transport Fap amyloid fiber secretion system Fap amyloid fibril minor component + + - - 
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  Membrane Transport Vir-like type 4 secretion system ATPase required for both assembly of type IV secretion 
complex and secretion of T-DNA complex, VirB11 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Minor pilin of type IV secretion complex, VirB5 + + - - 

  Membrane Transport Vir-like type 4 secretion system ATPase required for both assembly of type IV secretion 
complex and secretion of T-DNA complex, VirB4 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Inner membrane protein forms channel for type IV secretion of 
T-DNA complex, VirB8 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Peptidoglycan hydrolase VirB1, involved in T-DNA transfer + + - - 

  Membrane Transport Vir-like type 4 secretion system Inner membrane protein forms channel for type IV secretion of 
T-DNA complex, VirB3 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Coupling protein VirD4, ATPase required for T-DNA transfer + + - - 

  Membrane Transport Vir-like type 4 secretion system Inner membrane protein of type IV secretion of T-DNA 
complex, TonB-like, VirB10 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Major pilus subunit of type IV secretion complex, VirB2 + + - - 

  Membrane Transport Vir-like type 4 secretion system Outer membrane and periplasm component of type IV 
secretion of T-DNA complex, has secretin-like domain, VirB9 

+ + - - 

  Membrane Transport Vir-like type 4 secretion system Inner membrane protein of type IV secretion of T-DNA 
complex, VirB6 

+ + - - 

  RNA Metabolism Possible RNA modification and stress 
response cluster 

Organic solvent tolerance protein precursor + + - - 

  RNA Metabolism Possible RNA modification and stress 
response cluster 

Bis(5'-nucleosyl)-tetraphosphatase, symmetrical (EC 3.6.1.41) + + - - 

  RNA Metabolism Possible RNA modification and stress 
response cluster 

ApaG protein + + - - 

  RNA Metabolism RNA methylation 16S rRNA (cytosine(967)-C(5))-methyltransferase (EC 
2.1.1.176) 

+ + - - 

  DNA Metabolism DNA repair, bacterial DNA polymerase IV-like protein ImuB + + - - 

  DNA Metabolism DNA replication strays Error-prone repair homolog of DNA polymerase III alpha 
subunit (EC 2.7.7.7) 

+ + - - 

  Fatty Acids, Lipids, and 
Isoprenoids 

Isoprenoinds for Quinones Geranylgeranyl diphosphate synthase (EC 2.5.1.29) + + - - 

  Stress Response Periplasmic Stress Response Intramembrane protease RasP/YluC, implicated in cell division 
based on FtsL cleavage 

+ + - - 

  Amino Acids and 
Derivatives 

Arginine and Ornithine Degradation Delta-1-pyrroline-5-carboxylate dehydrogenase (EC 1.2.1.88) + + - - 

  Amino Acids and 
Derivatives 

Lysine degradation L-lysine permease + + - - 
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  Carbohydrates Entner-Doudoroff Pathway 2-dehydro-3-deoxygluconate kinase (EC 2.7.1.45) + + - - 

  Carbohydrates D-gluconate and ketogluconates 
metabolism 

Broad-specificity glycerol dehydrogenase (EC 1.1.99.22), 
subunit SldB 

+ + - - 

K279a/ 
JV3 vs 

R551-3/ 
JCMS 

Phages, Prophages, TEs, 
Plasmids 

Phage tail proteins Phage tail length tape-measure protein + - + - 

Virulence, Disease and 
Defense 

Resistance to chromium compounds Chromate transport protein ChrA - + - + 

Regulation and Cell 
signaling 

Phd-Doc, YdcE-YdcD toxin-antitoxin 
(programmed cell death) systems 

Death on curing protein, Doc toxin - + - + 

K279a/ 
JCMS vs 
R551-3/ 

JV3 

Virulence, Disease and 
Defense 

Copper homeostasis Copper resistance protein CopC + - - + 

Virulence, Disease and 
Defense 

Copper homeostasis Copper resistance protein CopD + - - + 

Virulence, Disease and 
Defense 

Cobalt-zinc-cadmium resistance Heavy metal resistance transcriptional regulator HmrR + - - + 

Virulence, Disease and 
Defense 

Mercuric reductase Mercuric ion reductase (EC 1.16.1.1) + - - + 

  Virulence, Disease and 
Defense 

Mercury resistance operon Mercuric transport protein, MerT + - - + 

  Virulence, Disease and 
Defense 

Mercury resistance operon Periplasmic mercury(+2) binding protein + - - + 

  Virulence, Disease and 
Defense 

Mercury resistance operon Mercuric resistance operon regulatory protein + - - + 

  Phages, Prophages, TEs, 
Plasmids 

Phage replication DNA polymerase III alpha subunit (EC 2.7.7.7) + - - + 

  Phages, Prophages, TEs, 
Plasmids 

Phage replication DNA primase/helicase, phage-associated + - - + 

  Amino Acids and 
Derivatives 

Histidine Degradation Formiminoglutamase (EC 3.5.3.8) + - - + 
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Chapter 4 - Summary and Future Directions 

In the natural environment, C. elegans interact with a variety of organisms, and these 

relationships come in a variety of forms. Snails and isopods act as a vector for transportation of 

nematodes between locations, while nematodes serve as prey for insects and fungi. In addition, 

C. elegans encounter thousands of taxa of bacteria that can form commensalistic, mutualistic, or 

pathogenic interactions with C. elegans. Our lab focuses on bacteria that are pathogenic to C. 

elegans and the genetic mechanisms behind these interactions. We use S. maltophilia to study 

these host-pathogen interactions as members of Stenotrophomonas are found in relatively high 

abundance in the microbiome of C. elegans and most strains are either detrimental or neutral to 

the health of C. elegans (Dirksen et al, 2016; Samuel et al., 2016). In addition to this natural 

interaction, S. maltophilia is an emerging nosocomial pathogen known for causing infection in 

patients with respiratory diseases such as cystic fibrosis. Therefore, understanding the genetic 

basis of S. maltophilia pathogenesis using C. elegans has both ecological and medical 

implications. Throughout this study, we utilized several strains of S. maltophilia that display 

varying pathogenicity to C. elegans in order to relate phenotypic virulence to genomic 

differences in S. maltophilia and genotypic responses in C. elegans.  

 Host gene expression reveals common and strain-specific responses to S. 

maltophilia 

One goal of this thesis was to elucidate host responses upon S. maltophilia infection. We 

found that S. maltophilia induces both common and strain-specific responses in C. elegans. 

Specifically, it seems that the degree of differential expression correlates with level of virulence, 

as the more virulent strain, JV3, resulted in higher overall expression of genes induced by both 

pathogenic S. maltophilia strains JV3 and JCMS. In addition, JV3 resulted in downregulation of 
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a variety of genes in C. elegans that were not downregulated in response to other strains. Many 

of these genes appear to be involved in oxidoreductase and glycosyltransferase activities. These 

enzymes play a role in a variety of metabolic processes; thus, one explanation for the increased 

virulence of JV3 might be its ability to repress overall metabolism. To provide more insight into 

this hypothesis, functional analyses of individual genes could elucidate their role in pathogen 

response. In addition, metabolomic analyses of C. elegans upon exposure to different S. 

maltophilia strains would determine if and what metabolic pathways are affected.  

Functional analyses of candidate genes differentially expressed in response to one or both 

strains of pathogenic S. maltophilia revealed that while a majority of these genes are important 

for survival upon S. maltophilia infection, differences in survival were not dependent on the 

strain that resulted in differential expression of that gene. Therefore, although gene expression is 

strain specific, these genes may be important for survival on a broader scale. Utilizing more S. 

maltophilia strains for transcriptomic and functional analysis of more genes could uncover more 

concrete patterns in the complex dynamics of C. elegans responses to S. maltophilia. 

 Elucidating the role of the DAF-2/16 insulin-like pathway in response to S. 

maltophilia 

The DAF-2/16 insulin-like pathway has been shown to play a role in longevity and 

defense responses (Kenyon et al., 1993; McElwee, Bubb, & Thomas, 2003; Murphy et al., 2003). 

Previously, we determined that this pathway does not seem to be effective in response to S. 

maltophilia JCMS (White et al., 2016), and this is one of the only reported environmental 

conditions in which daf-2 mutants do not result in increased lifespan in C. elegans. However, 

further analysis is needed to identify whether this is a strain-specific phenomenon or a common 

characteristic of S. maltophilia. To do this, we obtained a variety of S. maltophilia strains that 



173 

were identified as part of the C. elegans native microbiome. Survival analyses comparing wild-

type and daf-2 mutant C. elegans upon exposure to these strains will reveal whether the DAF-

2/16 pathway is an effective defense mechanism in response to each strain.  

In addition, to further explore this phenomenon, our transcriptomic experiment described 

in Chapter 2 also included daf-2 mutants exposed to each bacterial strain. Comparison of 

differentially expressed genes in wild-type and daf-2 mutant C. elegans upon exposure to each 

bacterial strain could identify genes that are independent and dependent on DAF-2. Mutants of 

these genes can be used in survival assays to determine if they are important for response to S. 

maltophilia strains. This could provide mechanisms for the ineffectiveness of the DAF-2/16 

pathway in response to S. maltophilia JCMS. 

 Genomic differences: the answer to phenotypic differences? 

The other goal of this thesis was to determine genomic differences in S. maltophilia 

strains that could account for differences in phenotypic virulence. Although phenotypic 

differences have been observed between our strains and the same strains in other labs, strains that 

we used for genome assembly and their respective references were overall very similar. This 

means that genomic analyses performed using these reference strains should also be relevant to 

the strains used for our analyses.  

In addition, very few genes classified as being involved in “Virulence, Disease, and 

Defense” differed between strains. Functional analyses of several identified differences, such as 

the CmeABC efflux pump component, Type IV secretion system, and metal resistance genes, 

would determine if they are important for virulence. For example, knock-down of these genes in 

the strains in which they are found paired with exogenous expression in strains lacking these 

genes followed by survival assays in C. elegans would reveal their importance in pathogenesis.  



174 

However, identifying genomic differences between strains was dependent on presence 

and absence of coding sequences. Therefore, another genomic explanation for differences in 

phenotypic virulence could be single nucleotide polymorphisms within regulatory or coding 

regions. Therefore, looking for smaller genetic variations within virulence factors and regulatory 

regions could identify important genomic differences.  

Further analysis of these strains also revealed that many genes within S. maltophilia 

genomes are strain-specific or only shared between a small fraction of genomes. Most of the 

genes identified in the shell and cloud genomes, and therefore more unique to individual strains, 

encode “hypothetical proteins.” Therefore, it is possible that many virulence genes have not yet 

been characterized. Determining phenotypic virulence of more strains would allow us to narrow 

down genes important for virulence. For example, determining phenotypic virulence of all strains 

used for the pangenome analysis and comparing genes between pathogenic and nonpathogenic 

strains would result in candidate genes that could be used in functional analyses. In addition, 

transcriptomic approaches could be used to determine differential expression of genes upon 

infection. This experiment could involve several comparisons, in which gene expression of 

bacteria under normal growth conditions could be compared to bacteria upon infection in C. 

elegans, or gene expression of pathogenic and nonpathogenic strains could be compared. Both 

approaches would identify candidate genes involved in virulence, some of which may be novel 

virulence factors.  

Overall, it appears that the S. maltophilia-C. elegans interaction is complex and the 

genetic basis of this interaction is strain-dependent. However, understanding these dynamics will 

begin to unravel the complex pathogen-host interactions in the native environment of C. elegans 

in addition to providing insight into clinical aspects of S. maltophilia pathogenesis.  
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