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Abstract

In multivariate regression analysis, reduced-rank regression (RRR) has received consid-

erable attention as a powerful way of improving estimation and prediction performances. In

this dissertation, we aim to address challenges of dimension reduction associated with rank

selection and variable selection in RRR. Our proposed methods are developed in a Bayesian

framework so that the uncertainties of rank selection and variable selection can be integrated

out via marginalization. We pay special attention to high-dimensional problems in which

the number of potential predictors is greater than the sample size. We propose new posterior

computation schemes to tackle high-dimensional data challenges under the RRR framework.

A great merit of our proposed methods is that they are applicable to a variety of statistical

models and machine learning methods including generalized linear models and support vec-

tor machines. In addition, various posterior sampling strategies are proposed for handling a

variety of rank selection and variable selection problems. To investigate the performance of

our proposed methods, simulation study and real data analysis are extensively implemented.

This dissertation consists of five chapters. In Chapter 1, we discuss the background

and motivation of our study. In Chapter 2, we develop a fully Bayesian approach for high-

dimensional RRR problems. In Chapter 3, we propose a multivariate extension of gen-

eralized linear models using the sparse RRR idea to handle various data types, including

binary, count, and continuous responses. In Chapter 4, we develop a new support vector

machine approach for multivariate binary outcomes by incorporating the RRR scheme into

the Bayesian support vector machine framework. In Chapter 5, we discuss some remarks

and future directions.
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Chapter 1

Introduction

In multivariate regression analysis, we often encounter situations where multiple response

variables are correlated with each other. One way of taking advantage of such interrela-

tionships between response variables is the reduced-rank regression (RRR) approach that

imposes the low-rank restriction on the coefficient matrix. An immediate implication of the

RRR method is that the effective number of parameters is substantially reduced so that the

estimation efficiency can be improved.

Extensive research has been conducted for various reduced-rank regression problems.

To extend the applicability of RRR to big data, it is crucial to break the curse of high-

dimensionality. This becomes possible with the use of sparsity constraints in a penalized

likelihood estimation framework. In recent years, the penalized likelihood approach to sparse

and low-rank matrix estimation has made great advances. However, there remain many

challenges for RRR problems. One of the major concerns is how to assess the uncertainty

of sparse and low-rank matrix estimation. The focus of this dissertation is to make an

important contribution to filling this research gap.
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1.1 Sparse reduced-rank multivariate regression

When multiple response variables are available, one may perform separate linear regression

analysis with each response by ignoring the interrelationships between the response variables.

In practice, the reduced-rank regression model has been used to explain the correlation

between multiple response variables (Anderson, 1951; Izenman, 1975). In a RRR model,

the low-rank constraint imposed on the coefficient matrix enhances both estimation and

prediction by allowing borrowing information across the response variables. See Velu and

Reinsel (2013) for a comprehensive overview of theory and applications of RRR.

With the prevalence of high-dimensional data, variable selection becomes a key step to

defeat the curse of dimensionality. We have seen a growing number of sparse and low-rank

matrix techniques and their wide applications for high-dimensional data problems (Bunea

et al., 2011, 2012; Chen et al., 2012, 2013; Chen and Huang, 2012; Ma et al., 2014; Yuan

et al., 2007). However, how to assess the uncertainty associated with sparse and low-rank

matrix estimation remains an open question.

To account for the uncertainty associated with the low-rank coefficient matrix, a simple

yet powerful solution is a Bayesian approach (Alquier, 2013; Babacan et al., 2011; Geweke,

1996; Lim and Teh, 2007). A Bayesian framework enables us to impose the reduced-rank

constraint on the coefficient matrix via the prior distribution and draw inferences from the

posterior distribution. To incorporate sparsity into Bayesian reduced-rank regression, many

attempts have been made through approximate Bayesian approaches including variational

Bayesian methods and maximum a posteriori probability (MAP) approaches (Chakraborty

et al., 2016; Goh et al., 2017; Marttinen et al., 2014; Zheng, 2014; Zhu et al., 2014). Despite

the continuous growth in the development and application of Bayesian methods for sparse

and low-rank matrix estimation, a fully Bayesian analysis of sparse reduced-rank regression,

which accounts for both rank selection and variable selection uncertainties, is as yet unde-

veloped. It is worth noting that ignoring the uncertainty associated with model selection

leads to over-confident Bayesian inference that results in underestimation of variability of

the posterior distribution (Hoeting et al., 1999; Raftery et al., 1997).
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In Chapter 2 of this dissertation, we aim to fill this research gap by developing a fully

Bayesian framework for sparse reduced-rank regression (SRRR). From a fully Bayesian view-

point, we treat the low-rank and the relevant predictors as random variables so that it is no

longer required to select the true rank and/or the best sub-model, which is necessary in the

existing literature. A major challenge with a fully Bayesian SRRR framework is that the rank

and the sparsity determine the degree of freedom of the coefficient matrix. Consequently,

we need to handle the varying-dimensionality problems that make the traditional Markov

chain Monte Carlo (MCMC) computation infeasible. Although the reversible jump MCMC

(Green, 1995) generally offers a solution to varying dimensionality problems, its computa-

tional cost is too expensive for our SRRR problem. As an alternative, we propose to use

the marginal likelihood, which is a key quantity for Bayesian model selection and hypoth-

esis testing (Carlin and Chib, 1995). See Llorente et al. (2020) for a comprehensive review

of the marginal likelihood computation. However, in our SRRR framework, the marginal

likelihood computation is extremely difficult due to the high-dimensionality of the candidate

model space. To address this issue, we develop a new posterior computation procedure using

the Laplace method within the collapsed Gibbs sampler.

1.2 A sparse reduced-rank approach to multivariate

generalized linear regression

In Chapter 3, we consider an extension of SRRR where response variables are no longer

restricted to be continuous. There are several attempts for developing RRR methods for non-

continuous data. For example, Yee and Hastie (2003) extended RRR to a wider range of data

types by proposing vector-generalized linear models (VGLMs). An application of RRR to

survival data with multi-class responses was introduced by Fiocco et al. (2008). The reduced-

rank structure was imposed on the proportional hazards model to avoid imprecise estimation

in transitions with rare events and facilitate interpretation of the estimates under a competing

risk framework. Luo et al. (2018) developed a mixed-outcome RRR (mRRR) method and
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established a non-asymptotic performance bound for the proposed mRRR estimator. They

also provided a practical modeling strategy and computational implementation for analyzing

mixed-type outcomes. However, a major drawback of the existing works is that the rank

selection has to be done prior to the estimation procedure so that the model uncertainty

associated with the rank selection is not taken into account. In addition, there are limited

attempts to tackle high-dimensional problems under the generalized RRR structure.

In Chapter 3, we develop a Bayesian framework for generalized SRRR for non-Gaussian

data. Our proposed method aims to address several challenges regarding both estimation

and inference problems in the generalized SRRR context. The proposed method enables us

to estimate the unknown rank and remove irrelevant predictors simultaneously, in contrast to

some existing methods in which the rank is assumed to be known or estimated by the single

best model. From a Bayesian perspective, we treat the rank and the relevant predictors as

random variables so that it is no longer required to select the true rank and the best sub-

model which is necessary in the existing literature. Using a Laplace approximation technique,

we develop a unifying Bayesian framework for various non-Gaussian data. The use of the

Bayesian paradigm allows us to perform statistical inferences by generating samples from

the posterior distribution without the assumption of the asymptotic normality.

1.3 A reduced-rank approach to multivariate support

vector machine

Support vector machine (SVM) is a popular machine learning method for classification

(Cortes and Vapnik, 1995). For the past two decades, it has been a subject of intense

research activity not only in machine learning but also in statistics. SVMs are popular due

to their ability to handle both linear and non-linear decision boundaries. For a tutorial intro-

duction of SVM, see Burges (1998); Cristianini et al. (2000); Schølkopf and Burges (1998);

Smola and Schölkopf (2004).

With the increasing use of high-dimensional data, many SVM approaches for variable
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selection problems have been introduced in the literature. The LASSO penalty (Tibshirani,

1996), for example, was applied to SVM by Bradley and Mangasarian (1998); Song et al.

(2002); Zhu et al. (2003). The SVMs with a non-convex penalty were also considered to

alleviate biases in estimating nonzero coefficients (Becker et al., 2011; Zhang et al., 2006).

Wang et al. (2006) proposed the notion of the double regularization for SVM to encourage

the selection of correlated features. Zou and Yuan (2008) suggested the L∞ penalized SVM

to solve a group selection problem. In addition to frequentist approaches, Bayesian SVM

methods have also drawn much attention. One important feature of Bayesian approaches

is that the uncertainty of model parameters can be well explained by the posterior model

probabilities. Marchiori and Sebag (2005) introduced a novel method for improving classi-

fication performance of SVM with recursive feature selection. See also Luts and Ormerod

(2014); Sun et al. (2018) for examples. However, all the aforementioned methods are suit-

able for univariate binary outcomes, while in many real world situations, multivariate binary

outcomes are very common for classification problems.

In Chapter 4, we propose a new Bayesian SVM approach that permits the use of multiple

binary responses in a single SVM framework. Our approach is based on the fact that there

are some interrelationships among the different responses due to a low-rank structure in

the coefficient matrix. A key idea of the proposed method is to use the data augmentation

representation of the hinge loss so that posterior sampling can be performed using the Gibbs

sampler. The introduction of the reduced rank structure in a SVM framework leads to the

dimension reduction and the prediction accuracy improvement simultaneously. In addtion,

the use of the Bayesian paradigm for SVM allows us to make the probabilistic interpretation

for prediction.
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Chapter 2

A fully Bayesian approach to sparse

reduced-rank multivariate regression

High-dimensional variable selection problems have been extensively studied in the Bayesian

literature. For example, George and McCulloch (1993) proposed the stochastic search vari-

able selection (SSVS) procedure with a two-component Gaussian mixture prior via Gibbs

sampling. Park and Casella (2008) introduced a Bayesian counterpart of the lasso (Tibshi-

rani, 1996) using a hierarchical representation of the Laplace prior. See Bhadra et al. (2019);

Kyung et al. (2010); O’Hara et al. (2009) for a comprehensive review of Bayesian variable

selection. Despite the large amount of research on high-dimensional variable selection, there

have been very few attempts to tackle simultaneous variable selection and rank estimation

problems in the Bayesian SRRR framework, which is the focus of this chapter.

In biological research, transcriptional regulatory network modeling is crucial to under-

standing the relationship between transcription factors and their target genes during a cell

cycle. In the recent studies, SRRR has gained great attention as a powerful tool to estimate

the regulatory activity of transcription factors (Chen and Huang, 2012; Chun and Keleş,

2010; Goh et al., 2017). The application of the SRRR method of Chen and Huang (2012)

to the yeast cell cycle data (Lee et al., 2002; Spellman et al., 1998) selected 81 out of 106

transcription factors as regulators of gene expression. Such a large number makes it difficult
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to perform follow up biological experiments. In this chapter, we apply the proposed Bayesian

SRRR to the identification of relevant transcriptional regulators in the yeast cell cycle data.

As a result, we identified 13 transcription factors as cell cycle regulators, all of which have

biological relevance supported by existing bioscience literature.

This chapter is organized as follows. In Section 2.1, we specify the model setting for

sparse reduced-rank regression (SRRR) and the priors for unknown parameters. In Section

2.2, we introduce a fully Bayesian approach to SRRR including technical details of posterior

computation. The calculation of the full conditional posterior distributions is shown in

Appendix. Simulation studies are presented in Section 2.3. The proposed method is applied

to transcriptional regulatory network modeling in Section 2.4. Some concluding remarks are

given in Section 2.5.

In this chapter, we use the following notations: we use a⊤
j to denote the j-th row of

a generic matrix A. For example, the n × p design matrix X can be written as X =

(x1, . . . ,xn)
⊤. For an index set Ω, A[Ω,Ω] denotes a sub-matrix of A corresponding to indices

in Ω× Ω and aΩ denotes a sub-vector of a corresponding to indices in Ω.

2.1 Model setup and prior specification

For each subject i ∈ {1, . . . , n}, we observe (xi,yi), where xi = (xi1, . . . , xip)
⊤ denotes a

p-dimensional predictor vector and yi = (yi1, . . . , yiq)
⊤ represents a q-dimensional response

vector. We consider a multivariate linear regression model,

Y = XC+ E, (2.1)

where Y = (y1, . . . ,yn)
⊤ is the n × q response matrix, X = (x1, . . . ,xn)

⊤ is the n × p

predictor matrix, C is the p× q coefficient matrix, and E = (e1, . . . , en)
⊤ is the n× q error

matrix with ei
iid∼ Nq(0q,Σ) for some unknown q × q positive definite covariance matrix

Σ. We assume that both X and Y are centered so that the intercept is omitted in the

regression model (2.1). A main goal of multivariate regression is to perform inferences for

7



the coefficient matrix C in order to study the relationship between X and Y. Due to the

fact that the multiple responses share the common predictors, the mean responses are often

linearly dependent (Anderson, 1951; Izenman, 1975; Velu and Reinsel, 2013). An effective

way to incorporate this linear dependent structure into the regression analysis is to assume

that C does not have full rank, that is, rank(C) < min(p, q).

Suppose that rank(C) = r. Given r, the coefficient matrix C can be decomposed as a

product of two full rank matrices, C = AB⊤, where A is a p× r full rank matrix and B is

a q × r full rank matrix. Therefore, the model (2.1) can be rewritten as

Y = XAB⊤ + E, (2.2)

which is called the reduced-rank regression (RRR) model when r < min(p, q). Note that the

decomposition, C = AB⊤, is not unique. To verify this, suppose P is an r × r orthogonal

matrix, i.e., PP⊤ = Ir. Let A∗ = AP and B∗ = BP. Then, we have C = AB⊤ = A∗B
⊤
∗

while A∗ ̸= A and B∗ ̸= B. To achieve a unique decomposition, following Geweke (1996)

and Gilbert and Zemcik (2006), we assume

B =

Ir
F

 , (2.3)

where F is a (q−r)×r full rank matrix. It is worth noting that the number of free parameters

of C in model (2.1) is p× q, but it reduces to (p+ q − r)× r in the RRR model (2.2) with

our constraint (2.3).

In high-dimensional regression, a necessary procedure is to eliminate irrelevant predictors

from the regression model. In a multivariate regression framework, the variable elimination

can be achieved by introducing row-wise sparsity in the coefficient matrix C. Specifically, in

the form of C = AB⊤, row-wise sparsity in C can be achieved by corresponding row-wise

sparsity in A. For example, if the i-th row of A is set equal to zero, then the i-th row of

C becomes zero. Define an indicator vector of active predictors as γ = (γ1, . . . , γp), where

8



γj = 1 if the j-th predictor is active and γj = 0 otherwise for j = 1, . . . , p. Let Xγ be a

sub-matrix of X obtained by deleting the columns of X corresponding to zero elements of

γ. Similarly, let Aγ be a sub-matrix of A obtained by deleting the rows of A corresponding

to zero elements of γ. Then, given γ, the RRR model (2.2) can be further reduced to

Y = XγAγB
⊤ + E, (2.4)

which is often referred to as the sparse reduced-rank regression (SRRR) model (Chen and

Huang, 2012). While many studies including Chen and Huang (2012) and Goh et al. (2017)

have been done on SRRR, the existing methods treat γ and r as unknown but fixed pa-

rameters and ignore the uncertainty involved in estimating γ and r. To address this issue,

we develop a fully Bayesian approach to SRRR by treating them as random variables in a

Bayesian fashion so that the uncertainty associated with r and γ can be integrated out in

our posterior inference.

To complete our Bayesian modeling, appropriate priors should be assigned for unknown

parameters including γ and r. For algebraic and computational convenience, we assign the

multivariate Gaussian prior for each row of Aγ = [aγ1, . . . , aγpγ ]
⊤ given γ and r as follows:

aγj | γ, r
iid∼ Nr(0r, ν1Ir), j = 1, . . . , pγ ,

where ν1 is a hyperparameter and pγ denotes the number of ones in γ, i.e., pγ =
∑p

j=1 γj.

To impose a necessary constraint that a reduced model contains less number of predictors

than the sample size, as in Chen and Chen (2008), we assume that

π(γ) ∝ 1(
p
pγ

)I (pγ < n) ,

where I(·) is an indicator function. To induce the unique decomposition defined in (2.3), we

assume that the first r rows in B is an identity matrix with probability one and then assign
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the multivariate Gaussian prior for each row of F = [f1, . . . , fq−r]
⊤, that is,

fk | r
iid∼ Nr(0r, ν2Ir), k = 1, . . . , q − r,

where ν2 is a hyperparameter. Given γ, we assign a discrete uniform prior for rank r,

namely, r | γ ∼ U{1, . . . , ξγ}, where ξγ = min(pγ , q). For Σ, we consider a conjugate prior,

the inverse-Wishart distribution, W−1(ν0,Ψ0) with the probability density function

π(Σ) =
|Ψ0|ν0/2

(2)ν0q/2Γq(ν0/2)
|Σ|−(ν0+q+1)/2 exp

{
−1

2
tr(Ψ0Σ

−1)

}
,

where ν0 and Ψ0 are hyperparameters. Note that our priors lead to full conditionals in a

closed form. However, Gibbs sampling is infeasible due to the so-called trans-dimensional

problems.

Remark 1. In model (2.4), the coefficient matrix, Cγ = AγB
⊤, has (pγ + q − r)r unique

parameters. Since the dimension of parameter space varies with r and γ, the joint inference

of (Cγ ,γ, r) is subject to a trans-dimensional problem. We will discuss more details of the

trans-dimensional problem and provide our solution in the following section.

2.2 Posterior inference

2.2.1 Fully Bayesian inference via collapsed Gibbs sampler

In the SRRR framework, the pressing challenge of making fully Bayesian inference is that

the number of parameters in Cγ = AγB
⊤ varies with states of r and γ. Due to such

trans-dimensional problems, posterior inference using the traditional MCMC computation

including Gibbs sampling is impracticable. In general, the reversible jump MCMC of Green

(1995) offers a way to simulate a varying dimensional Markov chain from the joint posterior

distribution, π(Aγ ,B, r,γ | Y). Unfortunately, the reversible jump MCMC is impractical

under our framework due to the extremely expensive computational cost. As an alternative,
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we propose to use the collapsed Gibbs sampling algorithm (Liu, 1994) that generates the

joint posterior sample by iterating the following steps until convergence:

1. Generate r from π(r | Y,γ,Σ).

2. Generate γ from π(γ | Y, r,Σ).

3. Generate F from π(F | Y, r,γ,Aγ ,Σ) and set B = [Ir,F
⊤]⊤.

4. Generate Aγ from π(Aγ | Y, r,γ,B,Σ).

5. Generate Σ from π(Σ | Y, r,γ,Aγ ,B).

Suppose that {(r(t),γ(t),F(t),A
(t)

γ(t)) : t = 1, . . . , T} is obtained from the above collapsed

Gibbs sampler. Then, fully Bayesian inferences for the p × q coefficient matrix C in (2.1)

can be made by constructing the marginal posterior sample {C(t) : t = 1, . . . , T} as follows:

� Repeat for t = 1, . . . , T :

i. Given (r(t),γ(t),F(t),A
(t)

γ(t)), define the reduced coefficient matrix by

C
(t)

γ(t) = A
(t)

γ(t)

[
Ir(t) ,F

(t)⊤

]
. (2.5)

ii. Given γ(t) = (γ
(t)
1 , . . . , γ

(t)
p ), define the index set of the active predictors by

G(t) =
{
j∗1 , . . . , j

∗
p
γ(t)

: γ
(t)
j∗k

= 1, j∗1 < · · · < j∗p
γ(t)

}
.

iii. Compute C(t) = [c
(t)
1 , · · · , c(t)p ]⊤ with

c
(t)
j =


(C

(t)

γ(t))[k, ] if j = j∗k for j∗k ∈ G(t)

(0, . . . , 0)⊤ otherwise

,

where (C
(t)

γ(t))[k, ] indicates the k-th row of C
(t)

γ(t) in (2.5) and j∗k is the k-th smallest

element in G(t).
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2.2.2 Implementation details with asymptotic approximations and

stochastic search algorithms

For Steps 3–5, the full conditional posterior distributions are well-known distributions such

as Gaussian or inverse-Wishart, so the implementation of the last three steps can be done by

generating samples from the known distributions. For Step 3, the full conditional distribution

of F is shown to be

vec(F⊤) | Y, r,γ,Aγ ,Σ ∼ Nqr−r2(µ
F,ΣF), (2.6)

where

µF =
{
(Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,Ω∗] + ν−1

2 I(qr−r2)

}−1

×
{
vec(A⊤

γX
⊤
γYΣ−1)Ω∗ − (Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,−Ω∗]vec(Ir)

}
,

ΣF =
{
(Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,Ω∗] + ν−1

2 I(qr−r2)

}−1
,

and Ω∗ = {r2+1, r2+2, . . . , q×r} is an index set indicating the part of vec(F⊤) in vec(B⊤);

see Appendix A. For Step 4, the full conditional distribution of Aγ is shown to be

vec(Aγ) | Y, r,γ,B,Σ ∼ Npγr(µ
Aγ ,ΣAγ ), (2.7)

where

µAγ =
{
(Σ−1/2B⊗Xγ)

⊤(Σ−1/2B⊗Xγ) + ν−1
1 Ipγr

}−1

(Σ−1B⊗Xγ)
⊤vec(Y),

ΣAγ =
{
(Σ−1/2B⊗Xγ)

⊤(Σ−1/2B⊗Xγ) + ν−1
1 Ipγr

}−1

;

see Appendix A. For Step 5, the full conditional distribution of Σ is shown to be

Σ | Y, r,γ,Aγ ,B ∼ W−1(n+ ν0,S), (2.8)
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where S = (Y −XγAγB
⊤)⊤(Y −XγAγB

⊤) +Ψ0; see Appendix A.

However, there are two serious obstacles to implementing Steps 1 and 2. First, deriving a

closed form expression of π(r | Y,γ,Σ) and π(γ | Y, r,Σ) is challenging due to analytically

intractable integrations. Second, when p is large (or even moderate), generating γ from

π(γ | Y, r,Σ) is impractical since it is computationally extremely expensive to explore the

2p dimensional parameter space of γ. For example, when p = 20, we need to evaluate

π(γ | Y, r,Σ) for 220 = 1, 048, 576 candidates in every iteration.

To overcome the first issue, we employ the Laplace method as in Kass and Raftery

(1995); Tierney and Kadane (1986); Tierney et al. (1989). By Bayes’ theorem, calculating

π(r | Y,γ,Σ) can be done by

π(r | Y,γ,Σ) =
f(Y | r,γ,Σ)π(r | γ)∑ξγ

r′=1 f(Y | r′,γ,Σ)π(r′ | γ)
, (2.9)

where

f(Y | r,γ,Σ) =

∫∫
f(Y | Aγ ,B,Σ, r,γ)π(Aγ ,B | r,γ,Σ)dAγdB. (2.10)

Similarly, π(γ | Y, r,Σ) can be computed as

π(γ | Y, r,Σ) =
f(Y | r,γ,Σ)π(γ)∑

γ′∈{0,1}p f(Y | r,γ ′,Σ)π(γ ′)
. (2.11)

Note that, if f(Y | r,γ,Σ) is given in a closed form, then the calculation of both π(r |

Y,γ,Σ) and π(γ | Y, r,Σ) are done by using (2.9) and (2.11). Hence, it suffices to obtain

an approximation of (2.10). Ignoring the constant terms with respect to n (Schwarz, 1978),

the Laplace approximation leads to

log f(Y | r,γ,Σ) ≈ log f(Y | Âγ , B̂,Σ, r,γ)− 1

2
(pγr + qr − r2) log n, (2.12)

where Âγ and B̂ are maximum likelihood estimates (MLEs) of Aγ and B given r and γ.
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Note that the likelihood function of the SRRR model is given as

f(Y | Aγ ,B,Σ, r,γ) =
1

(2π)nq/2|Σ|n/2
exp

{
−1

2

∥∥∥(Y −XγCγ)Σ
−1/2

∥∥∥2

F

}
,

where Cγ = AγB
⊤ and ∥ · ∥F denotes the Frobenius norm. Therefore, calculating the MLE

of Cγ is sufficient to compute f(Y | Âγ , B̂,Σ, r,γ) in (2.12) rather than obtaining Âγ and

B̂ individually. Let Ĉγ be the MLE of Cγ . Then, we can obtain Ĉγ by solving the following

rank constrained optimization problem:

min
Cγ

∥∥∥(Y −XγCγ)Σ
−1/2

∥∥∥2

F
subject to rank(Cγ) = r. (2.13)

By Velu and Reinsel (2013), a minimizer of (2.13) is given by

Ĉγ = (X⊤
γXγ)

−1X⊤
γYΣ−1/2VV⊤Σ1/2,

where V = [v1, . . . ,vr] and vj is the eigenvector of (YΣ−1/2)⊤Xγ(X
⊤
γXγ)

−1X⊤
γYΣ−1/2

corresponding to the j-th largest eigenvalue. Incorporating (2.12) into (2.9), we thus have

π(r | Y,γ,Σ) ≈ f̃(Y | r,γ,Σ)∑ξγ
r′=1 f̃(Y | r,γ,Σ)

≡ π̃(r | Y,γ,Σ),

where f̃(Y | r,γ,Σ) denotes the Laplace approximation of f(Y | r,γ,Σ) obtained from

(2.12). Then, Step 1 can be implemented by generating a value of r ∈ {1, . . . , ξγ} with

probabilities π̃(r | Y,γ,Σ).

Similarly, we have

π(γ | Y, r,Σ) ≈ f̃(Y | r,γ,Σ)π(γ)∑
γ′∈{0,1}p f̃(Y | r,γ ′,Σ)π(γ ′)

≡ π̃(γ | Y, r,Σ).

If p is small, it is straightforward to implement Step 2 by using π̃(γ | Y, r,Σ). However, as

mentioned earlier, generating a sample of 2p dimensional binary vector is computationally

difficult in our high-dimensional regression setting. To address this issue, we propose to use
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the Metropolized Shotgun Stochastic Search (SSS) algorithm (Hans et al., 2007). To this

end, let nbd(γ) be a neighborhood of γ that includes models with one more predictor or

one less predictor than γ as well as γ itself. For example, if γ = (0, 1, 0), then nbd(γ) =

{(1, 1, 0), (0, 1, 1), (0, 0, 0), (0, 1, 0)}. We define a proposal distribution by

g(γ | γ(t)) ∝ π̃(γ | Y, r,Σ)I
(
γ ∈ nbd(γ(t))

)
.

where γ(t) represents the current state of γ in the collapsed Gibbs sampling procedure. For

Step 2, the Metropolized SSS can be implemented as follows: (i) Generate γ∗ from g(γ | γ(t)).

(ii) Accept γ(t+1) = γ∗ with probability

min

{
1,

∑
γ∈nbd(γ(t)) f̃(Y | r,γ,Σ)π(γ)∑
γ′∈nbd(γ∗) f̃(Y | r,γ ′,Σ)π(γ ′)

}
,

and otherwise, set γ(t+1) = γ(t).

Our MCMC scheme relies on the idea of the Metropolis-within-Gibbs sampler, which was

originally proposed by Tierney (1994) and further developed by Gilks et al. (1995); Martino

et al. (2018, 2015). Recent developments of the Metropolis-within-Gibbs algorithms can

be incorporated into our framework to improve the computational efficiency of our fully

Bayesian inference.

Remark 2. Although we omit the subscript r in Aγ, B and F for the sake of notational

simplicity, the size of the matrices relies on the state of r.

Remark 3. Let C(t) be the current state of the p × q coefficient matrix defined by A
(t)

γ(t),

A
(t)

−γ(t) and B(t). At iteration t + 1, in Step 3, we can construct the given condition A
(t)

γ(t+1)

from C(t) by removing the last q− r(t+1) columns and the rows corresponding to zero entries

of γ(t+1).
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2.3 Simulation study

In this section, we conduct a simulation study to examine the performance of the pro-

posed fully Bayesian method for SRRR. Under different scenarios, data are independently

generated from a multivariate regression model, Y = XC + E, where X = (xij)n×p with

xij
iid∼ U(−6, 6), C = [C⊤

γ ,0q×(p−p0)]
⊤, Cγ is generated by imposing zero constraints on the

last p0 − r singular values of C̃γ = (aijbij)p0×q such that aij
iid∼ U(0.5, 3) and bij ∼ U{−1, 1},

and E = [e1, . . . , en]
⊤ with ei ∼ Nq(0,Σ) and Σ = (ρ|i−j|)q×q.

In Scenario 1, we set ρ = 0 and consider the following six cases:

(i) n = 100, p = 80, p0 = 6, q = 10, r = 1.

(ii) n = 100, p = 300, p0 = 6, q = 10, r = 1.

(iii) n = 100, p = 80, p0 = 6, q = 10, r = 3.

(iv) n = 100, p = 300, p0 = 6, q = 10, r = 3.

(v) n = 100, p = 80, p0 = 6, q = 10, r = 5.

(vi) n = 100, p = 300, p0 = 6, q = 10, r = 5.

In Scenario 2, we set ρ = 0.5 to create a positive correlation between errors and then consider

the above six cases as in Scenario 1.

For each simulated dataset, we employ the proposed fully Bayesian method for estimating

the p×q coefficient matrix C. We consider noninformative or flat priors by setting ν1 = ν2 =

1000, ν0 = 1 and Ψ0 = 0.5Iq. In the MCMC algorithm proposed in Section 2.2, we define the

necessary initial values by C(0) = (X⊤X+ν−1
1 I)−1X⊤Y and γ(0) = [I(η1 ≥ η(n/4)), . . . , I(ηp ≥

η(n/4))], where ηi =
∑q

j=1 |c
(0)
ij |, c

(0)
ij denotes the (i, j)-th element of C(0), and η(k) is the k-th

largest element of {η1, . . . , ηp}. We run the MCMC algorithm for 3, 000 iterations after a

burn-in period of 2, 000 iterations.
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For the sake of comparison, we consider the method of Chen and Huang (2012) (CH-

SRRR) that estimates C = AB⊤ by minimizing

min
A,B

∥∥Y −XAB⊤∥∥2

F
+

p∑
i=1

λ ∥ai∥ such that B⊤B = Ir, (2.14)

where the tuning parameter λ(> 0) controls the degree of row-wise sparsity in A. To

choose optimal λ and r, we use two-dimensional five-fold cross validation (CV) for λ ∈

{0, 0.5, . . . , 200} and r ∈ {1, . . . , q}. As a benchmark, we consider an oracle estimator that

is obtained by minimizing

min
Cγ∗

∥Y −Xγ∗Cγ∗∥2F such that rank(Cγ∗) = r∗, (2.15)

where r∗ and γ∗ indicate the true values of r and γ used in the data generating process.

The performance of each method is assessed by the following three types of mean squared

errors (MSEs):

MSE1 = ∥Ytest −XtestĈ∥2F/(ntestq),

MSE2 = ∥C− Ĉ∥2F/(pq),

MSE3 = ∥XtestC−XtestĈ∥2F/(ntestq),

where Xtest is a newly-generated ntest × p test-sample matrix of predictors and Ytest is a

newly-generated ntest× q test-sample matrix of responses for ntest = 1, 000. Note that MSE1

measures the average squared difference between the fitted values by the regression model and

the observed values. MSE2 quantifies the estimation error by measuring the Frobenius norm

distance between the estimated coefficient matrix and the true coefficient matrix. MSE3,

often referred to as the mean squared prediction error, measures the prediction accuracy by

using the average squared difference between the fitted values and the true mean function.

Tables 2.1 and 2.2 summarize our simulation results over 1, 000 Monte Carlo experiments.

The numbers in the table represent the average MSEs for each method. The result clearly
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shows that our fully Bayesian method consistently produces smaller MSEs than that of CH-

SRRR. In addition, the performance of the proposed Bayesian method (in terms of all three

MSEs) is always closer to that of the oracle method for both moderate-dimensional data

(p = 80) and high-dimensional data (p = 300) for r = 1, 3, 5 than the competing SRRR

method.By comparing Table 2.1 (Scenario 1) with Table 2.2 (Scenario 2), we also observe

that there are small changes in MSEs of the proposed method between Scenarios 1 and 2.

This implies that the proposed fully Bayesian method is robust to the change in correlation

structure of the error term. This robustness is due to the fact that our fully Bayesian

approach accounts for the uncertainty associated with the covariance matrix Σ.

Let ĈOracle, ĈBayes, and ĈSRRR be the estimates of C obtained by the oracle method, the

proposed Bayesian method, and CH-SRRR, respectively. To investigate the performance of

the proposed Bayesian estimator, we measure the element-wise difference between ĈBayes and

ĈOracle. In Figure 2.1a, the heatmap visualizes the element-wise average of ĈBayes − ĈOracle

over 1, 000 Monte Carlo replicates in Scenario 2(v) (i.e., ρ = 0.5, p = 80, and r = 5). The

rectangle in the i-th row and j-th column of the heatmap corresponds to the (i, j)-th entry

of the p × q matrix ĈBayes − ĈOracle. The heatmap displays values of 0 as white, positive

values as shades of red, and negative values as shades of blue. Similarly, the heatmap in

Figure 2.1b shows the average of ĈSRRR − ĈOracle over 1, 000 Monte Carlo replicates in

Scenario 2(v). By comparing Figure 2.1a with Figure 2.1b, we clearly see that the proposed

Bayesian method provides a remarkable improvement in element-wise point estimation for

C, especially for zero elements of C. This is consistent throughout all the scenarios; in this

chapter, we only show the result of Scenario 2(v) to maintain clarity and avoid unnecessary

duplication. To summarize, our simulation demonstrates that the fully Bayesian method

not only achieves comparable performance to the oracle estimator but also outperforms the

existing SRRR method that ignores the uncertainty associated with variable selection and

low-rank reduction.
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Table 2.1: Simulation results: average MSEs and standard errors (in parenthesis) over 1, 000
Monte Carlo experiments in Scenario 1. MSE1: average squared difference between the fitted
and observed values. MSE2: Frobenius norm distance between the estimated and the true
coefficient matrix. MSE3: mean squared prediction error between the fitted values and the
true mean function. The performance of Fully Bayes is closer to the Oracle than that of
CH-SRRR based on all three MSE measures.

case r p Method MSE1 MSE2 × 105 MSE3 × 102

(i) 1 80 CH-SRRR 1.0088 (0.0005) 4.1852 (0.0470) 1.0028 (0.0113)
Oracle 1.0027 (0.0005) 1.6399 (0.0196) 0.3931 (0.0047)

Fully Bayes 1.0038 (0.0005) 2.1212 (0.0322) 0.5085 (0.0077)
(ii) 1 300 CH-SRRR 1.0136 (0.0005) 1.5962 (0.0178) 1.4336 (0.0161)

Oracle 1.0030 (0.0005) 0.4280 (0.0051) 0.3845 (0.0045)
Fully Bayes 1.0049 (0.0005) 0.6321 (0.0156) 0.5684 (0.0141)

(iii) 3 80 CH-SRRR 1.0200 (0.0005) 8.8753 (0.0658) 2.2170 (0.0159)
Oracle 1.0090 (0.0005) 4.2859 (0.0334) 1.0266 (0.0080)

Fully Bayes 1.0098 (0.0005) 4.6023 (0.0398) 1.1026 (0.0096)
(iv) 3 300 CH-SRRR 1.0257 (0.0005) 2.9670 (0.0205) 2.6652 (0.0184)

Oracle 1.0094 (0.0005) 1.1428 (0.0083) 1.0273 (0.0075)
Fully Bayes 1.0101 (0.0005) 1.2195 (0.0099) 1.0962 (0.0090)

(v) 5 80 CH-SRRR 1.0286 (0.0005) 12.4503 (0.0782) 2.9856 (0.0188)
Oracle 1.0133 (0.0005) 6.0831 (0.0411) 1.4581 (0.0099)

Fully Bayes 1.0138 (0.0005) 6.3234 (0.0449) 1.5155 (0.0108)
(vi) 5 300 CH-SRRR 1.0354 (0.0005) 4.0376 (0.0241) 3.6282 (0.0218)

Oracle 1.0138 (0.0005) 1.6299 (0.0101) 1.4651 (0.0091)
Fully Bayes 1.0144 (0.0005) 1.6955 (0.0113) 1.5239 (0.0102)

2.4 Transcriptional regulatory network modeling

In living organisms, transcription factors (TFs) are DNA-binding proteins that modulate

gene expression. Identifying TFs that are relevant regulators of gene expression in a cell

cycle is crucial to understanding the transcriptional regulatory network. However, the iden-

tification of TFs is a challenging subject of research owing to the lack of technology to

directly observe the regulatory activity of TFs (Boulesteix and Strimmer, 2005). In recent

years, multivariate linear regression has emerged as a powerful tool for estimating the regu-

latory role of TFs. The multivariate regression model relates the gene expression levels over

time (=the response vector) to the connectivity information between TFs and their target

genes (=the predictor vector) so that the activity of TFs can be explained by the coefficient

matrix estimate. Since there are many potential regulatory TFs, sparse reduced-rank esti-
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Table 2.2: Simulation results: average MSEs and standard errors (in parenthesis) over 1, 000
Monte Carlo experiments in Scenario 2. MSE1: average squared difference between the fitted
and observed values. MSE2: Frobenius norm distance between the estimated and the true
coefficient matrix. MSE3: mean squared prediction error between the fitted values and the
true mean function. The performance of Fully Bayes is closer to the Oracle than that of
CH-SRRR based on all three MSE measures.

case r p Method MSE1 MSE2 × 105 MSE3 × 102

(i) 1 80 CH-SRRR 1.0088 (0.0006) 4.2820 (0.0712) 1.0264 (0.0172)
Oracle 1.0025 (0.0006) 1.6352 (0.0238) 0.3919 (0.0057)

Fully Bayes 1.0029 (0.0006) 1.8432 (0.0375) 0.4414 (0.0088)
(ii) 1 300 CH-SRRR 1.0142 (0.0006) 1.6532 (0.0269) 1.4874 (0.0246)

Oracle 1.0032 (0.0006) 0.4320 (0.0064) 0.3878 (0.0057)
Fully Bayes 1.0048 (0.0009) 0.6087 (0.0770) 0.5484 (0.0709)

(iii) 3 80 CH-SRRR 1.0205 (0.0006) 9.1819 (0.0873) 2.2009 (0.0210)
Oracle 1.0088 (0.0006) 4.2964 (0.0400) 1.0295 (0.0096)

Fully Bayes 1.0094 (0.0006) 4.5365 (0.1086) 1.0874 (0.0262)
(iv) 3 300 CH-SRRR 1.0271 (0.0006) 3.1071 (0.0298) 2.7936 (0.0270)

Oracle 1.0096 (0.0006) 1.1527 (0.0106) 1.0354 (0.0095)
Fully Bayes 1.0096 (0.0006) 1.1558 (0.0122) 1.0384 (0.0109)

(v) 5 80 CH-SRRR 1.0296 (0.0006) 12.9995 (0.0978) 3.1178 (0.0235)
Oracle 1.0130 (0.0006) 6.0934 (0.0504) 1.4609 (0.0122)

Fully Bayes 1.0137 (0.0006) 6.3587 (0.0643) 1.5246 (0.0155)
(vi) 5 300 CH-SRRR 1.0373 (0.0007) 4.2430 (0.0308) 3.8158 (0.0279)

Oracle 1.0140 (0.0006) 1.6436 (0.0131) 1.4769 (0.0118)
Fully Bayes 1.0145 (0.0006) 1.7085 (0.0161) 1.5342 (0.0144)

mation is essential for handling the high-dimensionality of the coefficient problems (Chen

and Huang, 2012).

In this section, we apply the proposed fully Bayesian SRRR to the yeast cell cycle data

which contain the gene expression data of Spellman et al. (1998) and the Chromatin Im-

munoprecipitation (ChIP) data of Lee et al. (2002). The gene expression data, served as the

response matrix Y, contain mRNA expression levels of 542 yeast cell-cycle-regulated genes

measured every 7 minutes during 119 minutes with a total of 18 time points, i.e., Y is a

542×18 matrix. The ChIP data, served as the design matrix X, contain binding information

between 106 transcription factors and the 542 genes, i.e., X is a 542× 106 matrix. The data

are publicly available in the R package spls. We run the proposed MCMC algorithm for

40, 000 iterations after a burn-in period of 20, 000 iterations.
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Figure 2.1: (a) Heatmap of the average element-wise difference between ĈBayes (fully Bayes)

and Ĉoracle (oracle) forC; (b) Heatmap of the average element-wise difference between ĈSRRR

(CH-SRRR) and Ĉoracle (oracle) for C. Lighter color in (a) than those in (b) indicates that
the performance of the proposed Fully Bayes method is much closer to the oracle than the
CH-SRRR.

As a result, we identify 13 TFs (ACE2, MBP1, NDD1, STE12, SWI5, SWI6, GAT3,

HIR1, IME4, RME1, ARG81, AZF1, MCM1) whose marginal posterior probabilities of be-

ing the relevant TFs are greater than 0.10 (Figure 2.2b). We find that ACE2, MBP1, NDD1,

STE12, SWI5, SWI6 and MCM1 have been experimentally verified as yeast cell cycle regu-

lators by Wang et al. (2007). In addition, Lee et al. (2002) have shown that GAT3, HIR1,

IME4, RME1, ARG81 and AZF1 are bound to genes encoding other transcriptional regula-

tors. The marginal posterior distribution of the rank, r, is shown in Figure 2.2a. Although

the posterior probability is maximized at r = 4, the posterior distribution clearly shows that

selecting r = 4 ignores about 37% chance of r = 3 given the data. The dynamic regulation

of gene expression by the selected 13 TFs is shown in Figure 2.3.

For comparison with our fully Bayesian approach, we apply the empirical Bayes method

that relies on the conditional posterior distribution of C given the estimates of r and γ,

r̂ and γ̂. By maximizing the marginal posterior distribution of r (Figure 2.2a), we obtain

r̂ = 4. Following the strategy of Barbieri and Berger (2004), we define γ̂ by using 10 TFs
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Table 2.3: Model comparison using LPML and DIC.

LPML DIC
CH-SRRR -5234.06 9707.14

Empirical Bayes -854.13 1542.33
Fully Bayes -846.68 1510.55

(ACE2, MBP1, NDD1, STE12, SWI5, SWI6, GAT3, HIR1, IME4, and RME1) that have

marginal posterior inclusion probabilities greater than or equal to 0.5 (Figure 2.2b). Given r̂

and γ̂, the empirical Bayesian inference is performed by iterating Steps 3 – 5 listed in Section

2.2, which is equivalent to Gibbs sampling of Geweke (1996). As a frequentist counterpart

of Bayesian methods, CH-SRRR used in Section 2.3 is also applied to the same set. As a

result, CH-SRRR selects 81 TFs (out of 106 TFs) as relevant regulators of gene expression

and estimates r̂ = 4 as the optimal rank of the coefficient matrix.

To assess the performance of the three methods (fully Bayes, empirical Bayes, and CH-

SRRR), we compute the following log-pseudo marginal likelihood (LPML) which is also

known as the Bayesian leave-one-out cross-validation,

LPML =
n∑

i=1

log f(yi|Y−i),

whereY−i is a submatrix ofY obtained by deleting the i-th row, yi. In addition, we compute

the deviance information criterion (DIC), which is the most popular model selection criterion

in Bayesian statistics. Note that models with larger LPML and smaller DIC are preferred.

Using the formula of Gelfand and Dey (1994), LPML can be computed from MCMC output.

Similarly, DIC can be calculated by MCMC samples (Spiegelhalter et al., 2002). Note that

CH-SRRR has been developed in a frequentist framework and we compute LPML and DIC

of CH-SRRR by applying an empirical Bayes approach under the optimal model selected

by CH-SRRR. Table 2.3 shows the results of our model comparison based on LPML and

DIC. As the fully Bayesian method has both the largest LPML and the smallest DIC, we

conclude that the proposed Bayesian method receives the strongest support from the data

for estimating the yeast cell-cycle regulation system.
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Figure 2.2: Histogram of MCMC samples over 40, 000 iterations (after 20, 000 burn-in peri-
ods).

2.5 Concluding remarks

We have developed a fully-Bayesian approach to sparse and low-rank matrix estimation in a

multivariate regression framework. The proposed method offers an effective way to address

the uncertainty associated with variable selection and rank selection. As all possible models

are integrated out within the proposed MCMC computation, our method is free from the

selection of the single best model (or equivalently tuning parameter selection) that is the

major challenge in the existing SRRR methods. In addition to the linear dependence due

to the low-rank structure, we take the stochastic correlation generated from the error term

into account by assigning the inverse-Wishart prior for Σ.

Although the proposed MCMC algorithm is relatively efficient and fast, it still merits

further research. For example, applying recent developments in Gibbs sampling such as the

fast Gibbs sampler (Lucka, 2016) and the recycle Gibbs sampler (Martino et al., 2018) can

be a good option to improve the computing speed and accelerate the convergence of MCMC

draws. Using a data augmentation approach, many extensions can be achieved under our

fully-Bayesian framework. By introducing Gaussian latent variables for multiple binary

responses, the proposed method can be adapted to multivariate probit regression (Chib and

Greenberg, 1998) and Bayesian support vector machine (Polson and Scott, 2011), which are

the topics in Chapters 3 and 4.
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Figure 2.3: Effects of the 13 selected TFs with P(γj = 1|Y) > 0.1, where x-axis indicates
time points and y-axis indicates coefficient estimates.
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Chapter 3

A Bayesian approach to sparse

reduced-rank generalized regression

models

In this chapter, we extend our Bayesian method developed in Chapter 2 to a general frame-

work that encompasses a wide range of multivariate data sets such as binary, count, or

mixed-types. Our motivation is based on the fact that the multiple responses are often

correlated and the sparse reduced-rank regression method improves the prediction accu-

racy. However, due to the use of the nonlinear link function, the computational complexity

becomes extremely high. To cope with this computational intensity, we propose to use the

Markov chain Monte Carlo model composition approach within the partially collapsed Gibbs

sampling scheme. Using a simulation study, we examine the performance of the proposed

method for the problem of classification with multivariate binary responses.

This chapter is organized as follows. In Section 3.1, we introduce a general model setting

for various types of data and specify the priors for unknown parameters. In Section 3.2, we

develop our new Bayesian approach to SRRR under multivariate generalized linear models.

In addition, we give technical details of posterior computation. Simulation studies and a real

application are presented in Section 3.3 and 3.4. Some remarks are given in Section 3.5.
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3.1 Model setup and prior specification

Suppose we observe n independent observations of the response vector yi = (yi1, · · · , yiq)⊤

and the predictor vector xi = (xi1, · · · , xip)
⊤ for i = 1, · · · , n. To formulate the relationship

between the response and the predictors, the following parametric assumption has been

commonly considered:

E(Y | X,C,α) = H(1α⊤ +XC) = [h(αk + x⊤
i ck)]n×q, (3.1)

where Y = (y1, · · · ,yn)
⊤,X = (x1, · · · ,xn)

⊤,C = (c1, · · · , cq), ck = (ck1, · · · , ckp)⊤,α =

(α1, · · · , αq)
⊤ for k = 1, · · · , q, 1 is an n × 1 unit matrix consisting of all 1s, and h(·) is

a known non-decreasing inverse-link function. Here, our main goal is to perform inferences

about the coefficient matrix C.

In equation (3.1), we assume that the distribution of the outcome belongs to an exponen-

tial family and the expectation of the outcome can be given using the link function h−1(·).

That is, we assume that the parametric distribution form of Y given X and C is known. For

example, when we have binary response variables (i.e., two possible outcomes), we assume

that the k-th outcome in subject i, yik follows the Bernoulli distribution,

yik
ind∼ B(pik) with pik = P (yik = 1) = h(αk + x⊤

i ck), (3.2)

where the inverse-link function h(·) is specified by a researcher; e.g., logit, probit, cloglog,

Student’s t, etc. The likelihood function is given by

f(Y | C,α) =

q∏
k=1

n∏
i=1

{
h(αk + x⊤

i ck)
}yik

{
1− h(αk + x⊤

i ck)
}1−yik

. (3.3)

In practice, it is easy to observe that the mean responses are linearly dependent due to

the fact that the multiple responses share the common predictors (Anderson, 1951; Izenman,

1975; Velu and Reinsel, 2013). A way of accounting for the linear dependence is to assume

that C does not have full rank, that is, rank(C) = r < min(p, q). Given r, the coefficient

26



matrix C can be further decomposed into a product of two full rank matrices, C = AB⊤,

where A is a p× r full rank matrix and B is a q × r full rank matrix. Therefore, the model

(3.1) can be rewritten as

E(Y | X,α,A,B) = H(1α⊤ +XAB⊤). (3.4)

As discussed in Chapter 2, the decomposition, C = AB⊤, is not unique. To construct a

unique decomposition, we assume

B =

Ir
F

 , (3.5)

where F is a (q−r)×r full rank matrix. Recall that the number of parameters of C in model

(3.1) is p× q, but it reduces to (p+ q − r)× r in the RRR model (3.4) with our constraint

(3.5).

In a high-dimensional regression setting, a necessary procedure is to eliminate irrelevant

predictors from the regression model. Under a multivariate regression framework, the vari-

able elimination can be achieved by creating the row-wise sparsity in the coefficient matrix.

Recall that row-wise sparsity in C can be realized by corresponding row-wise sparsity in A.

To this end, let γ = (γ1, · · · , γp) be a p × 1 binary indicator vector that represents active

variables, i.e., γj = 1 if the j-th predictor is active and γj = 0 otherwise for j = 1, · · · , p.

Let Xγ be the n × pγ matrix constructed by selecting columns of X corresponding to the

ones in γ. Similarly, let Aγ be a sub-matrix of A by selecting rows of A corresponding to

the ones in γ. Then, given γ, (3.4) can be reduced to

E(Y | Xγ ,α,Aγ ,B) = H(1α⊤ +XγAγB
⊤). (3.6)

While many attempts have been made to extend SRRR, the existing work mainly focuses on

continuous data, which is a special case with the identity link function. To fill this research

gap, we propose a Bayesian approach to the generalized SRRR framework.

To complete our Bayesian model specification, appropriate priors should be assigned for
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the unknown parameters including γ and r. In the context of high-dimensional variable

selection, it is crucial to impose the assumption that the number of active predictors is less

than the sample size. We therefore assign the following prior to γ:

π(γ) ∝ 1(
p
pγ

)I(pγ < n),

where pγ =
∑p

j=1 γj denotes the number of ones in γ and I(·) is an indicator function.

Given γ, we assume r | γ ∼ U{1, · · · , ξγ}, where ξγ = min(pγ , q). We consider the conjugate

Gaussian prior for the intercept,

α ∼ N (0q, νIq),

where ν is a hyperparameter. Similarly, we assign the conjugate multivariate Gaussian prior

for each row of Aγ = [aγ1, · · · , aγpγ ]
⊤ given γ and r as follows:

aγj | γ, r
iid∼ Nr(0r, ν1Ir), j = 1, · · · , pγ ,

where ν1 is a hyperparameter. To induce the unique decomposition defined in (3.5), we

assume that the first r rows in B is an identity matrix with probability one. Then, we assign

the multivariate Gaussian prior to each row of F = [f1, · · · , fq−r]
⊤:

fk | r
iid∼ Nr(0r, ν2Ir), k = 1, · · · , q − r,

where ν2 is a hyperparameter. Note that the use of Gaussian priors leads to a proper

posterior distribution. Since the dimension of parameter space varies with r and γ, posterior

inference via Gibbs sampling is subject to a trans-dimensional problem. In what follows,

we introduce our solution to the trans-dimensional problem under the proposed generalized

SRRR framework.
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3.2 Posterior inference

Motivated by Yang et al. (2020), we propose to use the partially collapsed Gibbs sampling

algorithm (Van Dyk and Park, 2008) that generates the joint posterior sample by iterating

the following steps until convergence:

1. Generate r from π(r | Y,γ,α).

2. Generate γj and aj jointly from π(γj, aj | Y, r,γ−j,A−j,B,α).

3. Generate fk from π(fk | yk, r,A,α) and set B = [Ir,F
⊤]⊤.

4. Generate α from π(α | Y,A,B).

Although our algorithm is motivated by Yang et al. (2020), their work mainly focused on the

Gaussian response so that the calculation can be done in closed-form. However, it does not

fit in our situation where a closed-form expression of the full conditional distribution is not

available due to analytically intractable integration. To address this problem, we propose to

use the Laplace approximation method.

Applying Bayes’ theorem, π(r | Y,γ,α) can be computed as

π(r | Y,γ,α) =
f(Y | r,γ,α)π(r)∑ξγ

r′=1 f(Y | r′,γ,α)π(r′)
, (3.7)

where

f(Y | r,γ,α) =

∫∫
f(Y | Aγ ,B, r,γ,α)π(Aγ ,B | r,γ,α)dAγdB. (3.8)

Using the Laplace approximation and ignoring the constant terms, we obtain

log f(Y | r,γ,α) ≈ log f(Y | Âγ , B̂, r,γ,α)− 1

2
(pγr + qr − r2) log n, (3.9)

where Âγ and B̂ are maximum likelihood estimates (MLEs) of Aγ and B with the constraint

B = [Ir,F
⊤]⊤ given r and γ. Combining (3.7) and (3.9), we have

π(r | Y,γ,α) ∝ f(Y | Ĉ(r)
γ , r,γ,α)/(n)

1
2
(pγr+qr−r2).
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Let

nbd(r) =


{r, r + 1} if r = 1

{r − 1, r, r + 1} if 1 < r < ξγ

{r − 1, r} if r = ξγ

.

Define the acceptance probability by

min

{
1,

#{nbd(r)}f(Y | r′,γ,α)

#{nbd(r′)}f(Y | r,γ,α)

}
, (3.10)

where f(Y | r,γ,α) and f(Y | r′,γ,α) can be obtained using Laplace approximation in

(3.9), and #{·} denotes the number of elements in a set. Then, Step 1 can be implemented as

follows: (i) Generate r′ from nbd(r) using a simple random sampling. (ii) Accept r(t+1) = r′

with probability (3.10), and otherwise, set r(t+1) = r(t).

Yang et al. (2020) proposed to generate γ from π(γ | Y, r,α). However, this is not appli-

cable in our framework due to the computational burden of marginal likelihood calculations.

As an alternative, we update each element of γ by sampling from the Bernoulli posterior as

follows:

γj | Y, r,γ−j,A−j,B,α ∼ B(ωj),

where the success probability ωj is given by

ωj =
1

1 +
f(Y|γj=0,r,A−j ,B,γ−j ,α)π(γj=0,γ−j)

f(Y|γj=1,r,A−j ,B,γ−j ,α)π(γj=1,γ−j)

.

where A−j is a sub-matrix of A without the j-th row and γ−j is a sub-vector of γ without

the j-th element. Note that, the calculation of π(γj | Y, r,γ−j,A−j,B,α) heavily relies

only on calculations of f(Y | γj = 1, r,A−j,B,γ−j,α) and f(Y | γj = 0, r,A−j,B,γ−j,α).

When γj = 1, the Laplace approximation leads to

log f(Y | γj = 1, r,A−j,B,γ−j,α) ≈ log f(Y | Âγj=1,B, r,γ−j, γj = 1,α)− r log n

2
,
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where Âγj=1 is the maximum likelihood estimate of A under the condition γj = 1. Given

A−j, the j-th row in Âγj=1 is calculated as follows:

âj = argmax
aj

f(Y | r,γ,Aγ ,B,α) subject to γj = 1.

If γj = 0, that is, the j-th predictor is inactive so that the j-th row of A is set to 0. The

likelihood therefore can be easily computed as

log f(Y | γj = 0, r,A−j,B,γ−j,α) ≈ log f(Y | Âγj=0,B, r,γ−j, γj = 0,α),

where Âγj=0 is obtained simply by setting the j-th row to zero. According to our constraint

(3.5), the coefficient matrix C can be expressed as C = AB⊤ = A[Ir,F
⊤] = [A,AF⊤].

Hence, F⊤ can be computed as F⊤ = (A⊤A)−1A⊤C[ ,(r+1):q], where C[ ,(r+1):q] denotes a

sub-matrix of C consisting of the (r+1)-th to q-th columns. The matrix B is then obtained

as B = [Ir,F
⊤]⊤.

In each MCMC iteration, sampling for each row of A depends on the status of γj. If

γj = 0 is given, then the j-th row in A is set to exact zero. If γj = 1 is given, we then

draw a sample from π(aj | Y, r,γ,A−j,B,α), which cannot be expressed in closed form.

To address such issue, we propose to generate the j-th row of A from the following normal

approximation:

aj ∼ Nr(âj, Σ̂j), (3.11)

where

âj = argmax
aj

f(Y | γ−j, γj = 1, r,A,B,α)π(aj),

Σ̂j =

{
− ∂2

∂ajk∂ajl
log f(Y | γ−j, γj = 1, r,A,B,α)π(aj)|aj=âj

}−1

.

Note that

p(Y | XC,α) =

q∏
k=1

p(yk | Xck,α), (3.12)
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where yk is the k-th column in Y. With the constraint B⊤ = [Ir,F
⊤]⊤ and C = AB⊤, (3.12)

can be rewritten as follows:

p(Y | XC,α) = p(Y | XA[Ir,F
⊤],α) ∝

q∏
k=r+1

p(yk | X∗bk,α), (3.13)

where X∗ = XA and bk is the k-th row in B. Equation (3.13) implies that sampling of

matrix B can be done independently for each row. Hence, using the normal approximation,

we generate bk from

bk ∼ Nr(b̂k, Σ̂k), k = r + 1, · · · , q, (3.14)

where

b̂k = argmax
bk

f(yk | r,A,B,α)π(bk),

Σ̂k =

{
− ∂2

∂bkl∂bkm
log f(yk | r,A,B,α)π(bk)|bk=b̂k

}−1

.

Similarly, we generate the intercept term α from

α ∼ Nq(α̂, Σ̂α), (3.15)

where

α̂ = argmax
α

f(Y | A,B)π(α),

Σ̂α =

{
− ∂2

∂α∂α⊤ log f(Y | A,B)π(α)|α=α̂

}−1

.

3.3 Simulation study

In this section, we perform a simulation study to illustrate the proposed method and compare

it with six related methods that were proposed in the literature for variable selection in a

binary regression framework.
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3.3.1 Related methods

The first method is the so-called Oracle method in which the rank is fixed at the true value

and the true zero coefficients are forced to be zero. The remaining non-zero coefficients are

generated as in Steps 2-4 in Section 3.2 using (3.11), (3.14) and (3.15). Consequently, this

method is expected to be the best among all the methods.

Another method is to apply separate maximum likelihood estimates using only the active

predictors (MLE full rank true sparsity). This method ignores the possible interrelation

between the responses and fits each of them separately. This method is considered to show

that selecting variables without a low-rank assumption is inefficient.

We also consider four penalized likelihood methods. Each method is implemented for each

of the response separately (full rank). The Ridge method uses the L2 penalty to shrink the

magnitude of all coefficients. However, it neither achieves exact zero estimate nor takes care

of the low-rank constraint on C. The Lasso (Tibshirani, 1996) method is able to obtain real

sparsity by using the L1 penalty. The SCAD (Fan and Li, 2001) and MCP (Zhang et al.,

2010) methods are fitted for each of the response separately using the smoothly clipped

absolute deviation penalty and the minimax concave penalty, respectively. Ridge and Lasso

are implemented by R package glmnet. SCAD and MCP are performed by R package ncvreg.

We determine the optimal tuning parameters using 10-fold cross-validations.

3.3.2 Simulation setups

In the simulation, we set the first p0 = 4 rows in C to be nonzero and therefore γ =

{1, 2, 3, 4}. The nonzero part of the coefficient matrix Cγ is generated as Cγ = AγB
⊤,

where Aγ ∈ Rp0×r is an orthogonal matrix from the QR decomposition of a random p0 × r

matrix filled with N (0, 1) entries, and all entries in B ∈ Rq×r are independent and identically

distributed (iid) random samples from U(−1.5, 1.5). The rest p− p0 rows in C are set to be

zero. The predictor matrix is conducted by generating its entries as iid random samples from

normal distribution N (0, 2.52). The intercept term is defined as α = (0.5, · · · , 0.5)⊤. The

latent probability is then modeled with pik = h(x⊤
i ck +αk), where h(x) = 1/{1+ exp(−x)}.
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The response matrix is generated from model (3.2), i.e., yik
ind∼ B(pik) for i = 1, · · · , n, and

k = 1, · · · , q. The hyperparameters are intentionally set to large values as ν = ν1 = ν2 = 1000

to reflect the noninformative characteristic of the priors.

We consider the following four cases to cover both low-dimensional and high-dimensional

cases:

i. n = 200, p = 100, q = 10, r = 2.

ii. n = 200, p = 300, q = 10, r = 2.

iii. n = 200, p = 100, q = 20, r = 2.

iv. n = 200, p = 300, q = 20, r = 2.

The performance is measured by the mean squared error (MSE) via calculating the Frobenius

norm as follows:

MSE = ∥C− Ĉ∥2F/pq.

After obtaining the estimated coefficients for each method, we generate Xtest and Ytest to

measure the prediction accuracy. The test data are independently generated using the same

settings with ntest = 150. We calculate the expected cross-entropy loss using the test dataset

as follows:

−

[∑
i

∑
k

(yik log pik + (1− yik) log(1− pik))

]
/ntestq,

where pik = h(x⊤
i ĉk). To assess the prediction accuracy for classification, we calculate true

negative rate (TNR), false negative rate (FNR), false positive rate (FPR), and true positive

rate (TPR), representing the percentage of true zeros, false zeros, false non-zeros, and true

non-zeros, respectively.
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Table 3.1: Simulation results: average MSE, cross-entropy loss and standard errors (in
parenthesis) over 100 Monte Carlo experiments.

case q p Method cross-entropy MSE× 104

(i) 10 100 Proposed 0.3996 (0.0034) 6.2900 (0.3444)
Oracle Bayes 0.3994 (0.0034) 6.1660 (0.3525)

MLE full rank true sparsity 0.4049 (0.0035) 7.6458 (0.3803)
Ridge full rank 0.5757 (0.0019) 102.5263 (2.2433)
Lasso full rank 0.4434 (0.0033) 37.2917 (1.0017)
SCAD full rank 0.4229 (0.0036) 15.7505 (0.5626)
MCP full rank 0.4210 (0.0037) 14.1090 (0.5850)

(ii) 10 300 Proposed 0.3987 (0.0036) 2.3946 (0.2287)
Oracle Bayes 0.3983 (0.0036) 2.3179 (0.2308)

MLE full rank true sparsity 0.4035 (0.0037) 2.8424 (0.2499)
Ridge full rank 0.6604 (0.0006) 46.2929 (1.0166)
Lasso full rank 0.4572 (0.0031) 15.2124 (0.3876)
SCAD full rank 0.4301 (0.0037) 6.2646 (0.2872)
MCP full rank 0.4267 (0.0037) 6.0875 (0.8240)

(iii) 20 100 Proposed 0.3961 (0.0026) 5.5916 (0.2276)
Oracle Bayes 0.3960 (0.0026) 5.3962 (0.2206)

MLE full rank true sparsity 0.4017 (0.0027) 7.4524 (0.3088)
Ridge full rank 0.5774 (0.0013) 103.8881 (1.4992)
Lasso full rank 0.4425 (0.0022) 37.9412 (0.7064)
SCAD full rank 0.4212 (0.0025) 15.9453 (0.5856)
MCP full rank 0.4192 (0.0026) 13.4795 (0.2997)

(iv) 20 300 Proposed 0.3947 (0.0025) 1.8535 (0.0878)
Oracle Bayes 0.3944 (0.0025) 1.8069 (0.0891)

MLE full rank true sparsity 0.4003 (0.0025) 2.4900 (0.1056)
Ridge full rank 0.6604 (0.0005) 46.7077 (0.6545)
Lasso full rank 0.4535 (0.0023) 15.3951 (0.2561)
SCAD full rank 0.4280 (0.0026) 7.0262 (0.4399)
MCP full rank 0.4229 (0.0025) 5.6698 (0.1448)

3.3.3 Simulation results

The simulation results are based on 1, 000 MCMC samples (after 1, 000 burn-in iterations)

over 100 Monte Carlo replications. MSEs are summarized in Table 3.1. It shows that our

proposed method produces considerably smaller values of the average MSE comparing to the

penalized regression methods and MLE with true sparsity. This indicates that our method

does a reasonably good job in both variable selection and rank reduction. Note that the

Ridge method performs the worst and this demonstrates that variable selection and rank
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Table 3.2: Simulation results: average percentage of variable selection accuracy and standard
errors (in parenthesis) over 100 Monte Carlo experiments.

elementwise selection accuracy
case q p Method active variables inactive variables
(i) 10 100 Proposed 0.9800 (0.0068) 0.9996 (0.0002)

LASSO 0.8315 (0.0078) 0.9044 (0.0025)
SCAD 0.8250 (0.0081) 0.9277 (0.0016)
MCP 0.8030 (0.0079) 0.9655 (0.0009)

(ii) 10 300 Proposed 0.9750 (0.0075) 0.9998 (0.0001)
LASSO 0.8040 (0.0073) 0.9571 (0.0012)
SCAD 0.8120 (0.0073) 0.9590 (0.0008)
MCP 0.7812 (0.0076) 0.9838 (0.0004)

(iii) 20 100 Proposed 0.9950 (0.0035) 0.9997 (0.0002)
LASSO 0.8300 (0.0067) 0.9041 (0.0018)
SCAD 0.8240 (0.0066) 0.9275 (0.0012)
MCP 0.7981 (0.0069) 0.9650 (0.0007)

(iv) 20 300 Proposed 0.9900 (0.0049) 0.9998 (0.0001)
LASSO 0.8002 (0.0072) 0.9577 (0.0008)
SCAD 0.8042 (0.0070) 0.9600 (0.0006)
MCP 0.7776 (0.0072) 0.9840 (0.0003)

reduction both are important. Furthermore, it is worth noting that our proposed method is

comparable to the Oracle Bayes method while all the full rank methods perform relatively

poorly. This demonstrates that implementing rank reduction is essential in the presence of

reduced-rank structure and that solely performing the variable selection is not enough.

For the purpose of variable selection comparison, we measure the accuracy of variable

selection for the proposed method and three penalized regression methods which can pro-

duce exact zero coefficients to induce sparsity. The accuracy is measured separately for

both active and inactive predictors. The numbers in Table 3.2 represent the percentages of

active/inactive predictors that are correctly selected/deselected. For the proposed method,

the predictor is treated as being selected if P (γj = 1 | Y) ≥ 0.5. As a result, our proposed

method has an outstanding variable selection accuracy. Table 3.3 reports the true positive

rate, true negative rate, false positive rate, and false negative rate for each method under

each case. The results clearly show that our method is comparable to the Oracle Bayes

method and always performs better than other methods regarding true negative rates and
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Table 3.3: Simulation results: average true negative rate (TNR), false negative rate (FNR),
false positive rate (FPR), true positive rate (TPR), and standard errors (in parenthesis) over
100 Monte Carlo experiments. Methods (1)-(7): (1) Proposed, (2) Oracle Bayes, (3) MLE
full rank true sparsity, (4) Ridge full rank, (5) Lasso full rank, (6) SCAD full rank, (7) MCP
full rank.

case Method TNR FNR FPR TPR
(i) (1) 0.7503(0.0047) 0.1430(0.0018) 0.2497(0.0047) 0.8570(0.0018)

(2) 0.7510(0.0048) 0.1432(0.0018) 0.2490(0.0048) 0.8568(0.0018)
(3) 0.7499(0.0047) 0.1468(0.0019) 0.2501(0.0047) 0.8532(0.0019)
(4) 0.5242(0.0067) 0.1576(0.0025) 0.4758(0.0067) 0.8424(0.0025)
(5) 0.7022(0.0056) 0.1376(0.0019) 0.2978(0.0056) 0.8624(0.0019)
(6) 0.7202(0.0057) 0.1449(0.0020) 0.2798(0.0057) 0.8551(0.0020)
(7) 0.7235(0.0055) 0.1456(0.0019) 0.2765(0.0055) 0.8544(0.0019)

(ii) (1) 0.7510(0.0048) 0.1441(0.0017) 0.2490(0.0048) 0.8559(0.0017)
(2) 0.7515(0.0049) 0.1438(0.0018) 0.2485(0.0049) 0.8562(0.0018)
(3) 0.7509(0.0048) 0.1472(0.0018) 0.2491(0.0048) 0.8528(0.0018)
(4) 0.2351(0.0076) 0.0977(0.0044) 0.7649(0.0076) 0.9023(0.0044)
(5) 0.6855(0.0059) 0.1369(0.0019) 0.3145(0.0059) 0.8631(0.0019)
(6) 0.7105(0.0059) 0.1458(0.0019) 0.2895(0.0059) 0.8542(0.0019)
(7) 0.7160(0.0057) 0.1455(0.0019) 0.2840(0.0057) 0.8545(0.0019)

(iii) (1) 0.7600(0.0032) 0.1461(0.0014) 0.2400(0.0032) 0.8539(0.0014)
(2) 0.7596(0.0032) 0.1458(0.0014) 0.2404(0.0032) 0.8542(0.0014)
(3) 0.7583(0.0031) 0.1495(0.0014) 0.2417(0.0031) 0.8505(0.0014)
(4) 0.5248(0.0047) 0.1620(0.0022) 0.4752(0.0047) 0.8380(0.0022)
(5) 0.7091(0.0039) 0.1396(0.0015) 0.2909(0.0039) 0.8604(0.0015)
(6) 0.7285(0.0038) 0.1468(0.0016) 0.2715(0.0038) 0.8532(0.0016)
(7) 0.7312(0.0037) 0.1471(0.0015) 0.2688(0.0037) 0.8529(0.0015)

(iv) (1) 0.7590(0.0034) 0.1455(0.0014) 0.2410(0.0034) 0.8545(0.0014)
(2) 0.7595(0.0034) 0.1457(0.0015) 0.2405(0.0034) 0.8543(0.0015)
(3) 0.7583(0.0033) 0.1494(0.0014) 0.2417(0.0033) 0.8506(0.0014)
(4) 0.2360(0.0053) 0.0969(0.0031) 0.7640(0.0053) 0.9031(0.0031)
(5) 0.6946(0.0044) 0.1373(0.0017) 0.3054(0.0044) 0.8627(0.0017)
(6) 0.7176(0.0041) 0.1455(0.0017) 0.2824(0.0041) 0.8545(0.0017)
(7) 0.7231(0.0041) 0.1461(0.0017) 0.2769(0.0041) 0.8539(0.0017)

false positive rates. Note that the Ridge method performs extremely poorly in true negative

rates and false positive rates, especially in high-dimensional settings. This coincides with

the fact that Ridge regression is not able to do the variable selection so that it over-select

the predictors. By re-using the statistics in Table 3.3, we can easily compute the precision,

accuracy, as well as F1 score, and they are reported in Table 3.4. In addition, we compute
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Table 3.4: Simulation results: average precision, accuracy, F1 score, and standard errors (in
parenthesis) over 100 Monte Carlo experiments. Methods (1)-(7): (1) Proposed, (2) Oracle
Bayes, (3) MLE full rank true sparsity, (4) Ridge full rank, (5) Lasso full rank, (6) SCAD
full rank, (7) MCP full rank.

case Method precision accuracy F1-score
(i) (1) 0.8169(0.0027) 0.8106(0.0022) 0.8361(0.0017)

(2) 0.8173(0.0027) 0.8108(0.0022) 0.8363(0.0017)
(3) 0.8159(0.0027) 0.8083(0.0023) 0.8339(0.0018)
(4) 0.6970(0.0024) 0.7039(0.0022) 0.7622(0.0014)
(5) 0.7904(0.0029) 0.7928(0.0024) 0.8244(0.0017)
(6) 0.7993(0.0030) 0.7965(0.0024) 0.8258(0.0017)
(7) 0.8010(0.0029) 0.7976(0.0024) 0.8264(0.0018)

(ii) (1) 0.8170(0.0027) 0.8103(0.0023) 0.8357(0.0018)
(2) 0.8173(0.0027) 0.8107(0.0024) 0.8360(0.0018)
(3) 0.8163(0.0027) 0.8085(0.0024) 0.8339(0.0018)
(4) 0.6039(0.0018) 0.6112(0.0017) 0.7228(0.0016)
(5) 0.7811(0.0029) 0.7859(0.0025) 0.8197(0.0018)
(6) 0.7933(0.0031) 0.7917(0.0025) 0.8222(0.0018)
(7) 0.7965(0.0030) 0.7943(0.0025) 0.8241(0.0018)

(iii) (1) 0.8218(0.0018) 0.8130(0.0016) 0.8374(0.0012)
(2) 0.8216(0.0018) 0.8130(0.0016) 0.8374(0.0012)
(3) 0.8201(0.0018) 0.8103(0.0016) 0.8349(0.0013)
(4) 0.6956(0.0016) 0.7015(0.0015) 0.7599(0.0010)
(5) 0.7933(0.0020) 0.7945(0.0016) 0.8252(0.0012)
(6) 0.8031(0.0020) 0.7989(0.0016) 0.8272(0.0012)
(7) 0.8046(0.0020) 0.7999(0.0016) 0.8278(0.0012)

(iv) (1) 0.8215(0.0019) 0.8130(0.0015) 0.8375(0.0012)
(2) 0.8217(0.0019) 0.8131(0.0015) 0.8375(0.0012)
(3) 0.8203(0.0018) 0.8104(0.0015) 0.8350(0.0012)
(4) 0.6046(0.0013) 0.6122(0.0013) 0.7239(0.0011)
(5) 0.7859(0.0021) 0.7896(0.0018) 0.8222(0.0013)
(6) 0.7972(0.0021) 0.7950(0.0017) 0.8246(0.0013)
(7) 0.8002(0.0021) 0.7970(0.0017) 0.8260(0.0012)

the KS statistic and AUC to further prove the superiority of the proposed method. Under

the multivariate regression framework, we calculate the KS statistic and AUC for each re-

sponse variable and then compute the average. As shown in Table 3.4 and 3.5, our proposed

method is slightly worse than the Oracle Bayes and shows a comparable performance with

all other penalized regression methods.
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Table 3.5: Simulation results: average KS statistic, AUC, and standard errors (in parenthe-
sis) over 100 Monte Carlo experiments.

case Method KS statistic AUC
(i) Proposed 0.6289(0.0046) 0.8845(0.0026)

Oracle Bayes 0.6291(0.0046) 0.8847(0.0026)
MLE full rank true sparsity 0.6233(0.0047) 0.8820(0.0026)

Ridge full rank 0.4254(0.0047) 0.7696(0.0030)
Lasso full rank 0.5948(0.0051) 0.8668(0.0029)
SCAD full rank 0.6007(0.0051) 0.8697(0.0029)
MCP full rank 0.6024(0.0052) 0.8707(0.0029)

(ii) Proposed 0.6292(0.0049) 0.8846(0.0027)
Oracle Bayes 0.6295(0.0049) 0.8849(0.0027)

MLE full rank true sparsity 0.6257(0.0049) 0.8827(0.0027)
Ridge full rank 0.2895(0.0036) 0.6772(0.0024)
Lasso full rank 0.5826(0.0053) 0.8606(0.0031)
SCAD full rank 0.5903(0.0055) 0.8649(0.0031)
MCP full rank 0.5925(0.0054) 0.8663(0.0030)

(iii) Proposed 0.6345(0.0032) 0.8877(0.0017)
Oracle Bayes 0.6345(0.0032) 0.8877(0.0017)

MLE full rank true sparsity 0.6286(0.0032) 0.8850(0.0018)
Ridge full rank 0.4254(0.0031) 0.7687(0.0019)
Lasso full rank 0.5988(0.0035) 0.8690(0.0020)
SCAD full rank 0.6064(0.0034) 0.8726(0.0020)
MCP full rank 0.6072(0.0034) 0.8732(0.0020)

(iv) Proposed 0.6350(0.0032) 0.8881(0.0018)
Oracle Bayes 0.6354(0.0032) 0.8882(0.0018)

MLE full rank true sparsity 0.6302(0.0033) 0.8855(0.0018)
Ridge full rank 0.2911(0.0029) 0.6777(0.0019)
Lasso full rank 0.5910(0.0037) 0.8653(0.0021)
SCAD full rank 0.5985(0.0037) 0.8690(0.0021)
MCP full rank 0.6018(0.0037) 0.8706(0.0021)

3.4 Case-study: yeast cell cycle data

Transcription factors (TFs) play a vital role for interpreting the mechanism of cell cycle

regulation. In this section, we analyze the yeast cell cycle data (Chun and Keleş, 2010)

as we used in Section 2.4. The response matrix Y consists of 542 cell-cycle-regulated genes

from an α factor arrest method, where the rows and columns correspond to genes and mRNA

levels measured at every 7 min during 119 min, respectively, i.e., n = 542 and q = 18. The

542×106 predictor matrix X includes the binding information of the target genes for a total
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of 106 TFs. Since the data have already been normalized, we choose 0 as the threshold and

transform the response matrix Y to be binary, namely Y∗ = (yik)n×q such that y∗ikI(yik ≥ 0).

We randomly select 80% of the data as the training set and the rest 20% as the test set.

We use the training set to fit the SRRR model using the proposed Bayesian method. To

further demonstrate the importance of the reduced-rank, we also implement our proposed

method with a fixed full rank where q = 18. In addition, we also consider the MLE as well

as the other four penalized regression methods (Ridge, Lasso, SCAD, MCP) which have

been mentioned in Section 3.3. The summary of the results based on 100 replications is

shown in Tables 3.6 to 3.8. As a result, the proposed method always select the rank to be

2. Our proposed method with full rank selects the least number of TFs (approximately 4

TFs), and the proposed method selects around 23 TFs. For the penalized regression methods

which can do variable selection, the lasso selects the largest number of TFs, 100 out of 106.

Our proposed method outperforms all other methods with respect to precision, accuracy, F1

score, KS statistic and AUC which indicates that simultaneous variable selection and rank

reduction truly increases the prediction performance.

Table 3.6: Average true positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), false negative rate (FNR), and standard errors (in parenthesis) over 100 replications.

TPR TNR FPR FNR
Proposed 0.6135 (0.0017) 0.6779 (0.0018) 0.3221 (0.0018) 0.3865 (0.0017)

Proposed full rank 0.6107 (0.0016) 0.6646 (0.0019) 0.3354 (0.0019) 0.3893 (0.0016)
MLE 0.6016 (0.0018) 0.6324 (0.0017) 0.3676 (0.0017) 0.3984 (0.0018)
Ridge 0.6102 (0.0018) 0.6665 (0.0019) 0.3335 (0.0019) 0.3898 (0.0018)
Lasso 0.6047 (0.0018) 0.6790 (0.0019) 0.3210 (0.0019) 0.3953 (0.0018)
SCAD 0.6030 (0.0022) 0.6737 (0.0020) 0.3263 (0.0020) 0.3970 (0.0022)
MCP 0.5989 (0.0020) 0.6708 (0.0020) 0.3292 (0.0020) 0.4011 (0.0020)

3.5 Concluding remarks

We have developed a Bayesian approach to sparse low-rank matrix estimation in a multi-

variate generalized regression framework. The proposed method provides an effective way

to handle both rank reduction and variable selection simultaneously for various types of
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Table 3.7: Average precision, accuracy, F1 score, and standard errors (in parenthesis) over
100 replications.

Precision Accuracy F1 score
Proposed 0.6431 (0.0018) 0.6465 (0.0015) 0.6278 (0.0016)

Proposed full rank 0.6327 (0.0018) 0.6384 (0.0014) 0.6214 (0.0015)
MLE 0.6076 (0.0016) 0.6174 (0.0015) 0.6045 (0.0015)
Ridge 0.6338 (0.0017) 0.6391 (0.0014) 0.6217 (0.0015)
Lasso 0.6405 (0.0018) 0.6428 (0.0014) 0.6219 (0.0015)
SCAD 0.6361 (0.0018) 0.6393 (0.0014) 0.6189 (0.0017)
MCP 0.6326 (0.0018) 0.6358 (0.0014) 0.6151 (0.0016)

Table 3.8: Average KS statistic, AUC, number of predictors, rank, and standard errors (in
parenthesis) over 100 replications.

KS statistic AUC number of predictors rank
Proposed 0.2875 (0.0027) 0.6676 (0.0019) 22.98 (0.2995) 2 (0)

Proposed full rank 0.2758 (0.0027) 0.6570 (0.0019) 4.32 (0.0566) 18 (0)
MLE 0.2502 (0.0028) 0.6359 (0.0019) 106.00 (0.0000) 18 (0)
Ridge 0.0249 (0.0080) 0.6619 (0.0019) 106.00 (0.0000) 18 (0)
Lasso 0.0242 (0.0078) 0.6606 (0.0019) 100.04 (0.2647) 18 (0)
SCAD 0.0238 (0.0076) 0.6562 (0.0020) 87.02 (0.4228) 18 (0)
MCP 0.0225 (0.0072) 0.6491 (0.0019) 63.92 (0.5617) 18 (0)

responses. The number of parameters can be significantly reduced under the reduced-rank

structure and the uncertainty of the model can be also well taken care of.

While the proposed method has been applied to binary data with the logit link function

in this chapter, it is also applicable to various types of responses with a variety of link

functions. One limitation of the proposed framework is that the implementation could be

computationally expensive when the number of parameters is extremely large. Note that we

assume the first r columns in the coefficient matrix are independent to construct the unique

decomposition as in (3.5). If this assumption is not met, one can simply consider rotations

of responses to resolve such issue.

41



Chapter 4

A reduced-rank approach to

multivariate support vector machine

Support vector machine (SVM) is one of the popular classification methods in the machine

learning literature. In this chapter, we introduce a multivariate extension of SVM using the

RRR approach. The use of the reduced rank assumption allows us to take an advantage of

utilizing the interrelationship among multiple binary responses. Using data augmentation

of Polson and Scott (2011), Bayesian inference can be performed via Gibbs sampling. In

addition, the Bayesian framework permits the notion of Occam’s window (Madigan and

Raftery, 1994) to account for the model uncertainty associated with the rank selection.

The rest of this chapter is arranged in the following way. In Section 4.1, we discuss the

assumption and model settings of the univariate Bayesian SVM. Section 4.2 shows the merit

of the reduced-rank structure and how we extend the existing method to the multivariate

cases. Section 4.3 introduces the latent variable representation. We also derive the condi-

tional distributions which are needed to implement the Gibbs sampling algorithm to make

statistical inferences. Simulation studies are conducted in Section 4.4. Section 4.5 illustrates

a real data application of our methods with the spider data from the R package mvabund.

Section 4.6 concludes with some discussion.
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4.1 Data augmentation for SVM

Suppose that we observe y = (y1, · · · , yn)⊤ with yi ∈ {−1, 1} and X = (x1, · · · ,xn)
⊤ with

xi = (xi1, . . . , xip)
⊤. The SVM is performed by minimizing

Θ(β) =
n∑

i=1

max(1− yix
⊤
i β, 0) + pλ(β), (4.1)

where the first term is often referred to as the hinge loss, and the second term is called the

penalty function (e.g., pλ(β) = λ∥β∥2). From a Bayesian perspective, minimizing equation

(4.1) is equivalent to finding the mode of the following pseudo-posterior density:

π(β | y) ∝ π(β)
n∏

i=1

fi(yi | β)

∝ π(β) exp

{
−2

n∑
i=1

max(1− yix
⊤
i β, 0)

}
,

where fi(yi | β) = exp(−2max(1 − yix
⊤
i β, 0)) and π(β) ∝ exp{−pλ(β)}. The univariate

Bayesian SVM framework is originally proposed by Polson and Scott (2011). Their main

contribution is to show that

fi(yi | β) = exp
{
−2max(1− yix

⊤
i β, 0)

}
=

∫ ∞

0

1√
2πλi

exp

{
−1

2

(1 + λi − yix
⊤
i β)

2

λi

}
dλi.

(4.2)

In practice, it is common to observe that the response variable consists of multivariate

outcomes rather than a single value. However, the existing Bayesian SVM is limited to

the univariate case. In what follows, we develop a multivariate Bayesian SVM using the

reduced-rank approach.
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4.2 Reduced-rank SVM

Suppose that we observe yi = (yi1, · · · , yiq)⊤ which contains q different binary outcomes

with yik ∈ {−1, 1} for k = 1, · · · , q. Let Y = (y1, · · · ,yn)
⊤. Also assume that we observe

q design matrices Xk = (x1k, · · · ,xnk)
⊤. Then, the SVM objective function in (4.1) can be

extended to

Θ(C) =
n∑

i=1

k∑
q=1

max(1− yikx
⊤
ikck, 0) + pλ(ck), (4.3)

where ck is the k-th column in the p × q coefficient matrix C = (c1, · · · , cq). Minimizing

equation (4.3) is equivalent to finding the mode of the following pseudo-posterior density

π(C | Y,X1, · · · ,Xq) ∝ π(C)f(Y | X1, · · · ,Xq,C)

∝ π(C) exp

{
−2

n∑
i=1

q∑
k=1

max(1− yikx
⊤
ikck, 0)

}
.

Note that the main goal of classification is to make predictions for the future data rather

than the observed data.

Suppose that rank(C) = r. Given r, the coefficient matrix can be decomposed into a

product of two full rank matrices, C = AB⊤, where A is a p× r full rank matrix and B is

a q × r full rank matrix. For a unique decomposition, we assume that

B =

Ir
F

 , (4.4)

where F is a (q − r)× r full rank matrix.

By following Polson and Scott (2011), we introduce a latent variable λik in order to

express the pseudo-likelihood as a mixture of normals. For computational convenience, we

express the pseudo-likelihood of yik as a proportional form of normal distribution as follows:

f(yik | ck, λik) ∝ λ
−1/2
ik exp

{
−1

2

(1 + λik − yikx
⊤
ikck)

2

λik

}
,

π(λik) ∝ I(λik > 0).
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We use the noninformative Gaussian prior with large variance for each column in A and

each row in F as follows:

ak ∼ N (0, ν1Ip), k = 1, · · · , r,

fk ∼ N (0, ν2Ir) k = 1, · · · , q − r,

where ν1 and ν2 are prespecified hyperparameters.

4.3 Posterior inference

The greatest merit of Bayesian SVM is that posterior inference can be performed via Gibbs

sampling. In this section, we derive the full conditionals and discuss the implementation of

the Gibbs sampler under the reduced rank constraint.

4.3.1 Conditional distributions

Full conditional distribution of fk: Let xik be the i-th row in the k-th design matrix.

Define x∗
ik = A⊤xik, Z

∗
k = (z∗1k, · · · , z∗nk) with z∗ik = yikx

∗
ik/

√
λik, and dk = (d1k, · · · , dnk)⊤

with dik = (1 + λik)/λik. For k
′ = k + r, the full conditional distribution of fk is obtained as

follows:

π(fk | −) ∝
n∏

i=1

exp

{
−1

2

(1 + λik′ − yik′x
⊤
ik′c

′
k)

2

λik′

}
π(fk)

∝
n∏

i=1

exp

{
−1

2

(1 + λik′ − yik′x
⊤
ik′Afk)

2

λik′

}
π(fk)

∝
n∏

i=1

exp

{
−f⊤k A

⊤xik′y
2
ik′x

⊤
ik′Afk − 2yik′x

⊤
ik′Afk(1 + λik′)

2λik′

}
π(fk)

=
n∏

i=1

exp

{
−f⊤k z

∗
ik′z

∗
ik′

⊤fk − 2z∗ik′
⊤dik′fk

2

}
exp

{
−1

2
f⊤k (ν

−1
2 Ir)fk

}
∝ exp

(
−1

2
(fk − µk)

⊤Σ−1
k (fk − µk)

)
,
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where

µk =
(
Z∗

k′
⊤Z∗

k′ + ν−1
2 Ir

)−1

Z∗
k′
⊤dk′ ,

Σk =
(
Z∗

k′
⊤Z∗

k′ + ν−1
2 Ir

)−1

.

This implies

fk | − ∼ N
((

Z∗
k′
⊤Z∗

k′ + ν−1
2 Ir

)−1

Z∗
k′
⊤dk′ ,

(
Z∗

k′
⊤Z∗

k′ + ν−1
2 Ir

)−1
)
.

Full conditional distribution of λik: Since we assign the constant prior to the latent vari-

able, the conditional distribution of λik is only proportional to the pseudo-likelihood. Here,

we show that the conditional distribution of λik becomes the inverse Gaussian distribution.

A random variable has the inverse Gaussian distribution IG(µ, λ) with mean and variance

E(x) = µ and V ar(x) = µ3/λ if the density function is given by

f(x | µ, λ) =
√

λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
, x ∈ (0,∞).

Let η = 1
λik

, and λik =
1
η
, dλik

dη
= −η−2. We now derive the full conditional distribution of λik

using the Jacobian transformation.

π(η | −) ∝ f(yik | ck, λik)π(η)

∝ 1√
1
η

exp

{
−1

2

(1 + 1
η
− yikx

⊤
ikck)

2

1
η

}
η−2

∝ 1√
η3

exp

{
−
η2

(
(yikx

⊤
ikck)

2 − 2yikx
⊤
ikck + 1

)
− 2η(yikx

⊤
ikck − 1) + 1

2η

}

∝ 1√
η3

exp

{
−η2 − 2η(yikx

⊤
ikck − 1)−1 + (yikx

⊤
ikck)

−2

2η(yikx⊤
ikck − 1)−2

}
∝ 1√

η3
exp

{
−(η − |yikx⊤

ikck − 1|−1)2

2η(yikx⊤
ikck − 1)−2

}
,

which implies 1
λik

| ck, yik
ind∼ IG(|1− yikx

⊤
ikck|−1, 1).
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Full conditional distribution for vec(A): Define Zk = (z1k, · · · , znk)⊤ with zik =

yikxik/
√
λik, dk = (d1k, · · · , dnk)⊤ with dik = (1 + λik)/

√
λik, d = (d⊤

1 , · · · ,d⊤
q ), Z =

bdiag(Z1, · · · ,Zq), where bdiag(·) stands for the block diagonal matrix and ⊗ denotes the

Kronecker product between two matrices. To develop the full conditional distribution

π(vec(A) | −), we show that the pseudo-likelihood can be expressed as a form of multi-

variate Gaussian linear model:

f(Y | C) =

q∏
k=1

n∏
i=1

f(yik | ck, λik)

∝
q∏

k=1

n∏
i=1

1

λ
1/2
ik

exp

{
−1

2

(1 + λik − yikx
⊤
ikck)

2

λik

}

∝
q∏

k=1

n∏
i=1

exp

{
−1

2

c⊤k xiky
2
ikx

⊤
ikck − 2(1 + λik)yikx

⊤
ikck

λik

}

∝
q∏

k=1

n∏
i=1

exp

{
−1

2
(c⊤k z

⊤
ikzikck − 2z⊤ikdikck)

}

∝
q∏

k=1

n∏
i=1

exp

{
−1

2
(dik − z⊤ikck)

2

}

∝
q∏

k=1

exp

{
−1

2
∥dk − Zkck∥2

}
∝ exp

{
−1

2
∥d− Zvec(C)∥2

}
. (4.5)

The last equation (4.5) has the same form of a multivariate linear model. We can write it

as d ∼ N (Zvec(C), Inq).

Lemma 1. vec(AB⊤) = (B⊗ Ip)vec(A), where ⊗ denotes Kronecker product.
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Using Lemma 1, we can show that

π(vec(A) | −) ∝ exp

(
−1

2
∥d− Z(B⊗ Ip)vec(A)∥2

)
π(A)

∝ exp

{
−1

2
∥d− Z(B⊗ Ip)vec(A)∥2

}
exp

{
− 1

2ν1
(vec(A))⊤vec(A)

}
∝ exp

{
−1

2

(
∥d− Z(B⊗ Ip)vec(A)∥2 + (vec(A))⊤ν−1

1 Iprvec(A)
)}

∝ exp

{
−1

2
(vec(A)− µA)⊤

(
Z∗⊤Z∗ + ν−1

1 Ipr

)
(vec(A)− µA)

}
,

where µA = (Z∗⊤Z∗ + ν−1
1 Ipr)

−1Z∗⊤d, with Z∗ = Z(B⊗ Ip). Therefore, we have

vec(A) | − ∼ N
(
(Z∗⊤Z∗ + ν−1

1 Ipr)
−1Z∗⊤d, (Z∗⊤Z∗ + ν−1

1 Ipr)
−1
)
.

4.3.2 Rank selection

Under reduced-rank framework, an important procedure is to select rank using data from the

validation set. One typically selects a single rank from a class of candidate values and then

proceeds as if the selected rank is the true. However, this ignores the model uncertainty in

model selection and leads to the problem of over-confident inferences (Hoeting et al., 1999;

Raftery et al., 1997).

To get rid of the ambiguity and account for the model uncertainty associated with rank

selection, we propose to use the Bayesian model averaging method. We show more details

of the rank selection problem under two different scenarios as follows:

Scenario 1: When there is a rank which dominates other ranks, i.e., the posterior probability

at the single rank is extremely higher than others. Define a set which contains all possible

candidate rank values as A = {1, 2, · · · ,min(p, q)}. Suppose that

p(r∗ | Y)

p(r′ | Y)
> ϵ ∀ r′ ∈ A\r∗,
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for some constant ϵ. Here, we set ϵ = 20, following Madigan and Raftery (1994). In this

case, it is clear that we choose r∗ as our final decision since the other models have negligibly

small posterior probabilities.

Scenario 2: Suppose that some ranks have similar magnitudes of posterior probabilities in

the sense that

∃ r′ ∈ A s.t.
max
r∈A

{p(r | Y)}

p(r′ | Y)
≤ ϵ.

Then, the posterior inferences for the p× q coefficient matrix C can be made as follows:

1. Repeat for l = 1, 2, · · · , c :

i. Given r = rl, define Nb as the burn-in period sample size and T (rl) as the sample

size after the burn-in period where

T (rl)∑c
l=1 T

(rl)
=

p(rl | Y)∑c
l=1 p(rl | Y)

.

ii. Conduct the entire Gibbs sampling and then save the generated posterior samples

after the burn-in period C
(rl)
(t) , t = 1, · · · , T (rl).

2. Compute the average using all posterior samples from Step 1.

Ĉ =
c∑

l=1

T (rl)∑
t=1

C
(rl)
(t) /

c∑
l=1

T (rl).

It is important to note that calculation of p(r | Y) is infeasible under SVM. To address

this issue, we propose to use the Laplace approximation. However, there is a pressing

challenge that it is impossible to obtain the first-order and second-order derivatives of the

hinge loss in (4.3). To overcome this difficulty, we propose to use the smoothed hinge loss

(Chapelle, 2007) whose value is almost the same with the classic hinge loss except for the
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non-differentiable point at ξ = 1.

ϕ(ξ) =


1− ξ, ξ < 1− h,

− (1−ξ)4

16h3 + 3(1−ξ)2

8h
+ 1−ξ

2
+ 3h

16
, |1− ξ| ≤ h,

0, ξ > 1 + h,

(4.6)

where h is a constant controlling the smoothness. As recommended in Chapelle (2007),

we use h = 0.1 to meet the balance between numerical stability and performance. Given

rank(C) = r, we then obtain the maximum likelihood estimates (MLEs) of A and F by

minimizing the smoothed hinge loss as follows:

(
vec(Â), vec(F̂)

)
= argmin

A,F

n∑
i=1

q∑
k=1

ϕ(ξik),

where ξik = yik(x
⊤
ikck). Combining with the constraint (4.4), the estimated coefficient matrix

is obtained as Ĉ = [Â, ÂF̂]. Using the smoothed hinge loss (4.6) and ignoring the constant

terms with respect to n, the Laplace approximation leads to

log p(r | Y) ≈ −2
n∑

i=1

k∑
q=1

ϕ(ξik)−
1

2
(pr + qr − r2) log n.

4.4 Simulation study

In this section, we study the performance of our proposed methods through simulated

datasets. We set all entries in the coefficient matrix equal to 0.5 including the intercept

as C = (0.5)p×q. Consequently, the true rank of C is 1. The q predictor matrices are con-

ducted by independently generating all their entries as iid random samples from uniform

distribution U(−3, 3), and their first columns are set to be all 1s. The true model is defined

by the probit link. The success probability pik is defined by pik = Φ(x⊤
ikck), where Φ(·) is

the cumulative density function of standard normal distribution. The elements of the re-

sponse matrix is generated from Bernoulli distribution with the success probabilities pik as
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yik
ind∼ B(pik) for i = 1, · · · , n, and k = 1, · · · , q.

To justify that more outcomes can provide more interrelations to improve the prediction

accuracy, we consider the following three cases with various q values:

i. n = 100, p = 6, q = 10.

ii. n = 100, p = 6, q = 20.

iii. n = 100, p = 6, q = 30.

We assume that there is no preferred model by setting ν1 = ν2 = 100. For the implemen-

tation of MCMC, we use 2, 000 samples (after 1, 000 burn-in iterations) from the posterior

distribution using the Gibbs sampling algorithm. For the sake of comparison, we consider the

data augmentation method of Polson and Scott (2011) that obtains the posterior inferences

for each column in C separately. This method is equivalent with running our algorithm un-

der the full rank where we assume that each column in the coefficient matrix is independent

with one another. Under the multivariate framework, the data augmentation method can

be expressed as

f(yik | ck, λik) ∝
1√
2πλik

exp

{
−1

2

(1 + λik − yikx
⊤
ikck)

2

λik

}
,

π(λik) ∝ 1,

ck ∼ N (0, τ 2Ip),

where τ is a prespecified hyperparameter and we set τ 2 = 100. The posterior inference can

be made by drawing samples from the following full conditionals iteratively for k = 1, · · · , q :

ck | − ∼ N
(
(Z⊤

k Zk + τ−2Ip)
−1Z⊤

k dk, (Z
⊤
k Zk + τ−2Ip)

−1
)

1

λik

| − ind∼ IG(|1− yikx
⊤
ikck|−1, 1).

As an alternative, we also consider the logistic regression model which is commonly used to

model binary dependent variables, to serve as a baseline algorithm. We employ the logistic
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model q times, one for each response. The design matrices and response matrix in the test

set are generated with the same settings as in the training set for ntest = 100.

To assess the prediction accuracy of each method, we calculate true positive rate (TPR),

true negative rate (TNR), false positive rate (FPR), and false negative rate (FNR) where they

denote the percentage of true positive ones, true negative ones, false positive ones, and false

negative ones, respectively. In addition, we also compute accuracy, precision, as well as F1

score to give a more comprehensive measure for the prediction accuracy. All measurements

are estimated by the Monte Carlo method with 100 replications. Table 4.1 reports the true

positive rate, true negative rate, false positive rate, false negative rate, precision, accuracy, as

well as F1 score for each method under each case. The results show that our proposed method

outperforms both the logistic model and the data augmentation method. This clearly implies

that the proposed method is better with respect to the prediction accuracy in all aspects

and takes good care of the reduced-rank structure among the multiple response variables.

In addition, as shown in Figure 4.1, the increment of prediction performance between the

proposed method and the other two methods increases as the number of response variables

gets larger in that more of the interrelationships can be utilized to increase the prediction

accuracy. Therefore, we argue that our proposed method truly captures the dependency

among the responses and the reduced-rank structure is fairly needed.

4.5 Real data analysis

In this section, we study the performance of our proposed method for multivariate classifica-

tion problem using spider data; the data set is available in R package mvabund. In the spider

data, the design matrix X ∈ R28×6 contains the information of 6 environmental features.

The response matrix Y ∈ R28×12 is a data frame with 28 observations of abundance of 12

hunting spider species. Since the response matrix Y is count data showing the number of

each spider species, we have to transform them to binary outcomes. For the i-th observation,

if yik = 0, indicating there is no such species surviving in certain environment, we define

y∗ik = −1. Otherwise, let y∗ik = 1. In sum, we have a total of 154 negative ones and 182
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Table 4.1: Simulation results: average true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR), false negative rate (FNR), precision, accuracy, F1 score, and
standard errors (in parenthesis) over 100 Monte Carlo experiments. q is the number of
responses.

Method Logistic DA Proposed

q = 10
TPR 0.8761 (0.0016) 0.8736 (0.0016) 0.8824 (0.0016)
TNR 0.8000 (0.0025) 0.8001 (0.0026) 0.8092 (0.0025)
FPR 0.2000 (0.0025) 0.1999 (0.0026) 0.1908 (0.0025)
FNR 0.1239 (0.0016) 0.1264 (0.0016) 0.1176 (0.0016)

precision 0.8627 (0.0015) 0.8624 (0.0016) 0.8690 (0.0016)
accuracy 0.8448 (0.0012) 0.8434 (0.0013) 0.8523 (0.0012)
F1 score 0.8692 (0.0010) 0.8678 (0.0011) 0.8755 (0.0010)

q = 20
TPR 0.8738 (0.0012) 0.8726 (0.0012) 0.8845 (0.0012)
TNR 0.8002 (0.0016) 0.7988 (0.0017) 0.8109 (0.0017)
FPR 0.1998 (0.0016) 0.2012 (0.0017) 0.1891 (0.0017)
FNR 0.1262 (0.0012) 0.1274 (0.0012) 0.1155 (0.0012)

precision 0.8628 (0.0010) 0.8618 (0.0011) 0.8705 (0.0011)
accuracy 0.8436 (0.0008) 0.8423 (0.0008) 0.8543 (0.0008)
F1 score 0.8682 (0.0007) 0.8671 (0.0007) 0.8774 (0.0007)

q = 30
TPR 0.8728 (0.0010) 0.8714 (0.0011) 0.8846 (0.0010)
TNR 0.7959 (0.0013) 0.7937 (0.0014) 0.8080 (0.0014)
FPR 0.2041 (0.0013) 0.2063 (0.0014) 0.1920 (0.0014)
FNR 0.1272 (0.0010) 0.1286 (0.0011) 0.1154 (0.0010)

precision 0.8594 (0.0008) 0.8580 (0.0008) 0.8682 (0.0009)
accuracy 0.8411 (0.0007) 0.8395 (0.0007) 0.8531 (0.0007)
F1 score 0.8660 (0.0006) 0.8646 (0.0006) 0.8763 (0.0006)

positive ones.

For comparison of prediction accuracy, we randomly split the data into a training set

(of size 23) and a test set (of size 5). For each random partition of the data, we train the

model using our proposed method, logistic regression model, as well as the data augmentation

method. After the model training, we measure the prediction accuracy based on the test data

set using the same classification metrics as we used in Section 4.4. Note that in rank selection

process, we compute the marginal likelihood using Laplace approximation and employ the

Occam’s window criterion as in Section 4.3.2. We repeat the above procedure 100 times.
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Figure 4.1: Prediction increment as the number of responses increases.

As a result, 74% of them, we select one single rank and 26% of them more than one ranks

are selected. This justifies the fact that the Bayesian model averaging approach works well

in model comparison and covers the uncertainty associated with the rank selection. The

summary of the results is shown in Table 4.2 based on the 100 replications. As a result, our

proposed method outperforms both the logistic model and the existing data augmentation

method.

Table 4.2: Prediction accuracy and standard errors (in parenthesis) using spider data over
100 replications.

Method Logistic DA Proposed
TPR 0.7969 (0.0095) 0.8256 (0.0091) 0.8237 (0.0095)
TNR 0.8031 (0.0088) 0.8054 (0.0081) 0.8397 (0.0074)
FPR 0.1969 (0.0088) 0.1946 (0.0081) 0.1603 (0.0074)
FNR 0.2031 (0.0095) 0.1744 (0.0091) 0.1763 (0.0095)

precision 0.8397 (0.0074) 0.8476 (0.0067) 0.8703 (0.0064)
accuracy 0.7983 (0.0059) 0.8162 (0.0055) 0.8295 (0.0057)
F1 score 0.8130 (0.0062) 0.8321 (0.0056) 0.8419 (0.0057)
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4.6 Concluding remarks

The hinge loss objective function for SVM seems to be a challenge for traditional Bayesian

analysis, especially under the multivariate framework with multiple response variables. How-

ever, the pseudo-likelihood for SVM can be expressed as a mixture of normal distributions

which allow SVM to be analyzed using Gaussian linear models. We have developed an ex-

tended data augmentation method for multivariate SVM under the reduced-rank structure.

Our method is based on the fact that multiple responses might have some interrelation-

ships so that the prediction accuracy can be improved by borrowing information across the

outcomes. The MCMC algorithm leads to closed-form full conditional distributions.

While the proposed method successfully extends the data augmentation method to mul-

tivariate reduced-rank framework, there is a lack of a solution to the problem of high-

dimensional variable selection. Extending our methods with high-dimensional feature se-

lection could be a good direction for future research. Another interesting area is to extend

our methods to nonlinear generalizations using kernel-based approaches.
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Chapter 5

Conclusion

In this dissertation, Bayesian methods for sparse reduced-rank regression are proposed to

achieve both rank reduction and variable selection simultaneously in the presence of multiple

response variables and possible interrelationships between the responses.

In Chapter 2, we have developed a fully-Bayesian approach to sparse and low-rank matrix

estimation in a multivariate regression framework. The proposed method provides a solution

to accounting for the model uncertainty associated with variable selection and rank selection.

One advantage of our method is free of selecting the single best model, which is a major

problem in existing SRRR methods , by marginalization via the proposed MCMC method.

In addition, our proposed method is robust to the change in correlation structure of the error

term by assigning the inverse-Wishart prior to the covariance matrix.

In Chapter 3, we have developed a Bayesian approach to sparse low-rank matrix estima-

tion in a multivariate generalized regression framework. The proposed method provides an

efficient way to handle both rank selection and variable selection at the same time. Under

the reduced-rank structure, the number of parameters to be estimated is greatly reduced and

the model uncertainty is also taken into account. Furthermore, our proposed method can

simply be extended to mixed-type outcomes by using different link functions and likelihoods.

In Chapter 4, we have proposed a multivariate latent variable representation of Bayesian

support vector machine (SVM) under the reduced-rank structure. The use of the hierarchical
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representation for SVM allows us to perform Bayesian inference via the Gibbs sampling

algorithm so that we can make probabilistic interpretation of class probabilities rather than

deterministic class label predictions.

A major limitation of our proposed methods is the computational cost, especially in the

high-dimensional settings where p is large. Moreover, our Bayesian approaches would be

extremely inefficient when both n and q are huge due to the high-dimensional inverse matrix

computation. Another potential issue is that the estimate of the parameters might be biased

if the reduced-rank structure is not present because the major assumption of our methods

is that the coefficient matrix has reduced-rank.

In this dissertation, we mainly focus on developing the methodologies to solve various

challenges of the reduced-rank approach. Therefore, some theoretical properties including

asymptotic theory and computational complexity have been left for further investigation.

Owing to the generality of our proposed methods, many extensions can be easily done on

the basis of the proposed framework. For instance, our approaches can be extended to

various data types, such as binary, count, continuous and time-to-event (survival) data.

More applications of our method in biological fields such as gene expression and image

recognition are greatly welcomed. Finally, extensions of the proposed multivariate SVM to

the problem of high-dimensional feature selection and nonlinear generalizations using kernel-

based methods would be good directions for future research work.
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Appendix A

Calculation of full conditionals

A.1 Derivation of (2.6)

Note that vec(B⊤) = (vec(Ir)
⊤, vec(F⊤)⊤)⊤ since B = [Ir,F

⊤]⊤. For F, the likelihood is

proportional to

f(Y | Aγ ,B,Σ, r,γ) ∝ exp

[
−1

2
tr{(Y −XγAγB

⊤)Σ−1(Y −XγAγB
⊤)⊤}

]
∝ exp

[
−1

2

{
tr(BA⊤

γX
⊤
γXγAγB

⊤Σ−1)− 2tr(Σ−1Y⊤XγAγB
⊤)
}]

∝ exp

[
−1

2

{
vec(B⊤)⊤Gvec(B⊤)− 2m⊤vec(B⊤)

}]
∝ exp

[
−1

2

{
vec(F⊤)⊤Gvec(F⊤)− 2vec(F⊤)⊤(mΩ∗ −G[Ω∗,−Ω∗]vec(Ir))

}]
,

where G = Σ−1⊗A⊤
γX

⊤
γXγAγ and m = vec(A⊤

γX
⊤
γYΣ−1). From the above result, we have

π(F | Y, r,γ,Aγ ,Σ) ∝ f(Y | Aγ ,B,Σ, r,γ)π(F | r)

∝ exp

(
−1

2

∥∥∥(Y −XγAγB
⊤)Σ− 1

2

∥∥∥2

F

)
exp

(
− 1

2ν2
vec(F⊤)⊤vec(F⊤)

)
∝ exp

{
−1

2
(vec(F⊤)− µF)⊤ΣF−1

(vec(F⊤)− µF)

}
,
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where

µF =
{
(Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,Ω∗] + ν−1

2 I(qr−r2)

}−1

×
{
vec(A⊤

γX
⊤
γYΣ−1)Ω∗ − (Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,−Ω∗]vec(Ir)

}
,

ΣF =
{
(Σ−1 ⊗A⊤

γX
⊤
γXγAγ)[Ω∗,Ω∗] + ν−1

2 I(qr−r2)

}−1
.

Hence, this implies that vec(F⊤) | Y, r,γ,Aγ ,Σ ∼ N (µF,ΣF).

A.2 Derivation of (2.7)

It follows from a direct calculation that

π(Aγ | Y, r,γ,B,Σ) ∝ f(Y | Aγ ,B,Σ, r,γ)π(Aγ | γ, r)

∝ exp

(
−1

2

∥∥∥(Y −XγAγB
⊤)Σ− 1

2
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F

)
exp

(
− 1

2ν1
∥Aγ∥2F

)
∝ exp

{
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2
tr
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XγAγB

⊤Σ−1BA⊤
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⊤
γ − 2Y⊤XγAγB
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1

ν1
AγA

⊤
γ

)}
∝ exp

[
−1

2

{
vec(Aγ)

⊤Wvec(Aγ)− 2v⊤vec(Aγ)
}]

,

where W = (Σ−1/2B⊗Xγ)
⊤(Σ−1/2B⊗Xγ)+ ν−1

1 Ipγr and v = (Σ−1B⊗Xγ)
⊤vec(Y). This

leads to vec(Aγ) | Y, r,γ,B,Σ ∼ Npγr(µ
Aγ ,ΣAγ ), where

µAγ =
{
(Σ−1/2B⊗Xγ)

⊤(Σ−1/2B⊗Xγ) + ν−1
1 Ipγr

}−1

(Σ−1B⊗Xγ)
⊤vec(Y),

ΣAγ =
{
(Σ−1/2B⊗Xγ)
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.
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A.3 Derivation of (2.8)

A direct calculation shows that

π(Σ | Y, r,γ,Aγ ,B) ∝ f(Y | Aγ ,B,Σ, r,γ)π(Σ)

∝ |Σ|−
n
2 exp

{
−1

2

∥∥∥(Y −XγAγB
⊤)Σ− 1

2

∥∥∥2

F

}
|Σ|−

ν0+q+1
2 exp

{
−1

2
tr(Ψ0Σ

−1)

}
∝ |Σ|−

ν0+q+1+n
2 exp

{
− 1

2
tr
(
SΣ−1

)}
,

where S = (Y −XγAγB
⊤)⊤(Y −XγAγB

⊤) +Ψ0. Therefore, we have

Σ | Y,Aγ ,B,µ, r,γ ∼ W−1(n+ ν0,S).
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