/éROTOTYPE SYSTEM FOR DOCUMENT MANAGEMEN?/

by
Jim Mullin
L)

B.S., Missouri Western State College

A MASTER'S REPORT
Submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Majo%?Professor

LD
668 T

py | All202 9kusS0e
! CONTENTS !
1985
m §¥
1 INEroduction.. Co & . ununn it retenenneneennn 1
T el OVErViBw e soe s @6 5w 505 5 6 wrs 006 8 0 5 % 8 % ¢ w3 408 @ eesnen 1
1.2 Literature ReviewWw..evoiv v esse ey I LT
1.2.1 Definitions..ceeveeeees B 6 R ¥ R R N e 4
1 é2+2 RBBE=POyvisawsamimsmsnss & WS W R § ciwse O
1.2.3 NewsNet...... W W R R e e e e e mie 9
1.2.4 0fficial Airlines Guide«teeveessaesad2
1628 BPIATIOBE 5 i v wew wos 5 8 5 8 90 5 0 § 000 #08 520 W00 § 08 5 16 ¥ 14
1.2.6 CompuServe...... & ¥ 54 S A 8 PEIET avswaa 1T
1.2.7 Additional literature.«svecivacsonssalQ
1258 PODMs i sw ik 69 5 5 5 8 8 5§ 5k w08 5985 W S0 8 H 886 5 20
2. System Requirements....eveveveesnvencnnnassesa2d
5. System Design............ PRE e bR AR A AR A WA 26
3.1 Initialization Phase..rssecersnrsssnsssass2b
3.2 Command Phase..... - O o o Wiy
Tyl HEIN wasmpwseswsmn®swems vews vus eeese29
Seeve BALt sonwsums ¥ 8 8 S e o i EEs .29
Fe2n® PASBWOL wos ot wsvvimon v snsssssa . e 30
Dot DITEOROTY wopswsmnomsvsmanswiwan s wwwy]
Tuged SUBJROT simsmsmswsws e EE I W R HS oo o3l
B2 DOAPrCH s imswsws ww v e R 32
T T VIBW v vew w65 000 4 06 4 554 556 B0 sow 5 G 8 09 4 & i w s w DS
TedeB MEBHAZE s v a v e oo s S F N E N R 34
3.3 Maintenance PhaSe€...cseoerenansansss TIT L
3.4 Summary of Design.......... T G W3 5 W b B8
4. Future Enhancements....viveveneeerscacsnss vere36
4.1 Value of Systeme.cicenennnn. . ok me n mn veesan BT
Bibliographyeeeevrenenenseecesorsnnsensnonnens vonedB
Appendix A.eieiererenirienanonnnnas v§ s e v W @ i 8w 8 5D
Appendix B (User Scenario).ceecececesenene w a8 89
Appendix C (Command Summary).....eeeeeeeees NPT 48

Appendix D (Source Program)...ceeee.as I IET &5 B0

1+ Introduction

1.1 Overview

There is a wealth of information scattered among the
employees of large corporations. Creating an information system
in which to consolidate this ianformation is imperative for an
efficient decision-making process. Such an information system
must be economical and user-friendly. The prototype system for
document management is an automated method to centrally store
information and then make it easily accessible to the people that

need it.

This system will be different than current automated
methods because it would avoid traditional pitfalls. Andrew E.

Wessel has described some of these pitfalls in his book,

"Computer—-Aided Information Retrieval." He says an information
system is "a mix of ill-structured information and well-
structured data." "It is now a well-known fact that the same

automated systems found relevant in handling well-structured data
have been offered to users of ill-structured information."

In regards to simply using data base management systems such as
ORACLE or d4dBASE III, "users have simply been offered additional
lists of equally 111 or worse structures which no one has been

able to use for meaningful searches." The poor

(1)

structure of the information presents other problems such as,
"When we request everything we want, we get both less and more

than we asked."

The well-structured nature of this system will make it
beneficial to many people. Specifically, it can meet the needs
of marketing and support system engineers who have small multi-
user systems. These people must share information 1in the

decigion-making process.

A systems engineer relies on information systems to help
answer an abundance of questions including, "Has anyone done this
before?" A large number of engineers could answer that question,
howevér, individual contact 1is ©prohibitive. This prototype
system will provide a central depository to help answer these
questions. "What if" gquestions can be stored and retrieved later

by engineers with the background to provide an answer.

This system has a wide range of applications beyond
systems engineers' needs and could apply to virtually any

business.

This outline will cover a review of current services and
literature, including how this information applies to the design

of this system.

This automated system as described by Steve Lambert in

his ook "Online", 1is a method of '"storing information
electronically and making it accessible to a computer . . . an

extension of the library concept." Typically users can perform
searches on such an automated system with a "combination of
keywords and concepts that identify either a specific piece of
information of the general +topic you are researching," says

Lambert.

The prototype system for document management is a vehicle
by which the functions of a manual filing system are automated.

This includes storage, retrieval management and user interface.

1.2 Literature Review

The prototype system for document management draws from
the many products already 'dealing in information management,
other bulletin ©board systems and online databases. It is
therefore valuable t¢ survey existing systems for assistance in
the design of this system. Steve Lambert describes 4

classifications of information management systems.

- OSystems that offer primarily services rather than
information.

- Systems that offer access to a wide variety of
subjects. Refered to as encyclopedic databases.

- Systems similar to encyclopedic databases but their

gcope of topics is more limited. These are known as

gpecialized or subject-specific databases.

- DSystems which offer both services and access to

information. This group is called information utilities.
The systems reviewed fall into these classifications and their

design has provided assistance in developing the design of this

management system.

1.2.1 Definitions

bulletins --- general messages that are retrieved

through functions of the systenm.

command prompt --- when the system is ready for command
input a prompt is displayed on the terminal. This
can be a single character such as '$' or a

collection of characters 'command:'.

directory --- a directory performs the same function
as a file drawer in a filing cabinet, gathering
together related files in a common place where

they can be found easily.

download/upload --- the transferring of data from
the information system +to the remote device

accessing i%.

electronic mail --- mail facilities such as editing,
delivery, printing and presentation automated and

controlled by computer systems.

keywords --- a word to be used as part of some criteria

by which selection of doéuments are made.

menu --- an informational display containing all
avallable commands that a computer user may enter

into the system.

(5)

time sharing --- a computer-use technique where by

several operators may use a computers resources

at the same time.

UNIX --- a comprehensive operating system developed
by Bell Laboratories. The system allows
efficient sharing of process power and the

information storage of a computer system.

1.2.2 RBBS-PC

One of the more popular bulletin board systems is the
RBBS- PC offered by the Capital PC user's group. For the most
part this system can be classified as a service oriented system.

It contains many common bulletin board services such as:

Electronic Mail
Upload/Download files

Use of the Operating System
* Bulletins

Messages

X kK

*

This system truly represents +the typical computer hobbyist

bulletin board system. Notes and reminders can be sent to other

(6)

users through the electronic mail facility. The board serves as
a convenient central depository to store and retrieve programs
and documentation with the upload/download capabilities. Users
with simple, less sophisticated computers can use the bulletin
board as a time sharing device through operating system devices
available. Information can be obtained +through the bulletin
facility. The most commonly used feature of any bulletin board

gystem is the message facility.

With the message service a user can enter a message and
address it to any other user of the system. This, being a public
bulletin board, others may view it and if desired respond to it.
All messages are numbered and have pointers associated with them
so that anyone interested can follow the chain by which the
messages were created. The RBBS-PC system contains 5 commands

that deal with the message service. The five commands are:

Kill message
Quick scan
Reading Messages
Scan messages
Enter message

* ok ok k ok

When a user scans the message base, four lines are returned for
each message in the system. The scan command will return

something like the following:

Msg# 1557 Dated 08-17-84 04:49:43
From: TOM MAZK

To: ALL

Re: QUBIE' & RBBS-PC

(7)

After enough messages have gone by, the user can choose to read
any specific messages using the read command and the message
number of interest. This bulletin board system, as well as
others, automatically keeps track of which messages each user

reads so that meséages will not be read twice inadvertantly.

Messages and mail differ in the manner that observers can
follow associated responses. The message system builds a chain
of respones as they are entered into the system. The mail
facility only handles the delivery of information and does not

allow observers to create respones or follow the response flow.

The complete command menu for the RBBS-PC appears in

figure 1.
================== RBES MAIN MENT ===============
PERSDNALVCOMMUNICATIONS UTILITIES ELSEWHERE

B)ulletins 0) perator H)elp D)oors
C)omment P)ersonal mail L)ines per page F)iles system
E)nter message Qluick scan X)pert on/off G)oodbye
I)nitial welcome R)ead messages ?)Functions U)tilities
J)oin Conference S)can messages ‘
K)ill message V)iew Conference

W)ho's on other node
Maln Pune <B,C,D,E,P,0,H,1.J,KL,0,P,Q,R,8,UVW:X,7>%

Figure 1

(8)

1.2.3 NewsNet

The information which NewsNet [3] electronically makes
available to its subscribers 1is drawn from newsletters, and
therefore can be classified as a specialized information
database. NewsNet states the value of its database in terms of
what it would cost to subscribe to all the newsletters it

represents. That estimate is approximatley $50,000 annually.

Newsnet allows its subscribers to rapidly search through
current and back issues for information pertaining to specific
subject matter. The savings of this service compared to manual
measures are difficult to measure. As aescribed in Online, "If a
newsletter were to publish only one article in the entire year
that you were interested in, typing a few commands on NewsNet
would allow you to read it for about $1. You would save the
year's subscription to the newsletter plus about 20 hours of

turning pages."

NewsNet, in addition +to 1its basic service offers a
valuable feature to its users in its NewsFlash service. You can
list up to ten sets of criteria. NewsNet will scan all new
information added to its data base and inform you of its location

when you log on.

(9)

NewsNets database is broken into groups of newsletters.
These groups are identified by the industry they serve. There
are currently about 40 groups with one +to several dozen
newsletters in each. To access a particular newsletter a 4 or 5
digit code is wused. To retrieve the Daily Petro Futures
newsletter +the code EYO1 would be used. The first two
characters, in this case EY, represents the industry code for

energy. The second 2 characters represent the periodical.

NewsNet uses "-->" as a command prompt. Refer to figure

2 for the complete command menu.

* % % COMMAND MENU * * *

READ.....Read full text FLASH....Update NewsFlash
SCAN.....Scan Headlines OAG...... Official Airline Guides
SEARCH...Search for keywords MAIL..... To publishers or NewsNet

HELP.....Detailed instructions ORDER....Print subscriptions
PAGING...Change page parameters
PROJECT..Track online time

LIBRARY..Low-cost browsing PASSWORD.Change your password
BACK.....Previous prompt PRICES...Complete price list
QUIT.....Return to main prompt INFO.....Information on services
OFF..oans Sign off LIST.....Services by subject

FPigure 2

(10)

Interaction with the NewsNet system can be achieved best
by looking at the search command and the sequence of events which

lead to the access of information.

Enter Command on <RETURN>

--> Search

After the NewsNet prompt the user enters the command "search".

Enter a Service Code, Help, Back, or Quit
--> EV LA RE

At the next prompt the user has several options on the material
to0 sgcan. Service Codes, Industry groups or All are valid
choices. In this example three industry groups are entered, they

represent: Environment, Law and Real Estate, respectively.

Enter LATEST for the latest issue, or other data options
--> 5/1/85

The data parameter tells NewsNet to start at the date specified

and search to the current date.

(11)

Enter Keyword(s)

-—>

Keywords can be combined with Boolean operators to enhance the
gearch capabilities. When NewsNet returns to the user with the

number of occurances found to match the criteria, the user may

view the data in several ways.

by headlines
by newsletter

by feading each article

1.2.4 OFFICIAL AIRLINES GUIDE

Official Airline Guide or OAG [3] also falls into the specialized
database catagory. It is presented in +this report because it
contains a unique access command interface. The information,
limited to airline scheduling, may only be viewed, users can not

change data or make reservations.

(12)

Because +the scope of information is 1limited to a
particular subject group, the command structure is also quite

small. See figure 3 for the OAG command structure.

** 0AG COMMAND MENU **
ENTER:/I FOR INFORMATION AND ASSISTANCE
/F FOR FARES DISPLAYS
/S FOR SCEDULE DISPLAYS
/M TO RETURN TO THIS MENU
/U FOR USER COMMENTS AND
SUGGESTIONS BOX
/Q TO EXIT FROM THE OAG EE

Figure 3

From the list presented in figure 3, only the /F and /S are used

to extract information on airline scheduling.

The OAG system offers several helpful features. The
first being that when given a city for departure or destination
if no air service is available the closest air service is given.
Also available is the ability for OAG to inform on direct flights

and connecting flights to the destination city.
Normally OAG returns information in a turse format such

as:

1 6:05P SEA 750P RDM QX 409 SWN 1

(13)

However, a user can expand that information with descriptive
titles using the "x" command. The same information using the

expand feature is presented in figure 4.

EXPANDED DIRECT FLIGHT DISPLAY
LEAVE- 6:05P ON-27 JUN
FROM~SEATTLE; TACO M A,WA,USA
HORIZON AIR FLIGHT 409
AIRCRAFT-FAIRCHIL D SWEARINGEN METRO
CLASS-COACH/ECONO M Y
ARRIVE- 7:50P ON-27 JUN
AT-REDMOND, OR, USA
ELAPSED TRAVEL TIME 1H 45M

Figure 4

Another nice feature of OAG is allowing an expert as well
as novice path through the system. OAG will lead a novice user
through the system with prompts or an experienced user can lump

information onto one line.

1.2.5 DIALOG

In contrast to OAG's limited subject scope is DIALOG [3].
DIALOG is an example of an encyclopedic database. This service
allows access to over 250 data bases containing over 100 million
records. Where OQOAG's command structure was simple and data
dependent, DIALOG is quite complex and may change between each of

its different databases. Due to the amount of information DIALQOG

(14)

contains and the complexity of the access, training courses are
available. Potential users may select from half-day to day-and-
a-half training sessions. Also available is a book "Guide to
DIALOG Searching" and a "Bluesheet" for each database. DIALOG

also has a monthly newsletter for its users.

It might appear an overkill of education just to search a
database for information, but it seems that there is a science to
the art of economical information retrieval especially when some

databases are charging $300 per hour of access.
DIALOG's database is broken down into files and within
these files are fields. 1In general these fields are identified

in figure 5.

To search any database on DIALOG the files the search is

restricted to is defined. This is accomplished by the command:

Select Files 213, 247

The next step is to issue the search criteria command.
These can be very complex since single-word terms, Boolean

expressions and field codes can be lumped into one command.

(15)

/AB (abstract)This is the 200-word summary of the
article.

" /DE (Descriptor) These are the single-word or multi-word
terms assigned by the abstractor to indicate the
primary subjects of the article.

/TI (Title) This is the title of the article.

AU= (Author) The person who wrote the article.

CO= (CODEN) This is a five- or six-character code
used by publishing industry to reference magazines
journals, and other publications.

CC= (Classification Code) A four-digit code that
defines a topic area.

DT= (Document Type) The type of document in which the
original article appeared.

JC= (Journal Code) Unique identifier to represent the
journal.

JN= (Journal Name) The name of the journal in which
the article appeared.

PY= (Publication Year) The year an article was
published.

SN= (ISSN: International Standard Serial Number) This
is a unique eight-digit code assigned to each
Journal by the International Serials Data System.

UD= (Update) Date of entry into the database.

Figure 5

(16)

Search Bulletin(w)Board

This command would search files 213 and 247 for matches to the
keywords Bulletin and Board. In addition with the (w) modifier
the word Board must follow Bulletin directly. This keeps the
content of searches to be dependable. Another possible search

command could be:
Search HOME/TI and AU= JAMES

Here information with "HOME" in the title and authorized by
"JAMES" would be flagged for viewing.

1.2.6 CompuServe

CompuServe [3] is an exapmle of an information utility.
Services often range from electronic mail and bulletin boards to
electronic conferencing. Information access 1s strongest in the
financial area but other areas include world news, weather and

consumer reports.

(17)

CompuServe uses menus to allow users to navigate through
the system. PFigure 6 shows the main menu. From this menu users
can respond the the system prompt '!' with single letter commands
to scroll forward and backward to menu screens, summon help and

even jump past several levels of menu screens.

CompuServe Page EIS-1
EXECUTIVE INFORMATION SERVICE

1 Communications 6 Shopping

2 Investments & Quotations 7 Weather

3 Decision Support 8 Professional & Technical

4 News 9 Consumer Information Service
5 Travel 10 User Information

Enter your selection number,
or H for more information.

Figure 6

The system leads users through a series of questions to
determine precisely what information is desired. These questions
vary depending on the different catagories of information. As an

example the systems prompts the user with:
Company:
in the Investments & Quotations section of the system, whereas,

the Weather section needs information about locations such as

city and state.

(18)

A very powerful service offered by CompuBServe is its
electronic conferencing. This service allows an unlimited number
of users to converse on subjects of common interests. This
conference, analogous to a telephone conference, can be both
private and public and can be saved so that referencing materials

discussed may be printed.

1.2.7 Additional literature

Books also cover some aspects of electronic bulletin

boards. "Going On-line With Your Micro" by Lou Haas and "Joys of

Computer Networking" by Judy Barrett, give readers a basic

education on using bulletin boards, describe the software needed
to access remote computers and the type of systems available..

However, the books do not discuss how to build a system.

Larry Myers' Ybook entitled "How to Create Your Own

Computer Bulletin Board" provides the closest outline of the

steps necessary for creating a system. It falls a bit short,
however, of the detailed information needed for a system which

must handle information in the form of documents.

(19)

"Setting up a Technical Information System" by C.J.

Schmidt and R.G. Murdick describes two characteristics that would
be part of +the +this system. According to the writers an
information system should fulfill the needs of the consumer and
be designed to operate as economically as possible. The writers
also outline four indexing principles; conventional alphabetic
indexing, division of concepts into classes and subclasses,
coordinate system in which a document is described by a set of
terms, or a combination of +the latter +two. This document
management system will also incorporate the second and third

indexing principles.

1.2.8 PSDM

The prototype system for document management - PSDM, is
not introducing any new concepts, but tailoring a collection of

gystems for a specified interest group.

In its simplist form, PSDM is a bulletin board system
like the RBBS-PC. The thrust or goal of any bulletin board is

for users to make the system valuable, that 'is, the information

(20)

comes from the users and the bulletin board is only the transport
device. In many ways the bulletin board system should be very

gimple so that it does not interfere with the business of sharing

information.

This system does however differ from RBBS-PC by the type
of information stored. The +typical bulletin ©board system
information is in +the form of conversations. The .type of
information maintained in this system is in the form of documents

and proposals.

Although NewsNet, OAG and DIALOG do not depend on users
to add to their information pools, they do more closely relate to
PSDM in that they have designed efficient mechanisms to allow
users access to information. With the three informations systems
surveyed, NewsNet, OAG and DIALOG offer three different file
structure strategies. The O0AG system falls under a normal
predefined key structure database. This is very suited for the
type of data it handles. This traditional approach does not work
very well on information composed by different individuals and
retrieved by matching keywords that attempt to match document
content. NewsNet and DIALOG have 1logically broken up the

information database into files or interest areas. Searching

time can be reduced by limiting the area of the scan. This
system will use a similar concept by which data will be placed in
sub-directories for different interest areas. Utilizing the UNIX
hierarchial file structure directories and data could be
intermixed at great depths making it easy for users to find
related information on topics of interest. The structure may

appear as presented in figure 7.

information directory
|

|
product A prodqpt Bs.

| r —> r i
operating system communications applications
I l
bugs datafile datafile datafile graphics datafile
L b |
I 7 [l
datafile datafile datafile
Figure 7

The ability +to 1limit the amount of data a user mnust

search through becomes increasingly important as the amount of

(22)

data in the system grows. TForcing users to traverse the
information directory and perform retrieval operations from

specific areas of interest will greatly increase system response.

As stated previously, this system wmust be easy to use.
Two possibilties exist for the main users interface: Menus or
commands. With a wide variety of expertise for wusers a menu
system would be +the logical choice. However, <for PSDM the
potential user base will be experienced data processing personel.
This will simplify the interface to a set of commands, along with

an on-line help facility for user assistance.

Since menus will not be presented, the commands should
have some meaning. Therefore, commands of length 1 will not be
used as in the OAG and RBBS-PC systems. Rather than use an "a"
to read a document, a command such as "view" will be used. As a
future enhancement, an expert mode could be implemented. As in
RBBS-PC this mode might allow truncated and even concatenated

commands.

(23)

2.0 System Requirements

For the prototype system for document management to be an

effective tool it must meet the following requirements:

* Documents handled in original form
Documents by their very nature must be taken as a whole.
By separating a document into small manageable entities, much of

its original meaning can be lost or misinterpreted.

* Easy to use
This particular system will undoubtly be used most by
what are commonly referred to as casual users. It is therefore
imperative that its functions are logical and command structure
is designed for easy recall. A good help facility is definitely

an important aspect of this requirement.

* Easily tailored
User expectations of the systems functions, as well as
strategies for document filing, input and retrieval undoubtedly
will not stay constant. The system must be flexible enough to

accommodate changes which come from a variety of demand groups.

(24)

* Low maintenance
The cost of forcing users to continually bother with
maintaince functions can weigh heavily on the benefits offered by
the system. If the amount of work required to input and maintain
the database becomes burdensome then users will gradually reduce
the ambunt of data stored. This could potentially reduce the

value and usefullnes of the system.

¥ Interactive
The word interactive suggests two modes of operation
-input and output. Users of +the system must have the
capabilities to retrieve information in its original form as well

as input thoughts and ideas in the form of documents.

* Selection based on content
This will be the most visible and important facility the
system has to offer. The value of the program can be measured on
how easliy users locate documents stored in the database. Users
must have the capability to select information based on keywords

as well as by subject classification.

* Security
The system must have a facility +to restrict general
public access in-addition to the prevention of unauthorized users

from viewing documents containing sensitive material.

(25)

3.0 System Design

The prototype system for document

'functionally separated into 3 phases:

* Initialization
* Command

* Maintenance

3.1 Initialization Phase

During initialigzation phase wusers

management can be

identification 1is

verified, accounting facilities are initiated, and the initial

system notice file is displayed.

Users identification is verified by

comparing a user

_entered id number along with password to the bulletin boards user

log file. The user will respond to the system prompt:

ID:
PASSWORD:

(26)

for entrance to the system. The system uses log file for each id
will contain information such as user name, location and type of

access available.

Accounting facilities will be initiated in this phase to
record the time and date the user started using the system as
well as setting up pointers to buffer areas used during the
command phase of the system. The system notice file will be the
final action of this phase. This notice will only be presented
at initial logon and will contain system news and alerts. This
information will be maintained by +the system administrator
utilizing existing wutilities. Therefore, no special design

considerations are needed to maintain this part of the system.

2.2 Command Phase

From the command stage 8 command/states are possible:(see

figure 8)

27}

from LOGOQFF
Phase 1 HELP

i

| : EDIT
PROCESSOR

MESSAGE DIRECTORY

SEARCH

VIEW i SUBJECT

Figure 8

It is at this stage that the user will respond to the system
command prompt with valid system command. The command prompt for
PSDM will be a single word on a line by itself followed by a
colon:

Command :
Commands will be entered by the following syntax:

<{command> [<parameter§ {parameter> ...]

where spaces separate each entity. Refer +to appendix C for

layout of the system commands.

(28)

3.2.1 Help

The help command performs exactly what its title
describes. Users that have difficulty with the system may use
the help feature to gain information on all commands. Both
general information on how to use +the system and detailed
asgistance on specific commands will be available. Each of the

following would be valid help commands.

command: help
command: help help

command: help view

3.2.2 Edit

The edit command will handle processing required to input
information into the system. As stated previously, editing of
input is handled through the unix editor "ed". Upon initiating
the editing session, one of two paths must be declared. Either a

file is being created or a file is being

(29)

re-edited. Only the system administrator or the originating user
can change an existing document. When editing a new document the
document access must be declared. The two types of access are
public and restricted. Users with preauthorized access to
restricted documents would also have access to public documents.
Existing documents can have their access type changed only by the
originator or system administrator. It is the responsibility of
the user to compose the first line such that it describes the
document content. This line will be used by other features that

aid in document selection.

command: edit {<file> | "new"] <access type>
3.2.3 Password

The password command will give each user the ability to
choose their own password. This will be the only user initiated
access to the system user-log. Passwords will be restricted in

length to nine characters and must be used.

command: passwd <{password>

(30)

3.2.4 Directory

The directory command gives the user the ability to
direct other retrieval and edit functions to specific areas of
the system database. Users will work +through the database
building paths of interconnecting directories. The collection of
paths that is currently being used is called the current working
directory. In the 1initial release users will only be able to
traverse down through directories and the associated sub-
directories. To change the current working directory a user
would have to start-at the base or top directory and again build

the directory path from that point.

command: dir

command: dir <{sub-directory>

3.2.5 Subject

The first of two mechanisms to give +the user some
selectivity in viewing documents of interest is found in the
subject command. This command will analyze all data documents

contained in the current working directory and display documents

(31)

name, creation date, type of access and the desecription line.
The output produced by this command helps the user to select

which document to view.

command: sub

3,2.6 Search

The second mechanism of selectively retrieving documents
is found in the search command. Here users give keywords which
the information system will use to search for in the current

working directory and each of the associated sub-directories.

UNIX utility programs will be used to perform the actual
search. The system will only build the command string and pass
it to the operating system. UNIX has a very powerful file-

searching utility, 'awk'.

Using the 'awk' utility a file can be searched for a set
0f patterns and a specified action will be performed if a match
is encountered. The user of PSDM will not have to worry about
the syntax required to operate the 'awk' utility as that will be
handled by the utility. One to five keywords may be used during

each search through the directory.

(32)

As with the subject command subscribers may use the
information provided by this command to select documents that are

useful and should be viewed.

command: search <keyword>...

3.2.7 View

After the wuser has selected the documents that contain
information of interest the user may issue the view command t§
display the entire document. Security is maintained at this
point by comparing the current users access privilegés with the
requested documents defined access type. As with any command in
the gystem +that can potentially display more 1lines +than a
terminal can physically handle, the system will query the user as
to when more information is needed. This ability will allow a
full screen to be viewed and the user has complete control
whether %o continue with the remaining data to be displayed or

move on to some other function.

command: view <file>

(33)

3.2.8 Message

The final function discussed in the design is the message
command. Here messages will be saved in a separate directory for
specified user. No special editing features will be implemented.
To initiate this function, the message command will be issued
along with the recipiants user-id. All data entered from ﬁhe
terminal, up until a single '.' is entered, will be written to
the message directory. Users will be notified that mail exists

for them during the initialization phase.

command: msg [<user-id>] [data...] ["."]

2.3 Maintenance Phase

The third and final phase of this design is initiated
when the user logs off the information system by using the logoff
command. At this point accounting information for the user is
updated. System parameters saved in memory are written to the
appropriate files. After all final phase maintenance 1is
complete, control is returned to the operating system until the

next user initiates access.

(34)

3.4 Summary of Design

The primary goal for PSDM is to not get in the way of
allowing users to create and access data at a central site. The
three phases of the design and the transition from the sections
of the command processor should not present any difficulties for
the user. A scenario of system commands is located in Appendix A
and should serve beneficial in understanding the wuse of the

system.

Certainly this system falls short of the information
systems reviewed earlier, however, the requirements the users
have for this system should find it easy to build upon the frame

work specified.

To simplify +the design of the system, existing utilities
were used when possible. The UNIX operating system is made up of
over 200 utility programs and is designed to allow easy access

from with-in application programs.

(35)

MISSING PAGE

As an additional feature, research could be done to
analyze the feasability of wutilizing a relational data base
system to make keywords to data documents. This enhancement may
be required as the data base grows and sequential searching for

keywords dramatically curtails system response.

4.1 Value of Systenm

In general, most data processing applicationé are
proportionally valuable compared to their wuse. Assuming PSDM
contains information of use, accessing it will serve as a
tremendously valuable tool. NewsNet states in their example that
it's service could save tﬁenty hours of turning pages. But that
is when the source of the information is identified. 1In large
corporations the source for answers can be impossible to find.
With a central system users have increased thg likelihood that

questions and answers will be met.

(37}

9.

10.

Bibliography
Works Cited

Barrett, Judy. Joys of Computer Networking: Byte Book.

Haas, Lou. Going On-line With Your Micro: Tab.

Lambert, Steve. ONLINE: Microsoft Press, 1985.

Myers, Larry. How to Create Your Own Computer Bulletin Board
Tab Books Inec, 1983.

Schmidt, C.J. and Murdick, R.G.. "Setting Up a
Technical Information System", in Machine Design,
Vol. 34, No. 11, May 10, 1962, pp. 124-129.

Wessel, Andrew. Computer Aided Information Retrievel:
Melville Publishing Company, 1975.

Works Consulted

Kernighan, B.W. and Ritchie, D.M.. The C Programmigg
Language, Prentice-Hall, Inc. 1978.

Mittmen and Bormen. Personalized Data Base Systems:
John Wiley & Sons, Inc.

Nicols, Elizabeth. Data Communication For Microcomputers:
McGraw-HI11l Book Company.

Series 6000 Operating System Reference Manual: Copyright 1984

by Motorola, Inc.

(38)

Appendix A

Structure charts and module descriptions(see fidures A-1, A-2)

MAIN

initiaslize check diaplay process

fixed user banner commands
value identi-
fication

Figure A-1
process
commands
\ -
A — :

help editi password directory| | subject|| view| |message || logoff|| search

Pigure A-2

(39)

Initialize fixed values - This module is called only once and

Check

performs two functions. TFirst it assigns storage to
buffer areas used throughout the system. Secondly, it
gets the start time value so that the total system use

may be calculated. [init_values()]

user identification - In this module, interaction with

the user to identify and verify user authorization is
performed. A five character user identification number
is used to locate the user profile in the system user
log. When the profile is located, the user is asked to
enter a password which is then verified with the profile
password. If either of these two tests fail the user 1is
given an error message and the logon attempt must be

tried again. [check_id()]

Display Banner - A banner file, created by the system

administrator, is displayed on the terminal. [inline

code]

Get user input - This module is used throughout the system when

data must be received from the user. The data that is
input is placed into a buffer. Cursor-return terminates

the input stream. [getline()]

(40)

Parse command stream - The buffer used by get-user-input is

evaluated so that commands and arguments are separated
into isolated entities. Each command/argument string is
pointed +to by a unique ©pointer defined in the
initialized-fixed- values module. As a system standard
each string is terminated with a null character.

[parse_cmd ()]

Process command - This is the main module for command

processing and is made up of modules that perform
command tasks. See Figure A-2. [the following command

modules can be viewed by refering to Appendix D]

Help - If the 'help' command is entered with no arguments
then a file describing general helé procedures is
presented to the user. If an argument does accompany the
command then the appropriate file associated with the

argument is displayed on the users terminal.

Edit - In this module the user has the capability to
create new documents and edit existing documents. TFor
creating a new document the user will use the UNIX single
line editor 'ed'. After editing occurs, the fiie is

modified such that the first line contains the uger-id of

(41)

the creator, the date created and a subject line %o
describe the document. It is copied from a system
defined temporary file to a unique file name in the users

current working directory.

In the case of changing an existing document, the system
first checks that the user requesting the operation is
either the creator or the system administrator. Then the
system will re-arrange the first line so that it appears
to the user as it was originally entered. As described
with creating a new document, 'ed' is used for editing.
After editing 1is completed +the first line is again
updated and the data is placed in the same file and

directory originally specified.

Password - This module allows the user to change their
password. Checking is performed to insure that the
length of the password is less than nine characters. The
new password is copied to the user profile and the user

log file is updated.

(42)

Directory - This module uses any arguments to create the new
current user directory. It then displays file names that
are located in the directory. Both data files and

directories are displayed.

Subject - This module will read the files contained in the
following information:
*the name of the file,
*creation/modification date,
*access type and -
*¥the subject line.

If the file is a directory, the user is informed.

View - The user specifies the file to be viewed by an argument
to the view module. The reference material or the first

line is displayed with the appropriate headings.

Message - When the user issues this command one of two
poséible actions may occur. Messages can be retreived
for the current user or new messages can be created. The
message command with no arguments will cause the system
to retrieve all messages in the message directory for the
current user. After each message is read, it is deleted.
If all messages are deleted than that user's message

directory is deleted.

(43)

A user that wishes to generate a message includes as an
argument the user identification of the recipient. All
lines that the user enters, to a terminating line of '.',
is sent to the message directory for the specfied user.

- If needed a directory will be created.

Logoff - This module will update the user profile with the
current date and the user log file is re-written. The
amount of time the user utilized the system is displayed.
All files opened during the session are closed and
pointers for work buffers are released. Control 1is

returned to the operating system.

Search - This module uses the current user directory to search
data files for user specified keywords. A maximum of
five keywords may be used at one time, and are passed‘to
the search module as arguments. The UNIX utility 'awk'
performs the actual searching and reporting of matches.
The search module builds the call to the shell program

and provides file name and keyword arguments.

(44)

Appendix B
User Scenario
This scenario of +the use of PSDM should help to

understand both the concept and its use. Five general area's
will be presented:

1. Logon to the system.
2. Create a new document.
3., Retreive documents using the directory, subject,
search and view facilities.
4. Create messages.
5. Retrieve messages.
BOLDFACE print signofies user input.
$ psdm
id: 12181
password: dana
¥ H % * % ¥ ¥ %%
* % ¥ %* %
F¥% %% % % % X *%
FH¥ HEWXAXX H¥ el come
W% %% W%

Four-Phase/Motorola S.E. Document Management
Systen

system available times:
7:00 - 8:00 pm. cs%.
Monday - Saturday

Jim mullin Thank you for accessing PSDM.

command: dir 6300

aQ1000
a01479

(45)

command: edit new p

0

a

subject line for this document

this area is the body of the document

the UNIX editor 'ed' is being used for
taking data from the user and in placing it
into a file

v
173

q
file name :/bbs/info/6300/201545:

command: dir

6300

2000

command: dir 6300
a01000

a01479

a01545

command: sub

file date access subject

;01000 07-29-85 r first entry of value
a01479 08~-02-85 P this is the subject line
201545 08-02-85 P subject line for this document

command: search data document first

201000 KEYWORDS MATCHED == 3
201479 KEYWORDS MATCHED == 2
201545 KEYWORDS MATCHED == 3

(46)

command: view a01545

Creator: 12181
Date: 08-02-85
Access: PUBLIC
Subject: subject line for this document

this area is the body of the document
the UNIX editor 'ed' is being used for
taking data from the user and placing it
into a file ‘

command: msg 12181

->here is a message for user '12181"'
->to be retrieved using the message
->facility

"')-

command: msg

from: 12181 jim mullin
date: 08-02-85

here is a message for user '12181'
to be retrieved using the message
facility

SPACE BAR TO CONTINUE, ANYTHING ELSE TC ABORT:

command: logoff
Time used in seconds - 365

END OF PROGRAM
$

(47)

Appendix C
Command Summary
directory - used to build current working directory
dir [<sub=-directory>]
dir unix
edit - text editing
edit {<file> | "new"} <access type>

edit a0023 r
edit new p

help - displays system and command information
help [<command>]

help view
help '

logoff - terminates session
logoff
message - sends messages to users and reads messages
msg [<user-id>] [data...] ["."]
msg
msg 12181

this is sample data

password -~ changes user password
passwd <new password>
passwd abcdef
search - displays files that contain matching keywords
gearch <keyword>...
search system data 1985 QRACLE

(48)

subject - displays brief description of each file in directory
sub

view - displays specified file
view <{file>

view a00123

(49)

Appendix D

;* PROTQOTYPE SYSTEM FOR DOCUMENT MANAGEMENT */
* *
;* Author: Jim Mullin Date: 08/01/85 :;
*

Global varaible definitions

;*###*;

g cdddididdaiiaddaddssasdsdigesddiisidnsdiadsadiadaddsidssdl

#include <stdio.h>

#include <sys/dir.h>
#include <sys/stat.h>

#include <time.h>
#define PMODE 0644

struct userdef |
char u id[6];
char u pwordf10
char u name[20]
char u_dept{4];
char u_loc[20];
char u access|
char u date[8];
char u total Sj
char u ext[1];

b3 -

/* directory entry structure */
/* STAT return values */

/* time structure */

/* access permission */

/* definition for user_log layout*/

long tloc, start_time, rec_ptr, work long;
int work int, work V3

double dbl_int, dbl_v;

char buff[80];
char buff2[80];
char *argptr[10];

char *search ptr, *filcpy_ptr, *filcat_ptr;
char ¥date §¥r, *tmp_ptr, *msg ptr;

int nargs;
int file number;
11t log _Td;

/* number of arguments */
/* file counter */

/* £d for user_log */

(50)

struct userdef userrec;
struct stat stbuf; /* structure for file status */
struct tm *vtim; /* structure for time data*/

static char *bbs files[] = | /* fixed system file names */
"/bbs/user_log",
"/bbs/welcome",
" /bba/info",
"/bbs/help“,
"/bbs/msg",

.
r

main()

int ¢, i ,cmd, exit_flg;

char *wdir, *p, *t, *file cat(), *ecvt();

FILE *fp, *tp, *fopen();

exit_flg = 0; /* set to non-zero to exit */

;*##*/

call routine to initialize space for buffers */

/*##*/

init_values();

/*##*/

check user lo or valid user identification *

/*##################5###{###########################*/
if ((check id()) !=

printfT "\n *%% Invalid signon attempt ***\n");
return{-1

5*##*/

valid user ---> display banner/welcome notice*
/*##*/
if ((fp = fopen(bbs_files[1], "r")) == L)
printf("bbs: can't open %s\n", bbs f11es[1]),
else |
fileprint(fp);
fclose(fp);

(51)

/*##*;

ackno wed;e that we know who the

/*############## ###################################*/
for (i=0; 1<20; i++)
prlntf("%c“, userrec.u_name[i]);
printf(" Thank you for accessSing our bbs\n");

[*REFREHHRERRB R R R R AR F BB R BRI/
main command loo? to exit set exit flg <> 0%/

[*
/*################### # ###########################*/
while (exit_flg =

printf("\n\ncommand: ");

/*######################################*/
/¥ £ill "buff" with in stream */

/*######################5###############*/
getline();

Iididiiiasiiidaidddadddaddididiadadiisdidl

/* break input stream into arguments
for later us ®/

/*######################################*/

parse_cmd();

/*######################################*/

riate comand

set "emd
PP AR A B A Ay s PPN
emd=find_cmd(0);

/*######################################*;

USlni switch command process input
#

/*####### #############################*/
gwiteh (cemd) {
case O: {* error no command */
p=arp
printf% "\n\n ‘%s‘ not a valid command\n", p);
break;

case 1: /* hel

/*###################5############################*4

re than one argument grocess ag "

i
/*########################### FRERRRERRRARARRRARAE*/

(52)

if (nargs > 1) {
emd=Ffind cmd(1);
if (emd T= O i
p-argptr 1
t = file cat(bbs fllesEB], P);
if ((£p = fopen(¥, "r")) == NULL)
printf("bbs: can't open %s\n", t);
else {
fileprint(£fp);
fclose(fp);
break;

free(t);

else | /* no file found, not a command*/
p = argptr[1];
printf("\n\n ‘%s' not a valid command\n", p);
printf(" try 'help help'..... \n");
break;

}

}
/*##*é

* "help" alone ive general information
5 AT

/*####### ########## #H##i# ########################*/
= fopen("/bbs/help/help", "r")) = L)
prlntf("bbs can't open /bbs/help/help\n" :
else ¢
fileprint(£fp);
fclose(fp);

break;
case 2: /* edit */

/*##*f

check format, at least one argumen

*
TR AR F BB B R RRRRRRRRARTRARIA BRI/

if (nargs == 1)
printf("bbs: invalid format\n"};
break;

}

(53)

/*######################

/*##*;

edit first check second parameter

if it is "new" then

1. 1insure were in a sub-directory

2. create an empty temp file

3. invoke UNIX "ed" editor

4. copy temp file to new file,
including header info.

if it is a file name
1. set up path name

2. copy existing file to temp,
strip off header info.
3. invoke UNIX "ed" editor
4. copy temp file to old file,
1ncludin§ uﬁdated header info
##

dadadaadddad i ;

P = argptrE1]
if (stremp "new") ==

.
ffr
L
:/
;5

e (strcm€(wd1r, "bbs/ln%o ") == 0) f{

printf
break;

else |
system("> dune");
system("ed dune");
new filepy(wdir);
break;

}

else |

t=file cat(wdir, argptr(1]);
old filprp(t);

system("ed dune")
old_filepy(t);

}

break;

case 3: /* passwd */

"bbs: must be in sub-directory\n");

/#*blank file */

/* copy it 'new' */

;*##*;

check format, at least one argument

/¥
/*############

econd arﬁument should not be >

###################################*/

(54)

characters /

if (nargs == 1) {
printf("\n invalid command\n");

break;
i = strlen(argptr[1]);
if (i > 9)
prlntf("\npassword greater thna 9 characters\n");
| break;
' ;*########g#######################################*;
assw
/* P 1. copy argument to active user_log */
2. put in seperator *
/* 3. find starting location of user */
/* in user_log file. */

/* 4. write the user entry */
/*#####################################f#ﬁ########*/
strepy(argptr{1], &userrec.u ,_pword
userrec.u_pword[i] = ':';
lseek(log_fd, rec_ptr, 05;
write(log_fd, (char *)&userrec, sizeof(userrec));

break;
case 4: /* dir */
;:###ﬁ##:5
[* if arg count = */
/* ‘ . set workln directory to /
/¥ bbs flles%2 */
* 2. call routine to display that */
/* if arg count > 1 |
* 1. set working directory to current */
/* working directory + argument */
/ 2. cgll routine to display that *5
irectory

/*###### ##########f#f############################*/

if (nargs ==

wdir = bbs files[2];
directory(Bbs_ fllest2]),
break;

if (nargs > 1) _{
p=argptr[1];
wdir = file cat(bbs_files[2], p);
directory(wdir);
break;

(55)

case 5: /* sub */

';:#####i##:;
su

/* call routine to display subject informatn */
arding current worklni#director

/ ol
/*############i##################### ########%###*/

sub worker(wdir);

break;
case 6: [* view */
;*##*5
* view
/* 1. set up path name. */
/¥ 2. open file name */
/* 3. pretty print header info. */
/ 4. p{;gt dgcument *;
. C
/*###########f####################################*/
p-argp r

t = file_cat(wdir, p);

if ((fp = fopen(t, "r")) == NULL)
printf("bbs: can't open %s\n", p);
else |
filehdr
flleprlnt%fp),
fclose(fp);

break;

(56)

case T: /* msg */

;*##*;

msg

/* if arg count = 1 * [
[* read messages for this user */
/* if arg count > 1

create message for some other user

/¥ /
/*################### Vit ddaadaddsadadadisd il
if (nargs =?)1) /* read messages */

msg_read();

else {
msg_creat();

break;
case 8: /* logoff */
;*##*;
lego

/* g1. find offset into user_log for this user*/
/* 2. find current time

* 3. set user_log to current date/time /
* 4. calculate system time used. /
* 5. tell the user how long they were on

/* 7. write the user_log */
/* gset exit fla */
/*#####################ﬁ##########################*/

lseek(log_fd, rec_ptr, 0);

set date(];

strcpy(date ptr, &userrec.u date[0]);

work _int = Tloc - start_time;

prlntf(“\n Time. used in seconds - %d\n", work_int);

(57)

write(log fd, (char *)&userrec, sizeof(userrec)),
exit flg = -1;
break;

case 9: /* wdir */

/*##*5

/* wdir
lay where we are at

/* . */
/*########### ;###################################*/

grintf n\ncurrent directory - '#s'\n", wdir);
reak;
case 10: /* search */

/*##*5

/* search
/* call routine to search working directory */
for SﬁGleled keywords *

/* /
[*RERARRRERRARRR A ###############################*/

search_worker(wdir);
break;

default: /* get the rest of them */
if ((fp = fopen("/bbs/help/default" "rt)) == NULL)
prl?tf("bbs can't open /bbs/help/default\n)3
else

fileprint(fp);
fclose(fp);

}
printf("\n END OF PROGRAM\n");

(58)

/*###*;

/*check id

/* T. ask user for id. "id:" */
[* 2. get user input /
/* 3. search user_log for match on user_id.

/* 4. if user id Tound ask for password. "password: "*/
/* 5. if password matches terminate user_id */

and user name with nulls for later processin

*

é;##ﬁ##§%§#########?###################################ﬁ#*/
ecK 1

{

int i, leny

if ((log_fd = open(bbs_files[0], 2)) == -1)
return;

printf("\nid: ");

getline();
rec_ptr=0;

while ((len=read(log_fd, (char *)}&userrec,
sizeof(userrtec))) >
if (strcmp!(buff, userrec. u id, 4) == 0) |
prlntff" assword: ");
getline(?
1=03
while (userrec.u pwordﬁl] = fai) 1
if (userrec u pword[i] !'= buff[i]) {
return(-T ?

i4+4;

userrec.u 1d[BE = '"\0';

. userrec.u name[19] = '\O‘-
l return(0)5

else
rec_ptr = rec_ptr + len;

return(-1);

(59)

;*###*/

filprp strip off header information for old document*/
1. open o0ld file (name). */
/* 2. open temp file name ("dune").
/* 3. strip off user_id, date, access. */
/* 4. copy remainder of old file to temp file.

. close files.

ks /
/*######## igaddddddddadidassddddddissassdsddddatadasaddiidsdadl
oid filprp(name

char *name;

int ¢, tp;
PILE *fp, *fopen();
char buft1];

if ((fp = fopen(name, "r")) == NULL) {
printf("bbs: can't open %#s\n", name);
return;

if ((tp = open("dune“ "w")) == NULL) {
printf("bbs: can't open temp file\n");
return;

while ((c=getc(fp)) 1= ':') /* bypass user_id */
continue;

while ((c=getc(fp)) != ':') /* bypass date */
continue;

while ((c=getc(fp)) != ':') /* bypass access */
continue;

while ((buf[O]=getc(fp)) != EOF)
write{tp, buf, 1);

close(fpg;
close(tp);

E

I*RRRRRERFFFRRRRRRRARAH LB R RBRERB BB R BB BB RERIRH R BB RHRA)
/*filehdr. pretty print the file header information * /

/* 1. print title and data for creator, date, access and */
subject.

sl "
/*###*/

(60)

filehdr(fp)

?ILE *fp;

int c¢;

while ((c
pute(c, stdout);

- printf("\nCreator: “;'

= getc(fp)

printf("\nDate: ");
while ((c

:')

= getc(fp)) 1= ':')
pute(e, stdout);

printf("\nAccess: ");

if ((e¢ = gete(fp)) ==
printf("PUBLIC");
else

’P')

printf("RESTRICTED");

getc(fp);

printf("\nSubject: ");

while ((c

}

= getc(fp)) != '\012')

putec(ec, stdout)
printf£("\n\n");

/*###*;

/*new_filcpy.
*

close files.

creates unique file name and copies temp file¥*
*

header information inserted. /

/* 1. set up templet for unique file name. Path + X's */
/* 2. let mktemp replace "XXXXXX" with unique file name.*/
/¥ 3. inform the user as to the name we came up with. */
A 4. open both files, new file and temp file. */
* 5. copy header info, user_id, date, access. */
/* 6. copy the rest of temp ?11e to new file name. */

/* */
/*###*/
new_filecpy(p)
char *p;

char *j, *t4, *mktemp();

char buf[1];

(61)

int e, 2, i;

FILE *fp, *tp, *fopen();
int £4;

t = filcpy_ptr;
sprintf(t, "XXXXXX");

t = file cat(p, t);

t = mktemp(t);

printf("file name :%s:\n", t);

if ((£d = creat(t, PMODE)) == -1) {
printf("bbe: can't create file\n");
return;

if ({(tp = fopen("dune", "r")) == NULL){
printf("bbs: can't open edit temp file\n");
return;

write(fd, (char *)userrec.u_id, 5);

buf[O% = ":';
write(fd, buf 1);

set_date();
write(fd, date_ptr, 8);
buf[o% = ! cT o
write(fd, buf, 1)

if (nargs == 3) {
j=argptr[2];

if (*’J == 'p' H *j == 'p!)
buf[O] = *3j;
else
buf[O] = 'r';
else

buf[0] = 'r';

(62)

write(fd, buf, 1);

buf[Og = ':';
write(fd, buf 1);

while ((buf[0] = getc(tp)) !'= EOF)
write(fd, buf, 1);

close(fp);
close(tp);

return;

Mididiigadzdadadiiiidiadididisidiadididisdedidisieisdissiadl

/*old _filepy. copies temp file to specified o0ld file name */
/* : header information inserted. */
/¥ 1. open both files, new file and temp file. */
/* 2. copy header info, user id, date, access. */
/* 3. copy the rest of temp Zile to new file name. *
/* close files. */
/*##*/

old fllcpy(p)
char *p;

char *j, *t;

char buf[1];

int ¢, 2z, i, n;

FILE *fp, *fopen();

int +p;

if ((fp = fopen("dune", "r")) == NULL){

printf("bbs: can't open edit temp file\n");
return;

if ((tp = open{(p, "w")) == NULL)
printf("bbs: can't open %s\n", p);
return;

(63)

write(tp, (char *)userrec.u_id, 5);

buf[O% = YiVs
write(tp, buf 1);

set_date();
write(tp, date_ptr, 8);
buf{0] = ':1;
write(tp, buf, 1);

if (nargs ==_3) |

j=argptr(2];
if *J —e Tpl H *j == 'p!)
buf[0] = *j;
else
buf[0] = 'r';
else

buf[0] = 'r';
write(tp, buf, 1);

buf[Og = '3';
write(tp, buf. 1);

while ((buf[0] = gete(fp)) !'= EOF)
write(tp, buf, 1);

close(fp);
close(tp);

return;

/*##*f

/*file cat concatenates a file name unto the end path. *
/* 1. get space for temp buffer to put the new path. */
/* 2. copy all of old path name into buffer. */
/* 3. add the required "/". */
/* 4. copy the file name to be appended. * /

terminate string with a NULL /
/*########################g#################################*/

(64)

char *file cat(s ,p)
char *g;
char ¥*p;

char *v, *t, *malloc();
int i;

t
v

malloc(50);
t; /* save starting address */

Hn

1=0;

while (*s != NULL){
*t = *g;
*8++;
*t4+3

¥4y =)7

while (*p != NULL){
*t = ¥p;
*t4++;
*p++;

}
*t = *p; /* NULL */

return(v);

/*##*/

/*find_cmd. agssigns appropriate command number %o */

/* argument buffer. */
. search characters for match of commands.

ol ®/
/*######## ###*/
find cmd(j

int J;

char *p;
int i,k;

p = argptr[j];

(65)

k=0;
i = *pi+y

switeh (i) |

case 'h': /* look for help */

if (strcmp(p, "elp") == 0)

-t
=t

break;
case 'e': /* look for edit */

if (stremp(p, "dit") == 0)

=2
break;
case 'p': /* look for passwd */

if (stremp(p, "asswd") == 0)
k=3;

break;
cagse 'd': /* look for dir */

if (stremp(p, "ir") == 0)
k=4;

break;
case 's': /* look for sub */
if (stremp(p, "ub") == 0)
if (stremp(p, "earch") == 0)
k=10;
break;
case 'v': /* look for view */

if (stremp(p, "iew") == 0)

.y

break;

(66)

case 'm': /¥ look for msg */

if (stremp(p, "sg") == 0)

=7;
break;
case '1l': /* look for logoff */

if (stremp(p, "ogoff") == 0)

=8;
brealk;
case 'w': /* look for wdir */

if (stremp(p, "dir") == 0)
=9;
break;
default: /* error due help */
k=0;

}

return(k);
}
/*##*;

/*parse cmd break up input stream into arg cells

“loop through buffer. */
1. if character found copy it to unique arg untl¥*/
/* space delimiter is found. */

/¥ . terminate cell with NULL. i
/*##*/

farse cmd ()

int len;
int offset;
int k, i;
char *p;

nargs=0;

offset=1len=0;
k=0;

(67)

while ((len = cmdlng(buff, &offset)) > 0) {

p = argptr[k];
for (i=offsetf i<len+offset; i++) |

} *p++ = buff[i];

*p = '\0';

offset = len + offset;
++k 3

++nargs;

}

for (i=k; i<10; i++) {
P = ar ptrtl
*P = O!-

}

}

/*##*/
/*cmdlng. return length of characters starting at offset x¥*
/* in buffer s. commands are terminated b ace. *f
/*gf#######f###################################i#### FhFRHEp*/
cmdlngls, x

char sl |;

int *x;

{
int i,3,1;

*x;
1

i
d
hile (k= NULL
PR T
J++;
else f

*y = J’

while (s[j ;z NULL)

if (s[j] == ' ") {
break;

else
J++;

(68)

return(j-i);

}

*x:j
return(O),

}

/*##*/
/*getllne fill buff with 1n§ut characters until return key*/

tﬁﬁ### dda g dadddid ##############################*/
e ne

int 1, e;
i=0;

while ((c=getchar()) != '\012')
buff{i++] = c;

}buff[i] = NULL;

/*##*;

¥fileprint ﬁrlnt 32901fled file until end-of-file

/*#### ##### il gdadddadddddsdaddsdadddisdaddddadaddaadddss oyl

fileprint(fp

?ILE *fp;
int c¢;

while ({ec=getc(fp)) '!'= EOF)
putc(c, stdout);

/*##*;

/*directory displays files found in a sub directory

/* 1. status UNIX for file information. */
/% 2. insure that it is a legal directory name. */
/* 3. open and read the UNIX directory file. */
/* 4. check if blank entry. if so read next. * /
/* 5. don't process the parent or this directory entry. */
/* 6. print just the name of the file. */
/* and do the next until the end of directory

*/
/*##*/

(69)

directory(name)
char *name;

struct direct dirbuf;
struct stat stbuf;

int 1, fd;

if (stat(name, &stbuf) == -1) {
printf("bbs: '#s' not found\n", name);
return;

if ((stbuf.st_mode & S_IFMT) != S IFDIR) {
printf("bbs: '#s' not a directory\n", name);
return;

;

if ((£d = open(name, 0))-== -1)
return;

printf("\n");
while (read(fd, (char *)&dirbuf, sizeof(dirbuf)) >0) {

if (dirbuf.d_ino == 0) /* slot empty */
continue;

if (strcmp(dirbuf.d name, ".") == 0
'l stremp(dirbuf.d_name, "..") == 0)
continue;

for (i=0; i < DIRSIZ; i++)
printf("%c®", dirbuf.d name[i]);

printf("\n");
ilose(fd);

/*##*;

/*strcm ares two strinfg#;or a specified length 1. *

1. conm
/*#####g########ﬁ############## i it dddaddddddddaddadl
strempi(s, t, 1) /* compare for length 1 *
char s[], t[];
int 1;

(70)

int i;
1=04

while (i <= 1) {
if s[ig 1= t[1])
return(-1);
i++;

return(0);

/*##*/

*strcmp. compares to strings */
/*############ﬁ#############%###############################*/
stremp ?, s /* return <0 if s<t, O s==t, >0 if s>t */
char s :

int i;

i = 0;
while (s[1]
if (s

EBRBRRRRRB BB EERR AR BB BB IR B BRI BR AR BRI B BB
*search _worker. builds interface to "awk" to perform */
* gearches. */
open current working directory as a file. */
read entries until file name found. *
print informational message for keywords found. *
create path name for this file. current working */
~ directory + file name. */
. build UNIX executable command. */
interface to shell script for "awk" utility. */
do this for all files in working directory */
/*################ ######################ﬁ#################*/
search_worker(name
char *name;

{

struct direct dirbuf;
char *t, *j;

FILE *tp;

int 1, o, £d;

i

*
-1 onW b =
. L[] - L] -

(71)

if ((fd = open(name, 0)) == -1)
return;

while (read(fd, (char*)&dirbuf, sizeof(dirbuf)) >0) {

if (dirbuf.d ino == 0)

continue;
if (strcmp(dirbuf.d name, ".") ==
1 stremp(dirbuf.d name n..m) == 0)
continue;
for (i=0; i<DIRSIZ; i++)
if (dirbuf.d namefl] == ' ')
break;

dirbuf.d_name[i] = '\0';
printf("%$s KEYWORDS MATCHED == ", dirbuf.d_name);

t = file_cat(name, dirbuf.d_name);

J = search_ptr;
sprintf(j, "sh awkin %s %s %s %s %s %s", t, argptr[1e
argptr[2], argptr(3], argptr(4], argptr(5]);

system(Jj);

}
}

I dzatidisdsdiiaiddideaiadidaaidaaiddabadiiisidiadiiaddad il

/*sub_worker. display header information for each file in*/
/* current working directory. */
/* 1. open current working directory as a file. */
/* 2. read entries until file name found. */
/* 3. print column title line with seperator line. */
/* 4. print the file name. */
;* 2. check if it is a document or sub-directory. *;
* . open files *
/* 7. Dby-pass user id of creator but print date, access¥*/
/* and subject Tine. 7]

close file. */

""'-..""'--.
*
03

continue for each file in the sub-directory

o 4
/*###*/
sgb worker (name
char ¥*name;

(72)

struct direct dirbuf;
char *t;

PILE *tp;

int i, e, f£4;

if ((£d = open(name, 0)) == -1)
return;

printf("\n");

printf(" file date access subject\n");
printf("- - \n") ;

while (read(fd, (char*)&dirbuf, sizeof(dirbuf)) >0) |
if (dirbuf.d_ino ==

continue;
if(stremp(dirbuf.d name, ".") ==
|| stremp(dirbuf.d_name, "..") == 0)
continue;
for (i=0; i<DIRSIZ; i++)
if (dirbuf.d_nemel[i] == ' ')
break;

dirbuf.d name[i] = '\0';
printf("%$s ", dirbuf.d name);

t = file_cat(name, dirbuf.d name);

if (stat(t, &stbuf) == -1) |
printf(" -- file error \n");
continue;

if ((Btbuf.st_mode & 8 IFMT) == S_IFDIR) {
printf(" = Directory\n");
continue;

if ((tp = fopen(t, "r")) == NULL)
printf(" can't open");

(73)

while ((c=getc(tp)) != ':') /* bypass user_id */
continue;

while ((c=getec(tp)) != ':")

pute(e, stdout); /* date */
printf(" ")
putc((gete(tp)), stdout); /* access */
gete(tp); /* by pass : */
printf(" "y
while ((c=getec(tp)) != '\n')

~
*

putc{ec, stdout); subject */

close(tp);
printf("\n");
close(fd);

/*##*/

*msg creat. create a message for specified user_id. */
* 71. concatenate user id with "/bbs/msg". */
/* 2. check if directory is available to store message*/
/* not create one. "MKDIR" one. *
* 3. create a unique file name "mktemp". */
/* 4. open the new file or message. */
/* 5. insert house cleaning, from, date. */
/* 6. prompt the user for message "->". copy input to*/
*

file until terminating "." found.
close file.

[/
/*##*/

msg_creat()

char *name, *t, *mktemp();
int f£fd4, i;

name = file_cat(bbs_files[4], argptr(1]);

if (stat(name, &stbuf) == -1) |
t = msg ptr;
sprlntht "mkdir %s", name);
system(t);

(74)

t = msg ptr;
sprintf(t, "XXXXXX");

t = file cat(name, t);
t = mktemp(t);

if ((fd = creat(t, PMODE)) == -1) {
printf("bbs: can't create file\n");
return;

sprintf(t, "from: #s %s\n", userrec.u_id, userrec.u name);
write(fd, t, strlen(t));

set_date(); _
sprintf(t, "date: #s\n", date_ptr);
write(fd, t, strlen(t));

write(fd, "\n", 1);

buff[0] = ;
while (buff[o; 1= '.t) |
printf("->"
getllne(e
if (buff{0] == '.")
break;

write(fd, buff, strlen(buff));
write(£d, "\n", 1);

close(fd);

I*BRRBRERERAR BB A BRI BR BB B IRR IR IR IAAR AR AR AR RR BB

/*msg read. read all messages for currently active user*
* 1. concatenate user id with "/bbs/msg". */
* 2. 1if no directory Tound, then no messages waiting.*/
* 3. if directory found read each file in directory. */
* 4. Dbypass parent and this entry. *
* 5. create path name, "/bbs/msg/" + user_id + file */
* 6. open file. *

/* 7. print file using "fileprint". */

/* 8. close file.

/¥ 9. status user as to go on to next message or abort*/

/¥ 10. loop through all message for user id. */
* 11. if all messages deleted, then delete directory. */

/
/*##*/

(75)

msg_read()

struct direct dirdbuf;

char *j, *t, *name;
int 1, ¢, fd;

FILE *%tp;

userrec.u_id[5] = '\0';
name = file cat(bbs_files[4], &userrec.u id[0]);

if ((fd = open(name, 0)) == -1) {
printf("\n\n No messages \n");
return;

while (read(fd, (char*)&dirbuf, sizeof(dirbuf)) >0) {
if (dirbuf.d_ino == 0)
continue;

if(strecmp(dirbuf.d name, ".") == 0
|| stremp(dirbuf.d_name, "..") == 0)

continue;

for (i=0; i<DIRSIZ; i++)
if (dirbuf.d_name[i] == ' ')
break;

dirbuf.d_name[i] = '\0';
t = file_cat(name, dirbuf.d_name);
if (stat(t, &stbuf) == -=1)

printf(" == file error \n");
continue;

if ((tp = fopen(t, "r")) == NULL)
printf(" can't open");

printf("\n");

fileprint(tp);

(76)

close(tp);

if (next_chk() == -1)
return;

J = msg ptr;
sprlntffg "rm %s", t);
system(j

printf("\n");

}

close(fd),

T = 8g ptr,

sprintfrt, "rm -r %s", name);
system(t);

l
/*##*;

/*next chk ask the user to respond for continued process*

/*#ﬁ##ﬁﬁff##*/
nextv ¢
l

printf("\n SPACE BAR TO CONTINUE, ANYTHING ELSE TO ABORT:");
getline();
if (buff[0] == ' ')
return(0);
else
return(-1);

/*###*/

*init values. initialize space for temporary buffer *

/*###*/

init_values()

char *malloc();

argptr[0] = malloc(40),
argptr{1] = malloc(},
argptr(2] = malloc(40);
argptr[3] = mallocE40%,
argptr{4| = malloc(40);
argptr|5]| = malloc(40);
argptr[6] = malloc(40);
argptr{7] = malloc(40);
argptr[8] = malloc(40);
argptr[9] = malloc(40);

(77)

search_ptr = malloc(70);

malloc(10);
malloc(50);

filepy_ ptr

filcat_ptr
msg_ptr = malloc(60);

tmp_ptr = malloc(10);

date ptr = malloc(105;
set_date();

start_time = time((long *) 0);

}
/*##*/

/*aet date. calls time routine and formats date output */
/*##*/
?et date() /* date_ptr = mm-dd-yy */

tloc = time((long *) 0);

vtim = localtime(&tloc);

if ((vtim=>tm mon)+1 < 10)
sprintf(tmp_ptr, "0%d", (vtim->tm_mon)+1);
else
sprintf(tmp_ptr, "%4d", (vtim->tm mon)+1);

if (vtim->tm mday < 10)
sprintf(date_ptr, "#s-0%d-%d", tmp ptr,
vtim->tm_mday, vtim—>tm _year);
else
sprintf(date_ptr, "®#s-#d-%d", tmp ptr
vtim->tm _mday, vt1m~>tm years

}
/*##*/

stre irs §e01fled gtring to second.

N AP LA P AT P Py PP T YOOI
strepy(s, %) /* copy s to t */

char *s, *t;

while (*s != '\0')
¥L4++ = ¥54++3

(78)

PROTOTYPE SYSTEM FOR DOCUMENT MANAGEMENT
by
Jim Mullin

B.S., Missouri Western State College

AN ABSTRACT OF A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

"In the U.S3. alone, with the power provided by the now
indispensable computer, we are creating new documents at a rate
of over one million per minute." This quote, found in a recent
computer periodical, provides a feeling for the vast amount of
information being created. This prototype system is an attempt
to develope a mechanism through which, individuals can manage and

utilize the plethora of pertinant information available.

Much work has been done in the area of data processing.
Information bounded by some criteria, or stated differently data
as distinct entities, is easily masnaged by database management
systems. To name a few: Oracle, Unify and System 2000 are very
efficient in +the handling of this type of data, but fall far

short in the management of loosely structured documents.

This paper and its accompaning program will serve as a
building block for a system to automate the functions of a manual
document filing system. In developing this progect, currently
available systems and literafure are reviewed. Other'areas of
the paper are: functions of +the system, an overview of the
system design and possible future enhancements. The program
itself will aid users in the collection, classification, storage

and retrieval of documents as stated in the design criteria.

