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Abstract

Many critical infrastructures rely heavily on automated control systems, making them

the target of cyber attacks. Vulnerabilities in control systems are especially dangerous, as

they directly affect the physical world.

Zero-dynamics stealthy attacks are a subset of False Data Injection Attacks (FDIAs) that

are designed specifically to diverge the states of a controlled cyber-physical system, while

producing no discernible changes to the system’s output – making these attacks theoreti-

cally undetectable. While perfect knowledge of the system model should consistently lead

to successful and undetectable attacks, in practice the success of zero-dynamics attacks is

limited by the attacker’s imperfect knowledge of the system parameters and states, as well

as by the system’s components’ physical limitations. The success of such an attack thus

relies no longer on the attack remaining undetectable, but rather on the attacker’s ability to

significantly diverge the states of the system before detection.

This dissertation explores how the probability of zero-dynamics stealthy attack success is

affected by the attacker’s knowledge of the system’s state space model. Using the quadruple-

tank process as an experimental testbed, our results show that it is essential for the attacker

to learn an accurate state space representation if they want to have a high probability of a

successful attack. Moreover, we show that when the limitations of physical components of

the system are considered, the attacker is forced to use an especially accurate state space

representation to achieve a reasonable probability of success. Utilizing a grey box approach to

system identification, we show that even when the attacker is able to learn a state space model

close enough to have a high probability of a successful attack, making small improvements

to the system’s anomaly detector causes the probability of success to drop drastically.

Finally, we study the trade-offs between making the system less susceptible to zero-

dynamics attacks and maintaining its controllability, by increasing the sampling time of the



system, thus providing the attacker fewer samples to learn a state space model. Additionally,

results are provided, using a three inverter power system model, showing that strategically

choosing model parameters in the design phase of the system can prevent the possibility of

zero-dynamics stealthy attacks altogether.
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Chapter 1

Introduction

Critical infrastructure is more reliant than ever on control system automation, while in-

creasing network connectivity presents an opportunity for remote attacks. Throughout the

past few years, we have seen numerous cyber attacks affecting critical infrastructure. In

May 2021 a ransomware attack on the Colonial Pipeline caused fuel shortages across much

of the East Coast (Newman [2021]). An attacker attempted to introduce a toxic amount

of chemicals into drinking water at a water treatment plant in Florida in February 2021

by gaining remote access to the plant’s controls (Greenberg [2021]). The world’s largest

meat processor shut down nearly ten plants in the United States after becoming a victim

of a ransomware attack (Sanger and Davis [2021]). As the underlying technology of our

critical infrastructure advances, an increase in telecommunication devices and remote ac-

cess to plants gives attackers more opportunities to attack these systems, with potentially

catastrophic outcomes.

We investigate zero-dynamics stealthy attacks, a subset of false data injection attacks

(FDIAs), on control systems. With a zero-dynamics stealthy attack, the attacker injects

data into the control signal of the system in order to drive the states of the system to

be unstable while the observations remain the same (Teixeira et al. [2012]). This means

that the attack can have a significant impact on the system while remaining undetected,

as many anomaly detectors simply look for changes in the observations (Elmrabit et al.
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[2020], Hosseinzadehtaher et al. [2020], Inoue et al. [2017]). However, stealthy attacks have

several limitations–including that the attacker must have a state space model that accurately

describes the system. Harshbarger et al. [2020] shows that when the attacker does not have

an accurate state space model, a stealthy attack may not always be successful. Additionally,

specific conditions must exist for a stealthy attack to diverge the states of the system without

being detected. These include the attack needing to have an unstable eigenvalue and to have

fewer measurements in the system than states. Throughout this dissertation, we investigate

these limitations on stealthy attacks to determine how probable it is that an attacker can

successfully attack the system under realistic conditions, as well as how we can use the

requirements for a stealthy attack to protect control systems against them.

1.1 Related Works on Zero-Dynamics Stealthy Attacks

A considerable amount of work investigates the impact and detection of FDIAs (Deng et al.

[2016], Aoufi et al. [2020], Mo et al. [2010]). However, this work does not consider a special

case of the FDIA – the stealthy attack. The impact of stealthy attacks can be catastrophic,

as they are designed to go undetected. Much of the prior work relating to stealthy attacks

only considers the attack under perfect conditions. This includes assuming that the attacker

already knows the state space representation for the system they are attacking (Teixeira

et al. [2012], Mo and Sinopoli [2015], Yang et al. [2013], Pang et al. [2016]).

Previous work has shown that stealthy attacks can have a serious impact on real sys-

tems (Ma et al. [2019], Wei et al. [2022], Teixeira et al. [2011]). Dash et al. [2019] shows

that stealthy attacks are able to evade the anomaly detector in robotic vehicles. Similarly,

the significance of stealthy attacks on unmanned aerial systems is discussed in Kwon et al.

[2014]. The impact and limitations of stealthy attacks on water supervisory control and data

acquisition (SCADA) systems are considered in Amin et al. [2010]. Bopardikar and Speran-

zon [2013] provides conditions for which an attacker is not able to mount a stealthy attack

on a discrete time linear time-invariant system by increasing the number of observations in

the system. Zhang and Venkitasubramaniam [2017] define the optimal attack strategy by
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analyzing the trade off between the increase in quadratic cost that an attack causes and the

stealthiness of an attack, concluding that a stealthy attack should align with the eigenvalues

of the system they are attacking.

As stealthy attacks are specifically designed to bypass anomaly detectors, much of the

work relating to stealthy attacks focuses on detection (Kim and Park [2021], Ding et al.

[2018], Zhang et al. [2021], Adepu and Mathur [2018]), with machine learning techniques

often being utilized in the detection of stealthy attacks (Sayghe et al. [2020], Haque et al.

[2020]). Esmalifalak et al. [2014] use a support vector machine (SVM) to learn the normal

operating behavior of a power system in order to determine if measurements should be

considered abnormal. Ashrafuzzaman et al. [2018] compares deep learning with various

machine learning techniques for anomaly detection and show that the deep learning method

provides the best results. Multi-Feature Long short-term memory neural network is used by

Wang et al. [2022] to detect stealthy attacks in industrial control systems, showing they are

able to lessen the computational power needed for a machine learning based detector, as well

as allow for flexibility in changing the system model.

Physics-based anomaly detectors are also popular relating to stealthy attack detection.

This is where the physical evolution of the states is considered (Giraldo et al. [2018], Azzam

et al. [2021], Raman and Mathur [2021]). The following authors show that watermarking,

where a known perturbation is applied to the control signal to verify that it has not been

tampered with, can be effective in detecting stealthy attacks (Satchidanandan and Kumar

[2016], Ferrari and Teixeira [2021], Jhala et al. [2020]). Zhang et al. [2015] considers anomaly

detection from a game theory perspective, determining an optimum approach to defend the

system. Additionally, with more advanced technology in industrial control systems, an at-

tacker would have numerous points to access the system to mount an attack, including

vulnerabilities in the controller’s software (Keliris and Maniatakos [2019]) and inadequate

security of the communication between sensors (Flick and Morehouse [2010]). A stateful

anomaly detector using a cumulative sum statistic is proposed in Urbina et al. [2016], mean-

ing that the anomaly detector takes into consideration the state of the system, rather than

the stateless anomaly detector which considers the observations. Further countermeasures for
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the control-signal stealthy attack model in the general control system scenario are developed

in Urbina et al. [2016], Aoudi et al. [2018].

We have seen that many industrial control systems are vulnerable to stealthy attacks,

and power systems, including smart grids, are no exception to these dangers. Power systems

are especially difficult to protect, as the equipment is often outdated and difficult to replace

or retrofit. Teixeira et al. [2015] analyzes the risk of an attack for each measurement, which

was then applied to determining which buses in a power system are the most vulnerable to

an attack. Much of the work on stealthy attacks in power systems is restricted to attacks

on measurements. In this context, false data injection attacks are considered stealthy if

they are within the span of the system’s output matrix (Esmalifalak et al. [2014], Dan and

Sandberg [2010], Esmalifalak et al. [2011], Rahman et al. [2013], Ashok et al. [2016]), and are

undetectable by an anomaly detector based on the weighted least squares state estimation,

or by a CUSUM-like system (Kurt et al. [2018]). Teixeira et al. [2010] analyzes the trade-off

between the damage from an attack and the accuracy of the attacker’s knowledge, in the

context of a stealthy measurement attack where the attacker has imperfect knowledge of the

system. Chakhchoukh and Ishii [2016] provides an extension of the weighted least squares

state estimation anomaly detector by using multiple least trimmed squares state estimators.

The purpose of this anomaly detector is to better detect an attack while remaining cost effec-

tive to implement. An online anomaly detector for attacks on power systems is proposed in

Ashok et al. [2016]. This anomaly detector uses the topology processing, system parameters,

and real-time load forecast information to predict the state of the system to compare with

the state estimator. Vuković et al. [2011] emphasizes the importance of securing the system

at the network layer. This includes implementing a form of data authentication and using

multi-path routing of the data.

Due to the limitations of stealthy attacks, in a realistic industrial control system running

under normal conditions, it is nearly impossible for a stealthy attack to remain entirely

stealthy. The attacker hopes that they can make the attack stealthy for long enough to

cause damage to the system, and the system operator hopes that the anomaly detector

will catch the imperfections in a stealthy attack before damage is done. Previous work
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shows that this turns into a race of creating an attack that can beat the current anomaly

detectors (Esmalifalak et al. [2012], Liu et al. [2021], Tian et al. [2021], Liu et al. [2020]) and

creating anomaly detectors that can detect these attacks (Esmalifalak et al. [2014], Urbina

et al. [2016], Dan and Sandberg [2010], Roy and Debbarma [2022]) before they are able

to damage the system. The consequences of stealthy attacks on power systems can range

from small service disruptions to the damaging of very expensive hardware. Even when the

power grid is well protected by switches, stealthy attacks can be employed to trigger these

switches in a coordinated manner, with the potential of causing significant instability, as

shown in Liu et al. [2014, 2013]. Overall, stealthy attacks remain extremely dangerous, but

can often be thwarted by smart system design and by an increased number of measurements.

Previous work has shown the impact of stealthy attacks on various power systems models

(Harshbarger et al. [2020], Keliris and Maniatakos [2019], Choeum and Choi [2019]).

1.2 Overview of the Subsequent Chapters

Chapter 2 considers the impact of applying more realistic conditions to stealthy attacks.

First, we chose to incorporate a Linear Quadratic Gaussian (LQG) controller, where we

make modifications to the traditional equations in order to push the states of the system

to a desired value rather than 0. Additionally, we assume that the attacker does not know

the state space model of the system they are attacking – so they would have to learn this

information prior to calculating the attack. As the attacker has to learn a state space model

for the system, the learned model would most likely be an imperfect representation of the

system. We run simulations of systems under attack with the attacker having imperfect

knowledge of the state matrix A to determine if the attack can remain stealthy. These

results are simulated using the Quadruple-Tank Process (QTP) as well as a simple power

system model.

In Chapter 3, we analyze the probability that a stealthy attack is successful when the

attacker has an imperfect representation of the state space model. Stealthy attacks are

undetectable by anomaly detectors that look for changes in the observations of the system;
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however, when the attacker has imperfect knowledge of the system, the attack may become

detectable. We consider a simple variance-based anomaly detector to represent the minimum

anomaly detector a system would have. The detection time is then compared with the time

it takes the attacker to diverge the states of the system to a point of system failure, i.e., the

system failure time of the attack, in order to calculate the probability of a successful attack.

We consider the cases where the attacker has imperfect knowledge of the state matrix A, the

input matrix B, and both A and B in order to determine how close the attacker needs to

learn the parameters of the system in order to have a high probability of a successful attack.

Additionally, we consider that the system being attacked has physical limitations on the

amount of energy applied to the system by the control signal. Since stealthy attacks involve

the attacker injecting an exponential amount of energy into the control signal, we analyze

the impact of the attacker being limited on the magnitude of their attack signal. We also

consider how the attacker can decrease the attack signal once they reach the physical limits

of the system while remaining undetected.

Chapter 4 considers how an attacker would learn a state space model of the system.

We utilize black box and grey box system identification algorithms to learn a state space

model of the system using the observations and control signals, which are assumed to be

available to the attacker. First, we analyze whether an attacker can learn a state space

model close enough to the real system for a stealthy attack to be successful without having

any knowledge about the parameters of the system, i.e. using a black box approach to

system identification. Next, we consider that it is reasonable to assume that the attacker

would know some information about the system they are attacking. Specifically, we assume

that the attacker knows the general form of the differential equations used to describe the

dynamics of the system, as well as a set of upper and lower bounds for the parameters in

these equations. A grey box approach is then used for the attacker to learn a state space

model of the system and the probability of the attack being successful is calculated.

We consider making small changes to the system in order to reduce the probability of a

successful attack in Chapter 5. First, we consider the trade off between making the system

less susceptible to stealthy attacks and maintaining controllability by increasing the sampling
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time of the system in order to provide the attacker with fewer samples to learn a state space

model of the system in a given amount of time. Next, a three inverter power system model is

used to simulate modifying the parameters of the system in the design phase in order to make

a stealthy attack impossible. We determine a range of possible values for the parameters of

the system that make a stealthy attack impossible. Additionally, we show that applying a

stealthy attack to a state space model that only represents a subset of the power system can

still cause the entire system to fail.

1.3 Summary of Contributions

This dissertation makes the following contributions:

• We analyze the impact of the attacker having imperfect model information on the

Quadruple-Tank Process (QTP) as well as a power system model.

• We determine the probability of an attack being successful with the attacker having

varying levels of uncertainty of the system and gain insight on how close an attacker

needs to learn a state space model of the system in order for their attack to be suc-

cessful.

• We analyze the impact that limiting the energy an attacker can inject into the system

within realistic bounds has on the probability of an attack being successful, showing

that choosing to not overbuild a system can decrease the probability of an attack being

successful.

• We utilize system identification to model the attacker learning a state space model and

then use this learned model to attack the QTP.

• We show that small improvements to the anomaly detector used can make a big impact

on decreasing the probability of an attack being successful.

• We show that increasing the sampling time used to discretize the system in order
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to prevent the attacker from learning an accurate state space model can drastically

decrease the probability of a successful attack.

• Finally, we show, on a power system model, that making small changes to the pa-

rameters of the system in the design phase can eliminate the possibility of a stealthy

attack.
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Chapter 2

The Impact of Imperfect Model

Information on Stealthy Attacks

2.1 Introduction

This chapter considers stealthy attacks under more realistic conditions than previous work.

Under more realistic conditions, a control system will have process and measurement noise

as well as a controller used to push the states of the system to a desired value. We show the

derivation of the equations for a Linear Quadratic Gaussian (LQG) controller that push the

states of the system to a desired value rather than 0. Additionally, an attacker would most

likely not have the opportunity to start their attack at time t = 0s of the system running, so

we consider the attacker mounting their attack at some point after the system has reached

a steady state. We also consider that the attacker would not know the exact parameters of

the system, so they would have to learn a state space model in order to calculate a stealthy

attack. In this chapter, we simply add noise to the state matrix A in order to simulate an

imperfect A that the attacker learned. Using these more realistic conditions for a stealthy

attack, we analyze the impact they have on the stealthiness of the attack. Our results are

demonstrated using the Quadruple-Tank Process as well as a simple power system model.
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2.2 Problem Setup

2.2.1 System Model

The stealthy attack used here is executed on a discrete-time state space model. The following

equations provide the states and outputs:

xk+1 = Axk +Buk + vk, (2.1)

yk = Cxk + wk. (2.2)

Where xk, yk, and uk are the states, observations, and control signal at time k.

The controller used is a Linear Quadratic Gaussian (LQG) controller, which consists of

a Kalman Filter and a Linear Quadratic Regulator (LQR). A Kalman Filter is used here for

state estimation as well as the anomaly detector. In order to have the ability to drive the

states of the system to a setpoint, an LQR is applied. The equations for the Kalman Filter

are shown below:

x̂k|k−1 = Ax̂k−1|k−1 +Buk, (2.3a)

Pk|k−1 = APk−1|k−1A
T + V, (2.3b)

ỹk = yk − Cx̂k|k−1, (2.3c)

Sk = CPk|k−1C
T +W, (2.3d)

Lk = Pk|k−1C
TS−1

k , (2.3e)

x̂k|k = x̂k|k−1 + Lkỹk, (2.3f)

Pk|k = (I − LkC)Pk|k−1, (2.3g)

where 2.3a is the predicted state estimate, 2.3b is the predicted estimate covariance, 2.3c is

the measurement pre-fit residual, 2.3d is the pre-fit residual covariance, 2.3e is the optimal
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Kalman gain, 2.3f is the updated state estimate, 2.3g is the updated estimate covariance,

and V and W are the covariance matrices for the process and measurement noise.

Some modifications are made to the traditional LQR in order to drive the states of the

system to a setpoint other than 0. Using solutions to the matrix Riccatti difference equation

in order to obtain the optimal control signal, we get H, G, and T , which are defined using

backwards recursion:

Hk = HN +Hk+1A−Hk+1B(BTGk+1B +R)−1BTGk+1A, (2.4)

Gk = AT (Gk+1 −Gk+1B(BTGk+1B +R)BTGk+1)A+Q, (2.5)

Tk = TN + ATTk+1 − ATGk+1B(BTGk+1B +R)−1BTGk+1, (2.6)

where Q and R are the state cost and input cost matrices and N is the size of the finite

horizon. Now, we define the feedback gain matrix K for the LQR shown in (2.7):

Kk = (BTGk+1B +R)−1BGk+1A. (2.7)

The updated state estimate from the Kalman Filter and the feedback gain from the LQR

are then used to calculate the control signal shown in (2.8):

uk = −Kkx̂k|k +
1

2
(BTGk+1B +R)−1(BTHT

k+1 +BTTk+1). (2.8)

A detailed derivation of the equations used in the LQR can be found in Appendix A. Addi-

tionally, we initialize HN = xT
dQ, GN = Q, and TN = Qxd, where xd are the desired states

of the system.

2.2.2 Attacker Model

Modern industrial control systems are using increasingly many smart sensors that require

communication over a network. These additional communication channels provide an at-

tacker with numerous points to attack the system. We investigate stealthy attacks using the
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stealthy attack model described in Teixeira et al. [2012].

Stealthy attacks are a subset of false data injection attacks that are specifically designed

to go undetected. The attacker injects the attack signal ak at time k into the control signal

uk to obtain a new state equation

xk+1 = Axk +B(uk + ak) + vk, (2.9)

where ak is chosen such that the output of the system yk does not change when the attack

is added. Specifically, ak is calculated by

ak = Fzk, (2.10)

where F is chosen to such that (A+BF )V ∗ ⊆ V ∗, where V ∗ is the maximal output-nulling

invariant subspace of the system. V ∗ can be computed using the algorithm provided in

Anderson [1975]. Additionally, F is obtained using A, B, and V ∗ (since D = 0) with the

following equation: F1V

F2V

 =

V B

0 D


−1 A

C

V, (2.11)

where V is a matrix whose columns are a basis for V ∗ and the F used to calculate a stealthy

attack is denoted by F1 in (2.11). zk is defined by the following recursive equation:

zk = (A+BF )zk−1, (2.12)

and z0 is chosen to be the Perron eigenvector of A+BF . For a stealthy attack to diverge the

states of the system, the system must be of non-minimum phase. In discrete-time systems,

this means that at least one of the zeros of the system must be outside of the unit circle.

The zeros of the system correspond to the eigenvalues of A + BF , meaning A + BF must

have at least one unstable eigenvalue for a stealthy attack to be successful.
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2.3 Simulation Results on the Quadruple-Tank Pro-

cess

2.3.1 System Description

Our results are demonstrated using the quadruple-tank process (QTP) Johansson [2000],

illustrated in Figure 2.1. The QTP is a system consisting of four interconnected water

tanks, where the water levels in the tanks are controlled by the voltage applied to each

pump. The following differential equations are used to model the system:

dx1

dt
= − a1

A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1k1
A1

v1,

dx2

dt
= − a1

A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2k2
A2

v2,

dx3

dt
= − a3

A3

√
2gx3 +

(1− γ2)k2
A3

v2,

dx4

dt
= − a4

A4

√
2gx4 +

(1− γ1)k1
A4

v1,

where xi is the water level of tank i ∈ {1, 2, 3, 4}, Ai is the cross-section of tank i, ai is the

cross-section of the outlet hole, vj is the voltage applied to pump j ∈ {1, 2}, with flow kjvj,

γ1, γ2 ∈ (0, 1) are the flow ratios, and g is the acceleration due to gravity. The outputs of the

system y1, y2 are the measured water levels in tanks 1 and 2. The linearized, discrete-time

state space model is shown below, with a sampling time of 0.5s:

A =



0.975 0 0.042 0

0 0.977 0 0.044

0 0 0.958 0

0 0 0 0.956


,
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Figure 2.1: The quadruple-tank process: a series of four connected water tanks where the
water levels are controlled by the voltage applied to each of the two pumps.
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B =



0.0515 0

0 0.0447

0 0.0737

0.085 0


,

C =

0.2 0 0 0

0 0.2 0 0

 .

In order to initialize the LQG controller, an initial state and desired state needs to be

specified. We let the initial state be x0 = x̂0 =

[
1 1 1 1

]T
and the desired state be

xd =

[
2 2 2 2

]T
. Since the water levels in tanks 3 and 4 are not measured and are

dependent on the water levels in tanks 1 and 2, it does not matter what we choose for the

desired states of tanks 3 and 4.

2.3.2 Simulation Results

We first run the model with the previously described LQG controller and with no attack.

Figure 2.2 shows the states and observations of the QTP running under normal operating

conditions. We can see that tanks 1 and 2 converge to their desired water levels of 2cm.

This will be used as a baseline to compare with the following experiments. The initial state

does not matter for this system, as the system will always converge to a steady state. In the

next experiment, we want to see if an attack can remain stealthy with the addition of the

LQG controller. For the attack to remain stealthy, the output of the system should remain

the same in order to avoid triggering an alarm. Figure 2.3 shows the states and observations

of the system with the attacker having perfect knowledge of the state space model of the

system. The start of the attack is represented with a black vertical line at 250s. We can see

that the observations remain the same as the system with no attack, while the water level in

tank 3 is rising quickly, and tank 4 is completely empty less than a minute after the attack

starts. Since there is no change in the observations of the system, the attack is stealthy.
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(a) The states of the QTP, where x1, x2, x3, and
x4 are the water heights in cm of tanks 1, 2, 3,
and 4.
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(b) The observations of the QTP, where y1, y2
are the voltages in V from the level measurement
devices in tanks 1 and 2.

Figure 2.2: The states and observations of the QTP simulation under normal operating
conditions. The process and measurement noise added to the system is white noise with a
variance of 10−4.

Additionally, we can see that the LQG controller has no impact on the stealthiness of the

attack – meaning that a stealthy attack is feasible with the addition of a realistic controller.

Note that the attack only runs for 750s because after about 1000s the attack starts to become

observable, meaning it would be detected by any anomaly detector, as the states diverge far

from the operating points around which the system was linearized. Thus, we only allow

the simulation to run for 1000s as to not confuse an attack becoming observable due to the

attacker having imperfect knowledge of the system with the attack becoming observable due

to the system moving too far away from the operating point.

Next, we demonstrate an attacker with imperfect knowledge of the state matrix A. This

usually means that the attacker could choose to allocate some time towards learning better

estimates of these values in order to create a more “stealthy” attack. Here, we assume that

the attacker is not able to learn these matrices perfectly – specifically, there is some ∆A

that describes the attacker’s uncertainty with respect to A. We will only consider the case

where the attacker knows everything about the system except for the matrix A. We obtain

a new state matrix A′ such that A′ = A + ∆A, where ∆A is zero mean white noise with a

standard deviation of 0.1. Thus, ∆A adds noise to all elements of A, including the elements
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(a) The states of the QTP under attack, where
x1, x2, x3, and x4 are the water heights in cm of
tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
where y1, y2 are the voltages in V from the level
measurement devices in tanks 1 and 2.

Figure 2.3: The states and observations of the QTP simulation with an attack starting at
250s (denoted by the black vertical line). The process and measurement noise added to
the system is white noise with a variance of 10−4. Note that the water height in tank 3 is
increasing and the water height in tank 4 is decreasing, while the observations remain the
same as the simulation with no attack.

equal to 0. For this case we will also consider the attack starting at 250s, as this is a more

realistic scenario. The motivation for this case was to test how quickly the system could

become unstable having already reached a steady state. From Figure 2.4, we can see that

once the attacker no longer has perfect knowledge of the system it loses its stealth, as the

controller’s observations start to diverge. We can see that the voltage being applied to the

valves is oscillating rapidly causing the amount of water in each tank to also oscillate. This

may cause harmful effects. The results are similar for the cases where other system matrices

are unknown. For this experiment, the attack began at 250s. The system behaves normally

and reaches a steady state before the attack begins. Shortly after the attack is mounted,

the states of the system diverge to be unstable and the observations are no longer the same,

meaning the attack is detectable. These results show that when an attacker does not know

the state space model perfectly, a stealthy attack will not always be successful. Chapter 3

investigates exactly how close the attacker must learn the state space model in order to have

a high probability of a successful stealthy attack.

17



0 100 200 300 400 500 600 700

time (s)

0

0.5

1

1.5

2

2.5

w
a
te

r 
le

v
e
l 
(c

m
)

x
1

x
2

x
3

x
4

(a) The states of the QTP under attack, with
the attacker having imperfect knowledge of A,
where x1, x2, x3, and x4 are the water heights in
cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker having imperfect knowledge of
A, where y1, y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 2.4: The states and observations of the QTP simulation with an attack starting at
250s (denoted by the black vertical line) and the attacker having imperfect knowledge of
A, where ∆A is generated by drawing elements in an independent manner from a standard
Gaussian distribution. Note that the observations are not the same as the simulation with
no attack, so this attack is no longer stealthy. The states and observations oscillate after
diverging due to numerical precision, as the attack diverges the states exponentially.

2.4 Simulation Results on a Power System Model

2.4.1 System Description

In addition to the QTP, we consider a stealthy attack on a simple power system model. This

is a three inverter model, where the attacker manipulates the active and reactive power set

points of the PV inverters. Figure 2.5 shows the three inverter power system model at the

point of PV generation.

We assume that the majority of the local loads are supplied from the PV inverters’

active and reactive power. In order to remain undetected, an attacker can manipulate the

PV inverter’s reference currents such that demand-supply of the system does not become

unbalanced. As the grid supervisor is concerned with the demand-supply ratios, the attack

would be undetectable. The attacker will need to compromise the majority of the PV

inverters by causing them to trip due to being outside of the safe operating regions. This
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Figure 2.5: Distribution power system with high penetration of PV inverters.

would cause a large unbalance in the demand-supply as well as the three-phase distribution

feeder–causing a blackout.

The continuous time state space representation of a single PV inverter system can be

found in Equations (2.13) and (2.14).



˙i11,p
˙i11,q
˙i12,p
˙i12,q
˙vcp
˙vcq
˙x1p
˙x1q
˙x2p
˙x2q



=



−R1 − R3

L1

θ̇
R3

L1

0
1

L1

0 0 0 0 0

−θ̇
−R1 − R3

L1

0
R3

L1

0
1

L1

0 0 0 0

R3 − KP

L2

0
−R2 − R3

L2

θ̇
−1

L2

0
KR

L2

0 0 0

0
R3 − KP

L2

−θ̇
−R2 − R3

L2

0
−1

L2

0
KR

L2

0 0

−1

C
0

1

C
0 0 θ̇ 0 0 0 0

0
−1

C
0

1

C
−θ̇ 0 0 0 0 0

−1 0 0 0 0 0 −0.6 θ̇ −277.6 0

0 −1 0 0 0 0 −θ̇ −0.6 0 −277.6

0 0 0 0 0 0 512 0 0 θ̇

0 0 0 0 0 0 0 512 −θ̇ 0





i11,p
i11,q
i12,p
i12,q
vcp
vcq
x1p
x1q
x2p
x2q



+



−1

L1

0 0 0

0
−1

L1

0 0

1

L2

0
KP

L2

0

0
1

L2

0
KP

L2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Vp
Vq
I∗p
I∗q

 (2.13)
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Parameter Value
R1 0.15Ω
R2 0.03Ω
R3 0.008Ω
L1 5mH
L2 0.25mH
C 13.2µF
KP 0.02× 107

KR 83.3

θ̇ 120π

Table 2.1: Values for the constants in the state space representation.

yeqp
yeqq

 =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0





i11,p

i11,q

i12,p

i12,d

vcp

vcq

x1p

x1q

x2p

x2q



(2.14)

In this model, ikj,p, i
k
j,q are the in-phase components of the current injected in the grid

by inverter number k in the dq frame. vcp and vcq are the filter capacitor voltages in the dq

frame, θ̇ is the frequency inside the PV inverter, and KP and KR are the controller gains of

the PR controller in the current control loop. The values of these filter parameters can be

found in Table 2.1.

The state space representation of the whole system, including three PV inverters, is given
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by

Aeq =



[
A1

] [
0

] [
0

]
[
0

] [
A2

] [
0

]
[
0

] [
0

] [
A3

]

 ,

Beq =



[
B1

]
0 0

0

[
B2

]
0

0 0

[
B3

]

 ,

Ceq =

[[
C

] [
C

] [
C

]]
,

where,

[
Ai

]
, i = 1, 2, 3, is the state matrix for each individual inverter. The representation

of input and output matrices are done similarly. It can be seen in Ceq that only the sum

of the currents injected in the grid by all three inverters is observed. Here, Aeq ∈ R30×30,

Beq ∈ R30×30, and Ceq ∈ R2×30. The control input signal of the system is the set of all three

PV inverter terminal voltages and all three PV inverter reference currents. This state space

model is then transformed to discrete time with a sampling time of 1ps. This sampling time

was chosen in order to speed up the effect of the attack. The states of the system under

attack are able to diverge much faster with a smaller sampling time.

2.4.2 Simulation Results

Similarly to the quadruple-tank process, we will first show the system under no attack to use

as a baseline to compare with the system under attack. We will then show the system with

an attack starting at time 500, and finally, we will show the system under attack starting at

time 500 and the attacker having imperfect knowledge of the system. For each experiment,

we use x0 = x̂0 =

[
5.43 0.105 5.02 0.236 352 0.719 0 0 0 0

]T
. The desired state

for each inverter is set to xd1 =

[
i1d i1q

]T
=

[
6 0.5

]T
, xd2 =

[
7 1.5

]T
, xd3 =

[
8 2.5

]T
.
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(a) The states of the system under normal op-
erating conditions.
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(b) The observations of the system under normal
operating conditions.

Figure 2.6: The states and observations of the three inverter power system model under
normal operating conditions.

From Figure 2.6, we can see that the states of the system converge to the desired values.

The currents fluctuate around the desired values for the states, as these states are not directly

controllable. However, it can be seen that the values of these states do not diverge. Only

the currents are shown in the graphs, as those are the parameters we are trying to control.

Next, we run the model with an attack starting at time 500. It can be seen in Figure 2.7

that the observations remain the same as the system with no attack, however the currents

of the third inverter diverge, demonstrating a stealthy attack on the system.

We can see from Figure 2.8 that when the attacker no longer has perfect knowledge of

the system, the observations do not remain the same – the attack is no longer stealthy and

would be detected. The attacker’s uncertainty of the system is modeled in the same way as

the quadruple-tank process – the attacker has perfect knowledge of the system except for

the matrix A.
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(a) The states of the system under attack.
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(b) The observations of the system under attack.

Figure 2.7: The states and observations of the three inverter power system model with an
attack starting at 0.5ns (denoted by the black vertical line). Note that the currents for the
third inverter are diverging, while the observations remain the same as the simulation with
no attack.
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(a) The states of the system under attack with
the attacker having imperfect knowledge of A.
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(b) The observations of the system under attack
with the attacker having imperfect knowledge of
A.

Figure 2.8: The states and observations of the three inverter power system model with
an attack starting at 0.5ns (denoted by the black vertical line) with the attacker having
imperfect knowledge of A. Note that the observations diverge, which would cause the attack
to be detectable.
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Chapter 3

The Probability of a Successful

Stealthy Attack with Imperfect Model

Information

3.1 Introduction

In this chapter, we consider the probability of a stealthy attack being successful with varying

levels of the attacker’s uncertainty in the state space representation, as well as what causes

an attack to be successful or unsuccessful. In order to calculate the probability of an attack

being successful, we first need to define how the attacker’s uncertainty in the state space

model is represented, and what type of anomaly detector is used. The attacker’s uncertainty

in the state space model is represented by simply perturbing the values of the state and

input matrices A and B, respectively. Additionally, we use a windowed χ2 variance test

to detect changes in the variance of the observations. We want to determine how close to

the actual system the attacker needs to learn the state space model in order to have a high

probability of the attack being successful, as this information can be used to attempt to

limit the attacker’s ability to learn an accurate state space representation. Additionally, we

consider the impact that limiting the energy the attacker can inject into the system has on
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the probability of the attack being successful. Realistically, the systems would have physical

limits on the amount of control signal energy that it can tolerate without causing damage to

the physical components, and may even have relays or other ways to protect the hardware

from operating outside of its limits. Thus, we consider the impact of halting the attack when

these physical limits are reached.

3.2 Problem Setup

3.2.1 Perturbations of the State Space Matrices

We assume that the attacker does not have perfect knowledge of the system matrices. This

is because the attacker would have to know very specific information about every component

of the system in order to calculate an accurate state space model of the system. In reality,

the attacker would have to learn this information using the previous control signals and

observations. We use A′ and B′ to represent the attacker’s versions of the system’s A and

B matrices. We assume that the attacker knows C perfectly, as they should know what

states are not being measured in order to diverge these states with an attack. To simulate

the attacker having imperfect knowledge of the state space model, we perturb the state and

input matrices by adding element-wise noise to A and B with the noise having a standard

deviation equal to a percentage of the actual values of the matrix value. The values in A

are perturbed by ∆A giving us A′ = A +∆A, where ∆A is a n × n matrix of independent

normal data with mean 0 and component-wise standard deviations σA ×A. Using the QTP

specified in Section 2.3, if we perturb the values of A with noise having a standard deviation

of 5% of the actual values of A, then we could obtain an A′ shown by (3.1), where σA is the

percentage of A, that is the standard deviation of the noise added to A and ⊙ is element-

wise multiplication. The right-hand-side matrix is generated by drawing elements in an

independent manner from a standard Gaussian distribution. This perturbation is similar to

the attacker’s imperfect knowledge of A in Section 2.3; however, in this chapter the standard

deviation of the noise added to A and B is proportional to their actual values.
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A′ = A+∆A

=


0.975 0 0.042 0
0 0.977 0 0.044
0 0 0.958 0
0 0 0 0.956



+ 0.05×


0.975 0 0.042 0
0 0.977 0 0.044
0 0 0.958 0
0 0 0 0.956

⊙


1.992 −0.146 −0.304 −2.168
0.457 1.330 0.465 −0.281
0.614 −1.333 −0.117 1.713
−0.525 0.758 −0.733 −0.797



=


1.072 0 0.041 0
0 1.042 0 0.043
0 0 0.952 0
0 0 0 0.918

 (3.1)

3.2.2 Anomaly Detector

When the attacker does not have an accurate state space model of the system, a stealthy

attack is not always successful. We investigate the probability that the attacker is successful

as the attacker’s uncertainty in the state space model increases. A stealthy attack is defined

as successful if the attacker is able to diverge the states to a point that causes an abrupt

change in the system model. In the QTP this means that at least one tank is empty or

overflows, before the attack is detected. For the anomaly detector, we use a windowed χ2

variance test where the test statistic is given by

T = (n− 1)
s2

σ2
, (3.2)

where n is the size of the window, s2 is the sample variance of the measurement pre-fit

residual from the Kalman filter over the previous n time steps and σ2 is the innovation

covariance provided by the Kalman Filter covariance matrix S at the current time. This

anomaly detector is applied to the simulation in Figure 2.4. The results of the χ2 anomaly

detector, with a false alarm rate of α = 0.5% are shown in Figure 3.1. In this graph, a

χ2 index below the critical value, depicted by the green horizontal line in the figure, means

that the observations are considered normal behavior, and a χ2 index above the critical
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Figure 3.1: The χs variance test results of the QTP simulation with an attack starting at
250s (denoted by the black vertical line) and the attacker having imperfect knowledge of
A. The green horizontal line signifies the critical value for the variance test. The standard
deviation of the noise added to A is 5% of the values of A. The false alarm rate α is set to
0.5%, meaning there would be about 5 false alarms for every 1000 time steps, and the sliding
window is 100 time steps. We can see that the first anomaly is detected at 498.5s.

value means the observations are considered abnormal and an anomaly is detected. The

first anomaly is detected at time 498.5s. This means the attack was detected 94s after the

attacker emptied tank 4, thus the attack is considered successful. A limitation of this attack

is that it is only run for 500s, meaning the attacker only has a few minutes to empty or

overflow a tank. This time restriction is due to the fact that the large divergence causes an

abrupt change to the system model, thus making the previously accurate state space model

no longer an accurate representation of the system. The time the attack can be run will vary

depending on the specific system and state space model.

3.2.3 Probability of a Successful Attack

In order to determine the percentage of successful attacks, we ran 10, 000 simulations of the

system under attack with a fixed σA, and calculated the difference between the detection

time and system failure time for each simulation. When the difference is greater than or

equal to 0, the attack is considered to be successful. There are a few special cases to consider
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Figure 3.2: The difference between the detection time and system failure time over 10,000
simulations. We define the probability that the attack is successful as the percentage of
simulations where the difference between the detection time and success time is greater than
0. We let σA = 0.25, α = 0.5%, and the process and measurement noise variance is equal to
10−4.

when calculating the difference:

1. the attacker diverges the states within 1, 000 time steps of the attack starting, but is

never detected, which we define as a successful attack;

2. the attack is detected before the attacker is able to diverge the states, which we define

as an unsuccessful attack;

3. the attacker is not able to diverge the states within 1, 000 time steps and the attack is

not detected, which we define as an unsuccessful attack.

Figure 3.2 shows a histogram of the difference between the detection time and system failure

time for 10, 000 simulations. Note that when the difference is greater than 0, the attack is

considered to be successful.
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3.3 Simulation Results

The difference between the detection time and success time of an attack is calculated for

10,000 simulations for the attacker’s uncertainty in the state space model ranging from 0 to

1. We investigate the impact the attacker’s uncertainty in A, B, or A and B has on the

probability of the attack being successful.

3.3.1 Attacker’s Imperfect Knowledge of A

After calculating the difference between the detection time and system failure time for 10,000

simulations for a specific σA, the attacker’s uncertainty of A, we calculate the probability

that the attacker is successful by finding the percentage of simulations where the difference

between the detection time and system failure time is greater that 0. We repeat this process

for σA ranging from 0 to 1 at an interval of 0.01. Because process and measurement noise

and the false alarm rate α have a significant impact on the anomaly detector, we vary these

parameters in order to determine how close the attacker would need to learn A in order to

have a specific successful attack probability.

Figure 3.3 shows the scatter plots of the probability of the attack being successful with

varying process and measurement noises vs. σA. We can see that the attacker is most

successful with the highest amount of noise in the system, and least successful with the

lowest amounts of process and measurement noise. It is expected that more process and

measurement noise corresponds to a higher probability of the attack being successful, and

lower noise corresponding to a lower probability of the attack being successful, as we are

using a variance based anomaly detector. This could suggest that it would be beneficial

for a system to try to minimize the process and measurement noise in order to decrease

the probability of a stealthy attack being successful. However, this comes at a cost, as the

attacker would more accurately be able to learn the state space model with lower process

and measurement noise.

Figure 3.4 shows the scatter plots of the probability of the attack being successful with a

varying false alarm rate vs. σA. We can see that varying α does not have much of an impact
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Figure 3.3: The probability of successful attack for varying process and measurement noise
vs. the attacker’s uncertainty in A, where the variance of the process and measurement noise
added to the system varies from 10−6 to 10−2. Where the blue circles represent noise with a
variance of 10−2 being added to the system, the red plus signs represent noise with a variance
of 10−4, and the yellow triangles represent noise with a variance of 10−6. Additionally, the
false alarm rate α is set to 0.5%. We can see the more noisy the system is, the higher the
probability that the attacker will have a successful attack.

on the probability of a successful attack. This is because the attacker is able to empty a

tank very quickly, as the desired water heights of tanks 1 and 2 are 2cm and tanks 3 and 4

converge to water heights of about 1cm and 0.5cm, respectively. However, we believe that

significantly increasing α could allow the detector to identify the attack in time. This also

comes with a trade off, because the highest value of α = 1% for these simulations would

correspond to nearly 2, 000 false alarms in a 24 hour period. This means that even a false

alarm rate of 1% would likely be too large for this system. Overall, it seems that modifying

the variance of the process and measurement noise is the easiest and most realistic way to

minimize the probability of an attacker having a successful attack. We can see that when

the variance of the process and measurement noise is 10−4 and α = 0.5%, the attack has

a 10% probability of being successful when the attacker learns A within 100% of its actual

values. Even when the attacker does not know an accurate representation of the system,

they still have a chance of the attack being successful. Additionally, this probability could

be increased if the attacker made a few improvements to the attacker model. For example,
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Figure 3.4: The probability that the attack is successful for varying false alarm rates α for
the χ2 variance test vs. the attacker’s uncertainty in A. The false alarm rate α varies from
0.1% to 1%. Where the blue circles represent α = 1%, the red plus signs represent α = 0.5%,
and the yellow triangles represent α = 0.1%. Additionally, the variance of the process and
measurement noise added to the system is 10−4. We can see that changing α does not have
much of an impact on the attacker’s probability of success.

the attacker could stop the attack once they saw that it would not be successful due to the

observations diverging. They could then make some adjustments to their learned state space

representation and try the attack again. Applying the attack in this manner would allow

the attacker to not raise any alarms while they perfected the state space model needed for a

successful stealthy attack. Thus, we will need to investigate measures that can be taken in

order to minimize how accurately an attacker can learn the system.

Focusing on the case where the measurement and process noise of the system is 10−4

and α = 0.005, we can see that the probability of a successful attack significantly decreases

as the attacker’s uncertainty in A increases. This means that it is very beneficial for the

attacker to learn A as accurately as possible in order to improve their chances of a successful

stealthy attack.
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Figure 3.5: The probability of successful attack for varying process and measurement noise
vs. the attacker’s uncertainty in B. The variance of the process and measurement noise
added to the system varies from 10−6 to 10−2. Where the blue circles represent noise with a
variance of 10−2 being added to the system, the red plus signs represent noise with a variance
of 10−4, and the yellow triangles represent noise with a variance of 10−6. Additionally, the
false alarm rate α is set to 0.5%. We can see the more noisy the system is, the higher
probability the attacker will have a successful attack.

3.3.2 Attacker’s Imperfect Knowledge of B

Similarly, the previous simulations are run with the attacker having imperfect knowledge

of B. Figure 3.5 shows the scatter plots of the probability of the attack being successful

with varying process and measurement noises vs. σB. These results are very similar to the

attacker’s probability of a successful attack when A is not perfectly known. The attacker is

the most successful with larger magnitudes of process and measurement noise, and we can

see that how close the attacker learns B does not greatly impact the attacker’s probability of

success. Additionally, we can see that even when the attacker has a very inaccurate estimate

of B, they are still successful with their attack about 40% of the time. This could tell the

attacker that if they have a limited amount of time to learn the state space model, they

should focus on learning A accurately, as having an inaccurate estimate of A causes the

probability of a successful attack to decrease much more than when having an inaccurate

estimate of B.

The false alarm rate α is varied in Figure 3.6. We can see that as α increases, the
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attacker’s probability of a successful attack decreases. Even in the worst case for the attacker,

when α = 1% and the anomaly detector is the most sensitive to changes in the variance of

the measurements, the attacker is still able to mount a successful attack about 30% of the

time. Similar to the results in Section 3.3.1, α does not have much of an impact on the

probability of the attacker having a successful attack. Realistically, α is not a parameter

that can be increased in order to catch the rapidly diverging attack, as it would result in a

disproportionate amount of false alarms.
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Figure 3.6: The probability that the attack is successful for varying false alarm rates α for
the χ2 variance test vs. the attacker’s uncertainty in B. The false alarm rate α varies from
0.1% to 1%. Where the blue circles represent α = 1%, the red plus signs represent α = 0.5%,
and the yellow triangles represent α = 0.1%. Additionally, the variance of the process and
measurement noise added to the system is 10−4. We can see that changing α does not have
much of an impact on the attacker’s probability of success.

3.3.3 Attacker’s Imperfect Knowledge of A and B

We have observed the impact of the attacker having imperfect knowledge of A and the impact

of the attacker having imperfect knowledge of B. However, the attack would realistically have

to learn both A and B. Figure 3.7 shows the probability of a stealthy attack being successful

for varying process and measurement noise. We can see that the attack is successful with

a probability of 80% when the variance of the process and measurement noise added to the
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Figure 3.7: The probability of successful attack for varying process and measurement noise
vs. the attacker’s uncertainty in both A and B. The variance of the process and measure-
ment noise added to the system varies from 10−6 to 10−2. Where the blue circles represent
noise with a variance of 10−2 being added to the system, the red plus signs represent noise
with a variance of 10−4, and the yellow triangles represent noise with a variance of 10−6.
Additionally, the false alarm rate α is set to 0.5%. We can see the more noisy the system is,
the higher probability the attacker will have a successful attack.

system is 10−2. On the other end, the attack is successful with a probability of nearly 0%

when the variance of the process and measurement noise is 10−6. Additionally, we can see

that in the middle case of the variance of the process and measurement noise being 10−4, it

is imperative that the attacker learns the state space model as accurately as possible. When

the attacker knows the state space model perfectly, they are successful with a probability

of about 95%. The probability of the attack being successful drops suddenly to about 30%

when the attacker is able to learn the state space model within 10% of its actual values.

Compared to varying the process and measurement noise of the system, varying α has a

much less significant impact on the probability of a stealthy attack being successful, shown

in Figure 3.8. In each case of varying the false alarm rate, we can see that how accurately

the attacker is able to learn the state space model has a large impact on the probability of

the attack being successful–especially in the cases where the attacker is able to learn a model

very close to the actual state space model. Overall, we can see that it is very beneficial for

the attacker to learn an accurate state space model.
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Figure 3.8: The probability that the attack is successful for varying false alarm rates α for
the χ2 variance test vs. the attacker’s uncertainty in both A and B. The false alarm rate
α varies from 0.1% to 1%. Where the blue circles represent α = 1%, the red plus signs
represent α = 0.5%, and the yellow triangles represent α = 0.1%. Additionally, the variance
of the process and measurement noise added to the system is 10−4. We can see that changing
α does not have much of an impact on the attacker’s probability of success.

Since stealthy attacks are exponential, the desired states of the system do not impact

the probability of a successful attack. Figure 3.9 shows the probability of a stealthy attack

being successful with xd =

[
2 2 2 2

]T
,

[
10 10 10 10

]T
, and

[
18 18 18 18

]T
. The

variance of the process and measurement noise equal to 10−4 and the false alarm rate α =

0.5%. This desired state is chosen such that the desired water levels are right in the middle

of the tanks, as the tanks are 20cm tall. We can see that these results are nearly identical

to the case of α = 0.5% in Figure 3.4. Thus, we can conclude that the desired state of the

system does not have an impact on the probability of a stealthy attack being successful.

Additionally, we want to determine what properties of the learned state space represen-

tation causes an attack to be either successful or unsuccessful.

We believe that the main eigenvalue and eigenvector of A′+B′F ′ have the biggest impact

on the success of a stealthy attack, so these are the parameters that we will consider. When

analyzing the impact of the main eigenvector, we will consider the dot product between the

main eigenvector of A + BF and A′ + B′F ′, which we will denote as θ. Additionally, we
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Figure 3.9: The probability that the attack is successful for varying false alarm rates α for
the χ2 variance test vs. the attacker’s uncertainty in both A and B. The desired state is set

to xd =
[
10 10 10 10

]T
. The false alarm rate α = 0.5% and the variance of the process

and measurement noise added to the system is 10−4. We can see that changing the desired
state does not have a significant impact on the probability of a successful attack.

will consider the case where the variance of the process and measurement noise added to

the system is 10−4 and the false alarm rate α = 0.5%, shown in Figures 3.3 and 3.8. The

simulations that fall under the case where the attack has no impact on the system, i.e. case 3

in Section 3.2.3, can be categorized into two groups:

1. The main eigenvalue of A′ +B′F ′ is in the unit circle OR

2. θ = 0, meaning the main eigenvector of A′+B′F ′ is orthogonal to the main eigenvector

of A+BF .

These results make sense, as the attack signal will not diverge if there are no eigenvalues

outside of the unit circle. Additionally, when the main eigenvector of A′+B′F ′ is orthogonal

to the main eigenvector A + BF , the attack signal is not going in the correct direction to

excite the unstable eigenvalue of the attack, meaning the attack will not be able to diverge

the states of the system.

Determining the differences between the cases where the attacker is detected before dam-

age is done to the system and where the attacker is able to diverge the states of the system to
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Figure 3.10: The main eigenvalue of A′ +B′F ′ vs. the attacker’s uncertainty in both A and
B. The variance of the process and measurement noise is 10−4 and the false alarm rate α
is 0.5%. The blue circles represent the case where the attack is detected before the attacker
is able to cause damage to the system and the red triangles represent the case where the
attacker is able to diverge the states of the system to a point of system failure before the
attack is detected. We can see that the main eigenvalue is lower for the cases where the
attack is successful.

a point of system failure before the attack is detected is not as straightforward. Figures 3.10

and 3.11 show the mean of the main eigenvalues of A′+B′F ′ and θ for 10, 000 simulations for

varying uncertainties. We can clearly see that the attack is successful with lower eigenvalues

and with higher values of θ. This makes sense, as with a lower main eigenvalue, the states

of the system will diverge slower causing the attack to be harder to detect. Also, when the

direction of the attack with imperfect A and B matrices is closer to the direction of the

actual A and B matrices, we would expect the attack to be less detectable, as more of the

attack is in the nullspace of the original system. Thus, it is imperative for the attacker to not

only learn an accurate state space representation of the system, but to learn a system whose

eigensystem aligns with the real system. This is further shown in Figure 3.12, where we can

see that, as the attacker’s uncertainty in A and B increases, the percentage of simulations

where the attack has no effect on the states of the system and the percentage of simulations

where the attack is detected before causing system failure increase, while the percentage

of successful attacks decreases. The high percentage of simulations that have no effect on

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Attacker's Uncertainty of A and B

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Unsuccessful Attack

Successful Attack

Figure 3.11: The dot product between the main eigenvector of A+BF and A′+B′F ′, θ, vs.
the attacker’s uncertainty in both A and B. The variance of the process and measurement
noise is 10−4 and the false alarm rate α is 0.5%. The blue circles represent the case where
the attack is detected before the attacker is able to cause damage to the system and the red
triangles represent the case where the attacker is able to diverge the states of the system to
a point of system failure before the attack is detected. We can see that θ is higher for the
cases where the attack is successful.
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Figure 3.12: The percentage of occurrences of an attack that has no effect on the states of
the system, are detected, and are successful vs. the attacker’s uncertainty in A and B.
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the states of the system could be used to the advantage of the attacker, who could attempt

numerous attacks and observe the impact on the system while remaining undetected.

3.4 Stealthy Threshold Attack

We have assumed that the attack can inject an infinite amount of energy into the system.

However, in order to make a stealthy attack more realistic, we must consider that the mag-

nitude of the attack signal would be bounded due to the physical limitations of the system.

We investigate the impact that a finite energy stealthy attack has on the probability of the

attack being successful.

3.4.1 Limited Energy Stealthy Attacks

Assuming that the attacker can only inject a finite amount of energy into the control signal,

we must limit the attack signal ak to be within a specified threshold. A stealthy attack can

only remain undetected while the attacker is actively inserting energy into the control signal.

If the attacker reaches the physical limits the control signal can tolerate before they are able

to significantly diverge the states of the system, the attack will be unsuccessful. Figure 3.13

shows the states and observations of a stealthy attack where the attacker has limited energy

that they can inject into the control signal. We choose to limit the attack signal to 10V, as

when the system is running under normal operating conditions, the maximum control signal

is about 4V, thus it is realistic to assume that the pumps on the QTP would be able to

handle a maximum of 14V before damaging the system (when the attack passes the physical

damage threshold then it becomes detectable).

Running simulations with the same setup as Section 3.2, we can analyze the attacker’s

probability of success when they only have a finite amount of energy to inject into the

control signal. Figure 3.14 shows the probability of a stealthy attack being successful with

the attacker having an increasing uncertainty in the matrix A and with the attack signal

limited to 10V. We can see that the probability of a successful attack is slightly lower when
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(a) The states of the QTP under attack, with
the attacker limited to injecting 10V into the
control signal, where x1, x2, x3, and x4 are the
water heights in cm of tanks 1, 2, 3, and 4.
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with the attacker limited to injecting 10V into
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tanks 1 and 2.

Figure 3.13: The states and observations of the QTP simulation with an attack starting
at 250s and ending at 341s when the attacker reaches the threshold for the control signal,
with black vertical lines signifying the beginning and end of the attack. We can see that the
attack will be detected as soon as the attacker stops injecting energy into the control signal.

the attacker is limited in the energy they can inject into the control signal; however, the

results are not significantly impacted. This means that even if the system has physical

limitations on the control signal, a successful stealthy attack is still possible.
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Figure 3.14: Probability of a successful stealthy attack (y axis) and uncertainty σA (x axis)
when the attacker has imperfect knowledge of A. Additionally, the attacker is limited to
injecting less than 10V into the control signal. The variance of the process and measurement
noise added to the system is 10−4 and the false alarm rate α is set to 0.5%.
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Chapter 4

The Effect of a Learned State Space

Model on the Success of a Stealthy

Attack

4.1 Introduction

This chapter considers the problem of the attacker having to learn a state space represen-

tation of the system in order to calculate a stealthy attack. Realistically an attacker would

not already have a state space model for the system, thus they would have to use the control

signal and observations of the system in order to calculate a model. We utilize system identi-

fication by using input and output data to learn a mathematical model of the system. Both

black box and grey box approaches to system identification are considered in this chapter.

The black box approach assumes that the attacker has no prior knowledge about the system

and will have to rely solely on the inputs and outputs of the system in order to calculate a

state space representation, while the grey box approach assumes the attacker knows some

information about the system. This information could include the values of certain param-

eters, or bounds on these parameters, etc. In this chapter, we use the MATLAB system

identification algorithms which are implemented to minimize a cost function that considers

42



the difference between the predicted output and the actual output of the system. A gradient

descent algorithm is then used to find the state space representation where a minimum cost

occurs. We first consider the probability of an attacker mounting a successful stealthy at-

tack using the black box approach. Then, we assume that the attacker knows the differential

equations that represent the dynamics of the system they are attacking, as well as upper and

lower bounds for these parameters. The probability of a stealthy attack being successful is

then calculated using the grey box approach. These results are shown using the QTP.

4.2 Black Box Approach

4.2.1 Problem Setup

We first consider the case where the attacker has no information about the system, i.e. the

black box approach. As mentioned in Chapter 2, the attacker has access to the control

signals and observations of the system, thus they can use this information to calculate a

state space representation using a system identification algorithm. We want to determine if

the attacker is able to mount a successful stealthy attack without having any prior knowledge

of the system that would help produce a state space representation.
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(a) Step input and response, u1 and y1 respec-
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(b) Step input and response, u2 and y2 respec-
tively.

Figure 4.1: The step input and response used for the black box approach with no process
and measurement noise.
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Figure 4.2: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. There is no process and
measurement noise added to the system, and we are estimating a fourth order model using
a black box approach. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 74.69% and 94.72% for y1 and y2, respec-
tively.

4.2.2 Results

An estimate for a state space representation of the QTP is calculated and a stealthy attack

is applied to the system under various conditions. We first consider the attacker learning the

system from a step input and response with no process and measurement noise, shown in

Figure 4.1. In addition to learning a state space representation, the attacker will also have

to determine the order of the system they want to learn. First, we consider the attacker

learning a fourth order system, as this is the same as the QTP. Even though this is a

black box approach to system identification, we assume that the attacker knows the order

of system they should estimate. Figure 4.2 shows a comparison of the actual output of the

system with the learned output of the fourth order system and the attacker using the step
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.3: The states and observations of the QTP simulation with an attack starting at
250s, with black vertical lines signifying the beginning of the attack. The attacker used the
input and output data of the system to estimate a fourth order state space representation of
the QTP using a black box approach. There is no process and measurement noise added to
the system. We can see that the attack is detectable, as the observations diverge immediately.

input and response with no process and measurement noise to learn a mathematical model

of the system. The normalized root mean square error (NRMSE) between the actual output

and learned output is 74.69% and 94.72% for y1 and y2, respectively. We can see that the

attacker is not able to learn a state space representation that accurately represents the real

system; however, we want to determine if this is close enough for the attacker to mount

a successful stealthy attack. The states and observations under attack using the learned

fourth order state space model are shown in Figure 4.3. We can see that the attacker is not

successful, as the observations diverge immediately after the attack begins, thus the attacker

will learn a third order model next to determine if an estimate of a different order model is

close enough to the real system to mount a successful attack.

Figure 4.4 shows a comparison between the actual output of the system and the learned

output of the third order system. The NRMSE between the actual output and learned

output is 8% and 8.82% for y1 and y2, respectively. This is a much better fit than the fourth

order model. Now, we want to determine if the better fitting third order model is capable of
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Figure 4.4: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. There is no process and
measurement noise added to the system and we are estimating a third order model using
a black box approach. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 8% and 8.82% for y1 and y2, respectively.

producing a successful stealthy attack. The states and observations of the QTP under attack

using the learned third order model are shown in Figure 4.5. We can see that even though

the third order model matches the real system better than the fourth order model, this is still

not enough for a stealthy attack to be successful, as the observations of the system diverge

immediately after the attack begins. We have seen that a stealthy attack is not successful

when the attacker learns the model using a step input and response with no process and

measurement noise, thus we will incorporate process and measurement noise into the output

of the system to simulate more realistic learning conditions.

Next, we consider the attacker learning the system from a step input and response with

the output of the system having process and measurement noise with a variance of 10−4,

shown in Figure 4.6. The attacker then uses this input and output data to learn a fourth
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.5: The states and observations of the QTP simulation with an attack starting at
250s, with black vertical lines signifying the beginning of the attack. The attacker used the
input and output data of the system to estimate a third order state space representation of
the QTP using a black box approach. There is no process and measurement noise added to
the system. We can see that the attack is detectable, as the observations diverge immediately.

order state space representation of the QTP. Figure 4.7 shows a comparison between the

actual output of the system and the learned output of the fourth order system with process

and measurement noise added to the output. The NRMSE between the actual output and

the learned output is 74.87 and 95.15 for y1 and y2, respectively. These results are not much

different than the learned fourth order model with no process and measurement noise.

Figure 4.8 shows a comparison between the actual output of the system and the learned

output of the third order system with process and measurement noise added to the output.

The NRMSE between the actual output and the learned output is 5.09% and 5.51% for y1 and

y2, respectively. These results are similar to the case of the learned third order system with

no process and measurement noise; however, we still simulate the states and observations

under attack to determine if a stealthy attack is successful, shown in Figure 4.9. We can

see that the observations diverge immediately after the attack begins, meaning the attack

would be detected, thus unsuccessful.

We have seen that a stealthy attack is not successful when the attacker learns a state
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(a) Step input and response, u1 and y1, respec-
tively.
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(b) Step input and response, u2 and y2, respec-
tively.

Figure 4.6: The step input and response used for the black box approach, with the variance
of the process and measurement noise added to the system equal to 10−4.

space representation from a step input and step response. Next, we will consider having the

attacker use 500s of input and output data from the system running, rather than simulating

a step input and response. We first consider the attacker learning a fourth order state space

model, shown in Figure 4.11. The NRMSE between the actual output and the learned output

is 3.36% and 3.53 for y1 and y2, respectively. Thus, the attacker is not able to learn a model

that accurately represents the real system. We want to determine if there are any conditions

that produce a successful stealthy attack when using the black box approach. Thus, we

will consider the attacker learning a third order model, as that is the order of system that

matches the real system best with the black box approach. Figure 4.12 shows a comparison

between the actual output of the system and the learned output of the third order system

running under normal conditions. The NRMSE between the actual output and the learned

output is 2.81 and 2.59 for y1 and y2, respectively. This is the closest match to the real

system that we have seen in this chapter. Now, we want to determine if this is enough for

the attacker to mount a successful attack. Figure 4.13 shows the states and observations of

the system under attack with the attacker using the learned third order model. We can see

that the observations diverge immediately after the attack begins, thus the stealthy attack

is unsuccessful. However, the rate of divergence of the observations is much smaller than the
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Figure 4.7: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. The variance of the
process and measurement noise is 10−4 and we are estimating a fourth order model using
a black box approach. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 74.87% and 95.15% for y1 and y2, respec-
tively.

previous cases we have seen, meaning the attacker is closer to mounting a successful stealthy

attack. From the results of these simulations, we believe that the black box approach is

not the best way for the attacker to learn a state space representation that would produce

a successful attack. Additionally, we believe the attacker would realistically have some

knowledge about the system they are attacking, thus we will consider a grey box approach

to system identification next.
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Figure 4.8: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. The variance of the
process and measurement noise is 10−4 and we are estimating a third order model using
a black box approach. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 5.09% and 5.51% for y1 and y2, respectively.

4.3 Grey Box Approach

4.3.1 Problem Setup

We consider that the attacker knows the differential equations that represent the dynamics of

the system they are attacking; however, they may not know the exact values of the parameters

in these equations. The attacker may know upper and lower bounds that the parameters

must remain within, or they could know the values of some, but not all, of the parameters.

For the simulations in this chapter, we must first have a state space representation of the QTP

in terms of the parameters in the differential equations. We begin by using the differential

equations for the state space model of the QTP found in Section 2.3. In order to linearize

this system, we need to calculate the Jacobian matrix Jf(x) shown in (4.1).
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.9: The states and observations of the QTP simulation with an attack starting at
250s, with black vertical lines signifying the beginning of the attack. The attacker used the
input and output data of the system to estimate a third order state space representation of
the QTP using a black box approach. The variance of the process and measurement noise
added to the system is 10−4. We can see that the attack is detectable, as the observations
diverge immediately.

Jf(x) =



−a1g

A1

√
2gx1

0
a3g

A1

√
2gx3

0

0
−a1g

A2

√
2gx2

0
a4g

A2

√
2gx4

0 0
−a3g

A3

√
2gx3

0

0 0 0
−a4g

A4

√
2gx4


(4.1)

From the differential equations in Section 2.3 and (4.1), we can get state space matrices A,

B, and C in terms of system parameters, shown in (4.2), where hi0 , i ∈ 1, 2, 3, 4, are the

operating points for the height of the water in the tanks.
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.10: A zoomed-in version of 4.9

A =


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√
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
(4.2)

B =



γ1k1
A1

0

0
γ2k2
A2

0
(1− γ2)k2

A3
(1− γ1)k1

A4

0


C =

kc 0 0 0

0 kc 0 0


The values of the parameters in (4.2) are shown in Table 4.1. Throughout this chapter

we assume that the only parameter that the attacker knows perfectly is the acceleration due
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Figure 4.11: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. The variance of the
process and measurement noise is 10−4 and we are estimating a fourth order model using a
black box approach. This comparison is for the inputs and outputs of the system running
under normal conditions. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 3.36% and 3.53% for y1 and y2, respectively.

to gravity g = 9.81
m

s2
. The attacker’s uncertainty in the remaining parameters is modeled by

assuming the attacker knows upper and lower bounds for the parameters. We will consider

bounds of the parameters set to the actual value of the parameter ± σ× the actual value

of the parameter, where σ is the attacker’s uncertainty in the parameters of the state space

representation. For example, (4.3) shows the upper and lower bounds for a1 when σ = 0.1.

a′1 ∈ [a1 − σ ∗ a1, a1 + σ ∗ a1] (4.3)

a′1 ∈ [0.0639, 0.0781]
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Figure 4.12: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line. The variance of the
process and measurement noise is 10−4 and we are estimating a third order model using a
black box approach. This comparison is for the inputs and outputs of the system running
under normal conditions. We can see that the normalized root mean square error (NRMSE)
between the actual output and learned output is 2.81% and 2.59% for y1 and y2, respectively.

The attacker uses the input and output data of the system from t = 0 to t = 500s to learn

a state space representation of the system. Additionally, the attacker also knows upper and

lower bounds for each parameter. Each parameter is then initialized to a random value in

this range for the system identification algorithm. We use the same uncertainty σ for every

parameter in the state space model, besides the acceleration due to gravity g. Figure 4.14

shows the output of the actual system and the output of the learned system for each output

y1 and y2. The normalized root mean square error (NRMSE) between the actual output and

the learned output is also shown. The NRMSE for y1 is 1.44% and is 1.68% for y2. This

tells us that the learned state space representation behaves similarly to the actual system.

Additionally, we can see from Figure 4.15 that increasing the learning time for the attacker
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.13: The states and observations of the QTP simulation with an attack starting at
250s, with black vertical lines signifying the beginning of the attack. The attacker used the
input and output data of the system running under normal conditions to estimate a third
order state space representation of the QTP using a black box approach. The variance of
the process and measurement noise added to the system is 10−4. We can see that the attack
is detectable, as the observations diverge after the attack begins.

to 1000s does not impact how close they are able to learn the system.

The learned state space representation from Figure 4.14 is used to calculate a stealthy

attack. We can see the states and observations of the QTP under attack with the learned

state space representation in Figure 4.16. The attacker is able to quickly empty tank 4 at

t = 378.5 seconds, about 2 minutes after the attack began. We can see that the attack is

not perfectly stealthy, as the observations diverge. However, the attack is not detected until

t = 417s, about 40s after the attacker is able to empty tank 4. This means that the attack

is successful.

4.3.2 Results

We want to determine the probability of an attack being successful when the attacker has to

learn a state space representation of the system. The attacker uses the inputs and outputs of

the system running under normal operating conditions to learn a state space representation,
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Parameter Value
a1, a3 0.071cm2

a2, a4 0.057cm2

A1, A3 28cm2

A2, A4 32cm2

h10 12.6cm
h20 13cm
h30 4.8cm
h40 4.9cm
γ1 0.43
γ2 0.34

k1 3.14 cm3

Vs

k2 3.29 cm3

Vs

kc 0.5 V
cm

Table 4.1: Values for the parameters in the state space representation of the quadruple-tank
process.

as described in Section 4.3.1. Similarly to Section 3, we calculate the difference between the

system failure time and detection time of the system for 10, 000 simulations with σ varying

from 0 to 1 in increments of 0.01. Figure 4.17 shows the probability of a successful attack

where the variance of the process and measurement noise added to the system is 10−4 and

the false alarm rate α = 0.5%. We can see that even when the attacker knows the parameters

of the system within 100% of their actual values, they are successful about 50% of the time.

Additionally, the attacker’s uncertainty in the parameters of the state space model do not

have as much of an impact on the probability of success as in Figure 3.7. This tells us that

the attacker would be able to mount a successful stealthy attack only with knowing loose

bounds for the parameters of the system.

Similarly to Section 3.3.3, we want to determine what causes an attack to be successful

or unsuccessful. We consider the main eigenvalue of A′ +B′F ′ and the dot product between

the main eigenvector of A + BF and A′ + B′F ′, denoted θ. Previously, we saw distinct

groupings between the main eigenvalue of A′ + B′F ′ and θ when the attack is successful or

unsuccessful, shown in Figures 3.10 and 3.11. We show the mean of the main eigenvalues

of A′ + B′F ′ for 10, 000 simulations for the attacker’s uncertainty ranging from [0, 1] for
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Figure 4.14: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line, estimated using a grey
box approach. We can see that the normalized root mean square error (NRMSE) between
the actual output and learned output is 1.44% and 1.68% for y1 and y2, respectively.

the cases where the stealthy attack is successful or unsuccessful. These results are shown

in Figure 4.18. We can see that there is not much of a difference between the cases where

the attack is successful or unsuccessful. These results are very different than the case where

the attacker’s uncertainty in the state space representation is modeled by adding noise to

the system rather than learning a model of the system. Additionally, Figure 4.19 shows the

mean of the dot product θ between the main eigenvector of A+BF and A′+B′F ′, for 10, 000

simulations for the attacker’s uncertainty ranging from [0, 1]. We can see that there is also

not much of a difference between the cases where the attack is successful and those where

the attack is unsuccessful. Additionally, θ is close to 0 regardless of whether the attack is

successful or not. Since there is not a distinct grouping between the cases where the attack

is successful or unsuccessful, we believe that the system failure and detection times are much

closer together when the attacker learns a state space model of the system. This leads us to
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Figure 4.15: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line, estimated using a grey
box approach and 1000s of input data. We can see that the normalized root mean square
error (NRMSE) between the actual output and learned output is 1.44% and 1.68% for y1
and y2, respectively.

believe that a small increase in the sensitivity of the anomaly detector will cause the attacker

to have a much lower probability of a successful attack. Figure 4.20 shows three percentages

of simulations for varying uncertainty in the system; 1: the percentage of attacks that have

no effect on the states of the system, 2: the percentage of attacks that are detected before

they cause system failure, and 3: the percentage of attacks that are successful. We can see

that as the attacker’s uncertainty in A and B increases, the percentage of simulations that

are detected and that have no effect increase, while the percentage of simulations that have

no effect on the states of the system decrease. This is what we expected, as Figure 4.18

shows the main eigenvalue of A′+B′F ′ increasing which means the states of the system will

diverge faster. This paired with the fact that the dot product between the main eigenvector

of A+BF and A′ +B′F ′ is decreasing, meaning less energy from the attack is going in the
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(a) The states of the QTP under attack, with
the attacker learning the state space model,
where x1, x2, x3, and x4 are the water heights
in cm of tanks 1, 2, 3, and 4.
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(b) The observations of the QTP under attack,
with the attacker learning the state space model,
where y1 and y2 are the voltages in V from the
level measurement devices in tanks 1 and 2.

Figure 4.16: The states and observations of the QTP simulation with an attack starting
at 250s, with black vertical lines signifying the beginning of the attack, where the attacker
learns the model using a grey box approach. The attack is successful, as the attacker is able
to empty tank 4 before the attack is detected.

nullspace of C, makes the attack more detectable.

We want to determine if making small changes to the anomaly detector can better protect

systems against stealthy attacks. We consider modifying the false alarm rate to be α = 1%,

meaning 1% of the time there will be a false alarm. Figure 4.21 shows the probability

of a stealthy attack being successful with the modified value for α. We can see that the

probability of a successful attack is significantly less, simply by increasing the false alarm

rate of the anomaly detector. Previously in Figure 3.8, we saw that when the attacker’s

uncertainty in the system was modeled by adding noise to the A and B matrices, increasing

or decreasing the false alarm rate did not have a significant impact on the probability of

an attack being successful. However, when the attacker has to actually learn a state space

representation, the eigensystems of the cases where the attacks are successful or unsuccessful

are much closer. Thus, small changes to the anomaly detector have a large impact on the

probability of an attack being successful, as the system failure time and detection time of

the attack are much closer together. This means that being able to detect an attack as

little as a second earlier can prevent the attacker from being successful. These results tell
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Figure 4.17: The probability that the attack is successful vs. the attacker’s uncertainty in the
parameters in the state space representation. The variance of the process and measurement
noise added to the system is 10−4 and the false alarm rate α is set to 0.5%.

us that having a better anomaly detector can significantly lower the probability of an attack

being successful. Throughout this dissertation, we simply consider a variance based anomaly

detector; however, future systems should consider implementing a more advanced detector,

as we have shown that every second counts when detecting anomalies within a system.

We also consider the impact that changing the QTP model has on our results relating to

the probability of a successful attack. Figure 4.22 shows that increasing the cross-section of

the tanks Ai from A1, A3 = 28 cm2 and A2, A4 = 32 cm2 to A1, A3 = 40 cm2 and A2, A4 =

50 cm2 causes a slightly lower probability of success. This is expected, as we are increasing

the volume of the tank, meaning that more water is needed to reach the threshold for system

failure.
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Figure 4.18: The main eigenvalue of A′ +B′F ′ vs. the attacker’s uncertainty in both A and
B. The variance of the process and measurement noise is 10−4 and the false alarm rate α
is 0.5%. The blue circles represent the case where the attack is detected before the attacker
is able to cause damage to the system and the red triangles represent the case where the
attacker is able to diverge the states of the system to a point of system failure before the
attack is detected. We can see that there is not much of a difference between the cases where
the attack is successful or unsuccessful.

61



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Attacker's Uncertianty

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
10-3

Unsuccessful Attack

Successful Attack

Figure 4.19: The dot product between the main eigenvector of A+BF and A′+B′F ′, θ, vs.
the attacker’s uncertainty in both A and B. The variance of the process and measurement
noise is 10−4 and the false alarm rate α is 0.5%. The blue circles represent the case where
the attack is detected before the attacker is able to cause damage to the system and the red
triangles represent the case where the attacker is able to diverge the states of the system to
a point of system failure before the attack is detected. We can see that θ is close to zero for
the cases where the attack is successful or unsuccessful.
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Figure 4.20: Three percentages of simulations for varying uncertainty in the system; 1: the
percentage of attacks that have no effect on the states of the system, 2: the percentage of
attacks that are detected before they cause system failure, and 3: the percentage of attacks
that are successful vs. the attacker’s uncertainty in A and B.
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Figure 4.21: The probability that the attack is successful vs. the attacker’s uncertainty in the
parameters in the state space representation. The variance of the process and measurement
noise added to the system is 10−4. The false alarm rate α varies from 0.5% to 5%. The blue
circles represent α = 0.5%, the red plus signs represent α = 0.75%, the the yellow triangles
represent α = 1%, and the purple circles represent α = 5%. We can see that a small change
in the anomaly detector causes the attack to have a much smaller probability of success.
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Figure 4.22: The probability that the attack is successful vs. the attacker’s uncertainty in the
parameters in the state space representation. The variance of the process and measurement
noise added to the system is 10−4 and the false alarm rate α is set to 0.5%. The cross-section
of tanks Ai varies from A1, A3 = 28 cm2 and A2, A4 = 32 cm2, shown by to blue circles to
A1, A3 = 40 cm2 and A2, A4 = 50 cm2. We can see that when the cross-sections of the tanks
are larger, the probability of success is slightly lower.
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Chapter 5

Limiting the Impact of Stealthy

Attacks

5.1 Introduction

Throughout the previous Chapters we have shown that even when we place limitations on

the attacker, such as limiting the energy they can inject into the control signal and assuming

they would have to learn a state space representation of the model in order to calculate an

attack, the attacker still has a large probability of their attack being successful. Thus, it is

imperative that we investigate ways to limit the impact, and even eliminate the possibility

of stealthy attacks entirely. In this chapter we first investigate how to limit the impact

of stealthy attacks. We consider the trade off between making the system less susceptible

to stealthy attacks and maintaining its controllability, by increasing the sampling time of

the system–providing the attacker with fewer samples to learn a state space model. These

results are demonstrated using the QTP. Next, we consider how to completely eliminate the

opportunity for a stealthy attack. We begin with a state space representation for a 3 inverter

power system model and assume that some of the parameters in this system have leeway

when choosing these parameters in the design phase. Then, we determine values for these

parameters closest to their original values that push the main eigenvalue of the attack model
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to be stable, meaning the attack will have no impact on the system.

5.2 Simulation Results on the Quadruple-Tank Pro-

cess

Previously, we have shown that an attacker is able to utilize a grey box approach to system

identification in order to learn a state space representation of the system and successfully

mount a stealthy attack. We want to determine how to prevent an attacker from learning a

state space representation that is close enough to the actual system in order to successfully

attack the system. The setup to the simulations in this section are similar to Chapter 4. We

give the attacker a time interval of 250s to learn a state space representation of the system

and 500s to mount the attack. Additionally, the attacker’s uncertainty σAB in A and B is

calculated in the same manner as in Chapter 4 – by assuming the attacker knows upper and

lower bounds for the system parameters. However, in contrast to the previous sections, we

change the desired states of the system xd every 200s in order to test the capabilities of the

controller.

We begin by determining how much the sampling time used to discretize the state space

model Ts can be increased while maintaining acceptable performance of the system. Figures

5.1, 5.2, and 5.3 show the states and observations of the system running under normal

conditions with Ts = 0.5, 5, 50s, respectively. Additionally, the desired states of the system

xd change every 200s in order to more accurately model the behavior of a real system. We

can see that in Figures 5.1, 5.2 the controller is effectively able push the states of the system

to their desired values while maintaining acceptable water levels in each of the four tanks,

i.e. having a water height greater than zero and less than 20cm–the height of the tank.

However, in Figure 5.3, we can see that the controller is not able to properly control the

system, as the states and observations drop below 0 which is not an acceptable water level

for this system. This is expected, as the controller only has 4 time steps to get the states to
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(a) x1, x2, x3, and x4 are the water heights in cm
of tanks 1, 2, 3, and 4, respectively.
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(b) y1 and y2 are the voltages in V from the level
measurement devices in tanks 1 and 2, respec-
tively.

Figure 5.1: The states and observations of the QTP under normal conditions, with the state
space model discretized with a sampling time Ts = 0.5s and the desired states of the system
xd changing every 200s.
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(a) x1, x2, x3, and x4 are the water heights in cm
of tanks 1, 2, 3, and 4, respectively.
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Figure 5.2: The states an observations of the QTP under normal conditions, with the state
space model discretized with a sampling time Ts = 5s and the desired states of the system
xd changing every 200s.
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Figure 5.3: The states an observations of the QTP under normal conditions, with the state
space model discretized with a sampling time Ts = 50s and the desired states of the system
xd changing every 200s.

their desired values before xd switches. Thus, throughout the rest of this section we will use

Ts = 5s as the maximum sampling time needed to maintain controllability of the system.

Additionally, Figure 5.4 shows the NRMSE between the desired state and the actual state

of the system vs. the sampling time used to discretize the state space model. We can see,

as Figures 5.1, 5.2, and 5.3 show, that as Ts increases, there is a larger error between the

desired states and the actual states, meaning the controller is performing worse.

We give the attacker 250s to learn a state space representation of the system, meaning

when Ts increases, the attacker has fewer samples to learn a state space model. However,

since the desired states of the system change every 200s, the attacker has more diversified

data to learn from. Figure 5.5 shows the actual output of the system compared with the

learned output of the system with Ts = 5s. The NRMSE between the actual output and

the learned output is 13.41% and 16.53% for y1 and y2, respectively. This is a much better

estimation than the comparable case shown in Figure 4.14 where the desired states remain

constant. Additionally, we consider that providing the attacker with more diverse data

to learn a state space model of the system could help them learn a more accurate model.

However, Figure 5.6 shows this is not the case, as the NRMSE between the actual output
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Figure 5.4: The NRMSE between the desired state of the system for states 1 and 2 vs. the
sampling time used to discretize the state space model.

of the system and the learned output of the system is comparable to that shown in Figure

4.14 where the desired states remain constant.

Increasing the sampling time used to discretize the state space model of the system

comes with pros and cons to the attacker. On one hand, changing the desired states gives

the attacker more diverse data to learn from, but on the other hand the attacker has fewer

time steps within the 500s given for the attack to diverge the states of the system. We

calculate the probability of stealthy attack being successful for Ts = 0.5, 1, and 5s, shown

in Figure 5.7. The probability of a successful attack is close to 1 for the case of Ts = 0.5s

when the attacker knows relatively close bounds for the parameters of the system. However,

we see the probability of a successful attack drop drastically when the sampling time is

increased to Ts = 1 and 5s. The probability does not change much between the cases of

Ts = 1 and 5s, suggesting that simply increasing the sampling time to Ts = 1s is enough to

drastically reduce the probability of an attack being successful. Thus, we can conclude that

Ts = 1s is completely within the bounds of maintaining controllability. Additionally, merely

doubling the sampling time used to discretize the system is enough make the probability of

a successful attack three times lower.
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Figure 5.5: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line and Ts = 5s. We can
see that the normalized root mean square error (NRMSE) between the actual output and
learned output is 13.41% and 16.53% for y1 and y2, respectively.

5.3 Simulation Results on a Power System Model

The impact of stealthy attacks on PEDGs can be catastrophic. However, stealthy attacks

have many limitations–including that the state space model must be of non minimum phase,

meaning there must be an unstable eigenvalue of A+BF . This is because the attack is made

in the direction of the main eigenvector of A+BF , and without an unstable eigenvalue the

system will not diverge when it is attacked. We want to protect PEDGs from a class of

attacks, i.e. false data injection attacks, and more specifically stealthy attacks. Protecting

a PEDG from such attacks includes making stealthy attacks impossible, making the attack

detectable, or minimizing the impact that the attack can make on the system.

We consider preventing stealthy attacks in the design phase by making small changes to

the parameters of the system in order to push all of the eigenvalues of A+BF inside of the

unit circle.
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Figure 5.6: A comparison of the actual output of the system, represented by the grey line,
with the learned output of the system, represented by the blue line and Ts = 0.5s. We can
see that the normalized root mean square error (NRMSE) between the actual output and
learned output is 19.55% and 20.97% for y1 and y2, respectively.

5.3.1 Model Description

We consider a cluster of power-electronics-dominated grids (CPEDGs). This system supplies

the local loads and supports the AC bus frequency and voltage. Figure 5.8 shows a CPEDG,

where the system consists of a three-phase grid-following inverter and a synchronous gen-

erator. Additionally, a MATLAB SIMULINK model of the system, as shown in the Local

control portion of Figure 5.8, is used to simulate the system running under normal conditions

as well as under attack. The zero-dynamics stealthy attack relies on an accurate state space

model of the system. Such a state space model is calculated by linearizing the ordinary

differential equations that describe the dynamics of the system about an operating point.

We first calculate a continuous time system and convert it to discrete time using a sampling

time of 10µs. A detailed derivation of the continuous time system and input matrices, A
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Figure 5.7: The probability that the attack is successful for varying sampling times Ts used to
discretize the state space model for the χ2 variance test vs. the attacker’s uncertainty in both
A and B. The sampling time Ts varies from 0.5s to 5s. The blue circles represent Ts = 0.25s,
the red plus signs represent Ts = 0.5s, the the yellow triangles represent Ts = 0.75s, the
purple circles represent Ts = 1s, and the green squares represent Ts = 5s. Additionally, the
variance of the process and measurement noise added to the system is 10−4. We can see that
changing Ts has a considerable impact on the attacker’s probability of a successful attack.

and B, is shown in Appendix B. The output matrix C is defined by

C =


0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 . (5.1)

The state variables are defined by

x̂ =

[
vc iq id vfq vfd iLq iLd

]T
, (5.2)

where vc is the DC-line voltage of the inverter, iq and id are the q and d components of

inverter-side current, vfq and vfd are the q and d components of the filter’s capacitor voltage,

and iLq and iLd are the q and d components of the grid-side current at the point of common
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Figure 5.8: A generic overview of the power-electronics-dominated grid (PEDG) consisting
of grid clusters with high penetration of renewable resources.
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coupling. The control signal is defined by

û =

[
vdc vgq vgd

]T
, (5.3)

where vdc is the inverter input voltage, vgq and vgd are the filter capacitor voltage transferred

to the d-q frame.

The novelty of applying a stealthy attack to this PEDG is the fact that the state space

model only represents a subset of the whole system. Additionally, the state space model of

the inverters requires input from the synchronous generator, shown in Fig. 5.8. This means

that as the control signal from the circuit simulation of the PEDG changes, the state space

model of the inverters change. However, in order to calculate a stealthy attack, we need a

time invariant state space representation. Here, we calculate the state space model using

the steady state values from the circuit simulation.

5.3.2 Results

We want to calculate the values for parameters of the state space model that make a stealthy

attack impossible. Figures 5.9 and 5.10 show the states and observations of the system with

an attack starting at 8s. We can see that the states of the system diverge about 0.65s before

the observations diverge, meaning the attack is successful. This simulation will be used as a

baseline to compare with the state space model that eliminates a stealthy attack.

In order to calculate the values of parameters that prevent a stealthy attack from being

possible, we consider a range of possible values for the constant parameters, found in Table

B.1, in the state space model. In this Chapter, we simplify the problem by modifying

two parameters at a time. First, we considering modifying L1 and L2, shown in Figure

5.11. The desired values for L1 and L2 are 0.001H and 0.0005H, respectively. We chose to

consider L1 ∈ [0.0001, 0.1] and L2 ∈ [0.00005, 0.05] to ensure all realistic options for L1 and

L2 were considered. A state space representation was then calculated for all combinations

of L1 and L2 in these ranges in intervals of 0.00001. For each state space representation,
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zoomed-in graph of Fig. 5.9a showing the di-
vergence of the states.

Figure 5.9: System states with an attack starting at 8s, denoted by the black vertical line.
Note that the states being attacked diverge significantly around 8.55s. The states and
observations oscillate after diverging due to numerical precision, as the attack diverges the
states exponentially.
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(a) The observations of the system with an at-
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(b) The observations of the system under
attack–a zoomed-in graph of Fig. 5.10a show-
ing that the attack becomes observable around
8.65s.

Figure 5.10: System observations with an attack starting at 8s, denoted by the black vertical
line. Note that observations begin to diverge about 0.1s after the states begin to diverge.
The states and observations oscillate after diverging due to numerical precision, as the attack
diverges the states exponentially.
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Figure 5.11: The main eigenvalue of A+BF with varying values for L1 and L2. A stealthy
attack is impossible for L1 ∈ [0.0732, 0.1] and L2 ∈ [0.00005, 0.05], shown by the red rectan-
gle.

the main eigenvalue of A + BF is calculated, and when this eigenvalue is in the unit circle

a stealthy attack is not possible. The values that make a stealthy attack impossible are

L1 ∈ [0.0732, 0.1] and L2 ∈ [0.0005, 0.05], thus we choose L1 = 0.0732H and L2 = 0.0005H,

as these are the closest to their desired values.

Additionally, we consider changing the DC link capacitor and the inverter side inductor,

C1 and L1, in order to prevent a stealthy attack. We consider C1 ∈ [0.000018, 0.18] and

L1 ∈ [0.0001, 0.1], where the desired values of C1 and L1 are 0.0018F and 0.001H, respectively.

From Figure 5.12, we can see that C1 ∈ [0.000018, 0.18] and L1 ∈ [0.0732, 0.1] make all

eigenvalues of A + BF inside the unit circle, meaning a stealthy attack is impossible. We

choose C1 = 0.0018F and L1 = 0.0732H, as these are the closest to their desired values.

Figure 5.13 shows the states an observations of the system under attack with the modified

values of C1 and L1 chosen above. We can see that the attack is unsuccessful, as there is

no change in the states of the system. This means that simply choosing alternative values

for parameters in the design phase of a system can completely eliminate the possibility of a

stealthy attack.
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Figure 5.12: The main eigenvalue of A+BF with varying values for C1 and L1. A stealthy
attack is impossible for C1 ∈ [0.000018, 0.139818] and L1 ∈ [0.0732, 0.1], shown by the red
rectangle.
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(a) The states of the system with an attack
starting at 8s.
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(b) The observations of the system with an at-
tack starting at 8s.

Figure 5.13: The states and observations of the system with an attack starting at 8s, denoted
by the black vertical line, with modified values for C1 and L1. Note that the states do not
diverge, as some of the system parameters were slightly modified in order to make the system
minimum phase.
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Chapter 6

Conclusion

Stealthy attacks have the potential to cause considerable damage to control systems, thus it

is important to understand the feasibility and impact of such attacks. A successful attack on

control systems can cause physical damage to the system, or in the case of a power system,

a blackout. The main motivation of this dissertation is to show methods that can be used

to limit the probability of a stealthy attack being successful even under realistic conditions

and plausible attacker models (2.2.2). Additionally, we investigated what can be done to

limit the impact of stealthy attacks, including eliminating the possibility of a stealthy attack

being successful.

6.1 Review of the Contributions

Chapter 2 considered the impact of incorporating more realistic conditions to the system be-

ing attacked. We integrated a Linear Quadratic Gaussian (LQG) controller into the system,

as well as reformulated a few of the equations for the LQG to push the states of the system

to a desired value rather than zero. Contrary to previous work, we assumed that the attacker

would not know or have access to a state space model of the system – thus they would have

to learn this information. As the attacker had to learn a state space representation, we

assumed that the learned model would not perfectly match the system. We investigated the
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impact on a stealthy attack of the attacker having an imperfect state space representation

of the system. We demonstrated on the Quadruple-Tank Process (QTP), as well as on a

simple power system model, that a stealthy attack can be detectable when the assumption

that the attacker knows a state space model of the system is removed.

In Chapter 3, we considered how varying the attacker’s uncertainty in the state space

model affects the probability of an attack being successful. Additionally, we analyzed the

impact of changing the process and measurement noise added to the system as well as

the false alarm rate of the anomaly detector, concluding that increasing the process and

measurement noise is the best method to minimize the probability of a successful attack.

We considered placing further limitations on the attacker by limiting the amount of energy

they are able to inject into the control signal, showing that it is necessary to not overbuild

a system, as having the physical limits of the system as close to the system requirements

limits the probability of a successful attack.

Applying system identification algorithms to model the attacker learning a state space

representation of the system is considered in Chapter 4. We first analyze if an attacker can

successfully attack the system using a black box approach to system identification–meaning

they do not know any information about the system, they are only able to use the inputs

and outputs of the system to learn. We concluded the attacker was not able to learn an

accurate enough state space model of the system in order to successfully mount an attack.

Thus, we then loosened the restrictions on the attacker and assumed it is realistic for them

to have some prior knowledge about the system. We assumed that the attacker knows upper

and lower bounds for the parameters used to calculate the state space model.

Chapter 5 considered what can be done to limit the impact and prevent stealthy attacks.

We first considered the trade off between making the system less susceptible to stealthy

attacks and maintaining its controllability by increasing the sampling time used to discretize

the state space model of the system. Increasing the sampling time of the system provides

the attacker with fewer samples to learn a state space representation of the system as well

as fewer samples to diverge the states of the system once the attack begins. We showed that

the sampling time only needed to be doubled in order to drastically reduce the probability of
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an attack being successful, thus this approach is an acceptable method to limit the impact of

a stealthy attack. Additionally, we considered making modifications to the parameters of a

three inverter power system model in order to eliminate the possibility of a stealthy attack.

We were able to show that making small changes to multiple parameters of the system had

the power to make stealthy attacks fail.

6.2 Limitations and Future Work

Future work could include designing a machine learning model to learn a stealthy attack

rather than an attacker having to understand the mathematics behind a stealthy attack and

then learning a state space model of the system. Reinforcement learning could be used for

the attack to diverge the states of the system while remaining stealthy.

Additionally, investigating the impact of stealthy attacks in a lab environment on physical

system rather than simulations would be an interesting extension of this work.

We believe another way to extend this work could include investigating more of the

mathematical theory behind stealthy attacks. This could include determining exactly how

close at attacker needs to learn a state space model in order to avoid various types of anomaly

detectors.

6.3 Practical Insights

We believe the following methods should be considered in order to limit the impact and

prevent stealthy attacks:

1. Limit overbuilding the system whenever possible. When the system allows for more

energy than it requires, a stealthy attack has a much higher probability of being suc-

cessful (3.14).

2. Make small improvements to the anomaly detector, as detecting an attack a few seconds

earlier can make the attack unsuccessful (4.21).
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3. Increase the sampling time used to discretize the system in order to prevent an attacker

from learning and delay the impact of the attack (5.7).

4. Make small changes to the parameters of the system during the design phase to elimi-

nate the possibility of a stealthy attack (5.11, 5.12).
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Appendix A

LQG Derivation

Define the Bellman equation for the LQR:

Vt(z) = (z − xd)
TQ(z − xd) + min

ω
(ωTRω + Vt+1(Az +Bω)), (A.1)

where t = 0, . . . , N and xd is the desired state of the system. An ω that minimizes the above

equation will give the optimal control input. We will assume that

Vt+1(z) = zTGt+1z −Ht+1z − zTTt+1 + Ct+1, (A.2)

we will show that Vt(z) has the same form.

Vt(z) = (z − xd)
TQ(z − xd) + min

ω
(ωTRω + (Az +Bω)TGt+1(Az +Bω) (A.3)

−Ht+1(Az +Bω)− (Az +Bω)TTt+1 + Ct+1)

In order to find the optimal control input, we must take the derivative of (A.3) with respect

to ω

0 = 2ωTR + 2(Az +Bω)TGt+1B −Ht+1B − T T
t+1B (A.4)

ω =
1

2
(R +BTGt+1B)−1(−2BTGt+1Az +BTHt+1 +BTTt+1).
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Now, we can substitute the optimal control signal into (A.3):

Vt(z) = (z − xd)
TQ(z − xd) +

1

2
(−2zTATGt+1B +HT

t+1B + T T
t+1B) (A.5)

(R +BTGt+1B)−1R
1

2
(R +BTGt+1B)−1(−2BTGt+1Az +BTHt+1 +BTTt+1)

+ (zTAT +
1

2
(−2zTATGt+1B +HT

t+1B + T T
t+1B)(R +BTGt+1B)−1BT )Gt+1(Az

+
1

2
B(R +BTGt+1B)−1(−2BTGt+1Az +BTHt+1 +BTTt+1))−Ht+1(Az +

1

2
B(R +BTGt+1B)−1

(−2BTGt+1Az +BTHt+1 +BTTt+1))− (zTAT +
1

2
(−2zTATGt+1B +HT

t+1B + T T
t+1B)

(R +BTGt+1B)−1BT )Tt+1 + Ct+1.

Since (A.4) does not contain Ct+1, we will only consider terms in (A.5) that contain z in

order to simplify the calculations. After come simplification, we can obtain

Vt(z) = zt(Q+ ATGt+1A− ATGt+1B(R +BTGt+1B)−1BTGt+1A)z (A.6)

− (xT
dQ+Ht+1A−Ht+1B(R +BTGt+1B)−1BTGt+1A)z − zT (Qxd+

ATTt+1 − ATGt+1B(R +BTGt+1B)−1Tt+1),

where Gt, Ht, and Tt are defined using backwards recursion by the equations below:

Hk = HN +Hk+1A−Hk+1B(BTGk+1B +R)−1BTGk+1A, (A.7)

Gk = AT (Gk+1 −Gk+1B(BTGk+1B +R)BTGk+1)A+Q, (A.8)

Tk = TN + ATTk+1 − ATGk+1B(BTGk+1B +R)−1BTGk+1. (A.9)
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Appendix B

PEDG State Space Equations

The system configuration is calculated using the IEEE Standard 399-1997 with some mod-

ifications. The states are transferred to the d-q frame with respect to a global d-q frame.

The state space matrices A, B, and C are calculated using the dynamic equations of the

aggregated inverter model.

The system matrix is given by

A =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


where, A11, . . ., A44 are defined as follows:

A11 =
−1

C1Rs

,

A12 =

[
−
√
3m cosϕ

2C1

−
√
3m sinϕ

2C1

]
,

A13 =

[
0 0

]
,

A14 =

[
0 0

]
,
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A21 =

[√
3m cos(ϕ)

3L1

√
3m sin(ϕ)

3L1

]T
,

A22 =

−3R1 −Rf

3L1

−ω

ω
−3R1 −Rf

3L1

 ,

A23 =


−1

2L1

√
3

6L1

−
√
3

6L1

−1

2L1

 ,

A24 =

 Rf

3L1

0

0
Rf

3L1

 ,

A31 =

[
0 0

]T
,

A32 =


1

2Cf

√
3

6Cf

−
√
3

6Cf

1

2Cf

 ,

A33 =

0 −ω

ω 0

 ,

A34 =


−1

2Cf

−
√
3

6Cf√
3

6Cf

−1

2Cf

 ,

A41 =

[
0 0

]T
,

A42 =

 Rf

3L2

0

0
Rf

3L2

 ,

A43 =


1

2L2

−
√
3

6L2√
3

6L2

1

2L2

 ,

A44 =

−3R2 −Rf

3L2

−ω

ω
−3R2 −Rf

3L2

 .
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The input matrix B is given by

B =

[
B11 B12 B14 B15 B16 B17

]T

where, B11, B12, B13, B14, B15, B16, and B17 are defined as follows:

B11 =

[
1

C1Rs

0 0

]
,

B12 =

[
0 0 0

]
,

B13 =

[
0 0 0

]
,

B14 =

[
0 0 0

]
,

B15 =

[
0 0 0

]
,

B16 =

[
0

−1

L2

0

]
,

B17 =

[
0 0

−1

L2

]
.

Values for the constants are provided in Table B.1.

Rs 0.1 Ω m 0.849 pu
C1 1800e−6 F ϕ 1.37 rad
L1 1e−3 H ω 120π rad/s
R1 0.15 Ω R2 0.8 Ω
Rf 0.7 Ω L2 0.5e−3 H
Cf 30e−6 F

Table B.1: Values for the constants in the state space representation
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