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ABSTRACT

Meta analysis is a statistical technique for synthesizing of results obtained from multiple
studies. It is the process of combining, summarizing, and reanalyzing previous quantitative
research. It yields a quantitative summary of the pooled results.

Decisions of the validity of a hypothesis cannot be based on the results of a single study,
because results typically vary from one study to the next. Traditional methods do not allow
involving more than a few studies. Meta analysis provides certain procedures to synthesize data
across studies. When the treatment effect (or effect size) is consistent from one study to the next,
meta-analysis can be used to identify this common effect. When the effect varies from one study
to the next, meta-analysis may be used to identify the reason for the variation.

The amount of accumulated information in fast developing fields of science such as
biology, medicine, education, pharmacology, physics, etc. increased very quickly after the
Second World War. This lead to large amounts of literature which was not systematized. One
problem in education might include ten independent studies. All of the studies might be
performed by different researchers, using different techniques, and different measurements. The
idea of integrating the research literature was proposed by Glass (1976, 1977). He referred it as
the meta analysis of research.

There are three major meta analysis approaches: combining significance levels,
combining estimates of effect size for fixed effect size models and random effect size models,

and vote-counting method.
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INTRODUCTION

Meta analysis is concerned with pooling or combining results from several different

studies.

The term “meta analysis” was first proposed by Glass who called it "analysis of analysis"
(Glass, 1976). Glass suggested that there are three levels of data analysis. The first level or
primary analysis corresponds to an original data analysis in a research study. The secondary
analysis (second level) is a re-analysis of data with regards to original research questions using
the most appropriate statistical techniques or answering a new question using old data. And
finally, an advanced secondary analysis (the third level) is the meta analysis of research or
analysis of analysis. It is the statistical analysis of a collection of analysis results that come from
individual different studies. The purpose of meta analysis is to choose appropriate techniques to

integrate or combine different studies to better answer an original question.

The need for the meta analysis of research studies seemed to be clear 30-40 years ago
because of rapidly growing collections of research literature in social science fields. Fast
developing fields such as medicine and pharmacology need advanced statistical methodologies
as well. Each field of science contains hundreds of unsolved problems with dozens of papers
devoted to each of them. Usually each study involves more than one topic. The importance of
choosing the right topic and the corresponding collection of studies arises immediately after
determining a question of interest. Even if the topic is the same, techniques and measurements

may vary from one study to another.

Assume that a question of importance is determined. What is the next step? To determine
the study or topic, or to collect literature? One study may contain several topics. How does one
recognize whether a study topic contains important information? Or if one has several studies
involved, how does one decide which studies to include? There is no a single method that can
answer all these questions in general. Meta analysis techniques allow one to describe quantitative

data and combine evidence across studies.

One problem concerns the standardization of different studies. Published studies may



come from different research laboratories, different centers, etc. The studies are almost always
performed independently of one another. Unfortunately there are no standardized methods or

commonly used report forms under which such studies are published.

Difficulties in determining the methodology of meta analysis starts with the assumptions
that define what studies should be included. Usually studies involve many different subjects that
produce different numbers or kinds of findings. Most studies produce more than one finding.
Moreover, different studies usually use different scales, measures, etc. So, a big issue is how one
can combine many different findings that may have used different measurement scales? If one
study produces ten findings, and another study produces a hundred findings, should one average
findings within each study? If the answer to this question is yes, should one average the number
of subjects first and then find the average of the findings? Or should one assign a weight to each
study? If one is going to weight each study, then how should the weights be obtained? Should it
be some number or should it be some weight function? All these questions arise at the first level

of meta analysis.

A simple example considers the analysis of the effectiveness of open classrooms in the
education of students (Hedges, 1985). Students from traditional schools were compared with
students from experimental open classroom schools. About 200 studies were involved. They
classified 16 different dependent variables using a variety of different outcomes. Here are few of
the variables considered: anxiety, attitude toward teacher, cooperativeness, creativity, curiosity,

general mental ability, mathematical achievement, reading achievement, etc.

An important question is: how does one recognize poorly designed studies among
hundreds of studies if one only has the exact findings from previous studies? There is a paradox
that was popular at early stages of meta analysis. Many added weak studies (with poor design,
say) may lead to a strong conclusion. But even if it works, one should recognize the
“weaknesses” in each study and avoid consistently repeating weaknesses from one study to
another one. Assume one has 10 studies. Suppose that the first two are weak with respect to data
analysis but strong in other components (representative samples, measurements utilized).
Suppose another two studies are weak in the way that samples were collected. The point is to
avoid repeating weakness in sampling in all 10 studies. Sampling weaknesses would lead one to

question the trustworthiness of the design, its description, and conclusions made from the study.
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How many studies should be involved to answer a particular question using known
statistical methods to determine “aggregate findings”? Collecting results from a thousand studies
could lead to the same answer as collecting results from ten representative studies. Typical meta
analysis of research studies is to formulate a conception of the topic at the stage of literature
collection (Glass 1977). The researcher may then narrow the topic concept at the meta analysis

stage.

Designed experiments produce some outcomes or “findings”. Researchers carrying out
their own experiments follow their own interests. A researcher’s interest is to get a desired result
and he may not think of additional experiments that would make his report clear for ensuing
investigations, i.e. include detailed information about their experiment. Many published reports
are full of limitations on such aspects as study and design descriptions, measurements, data
analysis (primary and/or secondary analysis of research in this context). In such cases it is very
difficult to decide whether a study and/or findings are appropriate for research integration and
further investigations. So, it can be confusing when one investigates a certain topic and uses
published studies and findings even if previous designs were not perfect and published reports
contain limitations. Another possible situation occurs when a study "fails" desired criteria or
some conditions and the study is eliminated from consideration. "The researcher does not want to
conduct a poor study ... but it hardly follows that after a less-than-perfect study has been done, its
findings should not be considered " (Glass 1977).

Are there some commonly used criteria to justify a "grade” of a design? Probably not.
Nevertheless, there are some ways to improve the design. One way is to study "the covariation
between design characteristics and findings" (Glass, 1977). Hence, research integration can help
one perform a better design. It may help to avoid some of the problems indicated above. A
detailed description of the study design and analysis may clarify some limitations. Further study
of covariation between findings and analysis may lead to a determination of the number of

findings and better descriptions of the findings.

The next issue is combining or “integrating” studies. A point of interest is to integrate
different studies and find methods for combining them. For example, a suppose a researcher
investigates several cattle diets. He picks eight farms in Kansas. After performing a completely

randomized design, he gets some results or findings. Then he picks six farms in lowa and
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produces randomized complete block design to investigate the same diets. He is testing the same
hypothesis but the two designs are different and therefore these particular studies can be

classified as different studies trying to answer the same question.

To be able to combine results from different studies, the results from the different studies
should be comparable. If they differ too much, it will not be possible to combine the studies.
Another issue is: How does one integrate different studies that are not easily compared, i.e.
those having different structures, different measurements, or different scales? It is necessary that
the different studies attempt to answer the same question or serve as parts of the same problem.
So, the question is: How does one make inadequate studies adequate? For example (Glass,
1977), a researcher wants to find evidence of the relative effectiveness of unequal studies on
computer-assisted instruction (CAI) and cross-age tutoring (CAT). Assume that 100 studies in
CAI were divided into two groups such as 25 were in science and 75 were in math. Meanwhile
100 studies in CAT consisted of two groups such as 25 studies were in math and 75 were in

science.

The problem of comparison is obvious. Each field has the same number of studies, but
they have different sizes! Suppose that one is interested in the effectiveness of installing CAl in a
traditional school (Glass, 1977). Then it is obvious that the researcher should have evidence of
using CAI instruction for math more often (say, three times) than for science. But, if the
researcher is interested in “effective medium" CAI versus CAT, the necessity of having some
technique to make adequate size measurements for both fields would be eliminated.

The first attempts to integrate several individual studies used classifications of studies by
type and then interpreted statistical significance. Historically, Tippett first proposed a test of
statistical significance of combined results (the minimum p method) in 1931. Then Fisher (1932)
and Pearson (1933) independently derived a test of statistical significance of combined results
(now called Fisher or Pearson methods or p-value across the study). Next Cochran (1937)
proposed a method based on numerical estimates of treatment effect. Many researchers used the
methods mentioned above but all of them have disadvantages. We will consider some of the
disadvantages in Chapter 1.

The next step was taken in the 1970s. This approach could be briefly described as that

which consisted of finding some deficiencies when analyzing the collection of studies and then
4



developing one or two of the most acceptable studies. Most criticism of this approach was that it
seemed to be hardly possible to compare significance of results coming from poorly-designed

and well-designed experiments.

Glass suggested that one should group studies by “quantification and measurement of
study characteristics, by experimental outcomes, by correlation outcomes, and by problems of

statistical inference”.

Quantification of study characteristics requires the presentation of descriptions of
findings in quantitative terms. It is not always easy because some findings are categorical. One
has to have a bridge. Even if quantification is possible, problems with using reports of studies

that omit important information still remain and missing data methods are necessary.

To resolve the issue of outcomes of experimental and correlation studies, two free-scale

values to measure effect magnitude were proposed by Glass (1976, 1977).

The first is called effect-size and was derived by Cohen (1969). He wrote "we need a
’pure‘ number, one free of our original measurement unit. This is accomplished by standardizing
the raw effect size as expressed in the measurement unit of the dependent variable by dividing it

by the (common) standard deviation...

g=Ha"Fo (0.1)
o

where @ is the standard deviation of either population (they are assumed equal)".

The effect size is used to combine the results of studies and to measure the effectiveness

of the experimental treatments.

Another commonly used free-scale index of effect magnitude is the product-moment

correlation coefficient. Glass (1977) suggested that a correlation analysis may be carried out in

the metric of r or rx"; . The usual approach is to obtain a Pearson correlation coefficient or its

approximation from reported statistics. Glass (1977) also gave “guidelines” for converting

various summary statistics into product-moment correlations.
This report will concentrate on methods that involve effect size estimations.

One of the techniques used to estimate effect size across studies involves computing the
5



effect size for each of individual studies and then averaging them. Also regression analysis and

analysis of variance have been used (Hedges and Olkin, 1985).

The inferential statistical problems are complex. In fact, data are usually independent
statistically. Two suggestions were proposed (Glass 1977). One is based on considering
independent findings. It is wrong, but practical, because it reduces standard errors. Otherwise,
one can not use some studies that yield enormous standard errors. Another method known as the
jackknife method was proposed by Mosteller and Tukey (1968). This method is not discussed in
this report. The interested reader should refer to their paper.

There are two meta-analysis approaches that investigate an effect size. One of them is a
so-called traditional approach proposed by Glass (1976, 1977), Cohen (1969), and Hedges and
Olkin (1985) is based on investigating the standardized mean difference, its estimation,
distribution, distribution of estimates, different types of effect models, hypotheses testing, etc .

Another one is based on measuring the absolute mean difference in two groups of study.

This is common in the field of medicine. The absolute difference in the means is defined as
0= u° —u | (0.2)
where 1 is a mean of experimental population and € is a mean of control population.

Meta-analysis methodology is widely used in medicine. Most clinical research studies
are based on randomized controlled trials. The forms and amount of data may vary but what
makes such research special is the presence of individual patient data. Meta analysis methods are
conducted by using individual patient data as well as summary statistics obtained from individual
clinical trials. Statistical packages are very useful, especially in cases where obtaining an exact
analytical solution is difficult. In this report some SAS® procedures for the analysis of clinical
trials are presented. Methodology for conducting meta-analysis for clinical trials with detailed
explanations and examples including SAS® codes are given in Whitehead (2002).

Data for conducting meta analyses in clinical research may be provided in the form of
summary information obtained from clinical trial reports or from studies when individual patient
data are available. Three forms of data are commonly used: i) an estimate of the treatment

difference and its variance or standard error; ii) summary statistics for each treatment group; and



iii) individual patient data. In general, there are five different types of outcome data: normally
distributed data, binary data, survival data, interval-censored survival data, and ordinal data. In

this report normally distributed and binary data and methods of their analyses are considered.

A particular interest for researchers performing clinical experiments is to investigate
absolute mean differences between two groups in studies. To conduct analyses for individual
patient data researchers usually use Student’s two sample t-test, F- tests, and maximum
likelihood approaches. Examples of models for different types of outcome and statistical
analyses are given in detail in Whitehead (2002). In her book she also describes the traditional
statistical approach based on summary statistics information proposed by Hedges and Oklin

(1985) and refers to applications in clinical trials.

CHAPTER 1 - TESTS OF SIGNIFICANCE OF COMBINED
RESULTS

This chapter is devoted to statistical methods for testing the statistical significance of
combined results. These methods are based on combining significance levels or p-values
obtained from different independent studies testing the same directional hypotheses. Such
procedures are called omnibus or nonparametric procedures (Hedges and Olkin, 1985) because
they do not depend on the distribution of the data but only on observed significance levels called
p-values. Moreover, the distributions of the test statistics might be unknown. In fact, continuous
test statistics yield p-values that are distributed uniformly under the null hypothesis regardless of
the distribution from which they arise, (Casella, Berger, 2002), (Hedges and Olkin, 1985).

The first publications that combined significance tests belonged to Tippett (1931), Fisher
(1932), and Pearson (1933). Wallis (1942) continued working on Fisher's method and described
important discrete cases. Further investigations were continued by Wilkinson (1951), Birnbaum
(1954), Littell and Folks (1971), Rosental (1978).

The problem of producing a specific statistical procedure for quantitative synthesis is as
7



follows. There are sets of null hypotheses, test statistics, and p-values for some parameters
obtained from independent experiments (studies). In order to combine results one has to develop
a common null hypothesis as well as a common test statistic for the whole set of experiments.
There are two possibilities i) either values of test statistics or their distribution are unknown or ii)
even if such information is available it is impossible to make up an appropriate single test. For
example, a slight simplification of the example stated by Birnbaum (1954) is as follows: Two
independent experiments to measure a certain drug effect are performed. At least one of the
possible effects may be asserted: a) an increase in the mean of a certain measurable physiological
quantity; b) an increase in the variance (within a subject) of the same or a second measurable
physiological quantity. Suppose that the tests for each of these two independent experiments are
based on two statistics T, and T, . The goal is to produce a single test based on some combination
of the two test statistics. Unfortunately there is no single optimal method of combining

independent test statistics.

1.1 Preliminaries and Notations

Consider k independent studies. Each study is characterized by one parameter
6.,i=1,....k such as a mean, a difference between two means, or a correlation coefficient.
Therefore, for k studies, there are k parameters 6, ,...,0, to be investigated (Hedges and OlKin,
1985). There are k null hypotheses to be tested such asH, : 6, =0,i =1,...,k . Assume that the
ith study produces a test statistic T, . It is not necessary that all k null hypotheses have the same
meaning and/or the corresponding test statistics have the same distributions. The composite
hypothesis H, :0, =0, =---=6, =0 is valid if each of the H being true implies that none of

the @, is significantly different from zero.

The p-value for the ith study is defined as follows p, =Pr{T, >t} where t, is the value

of the statistic that was obtained in the ith study. If H,; is true, then the p,'s are uniformly

distributed in the interval (0,1) (Hedges and Olkin, 1985).

The question “which test produces false H,” does not have a direct answer. All

parameters 6,,i =1,...,.k greater than zero yield false H, and one parameter greater than zero, i.e.
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6, =0, =---=0with some 6, >0 also gives a false null hypothesis. One test does not appear to
be sensible to all possible alternatives. An illustration of null and alternative hypothesis variation

is described for two-dimensional space below.

Let 6,,i=1,2 be parameters to be tested.
0, ‘
/T\ 0, ™ e
¢ S

{.,6,:10,1>C,16,|<C} or

0.0, 02 +02<C
0.0, 07 +6; <c} 6,.6,:16,1<C. 16, >C}
0,
C
O 0;
C

{6,,6,:6,>C, 0,<-C} or {6,,0,:6,<-C, 6,>C}}  and
{6,.6,:6,>D,6,>D}or {6,,0,:6,<-D, 6,>-D}}

Fig 1. Examples of alternative hypotheses in two-dimensional parameter spaces (Hedges

and Olkin, 1985).



The null hypothesis H, corresponds to the origin (0,0) (region A) implies both
6, and 6, are close to zero in region A. In region B just one of the 8 ’s is close to zero. In regions
C and D both 6, and 6, are far from zero.

There are three general alternative hypotheses. The first one implies that there is one

known direction of all deviations from H, . The alternative hypothesis would be

H,:0 >20,i=1,.,k and at least one &, >0. Such an alternative hypothesis is

appropriate in the case of F-statistics in an analysis of variance or for a chi-square statistic where

one rejects for large values of the test statistics.

A second alternative hypothesis is that H, :6, <0 or 6, >0 and at least one 6, #0.

Such an alternative hypothesis would result in the case of t-statistics or a correlation coefficient.

A third alternative hypothesis is given by H, :at least oned, = 0. The hypothesis is

relevant in the case when effects that arise from different studies need not have the same sign.

Choosing an appropriate alternative hypothesis depends on the problem.

1.2 Combined Test Procedures

This section is devoted to using tests of significance to combine results. Consider

continuous test statistics.

1.2.1 Methods Based on the Uniform Distribution
Tippett (1931) first proposed a test of the significance of combined results. The

procedure involves ordered independent p-values p,,..,p, that are distributed uniformly on the

(0,1) interval under H,. Let p,, bethe minimum of p,,..,p, , then asize a test procedure is
reject H, if ppy <1-(1-a*'* .

Wilkinson (1951) generalized Tippett’s procedure. Let ordered p-values, p,.,..,p,, be

obtained from k independent studies satisfy the condition that

Prap = Prop == Py -
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He used the rth smallest p-value as a test statistic and compared it to a critical value p,,, .
Because p;,, ~ beta(r,k —r +1), the critical values can be obtained from the tables of the

incomplete beta distribution function for a desirable size a (Hedges and Olkin, 1985).

1.2.2 The Inverse Chi-square Method
The inverse chi-squared method is the most widely used test of significance for
combining results based on p-values. It was proposed by Fisher (1932). Fisher used the product
of the p-values obtained from k independent studies. Recall that if U is distributed uniformly on

(0,2), then —2logU has a chi-square distribution with 2 degrees of freedom. Therefore, since
the p-values are distributed uniformly under true H,,—2logp,,i=1,...k has a chi-square

distribution with 2 degrees of freedom. Then if H, is true,

—2log(p, p, -+ p, )= —2logp, — 2logp, —---—2logp,

has a chi-square distribution with 2k degrees of freedom. Fisher’s test is to
k
reject H, if P=-2>"logp, > xZ, .
i=1
A modification of Fisher's method was proposed by Good (1955). The modification
combines the p-values as P, = p,'p,2---p,, where v,,v,,...,v, are nonnegative weights
chosen such that the test becomes more sensitive. When v, =---=v, =1, one gets the Fisher
method.
The distribution of P, was obtained by Robbins (1948) and Good (1955) for the case
when all weights are distinct.
They obtained the cumulative distribution function as

1/vk

q

(Vi —-Vi )(Vi -V, )"'(Vi —Via )(Vi —Viu )"'(Vi — Vi )
v '

where a, =
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No general expression for the distribution of P, has been obtained for the case when
weights are not distinct. Note, that under H,, —2log R, is distributed as a weighted sum of chi-

squared variables, and this has complicated representations (Hedges and Olkin, 1985).

1.2.3 Pearson’s Method
A method known as Pearson’'s method was proposed by Pearson (1933). He combined p-

values as the product (1—-p, )(1—p, )---(1—p, ). His testis to

reject H, if (1—p,)(1-p,)---(1—p, )= C, where C is a critical value corresponding

to a desired significance level and obtained by following Fisher's method.

1.2.4 The Inverse Normal Method
Stouffer, Suchman, DeVinney, Star and Williams (1949) and Liptak (1958)
independently proposed the inverse normal method. Define Z, by p, =®Z,), where &) is
the standard normal cumulative distribution function. The test statistic is a transformation of the

p-values to a standard normal score as

_ Zl+zz +"'+Zk — ¢_l(p1)+"'+¢_l(pk)

Jk Jk |

where Z has the standard normal distribution. The test is to

z

reject H, if Z>C where C is a critical value obtained from standard normal

distribution.

1.2.5 The Weighted Inverse Normal Method
The weighed inverse normal method was proposed by Mosteller and Bush (1954). The

test statistic was derived as follows

7 = ViZy+V,Z, 4V Z, — V1®71(p1 )+'“+vk¢71(pk )

w

2 L2 2 2 L2 2
\/Vl v, ety \/Vl +vy +-e vy

where v,,..,v, are nonnegative weights. Note that Z, has the standard normal distribution. When

it exceeds the corresponding critical value of the standard normal distribution, a null hypothesis

12



is rejected. No general procedure for computing weights has been obtained.

1.2.6 The Logit Method
The method based on logarithm transformation for the p-values was proposed by

Mudholkar and George (1979). The test statistic was derived as follows

L= |OQL+---+|OQL.

1- p1 1- pk

It was difficult to obtain the distribution of L and Mudholkar and George (Hedges and OIKkin,
1985) showed that the Student’s t-distribution with 5k+4 degrees of freedom could approximate

the distribution of L closely up to a constant. They suggested the following test procedure

(3/7° )(5k+4)
> o,5k+4 *
k(5k+2) '

reject H, if L =|L|J

(3/7%)(5k+4)

~0.55 and L =(0.55/+k)|L].
Sk (055/+k)|L|

For large k, \/
The weighted modification is

pl +"'+Vk|09 pk

L, =v,log——
' 1- P1 1- Py

wherev,,i=1,..k are nonnegative weights. L, also has an approximate t-distribution. More

precisely L, = L/\/a has approximate t-distribution with m degrees of freedom where

c, =3m/(m—2)x? (v +---+v )andm=4+5(] +---+Vv} ) /(v +---+V} ). The test

becomes

reject H, if L, >t

W am *

Both the inverse normal and the logit methods are symmetric in the sense of a p-values
property. The p-values are accumulated about zero in the same way as they are near unity. Both

of these tests are appropriate when the direction of deviation from H, is not known, i.e. an

H , type alternative hypothesis.
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Comparisons among the above methods involve some “goodness of test” criteria. Two
criteria are generally used. The admissibility criterion proposed by Birnbaum (1954) consists of
two principles: monotonicity and convexity. A complete discussion is given in Birnbaum (1954)
and by Hedges and Olkin (1985).

Another criterion is asymptotic Bahadur optimality (ABO) proposed by Bahadur (1967).
The description of ABO using a conception of Bahadur relative efficiency was given by Littell
and Folks (1971) and Berk and Cohen (1979).

Bahadur efficiency is formulated (Littell and Folks, 1971) as follows: Let (X,X,,..)
denote an infinite sequence of independent observations of a random variable X, whose

probability P, distribution depends on a parameter 6 € ©.

Let H be a null hypothesis H:6e®, and A be an alternative A:0€6-6, . Let
T,,n=1,2,... be a real valued test statistic depending on the first n observations x,,...,x, . Large
values of T, will be considered critical for testing H. Assume T, is continuous, and its
probability distribution is the same for all 6 € @, , and that F,(t)=P,{T, <t}=P,{T, <t}. The
significance level attained by T, is defined by L, =1-F,(T,) and for 6 € ©,, L, is distributed
uniformly on the (0,1). There is a positive valued function c(@), called the exact slope of {T, },
such that for # e @-6,, —(2/n)logL, — c(#) with probability one. Let {T" } and {T* } be
two sequences of test statistics with exact slopes c,(6) and ¢, (¢) , respectively. The exact Bahadur
efficiency of T relative to T? is as the ratio ,,(0) = c,(0)/ c,(0) . If ¢,,(0) >1, the sequence
{T™ }is judged superior to {T® } at 6. The calculation of exact slopes is given in Littell and

Folks (1971) and Berk and Cohen (1979). Littell and Folks carried out a comparison of four
methods: Fisher’s method, the normal inverse method, the maximum significance method, and
the minimum significance method. (The latter two methods are not discussed in this report).

They claimed that according to Bahadur efficiency, the Fisher method is the most efficient.

1.2.7 Lancaster’s Method
Berk and Cohen (1979) described some specific methods of combining p-values.

Lancaster (1961) proposed giving weights to the individual statistics and is ABO. Let
14



1-L, (T, )
n.

W:F;l[ } where ", is a gamma cumulative distribution function with
i 1

parameters («;1/2), where the o, play a role as weights and the choice of weights is flexible.
The statistic is W = ZWi such that W~F(Zai,1/ 2). Critical values are obtained from chi-

square distribution tables if Zai is an integer. Berk and Cohen (1979) claimed that the

Lancaster’s method is ABO.

They also established that the method proposed by Good (1955) (a weighted Fisher
method) is not ABO.

Rosental (1985) compared nine methods of combining independent tests by computing p-
values obtained from five independent studies. He compared seven basic methods such as
Fisher’s method, Edgington’s method (1972), a method of adding ts proposed by Winer (1971),
the inverse normal method, the weighted inverse normal method, testing the mean p proposed by
Edgington (1972), method of testing the mean Z proposed by Mosteller and Bush (1954). He also

compared two additional methods such as counting and blocking methods.

Results of five methods are presented in Table 1.1 (Rosental, 1985). The first column
gives the calculated t-statistic. The sign (+) means that the difference was consistent with a
majority of the results, the sign (-) means that the difference was not consistent. The second
column presents the degrees of freedom for each t-test. The third column gives the one-tailed p
associated with each t. The column labeled Z is associated with a standard normal deviate for

each p. The final column presents the natural logarithms of the one-tailed p’s in column 3

multiplied by 2 that is, —2logp ~ x> .
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Table 1-1. Statistics from five independent experiments

Study t df p (one tailed) z —2logp
1 +1.19 40 A2 +1.17 4.24
2 +2.39 60 .01 +2.33 9.21
3 -0.60 10 72 -0.58 0.66
4 +1.52 30 .07 +1.48 5.32
3) +0.98 20 A7 +0.95 3.54
X +5.48 160 1.09 +5.35 22.97
Mean +1.10 32 22 +1.07 4.59
Median +1.19 30 A2 +1.17 4.24
1.2.8 Fisher’s Method

Fisher’s test statistic and overall p-value is y2 (df = 2k) = Z(—Z log p) =22.97, p =.006,

and it is a one tailed test.

One disadvantage for a simple sign test (t or Z columns) is inconsistency. Thus the null
hypothesis may be rejected by the sign test if consistent p-values are not below .05 by very
much. Another property of the Fisher’s test is the possibility of supporting significant results in
any direction. If two studies show strong significant results in opposite directions, Fisher’s
method may support the significance of either outcome. Despite all of its limitations (Rosental,
1985), Fisher’s method remains the best known and the most discussed of all the methods of

combining independent tests.

1.2.9 The Edgington Method
The Edgington method is useful but is limited to small sets of studies, since it requires

that the sum of p-values do not exceed unity by very much. It gives an overall p-value as
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=.006 and it is also a one tailed test.

oo (2P _(1.09)°
k! 51

1.2.10 The Method of Adding #’s
The method of adding #’s was proposed by Winer (1971). Winer’s test statistic and

overall one-tailed p-value is

{>"[of /df —2)]"*  (40/38+60/58+10/8+30/28+20/18)"2

t
Z= 2 548 =2.33,p=.01.

The method is free of the disadvantages of two methods described above. A limitation is
that the method can not be used if the sample size is less than three (division by zero in the

denominator).

1.2.11 The Inverse Normal Method

The test statistics for the inverse normal method and its corresponding one-tailed overall

Z
p-valueis Z = %‘,2 = 2325 =2.39, p=0.009.
1.2.12 The weighted inverse method
The test statistic for the weighted inverse method and its corresponding one-tailed overall

p-value is

_ A2, +df,Z, 4ot df,Z, _ (40)(LA7)++(20)(095) g g
(dle +d.|:22 +"'+dfn2 )1/2 [402 +.“+202]l/2

Lancaster noted (Rosental, 1985) that when weighting is employed this method is preferable to
the weighted Fisher method for reasons of computational convenience and because the final sum

obtained is again a normal variable. It also shows the smallest p-value.

1.2.13 Method of Testing Mean p
The method of testing proposed by Edgington (1972) uses the mean of the added

probabilities values. The test statistic and its corresponding one-tailed overall p-value is
Z=(.50-p)(~12k )=(.50-.22)(4/12(5))=2.17,p=.015, where p is the mean of k
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p-values. The presence of 1/12 in the denominator is derived from the fact that the variance of
the population of the p-values is 1/12 (Rosental, 1978). The test is appropriate for four or more

combined studies.

1.2.14 Method of Testing the Mean Z

In the method of testing the mean of Z, the test statistic and overall one-tailed p-value are

Z/k
t= Z = 107 =2.26,df =4,p<.05; or

(Ms, /k)"?  (22513)"°

(x2)

k(MS,)

=5.09,df =1,4,p<.05. It yields the largest combined p-value of all

methods.

1.2.15 Counting Method

The binomial model can be used for evaluating the probability of obtaining the results
completely by chance ( Brozek and Tiede (1952); Jones and Fiske (1953), Wilkinson (1951)). In
a series of 15 experiments, the probability of obtaining 3 or more results which exceed the
significance  level p=0.05 completely by chance can be evaluated as
P= i[lfj(O.OS)j(O.QS)lH =0.036 and equal to 3.6%, that is less than 5% level of

=3

significance.

Thus, if 12 of 15 studies are consistent in either direction, i.e. p-values are less or greater
than 0.05, the probability of obtaining 12 consistent results by chance is 3.6%.

The sign test is simple to apply. It can be used as an additional method for probability

counting and for checking the consistency of the results.

1.2.16 Blocking Method
The blocking method was suggested by Snedecor and Cochran (1967) (Rosental, 1985)
and it requires one to construct the means, sample sizes, and mean squares within each condition
for each of the studies and then combine the data into an overall analysis of variance (ANOVA)
in which studies are regarded as a blocking variable. Because of differences among studies on

their means and variance, it requires one to put the dependent variables on a common scale (e.g.
18



zero mean and unit variance). The only real disadvantage in this approach is that it may involve

more work than some of the other methods especially when there are a large number of studies.

A procedure of choosing an appropriate method depends on special circumstances. Most
of the methods described above give satisfactory results. A counting method gives a quick result
but it is not powerful. The blocking method often requires too much work without any special
benefits. Edgington’s method is bounded with small sets of studies but it is preferable for a few

studies to the method of testing the mean Z and the counting method. There is no the best

method under all conditions (Birnbaum, 1954, Rosental, 1985), but the one that seems the most

serviceable under the largest range of conditions is the inverse normal method with or without
weighting. The chi-square test might be chosen as the best one since this test is both admissible
and ABO (Hedges and Olkin, 1985). When the number of studies is small, the inverse normal
method might be suggested and compared with at least two other procedures. When the number
of studies is large, it can be combined with one or more of the counting methods to check. It
should be mentioned that if p-value is very small, it is hard to say anything about the typical size

of the examining effect.

CHAPTER 2 - ESTIMATION OF EFFECT SIZE FROM A
SINGLE EXPERIMENT

In this chapter estimators of effect size for a single two-group experiment are discussed.
Both normally distributed data and binary data are considered. Several different standardizations
of the difference in the group means are described in the first section of this chapter. The first
section also consider estimators for the absolute difference between means. The second section
of the chapter is devoted to estimates of effect size for binary data.

2.1 Normally Distributed Data

2.1.1 Standardized Mean Difference
This section is devoted to several point estimators of the effect size 6 from a single two-

group experiment. Estimators considered in this section are based on the sample standardized
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mean difference for normally distributed data and have identical large sample properties. They
differ by constants that depend on the sample size, they also differ in terms of small sample
properties (Hedges and Olkin, 1985).

Let Y,°,.Y % represent the data collected from an experimental group and let Y,©,..Y €
represent the data collected from a control group. Both sets of data are assumed to be distributed

normally, so

E _=:: E 2 . E
Yj ~Li.d. N ,0°), j=1,...,n",

c_:: c 2 . c (2'1)
Y ~iid. N~ ,0%), j=1,..n
The standardized mean difference effect size ¢ is defined as
o=t —u)lo. (2.2)

The effect size 6 is the standardized z score of the experimental group mean in the control

group distribution, @&(5) represents the proportion of control group scores that are less than the

average score in the experimental group. For example, if the effect size is 6=0.5, then
@(0)=0.69, so that 69% of the individuals in the control group have values that are smaller than
the mean of the experimental group. Positive effect size implies the average score in the
experimental group is greater than the average score in the control group. Thus the score of the
average individual in the experimental group exceeds that of 69% of the individuals in the
control group. A negative effect size of 6 =—0.5 implies that the only 31% of the individuals in
the experimental group have values that exceed the mean of the control group (Hedges and
Olkin, 1985).

Another interpretation of effect size is to convert J to an estimate of a correlation

coefficient as to

52
pt=
o%(n, —n, —2)/7

where f=n,n, /(n, +n,). This is primarily used to summarize the relationship between two

continuous variables.
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2.1.2 Estimators of Effect Size Based on the Standardized Mean Difference

The idea of estimating an effect size ¢ with standardized mean difference as
(YE-Y©)/s,

where Y Fand Y © are the observed experimental and control group sample means, respectively,
and s is a standard deviation estimate was proposed by Glass (1976). Different choices of a

standard deviation estimate yield different estimators of the effect size.

Glass (1976) proposed to using s, the standard deviation of the control group, and then

the estimate of effect size is
g=(YE-YC°)/s.

The idea of using s© is obvious when the assumption of different sample standard
deviation for each treatment group holds. Indeed different sample standard deviations lead to
different estimator values. Assume two treatment groups with the different quantity of the

E2

standard deviation s®,s% . Using one or the other would yield different values of the estimator

g'. For an equal variances case, the estimator might be changed for
g=(YE-Y®)/s, (2.3)

where s is the pooled sample standard deviation defined by

. J(nE ~1)(° ) +(n° ~1)° )’

nt+nc -2
where n® and n® are the experimental and control group sample sizes, respectively.

For the two sample statistics g and g', Hedges and Olkin (1985) derived their sampling

distributions, and showed that they are close to non-central t-distributions. They showed that

EnC

JAg~t'(n® +n° —2,JAs) and JiAg'~t'(n® —1,4/A5), where i = %
Nt +n

It is an important fact (for a detailed discussion see Hedges, 1981) that the bias and
variance of g is smaller than that of g'. Therefore g is a (uniformly) better estimator of ¢ than

g' and the latter estimator is omitted from further discussion.
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Hedges and Olkin (1985) showed that

30
E(g)z5+4N+9, (24)

where N =nf +n°.

The exact mean is

9
HQ_XN—D’ (2.5)

where J(m) is a constant closely approximated by

3

The variance of ¢ is approximately

1 1
Var(g)s =4+0>——. 2.7
ar(g) A 2(N-3.94) @7

It follows from (2.4) that the bias in estimating ¢ by g turns out to be

For small sample sizes (N<12) the bias is 0.08 with the bias getting larger as the value

of the effect size increases.

2.1.3 An unbiased estimator of effect size

An unbiased estimator of ¢ is defined by

v E v C
d:MN—ag:KN—aiig;n (2.8)
and d= (1—ng.
4N -9

Both the bias and the variance of d are smaller than that of g. (Indeed, for N >3, the

value J(IN-2)=1-3/(4N-9) is smaller than one.) Therefore d has a smaller mean squared
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error than g. For n® =n°, d is also a unique minimum variance unbiased estimator (Hedges,
1981). Consequently, for small N, d turns out to be preferable to g as an estimator of 6. For

large N, d and g are approximately equal.

2.1.4 The maximum likelihood estimator (MLE) of effect size

The MLE of u® —px%is YE —YC. The MLE of the pooled within group variance is

6 =5(N—=2)/N . Therefore the maximum likelihood estimator 5 of the effect size J is given

A N YE_Y°© N
5= | _ | 2.9
N-2 S N—Zg (29)

A

For large samples, the asymptotic distributions of the estimators g, d, and & are

by

approximately normal.

The MLE may be obtained numerically using SAS® PROC GLM as follows

PROC GLM,;

MODEL y= treat,;

In the output the estimate of effect size turns out to be in the 'treat' statement and the
value of s® appears as the error mean square.

A shrunken estimator of effect size is defined by (Hedges and Olkin (1985) as

N-4 g _N-4 d

N—2J(N—2)_N_2[J(N_2)]2' (2.10)

g=
It has smaller mean-squared error than d.

2.1.5 Comparing parametric estimators of effect size
Four estimators of the effect size have been discussed above. The result of their ordering

is as follows

A~

02>9*>d*>g°.
The order of their variance is
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Var(62) >Var(g?) >Var(d?) > Var(g?).

The best estimator by mean squared error criterion is g (Hedges and Olkin, 1985). The

differences among these estimators are largest when the total sample size is small.
2.1.6 Distribution Theory and Confidence Intervals for Effect Sizes.

The asymptotic distribution of estimators of effect size.

E Cc
Hedges and Olkin (1985) showed that if nﬁ and nW are fixed (i.e. n® and n® increase at

the same rate), the asymptotic distribution of d is
d~N(d, > (d)) (2.11)

nf +n° o°

+ . 2.12
nn®  2(n®+n°) (212)

where ¢2(d)=
This asymptotic distribution can be used to obtain a large sample approximation to the
variance of d which is obtained by substituting d foré in (2.12). The estimated variance is

nE+nC+ d?
nfn®  2(nf+n°)’

&%) = (2.13)

A 100(1- «) percent confidence interval (6, ,d, ) for ¢ is given by
o, =d—-C,,6(d)and o, =d +C,,,6(d) where C_,, is the two-tailed critical value of

the standard normal distribution. These exact and asymptotic distributions were examined and

described by Johnson and Welch (1939).

Confidence Intervals for Effect Sizes Based on Transformations.
Since the variance of d depends on the unknown parameter 6 (equation (2.12)), one can

use the variance-stabilizing transformation

h(d) :ﬁsinh‘l(gj:ﬁlog[9+1/%+lj (2.14)
a a a
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where a=/4+2(n®/n®)+2(n° /n®).

Denote the transformed value of the estimate by h=h(d) and of the parameter by
n=h(5). Then +/N(h—75)~N(0,1where N=n®+n®. Therefore, a 100(1— o)percent

confidence interval is (7, ,;, ) where

n =h—Ca,2\/ﬁ and 7, =h+Ca,2\/N and

where C_,, is a two-tailed critical value of the standard normal distribution. Thus a confidence

interval (5,0, ) for dis

o = hil(’h )’5u = hil(’?u )v

where h™(x)= asinh(x/\/i).

Exact confidence intervals for effect sizes

Asymptotic confidence intervals for effect sizes can be used for large sample sizes
(N >20). For small sample sizes exact confidence intervals are obtained from the exact
distribution of the effect size estimator g.

E.C E..C

nn n-n

g~t(N—2,5 ] where N =nf +n°.

The cumulative distribution function of g has a complicated analytical form. Denote it

by F(g; N —2,6). Unfortunately it difficult to compute the distribution function by hand. The

confidence interval for ¢ are solutions of the equations

F(O;N—-2,6,)=al2, and F(g;N -2,6, )=1-al2. (2.15)

2.1.7 Absolute Difference Between Means Estimation
The meta analyses methods applied for investigating the absolute difference of the two
mean parameters is a particular point of interest in medicine. The theory of estimating the
absolute difference between two mean parameters, the distribution of the estimate, and analyses
of obtained results are given in Whitehead (2002).
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The absolute difference between means
0= u® —u |
is estimated using the likelihood approach and the MLE is to
0=YE-YC|.
The variance is given by
Var (0) = az(niE + niCJ .

E _ E\2 c_ Cy2
The maximum likelihood estimate of Var(9) is &7, = (n” =1 )E +(nc D7) .
nt +n

2.2 Binary Data

A binary variable is scored as either 1 or 0 and is often referred to as a “success” or a
“failure”. Such an outcome may be recorded for each patient. A typical clinical experiment/study
involves two groups; one is a treated group and one is a control group. Outcome data are
individual records of the patients in each group. A binary outcome is recorded for each patient.

The probability of a success may be denoted by p.and p. for the experimental and control
groups, respectively. Assume that n. and n. subjects are involved in the experimental and the

control groups, respectively. The number of successes and failures in each group are denoted by

se and f.and s; and f. respectively.

Table 2-1. Data for two groups study with a binary outcome

Outcome Experimental Control group Total
group

Success Se Sc s

Failure fe fo f

Total Ng Ne n
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There are three widely used measures for binary data. One is the probability difference,

pE(l_ pc)

Pe — P - A second is the log-odds ratio, In(
- ¢ Pc (1_ pE)

]. And a third is the log-relative risk,

In[&j. The log-odds ratio is preferred because the corresponding test statistic has the closest
Pc

asymptotic approximation to a normal and/or a chi-square distribution (Whitehead, 2002).

2.2.1 Log-odds ratio
Let the log-odds ratio be denoted by

g mc)

Pc (1_ pE)

which is the log-odds of success on the treatment relative to the control. Methods of analyzing
binary data are based on the binomial distribution (Whitehead, 2002). The MLE of the log-odds
ratio is commonly obtained by using a linear logistic regression model. The linear logistic

regression model for binomially distributed data Y; =B(p;,n;),i=1...,m,j=1....k, with
known numbers of Bernoulli trials n; and unknown probability of success p;; is given by

(o P;
Ioglt(pij): In{ 1 Jf) J: Bo* BiXy ++ BiXy

ij
where p; =Y; /n; and j§, represents an intercept, and f$;, j=1,...,k are unknown parameters

usually estimated by the maximum likelihood method . The x; denote explanatory variables

one of which is an indicator variable that represents the treatment received . Suppose the

indicator variable is equal to “1” for the treatment group and “0” for the control group.

One possibility of obtaining the MLE for 6 is to use SAS®-GENMOD. For this
procedure the data for each patient should be entered separately. The response coded as “1” is

indicates a “success” and “0 ” indicates “failure”. The MODEL statement is

MODEL resp = treat / dist = bin link = logit;
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The “dist” option indicates that the distribution of the data is binomial. The “link” option
specifies the link function to use in the model. The estimate of 6 appears as the “treat” parameter

estimate in the output.

Another option is to enter the data as the number of success and the number of trials

format. In this case,
MODEL succ/tot = treat / dist = bin link=logit;
is used as the model statement.

The MLE of the sample log-odds ratio is given by
- Se fe
O=In| =—=1. (2.16)

The asymptotic estimate of the variance of &, obtained by the delta method, and is

Var(é)=i+i+i+i. (2.17)

se sc fe f¢

An asymptotic two-sided 100(1— «)percent confidence interval for the parameter 6

based on a Wald test is
0+z,,Var(0).

2.2.2 Probability difference

Now let 0 denote a probability difference as
0= Pe — Pc -

The MLE turns out to be

6=e S (2.18)
Ng  Ng
The asymptotic estimate of variance derived by delta method is to
var(d) = e e, Sefe (2.19)
nE nC
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2.2.3 Log-relative risk

Let 0 denote the log-relative risk as to

0= In(&)
Pc
The MLE of 6 is given by

6= |n(ﬂj. (2.20)

Sc /ne

The asymptotic estimate of variance derived by delta method is
Vaf(d) = —E—+—C—. (2.21)

For additional methods that analyze binary data, see Whitehead (2002).

CHAPTER 3 - PARAMETRIC ESTIMATION OF EFFECT SIZE
FROM A SERIES OF EXPERIMENTS

In this chapter some methods of obtaining estimates of the standardized mean difference
effect size from a series of experiments are discussed. It is assumed that the data are distributed

normally.

Suppose a series of k studies share a common effect (a standardized difference of two
means) ¢, it is necessary to have a combined estimate of 6. The sample sizes in these studies
may vary from moderate to large.

One method is based on computing the average of the estimated effect size obtained from
each study. It is easy to compute a common estimate when all studies have a common sample
size. For unequal sample sizes some weighting procedures proposed by Hedges and Olkin
(1985) are described. “Optimal” combinations of estimates appear to be (i) a direct weighted

linear combination of estimators from different studies; (ii) a maximum likelihood estimator.
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Both estimators have the same asymptotic distributions, and therefore they are asymptotically

equivalent. Other methods are based on transformations of the effect size estimators.

3.1 Model and Notation
Suppose the data are obtained from a series of k independent studies and that each study
involves a comparison of an experimental group (E) with a control group (C). The effect size ¢
proposed by Cohen (1969) was described in Chapter 2. Typical statistical analyses for mean
differences involve Student's two-sample t-test or an F- test. If the assumptions of these tests are

met, i.e. the data arise from normal distributions and variances for two groups are equal, the

A YE-YC©
estimator of 6 can be computed directlyas 6 =— .
Assume that for the ith study in the experimental group (E) the observations

Y-E

= .....Y,c are distributed normally with a common mean 4"~ and a common variance o, ,

i=1,....k. Assume also that for the ith study the control group (C) observations Yo ,...,Y,> are

distributed normally with a common mean x°and a common variances. , i=1,....k as
indicated in Table 3.1 and Table 3.2. Table 3.1 lists the experimental observations
Y5 i=1,...k, j=1,...,n7 and the control observations Y;{,i=1,....k, j=1,...,n  for the ith
study, i=1,...,k, where n%and n° are the samples sizes in the experimental group and the
control group studies, respectively.

Table 3-1 Data arise from a series of k experiments, in which each study is a comparison

of an experimental group (E) and a control group (C) :

Observations
Study Experimental Control
1 Yfl,...,YErh Yfl,..., E”i
E E
k Ykl yerny Yknk Yki ""’Ykgl
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The corresponding parameters for each study such as the mean xf and the variance o ,
i=1,....k for experimental group and mean x° and variance o° for control group are
presented in Table 3.2. The last column of Table 3.2 lists the effect sizes 6,,i=1,...,k for the ith

study.

Table 3-2 Parameters such as the mean and the variance for the experimental group and

the control group for each study indicated in Table 3:

Experimental Control
Study Mean Variance Mean  Variance Effect size
1 2 c 2 S5 _( E_, C )/
H 0, H 0, 1=\ — My )10y
k 2 c 2 S5 :( E c)/
Hy Oy Hy Oy k — W —Hy ) Oy
In other words,
Ve ~N(uf.0f), j=1...nf,i=1.. .k
: (3.1)

The effect size for the ith experiment is given by

0 = (ﬂiE — 5 )/Ui . (3.2)

The assumption that each study measures the same effect implies that

0, =06,==0,=0.

3.2 Weighted Linear Combinations of Estimates
If the sample sizes of the studies are different, the studies with large sample sizes give
more precise estimators of the effect size than the studies with small sample sizes. To obtain a

better estimator of the common effect size using data from studies with different sample sizes,
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one may use a weighted estimator as
d,=wd, +---+w.d, (3.3)

wherew,,..., W, are nonnegative weights that sum to unity. Recall that an unbiased estimate of

v E v C

o from a single study is given by d = J(N — 2)& (see equation (2.8), Chapter 2).
S

3.2.1 Estimating Weights

k
It is recommended that the weights be given by w, = Z%d )/Z 2(1d ) where az(di)is
o i i

=10

the variance of d; (see equation (2.13)). Using large sample theory, the weights are

S

") ) 9
where o2 (di)is the large sample variance given in (2.13).
The weights can be approximated by
W, ~ n (3.5)

k
20,

=t

where N, =n-nS /(niE +nic). The approximate weights are close to optimal when § is near zero

and the n. are large.

The weighted estimator of 6 is given by

-y 4 v 1
") R “

where &Z(dj)is defined in (2.13). As stated in Chapter 2, d is an unbiased estimator. The bias

of d, tends towards zero as the sample sizes get large.

Hedges and Olkin (1985) showed that if the sample sizes of the experimental and

control groups in each of the k studies, n7,...,n¢ and n{,...,nc become large at the same rate
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so that nF/Nandn/N remain fixed where N=nf+---+n;+n’ +---+n;. Then the

distribution of d, tends to normality with a mean

G Ty o7

and a variance

o2(d,)= [Z%J - (3.9)

i=1 O

Under the assumption thats, =8, =---=6, =5, J,=5 and a 100(1- «)percent
confidence interval for ¢ turns out to be

s, =d,-C,,6(d,), 8, =d, +C,,6(d.), (3.9)

+

where C_,, is the two-tailed critical value of the standard normal distribution and

&(d, ) is the sample estimate of the variance of d, given by

62(d+)=(2215§ di)j_l - (3.10)

3.3 The Maximum Likelihood Estimator of Effect Size from a Series of
Experiments
Let 6, =5, =---=d, =5 . The maximum likelihood estimator & based on observed effect

sizes g, ...,0, defined in (2.3) is the solution of the equation

AS+B\82+C, +---+B, /8% +c, =0 (3.11)

A=1 (2-L)+ -+ (2-L,),B =(signg; )AL, i =nn7 /N, N; =nF +nf,

L=ng’/(fg’+N, -2),andc = 4N, /AL, i=1,. k.

where

In general, it is not possible to obtain the exact formula for k>2. However it is possible

to obtain approximate numerical solutions of equation (3.11) using statistical software. Since
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the properties of d, and 5 for large sample sizes are equivalent (Hedges and Olkin, 1985),

-1
A R k
o tends to normality (for large samples) with a mean & and a variance of 67 (5)2 (Z %j .
i=1 O-oo i

3.4 Estimators of Effect Size Based on Transformed Estimates
When the sample sizes of both experimental and control groups are equal within each

study, i.e. njE = njC =n;, j=1,...,k, then a variance-stabilizing transformation for d is given by
h(d)=2sinh(d /2v2). (3.12)

Let h =h(d,)....,h, =h(d,)be transformed estimates and #=h(5)be the transformed effect

size parameter. The parameter zis assumed to be the same for all studies. Each of the
transformed estimates h, has an approximate normal distribution with mean n and a variance of

1/(2ni). The linearly weighted estimate of n with the smallest variance (Hedges and OlIKin,

1985) is given by
k
h, = 2Z”i—hi (3.13)
~ N

where N = 22 n, is the total sample size. A 100(1—a) percent confidence interval for n is given

by

no=h-C,, /\/ﬁ’ Ny =h.+C,, /\/N, (3.14)

and a confidence interval for § is to

5. = 2/2sinh(p, /1/2)8, = 24/2sinh{y, /+/2). (3.15)

3.5 Testing for Homogeneity of Effect Sizes

A statistical test for the homogeneity of effect size is a test of the hypothesis
Hy:0,=6,=---=0, versus H, :5, #J; for some i= j. For large sample sizes the test
statistic is
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(3.16)

where 62(d, )is defined in (2.13). If all k studies have the same effect size, i.e. H, is true, then

Q- Xz(k—l) (Hedges and Olkin, 1985). Therefore to produce a statistical test or construct a

confidence interval, one can use a critical value from the y? distribution with k-1 degrees of

freedom.

The statistic Q may be obtained by using the weighted least-squares regression method

which is available in SAS® package as follows:
PROC GLM;
MODEL y= / inverse;

WEIGHT w;

where w, =1/6%(d;)and w is a k xkmatrix whose diagonal elements consist of the w, ’s.
There is no variable in the right hand side of the MODEL statement which implies that the

“intercept” value in the output is equal to d, . The inverse option displays the matrix of

(XTWX )_1 where for this case X is a k x1vector with components equal to 1. The WEIGHT

option requests minimization of a weighted residual sum of squares.

3.5.1 Small Sample Significance Levels for the Homogeneity Test Statistics
For small sample sizes an exact test statistic is unknown. The Q-test is accurate when the

sample sizes are at least 10 per group. See Hedges and Olkin (1985).

3.5.2 Other Procedures for Testing Homogeneity of Effect Sizes
Since the likelihood ratio test involves rather difficult calculations, Hedges and Olkin
(1985) recommend that one should use the Q-test.

If the groups in each study have the same size, i.e. an experiment is balanced, one can use

a transformation method. Let a=1 in (2.14). Then transform d, ...,d, to h ...,h and

O ....0 t0 ny ..., Via
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h, =2sinh*(d, /2v2) and 5, =+/2sinh*(5,/2v2) (3.17)

The equality of o,,...,9,is equivalent to the equality of #,...,n . To test
Hy:0,=---=0,vs. H, :6; #5,, forsome i = j, calculate
K
Q,=2) n,(h; —h,)*, then (3.18)
i=1
reject H,if Q, >C, where C is a critical value obtained from chi-square distribution

with k-1 degrees of freedom.

3.6 Estimation of Effect Size for Small Sample Sizes
The large sample theory is not accurate for sample sizes less than 10. Another option for
obtaining asymptotic results is to use a large number of studies. This requires a different version
of normal theory. While the results are not the same as the results obtained for large sample

sizes, they are very close.

There are several methods to estimate the effect size from a large series of studies when

each study has small sample size.

3.6.1 Estimation Effect Size from a Linear Combination of Estimates
One of the simplest methods of estimating a common effect size is based on a weighted

mean. The weighted mean with the smallest variance (Hedges and Olkin, 1985) is given by
d, =wd, +---+wd, (3.19)

where the optimal weights are given by

W=ty L (3.20)
v(d) =v;(d)
where d is the mean of d,,...,d, ,

v,(d)=a,+bd?, (3.21)
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a; = (N _2)[‘] (Ni _2)]2 /[ﬁi(Ni _4)] and b, = {(Ni _2)[‘](Ni _2)]2 _(Ni _4)}/[(Ni _4)] (3.22)
and J(m) is given in equation (2.6).

Hedges and Olkin (1985) noted that d ~ N (5,v)where v is the estimated variance given

by V= [ij (3.23)

A 100(1— &) percent confidence interval for the effect size d is given by

5, =d,—C,,vand &, =d, +C_,,"V. (3.24)

CHAPTER 4 - PARAMETRIC FIXED EFFECT MODELS

4.1 Categorical Models

4.1.1 Normally Distributed Data

Model and Notation

Assume that the studies are sorted into p disjoint classes and that there are m. studies in

the ith class, i=1,...,p. Let Y5 and YIJI be the Ith experimental and control group observations

ijl
in the jth experiment in the ith class. Sample sizes of the experimental and the control groups for

the jth study in the ith class are denoted by n and n¢ , respectively. The set of observations,

Ij’

parameters, and their estimators are described above and summarized in Table 4.1.
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Table 4-1. Parameters and Estimates for the Control and Experimental Groups

Class Study  Experimental Control

Parameters Estimates Parameters Estimates

Mean Variance Mean Variance Mean Variance Mean Variance

E 2 v E 2 c 2 7 C 2
1 1 Hyq O Yi (SlEl) My 011 i (Slcl)
E 2 7 E 2 c 2 7 C 2
1 m, Ha, O1m, Y1m1 (SlF;nl ) Hym, O1m, Ylm1 (Slcm1 )
E 2 v E 2 c 2 7 C 2
p 1 Hpy Op1 You (SrE)l) Hp1 Tp1 Yot (Sﬁl)
E v E c v C
P M Homy  omy Ypmp (S pm, )Z Homg — Tom, Ypmp (ngp )2
Suppose that

YijllE ’”N(,uijE,O'u?)al:11--"ni1|'£’j:l"' Mt =L....p and (4.1)
Yy~ N(ag o)l =1nf j=1..,m =1, p

The effect size for the jth experiment in the ith class is given by (Hedges and Olkin
(1985)) 9, = (uf — 5 )/ (4.2)

Three methods of testing hypotheses are considered:

i) The studies from different classes share a common but unknown effect size 6. An
hypothesis of interest is

classl: o, =0, =---=0

1m,

=5, -

O: - — — — —
classp:d, =9, —---—5pmp =0

(4.3)

i) The effect sizes within classes are equal, but are not the same for all classes. A
hypothesis of interest might be
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classl: o, =6, =--=06,, =6,, ",

im
H, : ' . (4.4)
classp:d, =d, == 5pmp =7,

iii) All effect sizes may be different. In this case the hypothesis is given by

H,: J; unrestricted. (4.5)

The test of H, vs. H, is a test of homogeneity of effect size within classes. The test of

H,vs. H,is a test of homogeneity between classes, given that there is a homogeneity within

classes.

An unbiased estimator of the effect size J; is given by

YE-Y¢
d; = J(Nij —Z)M,j:1,...,mi,i:1,...,p, N; =ng +ng (4.6)

Si

where s; is estimated pooled sample standard deviation.

For large sample sizesd;; ~ N(éij o (dij )) where the asymptotic variance is given by

()=, @)
o-(d.)= , )
Y ning  2(ng +ng

and the asymptotic variance is estimated by

E C 2
My +ny d;

E~C E cy’
Ny Ny 2(nij +ny )

&z(dij )= (4.8)

4.1.2 Some Tests of Homogeneity

4.1.2.1 Testing homogeneity of effect sizes across classes when all studies have a
common effect

For a test of H, versus H, the test statistic is given by

b, & (dij'd++)2

Qr = ;;W (4.9)
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where

where

o (d )is defined in (4.8) and

oyood

k m; 1
/ . 4.10
- 570,) &, (4.10)

The approximate distribution of Qr is Q; ~ ;(Z(ml +m, +-+my —1).

=3

i=1

—

4.1.2.2 Testing homogeneity of effect sizes across classes

To test H, versus H, , the between class goodness of fit test statistic is

@. 2 & (d,. -d..)’
1+ ++ 4.11
Z .+) ZZj—M i (4.11)

i=1 j=1

(4.12)

The approximate distribution of QgisQ, ~ x*(p—1).

4.1.2.3 Testing homogeneity of effect sizes within classes

To test H, versus H, , the within class goodness of fit test statistic is

S~ (di -di)’

Qu = ;;m (4.13)

The approximate distribution of Qw is Q,, ~ ;(2((ml —1)+--.+(mp —1)).

Since Q; =Q; +Q,, and since each of these statistics has a chi-square distribution, one can

obtain a summary table that is analogous to an Analysis of Variance table. See Table 4.2 where

k=m +m,+---+m,
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Table 4-2. An Analogy to an Analysis of Variance table

Source Statistics Degrees of freedom
Between classes Qs p-1
Within classes Qu k-p
Total Q, k-1

4.2 Meta Analysis for Fixed Effect Models Based on Individual Patient Data

Traditional meta-analysis methods described in Chapters 2 and 3 are also available when
one is lucky enough to have individual patient data. Typical statistical approaches on modeling
when one has individual patient data are based on likelihood theory (Whitehead, 2002). For
individual patient data, meta-analyses models are extensions of linear models for a single study.
Numerical analyses may be conducted by using SAS® as a statistical package. In this section,
both normally distributed data and binary data are considered. The theory of obtaining analytical
expressions for likelihood statistics is omitted in this report in favor of application examples

related to clinical trials and using the SAS® package.

4.2.1 Normally Distributed Data

4.2.1.1 Model and Notation

Let the random variables Y; be normally distributed with means x; and common

variance . That is, Y; ~N(u;,0°),i=1...n.,j=1..,n. Let y, denote the response

(observation) from patient j in study i, moreover, let n= Zr:ni be the total number of patients in
i=1
all studies. The general linear model is
Yi = i g
where ¢; are the error terms that are distributed normally ¢; ~ N(O,az).
Without loss of generality, assume that
Wy = ot

41



where a represents an intercept. Also suppose that g, k£ =1,...,q are unknown parameters and
that #; = B Xy + By X+ -+ By X - Explanatory variables x;,k=1,...,qcan be quantitative
variables such as age. They also can be qualitative factors and have fixed factor levels. For
example, if a qualitative variables x,; represents a particular study, only two levels such as “1”
and “0” are needed.

The model provides the fixed effect of the absolute mean difference between the two

treatment
0=|u® —u°|
defined in (0.3) is given by
Wy = o+ fo + B Xy (4.14)

where o represents the effect in the control group in rth study, a+ p,, represents the effect in

the control group since x3;;=0 for the control group in the ith study, and g, represents the

absolute treatment mean differences between experimental and control groups since xi;;=1 for the

treatment group .

4.2.1.2 Estimation and Hypothesis Testing
The null hypothesis is that the treatment difference in all studies is 0, i.e. #=0and in

terms of model (4.14), f, =0. Therefore, model (4.14) is compared to the model
i =at By . (4.15)

Model (4.14) is called the full model with r+1 degrees of freedom, and (4.15) is the
reduced model with r degrees of freedom (Whitehead, 2002). The estimator of ¢ has n-r-1

degrees of freedom. Therefore the F test for comparing the full model to the reduced model is

SSE(R) - SSE(F) / SSE(F) _
1 n-r-1
SAS®-GLM procedure as

F(1,n—r—1). To obtain test results numerically, one may use the

PROC GLM,;

CLASS study;
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MODEL y= study treat / ss1 solution;

where “treat” represents X,; Which is the explanatory variable defined in models (4.14), (4.15).

The solution option allows one to obtain the parameter estimates, standard errors, and the

estimate of S, appears as the “treat” parameter estimate. It is also possible to include “treat” into

the CLASS statement.

4.2.1.3 Testing for Heterogeneity in the Absolute Mean Difference Across Studies
For testing the treatment difference parameter 6 across all studies the model is

tiy = o fo + BriXyy (4.16)
where £, varies from study to study. The F statistic has r-1 d.f. in the numerator and n-2r d.f. in
denominator. Using SAS®-GLM, the commands are

PROC GLM,;

MODEL y=study treat study*treat / ss1 solution;

where the desired F statistic is associated with the “study*treat” term.
4.2.2 Binary Data

Model and Notation
Let the random variables Y;; be distributed binomial such as

Y; ~ By, py)i=1..,r,j=1..,k, and letY; be the number of successes for the jth treatment

in the ith study , and let n= Zni . The parameters p; represent the probability of success for a
i=1

patient in the jth treatment group in the ith study. The model that yields an overall fixed effect
estimate of treatment difference (Whitehead 2002) is to

|n[(1_r)—ijf)ij)]: o+ fo+ BiX (4.17)

where p; =Y; /n;and g, represents the common log-ratio of success on treatment relative to
control.
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4.2.2.1 Estimation and Hypotheses Testing
Parameters are estimated by using the maximum likelihood method. PROC GENMOD

in SAS® that fits a linear logistic regression model is appropriate.

To test the absolute difference between treatment means, one has to state the null

hypothesis which is H, : =0 which implies there is no difference versus the alternative that

is H, :6=0. The reduced model is defined by

In[ f"{ ]:a+ﬂ0i,i=1,2,...,r (4.18)
and the likelihood ratio test may be obtained by using

PROC GENMOD;

CLASS study;

MODEL y= study treat / typel dist = bin link = logit waldci;

The parameter p, is associated with “treat” in the output, “waldci” option gives a Wald

CL the “Irci” option might also be used to obtain Cls based on the maximum likelihood method.

Another possibility to enter data is a binomial form. For each treatment group in each

study the total number of patients n is available as well as the total number of successes, y(s)ij .

The MODEL statement in this case appears to be

MODEL s/n = study treat / typel dist = bin link = logit waldci; .

4.2.2.2 Testing for Heterogeneity in the Log-odds Ratio Across Studies
An appropriate model for testing heterogeneity of the treatment difference parameter

across studies includes the study by treatment interaction term that is

f)ij —
In((l__pijﬂ— o+ By + BriXy; - (4.19)

This test makes a comparison between models (4.17) and (4.19) using likelihood method
and SAS®-GENMOD, the MODEL statements are
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MODEL y=study treat study*treat / typel dist = bin link = logit;

the x?(r—1) statistics are associated with the “study*treatment” term in the output,

B, represents the “treat” effect and f,; — f,, relates to “study 1 * treat”.

CHAPTER 5 - RANDOM EFFECT MODELS FOR EFFECT
SIZES

In this chapter a brief description of the process of estimating the standardized effect size
for random models is given. The theory of obtaining estimators and hypotheses tests as well as
confidence intervals for desired parameters is very close to the theory of obtaining estimates of
effect sizes for the fixed effect models described in Chapters 2-4. It is assumed that the data are
distributed normally. An example using SAS® to obtain numerical results is given.

As previously mentioned in both the Introduction and Chapter 2 of this report, Cohen
(1969) proposed a population measure ¢ of effect size in connection with the t- test for the
difference between means. Glass (1976) proposed g as the quantitative estimator of the results of
a collection of experimental/control group studies by estimating ¢ for each study. Assume that
requirements for the validity of the two-sample t- test are met by each study.

In the previous chapters the effect sizes 4, ..., , were assumed to be fixed but unknown
parameters. In this Chapter the effect sizes 6, ..., J, are treated the same way and &; is

considered as a population parameter for the ith study. At the same time 6, ..., J, are “sample

realizations” of the random variable A because the studies are considered as a sample from a

population of studies with a distribution of ¢, values.

5.1 Model and Notation
Suppose (Hedges, 1983) that the data arise from a series of k independent studies, where
each study compares an experimental group (E) with a control group (C). Let YijE and YijC be the
jth observations from the ith experiment for the experimental and control groups, respectively.

Assume that for fixed i, YijE and YijC are independently normally distributed such as
45



Y~ N(gf0f ), j=1nf,i=1,. .k, (5.1)
Y ~N (407 ), j=1. =1,....k as presented in Table 3.1.

The effect size for the ith study was defined in Chapter 2 by

E_u°
0
An unbiased estimator d, of the effect size (4.2) is
d, = J(N, —2);E -V, )rs, (5.3)

where N, =n°+n°,Y.®, Y.°, and s, are the experimental and control group sample sizes, means

and the pooled within group standard deviation from the ith study, respectively, and J(m) is the

correction factor defined in (2.6).

5.2 Estimating the Mean Effect Size

Let the mean effect size, that is the mean of the populations of &, be denoted by A. The

most precise weighted estimator w,d, +---+w,d, of A has weights as

w(a0)= 5 zi (5.4)

where v} =¢°(4)+o6*(d, |6,),i=1,....k and (5.5)
o?(d,|6,)=a, I, +(a, —1)2, (5.6)

where i, =nnS /N;, N, =nf +nS,and a = (N, —2)[J (N; —2)2}/(Ni —4). (5.7)

Since the parameters o(4) and 4,,..., d, are unknown, it is necessary to estimate the weights in

(4.4). The estimated weights are given by

i (4,0)= 1Y (5.8)
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where V! =¢°(4)+6%(d,|6,),i=1,...k, (5.9)
6%(d, |6,)=4a,/h +(a, —-1)d?, (5.10)

a, is defined in (4.7), and
6%(4)= ZK:M—EZk:ai /n +(a -1)/ad? = sz(d)—l(ai /n +(a —1)/aidi2).
= k-1 ki k
(5.11)
The test procedure is similar to the one described in Chapter 3 where the formula of the
test statistic involves 6°(d, | J, )instead of 6%(d,). Discussion and details are given in Hedges

and Olkin (1985).

There are a lot of applications using random effect models for medical problems given in
Whitehead (2002). She not only discusses different types of test procedures applicable for

different models but also writes SAS® code with detailed explanations for the models.

One example of a simple meta analysis based on individual patient data is given in
Higgins et.al (2001). They discussed a two-level model so that patients correspond to level one

units and trials corresponds to level two units. Observations y; denote the outcome of patient
in trial i. The variable x,; represents a treatment group with a value of 1 for the treated group and
0 for the control group.

The random effects meta analysis model for normally distributed responses y; is given
by

Vi = ot By + BiXy +ViXy; e (5.12)

where v;; ~ N(O,af)and & ~ N(O,af)are random terms corresponding to level two and level

one, respectively (Higgins et.al 2001). The covariances between different levels are assumed to

be zero. Model (4.12) is a general linear mixed model.
For example, to analyze the model in (4.12) with SAS®~MIXED, one can use

PROC MIXED;

47



CLASS study;
MODEL vy = study treat / htype =1 ddfm = kenwardroger solution;
RANDOM treat / subject = study;

The fixed term appear to be in the MODEL statement and the random effect term is in the
RANDOM statement. The “subject= study” option indicates that the random effect “treat” varies
from study to study.

CHAPTER 6 - VOTE-COUNTING METHODS

The conventional vote-counting or box-score methods synthesize results across studies by
sorting studies into categories and counting outcomes (consistent or not) of tests of hypotheses
found in literature. Like combining independent tests described in Chapter 1, vote-counting
methods require little information about the individual studies. The idea is based on knowing the
signs of mean differences or correlations or an assumption that a hypothesis test yields a
statistically significant result (Hedges and Olkin, 1985). All studies are divided into three
categories: the first one contains those studies yielding significant results with a positive mean
difference, the second category contains those studies yielding significant results with a negative
mean difference, and the third category contains those studies that did not yield a significant

result.

In this chapter methods of obtaining confidence intervals for parameters based on
asymptotic theory (Hedges and Olkin, 1985) and methods yielding exact confidence intervals for
parameters (Molenaar, 1970, Blom, 1954) are described. Estimators of effect size defined for

vote-counting methods are given.

6.1 Preliminaries
Suppose that one wants to integrate k independent “identical” studies. Suppose a statistic
T (for instance Student’s t-test statistic) can be obtained for each study. Assume that the
standardized mean difference is the same for all k studies. A positive significant result occurs if
a trial is a success, a negative significant result or no significant result implies a failure of a trial.

The probability that a study yields a positive significant result is
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p = Pr {signific.result | §,n} = j: fit;6,n)dt

where f(t;,n) is the probability density function of the statistic T in samples of size n
with effect magnitudes 6, and the critical value C_ of the statistic T. It is known the number of
successes has a binomial distribution.

An effect & turns out to be positive if the proportion of the studies with positive

significant results is greater than 1/3 (the cutoff value C, ). Let X be the number of success,

k
k) . _
Pr{proportionofsuccess > C, } = Pr{ﬁ > CO}= > (.jp'(l— P,
k i=[coK ]+l I

where [a] is the greatest integer less than or equal to a, 0< C, <1.

Assume one wants to estimate a common parameter 6 for all k studies. One obtains k test
statistics T,,...,T, which represent k parametersé, ,...,6, . The null hypothesis for the ith study is
H, :0,=0. One rejects H, if T,>C where C is a critical value obtained from the
distribution of T,. Usually the test statistics T,,...,T, are not known. The only known
information that is known is the number U of successful results (positive result, null hypothesis
is rejected) and the number of failures (negative result, null hypothesis is not rejected) in the k
independent trials. Therefore the sample proportion of successes U /k is available, that is
(Hedges and Olkin, 1985) the maximum likelihood estimate of the probability p.(6) of
success is U /k. The maximum likelihood estimator & of 6 is obtained from the maximum
likelihood estimator of pc(é) by solving the equation pc(é):U /k for 6. Since the power
function p.(0) is a monotone function of &, confidence intervals for p.(#) can be translated to

confidence intervals for 0.

6.2 Confidence Intervals for Parameters
There are several methods for obtaining confidence intervals for the parameter p.(6)

(Hedges and Olkin, 1985). One approach uses simpler asymptotic theory for the distribution of
U/k based on the large sample normal approximation to the binomial distribution. Another
49



approach based on approximations to the distribution of U/k allows obtaining exact confidence

intervals for p.(@). Different approximation methods to the distributions of U/k obtained by

different researchers independently are described in Molenaars’s monograph (1970). One of the
methods for obtaining exact confidence intervals for a desired parameter is given in Blom
(1954).

6.2.1 Confidence Intervals Based on Asymptotic Theory

6.2.1.1 Use of normal theory

Any consistent estimator of p , p may be used to estimate the variance of f,

p(1-p)/k by p@-p)/k and a 100(1-a) percent confidence interval (p,,p,) for p is
Py = ﬁica,z\/w where C,,, is the two-tailed critical value of the standard normal
distribution. The confidence interval (p,_,p, ) for p can be translated to the confidence interval
4. .6, ) for 6 by solving p.(6, )= p,_ and p.(6, )= p, (Hedges and Olkin 1985).

6.2.1.2 Use of chi-square theory

It is a well known fact that z> =k({® — p)>/ p(1- p) ~ x*(1) for large k (Hedges and

Olkin, 1985). To obtain a confidence interval for p one needs to solve the equation
k(p-p)*/p(l-p)=C, for p

where C, is the upper critical value of the chi-square distribution with one degree of freedom.

Set g(p)=C, /k. An analytical solution allows obtaining two points p,, p, is as follows

. 2p+b—/b?+4bp(1- p) d 5 = 2p +b +Jb? + 4bp(1— p)
- 2(1+b) P 2(1+b)

where b=C_ /k.

6.3 Estimating an Effect Size
Let each study consist of two groups: an experimental (E) group and a control (C) group

that have the same sample sizes such as n® =n° =n for the whole collection of k studies. Let

T, >C for all k studies. Let Y;; denote the score of the individual j in the ith study. Assume that
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E E 2 C C 2,\.:_ . . . .
Yi ~N@y .07 )and ¥ ~Ny 07 )i =1,...k j=12,...,n. The effect size g, for the ith experiment

E_c
is o =5 A i1 k.

O;

Assume that the effect size is the same for all studies o, =---=9, =J. The estimate of

o, is the Glass effect size defined by

7E _\vC
g, = u Jd=1,..K,
S.

where Y,® and Y,© are the experimental and control sample means, and s; is the pooled within

group sample standard deviation in the ith experiment. Then

t. =0,vn/2~t(2n—-2,0+/n/2). To estimate an effect size, one counts the number of
times that t, >C, . Thus (Hedges and Olkin, 1985) the probability p. (o) of success is the
probability that a noncentral t-variate exceeds C_ . For example, if a=0.50, the critical value

C,5=0.0, then g, are positive.

6.4 Limitations of the vote-counting estimators.

The estimators have several limitations that restrict their application (Hedges and Olkin,
1985). One limitation relates to the asymptotic theory that holds as k gets large. Therefore vote-

counting estimators depend on having a large number of studies.

Another one relates to the issue of averaging identical sample sizes. If sample sizes of

studies are not very different, Hedges and Olkin (1985) recommend an average value such as

n:(\/n_1+...+\/ﬁj

k

The next limitation relates to the case when U =0 or U=Kk. This means that the

estimate of p.(#) turns out to be zero or unity. If p.(6,)=1 for someé,, then p.(f)=1 for

all 8> 46, and therefore it is impossible to define a unique 0.

51



6.5 Vote-counting Method for Unequal Sample Sizes.

Using the same notation as in the case of equal sample sizes, let T,,..,T, be independent
estimators of parameters 4,,..,6, obtained from experiments with sample sizes n,,..,n,. The
critical values C;, may differ from study to study (Hedges and Olkin, 1985). The probability that
T,>C, is

p@;,n; )= Pr{Ti >C; |6;.n, }

The idea of estimating a parameter ¢, in each study is based on the fact that the
probability function is a function of 4,,n, for 6, =---=6, =0.

Suppose X, =0or1. Then Pr{X,=1|6,n,}=Pr{T, >C, |6,n,}= p(6m,).

Maximum likelihood methodology can be used to estimate 6 and the log likelihood

function is

L@ | X,,...X, )= X logp@,n, )+ (1- X, )log/1- p@n, )] +---+
X logp(6,n, ) +(1— X, )log/1— p(@,n, )].

Since n, and X,,i=1,...,k are known, the likelihood function is a function of 6 and can

be maximized over 6 to obtain an estimator 4. It is difficult to get the estimator in a closed

form, but one method to get the estimator numerically is to obtain a grid of possible values for 6

and then select 4 in the grid so that it yields the greatest value for the likelihood function.

To estimate an effect size for unequal sample sizes one may observe whether
Y £ —Y ¢ >0 for each study. Under condition of a homogeneous effect, i.e. 6, =---=6, =9, the

model turns out to be
Y.5 —Y.°~N(do,,67 I i, ) where 0, =nfnC /(nF +n’).
The probability function of positive result is to
P, )=Pr{iV;F —Y,¢ >0}=1-a(-[fi,0).

The likelihood is
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LS| Xypon X, )= i{xilog[l—qs(—\/ﬁ—ia)]+(1— X, )Iog@(—\/ﬁ_ié)}

And it must be maximized numerically to obtain the maximum likelihood estimator 5.

The report introduces many of the basic techniques used in meta analysis. One should

consider the references given for a more in depth study of meta analysis.
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