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Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical
settings. Here we use dynamic mean-field theory and computer simulation to argue that poisoning is
ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more)
ways to a crystal; that those ways are not energetically equivalent; and that the associated binding
events occur with sufficiently unequal probability. If these conditions are met then the steady-state
growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal
growth, which is the characteristic of poisoning. Our results also indicate that relatively small changes
of system parameters could be used to induce recovery from poisoning. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4941457]

I. INTRODUCTION

One of the kinetic traps that can prevent the crystal-
lization of molecules from solution is the phenomenon of
self-poisoning, in which molecules attach to a crystal in a
manner not commensurate with the crystal structure and so
impair or prevent crystal growth.1,2 This phenomenon has
been seen in computer simulations of hard rods3 and in
the assembly of polymers1,4,5 and proteins.6,7 A signature
of self-poisoning is a growth rate that is a non-monotonic
function of the thermodynamic driving force for crystal
growth, with the slowing of growth as a function of driving
force occurring in the rough-growth-front regime (a distinct
effect, growth poisoning at low driving force, can occur
if impurities impair 2D nucleation on the surface of a
3D crystal8–11). Unlike the slow dynamics associated with
nucleation,2,12 self-poisoning cannot be overcome by seeding
a solution with a crystal template or by inducing heterogeneous
nucleation.

Here we use dynamic mean-field theory and computer
simulation to argue that poisoning is ubiquitous because its
emergence requires no specific spatial or molecular detail, but
only the notion that a molecule can bind in two (or more) ways
to a crystal, optimal and non-optimal; that the non-optimal
way of binding is energetically less favorable than the optimal
way of binding; and that any given binding event is more likely
(by about an order of magnitude) to be non-optimal than to be
optimal. If these conditions are met then the character of the
steady-state growth regime changes qualitatively with crystal-
growth driving force. Just past the solubility limit a crystal’s
growth rate increases with thermodynamic driving force
(supercooling or supersaturation). However, the dynamically
generated crystal also becomes less pure as driving force is
increased, i.e., it incorporates more molecules in the non-
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optimal configuration. As a result, the effective driving force
for growth of the impure crystal can diminish as the driving
force for growth of the pure crystal increases, and so the
impure crystal’s growth slows (this feedback effect is similar
to the growth-rate “catastrophe” described in Ref. 10). At
even larger driving forces an impure precipitate of non-
optimally bound molecules grows rapidly. Self-poisoning of
polymer crystallization was studied in Refs. 1, 4, and 5
using analytic models and simulations. The present models
have a similar minimal flavor to the models developed in
those references, although our models are not designed to
be models of polymer crystallization specifically, and contain
no notion of molecular binding-site blocking. We show that
poisoning can happen even if all molecular interactions are
attractive and that it results from a nonlinear dynamical
feedback effect that couples crystal quality and crystal growth
rate. Having identified the factors that lead to poisoning, the
present models also suggest that relatively small changes
of system parameters could be used to induce recovery
from it.

In Section II, we introduce and analyze a mean-field
model of the growth of a crystal from molecules able to
bind to it in distinct ways. In Section III, we introduce
a simulation model of the same type of process, but one
that accommodates spatial fluctuations and particle-number
fluctuations ignored by the mean-field theory. The behavior
of these models is summarized in Section IV. Both the
mean-field model and the simulations show crystal growth
rate to be a non-monotonic function of the thermodynamic
driving force for growth of the pure crystal, because the
dynamically generated crystal is in general impure. In some
regimes the predictions of the two models differ in their
specifics: the mean-field theory assumes a nonequilibrium
steady-state of infinite lifetime, and the growth rate associated
with this steady-state can vanish. Simulations, which satisfy
detailed balance, eventually evolve to thermal equilibrium
and so always display a non-zero growth rate. We conclude in
Section V.

0021-9606/2016/144(6)/064903/7/$30.00 144, 064903-1 © 2016 AIP Publishing LLC
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II. MEAN-FIELD THEORY OF GROWTH POISONING

The basic physical ingredients of growth poisoning are
contained within a model of growth that neglects all spatial
detail and accounts only for the ability of particles of distinct
type (or, equivalently, distinct conformations of a single
particle type) to bind to or unbind from a “structure,” which
we resolve only in an implicit sense. We consider K types
of particle, labeled i = 1,2, . . . ,K (we will focus shortly on
the case of two particle types). We model the structure in
a mean-field sense, resolving it only to the extent that we
identify the relative abundance ni of particle type i within
the structure, where


i ni = 1 (we assume that sums over

variables i and j run over all K particle-type labels). Let
us assume that the structure gains particles of type i at rate
piC, where C is a notional concentration and


i pi = 1. Let us

assume that particle types unbind from the structure with a rate
proportional to their relative abundance within the structure,
multiplied by some rate λ, which can depend on the set of
variables {ni}. If we write down a master equation for the
stochastic process so defined, calculate expectation values of
the variables ni and replace fluctuating quantities by their
averages, then we get the following set of mean-field rate
equations describing the net rates Γi at which particles of type
i add to the structure:

Γi = piC − niλ({ni}), (1)

where i = 1,2, . . . ,K , and


i pi = 1 =


i ni as stated previ-
ously. To model a structure of interacting particles we assume
a Arrhenius-like rate of unbinding

λi({ni}) = exp(β

j

ϵ i jn j), (2)

which assumes the interaction energy between particle types
i and j to be ϵ i j, and assumes that particles “feel” only the
averaged composition {ni} of the structure.

We define the growth rate of the structure as

V ≡

i

Γi. (3)

In equilibrium the structure neither grows nor shrinks, and we
have

Γi = 0, (4)

for each i = 1,2, . . . ,K . We shall also assume the existence
of a steady-state growth regime in which V ≥ 0 but the
composition of the structure does not change with time; in
this regime we have

ni =
Γi
j Γj

, (5)

i.e., the relative abundance of each particle type is proportional
to the relative rate at which it is added to the structure.

At this point the set of Equations (1)–(5) describes a
generic model of growth via the binding and unbinding of
particles of multiple types. The model is mean-field in both
a spatial sense — no spatial degrees of freedom exist, and
particle-structure interactions depend on the composition of
the structure as a whole — and in the sense of ignoring
fluctuations of particle number: the model resolves only net

rates of growth. We now specialize the model to the case of
crystal growth in the presence of impurities; different choices
of parameters can be used to model other scenarios.13–15

We shall consider two particle types, and so set K = 2. We
will call particle types 1 and 2 “B” for “blue” and “R” for “red,”
respectively, for descriptive purposes (in Section IV simulation
configurations will be color-coded accordingly). We call the
relative abundance of blue particles in the structure n1 ≡ n,
and so the relative abundance of red particles in the structure
is n2 = 1 − n. We consider blue particles to represent the
(unique) crystallographic orientation and conformation of a
particular molecule and red particles to represent the ensemble
of non-crystallographic orientations and conformations of the
same molecule. Alternatively, one could consider red particles
to be an impurity species present in the same solution as
the blue particles that we want to crystallize. We assume
that an isolated particle is blue with probability p and
red with probability 1 − p, and so we choose p1 = p and
p2 = 1 − p for the basic rates of particle addition in (1). We
will assume that the blue-blue crystallographic or “specific”
interaction in Eq. (2) is ϵBB = −ϵ skBT . We will assume that
interactions between blue and red (ϵRB) or red and red (ϵRR)
are “nonspecific,” and equal to −ϵnkBT . With these choices
(1) reads

ΓB = pC − nαne−ϵn, (6)
ΓR = (1 − p)C − (1 − n)e−ϵn, (7)

where α ≡ e−∆ and ∆ ≡ ϵ s − ϵn. This model describes the
growth of a structure whose character is defined by its “color,”
n; for n ≈ 1 the structure is almost blue, and we shall refer to
this structure as the “crystal.” For n small we have a mostly red
structure, and we refer to this as the “precipitate.” Intermediate
values of n describe a structure that we shall refer to as an
“impure” crystal.

It is convenient to work with a set of rescaled rates and
concentrations

(c, γR, γB) ≡ (C,ΓR,ΓB) eϵn, (8)

in terms of which Equations (6) and (7) read

γB = pc − nαn, (9)
γR = (1 − p)c − (1 − n). (10)

The rescaling defined by Eq. (8) makes an important physical
point: the timescale for crystal growth is measured most
naturally in terms of the basic timescale eϵn for the unbinding
of impurity (red) particles. Thus, for fixed energy scale ϵnkBT ,
lowering temperature serves to increase this basic timescale,
indicating that cooling is not necessarily a viable strategy for
speeding crystal growth.

Equation (5), which reduces to

n
1 − n

=
γB

γR
, (11)

is the assumption that there exists a steady-state dynamic
regime in which the relative abundance of red and blue
particles in the growing structure is equal to the ratio of their
rates of growth. Inserting into this condition, Equations (9)
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and (10) gives the self-consistent relation

n
1 − n

=
pc − nαn

(1 − p)c − (1 − n) . (12)

One can solve this equation graphically for solid composition
n, as a function of the parameters ϵ s, ϵn,c, and p. To determine
the growth rate of the solid one inserts the value of n so
calculated into Equations (9) and (10), and adds them:

v = γR + γB. (13)

The physical growth rate is then V = ve−ϵn, obtained by
undoing the rescaling (8).

To gain insight into the behavior of the model is it useful
to solve Eq. (12) for c,

c =
n(1 − n)

n − p
(1 − αn) , (14)

and to use this expression to eliminate c from (13), giving

v =
1

n − p
[(1 − n)p − n(1 − p)αn] . (15)

Equations (14) and (15) can be regarded as parametric
equations for the concentration c at which one observes a
particular growth rate v of a solid of composition n.16 Note
that v can be negative for certain parameter combinations,
indicating a breakdown of the assumption of a steady-
state growth regime. The basic phenomenology revealed by
Equations (14) and (15) is that altering concentration c results
in a change of composition n of the growing structure and that
changes of both c and n affect the rate of growth v .

In certain parameter regimes v can become a non-
monotonic function of c, which is crystal growth poisoning.
This potential can be seen from (15); setting ∂v/∂n = 0
yields17

p =
n2∆

en∆ − 1 + n∆
. (16)

The right-hand side of this equation is a non-monotonic
function of n and takes its maximum value when n = 2/∆.
Thus for ∆ > 2 this equation has two solutions (equivalent
to turning points of v(n)) provided that ∆(e∆ − 1 + ∆)−1 < p
< 4∆−1(1 + e2)−1. These two solutions underpin the behavior
shown in Fig. 2: increasing concentration first causes the
structure to grow more rapidly (because we increase the
driving force for crystal growth), and then more slowly
(as poisoning happens), and then more quickly again (as
the structure grows in an “impure” way). For ∆ = 4 (see
below) poisoning happens if p < (1 + e2)−1 ≈ 0.12. That is,
for poisoning to happen the impure (red) species must be
at least about 10 times more abundant in solution than the
crystal-forming (blue) species.

Of particular interest are the locations in phase space
where the growth rate vanishes. These locations can be
identified by setting the right-hand side of (15) to zero (or
equivalently setting γB = γR = 0 in Equations (9) and (10)),
giving

p
1 − p

= f (n), (17)

FIG. 1. Graphical construction used to determine the phase diagram of
the mean-field model of growth poisoning (see Fig. 2(a)). The solutions
of Eq. (17) give the solid compositions at which the growth rate vanishes.
The horizontal dotted line shows a value of p/(1− p) for which three such
solutions exist; the associated values nB, nA and nR lie on the “solubility,”
“arrest,” and “precipitation” lines shown in Fig. 2(a).

where

f (n) = n
1 − n

αn. (18)

Recall that α ≡ e−∆ and ∆ ≡ ϵ s − ϵn. Inspection of the
properties of f (n) reveals the conditions under which growth
arrest can occur. To this end it is convenient to calculate the
stationary points n± of f (n), which are

n± =
1
2

(
1 ±
√

1 − 4∆−1
)
. (19)

Two stationary points exist for ∆ > 4, where the function f (n)
has the behavior shown in Fig. 1. Arrest can happen if the
horizontal line p/(1 − p) lies between the values f (n−) and
f (n+), i.e., if

f (n−)
1 + f (n−) > p >

f (n+)
1 + f (n+) , (20)

where

f (n±) = 1 ± χ

1 ∓ χ
exp

−∆

2
(1 ± χ)


, (21)

with χ ≡
√

1 − 4∆−1. In this case there are three solutions nθ
to Eq. (17). We shall call these solutions nB, nA, and nR. From
Eq. (10) the associated concentrations cθ are

cθ =
1 − nθ
1 − p

, (22)

where θ = R, B, or A. The solution corresponding to the
largest value of n we call nB (B for blue). The associated
concentration cB is that at which the mostly blue solid or
“crystal” is in equilibrium, and we shall call the locus of such
values, calculated for different parameter combinations, the
“solubility line.” The solution corresponding to the smallest
value of n we call nR (R for red). The associated concentration
is that at which the mostly red “precipitate” is in equilibrium,
and this lies on what we will call the “precipitation line.”
The remaining solution we call nA (A for arrest); it yields the
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FIG. 2. Dynamic mean-field theory predicts that crystal growth rate is a non-monotonic function of concentration. (a) Mean-field phase diagram in the
temperature (T )-concentration (C) plane derived from Equations (17) and (22). The line marked “solubility” shows the concentration at which the crystal
(the “blue” solid) neither grows nor shrinks; the line marked “precipitation” is the same thing for the impure (“red”) precipitate. The line marked “arrest” shows
where the growth rate of the (impure) crystal goes to zero. (b) Growth rate V and (c) crystal quality n as a function of concentration at the three temperatures
indicated in the left panel (line colors correspond to arrow colors), obtained from Equations (12) and (13). At the solubility line the crystal does not grow; upon
supersaturation it grows with finite speed V and becomes less pure. Consequently, its growth rate begins to decline for sufficiently large C , going to zero at
the arrest line. Beyond the precipitation line the precipitate grows rapidly (see inset in (b), drawn as in the main panel but with C extended to just beyond the
precipitation line). Parameters: p = 10−2; ∆/T ≡ (ϵs−ϵn)/T = 2/T ; ϵn/T = 1/T .

concentration at which the impure crystal ceases to grow, and
it lies on the “arrest line.”

Arrest therefore occurs when ∆ is large enough that the
(blue) crystal is stable thermodynamically and p is small
enough that the crystal’s emergence is kinetically hindered. If
p is large enough, i.e., if p/(1 − p) is greater than f (n−), then
the crystal’s emergence is not kinetically hindered and growth
arrest does not occur. Conversely, if p is too small, i.e., if
p/(1 − p) is less than f (n+), then ∆ is too small to render the
crystal thermodynamically stable.

We can use this set of equations to determine the behavior
of our mean-field model of crystal growth, and we describe
this behavior in Section IV. There we revert to “physical”
growth rates V and concentrations C; these are related to their
rescaled counterparts v and c via Eq. (8).

III. COMPUTER SIMULATIONS
OF TWO-COMPONENT GROWTH

We carried out lattice Monte Carlo simulations of two-
component growth, similar to those done in Refs. 13–15 and
18. Simulations, which satisfy detailed balance with respect
to a particular lattice energy function, accommodate spatial
degrees of freedom and particle-number fluctuations omitted
by the mean-field theory. Simulations therefore provide an
assessment of which physics is captured by the mean-field
theory and which it omits.

Simulation boxes consisted of a 3D cubic lattice of
15 × 15 × 100 sites. Sites can be vacant (white), or occupied by
a blue particle or a red particle. Periodic boundary conditions
were applied along the two short directions. At each time
step a site was chosen at random. If the chosen site was
white then we proposed with probability p to make it blue
and with probability 1 − p to make it red. If the chosen
site was red or blue then we proposed to make it white.
No red-blue interchange was allowed. To model the slow
dynamics in the interior of an aggregate we allowed no

changes of state of any lattice site that had 6 colored nearest
neighbors.

These proposals we accepted with the following
probabilities:

R → W : min
�
1, (1 − p)e−β∆E� ,

W → R : min
�
1, (1 − p)−1e−β∆E

�
,

B → W : min
�
1,p e−β∆E

�
,

W → B : min
�
1,p−1e−β∆E

�
,

where ∆E is the energy change resulting from the proposed
move. This change was calculated from the lattice energy
function

E =

⟨i, j⟩

ϵC(i)C( j) +

i

µC(i). (23)

The first sum runs over all distinct nearest-neighbor
interactions and the second sum runs over all sites. The index
C(i) describes the color of site i and is W (white), B (blue), or
R (red); ϵC(i)C( j) is the interaction energy between colors C(i)
and C( j); and the chemical potential µC(i) is µkBT , −kBT ln p
and −kBT ln(1 − p) for W, B, and R, respectively (note that
positive µ favors particles over vacancies). In keeping with
the choices made in Section II we take

ϵBB = −ϵ skBT, (24)
ϵBR = ϵRB = ϵRR = −ϵnkBT. (25)

In the absence of pairwise energetic interactions the likelihood
that a given site will be white, blue, or red is, respectively,
1/(1 + eµ), p/(1 + e−µ) and (1 − p)/(1 + e−µ).

Simulations were begun with three complete layers of
blue particles at one end of the box to eliminate the need
for spontaneous nucleation. For fixed values of energetic
parameters we measured the composition n (the fraction of
colored blocks that are blue) and growth rate of the structure
produced at different values of the parameter c ≡ eµ (which
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for small c is approximately equal to the likelihood than an
isolated site will in equilibrium be colored rather than white).

IV. RESULTS

Fig. 2(a) shows the phase diagram of our mean-field
model of crystal growth. The “solubility” and “precipitation”
lines indicate where the crystal and precipitate are in
equilibrium; the “arrest” line shows where the growth rate
of the impure crystal vanishes. The structure of this diagram
is similar to that of certain experimental systems — see, e.g.,
Refs. 19 and 20 or Fig. 14 of Ref. 1 – showing that the mean-
field theory, although simple, can capture important features of
real systems. Upon moving left to right across this diagram we
observe the behavior shown in panels (b) and (c) of the figure.
Growth rate V first increases with concentration C, because
the thermodynamic driving force for crystal growth increases.
But at some point V begins to decrease, i.e., poisoning
occurs. This is so because the composition of the growing
solid changes with concentration — it becomes less pure —
and so the thermodynamic driving force for its growth
decreases, even through the thermodynamic driving force
for the growth of the pure crystal increases with C. As we
pass the precipitation line the growth rate V becomes large
and positive (inset to panel (b)). This behavior is similar to
that shown in, e.g., Fig. 2 of Ref. 5.

The mean-field theory is simple in nature but furnishes
non-trivial predictions. Key aspects of these predictions are
borne out by our simulations, which resolve spatial detail
and particle-number fluctuations omitted by the theory (we
found similar theory-simulation correspondence in a different
regime of parameter space13). In Fig. 3, we show simulation
snapshots, taken after fixed long times, for a range of values

of concentration c. One can infer from this picture that growth
rate is a non-monotonic function of concentration. In all cases
the equilibrium structure is a box mostly filled with blue
particles. At small concentrations we see the growth of a
structure similar to the equilibrium one. Poisoning occurs
because the grown structure becomes less pure (more red) as
c increases, and so the effective driving force for its growth
decreases even though the driving force for the growth of the
pure crystal increases. At large concentrations we pass the
precipitation line and the impure (red) solid grows rapidly.

In Fig. 4, we show the number of layers L deposited
after fixed long simulation times for various concentrations
c (we consider a layer to have been added if more than
half the sites in a given slice across the long box direction
are occupied by red or blue particles). The general trend
seen in simulations is similar to that seen in the mean-field
theory (panels (b) and (c) of Fig. 2). At concentrations just
above the blue solubility limit the structure’s growth rate
increases approximately linearly with concentration. At higher
concentrations the growth rate reaches a maximum and then
drops sharply, because structure quality (and so the effective
driving force for its growth) declines with concentration.
One difference between mean-field theory and simulations
is that in the latter the growth rate in the poisoning regime
does not go to zero. This is so because simulations satisfy
detailed balance, and must eventually evolve to equilibrium.
Fluctuations (mediated within the bulk of the structure by
vacancies) allow the composition of an arrested structure
to evolve slowly toward equilibrium and thereby to extend
slowly. Thus the steady-state dynamic regime that has infinite
lifetime with the mean-field theory has only finite lifetime
within our simulations (because these eventually must reach
equilibrium). Slow evolution of this nature is shown in Fig. 5.

FIG. 3. Simulation snapshots taken after fixed long times (5×109 MC sweeps) for a range of concentrations c (increasing from left to right) bear out the key
prediction of mean-field theory: growth rate is a non-monotonic function of the driving force for crystal growth. Growth rate first increases and then decreases
with concentration, because the growing structure becomes less pure (more red). The right-hand snapshot lies beyond the precipitation line, where the impure
solid grows rapidly. Parameters: p = 10−2; ϵs= 3.5; ϵn= 1.4. From left to right, values of c are 0.008,0.0083,0.009 875,0.0119,0.014 225,0.0149,0.015 12.
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FIG. 4. Simulations show a non-
monotonic growth rate and decline of
crystal quality as the driving force for
crystal growth is increased. Number of
deposited layers L (a) and crystal qual-
ity n (b) after 5×109 MC sweeps as a
function of concentration c, for simula-
tions run at various values of the non-
specific interaction parameter ϵn (plot
legends show values of ϵn). The spike
in growth rate at large c signals the
passing of the precipitation line. Other
parameters: p = 10−2; ϵs= 3.5.

FIG. 5. Simulations satisfy detailed balance and so eventually evolve to equilibrium. Here, we show a time-ordered series of snapshots from a simulation done
within the precipitation regime. Fluctuations allow the eventual emergence of the thermodynamically stable crystal structure. Parameters: p = 10−2; ϵs= 3.5;
ϵn= 1.2; c = 0.0274.

V. CONCLUSIONS

We have used mean-field theory and computer simulation
to show that crystal growth self-poisoning requires no
particular spatial or molecular detail, as long as a small handful
of physical ingredients are realized. These ingredients are: the
notion that a molecule can bind in two (or more) ways to a
crystal, that those ways are not energetically equivalent, and
that they are realized with sufficiently unequal probability.
If these conditions are met then the steady-state growth rate
of a structure is, in general, a non-monotonic function of
the thermodynamic driving force for crystal growth. Self-
poisoning is seen in a wide variety of physical systems,1,3,6

because, we suggest, many molecular systems display the
three physical ingredients we have identified as being sufficient
conditions for poisoning. Protein crystallization, for instance,
is notoriously difficult, and rational guidance for it is much
needed.21–26 The present model suggests that proteins are
prime candidates for self-poisoning because they have smaller
effective values of the p parameter (which controls the relative

rates of binding of optimal and non-optimal contacts) than
do relatively rigid small molecules: proteins are anisotropic,
conformationally flexible objects whose non-crystallographic
modes of binding outnumber their crystallographic mode of
binding by a factor of order 104 or 105.6,25,27 Many protein
crystallization trials result in clear solutions without any
obvious indication of why crystals failed to appear,28 and
in some of these cases self-poisoning might be happening.
In general terms decreasing p leaves a system vulnerable
to poisoning because (a) the rate of attachment of non-
crystallographic conformations increases, and (b) to ensure
thermodynamic stability of the crystal one must increase the
basic binding energy scale, in which case the basic time scale
for growth increases.

There also exists a possible connection between the
present work and the recent observation of protein clusters
that appear in weakly saturated solution and do not grow
or shrink.29 Other authors have proposed29 and formulated30

models that explain the long-lived nature of such clusters
via the slow interconversion of oligomeric and monomeric
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FIG. 6. Solubility and arrest line calculated from mean-field theory as in
Fig. 2 (with no precipitation line drawn), with a second solution, the larger
loop to the right, drawn for the case of diminished nonspecific binding energy
ϵn→ 3ϵn/4 (with ∆ unchanged). This change greatly enlarges the region of
phase space in which crystal growth can happen.

protein: in these models there exists a thermodynamic driving
force to grow clusters of oligomers, but the growth of
such clusters is hindered by the existence of monomeric
protein. If we reinterpret the present model to regard the
“red” species as monomeric protein and the “blue” species
as oligomeric protein, then we obtain a possible connection
to the mechanism described in Refs. 29 and 30. From, e.g.,
Fig. 2(a), we see that we can be in a region of phase space that
is undersaturated with respect to monomeric (red) protein but
supersaturated with respect to oligomeric (blue) protein (i.e.,
the thermodynamic ground state is a condensed structure built
from oligomeric protein). There then exists a thermodynamic
driving force to grow structures made of oligomeric protein,
but the emergence of such structures is rendered slow by
kinetic trapping (caused by the fact that monomeric protein
is more abundant in isolation than is oligomeric protein).
According to this interpretation the “stable” protein clusters
are kinetically trapped, and on long enough time scales would
grow. However, we stress that this connection is tentative.

Having identified factors that lead to poisoning, the
present models also suggest that relatively small changes
of system parameters could be used to avoid it. For instance,
Figs. 2 and 4 show that, given a set of molecular characteristics,
small changes of concentration or temperature can take one
from a poisoned regime to one in which crystal growth
rate is relatively rapid. Recovery from poisoning could also
be effected if one has some way of altering molecular
characteristics, such as the value of the non-optimal binding
energy scale; see Figs. 4 and 6.
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