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NOMENCLATURE

horizontal distance between front tractor axle and tractor
center of gravity (CG) |

horizontal distance between tractor CG and tractor rear axle
horizontal distance between fifth wheel kingpin and trailer CG
horizontal distance between trailer CG and traller axle
horizontal distance between tractor CG and fifth wheel kingpin
vertical distance between tractor CG and fifth wheel kingpin
vertical distance between trailer CG and fifth wheel kingpin
sprung mass of the tractor

sprung mass of the trailer

mass of the tractor front axle set

mass of the tractor rear axle set

mass of the traller axle set

mass moment of inertia of the sprung tractor mass about its CG
mass moment of inertia of the sprung trailer mass about its CG
combined equivalent spring constant of the tractor front tires
combined spring constant of the tractor front axle springs
combined equivalent spring constant of the tractor rear tires
combined spring constant of the tractor rear axle -
combined equivalent spring constant of the trailer tires
combined equivalent spring constant of the trailer springs
combined equivalent damping constant of the tractor tires

combined damping constant of the tractor front axle dampers

iv



C, combined equivalent damping comnstant of the tractor rear tires

C4 combined damping constant of the tractor rear axle dampers

C5 combined equivalent damping constant of the trailer tires

C6 combined damping constant of the trailer axle dampers

'Xl vertical motion coordinate of the CG of the sprung tractor mass
Xz vertical motion coordinate of the CG of the sprung trailer mass
X3 vertical motion coordinate of the tractor front axle

Xa vertical motion coordinate of the tractor rear axle

X. vertical motion coordinate of the trailer axle

5
X6 horizontal motion coordinate of the CG of the sprung tractor mass
X7 horizontal motion coordinate of the CG of the sprung trailer mass
61 rotational coordinate about the CG of the sprung tractor mass
62 rotational coordinate about the CG of the sprung trailer mass

t time

time necessary for the truck to travel the distance of the tractor

wheelbase (L + R)

time necessary for the truck to travel a distance measured from

the tractor front axle to the trailer axle (R + P + Q + L)

G(t) displacement function of the road contour applied to the tractor

front axle

G(t—rl) displacement function of the road contour applied to the tractor
rear axle

G(t-rz) displacement function of the road contour applied to the trailer

axle



T!

{q}

wd

oy

{A}
{B}

displacement vector of point A

displacement vector of point A with respect to point G

mean point of attachment of the tractor front axle spring to the
chassis

mean point of attachment of the tractor rear axle spring to the
chassis

mean point of spring attachment of the trailer axle spring to the
chassis

kinetic energy of the system due to vibrationms

energy dissipation function due to the damping of the tires and
shock absorbers

potential energy function due to the springing of the tireg and
suspension springs

classical eigenvalue

eigenvalue solutions to the characteristic equation

transient solution vector corresponding to a value of B
exponential decay rate due to damping

damped natural circular vibrational frequency, radians/second
2.7183 ...

ratio of the y'th element of the {q} vector corresponding to the a'th
8 value to the first element of that {q} vector

complenentary solution vector of constant amplitudes of sin wt
complementary solution vector of constant amplitudes of cos wt

angle



Chapter I

INTRODUCTION

"Over the road" cargo hauling has become a large industry in the
United States motivated both by better roads and more efficient trucking
facilities. However, most trucks are manufactured to conform first with
state trucking laws and second with the operator's desires as regards
size and shape.

The state laws govern the weight and geometry of trucks for reasons
of traffic safety and road wear, Many times these laws limit the operator
to a set of sizes and weights which he considers, at best, arbitrary.

A need exists for a dynamical analysis of a fully articulated (semi-
trailer) truck considering the road induced vibrations of the major
truck components (wheel-axle assemblies, tractor, and trailer) such that
the wvariable pérameters {(weight, size, spring constants, damping constants,
and truck geometry) of a particular truck can be considered and data
regarding the vibrational characteristics of the truck obtained in a short
time and with a minimum of expense. Both state and manufacturer-operator
interests could thus be better served.

This report is intended to provide a preliminary approach to the
problem of a detailed dynamic investigation of the vibrational motions
of a three axled, fully articulated, highway vehicle. The derivation of
the dynamical and kinematical equations of motion is shown and a theory
of their solution discussed. Finally, some future goals of this analysis
are presented.

Some dynamical analyses already exist for a fully articulated road



vehicle, however, it has been the author's experience to find only
the pitch and bounce characteristics of the tractor and trailer
considered, completely ignoring the bounce of each axle and the fore-aft
motions of the tractor and trailer. See, for instance, Clark (1)* and
Huang (2). An accurate determination of the axle bounce is essential
fof determining force transmission by the tires to the road surface and
shock absorber and spring motions. Janeway (3) has researched driver
comfort and has found that the fore-aft motions of the tractor are of
utmost importance to driver comfort. When the investigations of Huang
and Clark were performed, computing facilities of today's calibre and
accessibility were not available thus making their simplificationms
essential.

While the equations presented herein are more detailed than those
of Huang and Clark, it is not suggested that these offer any last word
on the vibrational analysis of a fully articulated road vehicle. However,
a significant updating of the analytical detail is offered, thus pointing
the way for the analysis to regain a correspondence with the most modern

computing facilities available.

*Numbers in pareantheses indicate references at the end of this report.



Chapter II

DERIVATION OF EQUATIONS

Asgsumptions

Even with today's computing facilities certain simplifying assump-

tions must still be made in order to keep the mathematics tractable.

These are enumerated below and are mentioned again as the need arises

in the derivation of the equations of motion.

1)

2)

3)

4)
5)
6)

n

The cab, engine, and tractor chassls are considered to

be a rigid body as is the trailer body with its chassis

and each axle with its wheels.

A "mean" point of spring attachment is assumed to lie

on the chassis directly above each axle.

Springs and dampers are considered to be described by

linear functions of displacement and velocity, respectively.
The same assumption is held for the springing and damping
characteristics of the tires. This means that the solution
will be valid only for small oscillations.

All frictional {coulomb) damping is ignored.

The springs and dampers are considered weightless.

The road input displacement function is assumed to be applied
to a point at the center of the tire contact patch.

Equal road input displacement functions are considered to

" be applied to the left and right tracks of the vehicle.

This limits the applicability to highway vehicles only and
allows a consideration of vibrations only in the plane of

Figure 1.
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8) The wheels must always remain in contact with the road surface
(no wheel hop).
9) The cargo remains at rest.
10) Fore-aft slack in the fifth wheel kingpin is permissible as
long as a large bilasing force (pulling or braking) exists,
thus allowing force oscillations, but no fore-aft slapping
of the kingpin.
Coordinates as shovm in Figure 1 were chosen to describe the vibra-
tional motion of the truck. The G's represent road surface displacement
functions and will provide the forcing functions for the steady state

vibrational analysis.

Kinematics

Two geometrical equations of constrainﬁ enter the problem due to the
equal horizontal and vertical motions of the tractor and trailler at the
fifth wheel kingpin. Referring to Figure 2 below, the displacement of

point A may be found using two equivalent motion equatioms.

&° \/ ¢’

A

Figure 2, Schematic Representation of Truck Emphasizing Fifth
Wheel Kingpin (Hinge) at A.



SA= SG+ SA/G’

SA - SG' + SA/G‘.

Thege equations may be combined to yield

5.+ 8

Since this is a vector equation it may be broken down into its vertical

and horizontal components.

SG vert. x1 g SG horiz. x6'

and § are a little more diffi-

The descriptions of S A/B horiz.

A/B vert.

cult and are derived below.

1 horizontal axis
Tthrough 6, Ga

o

Figure 3. Geometric Representation of the Motion of Hinge Point A
Due to a Rotation About Point G.



Wherei G = Center of gravity (CG) of tractor,

Q = Constant angle formed by the horizontal axis through
the tractor CG and a line connecting the fifth wheel
kingpin A and the tractor CG when all coordinates
are at their rest positions,

R = Horizontal distance between the tractor CG and the
fifth wheel kingpin A,

S = Vertical distance between the tractor CG and the

fifth wheel kingpin A.

Consider the motions of A produced solely by a rotation about point
G. AA' is an arc of length Rz + 52(31) described by point A. This
defines the isosceles triangle AA'G which may be divided into two right
triangles A'GD and AGD. These may be used in finding the length of the
cord AA'.

<] fFa—"n
chord AA' = 2 sin G—%) R2 + 82 :

Angle GAE is equal to Q by the argument of opposite interior angles.

Then

Also

v = chord AA' sin (L EAA').



Therefore

8 o
ve=2"R? +8% ain (—;) sin (-'2'--—;--9).

At the same time

8
T 1
h = chord AA' coa(i-—z--g),
S 7 a L]
11-.'2112+S2 sin (—;‘-) cos (%-—?-Z'--ﬂ).

These may be greatly simplified by using the trigonometric identities
sin (x + y) = sin x cos y + cos x sin y, (I11-2a)
cos (x +y) = cos x cos y + sin x sin y, (1I-2b)
sin2 X = % - % cos 2%, (II-2¢)
sin X cos x = % sin 2x. (II-24)

Working again with the vertical component v,

v_2 2 el T B1 L B1
v=2R +8 sgin () [sin (7 - 8) cos = - cos (5 - Q) sin <],
2 2 2 2 2
] 8

Z 2 2 81 1

= 2'R° + 82 [-sin = cos(*g- -8) + s8in 1 cos — sin (% -02)],

2 2



-232+52[(-%+%cos el) sinﬂ+%‘-sin el cos 1],
v = R2+S [(-1 + cos 31) sin 8 + sin al cos Q].

The following geometric relations may he introduced.

R2+Szcosﬂ-R,

Rz+82 gin i = §,

Therefore,

ve=S§ = R sin 6, + S(~1 + cos el).

A/G vert. 1

Working, now, with the horizontal displacement,

1 6 Bl 8

1 w w 1
h=2R" +8 s:l.n—z-[-::os(2 -9) cos 2+sin(2 -0 ) sin 2],
s 8 ] <]
-ZRZ+S2 [sinﬂcos-—lsin-—1+cosﬂain2-1‘-],

2 2 2

= R2+ S2 [8in © 8in 6, + cos 0 (1 - cos 91)].

1

h = § gin 9. + R(1 - cos 91).

= 8,/6 horiz. 1
There fore,

SA ek, ™ xl + R sin 91 + S(=1 + cos 91) (II-3a)



10

and

= X <+ S gin 6, + R(1 - cos 61). (II-3b)

SA horiz 6 1

The right hand side of equation (II-1l) expressed in trailer coor-

dinates proceeds in exactly the same fashion.

56! horizontal ~ X7+

XZ'

SG' vertical

The SA/G‘ vertical and horizontal components are, again, more difficult

and are derived below with the aid of Figure 4.

i : positive sign

A convention

Figure 4. Geometric Representation of Hinge Point A Moving Due
to a Rotation About Point G'.
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Where: G' = CG of trailer,

p = Constant angle formed by the horizontal axis through the
trailer CG and a line connecting the fifth wheel kingpin A
and the trailer CG when all coordinates are at their rest
positions,

P = Horizontal distance between the trailer CG and the fifﬁh
wheel kingpin A,

T = Vertical distance between the trailer CG and the fifth

wheel kingpin A,

LG'A'F -p -0

2!
T °2
' - -— —
T a2
t PR | I —
LAATF 7 =P + 2 »
—— 0
chord AA' = 2 Pz + T2 sin —% .

According to the positive sign convention indicated, the vertical

vector displacement equation becomes

- v' = chord AA' sin (LAA'F),

0 02

—ED.

o R
-y' =2 P2 + T2 sin C—%D sin C% -p +

The horizontal counterpart is
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h' = chord AA' cos (AA'F),

A5 a 0
h' = .".I’2+'JI?2 sin—zcos E-» +—2).
2 2 2
These equations may be simplified by the application of the trigonmometric

identities given in equations (II-2a-d).

Then,
" 5 ) %y i 2 93
-y'=2"P +1'2 [cos p cos — sin — + sin p sin 7],
-y' = P2 + T2 [sin 62 cos p + sin p(l - cos 62)],
and
VI 3 8, ) 2 &
h'! = 2°P° + T° [gin —§°sin p cos —5 = cos p sin —Eﬂ,
Y. 2 2

h' = "P° + T° [sin p sin 0, + (-1 + cos 92) cos pl.

Again, from the initial geometry of the trailer,

When these expressions are substituted back into the equations for -v’
and h' the following simplification results:

—v' = § =P sin 6, + T(1 - cos 6,),

A/G' vert 2



h' = T sin 8, + P(=1 + cos 02).

= Sa/c horiz._ 2
Therefore,
SA —— =-P gin 32 + T(~1 + cos 62) + Xz, (II-4a)
SA horiz. - T sin 62 + P(-1 + cos 32) + X7. (II-4b)

And by combining equations (II-3,4) there results

xz = Xl"'R sin 8, + S5(-1 + cos al) + P sin 92 + T(1 - cos 92),
(II=5a)
X, =X, + 5 sin 0 + R(1 - cos 91) - T sin 8, + P(1 - cos 92)-

(I1-5b)

These are nonlinear, holonomic, scleronomous equations of comstraint
expressing Xz as a function of Xl, 91’ and 92 and X7 as a function of X6.

8,, and § They may be linearized by considering only small deviatiomns

1 2°
of the coordinates In which case sin 6 = 6 and cos & = 1. The linearized

equations are as follows:

X, =X +Ro +P 8 (II-6a)

2 i 1 2’

=X +5 0 =-T 8, (1I-6b)

Ry = Xg 1 2

Further geometric developments are needed in order to find the amount

and.the velocity of deflection of

of deflection of springs KZ’ K&. and Kﬁ
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dampers Cz, CA’ and CG as xl, X3, and XA, xs, 61, and 62 deflect.
The following analysis gives the total deflection and velocity of

deflection of spring Kz and damper Cz, respectively.

- L >t N .
5
//# horizontal reference
xé::T;Q?}h“‘-ﬁa -2?
-
T
| P % N

Figure 5. Tractor Diagram Showing '"Mean" Points of Spring Attachment
H and I.

Points H and I in Figure 5 are directly above the tractor axles and
represent "mean" points of spring attachment to the chassis. A single
point of spring attachment is contrary to fact since the leaf springs
used in trucks have two points of attachment, making the assumed "mean"
points valid only for small displacement angles Bl.
The analysis for the determination of the vertical deflection of

point H as a function of X and @, proceeds exactly as the analysis of

1
the vertical motion of the fifth wheel kingpin as a function of XZ and

92 yielding the result for small angles:

vH =] el + xl. : (II-7a)
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The vertical motion of point I is analyzed exactly as the vertical

motion of point A in terms of the tractor coordinates X, and o, (see

Figure 3). The result is

vy = N 8, + xl. (II-7b)

A point J, shown in Figure 6, may also be defined for the attachment

of the trailer springs.

%
_}Z @ horibontal
-y .
Xz ~ -
J IS

Figure 6. Trailer Diagram Showing the "Mean" point of Spring Attachment J.

The same method of analysis applies to the vertical motion of point

J as applied to point I yielding

v; = Q o, + X, (1I-7¢)
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- The horizontal displacements of H, I, and J caused by rotations
Bl and 82 contribute no deflections to the springs and are therefore

ignored.

Energy Functions
The Lagrange equations will be used to develop the non-conservative
equations of motion. This requires that the kinetic and potential
energies and a dissipation function each be expressed in terms of the
independent coordinates and their velocities.
The kinetic energy in terms of the velocities of the generalized
coordinates is
T' = %(Mlii + )(zxg + u3i§ + M4i§ + HSJ'(E + Msi‘: + H7x§ + Jléi + Jzég),
where
Mi(i =1,2, .. ., 7) = Mass associated with coordinate X,
Ji(i =1, 2) = Moment of inertia about a transverse
axis (out of paper) through the origin
of coordinates (CG) for the tractor and
trailer, respectively,
The dissipation function in terms of the velocities of the generalized

coordinates is
Lic 1k, - 6012 + ¢ [%, - X, = 18,32 + C.[X, = &( )12
201443 218y = K3 = L6, 348y k- %y

L _ . N 2 L] L] 2 I. - " 2
+Culx; - X, ¥ M6,17 + C X, - G(x - 1,017 + CelX, - X, + 8,171,



17

where
Ci(i = 1,2, ..., 6) = damping coefficients,
L, N, Q = dimensions of truck,
Ti(i =1, 2) = time lag between front to rear axle
of tractor and front axle of tractor
to the trailer axle, respectively.

The potential energy expressed in terms of the generalized coordinates

is
v-l{xtx -G(t)]2+K[X-x—LBJZ+KIX—G(t- )]2
T e plisf = 2 TRy 34%% *5
+x[ﬁ - X +NB]2+KIX -G(:—r)]2+K[x -X +Q9]2}
o | 4 1 5*%5 2 62 5 2? Tv
where

Ki(i-l, 2, . . +, 6) = gpring constants.

The two equations of constraint (II-6a,b) may be substituted into
these three functions thus expressing them in terms of a set of inde-

pendent coordinates. Equations (II-6a,b) are rewritten below.

X, = X, + RO, + PO, (11-6a)

X, =X + S6, - T6,. (I1-6b)

7 6 1 2

The time derivatives of these equations are
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1{2 - Xl + Rel + Pez, (II-—Sa)
x7 = x6 + 531 - Tez. (11-8b)
Taking the last four equations into consideration, the three energy
functions become
' 1 ¥2 ' ~ s 2 : 2 22 =2
T 2[H1X1 & Mz(xl + Rel + Pez) + H3x§ + H414 + sts + HGXG
+ M (X, + 56, - 16.)% + 3,62+ 3.6%) (11-9a)
776 1 2 1’1 272
D= e (% - 6(0))2 + C[K. - X.-18.1% + C.IX, - &(t - )12
2713 21 3 1 37 1
+c[f;-f<+Né]2+c[fz -é(l:-*c)]2
471 4 1 575 2
[ . s . 3 2
+ 86[R81 + 1=|a2 + xl - xs + Q92] | (11-9b)

1 2 2 2
V= E{Kl[xa -G(t)]” + xzfxl = X3 = L91] + KS[xf; - G(t - ‘Ii)]

2 2
+ K4[X1 - xa + Nall + K5[x5 - G(t - 12)]

‘ 2
+ K6[R61 + Pez + X - X+ Qazj }. (II-9¢c)
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Lagrange Equations

The Lagrange Equations of Motion are

d ,T' ar' , 3D oV
£ E3) - § 2 =0, (I1-10)
dt ayi 3yi ayi Byi

where yi(i =1, 2, .. ., n) = independent coordinates.

When the operations indicated in these equations are performed on
the energy functions (II-9a,b,c) seven simultaneous, nonhomogeneous,
second order differential equations with constant coefficients result.

The equation derived for Ty ™ x& is of particular interest.

d a7’ aT' , 3D v
—_— () - + -+
dt 326 ax6 336 ax6

= 0.

But,

aT' _ 3D _ 3V
X, - ok, = X,

= 0,

Whenever an inaependent coordinate, such as XE, does not appear explicitly
in the kinetic energy, potential energy, or energy dissipation functioms,
it is called an ignorable coordinate and may be substituted out of the
differential equations of motion thus reducing the number of degrees of
freedom by onme,

The Lagrange equation for xg is

d ,oT'
FT GEEED =0,
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Cartyihg out this operation,

aT! s s
F x +H(SB —-'1'92+x6).

6
d 3'1" .~ L1 " &
7 (_)35&6 MX, + M, (86, - T8, + kﬁ) = 0,
This may be solved for x6 in terms of 61 and 62 as follows.
(SB1 - Tez). (I11-1la)

This equation may be integrated twice with respect to time in

order to get

M
Tg,) + C.t+ C (II-11b)

- - L (50 - C.t+C,.
6 Ht + H7 1l 2 1 2

The constants gl and EQ may be found by evaluating the velocity and

displacement of the x6 coordinate at t = 0.

x6(0) - - [se o) - '1‘62(0)] + L5

H + H7
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M

F)
XG(D) - - w [561(0) - TBZ(D)] + EZ'

At this point, one should recall that XG is a coordinate whose
origin moves at the average speed of the truck, thus describing only

the oscillatory motions of the tractor CG. C. must then be equal to

-1
_ zero, otherwise equation (1I-11b) shows that X, would grow with time.

This restricts the initial velocity to

. - M, : .
X (0) = s [56,(0) - T8, (0)].

H6+H7

The constant 92 may also be forced to equal zero if

e
M, + M

X, (0) =
b 6+ ¥

[591(0) - Tez(O)].

This occurs when the origin of the X6 coordinate is defined to be at the
center of gravity of the tractor when all of the independent coordinates

are in their neutral positions, in which case

M
7
X, = - ———— (S8, - T8,). (I1-11c)
6 H6 + M7 -1 2
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Thus, while X, was formerly thought to be an independent coordinate
(because no kinematical dependence was discovered), it is now seen to
be dvnamically dependent upon coordinates Gl and 62.

The remaining six differential equations may be derived quite
conventionally except that the above expression for XG should be sub=-
stituted into the remaining differential equations of motion. Since

equation (II-1la), above, was shown to be directly integrable, there

remain only six unknowns in the differential equatioms.

xl equation:

| oT! . . » .
E{I - )D{l + uz(xl + RO_ + PBZ)’

1

d aT' - *r Ll -
T (3i1) = ulxl + 142(:{1 + RBl + Pez).

aD . . - [ a
S m cz(xl - X4 - LBl) + 04(1(1 - X, + N6

3%, 1

+ 06(361 + P62 + xl - xs + Qaz).

ay

+ Kﬁ(nal + Pez + xl - x5 + Qez).

Assembling these functions and grouping like ccordinates ylelds
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(M, + M) + (C, +C, + CX, + (K, + K, + KX, ~ CX, - KX,

- 0434 - K&xb - 06X5 - K6x5 + HéRGl + (C&N + C6R - CzL)Bl

4+ (-K2L + KA!I + Ksk)el + M,P6, + (:6(? + Q)e2 + KG(P + Q)a2 = 0,

(I1 - 12a)

x3 equation:

d ,oT! n
it (ai3) = MX,.

3D . . . . .
-aig = cl[xs - G(t)] - Cz(xl - x3 - Lﬁl).
N ek X, - 6(t)] - K (X, - X, - L8 )
axa 13 21 3 1

Assembling these functions and grouping like coordinates yields

- szl = szl + M3X3 + ((:1 + cz)x3 + (Kl + KZ)X3 + ch°1 + KzLﬁl

- clé(t) + K,G(¢). (II-12b)

XA equation:
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aD . L] . . .
3;;'- C3[X4 - G(t - Tl)] - 04(x1 - XA + Nﬁl).
oV

E = Ka[x‘,‘ - G(t - Tl)] - K4(x1 - KA <+ Nel).

Assembling these functions and grouping like coordinates yields

-CX, ~KX +MX

X~ RXp +MX, + (€ + COX, + (Ry + KX,

xs equation:

d ,oT' N
Fr3 (ais = M X,

3 - . . . . - .

ﬁ—-csixs-c(c-rz)]-c6(1191+p92+x1-x5+qez).
5

N KX -Gt - 1.)] - K. (R6. + P8, + X, - X, + Q6.).

Xy - '5iis 2 6 R%1 i el 2’

Assembling these functions and grouping like coordinates yilelds

- 06X1 - xaxl + HSXS + (Cs + CG)XS + (Ks + xa)xs - 06361 - K6R91
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-¢ @+ Q)é2 - K@ + Qo = csé(t - 1,) + Gl - 1)), (1I-12d)

el equation:

'
d 3T )

& G

- Mz(x1 + Rel + Pez)R + M.7(x6 + 591 - Tez)s + Jlel

26 may be replaced by using equation (II-1lla),

. M, & .

X, = -———— (86, - T8.). (II-11a)
6 Mo + M, 1 2

—‘-1-(—3-T—'-)-un(ii + R§, + PE.) + s[-—i—(sé-—ré)+s§ - Té,]+ J.8

ac “a6; oR{Xy 1 2 Y M+ My 001 2 1 2+ J)

aD . . . e . . P . - .
361 - - ch(xl - x3 - Lel) + C4N(X1-_x4-lﬂel) + 063(391 + Pez + xl - x5 + Qez).

v
391

- - 1::21,(x1 - x3 - Lel) + Kén(xl - x4 + Rel) + KSR(RGI + P,
+ xl - xs + Qaz).

Assembling these functions and grouping like coordinates yields

MpRK, + (-CJL + C,N + cﬁla.)f:1 + (BL + KN + KRIX, + cz;.§3 + K LX,
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2
- C,NX, - K,NX, - C,RX. - K.RX_ + [M.R® + -—-¥H-7——)sz+J]ia'
4K, - K NK, = G .RX, - K.RX; + [M, 0‘7n6+n7 1183
+ @L% + .8 + cRY)e. + ®RLZ + K,N% + K.RY)p, + [M,RP - (1, - H;)ST}E
2 4 68 191 2 4 6~ /91 2 M, ML _;
+ CER(P + Q)é2 + KR + Q8, = 0. . (II-12¢)
92 equation
—d(i?l)-up(ii + R§, +P8.) - M.T(X, + 88, - To,) + J.6..
ar 38, P &y 1 9! ~ M,T(Xg 1 2 292
Again, i& may be replaced by using equation (II-lla).
X --L(sé' - T8.). (II-11a)
6 W, + M, 1 2 _
d ,3T" %,
3t (ﬂ;) MP(X +RB +Pe) u,r[ M +H7(se —Tez)+sel-rezl
+ 3,8,
3D -C(P-l-Q)[RG +(P+Q)e +X -X.]-
b, 1 1 %s
N g (+QIRe, + (B +Qo, +X, - X ‘
6 1 2

]-
302 1 ?

Assembling these functions and grouping like coordimates yields
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M2
e LS 7 =a E ]
M,PX, + CG(P + Q)x1 + xa(P + Q)x1 + [HzPR - 017 - ié_,_—u_’-)sﬂel + cﬁxcr-i-q)el
+ K.R(P + Q)0 + [P + -i)TZ+J]§
6 3 2 m7 Mo+ M, 2472
2: 2
+ CG(P + Q) 8, + xﬁ(p + Q) o, = 0. (I1-12£)

Equations (II-12a-f) may be grouped into the matrix equation as shown

below, and writtean out in full on the following page.

M{E} + © (X} + ®){X} = {F}. (1I~-13a)
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-M]'_ © 0 o0 MR le: —kl_
¢ M, 0 0 0 0 X,
L B (11-13b)
o 0 0 M, 0 0 ,
MR 0O 0 0 My M 61
_"z" o o o M u;* Laz_

rci €, 4 C G C sz

-, ¢} 0 0 GL o X,

. -, 0 ct 0 -¢N 0 %4

-, 0 0 Ct -CR =C} X,

¢y €L —CN -CR C} CIR 8

¢y 0 0 ¢y cpjr cp 6,
.Ki X, -k, K, K} x:;_ '5{1_ 0 ]
K, KA 0 0 K,L 0 X5 ¢y é(t) +K1G(t)
K, 0 K 0 -KN 0 X,| = |Cy6(t - 1) +KG(E - 7))
K, 0 0 K -KR K X Cy G(t - 1,) + KG(t - 7))
Ké K,L -K,N -K R x.; xéa 8 0
| B P R B K| %) o Y

The following simplifications have been made in the above equations

in order to render them systematically presentable.
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=MR +J,+ o7—F—— §
2 i HS +'H7

M
6
-MRP - 2L g7
2 H6 + H7

MM
2 6 7 2
= P " +J, + g5 T
2 2 H% + H7

=C, + 04 + C

= - CZL + C4N + CGR

- 06(1’ +Q)

=M + M, + M4

2

also

2 2 2
L

2
06(1’ + Q)
K. +K, + K

- K2L + K‘N + KSR

Kﬁ (P + Q)

2 2 2
KL" + K, 6

2
K6<P + Q)
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Chapter III

THEORY OF SOLUTIONS OF THE DIFFERENTIAL EQUATIONS OF MOTION

The solution to equation (II-13) is, as for a single differential

equation, composed of a homogeneous and a complementary part.

Homogeneous Solution

The homogeneous matrix equation
M{X} + (€)X} + (K){X} = {0} (I11I-1)
has a standard solution of the form

{X} = {q}est (I11-2) .

where B and the elements of {q} (which are all constants) may be complex,

but combine to make {X} real.

If (III-2) is substituted into (III-1) the following equation results
(8% + BC + K){q} = {0}. (111-3a)

Nontrivial solutions for the q's are possible only for special values

of B (called eigenvalues) which cause the matrix

(BZM + BC + K)

to be singular; i.e., the determinant

|8% + BC + K| = |aB] = 0. (111-4)
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While these eigenvalues arise for the same reasons as the eigenvalues

of the classical eigenvalue problem of

(A) {X} = A(B){X} (I11I-5)

(where A = eigenvalue),

equation (III-S} takes the mathematical form
(R){q} = A(M{q} + X (C){q} (111-6)

due to the inclusion of the damping matrix (C).

Many simple iteration techniques exist for the determination of
the XNs in (III-5) which allow easy computer programming with a rapid
convergence to its eigenvalues and eigenvectors. However, no similar
methods exist for the problem in (III-6) which is considered in this
paper. Therefore the more tedious approach of actually evaluating AB
must be employed. This results in a polynomial in B of degree 2n, where n is
the order of the determinant [AB| (in this case n = 6). The solution of
this polynomial will generally be in the form of twelve complex roots
arising in conjugate pairs. The real part of each root expresses a rate of
exponential decay while the imaginary part expresses a damped natural
frequency of vibration for the system.

If these roots (eigenvalues) are now substituted one at a time back

into equation (III-3a):

(8% + gC + K){q}= {0} (111-3a)
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or

(aB){q} = {0} (1III-3b)

thé eigenvectors, or natural vibration mode shapes, can be found. The

matrix (AB) will be singular since for an eigenvalue B, |aB| = 0. The

rank of (AB) will be n-1 if the eigenvalues are distinct {(only distinct
eigenvalues will be considered here). Then, if a new vector {q} is formed by
dividing through both sides of (III-3a or b) by q; the first algeb;aic
equation of the matrix equation (IIILSa,b) will reduce to an identity and

a matrix equation of order n-1 in the n-1 unknown ratios 253 %%, iy %ﬁ
will result,

These n-1 ratios may now be determined uniquely in the n-1 algebraic
equations. The first element, qq» in each eigenvector is actually undeter-
mined and may be chosen arbitrarily, however, it is usual to choose q; = 1
for the %f-ratios will then express the q, solutions directly. Since B is
in general complex, these qu‘s will also be complex and will express the
amplitude and phase angle of the a'th coordinate relative to the amplitude
of X, (the phase angle of X, is chosen to be 0). This may be expressed by

vectors on a complex plane as shown in the Figure 7 below.

Imadinary
Axis
q,/q 1 2
11l +— Real Axis
Phase angle )

an;I\\“

Figure 7. Vector Diagram Showing the Geometric Relationship Between
the a'th and the First q Ratio. :
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It would appear that this theory differs from that of the usual
eigenvalue problem (III-5) since 2n eigenvalues and {q} vectors result
instead of the usual n. However, on closer examination, it may be
seen that when the B eigenvalues occur in complex conjugate pairs, they
give rise to a conjugate pair of complex {q}vectors. Each member of
the {q} vector pair represents the same eigemvector, which may be
demonstrated by the following analysis as developed by the author.

Assume that adjacent pairs of roots of the characteristic equation
|AB] = 0 are conjugate complex, i.e., Bl and 82 are conjugate complex
roots. Then let q be the a'th element of the {q} vector which results
when Bl is substituted into (III-3b) and dy0 be the a'th element of the

{q} vector which results when Bz is substituted into the same equation.
Then when the system is allowed to vibrate freely at the frequency
given by the absolute value of the imaginary portion of Bl and 82 the

a'th coordinate moves as

B1t Byt
= 2
X q, © +q 2® <.

Assume, as a worst case, that the arbitrary 1, is complex. Then

= g - ib; = a + ib; Bl = - c = {pd; 62 a - ¢ + iuf

93 92

and

-(c + iwd)t

X, = (a - ib)e (c = 1ud)t.

+ (a + ib)e”

The complex coefficients may be put into exponential form as follows:



34

X, = x/az_Poz (e viudde - 28 2.2 ~(c - diud)t + 10

where

-1b
¢ = tan T

Euler's formula (eu’ = cosd+ 1 sin ¢) may be used to represent the
exponential as trigonometric functioms.
xl = "az-l-bz e Ct [cos(-wdt - ¢) + 1 sin (- wdt - &)

+ cos (wdt + ¢) + 1 sin (wdt + ¢)].

The sine terms add out leaving a real expression for xl.

Yy 2.2 =Ct

X, = 2 a“+b“ e

1 cos(wdt + ¢).

As was mentioned before, since 9, is arbitrary it is advantageous

to choose 9; " 939 " Q"2 " 1. % then becomes

Similarly, for the a'th coordinate let

B

1= " c = iwd; B?_--c+imd; qul-ga_ihu; 'qu.z-aa"'ihd'

Then

-(c + iwd)t -(c - {ud)t.
X = (gu - :lhu) e /-i- (g_u + ihu) e
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By the preceding argument, this reduces to

Y 2.2 -ct
X =2g+h e [cos(wdt + 9 )]
-1 ha
where ¢, = tan E_ and the signs of g and h are carried into the
a

evaluation of the arctangent.

The amplitudes and phase angles for all X, (¢ =2, 3, ... , n)
are all that are of importance in expressing the geometric configu-
ration (eigenvector) of the system vibrating in one of its natural

modes. That is

h
° V2.2 -1-2
Kl =2,0; Xa=2ggthy ,-%,; ¢ =tan = g4, (I11-7)

(a = 2’ 3’ sraey n)l

Furthermore the elgenvectors of a system may always be scaled. It is
common to normalize the eigenvector so that xl = 1, This is easily
done in equations (III-7) by dividing out a common factor 2.

The ratiops

q
=Y. (y=1, 2, ..., 2n)
a4z,

will be uniquely determined as was pointed out earlier, however, 9371
vses Qy, must remain arbitrary. These are the 2n arbitrary constants
of integration for the n second order differential equation of motion.

Using the simplification
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Loy
1l -
oy qp

the complete transient solution to the general problem is given by

X B Bont

- t Bt
1 q11 e + 939 e’2 4+, ., .+ 99, e

t

-
3

- 8.t . Bt 8
Xy T qu¥ap ol tappupy &2 e . sty e

X =gy, 1t + .. L+ 939000 20 eB2n® - (LT1-8)
The 2n undetermined q constants may be determined if the initial
conditions on displacements and velocities for all independent coordinates

are known, i.e., {X} and {X} must be known for time t = 0. When these
are known, the transient solution (III-8) may be differentiated to
produce n additional equations needed to complete the set of 2n algebraic
equations in the 2n unknowns 937915, At time t = 0 all exponential
terms equal 1, thus greatly simplifying the evaluation of the q's.
Because the u's directly determine the eigenvectors these equations
show that the freely vibrating solution is just a linear combination of
the eigenvectors of the system.

The transient solution plays a key role in problems such hs deter-

amining the motion which occurs immediately following the application or
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removal of a braking force (while the truck is moving). These problems
are important to highway engineers involved in investigating the washboard
effect found in downhill sections and stop sign approaches of roads
constructed of asphalt pavements. However, since these problems involve

a specific application of the analysis, they will not be discussed
further. Rather, the next objective of a completely general determination

of the truck vibrations is the discussion of the steady state oscillatioms.

Complementary Solution
The matrix formulation for the complementary (steady state) solution
is
0N (X} + ()X} + (R){X} = {F(t)) (111-9)

where the matrices (M), (C), and (K) are the same as those used in
equations (II-13). A solution for {X} is assumed as some function of

F(t). For the problem at hand this turms out to be

{x} = {A} sinwt + {B} coswt (I1I-10)

because only sinusoidal (cosinusoidal) forcing functions will be involved
in F(t). A nonsinusoidal forcing function (if it is periodic and
satisfies certain continuity and differentiability conditions) may be
expressed as an infinite series of sinusoidal forcing functions. The
solution to the nonsinusoidally forced problem, then, merely becomes the
superposition of each sinusoidal part of this infinite series. This

becomes a Fourier series problem. Of course an infinite number of terms
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of a Fourier series are involved and may not be practically accommodated,
thus an approximation may be effected by using only a few terms of this
solution. However, any specified error requirements may be met simply
by including additional terms in the answer.

Substituting equation (III-10) back into (III-9) yields

—mz(n){A}sinmt - ﬁzﬁu){B}cosmt + w(C){A}coswt - w(C){B}ainmt

+ (K){A)sinwt + (K){Blcoswt = {Fl}ainmt + {Fz}cosmt (III-11)

where the forcing function F(t) has been split into sine and cosine
components. The sine and cosine terms of equation (III-1l) may be

equated as

- W20 {A} - w(C}{B} + (K){A} = {F},
- w200 {B} + w(C){A} + (K){B} = {F,}.
These may be further reduced to

- o200 + 1{A} - w(@){B} = {F,},

w(C) A} + [- w2 (0 + (R)I{B} = {F,},

and by recombination the following matrix equation results
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|
-2 + R | () A Fy
_______ TV § T -—- (I1I-12a)

Or in more compact shorthand

aecR) {3} = flz _ (I1I-12b)
F
2

This matrix equation represents 2n algebraic equations in the 2n

unknowns {A} and {Bl} (recall that n = 6 for the truck and for this

problem is written out in full on the following page.
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The following simplifications have been made in the equationa

of the previous page in order to render them systematically presentable.

M o= - (}11+H2)£n2 ' Cl = (C, +C, + Cou
> ,
M, = - My cé - (cau + C.R ~ CzL)u
- - 2 1 =
M, Mo cy = [cg(e + Qlw
- 2 L
M, 40 C; (cl + Cz)m
- 2 1 -
Mo = Mou - - Cg €y + C4)w
.- 2 6 2. 2 £
yﬁ (Mzk + Jl + —Me ™ M7 S ) 06 ((J5 + Cé)w
M - ( - M,BP + i STw Y
“6 M7 cj = [Cg(8 + D°1u
- - (MP2+J 6M7 Cy = [CR(P + QJuw
M, 01, 2 v v +u7 .
Cz = Czu
' =
Kj =K, +K, +K c) = G
Ky = KN + KR = KL c} = Cgu
Ky = K (P + Q)
K; = K; +K,
KL = Ky + K,
K} = Kg + K,
2 2
K) = KL® + K4N2 + KR
2
Ki = K (P + Q)
K] = KR(P + Q)

Solution of these algebraic equations 1s nearly automatic with the
help of the digital computer, as several IBM Scientific Subroutine programs

exist (SIMQ, GELG, DGELG) which are based upon the Gauss reduction scheme.
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Thus only a program which calculates the coefficient matrix (MCK),

reads {il} , calls one of the above mentioned subroutines, and writes
2
out the answer'{g} is necessary for the solution to equation (III-12).
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Chapter IV

PRESENT STATE OF RESEARCH AND FUTURE GOALS

Present State

An elaborate digital computer program consisting of a main super=-
visory program and twenty-five subprograms has been writtem in the
Fortran IV language for execution on the IBM 360/50 computer located
at the Kansas State University Computing Center. This program solves
all of the equations derived in Chapter II by the methods of Chapter
IIT and incorporates the following features.

1) A preface output page states the parameters (masses, spring
constants, damping constants, and vehicle geometry) which
are considered in the vibrational analysis leading to the
following output.

2) Results of a standard undamped eigenvalue analysis yielding
resonant vibrational frequencies which should lie near the
damped rescnant frequencies are presented. The undamped
eigenvectors have also been included so that the effect of
damping on the mode shape may be evaluated.

3) The damped eigenvalues are next presented. These are generally
complex numbers arising in conjugate pairs. The real part of
one of these numbers gives the damping rate for the particular
mode arising for that eigenvalue and the imaginary part repre-
sents the damped natural frequency (radians/second) for the

same mode.
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4) The eigenvalues are then used to find each damped eigenvector
of the system.

5) Bode Plots are calculated for each generalized coordinate of
the vehicle. The Bode Plots are graphs of the amplitude ratio
(magnification factor) of the output which results when a
purely sinusoidal input is applied as a road input displacement
function, to the amplitude which would result if the forcing
frequency were zero radians per second (static case). Since
the forcing frequency may vary due either to a change in the
speed of the vehicle or to a change in the frequency of the
road input sinusoid (or to a combination of the two), a Bode
Surface may be defined for this problem. However, the program
produces only section plots of this surface, one for each coord-
inate for each speed specified in the data input to the program.
Actual graphs are produced on the IBM 1403 Printer by this
program. The range of frequencies for these graphs is 0— 10+
highest damped natural frequency (radians/second).

6) The program next accepts information in one or more of four
different forms defining actual road input displacement functions.
These include concave upward or downward parabolas, a list of
coefficients defining a polynomial of up to degree 49, or a
tabulated list of road displacements from some level datum,
measured at equal intervals along the road. The parabolas

are considered periodic over a short length (15-50 feet) and
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approximate a condition existing on some concrete highways
wherein the surface raises or sinks hetween the tar strips.
The polynomial form, and especially the list of tabulated
displacements, may be considered periodic over a much longer
distance, say one mile. This enables the output to be stﬁdied
for a set of random input displacements, which is the general
case of road input displacements. The reason for considering
periodicity is.that the program then converts the given road
displacement function information into a Fourier series which
is applied term by term as input to the differential equations
of motion. A finite number of the resulting outputs are then
superimposed to yield the output function. The first five
terms of both the input Fourier series and output series are
printed, however the output series must be printed in matrix
form to accommodate all nine generalized coordinates.

Each Bode Plot is scanned to find points of relative maximum
magnification factors. The circular frequencies of these
relative maxima are then compared with the frequencies of the
first fifty terms of the input Fourier series. Any Fourier
frequencies which lie within five radians per second of a
frequency of a relative maximum magnification factor are
printed out along with the circular frequency of the relative
maximum point of the Bode Plot. An analyst may then decide
whether or not a Fourier series input term, which was outside

the range of the five term Fourier series included in the
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solution, may produce an importatant contribution to the out-
put and should thus be included in the input. This was found
to be an important feature of the program since, due to the
application of the forcing function at three points of the
vehicle, (displaced by appropriate time lags to allow the
vehicle to travel over a specific bump on the road before
encountering the rear axle of the tractor and the trailer
axle) force restrictions are imposed which, at an eigenvalue
frequency, do not allow the mode shape predicted by the eigen-
value to be developed. This leaves the relative maxima of the
Bode Plots unknown, until these plots are created, and shows
that a simple comparison of the eigenvalue frequencies with

the Fourier frequencies is invalid for this problem.

The program was written with a high degree of generality in mind
and with minor modifications may find application in the following areas.

Highway engineers may evaluate the loads imparted to ;he pavement
quantitatively for any given truck, speed, and road simply by knowing
the tire spring constants, damping constants, and the tire deflection
and deflection velocity at any given instant. Thus a supplementary
program could be created either for (or by) the highway engineer which
could keep a running account of these pavement loads imparted at each
axle as a function of time. These data could be graphed, much as the
Bode Plots, or printed out in tabular form.

The truck designer could use the program to arrive at a compromise
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of suspension and loading parameters which satisfies the state and
federal regulations, gives an acceptable cargo ride, provides an
acceptable level of suspension wear, and (finally) considers driver
comfort. Since this program is an analysis rather than a synthesis
it must be immediately admitted that this compromise would not repre-
sent a maximum based upon any maximization criterion, but would be a
"best" set of parameters out of all the parameter sets tried.

Transfer and cargo hauling companies might employ the program to
perform a statistical analysis of many different "typical" road contours
and an analysis of a statistical contour. The output information could
be used to evaluate a mean location for the instant center of rotation
of the trailer. The fragile transfer items could then be placed at
least nearest this spot whenever a loading choice occurs.

An automobile pulling a single axle trailer is also described by
the mathematical model derived in Chapter II, thus smail trailer manu-
facturers (i.e., boat trailers, utility trailers) might utilize this
program to reduce vibrational difficulties sometimes encountered in
pulling these trailers.

Tire manufacturers could evaluate the deflection amplitudes and
velocities in order to predict tire life and (if unable to provide a
better tire design) might at least be able to recommend a tire type
for a truck whose vibrational characteristics are known. The same
comment applies to designers of the actual structural suspension members.

The foregoing list of applications is in no way intended to be

exhaustive and might be easily extended by any member of the engineering
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personnel of the automotive industry.

Future Goals

Very little nonlinear work has been accomplished for vehicle
vibrations. It is unlikely that any analytically promising method
will be developed in the near future for the solution of the immense
number of nonlinearities which may arise in vehicle vibrations and in
view of these dim prospects it would be desirable to at least be able
to gauge the inaccuracies present in a linear analysis.

A stepwise integration program needs to be developed which will
consider the nonlinearities of the springs and dampers as well as the
coulomb damping, the nonlinearities shown to arise in the kinematical
relations (II-5a, 5b) developed in Chapter II, the smoothing of the
bumps.due to the finite tire dimensions, and the piece-wise linear
wheel hop. These could then be entered into such a program and an
output curve obtained for a given input function.

A Runge-Kutta integration process could be used yielding solutions
for various step sizes in order to compare the change in the solution
curves with a change in the step size. When a decrease in the step
size is found: to produce no significant change in the cutput curves,
it may be assumed that a reasonably accurate solution has been obtained.
This solution may then be compared with the linear solution to evaluate
the error due to linearization. This may be done by many different
methods, two of which are maximum deviation error or mean square error.
It would not be economically feasible to use the nonlinear scolution -

for all vibrational investigations of the vehicle because such stepwise
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integration programs have proven in the past to be very expensive to
execute, thus giving incentive to use the more economical, if less
accurate, linear solution wheneyer reagsonahle fidelity exists between
7thg linear and nonlinear solution for a certain vehicle.

Finally, an experimental verification should be employed. An
ideal experiment would be one employing electromagnetic shakers to
excite an actual veﬁicle with a known input displacement function.
Verification could also be effected by using a vehicle equipped with
accelerometers at the centers of gravity of the tractor and trailer
(and at other positions on these components in order to sense rota-
tional motions) and at each axle. The accelerations could then be
integrated twice as the vehicle is rolled over a road of known contour.
Experimental verification, in any event, may be quite expensive and

may be disappointing due to a lack of available funds,
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